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We consider cooperation situations where players have network relations. Networks evolve
according to a stationary transition probability matrix and at each moment in time players
receive payoffs from a stationary allocation rule. Players discount the future by a common
factor. The pair formed by an allocation rule and a transition probability matrix is called a
forward-looking network formation scheme if, first, the probability that a link is created is
positive if the discounted, expected gains to its two participants are positive, and if, second,
the probability that a link is eliminated is positive if the discounted, expected gains to at
least one of its two participants are positive. The main result is the existence, for all discount
factors and all value functions, of a forward-looking network formation scheme. Furthermore,
we can always find a forward-looking network formation scheme such that (i) the allocation
rule is component balanced and (ii) the transition probabilities increase in the difference in
payoffs for the corresponding players responsible for the transition. We use this dynamic
solution concept to explore the tension between efficiency and stability.
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1 Introduction

When considering networks generating a value, it is commonly understood that this value arises
as the result of some economic activity (1) in which individuals are engaged and (2) for which the
network serves as a structure or organization. Given that network structures have an impact
on economic results and, therefore, on welfare, it is essential for economists to understand
processes of network formation undertaken by self-interested individuals, and how this relates
to the way the value is distributed among them. The purpose of this paper is to contribute
to the development of foundational theoretical models that can serve to analyze simultaneously
network formation and value allocation. These are closely related problems since the payoff a
player gets in each possible network gives incentives for creating certain links and severe others.

A social network here is represented as a set of bilateral and reciprocal relations connecting
individuals in a society (called players). If these network relations have an effect on some
economic activity, they are social-economic networks. Job contact networks, R+D bilateral
agreements among firms, and crime networks are examples of social-economic networks that
have recently appeared in the literature.1 In what follows, I will call them simply networks.

The dynamics of the network formation process are represented by means of a stationary
transition probability matrix. At any moment in time players receive payoffs according to
a stationary or stage-wise allocation rule, depending on the current network but not on the
moment in time. Players discount the future by some common discount factor. Because the
transition probability matrix represents the dynamics induced by self-interest individuals, it
should be somehow consistent with the allocation rule at hand. With this in mind, we define
the notion of discounted, expected pairwise stability based on the notion of pairwise stability by
Jackson and Wolinsky (1996), where players take the whole stream of payoffs into account. In
particular, players anticipate (with some decay) the inter-temporal repercussions of their own
linking decisions.

The system or scheme formed by a stage-wise allocation rule and a transition probability
matrix is called a forward-looking network formation scheme if, first, the probability that a link
is created is positive if the discounted, expected gains to its two participants are positive, and if,
second, the probability that a link is eliminated is positive if the discounted, expected gains to
at least one of its two participants are positive. The main result is the existence, for all discount
factors and all value functions, of a forward-looking network formation scheme. Furthermore,
we can always find a forward-looking network formation scheme such that the allocation rule is
component balanced,2 and the transition probabilities increase in the difference in payoffs of the
corresponding agents responsible for the transition.

The definition of a forward-looking network formation scheme captures some best-response
dynamics as in the seminal paper by Jackson and Watts (2002), themselves based on the notion

1See Jackson (2008) for a review.
2An allocation rule component balanced or component efficient if it always distributes the total value of a

maximal connected subnetwork among its participants
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of pairwise stability introduced by Jackson and Wolinsky (1996). Pairs of players are called
to play with a certain probability at each point in time. When called to play, players decide
wether to create a link if they are not directly connected in the current network, or to severe
it if they are, or to leave the network unchanged. Dutta et al (2005), Page et al (2005) and
Herings et al (2009) have, as we do here, proposed dynamic processes of network formation where
players are forward looking, extending therefore Jackson and Wolinsky (1996) and Jackson and
Watts (2002) setting. While all these works focus on the problem of network formation and
whether farsightedness can help resolve the tension between stability and efficiency already
pointed out by Jackson and Wolinsky (1996), our intention is to provide a solution concept to
analyze the problem of network value allocation at the same time as the problem of network
formation. We derive very general results, namely existence for any discount factor, by leaving
the conditions on the allocation rule open, and considering very mild conditions on the transition
probabilities. Our analytical framework is flexible enough and leaves room for further research,
namely to analyze forward-looking agents that are at the same time forming the network and
deciding how to distribute its value. As an example, in a recent working paper, Navarro (2013)
considers forward-looking pairwise network formation schemes where the allocation rule satisfies
a forward-looking version of equal balance contributions (or fairness) and component balance
or component efficiency. Unfortunately, such a scheme is guaranteed to exist only for discount
factors small enough.

Currarini and Morelli (2000) and Slikker and van den Nouweland (2000) also analyze network
value allocation and network formation simultaneously. In these articles both the value allocation
and the network formation are the result of a multilateral (non cooperative) bargaining procedure
written as a one-shot game. The setting we introduce here allows us to acknowledge the bilateral
nature of network formation, as the notion of pairwise stability does, and allows to explore the
tensions among different assumptions on the way the value is allocated.

We finally identify the conditions on the value function w that guarantee the existence
of at least one forward-looking network formation scheme such that the dynamics of network
formation converge to an efficient structure with probability one. Similarly to Dutta et al.
(2005), a condition of monotonicity of the stationary or stage-wise allocation rule guarantees
that the process will converge to the complete graph. This is so as the creation of links are at
any time always beneficial. The questions to explore are, first, whether in any situation where
the complete network is efficient we can find a stationary allocation rule that is monotonic, and
second, whether anytime we can find a stationary allocation rule that is monotonic with respect
to the addition of own links the complete network is efficient. The answer is obviously not to
both, but we can identify conditions on the value structure for the first question to be positive
(therefore obtaining an efficient result). Finally, we also show that the presence of externalities
across components makes the efficiency results more difficult to obtain. Better said, if the value
structure is such that there are externalities across components, our requirement of increasing
returns to link creation (with respect to the value to be allocated) is more restricted than when
there are not externalities across components.
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This paper proceeds as follows. Section 2 introduces the setting and main definitions. Section
3 states the results. Section 4 illustrates the existence result and the limits of the efficiency result
by means of examples. Finally, Section 5 concludes.

2 Definitions

2.1 Players, Coalitions and Networks

Let N = {1, ..., n} be a finite set of players. A subset S ⊆ N is called a coalition. Let 2N be the
set of all possible coalitions in N . There are network relations among the players in N , formally
represented by an undirected graph. Here, an undirected graph g is a set of unordered pairs,
denoted ij, with i, j ∈ N , and i 6= j. In what follows, each element ij in a graph g will be
referred to as a link.

Let gN be the complete graph on the set N . Let g ∪ ij be the graph resulting from adding
the link ij to the existing graph g, and let g\ij be the graph resulting from eliminating the link
ij from the graph g. A coalition T ⊆ N is a connected component of N in g if: (1) for each pair
of players in T , there exists a path, i. e., a set of consecutive links, in g that connects them, and
(2) for each player i in T and each player j not in T , there is no path in g that connects them.
Let N |g be the set of connected components of N in g. Note that N |g is a partition of N .

A link ij is called critical in g, where ij ∈ g, if the component T ∈ N |g to which i and j
belong splits into two components in g\ij. Formally, |N |(g\ij)| = |N |g|+1, where |N |g| denotes
the cardinality of the set N |g.

For every graph g and coalition S ⊆ N we define the restriction of g to S as the subset of links
in g directly connecting players in S to players in S, formally g|S = {ij ∈ g : i ∈ S and j ∈ S}.
Note that g|S ⊆ g, g|N = g, and g =

⋃
T∈N |g

g|T , for any g ⊆ gN .

A pair of graphs g and g′ in G are called adjacent graphs (Jackson and Watts, 2002) if g = g′

or if there exists a link ij ∈ gN with g′ = g\ij or g′ = g ∪ ij.
Let G be the set of all possible graphs over N , and |G| its cardinality. Note that |G| = 2

n(n−1)
2

because the number of links in gN is equal to n(n−1)
2 .

2.2 Values, Allocation Rules, Stability and Efficiency

Assume now that for every graph g ∈ G and for every connected component T ∈ N |g, there is
a value w (T, g) that can be perfectly distributed among the players in T . A function w, which
to every graph g and every connected component T in N |g assigns a value w (T, g), is called a
value function. Let W be the set of all possible value functions, once the set of players is equal
to N .

Let v(g) be the total value available to distribute among players in N when the latter organize
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as in g, namely

v(g) =
∑
T∈N |g

w (T, g) . (1)

A value function w is called component additive if w(T, g) = w(T, g|T ) for any g ∈ G and any
T ∈ N |g. This means that the value of a component of the network does not depend on the
structure of the network outside the component. In such a case, we can compute the total value
v(g) that can be distributed from the sum of the value of each component taken in isolation,
namely

v(g) =
∑
T∈N |g

w (T, g|T ) . (2)

We will not assume component additivity (absence of externalities across components) in general,
and whenever used, it will be stated explicitly.

A value function is link monotonic if for any T ∈ N |g and any ij ∈ g|T the following two
conditions hold.

1. Assume ij is critical in g, so that T splits into two components Ti and Tj when ij is
removed from g. Formally, Ti ∈ N |(g\ij) with i ∈ Ti and Tj ∈ N |(g\ij) with j ∈ Tj , and
T = Ti ∪ Tj . Then, it has to be that w(T, g) > w(Ti, g\ij) + w(Tj , g\ij).

2. Assume ij is not critical in g, so that T is also a component in g\ij. Then, it has to be
that w(T, g) > w(T, g\ij).

A value function satisfies strong critical-link monotonicity3 if it is link monotonic and if for

every graph g, any T ∈ N |g and any ij ∈ g|T critical w(T,g)
|T | > max{w(Ti,g\ij)|Ti| ,

w(Tj ,g\ij)
|Tj | }, where

Ti and Tj are, as before, the two components in which T splits when ij is removed from g. Note
that critical-link monotonicity requires that the per-capita value in the component increases as
the component gets more connected or larger (as opposed to link monotonicity, where the total
value in the component increases).

A graph g ∈ G is called strongly efficient if its total value v(g) is maximized in g, namely,
if v(g) ≥ v(g′) for any g′ ∈ G. Note that if a value function is link-monotonic and component
additive, then the complete graph is strongly efficient. Section 4 (Examples) shows an example
of a value function that is link monotonic but not component additive and such that the empty
graph is strongly efficient.

An allocation rule y is a function that assigns to every value function w in W a payoff
recommendation yi,g(w) for every player i ∈ N and every graph g ∈ G. From now on we will
omit w in brackets in all notation that follows, as we will consider w to be fixed. Abusing

3The definition of critical link monotonicity in Jackson and Wolinsky (1996) applies to a pair formed by a
graph g and a value function v. Here, I take critical link monotonicity to be applied to value functions w for all
graphs g and it is a stronger condition than in their article.
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notation we will also denote the resulting payoff vector from an allocation rule y by y ∈ <n×|G|,
for the sake of simplicity. An allocation rule y is called component efficient (Myerson, 1977) if
for every graph g ∈ G and for every connected component T ∈ N |g∑

i∈T
yi,g = w (T, g) .

Since Jackson and Wolinsky (1996) this property is also referred to as component balance.
Aa allocation rule is monotonic with respect to own links if for any graph g ∈ G and any

link ij ∈ g we have that yi,g − yi,g\ij > 0 and yj,g − yj,g\ij > 0. Based on a previous result
by Jackson and Wolinsky (1996) we can show that if the value function is component additive
and link monotonic then we can guarantee the existence of at least one allocation rule that is
component efficient and monotonic with respect to own links (see Lemma 3.6 in the Results
section). Unfortunately, such a result does not hold if the value function is not component
additive. In Section 4 (Examples) we show a value function that is link monotonic, but not
component additive, and for which we cannot find an allocation rule that is component efficient
and monotonic with respect to own links. The reason is that such a value function does not
satisfy strong critical-link monotonicity.

Given an allocation rule y, a graph g ∈ G is called pairwise stable (Jackson and Wolinsky
1996) if

1. For any link ij ∈ g:
yi,g − yi,g\ij ≥ 0,

and
yj,g − yj,g\ij ≥ 0.

2. For any link ij /∈ g: if
yi,g − yi,g∪ij < 0,

then
yj,g − yj,g∪ij > 0.

2.3 Dynamics and Forward-Looking Stability

Suppose we have an infinite number of stages, and at each stage t there is a transition probability
from the existing graph gt to another graph gt+1 in the next stage. If we assume that these
probabilities do not depend on time t, the graph at each stage follows a stationary Markov chain
of infinite length with transition probabilities that are given by the matrix

P =
[
P
(
g′|g
)]
g′,g∈G ,
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where P (g′|g) is the probability to arrive at g′ conditional on g being the current graph.
The transition probability matrix represents the way the agents in N build the network

over time. Accordingly, the only transitions happening with positive probability are the ones
corresponding to the creation or deletion of at most one link at a time. Formally, P (g′|g) > 0,
for any pair of graphs g, g′ in G, only if g and g′ are adjacent. Let Π denote the set of all possible
transition probability matrices from graphs in G to graphs in G, and such that P (g′|g) > 0 only
if g and g′ are adjacent.

Suppose that players receive stage payoffs according to an allocation rule y and they discount
the future by some common factor 0 < δ < 1. Define

P δ,∞ =

∞∑
t=0

δtP t.

Here, P δ,∞ (g′|g) can be interpreted as the total discounted probability of arriving at the end of
the process at graph g′ when starting from graph g.

For any allocation rule y, and any initial graph g, the discounted, expected payoff to player
i is given by

xi,g (y, δ, P ) =
∑
g′

P δ,∞
(
g′|g
)
yi,g′ .

For any δ ∈ [0, 1) the matrix (I − δP ), where I is the identity matrix, has an inverse. It is
easy to see that (I − δP )−1 = P δ,∞. Let x (y, δ, P ) = [xi,g (y, δ, P )]{i∈N, g∈G}. From now on, we

will simply write x (y, P ) instead of x (y, δ, P ), for δ will be fixed.4

We first adapt the notion of pairwise stability to this dynamic context, assuming players
care about the whole stream of discounted, expected payoffs. Given a pair (y, P ), where y is a
(stage-wise) allocation rule and P is a transition probability matrix, a graph g is called pairwise
stable in discounted, expected terms if

1. For any link ij ∈ g:
xi,g(y, P )− xi,g\ij(y, P ) ≥ 0,

and
xj,g(y, P )− xj,g\ij(y, P ) ≥ 0.

2. For any link ij /∈ g: if
xi,g(y, P )− xi,g∪ij(y, P ) < 0,

then
xj,g(y, P )− xj,g∪ij(y, P ) > 0.

4See Meyer (2001) for further reference on matrix algebra or on Markov chains.
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Since the transition probability matrix represents a network formation process, we can impose
some conditions on P , related to the notion of pairwise stability. The pair (y, P ), where y is a
stage-wise allocation rule and P is a transition probability matrix, is called a forward-looking
network formation scheme if:

1. For any link ij ∈ g, P (g\ij|g) = 0 if

xi,g(y, P )− xi,g\ij(y, P ) ≥ 0,

and
xj,g(y, P )− xj,g\ij(y, P ) ≥ 0.

2. For any link ij /∈ g, P (g ∪ ij|g) = 0 if whenever

xi,g(y, P )− xi,g∪ij(y, P ) < 0,

we have that
xj,g(y, P )− xj,g∪ij(y, P ) > 0,

or if
xi,g(y, P )− xi,g∪ij(y, P ) ≥ 0 and xj,g(y, P )− xj,g∪ij(y, P ) ≥ 0.

Note that if (y, P ) is a forward-looking network formation scheme and if a graph g is pairwise
stable in discounted, expected terms with respect to (y, P ), then P (g|g) = 1. When a graph g
satisfies that P (g|g) = 1 we will say that g is a stationary state of the Markov chain defined by
P . If, furthermore, graph g is reached in the long run dynamics given by P with probability
equal to 1 from any initial graph we will call it an absorbing state or absorbing graph.

3 Results

Proposition 3.1 Fix any value function w and take any allocation rule y. Then, for any
δ ∈ [0, 1) there exists a transition probability P such that (y, P ) is a forward-looking network
formation scheme.

Proof of Proposition 3.1. The proof makes use of Brower’s fixed point theorem. We will
define a continuous function F that maps transition probability matrices in Π into transition
probability matrices in Π, meaning that F (P ) is also a transition probability matrix where
only transitions to adjacent graphs can happen with positive probability. The function F will
be defined such that its fixed point P ∗ induces a forward-looking network formation scheme
(y, P ∗). Note that Π is a compact, convex set in the space of square matrices of dimension |G|.
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Fix any δ ∈ [0, 1) and any w ∈ W. For any allocation rule y, we abuse notation and use
y ∈ <n|G| as the payoff scheme or stage-wise payoff vector induced by the allocation rule applied
to w. We proceed to define the function F : Π→ Π as a composition of functions.

First, let x (y, P ) be the discounted, expected payoff vector for the players if the stage-wise
payoff vector is equal to y and the transition probability matrix is equal to P ∈ Π. For each
player i ∈ N let us denote by yi ∈ <|G| and xi(y, P ) ∈ <|G| the vector of stage-wise payoffs and
the vector of total discounted, expected payoffs, respectively, that this player i obtains in each
possible graph. Formally, yi = (yi,g)g∈G and xi(y, P ) = (xi,g(y, P ))g∈G. Then, by definition,

xi (y, P ) = (I − δP )−1 yi.

Note that xi (y, P ) is continuous in P given any δ or y because δ < 1.
For each graph g ∈ G and each link ij ∈ gN we can define the truncated differences in

expected payoffs di(y, P )(g, ij) ∈ <+ and, equivalently, dj(y, P )(g, ij) ∈ <+ as follows.

Case i. Assume ij ∈ g. Then

di(y, P ) (g, ij) =

{
xi,g\ij(y, P )− xi,g(y, P ), if xi,g\ij(y, P )− xi,g(y, P ) > 0,

0, otherwise.
(3)

Case ii. Assume ij /∈ g. Then

di(y, P ) (g, ij) =

{
xi,g∪ij(y, P )− xi,g(y, P ), if xi,g∪ij(y, P )− xi,g(y, P ) > 0,

0, otherwise.
(4)

Note that the truncated differences di(y, P )(g, ij) and dj(y, P )(g, ij) are continuous in xi(y, P )
and xj(y, P ), respectively.

Fix any β ∈ (0, 1). For each graph g ∈ G and each link ij ∈ gN we can define the function
h(g, ij) assigning to each pair of truncated differences (di(y, P )(g, ij), dj(y, P )(g, ij)) a transition
probability h(g, ij)[(di(y, P )(g, ij), dj(y, P )(g, ij))] ∈ [0, 1], for simplicity denoted h(g, ij), as
follows

h (g, ij) =

{
1− 1

2

[
βdi(g,ij) + βdjg,ij

]
, if ij ∈ g(

1− βdi(g,ij)
) (

1− βdj(g,ij)
)

if ij /∈ g

Finally, let F (P ) = P ′, where P ′ ∈ Π verifies the following.

1. P ′(g\ij|g) = h(g, ij) for ij ∈ g,

2. P ′(g ∪ ij|g) = h(g, ij) for ij /∈ g, and

3. P ′(g|g) = 1−
∑
ij∈g

h(g, ij)−
∑
ij /∈g

h(g, ij).

Hence, P ′(g′|g) = 0 if g′ and g are not adjacent graphs, which means that P ′ ∈ Π.
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By definition as a composition of continuous functions, the function F is continuous in Π. By
Brouwer’s Fixed Point Theorem, we know that there exists at least one fixed point for the
function F : Π → Π defined just above, denoted P ∗. It is easy to check that any fixed point
P ∗ satisfy that the pair (y, P ∗) is a forward-looking network formation scheme, by definition of
P ′ = P ∗ = F (P ∗). This completes the proof of Theorem 3.1. �

From the proof of Proposition 3.1 we can conclude that not only a forward-looking network
formation scheme always exists, but that such a forward-looking network formation scheme
verifies that the transition probabilities are increasing in the corresponding differences in payoffs.
We state it formally in the following corollary. No proof is necessary, as the function h(g, ij)
satisfies such a monotonic property.

Corollary 3.2 Fix any value function w and take any allocation rule y. Then, for any δ ∈ [0, 1)
there exists a transition probability P such that (y, P ) is a forward-looking network formation
scheme, satisfying the following. For any g ∈ G, the transition probability P (g ∪ ij|g), for
any ij /∈ g, and the transition probability P (g\ij|g), for any ij ∈ g, are increasing in the
differences of payoffs to the participating agents i and j, namely xi,g∪ij(y, P ) − xi,g(y, P ) and
xj,g∪ij(y, P ) − xj,g(y, P ) if ij /∈ g, and xi,g\ij(y, P ) − xi,g(y, P ) and xj,g\ij(y, P ) − xj,g(y, P ) if
ij ∈ g, whenever those differences are positive.

Proposition 3.1 and Corollary 3.2 indicate that we can fix any allocation rule y that is
component efficient and find a transition probability matrix that will form a forward-looking
network formation scheme with it. In particular, we can fix any allocation rule that is component
efficient, as a component efficient allocation rule always exists. We can state it formally in the
following corollary.

Corollary 3.3 Fix any value function w. Then, for any δ ∈ [0, 1) there exists a forward-
looking network formation scheme (y, P ) such that the allocation rule y is component efficient
or balanced, and the transition probability matrix P satisfies the following. For any g ∈ G, the
transition probability P (g ∪ ij|g), for any ij /∈ g, and the transition probability P (g\ij|g), for
any ij ∈ g, are increasing in the differences of payoffs to the participating agents i and j, namely
xi,g∪ij(y, P )− xi,g(y, P ) and xj,g∪ij(y, P )− xj,g(y, P ) if ij /∈ g, and xi,g\ij(y, P )− xi,g(y, P ) and
xj,g\ij(y, P )− xj,g(y, P ) if ij ∈ g, whenever those differences are positive.

The reader should note that all these results do not mean that for each allocation rule we
find one and the same transition probability matrix that will form a forward-looking network
formation scheme for any value of δ. The results state that given δ we can find a transition
probability matrix with the desired properties. In general, the transition probability matrix
depends on the value of δ (see Section 4 for an illustration of this fact.)

To conclude this section, we will explore the implications of our solution concept in terms
of resolving the tension between efficiency and stability. First, we identify conditions for the
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strongly efficient graph to be an absorbing state in the Markov chain given by P and discuss
the implications of the presence of externalities across components.

Proposition 3.4 Let the value function w be component additive and link-monotonic. Then,
there exists a forward-looking network formation scheme (y, P ) such that y is component efficient
with respect to w and the complete graph is the absorbing state in P for any δ ∈ [0, 1).

Proof of Proposition 3.4. We will prove this proposition by means of two lemmas. Lemma
3.5 identifies conditions on the stage-wise allocation rule that will guarantee the existence of
a network formation scheme with the desired characteristics. Lemma 3.6 states that if the
value function is link-monotonic and component additive then we can always find at least one
stage-wise allocation rule with the required conditions for Lemma 3.5 to be applied.

Lemma 3.5 Let the value function w ∈ W be given and suppose that there is a stage-wise
allocation rule y that is monotonic with respect to own links and component efficient with respect
to w. Then there is a transition probability matrix P such that (y, P ) is a forward-looking network
formation procedure for any δ ∈ [0, 1) where the dynamics given by P lead to gN with probability
one from any initial graph g ∈ G.

Proof of Lemma 3.5. For each link l ∈ gN we can define a probability p(l) such that
∑
l∈gN

p(l) ≤ 1.

Consider the transition probability matrix P assigning for each graph g a transition probability
to another graph g′ as follows

P (g′|g) =


p(l), if g′ = g ∪ l,

1−
∑

l∈(gN\g)
p(l), if g′ = g

0, otherwise.

Note that in such a Markov chain the only transitions that happen with positive probability
are the ones where there is creation of links. No destruction of links take place. Fix y, an
allocation rule that is monotonic with respect to own links and component efficient with respect
to w. To check that (y, P ) is a forward-looking network formation scheme we check that any
two players involved in the creation of a link at any point in time gain in discounted, expected
terms from the creation of it for any δ ∈ (0, 1]. This is to say that xi,g(y, P )− xi,g\ij(y, P ) ≥ 0
and xj,g(y, P ) − xj,g\ij(y, P ) ≥ 0, for any ij ∈ g. We prove such a statement by induction on

the links in gN\g.
Let us start the induction by supposing that g = gN , so that gN\g = ∅. Given that

P (gN |gN ) = 1, we have that xi,gN = 1
1−δyi,gN for any i ∈ N . Take any ij ∈ gN . By definition

of our P matrix again, we have that

xi,gN\ij =
1

1− δ + δp(ij)
yi,gN\ij +

δp(ij)

1− δ + δp(ij)
xi,gN ,
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and

xj,gN\ij =
1

1− δ + δp(ij)
yj,gN\ij +

δp(ij)

1− δ + δp(ij)
xj,gN .

Rearranging terms we can conclude that

xi,gN − xi,gN\ij =
1

1− δ + δp(ij)

(
yi,gN − yi,gN\ij

)
,

and

xj,gN − xj,gN\ij =
1

1− δ + δp(ij)

(
yj,gN − yj,gN\ij

)
.

Given that we have chosen a stage-wise allocation rule that is monotonic we respect to own
links, we have shown that xi,gN (y, P )− xi,gN\ij(y, P ) ≥ 0 and xj,gN (y, P )− xj,gN\ij(y, P ) ≥ 0.

Now take another graph g and assume that for any link l ∈ gN\g it was true that xi,g∪l −
xi,(g∪l)\ij ≥ 0 and xj,g∪l−xj,(g∪l)\ij ≥ 0, for any link ij ∈ g. By definition of our P matrix again,
we now have that

xi,g =
1

1− δ + δ
∑

l∈(gN\g) p(l)

yi,g + δ
∑

l∈(gN\g)

p(l)xi,g∪l

 ,

for any i ∈ N . Take any ij ∈ g. We have that

xi,g\ij =
1

1− δ + δp(ij) + δ
∑

l∈(gN\g) p(l)

yi,g\ij + δp(ij)xi,g + δ
∑

l∈(gN\g)

p(l)xi,g\ij∪l

 ,

and

xj,g\ij =
1

1− δ + δp(ij) + δ
∑

l∈(gN\g) p(l)

yj,g\ij + δp(ij)xj,g + δ
∑

l∈(gN\g)

p(l)xj,g\ij∪l

 .

Rearranging terms we can conclude that

xi,g − xi,g\ij =
yi,g − yi,g\ij + δ

∑
l∈(gN\g) p(l)

(
xi,g∪l − xi,g\ij∪l

)
1− δ + δp(ij) + δ

∑
l∈(gN\g) p(l)

,

and

xj,g − xj,g\ij =
yj,g − yj,g\ij + δ

∑
l∈(gN\g) p(l)

(
xj,g∪l − xj,g\ij∪l

)
1− δ + δp(ij) + δ

∑
l∈(gN\g) p(l)

.

By induction hypothesis, xi,g∪l−xi,g\ij∪l ≥ 0 for any l ∈ (gN\g), because g\ij∪ l = (g∪ l)\ij for

any l ∈ gN\g and ij ∈ g. As before, the stage-wise allocation rule is monotonic we respect to own
links. These two facts indicate that xi,g(y, P )−xi,g\ij(y, P ) ≥ 0 and xj,g(y, P )−xj,g\ij(y, P ) ≥ 0,
and hence the proof of Lemma 3.5 is complete.
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Lemma 3.6 Let the value function w ∈ W be component additive and link monotonic. Then
there always exists an allocation rule y that is monotonic with respect to own links and component
efficient with respect to w.

Proof of Lemma 3.6. Let us fix the Myerson value (Myerson, 1977), adapted by Jackson and
Wolinsky (1996) to the setting of value functions that are component additive, as a stage-wise
allocation rule Y .5 Jackson and Wolinsky (1996) have shown that such an allocation rule always
exists and it is unique for any value function w that is component additive.6 By definition, the
Myerson value or equal bargaining power rule is component efficient or component balance. We
make use of the first part of Corollary to Theorem 4, p.65, from Jackson and Wolinsky (1996),
which statement is as follows (only first part has been taken).

Corollary 3.7 Let Y be the equal bargaining power rule, and consider a component additive w
and any g and ij ∈ g. If for all g′ ⊂ g, v(g) ≥ v(g\ij), then Yi,g ≥ Yi,g\ij .

Recall that v(g) =
∑

T∈N |g
w(T, g). It is easy to see that if w is component additive and link

monotonic then, for any g ∈ G and any g′ ⊆ g, v(g) satisfies that v(g′) ≥ v(g′\ij). This means
by the Jackson and Wolinsky’s result above that the Myerson value of w is link-monotonic with
respect to own links. This completes the proof of Lemma 3.6.

From Lemmas 3.5 and 3.6 we can conclude that the statement in Proposition 3.4 holds for any
δ ∈ [0, 1). �

Note that Proposition 3.4 requires the value function w to be component additive. To help us
better understand the role played by the absence of externalities across components, specially
in Lemma 3.6, Section 4 (Examples) shows a value function that is link monotonic but not
component additive, and for which we cannot find an allocation rule that is both component
efficient and monotonic with respect to own links. The following proposition identifies a condition
on the value function w that is stronger than link monotonicity but allows us to drop the
condition of component additivity.

Proposition 3.8 Let the value function w satisfy strong critical-link monotonicity. Then, there
exists a forward-looking network formation scheme (y, P ) such that y is component efficient with
respect to w and the complete graph is the only absorbing state in P for any δ ∈ [0, 1).

Proof of Proposition 3.8. We will prove that if the value function w satisfies critical-link
monotonicity, we can always find at least one stage-wise allocation rule that is component ef-
ficient and monotonic with respect to own links. Hence, Lemma 3.5 can be applied because

5Jackson and Wolinsky refer to this allocation rule as the equal bargaining power rule, p. 64
6See Theorem 4, p.65.
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Lemma 3.5 only imposes conditions on the stage-wise allocation rule, but not on the value
function w. Let us consider the component-wise egalitarian allocation rule. Recall that critical
link-monotonicity imposes further conditions on value functions w that are already link mono-
tonic. For every i ∈ N and every g ∈ G denote by Ti(g) the component in N |g to which i
belongs. Then the component-wise egalitarian allocation rule is defined as

yi,g =
w(Ti(g), g)

|Ti(g)|
,

for every i ∈ N and any g ∈ G. It is easy to see that the component-wise egalitarian allocation
rule is monotonic with respect to own links when the value function w is link-monotonic and
satisfies critical-link monotonicity. Consider first the case when the link ij ∈ g is not critical.
This means that Ti(g\ij) = Ti(g) and Tj(g\ij) = Tj(g) = Ti(g) and, because w is link monotonic,
w(Ti(g), g) > w(Ti(g), g\ij), and therefore

yi,g − yi,g\ij = yj,g − yj,g\ij =
w(Ti(g), g)− w(Ti(g), g\ij)

|Ti(g)|
> 0.

Consider now the case when the ink ij ∈ g is critical. By definition of critical-link monotonicity
the component-wise allocation rule is increasing in own links when they are critical links for the
current network. This completes the proof of Proposition 3.8.�

When the value function w is strong critical-link monotonic, we can guarantee the existence
of an allocation rule that is component efficient and monotonic with respect to own links, namely
the component-wise egalitarian allocation rule. With such a stage-wise allocation rule, agents
will always find profitable to create links at each point in time. The condition of strong critical-
link monotonicity guarantees that the complete network is the strong efficient network, but link
monotonicity does not. Last example in next section will show a value function w that is link
monotonic, but not component additive, such that the empty network is the efficient network.
The reason is that the value function w is not strong critical-link monotonic. We provide the
proof of the following lemma.

Lemma 3.9 Let w satisfy strong critical-link monotonicity. Then, the complete network is the
strong efficient network given w.

Proof of Lemma 3.9. First note that if w satisfies critical-link monotonicity then

w(N, gN )

|N |
>
w(T, g)

|T |
,

for any other g ( gN and any T ∈ N |g. Note that if g is such that there is only one component

in the network, i.e., |N |g| = 1, then w(N,gN )
n > w(N,g)

n because strong critical-link monotonicity

13



requires link monotonicity. Assume now by contradiction that there is a g̃ ( gN and a component
T̃ ∈ N |g̃ with T̃ ( N such that

max
g∈G, T∈N |g

w(T, g)

|T |
= w(T̃ , g̃).

Take a player i ∈ T̃ and another player j /∈ T̃ and add the link ij to g̃. Note that ij does not
belong to g̃ because i and j belong to two different components in g̃. At the new graph g̃ ∪ ij,
T̃ merges to the component in g̃ including player j, formally there is now a T ′ ∈ N |(g̃ ∪ ij) such
that T ′ = T̃ ∪ Tj , where Tj ∈ N |g and j ∈ Tj . By construction, ij is a critical link in g̃ ∪ ij. By

strong critical-link monotonicity, w(T ′,g̃)
T ′ > w(T̃ ,g̃)

|T̃ | , a contradiction with (T̃ , g̃) maximizing the

component per capita value.

Finally note that if (N, gN ) maximizes the per capita value in a component, then gN max-
imizes v(g) for all g ⊆ gN . As before, if g is such that there is only one component in the
network, i.e., |N |g| = 1, then v(gN ) = w(N, gN ) > v(g) = w(N, g) because strong critical-link
monotonicity requires link monotonicity. Assume now by contradiction that there is a g̃ ( gN

such that v(g̃) > v(gN ). This means that∑
T∈N |g̃|

w(T, g̃) > w(N, gN ).

Dividing by |N | = n left and right,∑
T∈N |g̃

w(T, g̃)

n
>
w(N, gN )

n
,

and multiplying and dividing each term of the summation on the left by |T | we obtain that∑
T∈N |g̃|

|T |
n

w(T, g̃)

|T |
>
w(N, gN )

n
.

The left-hand side is a convex combination of the component per capita values in g̃ (each
component weighed by its size relative to total size of the population), while the right-hand side
is the per capita value of the complete network. For the inequality to hold we need that at least
one T ∈ N |g̃ the per capita value w(T,g)

|T | is higher than the per capita value in gN . But this is
a contradiction with strong critical-link monotonicity, as the latter implies that the component
per capita value is maximized in (N, gN ). �

As a final comment, it is important to stress that the existence results mean that, in general,
the transition probability matrix depends on the value of δ. The efficiency results, on the
contrary, state that we can find a forward-looking network formation scheme with the desired
characteristics that is always a forward-looking formation scheme for any value of δ.
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4 Examples

Let us consider three players, 1, 2, and 3. There are eight possible network structures:

1. The complete network

2. Three structures with two connections each:

(a) Players 1 and 2 both directly connected to 3, no direct connection between them

(b) Players 1 and 3 both directly connected to 2, no direct connection between them

(c) Players 2 and 3 both directly connected to 1, no direct connection between them

3. Three structures with one connection each:

(a) Players 1 and 3 directly connected, 2 disconnected

(b) Players 2 and 3 directly connected, 1 disconnected

(c) Players 1 and 2 directly connected, 3 disconnected

4. The empty network

Let us consider the following value function w

w(T, g) =


3, if g is the complete graph
13
4 , if g has two links
2, if g has one link and T contains the two directly connected agents
0, otherwise

(5)

Note that w is component additive but it is not link monotonic, so that the statement in
Proposition 3.1 cannot be applied. Lemma 3.5 on the other hand states that if we can find
a stage-wise allocation rule that is monotonic in own links, then a forward-looking network
formation procedure such that the complete graph gN is an absorbing state is guaranteed to
exist. This does not automatically mean that the complete graph is efficient. We will show that
we can find at least one stage-wise allocation rule that is monotonic with respect to own links
for the value function w stated just above. Nevertheless, the strongly efficient networks are the
ones with two links each, yielding a value of 13/4.

Example 1. An allocation rule that is monotonic with respect to own links and an inefficient
absorbing graph.

Consider the following stage-wise allocation rule, given by Figure 1 below. We have noted
the payoff recommendations next to the nodes representing players. Player 1 is placed bottom
left, player 2 on top and player 3 bottom right. Note that the stage-wise allocation rule in Figure

15



Figure 1: A proportional stage-wise allocation rule
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Case (1) (g1) Case (2a) (g2) Case (2b) (g3) Case (2c) (g4)

Case (3a) (g5) Case (3b) (g6) Case (3c) (g7) Case (4) (g8)

1 is component efficient and allocates the value of a component according to the number of links
a player holds as a share of the total links in the component (divided by two, as two players
participate in each of the links). Furthermore, it is monotonic with respect to own links.

Let p ∈ [0, 1], q ∈
[
0, 12
]

and r ∈
[
0, 13
]
. Let us consider a transition probability matrix as the

one below, where the order of rows respects the order in Figure 1 top left to top right first and
bottom left to bottom right afterwards. In other words, first row and column of the transition
probability matrix corresponds to the complete network, second row and column corresponds
to the network where players 1 and 2 are both directly connected to 3, and so on and so forth.
Last row and column corresponds then to the empty network.

P =



1 0 0 0 0 0 0 0
p 1− p 0 0 0 0 0 0
p 0 1− p 0 0 0 0 0
p 0 0 1− p 0 0 0 0
0 q 0 q 1− 2q 0 0 0
0 q q 0 0 1− 2q 0 0
0 0 q q 0 0 1− 2q 0
0 0 0 0 r r r 1− 3r


(6)

It is easy to see that the complete network is an absorbing state of the Markov chain given
by P . Table 1 shows the expected, discounted payoffs x(y, P ), where y is the allocation rule in
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Figure 1, and P given by transition probability matrix in (6).

Table 1: The expected discounted payoffs x(y, P ) obtained from matrix in (6)

x1,g1 = x2,g1 = x3,g1 = 1
1−δ

x1,g2 = x2,g2 = 13(1−δ)+16δp
16(1−δ)(1−δ+δp) , and x3,g2 = 13(1−δ)+8δp

8(1−δ)(1−δ+δp)

x1,g3 = x3,g3 = 13(1−δ)+16δp
16(1−δ)(1−δ+δp) , and x2,g3 = 13(1−δ)+8δp

8(1−δ)(1−δ+δp)

x2,g4 = x3,g4 = 13(1−δ)+16δp
16(1−δ)(1−δ+δp) , and x1,g4 = 13(1−δ)+8δp

8(1−δ)(1−δ+δp)

x1,g5 = x3,g5 = 16(1−δ)(1−δ+δp)+δq(39(1−δ)+32δp)
16(1−δ)(1−δ+δp)(1−δ+2δq) , and x2,g5 = δq(13(1−δ)+16δp)

8(1−δ)(1−δ+δp)(1−δ+2δq)

x2,g6 = x3,g6 = 16(1−δ)(1−δ+δp)+δq(39(1−δ)+32δp)
16(1−δ)(1−δ+δp)(1−δ+2δq) , and x1,g6 = δq(13(1−δ)+16δp)

8(1−δ)(1−δ+δp)(1−δ+2δq)

x1,g7 = x2,g7 = 16(1−δ)(1−δ+δp)+δq(39(1−δ)+32δp)
16(1−δ)(1−δ+δp)(1−δ+2δq) , and x3,g7 = δq(13(1−δ)+16δp)

8(1−δ)(1−δ+δp)(1−δ+2δq)

x1,g8 = x2,g8 = x3,g8 = δr 4(1−δ)(1−δ+δp)+δq(13(1−δ)+12δp)
2(1−δ)(1−δ+δp)(1−δ+2δq)(1−δ+3δr)

Let us define the differences A, B, C and D as follows.

A = x1,g1 − x1,g2 = x1,g1 − x1,g3 = x2,g1 − x2,g4 = 3
16(1−δ+δp)

B = x1,g2 − x1,g6 = x1,g3 − x1,g6 = x1,g4 − x1,g7 = 13(1−δ)+16δp
16(1−δ+δp)(1−δ+2δq)

C = x3,g2 − x3,g6 = x2,g3 − x2,g6 = x3,g4 − x3,g7 = 10(1−δ)+13δq
16(1−δ+δp)(1−δ+2δq)

D = x1,g5 − x1,g8 = x2,g6 − x2,g8 = x1,g7 − x1,g8 =

= 16(1−δ+δp)(1−δ+δr)+13δq(3(1−δ)+δr)+32δ2pq
16(1−δ+δp)(1−δ+2δq)(1−δ+3δr)
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Given that all differences A, B, C and D are greater or equal to zero, we have that the pair
(y, P ) is indeed a forward-looking network formation scheme.

Nevertheless, since our notion of forward-looking network formation scheme is not unique,
we can find for the same value function w another forward-looking network formation scheme
such that the stage-wise allocation rule is component efficient and the dynamics given by the
transition probability matrix converge to an efficient network with probability equal to one, from
any initial network.

Example 2: The component-wise allocation rule with the dynamics converging to the efficient
networks.

Let us fix the stage-wise allocation rule to be equal to the component-wise egalitarian allo-
cation rule. The component-wise egalitarian allocation rule is stated in Figure 2.

Figure 2: The component-wise egalitarian allocation rule
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Let p ∈
[
0, 13
]
, q ∈

[
0, 12
]

and r ∈
[
0, 13
]
. The transition probability matrix presented below

follows the same order of rows as in (6).

P =



1− 3p p p p 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 q 0 q 1− 2q 0 0 0
0 q q 0 0 1− 2q 0 0
0 0 q q 0 0 1− 2q 0
0 0 0 0 r r r 1− 3r


(7)

Table 2 shows the expected, discounted payoffs x(yCW−E , P ) obtained from yCW−E , the
component-wise egalitarian allocation rule, and P given by transition probability matrix in (7).

Table 2: The expected discounted payoffs x(y, P ) obtained from matrix in (7)

x1,g1 = x2,g1 = x3,g1 = 4(1−δ)+13δp
4(1−δ)(1−δ+3δp)

xi,g2 = xi,g3 = xi,g4 = 13
12(1−δ) , for i = 1, 2, 3

x1,g5 = x3,g5 = 6(1−δ)+13δq
6(1−δ)(1−δ+2δq) , and x2,g5 = 13δq

6(1−δ)(1−δ+2δq)

x2,g6 = x3,g6 = 6(1−δ)+13δq
6(1−δ)(1−δ+2δq) , and x1,g6 = 13δq

6(1−δ)(1−δ+2δq)

x1,g7 = x2,g7 = 6(1−δ)+13δq
6(1−δ)(1−δ+2δq) , and x3,g7 = 13δq

6(1−δ)(1−δ+2δq)

x1,g8 = x2,g8 = x3,g8 = δr 4(1−δ)+13δq
2(1−δ)(1−δ+2δq)(1−δ+3δr)
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We can similarly define the differences A, B and C as follows.7

A = x1,g2 − x1,g1 = x1,g3 − x1,g1 = x2,g4 − x2,g1 = 1
12(1−δ+3δp)

B = x1,g2 − x1,g6 = x1,g3 − x1,g6 = x1,g4 − x1,g7 = 13
12(1−δ+2δq)

C = x3,g2 − x3,g6 = x2,g3 − x2,g6 = x3,g4 − x3,g7 = 1
12(1−δ+2δq)

D = x1,g5 − x1,g8 = x2,g6 − x2,g8 = x1,g7 − x1,g8 =

= 6(1−δ+δr)+13δq
6(1−δ+2δq)(1−δ+3δr)

Given that all differences A, B, C and D are greater or equal to zero, we have that the
(yCW−E , P ) is indeed a forward-looking network formation scheme.

Up to now the dynamics represented by P seem to coincide with the static or myopic notion
of pairwise stability, when we take the stage-wise allocation rule as given. We show now another
forward-looking network formation scheme for the same value function w such that the stage-
wise allocation rule is fixed but the dynamics given by P are different from the dynamics induced
by the myopic notion of pairwise stability when δ is big enough.

Example 3: Given one allocation rule, the transition probability matrix can differ for different
values of δ.

Let us consider an allocation rule defined by weights as follows. Assume each player i = 1, 2, 3
has a weight λi and that the stage-wise allocation rule allocates the value of a component
according to the player’s weight relative to the total weight of the players participating in the
component. In other words, for any i ∈ N and any g ∈ G, and denoting by Ti the component
in N |g to which player i belongs, the stage-wise allocation rule yields

yi,g =
λi∑
j∈Ti λj

w(Ti, g).

Figure 3 shows such an allocation rule based on weights, where λ1 = λ3 = 1
2λ2.

If δ = 0 players create and delete links according to pairwise stability. Such a process can be
represented by a transition probability matrix as follows. Let p1 ≥ 0 and p2 ≥ 0 be such that

7Note that A is the negative of the difference A before, since the transition that takes place is in the opposite
direction.

20



Figure 3: A stage-wise allocation rule based on weights
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2p1 + p2 ≤ 1, q ∈ [0, 1], r1 ≥ 0, r2 ≥ 0 with r1 + r2 ≤ 1, and s1 ≥ 0, s2 ≥ 0 with s1 + 2s2 ≤ 1.
The transition probability matrix presented below follows the same order of rows as in (6).

P =



1− 2p1 − p2 p1 p2 p1 0 0 0 0
0 1− q 0 0 q 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1− q q 0 0 0
0 0 0 0 1 0 0 0
0 r1 r2 0 0 1− r1 − r2 0 0
0 0 r2 r1 0 0 1− r1 − r2 0
0 0 0 0 s1 s2 s2 1− s1 − 2s2


(8)

Table 3 shows the expected, discounted payoffs x(y, P ) obtained when y is as given by Figure
3 above, and P given by transition probability matrix in (8).

Note that players 1 and 3, respectively, are responsible for the transitions from g1 to g2 and from
g1 to g4, both with probability p1, because they gain from breaking their link with player 2. The
corresponding differences in payoffs x1,g2 −x1,g1 = x3,g4 −x3,g1 are equal to 1−δ+4δq

16(1−δ+δq)(1−δ+2δp1)
,

which is positive for any value of δ ∈ [0, 1). Those same players are also responsible for the
transitions from g2 to g5 or from g4 to g5 by deleting again their link with player 2. The cor-
responding differences in payoffs x3,g5 − x3,g2 = x1,g5 − x1,g4 are equal to 3

16(1−δ+δq) , which is
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again positive for any value of δ ∈ [0, 1). Concerning r1, transitions from g6 to g2 or from
g7 to g4 are governed by players 1 and 3 creating their link 13. The corresponding differ-
ences x1,g2 − x1,g6 = x3,g4 − x3,g7 and x3,g2 − x3,g6 = x1,g4 − x1,g7 are respectively equal to

13(1−δ)2+16δq(1−δ)+3δ2qr2
16(1−δ)(1−δ+δq)(1−δ+δr1+δr2) and 13(1−δ)2+22δq(1−δ)+9δ2qr2

48(1−δ)(1−δ+δq)(1−δ+δr1+δr2) , which are positive for any value of

δ ∈ [0, 1). The transition from g8 to g5 is also governed by players 1 and 3 creating their link
13, with probability s1. The corresponding differences in payoffs x1,g5 − x1,g8 = x3,g5 − x3,g8 are
equal to

1

1− δ + δs1 + δs2

(
1 + δs2

32(1δ + δq) + 9δ(r1 + r2) + 57
2

24(1− δ + δq)(1− δ + δr1 + δr2)

)
,

which is positive for any value of δ ∈ [0, 1). The rest of transitions, namely the ones governed
by probabilities p2, r2 and s2, correspond to a forward-looking network formation scheme only
if δ is small enough.

Concerning p2, the transition from g1 to g3 is governed by players 1 or 3 severing their link.

The corresponding differences in payoffs x1,g3−x1,g1 = x3,g3−x3,g1 are equal to (1−δ)(1−δ+δq)−6δ2p1q
16(1−δ)(1−δ+δq)(1−δ+2δp1δp2)

,
which is positive only for δ small enough. Concerning r2, the transitions from g6 to g3 or from
g7 to g3 are governed by either player 1 or player 3 creating their link with player 2. The cor-
responding differences in payoffs x1,g3 − x1,g6 = x3,g3 − x3,g7 and x2,g3 − x2,g6 = x2,g3 − x2,g7 are

respectively equal to 13(1−δ)2+13δq(1−δ)−3δ2r1q
16(1−δ)(1−δ+δq)(1−δ+δr1δr2) and 7(1−δ)(1−δ+δq)+39δ2r1q

24(1−δ)(1−δ+δq)(1−δ+δr1δr2) , the latter being

positive for all δ ∈ [0, 1) but the former being positive only for δ small enough (note that both
being non negative is required). Concerning s2, the transitions from g8 to g6 or from g8 to g7
are governed by either player 1 or player 3 creating their link with player 2. The corresponding
differences in payoffs x1,g7 − x1,g8 = x2,g6 − x2,g8 and x2,g6 − x2,g8 = x2,g7 − x2,g8 are respectively
equal to

1

(1− δ)(1− δ + δs1 + 2δs2)

(
(1− δ)(1− δ + δr1)x1,g7 +

4

3
(1− δ)δs2 − δs1

)
,

and
1− δ + δs1

(1− δ + δs1 + 2δs2)(1− δ + δr1 + δr2)

(
4

3
+

13δr1
8(1− δ + δq)

+
13δr2

8(1− δ)

)
,

the latter being positive for all δ ∈ [0, 1) but the former being positive only for δ small enough.
As a conclusion if δ is big enough the scheme above formed by the allocation rule in Figure 3

and the transition probability matrix given by matrix (8) cannot be a forward-looking network
formation scheme. We can simply revert the direction of the transitions given by p2, r2 and s2
as follows. Consider the following family of transition probabilities, where p1, p2, q, r1, r2, s1,
and s2 take values such that P is a transition probability matrix.
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P =



1− 2p1 p1 0 p1 0 0 0 0
0 1− q 0 0 q 0 0 0
p2 0 1− p2 − 2r2 0 0 r2 r2 0
0 0 0 1− q q 0 0 0
0 0 0 0 1 0 0 0
0 r1 0 0 0 1− r1 − s2 0 s2
0 0 0 r1 0 0 1− r1 − s2 s2
0 0 0 0 s1 0 0 1− s1


(9)

Table 4 shows the expected, discounted payoffs x(y, P ) obtained when y is as given by Figure
3 above, and P given by transition probability matrix in (9).

To better understand the forward looking scheme for δ big enough, let us give numerical
values to the transition probability function in (9) as follows.

P =



1
3

1
3 0 1

3 0 0 0 0
0 1

3 0 0 2
3 0 0 0

1
3 0 0 0 0 1

3
1
3 0

0 0 0 1
3

2
3 0 0 0

0 0 0 0 1 0 0 0
0 1

3 0 0 0 1
3 0 1

3
0 0 0 1

3 0 0 1
3

1
3

0 0 0 0 2
3 0 0 1

3


(10)

Table 5 shows the expected, discounted payoffs x(y, P ) obtained when y is as given by Figure
3 above, and P given by transition probability matrix in (10).
As before, players 1 and 3, respectively, are responsible for the transitions from g1 to g2 or
from g1 to g4, both with probability 1

3 this time, because they gain from breaking their link
with player 2. The corresponding differences in payoffs x1,g2 − x1,g1 = x3,g4 − x3,g1 are equal
to 9+15δ

16(3−δ) , which is positive for any value of δ ∈ [0, 1). Those same players are also responsible
for the transitions from g2 to g5 or from g4 to g5 by deleting again their link with player 2.
The corresponding differences in payoffs x3,g5 − x3,g2 = x1,g5 − x1,g4 are equal to 9

16(3−δ) , which

is again positive for any value of δ ∈ [0, 1). Transitions from g6 to g2 or from g7 to g4 are
governed by players 1 and 3 creating their link 13. The corresponding differences x1,g2 −x1,g6 =
x3,g4−x3,g7 and x3,g2−x3,g6 = x1,g4−x1,g7 are respectively equal to 117+18δ

16(3−δ)2 and 21+50δ
16(3−δ)2 , which

are positive for any value of δ ∈ [0, 1). The transition from g8 to g5 is also governed by players
1 and 3 creating their link 13, with probability 1

3 . The corresponding differences in payoffs
x1,g5 − x1,g8 = x3,g5 − x3,g8 are equal to 3

3−δ , which is positive for any value of δ ∈ [0, 1). The
rest of transitions, namely the transitions from g3 to g1, g6, and g7, governed by probabilities
equal to 1

3 each, correspond to a forward-looking network formation scheme if δ is big enough.
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The transition from g3 to g1 is governed by players 1 and 3 creating their link. The corre-
sponding differences in payoffs x1,g1 − x1,g3 = x3,g1 − x3,g3 are equal to 91δ+65δ(1+δ)−27

48(3−δ)2) , which

is positive only for δ big enough. The transitions from g3 to g6 or to g7 are governed by either
player 1 or player 3 deleting their link with player 2 in g3. The corresponding difference in
payoffs x1,g6 − x1,g3 = x3,g7 − x3,g3 are equal to 82δ+65(1+δ)−351

48(3−δ)2 , positive only for δ big enough.

Figure 4 visualizes the dynamics in the forward-looking network formation scheme when the
stage-payoffs are given by the allocation rule in Figure 3 and δ is small. Figure 5 visualizes
the dynamics in the forward-looking network formation when the stage-payoffs are given by
the allocation rule in Figure 3 and δ is big. Numbers next to the nodes indicate the payoff
that players obtain in each given graph. Transitions from one graph to another are indicated
by means of arrows, and the letters next to each arrow indicate the corresponding probability.
Only positive transition probabilities are indicated.

When players are impatient (δ small), network g5, where 1 and 3 are directly connected and
disconnected from 2, and network g3, where 1 and 3 do not connect directly to each other but
only to 2, are both stationary states of the Markov chain, and no one is absorbing. But when
players are patient, only network g5, where 1 and 3 are directly connected, is a stationary and
absorbing state of the Markov chain. Indeed, player 2 always gets double the amount of what
player 1 or 3 get. Starting at g3 players 1 and 3 are willing to create their link and lose money
in the short run only when they are patient enough, because by creating their link they lose a
payoff of 13

16 −
3
4 immediately, but the process will lead to g5, where they would obtain a payoff

of 1 > 13
16 . If players 1 and 3 are impatient, the loss of 13

16 −
3
4 immediately is more important

than obtaining 1 in the future, because the latter is strongly discounted by δ.
Furthermore, when players 1 and 3 are patient enough, they delete their direct connection to

2, whenever this connection is the only one present in the network. Like that, they obtain zero
immediately, sacrificing 2

3 , but they get compensated by obtaining 1 in the future because they
anticipate that they will create their link 13 once the empty network is reached. When they are
impatient, players 1 and 3 will not disconnect their link with player 2 in g6 or g7, and they will
instead choose to create the link 13 directly, a strategy that gives a (stage-wise) higher payoff
than passing through the empty graph.

To conclude this section, we would like to illustrate the limits of our last results, stated in
Proposition 3.4 and in Proposition 3.8, and the role that externalities across components play
to contribute to the tension of stability and efficiency. In order to do that, we introduce other
two value functions w that do not satisfy component additivity, but such that they are both
link-monotonic. In the first case, we cannot find an allocation rule y that is component efficient
and monotonic with respect to own links. In the second case, the empty graph, and not the
complete graph, is strongly efficient. Both effects are due to the un-balances created by the
externalities across components.
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Figure 4: The forward-looking network formation scheme when δ is small
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Example 4: A link-monotonic value function that that is not component additive and for which
no allocation rule that is component efficient and monotonic with respect to own links exists.

Let us consider the value function w indicated in Figure 6 below. The number next to each
component indicates the value.

Let us see why we cannot build a payoff vector such that it is component efficient and it is
monotonic with respect to own links. Assume we can find one. Then any player participating in
the link present in each of the one-link graphs, namely g5, g6, and g7, should obtain a positive
payoff, as by monotonicity with respect to own links they should earn more than in g8. This
in turn means that the player participating in two links in each of the two-link graphs, namely
the player at bottom right in g2, the player at the top in g3, and the player at bottom left
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Figure 5: The forward-looking network formation scheme when δ is big
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in g4, should obtain a positive payoff too, as they should obtain more than when they are
participating in only one link. Unfortunately, players that participate in only one link in those
two-link graphs should obtain more than a payoff of 1, as that is the payoff they obtain when
they are disconnected in a one-link network. This means that the value of 2, which is the
value of a two-link graph, is not enough to pay all players more than what they would obtain
by removing any of their links. We cannot find an allocation rule that is component efficient
and satisfies monotonicity with respect to own links, therefore there is no guarantee to find a
forward-looking network formation scheme such that the complete graph is an absorbing state
of the dynamics given by the transition probability matrix.

Example 5: A link-monotonic value function that is not component additive and for which the
empty graph is strongly efficient.
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Figure 6: Non existence of an allocation rule that is monotonic with respect to own links
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Let us consider the value function w indicated in Figure 7. The number next to each
component indicates the value.

Note that the value function w is link monotonic, because connecting two players yields
a value of 2.05, higher than 1 + 1, the sum of the individual values at the empty network.
Given that there are externalities across components, connecting two players yields a negative
externality on the player that remains disconnected, a fact that prevents the one-link network
to obtain a higher total value than the empty network. If disconnected agents in the one-link
network suffered no externality, their stand-alone value would again be equal to 1, and by link
monotonicity of the value function, we would have that the two-link networks and the complete
network yield a higher value than the one-link networks, and by transitivity, than the empty
network. The negative externality across components breaks the strong efficiency of the complete
network when the value function is link monotonic.

5 Concluding Comments

The purpose of this paper is to to provide a solution concept to analyze the problem of network
value allocation at the same time as the problem of network formation. These are closely
related problems since the payoff a player gets in each possible network gives incentives for
creating certain links and severe others. We derive very general results by leaving the conditions
on the allocation rule open, and keeping very mild conditions on the transition probabilities.

Similarly to Dutta et al. (2005), a condition of monotonicity of the stationary or stage-wise
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Figure 7: A link-monotonic value function with the empty network being strongly efficient
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allocation rule guarantees that the process will converge to the complete graph. This is so as
the creation of links are at any time always beneficial. It is not true in general that for any
value function such that the complete network is efficient we can find a stationary allocation
rule that is component efficient and monotonic with respect to own links. It is not true in
general either that for any value function such that we can find a component efficient allocation
rule that is monotonic with respect to own links the complete network will be strongly efficient.
Nevertheless, when there are no externalities across components and the value function is link
monotonic, we can find a forward-looking network formation scheme such that the allocation
rule is monotonic with respect to own links and the complete graph is an absorbing state of the
transition probability matrix. If the value function is not component additive, then the value
function being link monotonic is not strong enough to obtain an efficiency result. In such a case,
the condition is a stronger version of critical-link monotonicity, in which the per-capita value of
a component is increasing as the component gets larger and more connected.

Our analytical framework calls for further research on forward-looking agents that are at
the same time forming the network and deciding how to allocate its value. An interesting
avenue would be to impose conditions on the allocation rule that depend on the transition
probability matrix, capturing the idea that the value allocation is a result of some bargaining
among forward-looking players. We will expect the existence result to hold for a smaller interval
of discount factors, or for value functions with more structure, as done by Navarro (2013) in
a recent working paper, where the implications of imposing a forward-looking version of equal
balance contributions (or fairness) are explored.
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Table 3: The expected discounted payoffs x(y) obtained from allocation in Figure 3 and matrix
in (8)

x1,g1 = x3,g1 = 1
1−δ+2δp1+δp2

(
3
4 + δp1

13(1−δ)+16δq
8(1−δ)(1−δ+δq) + δp2

13
16(1−δ)

)
, and

x2,g1 = 1
1−δ+2δp1+δp2

(
3
2 + δp1

13
4(1−δ+δq) + δp2

13
8(1−δ)

)
x1,g2 = x3,g2 = 13(1−δ)+16δq

16(1−δ)(1−δ+δq) , and

x2,g2 = 13
8(1−δ+δq)

x1,g3 = x3,g3 = 13
16(1−δ) , and x2,g3 = 13

8(1−δ)

x1,g4 = x3,g4 = 13(1−δ)+16δq
16(1−δ)(1−δ+δq) , and x2,g4 = 13

8(1−δ+δq)

x1,g5 = x3,g5 = 1
1−δ , and x2,g5 = 0

x1,g6 = 1
16(1−δ)(1−δ+δr1+δr2)

(
13δ(r1 + r2) + 3δ2qr1

1−δ+δq

)
,

x2,g6 = 1
8(1−δ)(1−δ+δr1+δr2)

(
32
3 (1− δ) + 13δr11− δ1− δ + δq + 13δr2

)
, and

x3,g6 = 1
16(1−δ)(1−δ+δr1+δr2)

(
32
3 (1− δ) + 13δ(r1 + r2) + 3δ2qr1

1−δ+δq

)

x1,g7 = 1
16(1−δ)(1−δ+δr1+δr2)

(
32
3 (1− δ) + 13δ(r1 + r2) + 3δ2qr1

1−δ+δq

)
,

x2,g7 = 1
8(1−δ)(1−δ+δr1+δr2)

(
32
3 (1− δ) + 13δr11− δ1− δ + δq + 13δr2

)
, and

x3,g7 = 1
16(1−δ)(1−δ+δr1+δr2)

(
13δ(r1 + r2) + 3δ2qr1

1−δ+δq

)

x1,g8 = x3,g8 = δ
(1−δ+δs1+2δs2)

[
s1
1−δ + s2s2 (x1,g6 + x2,g7)

]
and

x2,g8 = δs2
4(1−δ)(1−δ+δs1+2δs2)

[
32
3 (1− δ) + 13δr1

1−δ
1−δ+δq + 13δr2

]
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Table 4: The expected discounted payoffs x(y) obtained from allocation in Figure 3 and matrix
in (9)

x1,g1 = x3,g1 = 1
1−δ+2δp1

(
3
4 + δp1

13(1−δ)+16δq
8(1−δ)(1−δ+δq)

)
, and

x2,g1 = 1
1−δ+2δp1

(
3
2 + δp1

13
4(1−δ+δq)

)
x1,g2 = x3,g2 = 13(1−δ)+16δq

16(1−δ)(1−δ+δq) , and

x2,g2 = 13
8(1−δ+δq)

x1,g3 = x3,g3 = 1
1−δ+δp2+2δr2

(
13
16 + δp2x1,g1 + δr2 (x1,g6 + x1,g7)

)
, and

x2,g3 = 1
1−δ+δp2+2δr2

(
13
8 + δp2x2,g1 + δr2 (x2,g6 + x2,g7)

)
x1,g4 = x3,g4 = 13(1−δ)+16δq

16(1−δ)(1−δ+δq) , and

x2,g4 = 13
8(1−δ+δq)

x1,g5 = x3,g5 = 1
1−δ , and x2,g5 = 0

x1,g6 = 1
(1−δ)(1−δ+δr1+δs2)

(
δr1

13(1−δ)+16δq
16(1−δ+δq) + δ2s1s2

1−δ+δs1

)
,

x2,g6 = 1
1−δ+δr1+δs2

(
4
3 + 13δr1

8(1−δ+δq)

)
, and

x3,g6 = 1
(1−δ)(1−δ+δr1+δs2)

(
2
3(1− δ) + δr1

13(1−δ)+16δq
16(1−δ+δq) + δ2s1s2

1−δ+δs1

)

x1,g7 = 1
(1−δ)(1−δ+δr1+δs2)

(
2
3(1− δ) + δr1

13(1−δ)+16δq
16(1−δ+δq) + δ2s1s2

1−δ+δs1

)
,

x2,g7 = 1
1−δ+δr1+δs2

(
4
3 + 13δr1

8(1−δ+δq)

)
, and

x3,g7 = 1
(1−δ)(1−δ+δr1+δs2)

(
δr1

13(1−δ)+16δq
16(1−δ+δq) + δ2s1s2

1−δ+δs1

)

x1,g8 = x3,g8 = δs1
(1−δ)(1−δ+δs1) and x2,g8 = 0
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Table 5: The expected discounted payoffs x(y) obtained from allocation in Figure 3 and matrix
in (10)

x1,g1 = x3,g1 = 54−33δ+11δ2

8(1−δ)(3−δ)2 , and x2,g1 = 54+21δ
4(3−δ)2

x1,g2 = x3,g2 = 39−7δ
16(1−δ)(3−δ) , and x2,g2 = 39

8(3−δ)

x1,g3 = x3,g3 = 13
16 + δ(51−29δ+26δ2)

12(1−δ)(3−δ)2 , and x2,g3 = 13
8 + δ(75+14δ)

6(3−δ)2

x1,g4 = x3,g4 = 39−7δ
16(1−δ)(3−δ) , and x2,g4 = 39

8(3−δ)

x1,g5 = x3,g5 = 1
1−δ , and x2,g5 = 0

x1,g6 = 39δ+25δ2

16(1−δ)(3−δ)2 , x2,g6 = 96+7δ
8(3−δ)2 , and x3,g6 = 96−89δ+57δ2

16(1−δ)(3−δ)2

x1,g7 = 96−89δ+57δ2

16(1−δ)(3−δ)2 , x2,g7 = 96+7δ
8(3−δ)2 , and x3,g7 = 39δ+25δ2

16(1−δ)(3−δ)2

x1,g8 = x3,g8 = 2δ
(1−δ)(3−δ) and x2,g8 = 0
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