UPV-EHU ADDI
  • Volver
    • English
    • español
    • Basque
  • Login
  • español 
    • English
    • español
    • Basque
  • FAQ
Ver ítem 
  •   Inicio
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Comunicaciones
  • Ver ítem
  •   Inicio
  • INVESTIGACIÓN
  • Artículos, Comunicaciones, Libros
  • Comunicaciones
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterising the rankings produced by combinatorial optimisation problems and finding their intersections.

Thumbnail
Ver/
Accepted Manuscript (280.4Kb)
Fecha
2019-07
Autor
Hernando Rodríguez, Leticia ORCID
Mendiburu Alberro, Alexander
Lozano Alonso, José Antonio
Metadatos
Mostrar el registro completo del ítem
  Estadisticas en RECOLECTA
(LA Referencia)

Proceedings of the Genetic and Genetic and Evolutionary Computation Conference (GECCO'19) : 266-273 (2019)
URI
http://hdl.handle.net/10810/66011
Resumen
[EN] The aim of this paper is to introduce the concept of intersection between combinatorial optimisation problems. We take into account that most algorithms, in their machinery, do not consider the exact objective function values of the solutions, but only a comparison between them. In this sense, if the solutions of an instance of a combinatorial optimisation problem are sorted into their objective function values, we can see the instances as (partial) rankings of the solutions of the search space. Working with specific problems, particularly, the linear ordering problem and the symmetric and asymmetric traveling salesman problem, we show that they can not generate the whole set of (partial) rankings of the solutions of the search space, but just a subset. First, we characterise the set of (partial) rankings each problem can generate. Secondly, we study the intersections between these problems: those rankings which can be generated by both the linear ordering problem and the symmetric/asymmetric traveling salesman problem, respectively. The fact of finding large intersections between problems can be useful in order to transfer heuristics from one problem to another, or to define heuristics that can be useful for more than one problem.
Colecciones
  • Comunicaciones

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Listar

Todo ADDIComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosDepartamentos (cas.)Departamentos (eus.)MateriasEsta colecciónPor fecha de publicaciónAutoresTítulosDepartamentos (cas.)Departamentos (eus.)Materias

Mi cuenta

Acceder

Estadísticas

Ver Estadísticas de uso

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka