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Abstract 

Global warming of the oceans is expected to alter the environmental conditions that determine 

the growth of a fishery resource. Most climate change studies are based on models and scenarios 

that focus on economic growth, or they concentrate on simulating the potential losses or cost to 

fisheries due to climate change. However, analysis that addresses model optimization problems 

to better understand of the complex dynamics of climate change and marine ecosystems is still 

lacking. In this paper a simple algorithm to compute transitional dynamics in order to quantify 

the effect of climate change on the European sardine fishery is presented. The model results 

indicate that global warming will not necessarily lead to a monotonic decrease in the expected 

biomass levels. Our results show that if the resource is exploited optimally then in the short run, 

increases in the surface temperature of the fishery ground are compatible with higher expected 

biomass and economic profit. 

 

Keywords: Global warming, stock growth uncertainty, European sardine fishery, 

Transitional dynamics 
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Introduction 

 

 Marine social-ecological systems are in decline (MEA 2005; Branch et al. 2010; Gelcich et al. 2010; 

MRAG 2010; FAO 2012). Climate change will complicate the challenges currently facing global 

fisheries, as it has begun to alter ocean conditions, particularly water temperature and biogeochemistry 

(Cheung et al. 2009).  

The number of empirical studies related to climate change in fisheries has increased dramatically in 

recent years. Results seem to suggest that climate change is altering the behavior of commercial fisheries 

(Lehodey et al. 2006; Drinkwater et al. 2010; Wang et al. 2010) and productivity of the stocks 

(Hannesson 2007). It also seems to be causing changes in biotic and physiological characteristics of 

species (Schmittner 2005), and the distribution of many species of fish (Poff et al. 2002). These changes 

are unpredictable and can affect the behavior of stocks, which in turn can negatively impact the 

environmental services they provide (Worm et al. 2006; Cheung et al. 2009).  

  One effect of global warming is that the water temperature of the oceans is altered (IPCC 2007). 

Increased temperature reduces the ability of oceans to capture CO2, and the oceans become more acidic; 

this acidity subsequently reduces the concentrations of carbon ions and influences the biological capacity 

of the oceans (Caldeira and Wickett 2003). Moreover, global warming of the oceans is expected to alter 

the environmental conditions that determine the growth of the fishery resource (Johannessen and Miles 

2011; Pascoe et al. 2011; Vinegar et al. 2011), because recruitment of many exploited fishes and 

invertebrates is correlated with environmental conditions (Cushing 1975). For this reason, numerous 

studies have focused on the potential impact of climate change on Earth and its natural resources 

(Rockström et al. 2009), and in particular on fishery resources (Arnason 2007; Trathan et al. 2007). Such 

studies assume that changes in ocean temperature will change the natural growth rate of the resource 

(Hannesson et al. 2006; Garza-Gil et al. 2011), which will have economic impacts on the fishing industry 

(Arnason 2007; Sumaila et al. 2011; Voss et al. 2011).  

In particular, the economic consequences of climate change on fisheries might manifest themselves 

through changes in the price and value of catches, fishing costs, fishers’ incomes, and earnings to fishing 

companies (Arnason 2007; Bosello et al. 2007). There are a number of research efforts currently 

underway to estimate the economic losses that might occur due to climate change (Eide 2007; Medel 

2011; Sumaila et al. 2011), and the economic costs of adapting fisheries to climate change (Tseng and 
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Chen 2008). Most climate-change of studies is based on the models and scenarios on economic growth 

(Eboli et al. 2010), or concentrated on simulating the potential losses (Sumaila et al. 2011) or cost to 

fisheries due to climate change (Kavuncu 2007; Cinner et al. 2011). However, analysis that address model 

optimization problems may also lead to a better understanding of the complex dynamics of climate 

change and marine ecosystems (Crèpin et al. 2011).  

This paper is structured as follows. Section 2 shows the implications of climate change and the 

transitional dynamics in fishery resources. Sections 3 to 5 present a stochastic bioeconomic model and its 

forward-looking economic solution to estimate the economic effects of climate change on the European 

sardine (Sardina pilchardus) fishery. Section 6 shows the results and discussion. Section 7 concludes. 

 

 

Climate change and transitional dynamics of fishery 

resources 

 

Analysing climate change involves studying systems that are in transition (van der Brugge et al. 

2005; Voss et al. 2011). The growth rate of a fishery resource is subject to changing conditions under 

global warming. Therefore, the population can never be in equilibrium until the ocean temperature 

stabilizes. Technically, global warming alters the steady state of the biomass which adjusts to a new 

steady state situation; this adjustment process is called transitional dynamics. Thus, the system of 

equations used to describe the behavior of a social-ecological system must be modified to take into 

account the transitional dynamics of the system in order to analyse the impact of climate change. 

Calculating the transitional dynamics of the system that are required to reach the new steady state is 

not an intractable problem (Da Rocha et al. 2012a and 2012b). Given an initial global warming scenario, 

once an event of climate change occurs we may set a time horizon large enough to ensure that the 

dynamics of the system attains again stability. This also allows truncating the transitional dynamics in the 

new steady state associated with the global warming scenario reached after the increase of temperature of 

the oceans. The solution is obtained by solving a finite system of difference equations. Although 

generally it is not possible to obtain analytical solutions, it is possible to solve the dynamics equations of 

the system using numerical methods. 
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Sometimes system dynamics are simulated as a succession of stationary states. For instance Garza-

Gil et al. (2011) describes the steady state of a fishery affected by global warming as a situation where the 

biomass only is affected by the temperature which is an exogenous variable; a change in the temperature 

varies the stationary value of the stock. In a single-species case and without global warming affecting the 

fishery, the optimal adjustment path is monotonically increasing in both biomass and harvest whenever 

the actual biomass level is below that of optimal equilibrium and monotonically declining in both 

variables in the opposite case (Clark 1976). These adjustment paths are missed when the analysis is 

focused exclusively on steady state situations. 

Nevertheless, simulating a situation of flux using a succession of stationary situations may be a 

reasonably robust approximation in some circumstances. For example when the initial state of the system 

is under equilibrium (i.e., steady state) and that global warming follows a very slow pattern the 

transitional dynamics to the steady state can be neglected. However, this simplification has two important 

limitations. First, given that climate change began before the period of analysis, resources have been 

subjected to changing environmental conditions; even if the changes are very gradual and imperceptible, 

the system is not in equilibrium. Second, climate change might not be the only factor of uncertainty in 

terms of environmental conditions, which would mean that the system is always fluctuating around the 

hypothetical steady state. Therefore, the initial conditions of the ecosystem would not have been close to 

the steady state. In the case of the European sardine (Sardina pilchardus), the population likely is affected 

by various environmental conditions. The spawning stock biomass (SSB) has declined since 2006 due to 

the lack of strong recruitments in recent years. As a result, SSB in 2011 was 67% below the long-term 

average (ICES 2011a).  

Due to these limitations the approach we follow in this article is not to simulate as a succession of 

stationary states. By the contrary, we focus on transitional dynamics to a new steady state. In a stochastic 

context, climate change induces consequences longer than the oscillating frequency and the relevant 

analysis has not to be based on the final situation but on the transition to this point.  

In this paper we provide a forward-looking algorithm for estimating the impact of foreseeable ocean 

temperature changes on the economic exploitation of fishery stocks subject to growth uncertainty. We 

first describe the bio-economic model, and then we describe the equations used to quantify the economic 

effects of climate change and the algorithm used to solve them numerically. As a case study, we apply the 

algorithm to the European sardine fishery. 
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The bio-economic model 

 

In this section, we introduce global warming using the stochastic model of Da Rocha et al. (2011).  

We assume that the size of the resource at period 1t , 1tX , is the difference between the growth of the 

resource, tcTb
tt )aXε(G  1  and the catches for the period t , th :  

 t
cTb

ttt h)aXε(X t  
 11 ,  (1) 

where a , b and c are biological constant parameters, tT  is the sea surface temperature at period t , and 

tε  measures the effect of other environmental factors on the growth of the resource. We assume that tε  is 

an independent and identically distributed (i.i.d.) stochastic variable with 0Eεt   and ε
2
t σEε  .  

Notice, first that b+cTt represents the elasticity of the gross stock growth, i.e. if the stock increases 

1% then next period stock increases a (b+cTt)%. This means that changes in the surface temperature 

affect the evolution of the stock through the elasticity of the gross stock growth, in particular through 

parameter c. Although the elasticity of the growth function can also be affected by other motives apart 

from temperature. This is represented by the parameter b. Second,  aε1 t  can be interpreted as the 

productivity of the resource at time t, which can be affected by other environmental shocks apart from 

those of temperature. 

Catches depend on a Cobb-Douglas technology, which is a function of the amount of fishing effort 

measured through the number of fishing days, te , the size of the resource, tX , and fleet productivity,  , 

which is assumed to be constant across time: 

,21 β
t

β
tt eXh                             (2) 

where 1  and 2  represent the stock and effort elasticity, respectively.  

 

At the time when management decisions are made for the time period, the regulator knows the size of 

the resource, tX , sea surface temperature, tT , and the realization of the stochastic variable, tε . 

Moreover, the regulator is forward looking: (S)he knows the future evolution of the sea surface 

temperature which is exogenously given by: 
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where, t is the estimated period of time required for global warming to stabilize.  

Before solving the model, note that the bio-economic system cannot attain stationarity at any time 

before sea temperature stabilizes. Stationarity in this bio-economic model means that the stock keeps 

constant along time. As long as ,tt   the sea temperature is changing according with (3) and this 

implies that the stocks also varies according to (1) and (2).  

 

A forward-looking economic solution 

 

We propose a forward-looking economic solution based on the following premises. At any date t  the 

economic problem consists of choosing optimal catches to maximise economic profits tt weph  , 

discounted at the initial moment where p is the market price of the fish and w is the cost of the fishing 

effort. This aim is attained taking into account stock growth (equation (1)), fishing technology (equation 

(2)), and, more importantly, that sea surface temperature will not be constant before t  (equation (3)). 

Formally:   
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where δ  denotes the discount factor and 
t
E  represents the expectation of future variables that are 

estimated based on the information available at period t about the future evolution of sea surface 

temperature and natural resource growth shocks.  

In order to solve the maximization problem (4), we rewrite catches and effort as: 

 1t
cTb

tt1ttttt X)aXε1(XXTεh t



  ),,,( , (5) 

and 

 
2

1

t
β1

β
t

1t
cTb

tt
1ttttt X

X)aXε1(
XXTεe

/

 ),,,( 






 
 



 
, (6) 

 

Therefore, the economic problem can be expressed in terms of a sequence of state variables, 

  
0tttt XTε ,, , such that: 

  



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 0t

1ttttt1ttttt
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,...,}{

. (7) 

The first order conditions of the maximization problem (5) are an infinity set of equations given by:  
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Equation (8) characterises the optimal harvesting rule by equalising, for each and every period t , 

present marginal profits of increase in one unit harvesting today: 
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with the expected marginal costs tomorrow:  

.
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Finally note that expression (8) is an equation in differences of order two: given the initial conditions 

of the resource tX , surface ocean temperature tT , and stochastic growth tε , the optimal size of the 

resource at the next period 1tX  depends on the optimal biomass level two time periods ahead, 2tX . 

Moreover, optimal harvesting today depends on expectations about surface ocean temperature in the next 

period 1tT  and the other environmental factors, 1tε , tomorrow. 

 

A particular solution: the steady state 

As stated above, it is possible to define a stationary solution only when surface ocean temperature 

and natural resource growth are stationary. Therefore, we assume that there exists a date sst   greater 

than t for which 1ttss TTT   and 01  tt Eεε . A steady state solution, 1 ttss XXX , 

verifies:  

 
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)( ssssssss
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1

ss
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2 Xh)cTδ(bX

h
δ1
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e

β

w
p  , (11) 

where ss
cTb

ssss XaXh ss    and . 
/

ss

2

1

β1

β
ss

ss

X

h
e 











 Note that this stationary solution depends on the 

surface ocean temperature. If climate change reduces the natural growth through parameter c  then, an 

increase in surface ocean temperature reduces the natural growth rate. Therefore, stationary biomass (and 

economic profits) decreases as surface ocean temperature increases (Medel 2011). Notice also that natural 

resource growth also may be affected by other factors apart from temperature which are summarized in 

parameter b. So any external environmental factor that decrease b leads to reduce the biomass and profits 

in the long run. 
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 The numerical algorithm 

 

The optimal trajectories derived from the maximization problem (1) are the optimal paths for 

  0t1tX  that satisfy the infinity set of equations that characterizes the first order conditions given by 

the system of equations (8). To make it computationally tractable, we assume that these optimal 

trajectories converge to the stationary solution in a finite number of periods NT . That is, given the initial 

condictions, 0X , the first order conditions are truncated such that ssTT XXX
NN

 1 .  Note that the 

optimal trajectories are contingent on the shocks affecting the initial conditions. Thus, we assume that tε  

is equal to: 

 )uσ(ε tt 12  , (12) 

where tu  follows a uniform distribution on [0,1] and σ is the variance of tX . 

Taking this into account, solving the model consists of choosing 1X , 2X , ..., 1NTX  such that the 

system of equations under the first order condition is satisfied. This system of 1NT  nonlinear 

equations with 1NT  unknowns is written as: 
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And it can be solved by using standard numerical methods. At any time point, natural growth is affected 

by the shock, thus the optimal trajectory should be recalculated for each period once the drawn is known. 

This numerical method is known as Model Predictive Control (Garcia et al. 1989; Mayne et al. 2000). 

Notice that the above algorithm takes into account the transitional dynamics towards the steady state 

which is reached after the temperature stabilizes. This approach differs from the one use in Garza-Gil et 

al. (2011), they used the steady state equation (11) for calculating the steady state biomass associated to 

different values of temperature. However, this approach makes no full sense if the temperature has not 

reached its long-run stabilized value. 
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Application of the model to the European sardine 

fishery 

 

To obtain numerical results, we applied the algorithm to the European sardine fishery. In 2010, the 

atmosphere over the Iberian Peninsula was warm with respect to the long-term mean: The average 

temperature was 0.35 oC above the mean during the reference period (1971–2000). However, it also was 

the coolest year since 1996 (ICES 2011b).  The Iberian Peninsula is a fishing ground that is especially 

sensitive to the effect of climate change (Garza-Gil et al. 2011). Moreover, small pelagic fish species like 

the European sardine are subject to high biomass fluctuations. In its last assessment, ICES (2010) 

reported that SSB in 2011 was 67% below the long-term average. In our application of the model to the 

European sardine fishery, we considered four finite time horizon scenarios similar to those suggested by 

Garza-Gil et al. (2011) (Figure 1): 

a) Scenario I: The contra factual scenario, in which surface ocean temperature remains constant at 

2010 levels;  

b) Scenario II: Sea surface temperature will increase at the same rate as in the last few decades, 

which is 0.027 ºC per year (Garza-Gil et al. 2011); 

c) Scenario III: Sea surface temperature will increase twice as fast as in recent decades (i.e., 2 x 

0.027 ºC); and finally 

d) Scenario IV: Sea surface temperature will increase more slowly than in recent decades (i.e., 4/5 x 

0.027 ºC).  
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Figure 1 shows four simulations of the surface ocean temperature for scenarios I to IV. We consider an 

initial surface ocean temperature is 16.63 ºC. This temperature evolves according with the scenarios II, III 

and IV until stabilize at a value of 17.16 ºC. Both values correspond with the lowest and highest values 

considered by Garza-Gil et al. (2011). Scenarios III and IV were used mainly to perform sensitivity 

analyses. Under these scenarios, surface ocean temperature would stabilise at the same level as that in 

Scenario II, but equilibrium would occur at different times. 

In order to compute the optimal solution, we assumed that, on average, the initial conditions were 

67% below the deterministic stationary biomass associated with the initial surface ocean temperature of 

16.63 ºC in 2010. This assumption is based on biologist studies that assess that SSB in 2010 was 67% 

below the long-term average (ICES, 2010) and on the temperature evolution considered by Garza-Gil et 

al. (2011). Formally, )63.16(33.2010
2010

 TXXE ss . Finally, data used for the parameterization of 

the bio-economic model were taken from Garza-Gil et al. (2011). Table 1 summarises these values. 

 

Table 1. Parameters and variables used in the model 

 

 

 

 

 

 

 

 

 
 

We ran 1000 simulations using the same realizations for the shock for each of the four scenarios. As 

initial conditions for each simulation, we used the biomass at date 2010 distorted by the realization of the 

shock in period one, 2010
2010

10 XEεX  , and a time horizon equal to 45 periods. These conditions were 

chosen to guarantee that convergence to the stationary solution associated with the final surface ocean 

temperature would occur. Once the optimal expected value of the biomass in the next period was 

obtained, we updated the initial conditions using the realisation of the shock in period two, 2ε , and the 

Parameter/variable Concept Value 
Natural Growth   

a   Constant(*) 569.6500 
b  Independent elasticity term 0.9919 
c   Temperature  elasticity term 0.0269 
σ  Stochastic variable  0.2500 

Technology   
α  Fleet productivity 28.9595 

1β  Stock elasticity  0.0830 

2β  Effort elasticity  0.6887 

Economics values     
p  Price (euros) 613.0700 
w   Fishing effort cost (euros)  912.4700 
Source: Garza-Gil et al. (2011). (*) Long term average Spawning Stock Biomass. 



  14

temperature of period two under each scenario. That is )( 20112011
2011

21 TXEεX  . And so on. Overall, 

the algorithm was run for 45 periods   1000 simulations   4 scenarios. 

 

Results and discussion 

In this section detailed results from the bioeconomic model are presented and discussed.  

Figure 2 compares the optimal expected biomass values (solid black line) obtained for each scenario 

with a succession of pseudo steady states (dashed line). The optimal expected biomass has been 

calculated using the algorithm expressed in (13) in order to capture the transitional dynamics toward the 

stationary values. The succession of pseudo steady states shows the value of the steady states associated 

to different long-run temperature levels according with the deterministic equation (11). We call this 

solution pseudo steady states because they would only represent steady states if the temperature were 

stable at this value.  Red dashes line indicates when the fishery ground will be in a stationary distribution 

if the resource is exploited optimally. In this analysis it is considered that this situation is reached when 

the temperature stabilize at a value of 17.16 ºC. This value corresponds with the highest value considered 

by Garza-Gil et al. (2011). Notice that the period in wich this stabilized temperature is reached is different 

for each scenario. 

These results exhibit different patterns for each scenario. First, note that the optimal path does not 

follow the most rapid approach (the bang-bang solution), and the fishery will be out of the stationary 

distribution for a long time. Of course, slow global change scenarios reach the long run level later than 

faster global change scenarios. 

Second, global warming does not necessarily led to a monotonic decrease in the expected biomass 

levels, as myopic analysis based on pseudo steady states predicts. The optimal path exhibits an inverted 

U-shaped form. During the first 5 years the optimal sardine biomass levels (as well as the optimal profit 

levels) increase as the sea surface temperature increases. After that sardine biomass decreases until the 

long run (40 years) level is reached. This optimal biomass level is higher than that in the initial condition 

but lower than that at the initial steady state. If global change reduces fishery productivity, reducing the 

biomass level by increasing catches along the optimal transition path will be optimal. 
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Figure 2: Expected biomass under each scenario: Scenario I (No global warming), Scenario II 
(Benchmark global warming), Scenario III (Fast global warming), and Scenario IV (Slow global 
warming). Solid black line represents the optimal biomass taking into account the transitional dynamics 
toward the steady state. Green dashed line is the steady state biomass if the associated temperature would 
have reached its stabilized value. Red vertical dashed line indicates the date when the stock distribution 
stabilizes. 

  

Moreover, by assuming that the initial conditions of the fishery are close to the pseudo steady state, 

net present profits between 2010 and 2050 are overestimated in the four scenarios. That is, if the resource 

is below its stationary level, a succession of pseudo steady states overestimates the profits of the initial 

conditions of the stock and underestimates the effect of global warming. In our numerical simulations 

under the benchmark global warming (scenario II), net present value of profits associated to the 

succession of pseudo steady states are 4.49% higher than the optimal net expected profits based on the 

initial conditions of the fishery.  

 Figures 3 and 4 show the cumulative distributions of the biomass and profits, respectively. In 

both figures variables are illustrated for scenarios with no global warming (scenario I, grey solid line) and 

with the benchmark global warming (scenario II, black solid line). The y-axis expresses the probability of 

the variable being lower than abscises value. 
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Figure 3: Cumulative probability distributions of biomass under Scenario I (No global warming, grey 
line) and Scenario II (Benchmark global warming, black line). The y-axis expresses the probability of the 
biomass being lower than abscises value. 
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Figure 4: Cumulative probability distributions of profits under Scenario I (No global warming, grey 
line) and Scenario II (Benchmark global warming, black line). The y-axis expresses the probability 
of the profits being lower than abscises value. 
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Figure 3 shows that in the first 5 years, the probability than the biomass with climate change 

would be below the levels without climate change is less than 5%.  Of course, this probability increases as 

the time horizon increases. In the long run (between 2031 and 2049), biomass will be (with probability 

one) lower than 400,000 tonnes, but it also can be higher than in 2011.  

This result has important implications in terms of quantification of the expected economic effects of 

climate change on the European sardine stock. Stationary analysis predicts that annual profits will 

decrease by 1.27% during the 2010–2030 period (Garza-Gil et al. 2011). However, Figure 4 shows that in 

the short run (2011–2015) the distribution of profits will not be affected by changes in surface ocean 

temperature.  

 

 

Figure 5: Economic effects of global warming on the European sardine fishery. Estimated net 
present profits for the period 2011-2030 considering a discount rate of 5%. Results for Scenario 
II (Benchmark global warming), Scenario II (Fast global warming), and Scenario III (Slow 
global warming) are relatives to Scenario I (No global warming) which correspond to index 100. 

 

To quantify the economic impact of climate change on the fishery, we summarise the distribution in 

only one statistic: net present profits.  As in Garza-Gil et al. (2011), we use a time horizon that extends to 

2030 (this is the time horizon proposed in the Spanish Plan of Adaptation to Climate Change; MMA 
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2006) and a discount rate equal to 5%. Figure 5 shows that during the next 20 years, the economic impact 

of climate change on expected net present profits will be equal to a reduction of less than 7%, which is 

equivalent to an annual decrease of a 0.36%. Therefore the quantification of the economic impact taking 

into account the transitional dynamics implied by the global warming process reduces the losses predicted 

by the pseudo steady state analysis in more than a 30%.  

 

Conclusions  

Global warming may generates slow or abrupt transitions between climate regimes. While surface 

ocean temperature is increasing, fishery grounds are subject to potential changes in environmental factors. 

As a result, natural productivity of marine resource is not stationary. Therefore, to estimate the effect of 

climate change, the dynamic transitions of the bio-economic system must be computed.  

In this paper we provide a simple algorithm to compute transitional dynamics in order to quantify the 

effect of climate change on fisheries subject to fluctuations. Given the initial conditions of the fishery 

ground and assuming that the system converges in a finite number of periods to a new climate regime, the 

transition can be solved by using standard numerical methods.  

What do we learn when we compute the transition instead of a succession of steady states? First, in a 

single-species case and without global warming effects on the fishery, the optimal adjustment path is 

monotonically increasing in both biomass and harvest whenever the actual biomass level is below that of 

optimal equilibrium and monotonically declining in both variables in the opposite case (Clark 1976). 

Second, global warming does not necessarily lead to a monotonic decrease in the expected biomass 

levels, as myopic analysis based on steady states predicts. Our model results show that in the short run (5-

10 years), increases in the surface temperature of the Iberian Atlantic fishery ground are compatible with 

higher expected biomass and economic profit levels when the resource is optimally exploited. Third, 

small pelagic species are subject to other environmental factors apart from temperature changes that 

affect natural productivity. In other words, sardine biomass is affected by other environmental variables 

that can mitigate the reduction in natural growth caused by climate change. Therefore, the effect of 

climate change must be measured in terms of the cumulative distribution of biomass generated by 

endogenous regulatory decisions and exogenous shocks under each possible climate regime.  
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Finally, there are four simplifications of the model used that can be improved in future research. First, 

we have assumed that climate change will increase sea surface temperature at a constant rate in the future 

until a stabilized value is reached. It is clear that climate change may vary the sea temperature with 

different patterns. Further research including different paths for the evolution of the temperature may be 

interested from the economic and ecological point of view. 

Second, the European sardine fishery is regulated by using a mixture of fisheries management 

measures simultaneously: gear restrictions, minimum sizes, area closures, and fishing periods (season 

length). Here, the assumption is that the fishery is regulated by fixing an annual target harvest. However, 

it is possible to quantify the economic effect of climate change using a more realistic model that includes 

daily quotas (or trip limits) and fishing periods (the overall limits on the fishing season) together with the 

target harvest to regulate the fishery ground (Da Rocha and Gutierrez 2012). 

Third, the ICES assessment of the European sardine stock uses age-structured populations models 

instead of biomass models as the one used in this article. Optimal management based on the optimization 

of bioecononomic age-structured population models has been developed in recent years (Tahvonen 2009; 

Da Rocha et al. 2010, 2012a and 2012b; Da Rocha and Gutierrez 2011 and 2013), and thus it may be 

possible to compute transitions between climate regimes using age-structured models (Voss et al. 2011). 

Therefore, further research that connects climate change and environmental factors with age-structured 

models is needed to predict sardine dynamics under optimal exploitation considerations.   

Furthermore, in many cases the effect of other environmental factor could be even higher than those 

related to the sea ocean temperature. For instance it may happen that a stock migrates following 

temperature modification to another new environmental conditions and this affect to its growth. New 

research taking into account this kind of effect may be useful for some species. Also more plausible 

future scenarios about the evolution of the sea ocean temperature may be interesting to simulate when 

new research on marine ecosystems come to light.      
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