
Department of Computer Languages and Systems

Departamento de Lenguajes y Sistemas Informáticos
Lengoaia eta Sistema Informatikoak Saila

Invariant-Free

Deduction Systems

for Temporal Logic

A dissertation

submitted to the

Department of Computer Languages and Systems

of the University of the Basque Country

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

with “International PhD” mention

JOSE GAINTZARAIN IBARMIA

ADVISOR: DR. PAQUI LUCIO CARRASCO

San Sebastián, Spain, May 2012

Invariant-Free

Deduction Systems

for Temporal Logic

JOSE GAINTZARAIN IBARMIA

ADVISOR: DR. PAQUI LUCIO CARRASCO

A dissertation

submitted to the

Department of Computer Languages and Systems

of the University of the Basque Country

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

with “International PhD” mention

University of the Basque Country

Universidad del Paı́s Vasco / Euskal Herriko Unibertsitatea

Department of Computer Languages and Systems

Departamento de Lenguajes y Sistemas Informáticos

Lengoaia eta Sistema Informatikoak Saila

San Sebastián, Spain, May 2012

You cannot stop the wind but you may build windmills.

— Dutch proverb

No puedes detener el viento pero puedes construir molinos de viento.

— Proverbio neerlandés

Haizea ezin dezakezu gelditu baina haize-errotak eraiki ditzakezu.

— Herbeheretar esaera

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Paqui Lucio. This thesis was completed thanks

to her wise guidance, her strong determination, her encouragement, her hard work and her

patience. I would also like to thank Montserrat Hermo, Marisa Navarro and Fernando Orejas for

their huge contribution to this thesis. I also acknowledge my gratitude to Jon Ander Hernández

and Iñigo Sola for their contribution to implementation issues. I am also grateful to Alexander

Bolotov for making possible a four month stay at the University of Westminster and for his

useful comments and suggestions that helped to improve the final version of this thesis. I would

also like to thank Michael Fisher for providing feedback on the work presented in this thesis

by organizing a research visit to his group in Liverpool and for his valuable comments on the

thesis.

Finally, I thank everyone that in one way or another contributed to the completion of this

thesis. Among them, my father (Luis) and my mother (Miren Edurne) deserve special mention.

I dedicate this thesis to my parents.

ABSTRACT

In this thesis we propose a new approach to deduction methods for temporal logic. Our proposal

is based on an inductive definition of eventualities that is different from the usual one. On the

basis of this non-customary inductive definition for eventualities, we first provide dual systems

of tableaux and sequents for Propositional Linear-time Temporal Logic (PLTL). Then, we adapt

the deductive approach introduced by means of these dual tableau and sequent systems to the

resolution framework and we present a clausal temporal resolution method for PLTL. Finally,

we make use of this new clausal temporal resolution method for establishing logical foundations

for declarative temporal logic programming languages.

The key element in the deduction systems for temporal logic is to deal with eventualities

and “hidden” invariants that may prevent the fulfillment of eventualities. Different ways of

addressing this issue can be found in the works on deduction systems for temporal logic.

Traditional tableau systems for temporal logic generate an auxiliary graph in a first pass.

Then, in a second pass, unsatisfiable nodes are pruned. In particular, the second pass must

check whether the eventualities are fulfilled. The one-pass tableau calculus introduced by S.

Schwendimann requires an additional handling of information in order to detect cyclic branches

that contain unfulfilled eventualities. Regarding traditional sequent calculi for temporal logic,

the issue of eventualities and hidden invariants is tackled by making use of a kind of infer-

ence rules (mainly, invariant-based rules or infinitary rules) that complicates their automation.

A remarkable consequence of using either a two-pass approach based on auxiliary graphs or a

one-pass approach that requires an additional handling of information in the tableau framework,

and either invariant-based rules or infinitary rules in the sequent framework, is that temporal

logic fails to carry out the classical correspondence between tableaux and sequents. In this the-

sis, we first provide a one-pass tableau method TTM that instead of a graph obtains a cyclic

tree to decide whether a set of PLTL-formulas is satisfiable. In TTM tableaux are classical-like.

For unsatisfiable sets of formulas, TTM produces tableaux whose leaves contain a formula and

its negation. In the case of satisfiable sets of formulas, TTM builds tableaux where each fully

expanded open branch characterizes a collection of models for the set of formulas in the root.

The tableau method TTM is complete and yields a decision procedure for PLTL. This tableau

method is directly associated to a one-sided sequent calculus called TTC. Since TTM is free from

all the structural rules that hinder the mechanization of deduction, e.g. weakening and contrac-

tion, then the resulting sequent calculus TTC is also free from this kind of structural rules. In

particular, TTC is free of any kind of cut, including invariant-based cut. From the deduction

system TTC, we obtain a two-sided sequent calculus GTC that preserves all these good freeness

properties and is finitary, sound and complete for PLTL. Therefore, we show that the classical

correspondence between tableaux and sequent calculi can be extended to temporal logic.

The most fruitful approach in the literature on resolution methods for temporal logic, which

was started with the seminal paper of M. Fisher, deals with PLTL and requires to generate in-

variants for performing resolution on eventualities. In this thesis, we present a new approach

to resolution for PLTL. The main novelty of our approach is that we do not generate invari-

ants for performing resolution on eventualities. Our method is based on the dual methods of

tableaux and sequents for PLTL mentioned above. Our resolution method involves translation

into a clausal normal form that is a direct extension of classical CNF. We first show that any

PLTL-formula can be transformed into this clausal normal form. Then, we present our tem-

poral resolution method, called TRS-resolution, that extends classical propositional resolution.

Finally, we prove that TRS-resolution is sound and complete. In fact, it finishes for any input

formula deciding its satisfiability, hence it gives rise to a new decision procedure for PLTL.

In the field of temporal logic programming, the declarative proposals that provide a complete-

ness result do not allow eventualities, whereas the proposals that follow the imperative future

approach either restrict the use of eventualities or deal with them by calculating an upper bound

based on the small model property for PLTL. In the latter, when the length of a derivation

reaches the upper bound, the derivation is given up and backtracking is used to try another possi-

ble derivation. In this thesis we present a declarative propositional temporal logic programming

language, called TeDiLog, that is a combination of the temporal and disjunctive paradigms in

Logic Programming. We establish the logical foundations of our proposal by formally defining

operational and logical semantics for TeDiLog and by proving their equivalence. Since TeDiLog

is, syntactically, a sublanguage of PLTL, the logical semantics of TeDiLog is supported by

PLTL logical consequence. The operational semantics of TeDiLog is based on TRS-resolution.

TeDiLog allows both eventualities and always-formulas to occur in clause heads and also in

clause bodies. To the best of our knowledge, TeDiLog is the first declarative temporal logic

programming language that achieves this high degree of expressiveness.

Since the tableau method presented in this thesis is able to detect that the fulfillment of

an eventuality is prevented by a hidden invariant without checking for it by means of an extra

process, since our finitary sequent calculi do not include invariant-based rules and since our

resolution method dispenses with invariant generation, we say that our deduction methods are

invariant-free.

CONTENTS

1. Introduction . 1

2. Preliminaries . 7

2.1 Syntax of PLTL . 7

2.2 Semantics and Model Theory of PLTL . 8

2.3 Decidability of PLTL: Sound, Refutationally Complete and Complete Deduc-

tion Systems . 10

2.4 Invariant Formulas in PLTL . 10

3. Dual Systems of Tableaux and Sequents for PLTL 13

3.1 Introduction . 13

3.2 Sequent-based Deduction Systems and Tableaux 15

3.3 The Tableau Method TTM . 17

3.3.1 Pre-tableaux . 17

3.3.2 Tableau Rules . 18

3.3.3 Consistent and Inconsistent Nodes and Closed and Open Branches . . . 21

3.3.4 Semantic Tableaux . 21

3.3.5 Examples of Tableaux . 24

3.4 Soundness and Completeness of TTM . 28

3.4.1 Soundness . 29

3.4.2 Systematic Tableaux . 29

3.4.3 Examples of Systematic Tableaux . 38

3.4.4 Completeness . 44

3.4.5 Improving Eventuality Handling . 45

3.5 The Sequent Calculus TTC . 52

3.6 The Sequent Calculus GTC . 58

3.7 Related Work . 64

3.7.1 Tableau Systems . 64

3.7.2 Sequent Systems . 68

4. Invariant-Free Clausal Temporal Resolution for PLTL 71

4.1 Introduction . 71

4.2 The Clausal Language . 72

4.2.1 Conjunctive Normal Form for Formulas 72

4.2.2 Transforming Formulas into CNF . 74

4.2.3 Complexity of the Translation . 77

4.3 The Temporal Resolution Rules . 78

4.3.1 Basic Rules . 78

4.3.2 The Rule (U Set) . 79

4.4 Temporal Resolution Derivations . 83

4.4.1 TRS-Derivations and Examples . 84

4.4.2 Relating TRS-Resolution to Classical Resolution 87

4.5 Soundness . 89

4.6 The Algorithm SR for Systematic TRS-Resolution 91

4.6.1 The Algorithm SR . 92

4.6.2 Examples . 94

4.6.3 Termination . 103

4.6.4 Complexity . 107

4.7 Completeness . 108

4.7.1 Extending Locally Consistent TRS-Closed Sets of Clauses 108

4.7.2 Building Infinite Paths of Standard Lclc-Extensions 111

4.7.3 Model Existence . 114

4.8 Related Work . 117

4.8.1 The TTM Tableau Method [58, 61] . 117

4.8.2 The Resolution Method of Cavali & Fariñas del Cerro [29] 118

4.8.3 The Nonclausal Resolution Method of Abadi & Manna [1] 119

4.8.4 Venkatesh’s Temporal Resolution [126] 120

4.8.5 Fisher’s Temporal Resolution [40] . 120

5. Logical Foundations for More Expressive Declarative Temporal Logic Program-

ming Languages . 123

5.1 Introduction . 123

5.2 The Language TeDiLog . 129

5.3 The Rule System . 132

5.3.1 The Resolution Rule . 132

5.3.2 The Temporal Rules . 132

5.3.3 The Rule for Jumping to the Next State 135

5.3.4 The Subsumption Rule . 136

5.4 TeDiLog Semantics . 136

5.4.1 Operational Semantics . 137

5.4.2 Examples . 140

5.4.3 Logical Semantics . 147

5.4.4 Equivalence between operational and logical semantics 148

5.5 Related work . 153

5.5.1 Templog: Abadi & Manna [2] and Baudinet [12] 154

5.5.2 Chronolog: Wadge [127] and Orgun [97, 99] 155

5.5.3 Temporal Prolog: Gabbay [55] . 156

5.5.4 MetateM: Barringer et al. [9] . 156

5.5.5 Clausal Temporal Resolution for PLTL: Fisher [40] 157

6. Conclusions . 159

6.1 Results and Contributions . 159

6.2 Related Publications, Presentations and Research Activity 160

6.3 Future Work . 162

LIST OF FIGURES

2.1 Cyclic sequence . 9

3.1 Primitive TTM-Rules . 19

3.2 Some Derived TTM-Rules . 20

3.3 Closed tableau for the set of formulas {pU F} 25

3.4 Non-expanded tableau for the set of formulas {pU F} 25

3.5 Open expanded tableau for the set of formulas {p, ◦¬p,¬FU ¬p} 26

3.6 Open expanded tableau for the set of formulas {� (p ∨ r)} 26

3.7 Open expanded tableau for the set of formulas {pU q, �¬q} (Part 1 of 2) 27

3.8 Open expanded tableau for the set of formulas {pU q, �¬q} (Part 2 of 2) 28

3.9 Systematic Tableau Algorithm . 30

3.10 Systematic closed tableau for the set of formulas {pU F} 38

3.11 Systematic expanded tableau for the set of formulas {p, ◦¬p,¬FU ¬p} 39

3.12 Systematic closed tableau for {p,�(¬p ∨ ◦p), �¬p} by using (�)2 and (U)2
(Part 1 of 2) . 40

3.13 Systematic closed tableau for {p,�(¬p ∨ ◦p), �¬p} by using (�)2 and (U)2
(Part 2 of 2) . 41

3.14 Non-systematic and non-expanded open tableau for {p,�(¬p ∨ ◦p), �¬p} . . 42

3.15 Systematic expanded tableau for {p,�(¬p ∨ ◦p), �p} obtained by using (�)2. . 43

3.16 The Rules (U)3 and (�)3 . 47

3.17 Systematic expanded tableau for {p,�� p} by using (�)3 and (U)3 (Part 1 of 2) 49

3.18 Systematic expanded tableau for {p,�� p} by using (�)3 and (U)3 (Part 2 of 2) 50

3.19 Systematic closed tableau for {p,�(¬p ∨ ◦p), �¬p} by using (�)3 and (U)3
(Part 1 of 2) . 51

3.20 Systematic closed tableau for {p,�(¬p ∨ ◦p), �¬p} by using (�)3 and (U)3
(Part 2 of 2) . 52

3.21 Primitive TTC-Rules . 53

3.22 Some Derived Rules for TTC . 55

3.23 TTC-proof for the set of formulas {q, pU F} 56

3.24 TTC-proof for the set of formulas {pU q,¬◦� q,¬q} 57

3.25 TTC-proof for the set of formulas {�¬p, � p} 57

3.26 TTC-proof for the set of formulas {p,�(¬p ∨ ◦p), �¬p} 59

3.27 Primitive Rules for the Sequent Calculus GTC 60

3.28 Some Derived GTC-Rules . 61

3.29 GTC-proof that shows that the formula q is a logical consequence of {pU q,¬◦� q} 63

3.30 GTC-proof that shows that the formula ¬� p is a logical consequence of {�¬p} 64

3.31 GTC-proof that shows that the formula �p is a logical consequence of the set of

formulas {p,�(¬p ∨ ◦p)} (1st version) . 65

3.32 GTC-proof that shows that the formula �p is a logical consequence of the set of

formulas {p,�(¬p ∨ ◦p)} (2nd version) . 66

4.1 The Resolution Rule . 78

4.2 The Subsumption Rule . 78

4.3 The Fixpoint Rules (RFix) and (U Fix) . 79

4.4 The Fixpoint Rules (�Fix) and (�Fix) . 79

4.5 The Rule (U Set) . 80

4.6 The Rule (�Set) . 83

4.7 TRS-refutation for the set of clauses {� (r ∨ � p),�◦¬r, ◦�¬p,�(◦r ∨ ¬q ∨
� p), p ∨ q,¬q} . 85

4.8 TRS-refutation for the set of clauses {�¬p,� (rU p), (¬r)U p} 85

4.9 TRS-refutation for the set of clauses {� ((pU q)∨r),�((pU q)∨� s),�¬q,�¬s} 86

4.10 The Algorithm SR for Systematic TRS-Resolution 92

4.11 Systematic TRS-refutation for the set of clauses {p,�(¬p ∨ ◦p), �¬p} 95

4.12 Non-systematic TRS-derivation for the set of clauses {p,�(¬p ∨ ◦p), �¬p} . . 97

4.13 Systematic TRS-refutation for the set of clauses {�p, �¬p} 97

4.14 Non-systematic TRS-refutation for the set of clauses {�p, �¬p} 97

4.15 Systematic TRS-derivation for the set of clauses {(pU q)∨�r,�¬p,�¬q} (Part

1 of 2) . 98

4.16 Systematic TRS-derivation for the set of clauses {(pU q)∨�r,�¬p,�¬q} (Part

2 of 2) . 99

4.17 Cycling systematic TRS-derivation for {� q, �r,�(¬q ∨ �¬r)} (Part 1 of 2) . . 101

4.18 Cycling systematic TRS-derivation for {� q, �r,�(¬q ∨ �¬r)} (Part 2 of 2) . . 102

5.1 Syntax of TeDiLog . 129

5.2 The Resolution Rule . 132

5.3 The Context-Free Rule (UH+) . 133

5.4 The Context-Free Rules (U H−), (U B+) and (U B−) 133

5.5 The Context-Free Rules (RH+), (RH−), (RB+) and (RB−) 134

5.6 The set of clauses def(a, L,∆) . 134

5.7 The Context-Dependent Rule (U C+) . 135

5.8 The Context-Dependent Rules (U C−), (RC+) and (RC−) 135

5.9 The set of clauses def(a, now(Ω)) . 136

5.10 Derived Rules for � and � . 136

5.11 The Rule (Unx) . 137

5.12 The Rule (Sbm) . 137

5.13 The IFT-Resolution Procedure . 138

5.14 IFT-Refutation for Π = {q U r ← >} and Γ = {� (⊥ ← r)} 141

5.15 IFT-refutation for Π = {q ← >,�(◦q ← q)} and Γ = {⊥ ← �q} 142

5.16 IFT-derivation for Π = {� q ← >, � r ← >} and Γ = {�(⊥ ← q ∧ � r)} (Part

1 of 3) . 144

5.17 IFT-derivation for Π = {� q ← >, � r ← >} and Γ = {�(⊥ ← q ∧ � r)} (Part

2 of 3) . 145

5.18 IFT-derivation for Π = {� q ← >, � r ← >} and Γ = {�(⊥ ← q ∧ � r)} (Part

3 of 3) . 146

1. INTRODUCTION

Temporal logic plays a significant role in computer science, since it is an appropriate tool for

specifying object behaviour, cooperative protocols, reactive systems, digital circuits, concurrent

programs and, in general, for reasoning about dynamic systems whose states change over time

(see e.g. [46, 56, 57, 86, 90, 91]). In particular, several concepts which are useful for the spec-

ification of properties of dynamic systems –such as fairness, non-starvation, liveness, safety,

mutual exclusion, etc– can be formally stated in temporal logic using very concise and readable

formulas. Several different temporal logics have been devised –as formalisms for representing

dynamic systems– that mainly differ in their underlying model of time and in their expressive-

ness. Regarding time modeling there are linear vs. branching, discrete vs. dense, future vs.

past-and-future, finite vs infinite, etc. Regarding expressiveness, they involve different temporal

connectives and logical constructions (such as, quantifiers, variables, fixpoint operators). For a

recent survey on temporal logics we refer the reader to [85].

Propositional Linear-time Temporal Logic (PLTL) is one of the most widely used temporal

logics 1. This logic has, as the intended model for time, the standard model of natural numbers.

Different contributions in the literature on temporal logic show its usefulness in computer sci-

ence and other related areas. For a recent and extensive monograph on PLTL techniques and

tools, we refer the reader to [44], where sample applications along with references to specific

works that use this temporal formalism to represent dynamic entities in a wide variety of fields

–such as Program Specification, System Verification, Robotics, Reactive Systems, Databases,

Control Systems, Agent-based Systems, etc– can be found. The minimal language for PLTL

adds to classical propositional connectives two basic temporal connectives ◦ (“next”) and U
(“until”) such that ◦ψ is interpreted as “the next state makes ψ true” and ϕU ψ is interpreted as

“ϕ is true from now until ψ eventually becomes true”. Many other useful temporal connectives

can be defined as derived connectives, e.g. � (“eventually”), � (“always”) and R (“release”).

Automated reasoning for temporal logic is a quite recent trend. In temporal logics, as well

as in the more general framework of modal logic, different proof methods are starting to be

designed, implemented, compared, and improved. Specification and verification methods for

PLTL –and also for other temporal logics– are mainly based on three kinds of proposals: au-

tomata, tableaux and resolution. Automata are related to model checking whereas tableaux and

resolution are the main methods for proof theory. Other proof-theoretic approaches for PLTL

include its first axiomatization à la Hilbert presented in [53]. See [110] for a good survey about

theorem-proving in PLTL and its extensions. The most developed approach is model checking

([30, 31]), which is automata-based. In fact, model checking of temporal formulas is tradition-

ally carried out by a conversion to Büchi automata (see e.g. [120]). In model checking, temporal

logic is used for specification purposes, whereas the system is often implemented in a different

language, hence verification requires to manage different semantic domains. Model checking

1 Probably, the most used temporal logic is Computation Tree Logic (CTL), especially for model checking pur-

poses.

1. Introduction 2

focuses on the problem of deciding whether a concrete model (or run) of a system satisfies a

logical formula or not. This approach is reasonably efficient for finite state systems and there is

a large body of research in this area. The interested reader is referred to [44] (Section 4.4.7 and

Chapter 5) for a recent work that describes model checking techniques. However, the automata

approach is not well suited for automated deduction, in the sense that it is not able to generate

proofs or deductions of a conclusion from a set of premises. A brief and clarifying discussion

about model checking versus deductive temporal verification can be found in [35].

Automated deduction for PLTL, and related logics, is mainly based on tableaux and reso-

lution. Indeed, there are recently published works comparing implementations of the different

tableau and resolution procedures for PLTL and similar logics (see e.g. [69, 77, 78]).

In this thesis we propose new deduction methods for PLTL. In particular, we introduce a

tableau method, two sequent calculi and a resolution procedure for PLTL. On the basis of the

resolution procedure, we also present a declarative temporal logic programming language.

Eventualities and Invariants

In every deduction method for temporal logic, the central topic is how to deal with eventualities

and “hidden” invariants that can prevent the fulfillment of eventualities. Eventualities directly

state that a property will eventually hold whereas invariants state, often in an intricate way, that

a property holds at every time instant from some moment onwards.

The use of the customary inductive definitions of the temporal connectives as the only mech-

anism for detecting the existence of an invariant that prevents the fulfillment of an eventuality,

leads to incomplete deduction systems. The reason is that such customary inductive definitions

make possible to indefinitely postpone the fulfillment of an eventuality and, consequently, they

make possible to indefinitely postpone the contradiction between an eventuality that states that

a property ψ will eventually hold and an invariant that states that ψ will never hold. Therefore,

more elaborated mechanisms are needed.

Next, we review how this issue is tackled by the main approaches in the tableau, sequent,

resolution and temporal logic programming frameworks. Additionally we describe our contri-

bution to each of these frameworks.

Tableau systems

Traditional tableau systems for temporal logic, in particular PLTL, are based on the usual induc-

tive definition of eventualities (see e.g. [128, 73, 8, 87, 79, 81]). In order to obtain completeness,

they first build an auxiliary finite graph by using tableau rules. Since in these systems, the num-

ber of different sets of formulas that can be produced from the initial set is finite, the graph is

always finite. Once the graph is completed, it is checked to detect the existence of unfulfilled

eventualities. Nodes that do not belong to infinite paths that give rise to models, are pruned.

These tableau methods are known as two-pass methods. The one-pass approach proposed in

[117] is also based on the usual inductive definition of eventualities. The method yields cyclic

trees. The second pass is avoided by associating additional information to nodes. Part of the

information is generated in a top-down manner, while the branches are being built. But there are

also information that is obtained in a bottom-up manner, once the branch has been completed.

The information obtained in a bottom-up manner is necessary to deal with cyclic branches that

are not fulfilling on their own but yield a fulfilling cycle if combined with other accessible

1. Introduction 3

branches. From a theoretical point of view, one of the drawbacks of the two-pass approach and

the above mentioned one-pass approach is that a classical-like tableau is not obtained. We mean

that, unsatisfiable sets of formulas do not always produce closed branches whose last nodes

contain a formula and its negation, instead cycles that do not lead to models must be detected by

using an extra process. Our proposal is based on a non-customary inductive definition of even-

tualities. The rule obtained from this alternative inductive definition of eventualities, together

with a specific strategy for applying the tableau rules, gives rise to a tableau method, namely

TTM, where tableaux are cyclic trees and unsatisfiability is exclusively detected –like in clas-

sical tableau methods– by means of closed branches that contain a formula and its negation in

its last node. Additionally, by controlling cycles that only belong to a single branch, a decision

procedure is obtained. Our approach was first presented in [60] and then extended in [61]. A

preliminary prototype is accessible in http://www.sc.ehu.es/jiwlucap/TTM.html. A

report about this prototype is presented in [62].

Sequent systems

Traditional sequent systems for temporal logic (see e.g. [104, 105, 121]) are also based on the

usual inductive definition of eventualities. In order to deal with eventualities and invariants, they

either include an infinitary rule or a rule that requires to previously find an adequate invariant.

On one hand infinitary rules are not effective. On the other hand, invariant-based rules are

specialized cut rules that prevent from obtaining classical-like cut-free proofs. As a consequence

of using either two-pass methods based on auxiliary graphs or a one-pass system that requires

an additional handling of information in the tableau framework, and either infinitary rules or

invariant-based rules in the sequent framework, is that the classical duality between tableau and

sequent proofs does not hold. The finitary sequent system presented in [20] does not require an

invariant-based rule but annotated formulas are used. These formulas do not properly belong to

the logical language, so that an extra-logical feature is used. By following our approach based

on a non-customary inductive definition of eventualities, we propose a finitary sequent calculus

that does not include either invariant-based rules or rules that contain extra-logical features such

as annotated formulas. Moreover, our tableau and sequent systems are dual in the sense that

from every tableau construction a sequent derivation can be straightforwardly obtained. Our

proposal was first materialized by means of the sequent system FC presented in [58], which is

the first finitary sequent system for PLTL that is free from cut- and invariant-based rules. Later

on, the sequent systems TTC and GTC were directly obtained from the tableau method TTM

([61]). Although FC and GTC are basically identical, the completeness proof for GTC is based

on its duality with respect to TTM and –unlike in the completeness proof of FC– structural rules

such as weakening and contraction are not used.

Clausal Resolution

The clausal resolution methods for PLTL presented in [126] and [40] (see also [45]) require

invariant generation in order to deal with eventualities. The former does not tackle the invariant

generation issue whereas the latter provides an algorithm. The resolution system in [40] gives

rise to a decision procedure for PLTL, but it contains an extra-logical feature to resolve even-

tualities. The clausal resolution method introduced in [29] is not intended for full PLTL and

the approach is based on the exhaustive analysis of all the possible transformations (in a finite

1. Introduction 4

scope) of eventualities into formulas that only contain the ◦ connective. The non-clausal resolu-

tion system presented in [1] is based on a non-customary inductive definition of eventualities that

is different from the one we consider in the above mentioned tableau and sequent frameworks.

However, the problem of satisfiable input sets is not addressed in [1] and therefore a decision

procedure for PLTL is not provided. Our clausal resolution method, namely TRS, is defined by

adapting the TTM approach for tableaux to the clausal resolution framework. Consequently, the

keys of our approach to temporal resolution are a rule that deals with eventualities and a strategy

formalized by means of a systematic resolution algorithm that gives rise to a resolution-based

decision procedure for PLTL. This resolution method is also described in detail in [62]. A pro-

totype for TRS-resolution can be found in http://www.sc.ehu.es/jiwlucap/TRS.html.

Temporal Logic Programming

The idea of directly executing logical formulas and, therefore, using logic as a programming

language –already proven successful in classical Logic Programming– has also been tackled in

the case of temporal logic. Temporal Logic Programming provides a single framework in which

dynamic systems can be specified, developed, validated and verified by means of executable

specifications that make possible to prototype, debug and improve systems before their final

use. In classical Logic Programming, the underlying execution procedure is based on (classical)

clausal resolution ([88, 89]). The extension of this approach to Temporal Logic Programming

faces three main challenges: the undecidability of first-order temporal logic [92, 122, 121], the

difficulty for dealing with eventualities and invariants and the complexity (even for the proposi-

tional fragment [119]).

Consequently, different proposals that can be classified into two groups have arisen. One

of the groups is formed by the languages that are based on the imperative future approach (e.g.

[94, 9, 93]). In these languages programs are formulas –written in temporal logic– that state

which literals must be true in the next state. So the execution consists in explicitly building the

model for the program, state by state. The other group is formed by the languages that are based

on the declarative approach. The declarative languages extend classical Logic Programming

for reasoning about time. However, some of the declarative languages are not purely based on

temporal logic (e.g. [83, 74, 21, 50, 114]). The declarative languages that are purely based on

temporal logic extend classical Logic Programming by including temporal connectives in the

atoms and by also extending classical resolution ([2, 12, 127, 99, 55]). Here we only analyze

the languages that belong to the imperative future approach and the declarative languages that

are purely based on temporal logic. The languages that belong to the imperative future ap-

proach either restrict the use of eventualities (e.g. [94, 93]) or use the finite-model property2

for fixing an upper bound that indicates that an eventuality cannot be fulfilled (e.g. [9]). The

declarative languages that are purely based on temporal logic either directly avoid eventualities

([2, 12, 127, 99]) or do not provide completeness result ([55]). If the clausal temporal res-

olution method presented in [40] were considered as a basis for a declarative temporal logic

programming language, its execution would require invariant generation. In the same way, the

sequent-based logical foundation for declarative temporal logic programming provided in [106]

includes an invariant-based rule. We propose a (propositional) declarative temporal logic pro-

gramming language, named TeDiLog, whose execution mechanism is based on TRS-resolution.

Consequently there are no restrictions regarding the use of eventualities. Moreover, we deal

2 Also known as small model property.

1. Introduction 5

with eventualities without requiring invariant generation. A preliminary version of this proposal

was presented in [64].

Invariant-Freeness

In order to sum up and highlight the distinctive feature of our approach to temporal deduction

we can say that:

• Our tableau method is classical-like in the sense that it does not require an extra process

(a second pass or an additional handling of information) for detecting the unsatisfiability

of a set of formulas where an invariant prevents the fulfillment of an eventuality.

• Our finitary sequent systems do not include invariant-based rules.

• Our resolution method dispenses with invariant generation.

• The resolution procedure underlying our temporal logic programming language does not

require either invariant generation or invariant detection by means of upper bounds.

Consequently, we say that our approach is invariant-free.

Outline of the thesis

This thesis is organized in six chapters (including this one) as follows:

• In Chapter 2, we provide the preliminaries of the thesis, that is, the basic notions about

PLTL that are used in the remaining chapters.

• In Chapter 3, we first introduce our one-pass tableau method TTM. This tableau method

includes a new tableau rule for dealing with eventualities. The completeness result of

TTM is based on this rule and the strategy formalized by means of the systematic tableau

algorithm that we also present in this chapter. Such rule together with the mentioned

strategy are the core of our proposal, which leads to a new approach to temporal deduction

and gives rise to a new decision procedure for PLTL. From TTM, we obtain the one-

sided finitary sequent calculus TTC that is cut-free and invariant-free. On the basis of

TTC, we finally define the two-sided sequent calculus GTC, which is also finitary, cut-free

and invariant-free. Moreover, both TTC and GTC are weakening-free and contraction-

free. By means of these tableau and sequent systems we prove that the classical duality

between tableau and sequent systems extends to PLTL. At the beginning of Chapter 3 we

review related work to motivate our research. At the end of the chapter, we compare our

approach with related work with the aim of remarking the novelties of our contribution.

The contents of this chapter are strongly based on [58, 60, 61, 63].

• Chapter 4 is devoted to our clausal temporal resolution method TRS. First, we briefly

review previously existing approaches to motivate our work. Then, we introduce our

clausal normal form and the steps required to transform any PLTL formula into this clausal

form. Next, we provide the rule system and the notion of derivation. The crucial rule for

eventualities and the systematic resolution algorithm that lead to the completeness result

and to the new resolution-based decision procedure, are obtained by adapting the key

1. Introduction 6

rule and the systematic tableau algorithm from the previous chapter to the clausal setting.

The major novelty of the resolution method TRS is that, unlike the main approach in the

literature ([40, 45]), it dispenses with invariant generation. The last section of this chapter

is used to compare our contribution with previously existing approaches. The content of

this chapter is based on [62].

• In Chapter 5, we present a declarative propositional temporal logic programming lan-

guage called TeDiLog. First we introduce the syntax of TeDiLog which is an adaptation

of the clausal form introduced in the previous chapter to the logic programming style.

Then we provide operational and logical semantics for TeDiLog and prove their equiva-

lence. The operational semantics is based on the TRS-resolution presented in Chapter 4

and the logical semantics is founded on PLTL logical consequence. At the beginning of

the chapter previous approaches are reviewed to motivate our work and at the end of the

chapter our contribution is compared with such approaches. The content of this chapter

extends [64].

• In Chapter 6, we expose the main contributions and results of this thesis together with

the publications and remarkable research activity carried out during the preparation of this

thesis. Besides, we also discuss future work.

2. PRELIMINARIES

In this chapter we provide the basic notions related to PLTL and we also introduce some nota-

tion that is used in this thesis. Sections 2.1 and 2.2 are devoted to the syntax and the semantics

of PLTL. Section 2.3 introduces the notions of soundness, refutational completeness and com-

pletenes for deduction systems. Finally, Section 2.4 introduces the notion of invariant formula

for PLTL.

2.1 Syntax of PLTL

The syntax of PLTL extends the syntax of classical propositional logic by allowing the use

of temporal connectives. Different temporal connectives can be considered in order to obtain

the full expressiveness of PLTL. In this thesis we choose the temporal connectives ◦ (“next”)

and U (“until”) as primitive temporal connectives. Therefore we say that PLTL-formulas are

built by using the nullary connective (i.e. the constant) F, propositional variables (denoted by

lowercase letters p, q, . . .) from a set Prop, the classical connectives ¬ and ∧, and the temporal

connectives ◦ and U . In the sequel, formula means PLTL-formula. A lowercase Greek letter

(ϕ, ψ, χ, γ , . . .) denotes a formula and an uppercase one (Φ, ∆, Γ, Ψ, Ω, . . .) denotes a finite set

of formulas. As usual other connectives can be defined in terms of the previous ones: T ≡ ¬F,

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), ϕRψ ≡ ¬(¬ϕU ¬ψ), �ϕ ≡ TU ϕ, �ϕ ≡ ¬�¬ϕ. Note that

�ϕ ≡ FRϕ. As can be observed in the above definitions, the linear-time connectives R
(“release”), � (“eventually”) and � (“always”) can be defined in terms of the connective U .

The connectives T, ∨, R and � are the dual connectives of the connectives F, ∧, U and �
respectively. The connective ◦ is its own dual.

The above defined connectives will be used as abbreviations for readability in the tableau

method and the sequent calculi but dual connectives are necessary in the clausal resolution

method. For technical convenience, we use the nullary connective F as part of the minimal

language for PLTL. However, its use can be avoided by considering that F can be expressed

as ψ ∧ ¬ψ, where ψ ∈ Prop. In fact, in the clausal resolution method we dispense with the

constants F and T and we consider that �ϕ ≡ ¬ϕU ϕ and �ϕ ≡ ¬ϕRϕ. In the clausal

resolution method the empty clause is denoted syntactically as ⊥ and �⊥.

Formulas of the form ψ, ¬ψ and ◦ϕ, where ψ ∈ {F,T} ∪Prop, are called elementary. Also

sets of elementary formulas are called elementary.

We denote by ◦n, �
n and � n, with n ≥ 0, the sequences of n connectives ◦, � and � ,

respectively. However, these kinds of superscripts are notation, hence they are not part of the

syntax.

Given a set of formulas Φ = {ϕ1, . . . , ϕn}we use¬Φ to denote the formula¬(ϕ1∧. . .∧ϕn)
and

∧
Φ to denote the formula ϕ1∧ . . .∧ϕn. In particular, when Φ is empty, ¬Φ is the constant

F in the tableau and sequent systems (Chapter 3) and the empty clause in the resolution system

2. Preliminaries 8

(Chapters 4 and 5). On the other hand, when Φ is empty,
∧

Φ is the constant T in the tableau

and sequent systems (Chapter 3).

2.2 Semantics and Model Theory of PLTL

Formally, a PLTL-structureM is a pair (SM, VM) such that SM is a denumerable sequence of

states s0, s1, s2, . . . and VM is a map VM : SM → 2Prop. Intuitively, VM(sj) specifies which

atomic propositions are (necessarily) true in the state sj .

Formulas are interpreted in the states of PLTL-structures. The formal semantics of formulas

is given by the truth of a formula ϕ in the state sj of a PLTL-structureM, which is denoted by

〈M, sj〉 |= ϕ. This semantics is inductively defined as follows:

• 〈M, sj〉 6|= F

• 〈M, sj〉 |= p iff p ∈ VM(sj) for p ∈ Prop

• 〈M, sj〉 |= ¬ϕ iff 〈M, sj〉 6|= ϕ

• 〈M, sj〉 |= ϕ ∧ ψ iff 〈M, sj〉 |= ϕ and 〈M, sj〉 |= ψ

• 〈M, sj〉 |= ◦ϕ iff 〈M, sj+1〉 |= ϕ

• 〈M, sj〉 |= ϕU ψ iff there exists k ≥ j such that 〈M, sk〉 |= ψ and for every i ∈
{j, . . . , k− 1} it holds 〈M, si〉 |= ϕ.

The extension of the above formal semantics to the defined connectives yields:

• 〈M, sj〉 |= T

• 〈M, sj〉 |= ϕ ∨ ψ iff 〈M, sj〉 |= ϕ or 〈M, sj〉 |= ψ

• 〈M, sj〉 |= ϕRψ iff for every k ≥ j it holds either 〈M, sk〉 |= ψ or 〈M, si〉 |= ϕ for

some i ∈ {j, . . . , k− 1}

• 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for some k ≥ j

• 〈M, sj〉 |= �ϕ iff 〈M, sk〉 |= ϕ for every k ≥ j.

If 〈M, sh〉 |= ϕ then we say that ϕ is true in the sate sh of the PLTL-structureM.

Note that the truth of ϕU ψ and �ψ in a state sj of a PLTL-structureM requires that ψ

must eventually be true in some state sk ofM with k ≥ j, and also that the eventual truth of

¬ψ is required for ¬�ψ and ¬(ϕRψ) to be true. Consequently

Definition 2.2.1. An eventuality is a formula of the form ϕU ψ or �ψ or ¬�ψ or ¬(ϕRψ). In

particular, formulas of the form ϕU ψ are also called until-formulas.

The semantics is extended from formulas to sets of formulas in the usual way: 〈M, sj〉 |= Φ
iff 〈M, sj〉 |= γ for all γ ∈ Φ. We say that M is a model of Φ, in symbols M |= Φ, iff

〈M, s0〉 |= Φ. A satisfiable set of formulas has at least one model, otherwise it is unsatisfiable.

Definition 2.2.2. Two sets of formulas Φ and Ψ are equisatisfiable whenever Φ is satisfiable if

and only if Ψ is satisfiable.

2. Preliminaries 9

e0 e1 e2 . . . ej . . . ek
R R R R R R

R

Figure 2.1: Cyclic sequence

The logical consequence relation between a set of formulas Φ and a formula χ, denoted as

Φ |= χ, is defined in the following way:

Φ |= χ iff for every PLTL-structureM and every sj ∈ SM:

if 〈M, sj〉 |= Φ then 〈M, sj〉 |= χ

The above notion of logical consequence is usually called local logical consequence. There

is a weaker notion called global logical consequence which demands χ to be true at all states

inM if Φ is true at all states inM. This latter notion is also interesting for many applications

[48].

In order to construct models for satisfiable sets of formulas we use cyclic (also called ul-

timately periodic) PLTL-structures that we define in terms of either infinite paths over cycling

sequences (Chapters 3 and 4) or infinite sequences (Chapter 5). Each element of such sequences

is associated with a set of formulas. An infinite path (or infinite sequence) becomes the sequence

of states of a PLTL-structure. The propositional variables that belong to the sets associated with

the states define the map V . Finally we ensure that a PLTL-structure built in this way makes

true, at each state sj , the formulas associated with the state sj .

Any infinite sequence e0, e1, . . . , ek, . . . involves an implicit successor relation, namely R,

such that (ei, ei+1) ∈ R for all i ∈ IN . When convenient, we write eR e′ to denote (e, e′) ∈ R.

A finite sequence gives also a corresponding implicit successor relation with a pair for each

element except for the last one. A finite sequence S = e0, e1, . . . , ek is said to be cyclic iff

its successor relation extends the implicit R with a pair (ek, ej) for some j ∈ {0, . . . , k} (see

Figure 2.1). Then, ej , . . . , ek is called the loop of S, ej is called the cycling element of S, and

the path over S is the infinite sequence

path(S) = e0, e1, . . . , ej−1 · 〈ej, ej+1, . . . , ek〉
ω

where · is the infix operator of concatenation of sequences and Uω denotes the infinite se-

quence that results by concatenation of the sequenceU infinitely many times. Naturally, for any

non-cyclic finite sequence S we consider that path(S) = S.

A PLTL-structureM is cyclic or ultimately periodic if its (infinite) sequence of states SM
is a path over a cyclic sequence of states.

Ensuring that a PLTL-structure constructed from an infinite sequence S = e0, e1, . . . , ek, . . .

makes true the eventualities that appear in the sets associated to each ei in S is the key step of the

model construction process. In order to carry out this step, we define the notion of fulfillment of

eventualities. We say that ei in S fulfills an eventuality ϕU ψ that belongs to the set associated

with ei, whenever there exists eh with h ≥ i such that ψ belongs to the set associated with

2. Preliminaries 10

eh and ϕ belongs to the set associated with eg for every g ∈ {i, . . . , h − 1}. We particularize

and precisely define the notion of fulfillment for every deduction system in the corresponding

chapter.

2.3 Decidability of PLTL: Sound, Refutationally Complete and Complete

Deduction Systems

It is well known that PLTL is a decidable logic (see e.g. [87]). Therefore, given a PLTL-

formula ψ, there exists a procedure that is able to decide, in a finite amount of time, whether ψ

is satisfiable or unsatisfiable.

Whenever a new deduction system is proposed for a decidable logic, it must be assessed

whether the deduction system yields a decision procedure. A finitary deduction system gives

rise to a decision procedure whenever it is complete. A deduction system is complete if it is

able to decide both satisfiability and unsatisfiability. The completeness of a deduction system is

established by proving soundness, termination and refutational completeness.

Soundness means that a deduction system is correct in the sense that if a formula ψ is

classified as unsatisfiable by such deduction system, then ψ is unsatisfiable. A deduction system

is refutationally complete if whenever a formula ψ is unsatisfiable, then the system classifies ψ

as unsatisfiable. However, soundness and refutational completeness do not guarantee that the

satisfiability of a formula is decidable. That is, given a formula ψ, if ψ is unsatisfiable, then a

sound and refutationally complete deduction system will be able to classify ψ as unsatisfiable,

but ifψ is satisfiable, then the deduction system may not terminate the derivation process, i.e. the

deduction system may not give any answer. For that reason, termination is additionally required

in order to have completeness, i.e, in order to decide both satisfiability and unsatisfiability.

However, it is customary to use the term completeness to refer to refutational completeness

in refutational systems where termination is not addressed. In each chapter of this thesis we

precisely define the meaning of the term completeness for each deduction system.

The notion of deciding the satisfiability of a formula ψ extends to a finite set of formulas

Φ = {ϕ1, . . . , ϕn} in a straightforward manner, since Φ is understood as ϕ1 ∧ . . .∧ ϕn.

A logic is said to be compact when it verifies that, given any set of formulas Φ, if every

finite subset of Φ is satisfiable then Φ is satisfiable. It is well known that PLTL is a non-compact

logic. For example, the infinite set of formulas Ψ = {◦ip | i ∈ IN} ∪ {�¬p} is not satisfiable

but every finite subset of Ψ is satisfiable. As a consequence, any complete deduction system

that is able to deal with infinite sets of formulas should be infinitary. However infinitary systems

do not yield decision procedures that are able to decide the satisfiability or unsatisfiability of a

formula in a finite amount of time. Since we are interested in finitary deduction systems, we

only deal with finite sets of formulas.

2.4 Invariant Formulas in PLTL

One of the features of PLTL (and temporal logic in general) is the ability to express eventuality

properties and invariant properties. Eventuality properties state that a formula will eventually

become true. Eventuality properties are directly expressed by means of specific connectives (e.g.

U and �) that give rise to the so-called eventualities (see Definition 2.2.1), which are trivially

detectable (ϕU ψ, �ψ, etc). Invariant properties state that a formula is always true (from some

moment onwards). Invariant properties are expressed by sets of formulas that, often, are not

2. Preliminaries 11

trivially detectable. If the set of formulas Φ expresses and invariant property, then we say that

the formula
∧

Φ is an invariant formula (invariant, in short). Moreover, Φ could also be a

subset of another set of formulas, hence we say that, usually, invariants are “hidden” in a set

of formulas. Formally, a formula χ is an invariant if and only if the formula ¬χ ∨ ◦χ is true

at every state of every PLTL-structure. Since “hidden” invariants can prevent the fulfillment of

eventualities, the key issue in the finitary deduction systems for PLTL (and temporal logic in

general) is to deal with eventualities and invariants.

In order to illustrate the concept of invariant, let us consider the following three sets of

formulas

∆1 = {� (¬ϕ0 ∨ ◦ψ0), . . . ,�(¬ϕn ∨ ◦ψn)}
∆2 = {� (¬ψ0 ∨ ¬γ), . . . ,�(¬ψn ∨ ¬γ)}
∆3 = {� (¬ψ0 ∨ ϕ0 ∨ . . .∨ ϕn), . . . ,�(¬ψn ∨ ϕ0 ∨ . . .∨ ϕn)}

The formulas ◦�¬γ and � (ϕ0 ∨ . . .∨ ϕn) are logical consequences of the set

Σ = {ϕ0 ∨ . . .∨ ϕn} ∪∆1 ∪∆2 ∪∆3

Additionally, for the formula χ =
∧

Σ, it holds that ¬χ ∨ ◦χ is true in every state of every

PLTL-structure. Therefore χ is an invariant that states, in an intricate way, that the eventuality

� γ cannot be true from the next state onwards. Note also that the formula � (¬(ϕ0∨ . . .∨ϕn)∨
◦(ϕ0 ∨ . . .∨ϕn)) is a logical consequence of ∆1 ∪∆2 ∪∆3. So that, if we restrict ourselves to

the set of models of ∆1 ∪∆2 ∪∆3, we could say that the formula ϕ0 ∨ . . .∨ ϕn is an invariant

with respect to such models.

Since the set Σ can be formed by an arbitrary number of formulas, the invariant χ (unlike

eventualities) cannot be trivially detected. Additionally, Σ could just be a subset of another set

of formulas.

More details about invariants can be found in e.g. [45, 104, 105, 106].

Given a set of formulas Ψ and an eventuality � γ , the crucial element for every refutationally

complete finitary deduction system for PLTL is to detect whether Ψ contains an invariant that

prevents the fulfillment of γ .

3. DUAL SYSTEMS OF TABLEAUX AND SEQUENTS FOR PLTL

3.1 Introduction

Tableau systems are refutational proof methods that play a prominent role in the development of

automated reasoning for temporal logic (and many other logics). In addition, in the case of de-

cidable logics, such as PLTL, tableau methods serve as decision procedures for the satisfiability

of (sets of) formulas. The first tableau method for PLTL was introduced by P. Wolper in [128]

and it is a two-pass method. In the first pass, it generates an auxiliary graph by applying the

tableau rules. This graph is checked and possibly pruned in a second pass that analyzes whether

the eventualities are fulfilled. As stated in Definition 2.2.1, an eventuality is a formula that as-

serts that something does eventually hold. For example, for a path in the graph to fulfill ϕU ψ,

the formula ψ must eventually appear in the path. Hence, any maximal strongly connected com-

ponent in the graph that contains ϕU ψ in the label of one of its nodes, but does not contain ψ

in the label of any of its nodes and from which no other maximal strongly connected component

can be reached, is pruned. At the end, an empty graph means unsatisfiability. Since Wolper’s

seminal paper [128], several authors (e.g. [73, 8, 87, 79, 81]) have proposed and studied tableau

methods for different temporal and modal logics inspired by Wolper’s tableau (see [71] for a

good survey). In addition, Wolper’s two-pass tableau has been used in the development of de-

cision procedures or proof techniques for logics that extend PLTL to some decidable fragment

of the first-order temporal logic (e.g.[84]), or to the branching case or with other features, such

as agents, knowledge, etc (e.g. [70]). In the case of two-pass tableau methods the auxiliary

graph and the second pass prevent the association of a sequent calculus proof to each tableau

refutation.

Sequent calculi provide a general deductive setting that uniformly embeds refutational meth-

ods and other deduction techniques such as goal-directed proofs or natural deduction. Tradi-

tional sequent calculi for temporal logic (e.g. [104, 105, 121]) usually include some inference

rules that complicate the automation of temporal deduction. In particular, temporal sequent cal-

culi either need some form of cut (classical cut or invariant-based cut) or they include infinitary

rules. Cut rules imply the “invention” of lemmata, called cut formulas, for their application.

Invariant formulas are particular cut formulas for proving temporal eventualities. In [104] and

[121], two sequent calculi for temporal logic with invariant-based rules are presented. In fact,

in both approaches, a system that includes also a cut rule is presented and then a cut elimination

proof is provided. However, invariant-based rules for temporal connectives cannot be avoided.

In [105] various sequent calculi are presented for temporal logic without the until connective

U (this means that the considered logic has a limited temporal expressive power). In [105]

completeness and cut-elimination proofs, together with various interesting reductions among

various calculi are provided. However, every calculus includes either some infinitary rule or

some invariant-based rule.

A remarkable consequence of using auxiliary graphs that require a second pass in the tableau

3. Dual Systems of Tableaux and Sequents for PLTL 14

framework and either invariant-based rules or infinitary rules in the sequent framework is that

temporal logic fails to carry out the classical correspondence between tableaux and sequents. In

classical logic, and even in some non-classical logics (e.g. many-valued logics), each step in a

tableau construction corresponds to an inference in the sequent calculus. Therefore, there is an

easy, useful and well-known correspondence that associates with each closed tableau a sequent

proof, which is a refutation.

In this chapter, we present a tableau system together with a dual cut-free and invariant-free

finitary sequent calculus for PLTL. We first provide a Temporal Tableau Method, called TTM,

which does not require auxiliary graphs to decide if a set of formulas is satisfiable. Instead,

there is a tableau rule that prevents from indefinitely delaying the fulfillment of eventualities.

The tableau method TTM is sound, refutationally complete and also complete. Therefore, it

gives rise to a decision procedure for PLTL. The tableau method TTM is directly associated with

a one-sided (or Tait style) sequent calculus that we call TTC (from Tait-style Temporal Calculus).

Since TTM is free from all the structural rules that hinder the mechanization of deduction, e.g.

weakening and contraction, then the resulting sequent calculus TTC is also free from this kind

of structural rules. In particular, TTC is free from any kind of cut, including invariant-based cut.

From the deduction system TTC, we obtain the two-sided sequent calculus GTC (from Gentzen-

style Temporal Calculus) that preserves all these good freeness properties and is finitary, sound

and complete for PLTL. Therefore, we show that the classical correspondence between tableaux

and sequent calculi can be extended to temporal logic. Such correspondence is mainly enabled

by a new style of inference rule for eventualities which introduces a new kind of temporal

deduction. This new kind of temporal deduction is based on the fact that if a set of formulas

∆∪{ϕU ψ} is satisfiable, then it must exist a modelM (with states s0, s1, . . .) that is minimal

in the following sense:

M satisfies either ∆∪{ψ} or ∆∪{ϕ, ◦((ϕ ∧ ¬∆)U ψ)}

where ∆ = {ϕ1, . . . , ϕn} and ¬∆ = ¬(ϕ1 ∧ . . . ∧ ϕn). In other words, in a minimal model

M of ∆∪{ϕU ψ}, if ψ is not true in s0 then the so-called context ∆ cannot be true from s1
until the first state where ψ is true. In order to clarify this fact, let us consider a model M′

with states s′0, s
′
1, . . . such that s′j (with j ≥ 2) is the first state in which ψ is true and there

is at least one state in the sequence s′1, . . . , s
′
j in which ∆ is true. Now, let k be the greatest

z ∈ {1, . . . , j} such that ∆ is true in s′z . Then, the structure given by s′k, s
′
k+1, . . . is also a

model of ∆∪{ϕU ψ} that is minimal in the above sense.

The tableau method TTM and the sequent calculi TTC and GTC (first presented in [61])

extend and improve the work introduced in [60, 58].

In addition to the traditional approaches to tableau and sequent systems for temporal logic

mentioned above, there are two approaches whose results are closely related to ours. On one

hand, in [117] a one-pass tableau calculus that produces cyclic trees is introduced by Schwendi-

mann. This tableau calculus avoids the second pass by adding extra information to the nodes

in the tableau. Some of this information must be synthesized bottom-up and it is needed be-

cause tableau branches are not independent from each other. In particular, a cyclic branch may

contain an unfulfilled eventuality that can be fulfilled if other accessible cyclic branches are

considered for generating a wider cycle. Hence, it carries out an on-the-fly checking of the ful-

fillment of every eventuality in every branch. Our method is not based on an on-the-fly checking

of eventualities. As mentioned above, in our tableau method TTM, there is a tableau rule that

prevents from indefinitely delaying the fulfillment of eventualities. In TTM branches are in-

3. Dual Systems of Tableaux and Sequents for PLTL 15

dependent from each other and the fulfillment of an eventuality that appears in a branch does

not depend on other branches. Additionally, TTM tableaux are classical-like in the sense that

unsatisfiable sets of formulas give rise to closed tableaux where every leaf contains either a for-

mula and its negation or the constant F. By contrast, Schwendimann’s approach does not yield

classical-like tableaux in the sense that unsatisfiable sets of formulas may produce non-fulfilling

cyclic branches whose last nodes do not contain an explicit inconsistency (i.e. a formula and its

negation). Consequently, such approach requires an extra process for deciding whether a cyclic

branch is fulfilling or not. Schwendimann’s approach has also been applied to other logics such

as e.g. CTL ([5]) and PDL ([72]).

On the other hand, at the time of the publication of [60], to our knowledge the first published

invariant-free finitary sequent calculus for PLTL, we learned about the work of K. Brünnler and

M. Lange (see [20]), which provides an interesting alternative approach to the proof theory

of PLTL. The calculus presented in [20] has the analytic superformula property. Actually, in

[20], the strategy that leads to prove the completeness of the sequent system –which lies in

fairly selecting exactly one eventuality and sticking to it until it is fulfilled– is incorporated

in the sequent system by means of the so-called annotated formulas (which do not belong to

the logical language). The completeness proof of our system is also based on the mentioned

strategy but such a strategy is not incorporated in the system. In this way different strategies can

be used. We differentiate between the systematic derivation (which guarantees completeness)

and the many other derivations that usually are feasible. In Section 3.7 we compare, in a more

detailed way, our approach with the above mentioned approaches.

Outline of the chapter. In Section 3.2 we introduce the notions of sequent and sequent

system and we point out the relationship between tableau systems and sequent systems. In

Section 3.3 we present the tableau system TTM. Subsection 3.3.1 introduces the basic tableau

structure. Subsection 3.3.2 provides the rule system. Subsection 3.3.3 contains the definitions of

inconsistent node and open and closed branches. In Subsection 3.3.4 we establish the notion of

TTM tableau which includes the key concepts of expanded branch and expanded tableau. Finally,

in Subsection 3.3.5 we show some examples of tableaux. Section 3.4 is devoted to the soundness

and completeness results. The soundness of TTM is proved in Subsection 3.4.1. In Subsection

3.4.2 we propose an algorithm for systematically obtaining, for any set of formulas Φ, a finite

tableau that proves that Φ is either satisfiable or unsatisfiable. In particular we provide the

termination result and the worst case complexity for the algorithm. Examples that illustrate the

application of the systematic tableau algorithm are showed in Subsection 3.4.3. In Subsection

3.4.4 we prove the completeness of TTM. In Subsection 3.4.5 we suggest some improvements.

In Sections 3.5 and 3.6, we introduce, respectively, the one-sided sequent system TTC and the

two-sided sequent system GTC. The rule system, the soundness and completeness results and

some illustrative examples are provided for each of these two sequent systems. Finally, in

Section 3.7 we deal with related work and we compare some features of our approach with

other approaches.

3.2 Sequent-based Deduction Systems and Tableaux

Sequent calculus, first introduced by Gentzen ([65]), is the most elegant and flexible system for

writing proofs. Each line of a sequent calculus proof is a sequent. A sequent was (originally)

formed by two sequences of formulas separated by some kind of arrow (for instance, `). The

3. Dual Systems of Tableaux and Sequents for PLTL 16

intended meaning of a sequent ϕ1, ϕ2, . . . , ϕn ` ψ1, ψ2, . . . , ψm is the formula

n∧

i=1

ϕi →
m∨

i=1

ψi

where → is the classical connective of implication (i.e. χ → γ ≡ ¬χ ∨ γ). The sequence

ϕ1, ϕ2, . . . , ϕn is called the antecedent of the above sequent and the sequence ψ1, ψ2, . . . , ψm

is called its consequent (or succedent). Since the seminal work of Gentzen, many variations of

the notion of sequent have been explored to provide different sequent-based deduction systems.

A sequent calculus is a proof system given by a set of rules such that each rule indicates that a

sequent may be inferred from a set of sequents. That is, a (finitary) rule consists of a numerator

formed by a (finite) set of sequents S1, . . . , Sn and a denominator S separated by a horizontal

line, next to which is the name of the rule1:

(r)
S1, . . . , Sn

S

In a rule (r) as above, each sequent Si is called a premise and S is the conclusion. Traditionally,

a sequent calculus consists of structural rules and connective rules (rules for the connectives).

The conclusion of a connective rule has a principal formula that is affected by the inference.

For example

(∧L)
∆, ϕ, ψ ` χ

∆, ϕ ∧ ψ ` χ

is a rule for conjunction (∧) whose principal formula is ϕ ∧ ψ. However, in structural rules,

the inference is guided by the whole conclusion. An example of structural rule is classical

weakeaning

(Wk)
∆ ` χ

∆,∆′ ` χ

There are many variations of sequents. The simplest one is obtained by allowing the an-

tecedent and consequent to be a (multi)set instead of a sequence. This choice (of sequences,

multisets or sets) is directly related to the classical structural rules of exchange and contraction.

In particular, the exchange rule only makes sense in sequence-based sequent calculi, whereas

the contraction rule, which is well-founded for sequences and multisets, leads to some confusion

when sets are considered. More precisely, the classical contraction rule (on the left):

∆, ϕ, ϕ ` χ
∆, ϕ ` χ

makes no sense when the antecedent is a set, however some legal application of connective rules

could hide a contraction. For example, the inference

ϕ ∧ ψ, ϕ, ψ ` χ
ϕ ∧ ψ ` χ

1 Sometimes, due to space reasons, the rule is formatted as follows:

S1

.

.

.

Sn

S

3. Dual Systems of Tableaux and Sequents for PLTL 17

could result from a legal application of the above rule (∧L) for ∆ = {ϕ∧ψ}. In classical logic

this kind of hidden use of the contraction does not harm, however in temporal logic2 we must

be more careful on this matter. The sequent systems we are going to introduce are based on

sets. The notation ∆, ϕ stands for ∆∪{ϕ} where ϕ 6∈ ∆. This convention clearly disallows

hidden contraction. In particular, it disallows the above inference that uses the rule (∧L) for

∆ = {ϕ ∧ ψ}.
Another simple variation of sequent is related to the cardinality of the consequent. That is,

sequents can be either multiple-conclusioned or single-conclusioned, or even one-sided, respec-

tively depending on whether the consequent is a set, a singleton or empty.3 One-sided sequents

were first used by Schütte [116] with multisets and by Tait [123] with sets, hence when a new

system is presented it is usual to point out whether it is a Gentzen-Schütte style calculus or

whether it is a Tait style calculus. There are really two kinds of one-sided sequents: left-handed

(empty consequent) and right-handed (empty antecedent). In this thesis, we use left-handed

sequents because they are very close to tableau systems. In fact, we present the tableau system

TTM that is directly related to the left-handed sequent calculus TTC. Besides, the established

results for the calculus TTC can be easily extended to the two-sided sequent calculus GTC. We

have preferred to formulate the calculus GTC by means of single-conclusioned sequents, in-

stead of multiple-conclusioned sequents, because in our opinion single-conclusioned sequents

are closer to natural deduction and capture better our intuition in logical reasoning. A multiple-

conclusioned system can be easily obtained from GTC.

3.3 The Tableau Method TTM

In this section we present a tableau system, called TTM, for PLTL. In TTM, tableaux are essen-

tially trees but branches can end in a leave that represents a loop into another node in its branch.

Our tableaux are one-pass in the sense of [117], that is, they do not require a second pass to

check an auxiliary graph of states in order to determine if every eventuality is fulfilled. As a

consequence, temporal stages are represented inside the branches of the tableaux instead of in

an auxiliary graph. The contents of this section are divided into five subsections. In Subsection

3.3.1 we introduce preliminary concepts related to the tableau structure. In Subsections 3.3.2,

3.3.3 and 3.3.4 we present the rules for constructing tableaux, the notion of inconsistency in

nodes and the notion of tableau itself, respectively. Finally, in 3.3.5 we provide some detailed

examples of tableaux.

3.3.1 Pre-tableaux

A tableau TΦ for a finite set of formulas Φ is a tree-like structure where each node n is labelled

with a set of formulas L(n). The root is labelled with the set Φ whose satisfiability we wish to

check. The children of a node n are obtained by applying one of the rules to one of the formulas

in L(n). Nodes are organized in branches, so that the rules serve to either enlarge the branch

(with one new child) or split the branch with two new children. In order to formalize the notion

of branch we recall the concept of strongly generated set.

2 In general, in modal logic.
3 There are more sophisticated variants of sequents that are obtained, for example, by adding structure or labels

into sequents, but they are out of the scope of this thesis.

3. Dual Systems of Tableaux and Sequents for PLTL 18

Definition 3.3.1. Let Nodes be a finite non-empty set of nodes, n a node in Nodes and Nodes+

the set of all non-empty sequences of elements in Nodes. A non-empty set B ⊆ Nodes+ is

strongly generated with respect to Nodes and n iff it verifies the following conditions:

1. If n0, n1, . . . , nk ∈ B, then ni 6= nj for all i and j such that 0 ≤ i < j ≤ k

2. If n0, n1, . . . , nk ∈ B, then n0 = n

3. If n0, n1, . . . , nk ∈ B, then n0, n1, . . . , ni ∈ B for all i ∈ {0, . . . , k− 1}

4. For every node m ∈ Nodes there is a unique sequence n0, n1, . . . , nk ∈ B such that

nk = m.

We denote by trees(Nodes, n) the collection of all subsets of Nodes+ that are strongly gen-

erated with respect to Nodes and n. Let B ∈ trees(Nodes, n), each sequence b ∈ B is called

a branch. A branch b′ = n0, n1, . . . , ni is a prefix of another branch b = n0, n1, . . . , nk if

0 ≤ i ≤ k. If, besides, i 6= k, we say that b′ is a proper prefix of b. A branch b ∈ B is maximal

whenever b is not proper prefix of any other branch in B.

Note that, in the above Definition 3.3.1, condition 1 means that a node cannot appear more

than once in a branch, condition 2 means that the first element in every branch is the node n,

condition 3 means that a strongly generated set is closed with respect to non-empty prefixes and

condition 4 states that every node must be the last node of exactly one branch, which may not

be maximal. Note also that trees(Nodes, n) is finite and every sequence b ∈ B is finite for any

B ∈ trees(Nodes, n).

Now we define the concept of pre-tableau for a set of formulas.

Definition 3.3.2. (Pre-tableau) A pre-tableau for a finite set of formulas Φ is a tuple TΦ =
(Nodes, nΦ, L, B, R) such that:

1. Nodes is a finite non-empty set of nodes

2. nΦ is a node in Nodes, called initial node

3. L : Nodes → 2Γ is the labelling function where Γ is a set of formulas that contains Φ
such that the initial node is labelled by Φ, that is L(nΦ) = Φ

4. B is a strongly generated set in trees(Nodes, nΦ), called the set of branches

5. R is the successor relation over Nodes. R should be coherent with B in the sense that for

all n, n′ ∈ Nodes, (n, n′) ∈ R iff there exists a sequence n0, n1, . . . , nk ∈ B such that

n = ni and n′ = ni+1 for some i ∈ {0, . . . , k− 1}.

As usual, R+ and R∗ respectively denote the transitive closure and the reflexive-transitive

closure of any binary relation R.

3.3.2 Tableau Rules

A tableau rule is applied to a set of formulas L(n) labelling a node n (which is the last node of

a branch). Each rule application requires a previous choice of a formula from L(n). We call the

set L(n) \ {ϕ}, where ϕ is the chosen formula, the context and it is denoted by ∆.

3. Dual Systems of Tableaux and Sequents for PLTL 19

Rule α A(α)

(¬¬) ¬¬ϕ {ϕ}
(∧) ϕ ∧ ψ {ϕ, ψ}
(¬◦) ¬◦ϕ {◦¬ϕ}

Rule β B1(β) B2(β)

(¬∧) ¬(ϕ ∧ ψ) {¬ϕ} {¬ψ}
(¬U) ¬(ϕU ψ) {¬ϕ,¬ψ} {ϕ,¬ψ,¬◦(ϕU ψ)}
(U)1 ϕU ψ {ψ} {ϕ,¬ψ, ◦(ϕU ψ)}

Rule β B1(β) B2(β,∆)

(U)2 ϕU ψ {ψ} {ϕ,¬ψ, ◦((ϕ ∧ ¬∆)U ψ)}
where ∆ stands for the context

Figure 3.1: Primitive TTM-Rules

As usual, the TTM-rules are based on a classification of the formulas into conjunctive and

disjunctive, which are respectively named as α-formulas and β-formulas. In Figure 3.1, any

α-formula α is decomposed in a unique set, called A(α), and any β-formula β is decomposed

into two constituent sets B1 and B2. The set B1 depends on the considered formula β, whereas

the set B2 can also depend on the context ∆. 4

This classification gives raise to the tableau rules whose names are also given in Figure 3.1.

Every rule, except (U)2, is well known in the literature. It is worth noting that (U)1 and (U)2
affect the same β-formula, but not in the same way. The rule (U)2 can be considered quite

peculiar, since B2(β,∆) includes a formula which depends on the whole set of formulas in the

node. Moreover, (U)2 leads to a new tableau construction style that allows us to dispense with

the auxiliary graph. This rule is based on the fact that if a formula ϕU ψ is satisfiable in a

given context ∆, it is because there exists a model for ∆∪{ϕU ψ}, with sates s0, s1, . . ., that is

minimal in the sense that if sj (with j ≥ 0) is the first state in which ψ is true then ∆ is not true

in the states that belong to the sequence s1, s2, . . . , sj−1. More precisely, the crucial idea behind

the rule (U)2 is based on the following equisatisfiability result that relates two eventualities.

Proposition 3.3.3. Let ∆ be a set of formulas. Σ1 = ∆∪{ϕU ψ} and Σ2 = ∆∪{ψ ∨ (ϕ ∧
(¬ψ) ∧ ◦((ϕ ∧ ¬∆)U ψ))}, where ϕU ψ 6∈ ∆, are equisatisfiable.

Proof. In order to show that Σ1 and Σ2 are equisatisfiable, let us suppose that M is a model

of Σ1. If 〈M, s0〉 |= ∆∪{ψ}, then M is also a model of Σ2. Otherwise, 〈M, s0〉 |=
∆∪{ϕ,¬ψ, ◦(ϕU ψ)} and there exists a state sj with j ≥ 1 such that 〈M, sj〉 |= ψ and

〈M, si〉 |= ϕ for every i ∈ {0, . . . , j − 1}. Let k be the greatest h such that 0 ≤ h < j

and 〈M, sh〉 |= ∆∪{ϕU ψ}. We can ensure the existence of k because at least 〈M, s0〉 |=
∆∪{ϕU ψ}. As a consequence of the choice of k, it holds that 〈M, sk〉 |= {ϕ,¬ψ, ◦((ϕ ∧
¬∆)U ψ)}. Then, the PLTL-structureM′ = (SM′ , VM′) such that SM′ = s′0, s

′
1, . . . and s′g =

4 Remember that ∆ is always assumed to be a finite set and that ¬∆ is F whenever ∆ is empty.

3. Dual Systems of Tableaux and Sequents for PLTL 20

Rule α A(α)

(�) �ϕ {ϕ, ◦�ϕ}
(¬�) ¬�ϕ {¬ϕ, ◦¬�ϕ}

Rule β B1(β) B2(β)

(R) ϕRψ {ϕ, ψ} {¬ϕ, ψ, ◦(ϕRψ)}
(�)1 �ϕ {ϕ} {¬ϕ, ◦�ϕ}

(¬�)1 ¬�ϕ {¬ϕ} {ϕ, ◦¬�ϕ}
(¬R)1 ¬(ϕRψ) {¬ψ} {¬ϕ, ψ, ◦¬(ϕRψ)}

Rule β B1(β) B2(β,∆)
(�)2 �ϕ {ϕ} {¬ϕ, ◦((¬∆)U ϕ)}

(¬�)2 ¬�ϕ {¬ϕ} {ϕ, ◦((¬∆)U ¬ϕ)}
(¬R)2 ¬(ϕRψ) {¬ψ} {¬ϕ, ψ, ◦(((¬ϕ) ∧ ¬∆)U ¬ψ)}

where ∆ stands for the context

Figure 3.2: Some Derived TTM-Rules

sk+g and VM′(s′g) = VM(sk+g) for every g ≥ 0 is a model of ∆∪{ϕ,¬ψ, ◦((ϕ∧¬∆)U ψ)}.
Hence,M′ |= Σ2. In the converse direction, any model of Σ2 is itself a model of Σ1.

The above property is applied to the tableau construction by means of the rule (U)2. The

proof of Proposition 3.3.3 reflects the intuition behind the rule (U)2. In fact, Proposition 3.3.3 is

used in Lemma 3.4.1 to prove the correctness of the rule (U)2. The use of the rule (U)2 makes

possible to prevent the repetition of contexts (i.e. sets of formulas) from the node n in which

(U)2 is applied to an eventuality ϕU ψ ∈ L(n) until the first node n′ for which ψ ∈ L(n′),

provided that the number of possible contexts is finite. Consequently, the rule (U)2 makes

possible not to allow the indefinite postponement of the presence of ψ (i.e. the fulfillment of

ϕU ψ) in the sequence of nodes obtained from n, provided that the number of possible contexts

is finite.

One may wonder whether the rule (U)1 is essential for completeness. Our completeness

proof uses it, but it is an open problem whether there exists an alternative proof disregarding the

rule (U)1. However, we conjecture that (U)1 is essential for completeness. Anyway, from a

practical point of view it is better that the system includes the rule (U)1, since (U)2 is costly

to use.

Besides the above primitive TTM-rules, the method TTM also uses the operator unnext to

convert the labelling set L(n) of a node n into another set unnext(L(n)) that labels a new node

and that intuitively represents the jump from one time instant to the next one.

Definition 3.3.4. For any set of formulas Ψ:

unnext(Ψ) = {γ | ◦γ ∈ Ψ}

Note that, unnext(Ψ) could be the empty set, which we denote by ∅.

3. Dual Systems of Tableaux and Sequents for PLTL 21

From the primitive TTM-rules we can derive rules for the defined connectives like the ones

in Figure 3.2. However, along the chapter, most technical details are given only for the primitive

rules, in particular for the rule (U)2.

3.3.3 Consistent and Inconsistent Nodes and Closed and Open Branches

Tableaux are constructed with the aim of refuting the initial set of formulas. The search for a

refutation is carried out by decomposing formulas into their constituent sets of formulas in order

to find out whether an inconsistent set of formulas can be obtained.

Definition 3.3.5. A node n is consistent iff F 6∈ L(n) and there is no ϕ such that {ϕ,¬ϕ} ⊆
L(n). Otherwise, n is inconsistent.

Note that, in Definition 3.3.5, the formula ϕ is not required to be an atom. Indeed, by

demanding ϕ to be atomic the completeness of TTM would be lost. For example, the set of

formulas Ψ = {pU q,¬(pU q)} would not be refutable, if the label L(n) of an inconsistent

node n should satisfy F ∈ L(n) or {γ,¬γ} ⊆ L(n) such that γ ∈ Prop. In fact, using

the tableau rules there is no way to achieve such atomic inconsistency. However, Ψ must be

inconsistent in order to achieve completeness. It is also worth noting that a node labelled by Σ =
{pU q, (¬p)R (¬q)} (which is equivalent to Ψ) is not inconsistent (in the sense of Definition

3.3.5). The set of formulas Σ can be refuted by our tableau method, but using the (non-atomic)

inconsistency of {◦((¬p)R (¬q)),¬◦((¬p)R (¬q))}.
When a branch b contains an inconsistent node we say that b is closed. Any closed branch is

trivially unsatisfiable. Branches that are not closed are said to be open. However, open branches

are not necessarily satisfiable. In particular, an open branch could be a prefix of a closed one.

3.3.4 Semantic Tableaux

The tableau rules given in Subsection 3.3.2, together with the notion of consistent node (Defi-

nition 3.3.5), allow us to determine when a pre-tableau is a tableau. Along this subsection TΦ
stands for a pre-tableau for Φ given by a tuple (Nodes, nΦ, L, B, R).

Definition 3.3.6. (Coherent pre-tableau) A pre-tableau TΦ is coherent if and only if every

node n in a non-maximal branch in B is consistent and exactly one of the following items holds

for every branch b = n0, n1, . . . , ni, ni+1, . . . , nk ∈ B and every i ∈ {0, . . . , k− 1}:

(1) L(ni+1) = A(α)∪L(ni) \ {α} for some α ∈ L(ni)

(2) There exist exactly one node n′ ∈ N \ {ni+1} and one branch b′ = n0, n1, . . . , ni, n
′ ∈ B

such that for some β ∈ L(ni) either

• L(ni+1) = B1(β)∪L(ni) \ {β} and L(n′) = C(β, L(ni))∪L(ni) \ {β} or

• L(ni+1) = C(β, L(ni))∪L(ni) \ {β} and L(n′) = B1(β)∪L(ni) \ {β}

where C(β, L(ni)) is B2(β) or B2(β, L(ni) \ {β}).

(3) L(ni+1) = unnext(L(ni)).

3. Dual Systems of Tableaux and Sequents for PLTL 22

In items (1) and (3), every branch in B with proper prefix n0, n1, . . . , ni must also have prefix

n0, n1, . . . , ni, ni+1, whereas in (2) every branch inB with proper prefix n0, n1, . . . , ni has also

prefix n0, n1, . . . , ni, ni+1 or prefix n0, n1, . . . , ni, n
′.

In a coherent pre-tableau branches whose last node is inconsistent do not accept more en-

largements or splittings. Every enlargement or splitting of a branch corresponds to the applica-

tion of a TTM-rule or the unnext operator to its last node. The application of an α-rule enlarges

a branch n0, . . . , ni with a new node ni+1 that includes, in the label, the constituents of the

treated formula α, but not α itself. So that, the application scheme for the α-rules is

∆, α

∆, A(α)

where α 6∈ ∆. The application of a β-rule splits a branch n0, . . . , ni with two new nodes ni+1

and n′ in such a way that the label of one of the new nodes includes the constituents in B1(β)

and the label of the other new node includes the constituents in C(β,∆), where C(β,∆) is

either B2(β) or B2(β,∆), but the treated formula β is not included in the labels of the two new

nodes. So that, the application scheme for the β-rules is

∆, β

∆, B1(β) ∆, C(β,∆)

where β 6∈ ∆. The application of the unnext operator enlarges a branch n0, . . . , ni with a new

node ni+1 whose label is unnext(L(ni)). The application scheme for the unnext operator is

∆

unnext(∆)

In order to ensure when an open branch describes a model, we deal with the notions of stage,

cyclic branch, saturated set and fulfilling branch.

If we can ensure that the number of different labels used in the construction of a coherent

pre-tableau TΦ is finite, then any infinite branch must contain infinitely many different nodes

with the same label. In particular, when a repetition arises in an open branch

n0, n1, . . . , nj−1, nj, . . . , nk

i.e. when L(nk) = L(nj−1) for some j ∈ {1, . . . , k}, then an infinite branch of the form

n0, n1, . . . , nj−1, nj, . . . , nk, nj, . . . , nk, . . .

can be obtained. In fact, this will be a cyclic branch that will be finitely represented.

Definition 3.3.7. If b = n0, n1, . . . , nk is an open branch such that L(nk) = L(nj−1) for some

j ∈ {1, . . . , k}, then b is cyclic and we define

cycle(b) = nj , nj+1, . . . , nk

path(b) = n0, n1, . . . , nj−1 · 〈nj, nj+1, . . . , nk〉
ω

In other words, we consider that the implicit successor relation on b is extended with nkRnj .

If a (closed or open) branch b′ is not cyclic then path(b′) = b′.

3. Dual Systems of Tableaux and Sequents for PLTL 23

The last node nk whose label appears previously in the branch is intentionally added to the

branch because this repetition is what we will use in the systematic tableau for detecting the

loop (see Subsection 3.4.2).

Every branch (cyclic or not) of a coherent pre-tableau can be seen as divided into stages

according to the applications of the operator unnext. In other words, a stage is a sequence of

consecutive nodes between two consecutive applications of the operator unnext.

Definition 3.3.8. Given a branch b, every maximal subsequence ng, ng+1, . . . , nh of path(b)

such that L(n`) 6= unnext(L(n`−1)) for every ` ∈ {g + 1, . . . , h}, is called a stage. The func-

tions first and last respectively return the first and the last node of a given stage. We denote by

stages(b) the sequence of all stages of a branch b. The successor relation on stages(b) is in-

duced by the successor relation on path(b). That is, if s and s′ are respectively stagesn0, . . . , ni

and n′0, . . . , n
′
r in path(b) then sRs′ whenever niRn

′
0. Hence, if b = n0, n1, . . . , nj, . . . , nk is a

cyclic branch such that cycle(b) = nj, nj+1, . . . , nk (and j ≥ 1), then stages(b) is a non-empty

finite sequence of stages s0, s1, . . . , sm such that last(sm)Rfirst(sz) for some z ∈ {1, . . . , m}
and n belongs to cycle(b) for every y ∈ {z, . . . , m} and every node n in sy . For such a

cyclic branch b, we respectively denote by stages(cycle(b)) and path(stages(b)) the sequences

sz, . . . , sm and s0, . . . , sz−1 · 〈sz, . . . , sm〉
ω.

The following example serves to illustrate the notions of stages and path by means of a

sample branch.

Example 3.3.9. Consider a cyclic branch b = n0, n1, n2, n3, n4 such that L(n4) = L(n2).

Then, path(b) = n0, n1, n2 · 〈n3, n4〉ω. Let us suppose that L(n1) = unnext(L(n0)) and

L(n4) = unnext(L(n3)). Then, stages(b) is formed by three stages: s0 = 〈n0〉, s1 =
〈n1, n2, n3〉 and s2 = 〈n4, n3〉. Therefore, the induced relation R on stages(b) is given by

s0Rs1, s1Rs2 and s2Rs2. Hence, path(stages(b)) = s0, s1 · 〈s2〉
ω.

With a slight abuse of notation, the labelling function L is extended from nodes to stages in

the natural way. That is, for any stage s:

L(s) =
⋃

n∈s

L(n).

The general notion of fulfillment is introduced at the end of Section 2.2. Now we adapt such

notion to our tableau system.

Definition 3.3.10. Let S be a sequence of stages, s ∈ S and ϕU ψ ∈ L(s), we say that ϕU ψ
is fulfilled in S iff there exists s′ such that sR∗s′ and ψ ∈ L(s′). A sequence S of stages is

fulfilling iff for all s ∈ S every ϕU ψ ∈ L(s) is fulfilled in S. A branch b is fulfilling iff the

sequence path(stages(b)) is fulfilling.

The concept of fulfilling branch together with the following concept of αβ-saturated stage

is crucial for determining when branches are able to describe a model.

Definition 3.3.11. A stage s is αβ-saturated if and only if for every ϕ ∈ L(s):

1. If ϕ is an α-formula then A(ϕ) ⊆ L(s)

2. If ϕ is a β-formula then B1(ϕ) ⊆ L(s) or B2(ϕ) ⊆ L(s) or B2(ϕ,∆) ⊆ L(s), where

∆ = L(ni) \ {ϕ} for some ni ∈ s such that ϕ = χU γ ∈ L(ni).

3. Dual Systems of Tableaux and Sequents for PLTL 24

Now, we give a sufficient condition to consider that an open branch is (sufficiently) ex-

panded. That is, it is able to describe a collection of models. This condition can be syntactically

checked. For the construction of systematic tableaux (see Subsection 3.4.2), we will refine this

sufficient condition to a simpler one (see Remark 3.4.8).

Definition 3.3.12. An open branch b is expanded if and only if b is fulfilling, cyclic and each

stage s ∈ stages(b) is αβ-saturated.

For example, an expanded branch of a coherent pre-tableau for {rU p} can be formed by

the sequence of stages s0, s1, s2 where L(s0) = {rU p, p} and L(s1) = L(s2) = ∅. Ac-

tually that branch is fulfilling, cyclic and αβ-saturated, hence it is expanded. Also the se-

quence of stages x0, x1, x2, x3 where L(x0) = {rU p, r,¬p, ◦(r U p)}, L(x1) = {rU p, p}
and L(x3) = L(x4) = ∅ is an expanded branch. It is worth noting that expanded branches

can be enlarged. For instance an expanded branch of a coherent pre-tableau for {� (rU p)} is

given by the sequence of stages z0, z1 where L(z0) = L(z1) = {� (rU p), ◦� (rU p), rU p, p}.
But the sequence of stages z0, z1, z2, z3, z4 where L(z0) and L(z1) are as above, L(z2) =

{� (rU p), ◦� (rU p), rU p, r,¬p, ◦(rU p)}, L(z3) = L(z0) and L(z4) = L(z2) is an ex-

panded branch too.

Remark 3.3.13. Enlargement of expanded branches is used in Subsection 3.4.2 for the system-

atic construction of tableaux in order to ensure the construction of fulfilling branches without

checking directly whether a branch is fulfilling (see Remark 3.4.8).

When constructing a tableau, only open branches (expanded or non-expanded) can be en-

larged. A completely expanded tableau is constructed for deciding if the original set of formu-

las is satisfiable or not, respectively depending on whether there is at least one expanded open

branch or all its branches are closed.

Definition 3.3.14. (Tableau) A tableau for a set of formulas Φ is a coherent pre-tableau for Φ.

An expanded tableau is a tableau where every maximal branch is either expanded or closed. An

expanded tableau is open if it has at least one open maximal branch5, otherwise it is closed.

3.3.5 Examples of Tableaux

In this subsection, we give some examples of tableaux. Each tableau is showed by means of

a figure formed by a part (a) and a part (b). The (a) part of the figure is a tree that contains

the sets of formulas that label each node of the tableau and the (b) part of the figure is a tree

that shows the rules applied at each step. For space reasons, the (a) and (b) part may appear in

the same figure or in different figures. For readability, we also underline the formula which the

TTM-rule is applied to. When the unnext operator is applied, we do not underline any formula.

In the nodes in which we apply the rule (U)2 or the rule (�)2, we only underline the eventuality

to which the rule is applied. Branches with the mark # are closed branches. In the last nodes of

closed branches, we underline the formulas that cause inconsistency. However, when a node is

inconsistent for more than one reason, we only point out one of them. Note that, when a formula

is treated at a node n of a stage s, this formula does not appear in the label of any successor of

n that belongs to the stage s, although it remains belonging to the label of s. Hence, already

treated formulas cannot be used to expand a branch again (at the same stage). Additionally,

5 which is expanded.

3. Dual Systems of Tableaux and Sequents for PLTL 25

(a) pU F

F

#

p, ¬F,

◦((p ∧ F)U F)

(p ∧ F)U F

F

#
p ∧ F, ¬F,

◦((p ∧ F)U F)

p, F, ¬F,

◦((p ∧ F)U F)

#

(b) (U)2

(unnext)

(U)1

(∧)

#

Figure 3.3: Closed tableau for the set of formulas {pU F}

(a) (1) pU F

F

#

p, ¬F,

◦(pU F)

(1) pU F

(b) (1) (U)1

(unnext)

(1)

Figure 3.4: Non-expanded tableau for the set of formulas {pU F}

since open expanded branches are cyclic, we mark the leaf and the internal repeated node with

the same superscript of the form (i) where i ≥ 1.

Example 3.3.15. In Figure 3.3 a closed expanded tableau for the unsatisfiable set of formulas

{pU F} is showed.

Note that the rightmost branch consists of two stages, the first one is formed by the two

higher nodes. The remaining three nodes form the second stage of the branch.

The set of formulas {pU F} also serves to show that by using only the rule (U)1 the ful-

fillment of an eventuality can be indefinitely delayed. In particular, the set of formulas {pU F}
cannot be TTM-refuted without using the rule (U)2 (see Figure 3.4). The rightmost branch,

namely b, of the tableau in Figure 3.4 is cyclic and is made up of two stages, x0 and x1. The

first two nodes form the stage x0 and the third and second nodes form the stage x1. Therefore

path(stages(b)) = x0 · 〈x1〉
ω. Although the branch b is open and cyclic and each stage is

αβ-saturated, b is not an expanded branch because it is not fulfilling.

Example 3.3.16. In Figure 3.5 an open expanded tableau for the satisfiable set of formulas

{p, ◦¬p,¬FU ¬p} is showed. The tableau has two closed branches and one expanded open

branch, which is the central one. This open branch, which here we refer to as b, describes a

3. Dual Systems of Tableaux and Sequents for PLTL 26

(a) p, ◦¬p, ¬FU ¬p

p, ◦¬p, ¬p
#

p, ◦¬p, ¬¬p,

¬F, ◦(¬FU ¬p)

¬p, ¬FU ¬p

¬p

(1) ∅

(1) ∅

¬p, ¬F, ¬¬p,

◦(¬FU p)
#

(b) (U)1

(unnext)

(U)1

(unnext)

(1)(unnext)

(1)

#

Figure 3.5: Open expanded tableau for the set of formulas {p,◦¬p,¬FU ¬p}

(a) (1)(2)
� (p ∨ r)

◦� (p ∨ r), p∨ r

◦� (p ∨ r), p

(1)
� (p ∨ r)

◦� (p ∨ r), r

(2)
� (p ∨ r)

(b) (1)(2) (�)

(∨)

(unnext)

(1)

(unnext)

(2)

Figure 3.6: Open expanded tableau for the set of formulas {� (p ∨ r)}

collection of models. The first state s0 of those models should make true the formulas labelling

the first stage (let us say x0) of the branch which is formed by the first two nodes. In particular,

p should be true at the first state s0. The second stage, x1, is given by the third and fourth

nodes of the branch, in particular ¬p should be true in the second state (s1) of such collection

of models. In fact, any infinite sequence of states prefixed by these two states, s0 and s1, is

a model of the root of the tableau since the third and fourth stages of the branch, namely x2

and x3, are given by the fifth and sixth nodes that are labelled by the empty set. Note that

path(stages(b)) = x0, x1, x2 · 〈x3〉ω.

Example 3.3.17. In Figure 3.6 we show an open expanded tableau for the satisfiable set of

formulas {� (p ∨ q)}. This tableau has two expanded (open) branches b1 (on the left) and b2
(on the right). Regarding the branch b1, the first three nodes form a stage x0 and the fourth

node together with the second and third nodes form another stage x1 and path(stages(b1)) =
x0 · 〈x1〉ω. This open branch describes a collection of models. The first state of those models

should make true the formulas labelling the first stage and all the other states should make true

the formulas labelling the second stage. In particular p should be true in all the states of those

3. Dual Systems of Tableaux and Sequents for PLTL 27

(a) pU q, �¬q

¬q, pU q

¬q, q
#

p, ¬q,

◦((p ∧ ¬¬q)U q)

(p ∧ ¬¬q)U q

q

(1) ∅

(1) ∅

p ∧ ¬¬q, ¬q,

◦((p ∧ ¬¬q)U q)

p, ¬¬q, ¬q,

◦((p ∧ ¬¬q)U q)
#

pU q, ¬¬q,◦�¬q

pU q,q, ◦�¬q

q, ◦�¬q

�¬q

¬q

(2) ∅

(2) ∅

¬¬q,◦(FU ¬q)

q,◦(FU ¬q)

FU ¬q

¬q

(3) ∅

(3) ∅

F, ¬¬q,

◦(FU ¬q)
#

q,¬q,

◦�¬q, p,

◦(pU q)
#

Figure 3.7: Open expanded tableau for the set of formulas {pU q, �¬q} (Part 1 of 2)

models. The case of the branch b2 is symmetric with the difference that r should be true in all

the states of the models described by b2.

Example 3.3.18. The tableau in Figure 3.7 is an open expanded tableau for the satisfiable set

of formulas {pU q, �¬q}. Due to space reasons, the (b) part of the tableau is in Figure 3.8.

Note that the derived rules (�)1 and (�)2 –which are shown in Figure 3.2– are used. This

tableau has three expanded open branches describing three different collections of models. The

leftmost open branch, that here we refer to as b1, represents the class of models with a first

state where p and ¬q are true and a second state where q is true. In b1 the first three nodes

form a stage, let us say x0, the fourth and fifth nodes form a stage x1, and the sixth and seventh

nodes form, respectively, stages x2 and x3. Since the cycle of b1 is formed by the seventh

node, path(stages(b1)) = x0, x1, x2 · 〈x3〉
ω. In the first state of the models represented by

the central open branch b2, the propositional variable q is true, whereas in the second one ¬q
holds. As in the branch b1, in the branch b2 we can differentiate four stages, namelly y0, . . . , y3,

and the cycle is formed by the last node of the branch. The stage y3 is formed by the last

node of the branch and path(stages(b2)) = y0, y1, y2 · 〈y3〉
ω. Finally, the rightmost open

branch, b3, represents models whose first three states respectively make true the literals q, q

3. Dual Systems of Tableaux and Sequents for PLTL 28

(b) (�)1

(U)2

(unnext)

(U)1

(unnext)

(1) (unnext)

(1)

(∧)

#

(¬¬)

(U)1

(unnext)

(�)2

(unnext)

(2) (unnext)

(2)

(¬¬)

(unnext)

(U)1

(unnext)

(3) (unnext)

(3)

#

#

Figure 3.8: Open expanded tableau for the set of formulas {pU q, �¬q} (Part 2 of 2)

and ¬q. In the branch b3, the four applications of the unnext operator give rise to five stages,

z0, . . . , z4. The cycle of b3, as well as the stage z4, are formed by the last node of the branch

and path(stages(b3)) = z0, z1, z2, z3 · 〈z4〉
ω.

3.4 Soundness and Completeness of TTM

In this section we first adapt, to the field of tableau methods, the notions of soundness, refuta-

tional completeness and completeness introduced in Section 2.3. Then, we prove that the tableau

system TTM is sound, refutationally complete and also complete.

A tableau method is sound if, whenever a closed tableau exists for Φ, then Φ is unsatisfiable.

A tableau method is refutationally complete if, whenever Φ is unsatisfiable, a closed tableau for

Φ can be constructed. Therefore, a sound and refutationally complete tableau method guarantees

that, given a set of formulas Φ, a refutation (i.e. a closed tableau) is obtained if and only if the

set Φ is unsatisfiable. A tableau method is complete if both satisfiability and unsatisfiability

are decidable. However, soundness and refutational completeness do not guarantee that for

satisfiable sets of formulas such satisfiability is decidable. A termination proof is additionally

3. Dual Systems of Tableaux and Sequents for PLTL 29

required in order to prove completeness.

Subsection 3.4.1 is devoted to soundness. In Subsection 3.4.2 we introduce an algorithm for

the construction of systematic tableaux together with the concepts and results that the algorithm

and its correctness give rise to. In particular, we discuss about the analytic superformula property

and present our notion of closure, which serves to proof that the algorithm terminates for any

finite set of formulas. The worst case complexity is also established. In Subsection 3.4.3 we

give some examples of systematic tableaux. In Subsection 3.4.4 we prove the completeness of

TTM, by proving, as a first step, its refutational completeness. In Subsection 3.4.5 we provide a

practical improvement of the rule (U)2.

3.4.1 Soundness

In this section we first show that the TTM-rules preserve equisatisfiability (Definition 2.2.2) and

that the unnext operator preserves satisfiability. Then, soundness is proved in Theorem 3.4.2.

The soundness of a system can be guaranteed rule by rule, where a rule is sound whenever

it preserves the satisfiability.

Lemma 3.4.1. For every set of formulas Φ, any α-formula γ and any β-formula χ:

1. Φ∪{γ} is satisfiable iff Φ∪A(γ) is satisfiable

2. Φ∪{χ} is satisfiable iff Φ∪B1(χ) or Φ∪B2(χ) or Φ∪B2(χ,Φ) is satisfiable.

3. If Φ is satisfiable then unnext(Φ) is satisfiable.

Proof. The case of the rule (U)2 is proved by using Proposition 3.3.3. The remaining cases

are straightforwardly proved by using the semantics of the connectives and the operator unnext,

presented in Section 2.2, and Definition 3.3.4.

Hence, soundness can be proved.

Theorem 3.4.2. If there exists a closed expanded tableau for Φ then Φ is unsatisfiable.

Proof. Let TΦ be a closed expanded tableau for Φ. The set of formulas labelling each leaf is

inconsistent and therefore unsatisfiable. Then, by Lemma 3.4.1, each node in TΦ is labelled with

an unsatisfiable set of formulas, in particular the root. Therefore Φ is unsatisfiable.

3.4.2 Systematic Tableaux

In this subsection we provide an algorithm for systematically building an expanded tableau.

We also study the main properties that our systematic tableau satisfies and we proof that the

algorithm terminates for any set of formulas given as input.

Unlike in complete tableau methods for propositional classical logic, the nondeterministic

application of the TTM-rules and the unnext operator does guarantee neither refutational com-

pleteness nor completeness. In order to guarantee refutational completeness and completeness

we provide an algorithm that, given a set of formulas Φ, constructs an expanded tableau for Φ

that we denote by TΦ. The tableau TΦ will be closed if Φ is unsatisfiable and open otherwise.

The systematic tableau algorithm is depicted by a while-program in Figure 3.9. The system-

atic tableau construction provides a proof search procedure for automated deduction.

3. Dual Systems of Tableaux and Sequents for PLTL 30

Input: A finite set of formulas Φ

Output: An expanded tableau TΦ = (Nodes, nΦ, L, B, R) for Φ

1 Nodes := {nΦ}; L := {(nΦ,Φ)}; B := {nΦ}; R := ∅; selfun := {(nΦ, ∅)}
2 while unmarked branches(B) 6= ∅ loop

3 choose b ∈ unmarked branches(B)
4 nk := last node(b);

5 if selfun(nk) = ∅ then fair select(b, TΦ, selfun) end if

6 if L(nk) \ selfun(nk) is not elementary

7 then choose γ ∈ L(nk) \ selfun(nk)
8 non-select expand(γ, b, TΦ, selfun)

9 else if selfun(nk) is neither empty nor elementary

10 then select expand(b, TΦ, selfun)

11 else {L(nk) is elementary} unnext expand(b, TΦ, selfun)
12 end if

13 end loop

Figure 3.9: Systematic Tableau Algorithm

The construction of TΦ consists in a systematic extension of branches using TTM-rules for

decomposing α- and β-formulas into their constituents. When the current stage (Definition

3.3.8) becomes αβ-saturated (Definition 3.3.11), and consequently, the α- and β-rules cannot

be applied, the operator unnext (Definition 3.3.4) is used to jump to a new stage. Regarding

the use of the rules (U)1 and (U)2, a specific strategy is followed. During the construction of

each stage, one eventuality –if there is any– is fixed as selected (Figure 3.9, line 5, fair select).

Then the TTM-rules (except (U)2) are nondeterministically applied until we obtain a set of

formulas where every formula, except the selected eventuality, is elementary (see Subsection

2.1). However, at each iteration step only one formula is chosen (Figure 3.9, line 7) for apply-

ing the corresponding rule (Figure 3.9, line 8, non-select expand) and, consequently, in general

several iteration steps are needed to obtain a set where only the selected eventuality is non-

elementary. At that point, the rule (U)2 is applied to the selected eventuality (Figure 3.9, line

10, select expand), if there is any (what is checked in line 9). When (U)2 is applied, new

non-elementary formulas may appear. Consequently, the TTM-rules (except (U)2) are nonde-

terministically applied again until we obtain an elementary set of formulas. Note that again,

in general, several iteration steps will be needed to obtain an elementary set. The construction

of a stage stops if an inconsistent node (Definition 3.3.5) is obtained because the corresponding

branch is marked as closed and only unmarked branches are considered for further enlargements

or splittings (Figure 3.9, line 2, unmarked branches). If all the nodes of the stage we are con-

structing are consistent and the label of the last node of the stage is elementary, then the operator

unnext is applied (line 11, unnext expand) and the construction of the next stage begins.

When, during the construction of a stage, the rule (U)2 is applied to the selected eventuality

ϕU ψ with context ∆0, the branch is split into two branches, let us say b1 and b2. The label of

the last node in the branch b1 is ∆0 ∪{ψ} and the eventuality ϕU ψ is fulfilled in this branch.

Therefore it represents an attempt to make ψ true in this state. However, b1 could still be

the prefix of a closed branch. If following the enlargement of b1 the next stage is created,

3. Dual Systems of Tableaux and Sequents for PLTL 31

i.e., if the branch does not close before applying the operator unnext, another eventuality must

be selected, if there is any available eventuality. The label of the last node in the branch b2
is ∆0 ∪{ϕ,¬ψ, ◦((ϕ ∧ ¬∆0)U ψ)}. Therefore, in the branch b2, the fulfillment of ϕU ψ is

postponed, but in the next stage, if the next stage is created, the eventuality (ϕ ∧ ¬∆0)U ψ
will be necessarily the selected one. In other words, the idea is to select an eventuality ϕU ψ
and to apply (U)2 only to ϕU ψ and to the eventualities generated from it in the branch where

the inclusion of ψ, i.e., the fulfillment of ϕU ψ is postponed. The eventualities generated from

ϕU ψ can be described as follows:

(ϕ ∧ ¬∆0)U ψ (ϕ ∧ ¬∆0 ∧ ¬∆1)U ψ . . . (ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . .∧ ¬∆k)U ψ

where ∆i is the context at the moment of applying (U)2 to (ϕ∧¬∆0∧¬∆1∧. . .∧¬∆i−1)U ψ.

Those eventualities are generated in different (consecutive) stages.

Since new eventualities are built up during the process, we must guarantee termination.

Classical propositional tableaux satisfy the subformula property (SP):

For every formulaψ used in the construction of any tableau for Φ, there exists some

formula γ ∈ Φ such that ψ is a (possibly negated) subformula of γ .

This property ensures the termination of the construction of any tableau for a (finite) set of

formulas. Most tableau systems for modal and temporal logics, fail to satisfy the SP, since some

of their rules introduce formulas that are not subformulas of the principal formula of the rule.

Hence, termination of modal/temporal tableaux is not obvious. However, most tableau systems

for modal and temporal logics, satisfy the analytic superformula property (ASP):

For every finite set of formulas Φ, there exists a finite set that contains all the for-

mulas that may occur in any tableau for Φ.

Such set is usually called the closure of Φ. The ASP also ensures the non-existence of infinite

branches where all the nodes have different labels. Hence, by controlling loops, the finiteness of

proof search can be ensured. In our case, as a consequence of using the rule (U)2, the tableau

system TTM fails to satisfy the ASP. However, TTM satisfies a slightly weaker variant that is

enough for ensuring completeness and that we call the weak analytic superformula property

(WASP):

For every finite set of formulas Φ, there exists a finite set that contains all the for-

mulas that may occur in any systematic tableau for Φ.

Our algorithm (Figure 3.9) constructs a systematic tableau TΦ for any Φ such that TTM satisfies

the WASP with respect to the set clo(Φ) (closure of Φ) (see Definition 3.4.9).

In order to satisfy the WASP, the algorithm keeps at most one selected formula to which the

rule (U)2 can be applied and when a new eventuality is generated in one stage, by using (U)2,

that new eventuality is the selected eventuality in the next stage. In this way, when the rule

(U)2 is applied with context ∆h, the eventualities previously built by using (U)2 are never in

∆h. Consequently there are only a finite number of different contexts and this leads to the fact

that after a finite process it must happen that when the rule (U)2 is applied to the set

∆i∪{(ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . . ∧ ¬∆i−1)U ψ}

the context ∆i is equal to some ∆j with j ∈ {0, . . . , i − 1}. In such a case, the new set of

formulas that corresponds to the branch that postpones the fulfillment of ϕU ψ is

3. Dual Systems of Tableaux and Sequents for PLTL 32

∆i ∪{ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . .∧ ¬∆i−1,¬ψ, ◦((ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . . ∧ ¬∆i−1 ∧ ¬∆i)U ψ)}

and a contradiction is generated from ∆i and ¬∆0 ∧ ¬∆1 ∧ . . . ∧ ¬∆i−1. This ensures that

the branch where the fulfillment of ϕU ψ is always postponed will eventually close. Regarding

the branch that does not postpone the fulfillment of ϕU ψ, the new set is ∆i∪{ψ} and it does

not contain any eventuality generated by the rule (U)2 and there are only finite different sets

of this kind, so repeated labels, that give rise to cycles, must necessarily appear after a finite

number of tableau expansion steps. This strategy guarantees that a finite amount of steps is

sufficient to decide whether the selected eventuality can be fulfilled or not. If the eventuality

cannot be fulfilled, the corresponding branches close. If the eventuality can be fulfilled, when

the eventuality is fulfilled another eventuality is selected and the process goes on. This selection

must be done in a fair manner, i.e., an eventuality that from some stage onwards appears as

an eligible eventuality whenever an eventuality must be selected, cannot remain indefinitely

unselected. For handling selected formulas the algorithm uses a selection function selfun. Along

the construction of the systematic tableau, the function selfun associates to every node n one of

the following three possible sets of formulas:

1. the empty set

2. a non-elementary singleton of the form {ϕU ψ}

3. an elementary singleton of the form {◦(ϕU ψ)}.

The case 1 means that no until-formula is selected. In 2, selfun yields the set containing the

selected until-formula to which (U)2 will be applied in the current stage. The case 3 happens

for every node n of a stage s that has been created after the application of (U)2 in a node n′ ∈ s
and in which the fulfillment of the eventuality in selfun(n′) has been postponed. Therefore, case

3 means that ◦(ϕU ψ) is the formula that has been obtained by applying the rule (U)2 to a

formula χU ψ ∈ selfun(n′) and that in the next stage ϕU ψ will be the selected eventuality. At

the beginning, selfun associates the empty set to the initial node.

In order to constructTΦ, our algorithm nondeterministicallychooses, at each step, a maximal

branch to be extended. The algorithm ends when every maximal branch is marked either as

closed or as expanded.

The procedure unmarked branches yields the maximal branches that are not marked yet.

For extending the chosen branch, the algorithm uses three procedures. First, a procedure non-

select expand that applies the corresponding TTM-rule, excepting (U)2, to a formula that has

been nondeterministically chosen from the set of non-selected formulas in the last node n of the

branch, i.e., from the set L(n) \ selfun(n). Second, when the TTM-rules other than (U)2 cannot

be further applied, the procedure select expand applies the rule (U)2 to the until-formula that is

selected by the function selfun, if there is some. The procedure fair select updates the function

selfun using a fair strategy. Third, when the node is labelled by an elementary set, then the

operator unnext is applied using the procedure unnext expand. Let us give a more detailed

explanation of all the procedures used by the algorithm.

last node(b) gives the last node added to a given branch b.

non-select expand(γ, b,TΦ, selfun) applies to the branch b the α- or β-rule (excepting (U)2)

that corresponds to the formula γ . In both cases, the formula selected by the function

selfun is preserved. That is, for nk = last node(b):

3. Dual Systems of Tableaux and Sequents for PLTL 33

• If γ is an α-formula, create a new node n and a new branch b′ = b · n according to

the corresponding α-rule such that L(n) = (L(nk) \ {γ})∪A(γ) and extend selfun

and R to be selfun(n) = selfun(nk) and nkRn.

• If γ is a (non-selected) β-formula, create two new nodes n′ and n′′ and two new

branches b′ = b · n′ and b′′ = b · n′′ according to the corresponding β-rule such that

L(n′) = (L(nk)\{γ})∪B1(γ) andL(n′′) = (L(nk)\{γ})∪B2(γ). Extend selfun

and R to be selfun(n′) = selfun(nk), selfun(n′′) = selfun(nk) and nkRn
′, nkRn

′′.

select expand(b, TΦ, selfun) applies the rule (U)2 to an until-formulaϕU ψ that is selected by

the function selfun. The function selfun yields the empty set for the new node that contains

ψ since the until-formula has been fulfilled. In the other branch, the new selected formula

is ◦((ϕ ∧ ¬∆)U ψ). That is, for nk = last node(b):

Let selfun(nk) = {ϕU ψ}. Create two new nodes n′ and n′′ and two new branches

b′ = b ·n′ and b′′ = b ·n′′ such that L(n′) = (L(nk)\{ϕU ψ})∪{ψ} and L(n′′) =

(L(nk) \ {ϕU ψ})∪{ϕ,¬ψ, ◦((ϕ ∧ ¬∆)U ψ)} where ∆ = L(nk) \ {ϕU ψ}.
Extend selfun and R to be selfun(n′) = ∅, selfun(n′′) = {◦((ϕ ∧ ¬∆)U ψ)} and

nkRn
′, nkRn

′′.

unnext expand(b, TΦ, selfun) creates a new node n and a new branch b′ = b · n such that

L(n) = unnext(L(nk)) and extends selfun and R to be selfun(n) = unnext(selfun(nk))
and nkRn where nk = last node(b).

unmarked branches(B) returns the set of unmarked maximal branches in a given set of branches

B.

fair select(b, TΦ, selfun) selects an until-formula, if there is some in the last node of b. That

is, for nk = last node(b), whenever selfun(nk) = ∅ and L(nk) contains at least one

until-formula, it updates selfun(nk) with a singleton {ϕU ψ} such that ϕU ψ ∈ L(nk).

Otherwise, selfun(nk) remains the empty set. If the node contains more than one until-

formula, the selection performed by fair select on L(nk) should be fair, in the sense

that no until-formula that from some stage onwards appears as an eligible eventuality

whenever an eventuality must be selected, could remain non-selected indefinitely.

Let us give some useful results about the systematic tableau TΦ that this algorithm constructs

for any set of formulas Φ.

Proposition 3.4.3. If {ϕ,¬ϕ} ⊆ L(s) for some stage s in a branch b of TΦ, then every maximal

branch of TΦ prefixed by b is closed.

Proof. By structural induction on ϕ. It is easy to see that the application of TTM-rules to two

complementary formulas that belong to the same stage, but not necessarily to the same node,

should generate complementary constituents until they occur in the same node or, at most, they

become elementary.

In the next propositionwe show that non-satisfied unselected eventualities are kept in branches

at least until they are fulfilled or they become selected.

3. Dual Systems of Tableaux and Sequents for PLTL 34

Proposition 3.4.4. Let b be a branch6 of TΦ, and s0, s1, s2, . . . , sk be any initial subsequence

of path(stages(b)). If the set L(last(sk)) is elementary, and ϕU ψ ∈ L(si) for some i ∈
{0, . . . , k}, and ϕU ψ is not selected in the sequence si, . . . , sk, and ψ 6∈ L(si)∪ . . .∪L(sk),

then {ϕ,¬ψ, ◦(ϕU ψ)} ⊆ L(sj) for all j ∈ {i, . . . , k}.

Proof. By the construction of TΦ, since non-selected eventualities are handled by procedure

non-select expand using the rule (U)1 .

It is worth noting that in the above Proposition 3.4.4, the requirement of L(last(sk)) be-

ing elementary is necessary. In order to illustrate this fact, let us consider the set of formulas

{pU q,�(pU q), rU v,�(rU v)} and the branch b = n0, n1, n2 such that

L(n0) = {pU q,�(pU q), rU v,�(rU v)}
L(n1) = {pU q, ◦� (pU q), rU v,�(rU v)}
L(n2) = {pU q, ◦� (pU q), rU v, ◦� (rU v)}

where, additionally, selfun(n0) = selfun(n1) = selfun(n2) = {pU q}. The branch b contains

only one stage s0 = n0, n1, n2 and L(n2) is non-elementary. For the sequence of stages s0 it

holds that rU v ∈ L(s0), r U v is not selected in s0 and v 6∈ L(s0). However, {r,¬v, ◦(rU v)}
is not a subset of L(s0).

Next, we give a more detailed description of the syntactic form of the formulas appearing

in sequences of stages where a selected eventuality remains unfulfilled. Under that proviso, at

each stage, there is exactly one selected eventuality and exactly one node to which the procedure

select expand is applied. We also call this node the selected node of that stage. The fact that, at

each stage, there is exactly one selected eventuality and exactly one node to which the procedure

select expand is applied, is crucial for defining the notion of closure with respect to which TTM

satisfies the WASP. We first define some auxiliary sets of sub- and super-formulas of a given

set of formulas Φ. Let sf(Φ) denote the set of all the subformulas of the formulas in Φ and

their negations. Then, the preclosure of Φ, preclo(Φ), is the set of formulas that extends sf(Φ)
with all the superformulas that are generated from sf(Φ) by means of all the TTM-rules with the

exception of the rule (U)2. That is

preclo(Φ) = sf(Φ) ∪ {◦(ϕU ψ),¬◦(ϕU ψ), ◦¬(ϕU ψ) | ϕU ψ ∈ sf(Φ)}
∪ {◦¬ϕ | ¬◦ϕ∈ sf(Φ)}.

Note that preclo(Φ) cannot be used as closure only because it does not capture the superfor-

mulas generated by the application of the rule (U)2. In order to capture these superformulas,

we define the following set of conjunctions of negated contexts:

conj(Φ) = {
∧

Γ | Γ ⊆ {ϕ | ϕU ψ ∈ sf(Φ)} ∪negctx(Φ)}

where negctx(Φ) = {¬∆ | ∆ ⊆ preclo(Φ)}

That is, negctx(Φ) is the set of all possible negated contexts and conj(Φ) is formed by all the

possible conjunctions of formulas in negctx(Φ) and the left-hand side subformulas of all the

until-formulas in sf(Φ). In particular, F ∈ negctx(Φ) and F,¬F ∈ conj(Φ), since F and ¬F are

respectively the disjunction and the conjunction of the empty set of formulas. Note also that, by

definition, in the conjunctions of conj(Φ) every element of negctx(Φ) occurs at most once.

6 The branch b could be cyclic or not, so that path(stages(b)) could respectively be infinite or finite.

3. Dual Systems of Tableaux and Sequents for PLTL 35

Proposition 3.4.5. Let b be a branch6of TΦ, let s0, s1, s2, . . . , sk be any initial subsequence of

path(stages(b)) andϕU ψ ∈ sf(Φ) such that i is the least natural number such that selfun(n) =
{ϕU ψ} for some n ∈ si. If the label of the last node of b is an elementary set and ψ 6∈
L(si)∪ . . .∪L(sk), then for all ` ∈ {0, . . . , k − i}:

{δ`,¬ψ, ◦(δ`+1 U ψ)} ⊆ L(si+`)

where δ0 = ϕ and δ`+1 = δ` ∧ χ for some χ ∈ negctx(Φ). Moreover, if δ` =
∧

Γ for some Γ
such that χ ∈ Γ then every maximal branch of TΦ prefixed by s0, . . . , si+` is closed.

Proof. Since the label of the last node of b is elementary, we can ensure, by Definition 3.3.8, that

no node of b belongs to two different stages. Consequently, if a stage sh, with h ∈ {i, . . . , k},
contains a node m such that selfun(m) is a singleton formed by an eventuality of the form

ψ1 U ψ2, then, by construction of TΦ, sh also contains a nodem′ (generated later than m) whose

label has been obtained by application of the rule (U)2.

On one hand, the procedure select expand yields two branches such that each branch either

contains {δ`,¬ψ, ◦(δ`+1 U ψ)} or contains ψ. Note that, by construction of TΦ, if selfun(n) =
{◦(δ`+1 U ψ)} for some n ∈ si+` , then selfun(n′) = {δ`+1 U ψ} for the first node n′ ∈ si+`+1,

for all ` ∈ {0, . . . , k− i− 1}. Therefore, δ0 = ϕ and for all j > 0: δj = δj−1 ∧ ¬∆j−1 where

¬∆j−1 ∈ negctx(Φ) and ∆j−1 is the context L(n) \ selfun(n) of the selected node n of the

stage si+j−1. Hence, by induction on `, δ` ∈ conj(Φ) holds for all ` ∈ {0, . . . , k− i}.
On the other hand, since χ is the negation of the context of the selected node n ∈ si+`,

if δ`+1 = δ` ∧ χ and δ` =
∧

Γ for some Γ such that χ ∈ Γ, then every branch prefixed by

s0, . . . , si+` contains at the same stage (possibly at different nodes) {γ,¬γ} for some formula

γ . Hence, by Proposition 3.4.3, every maximal branch prefixed by s0, . . . , si+` is closed.

It is worth noting that if in the above Proposition 3.4.5 the label of the last node of the

branch b is non-elementary, then the result is not guaranteed. In order to illustrate this fact,

let us consider the set of formulas {pU q, ◦� (pU q), rU v, ◦� (rU v)} and the branch b =

n0, n1, n2, n3, n4, n5 such that

L(n0) = {pU q, ◦� (pU q), rU v, ◦� (r U v)}
L(n1) = {pU q, ◦� (pU q), r,¬v,◦(rU v), ◦� (rU v)}
L(n2) = {q, ◦� (pU q), r,¬v,◦(rU v), ◦� (rU v)}
L(n3) = {�(pU q), rU v,�(rU v)}
L(n4) = {�(pU q), rU v, ◦� (r U v)}
L(n5) = {pU q, ◦� (pU q), rU v, ◦� (r U v)}

where, additionally, selfun(n0) = selfun(n1) = {pU q}, selfun(n2) = ∅ and selfun(n3) =
selfun(n4) = selfun(n5) = {rU v}. The branch b gives rise to two stages s0 = n0, n1, n2 and

s1 = n3, n4, n5, n1, n2. If we consider the sequence of stages s1, it holds that selfun(n3) =
{rU v} and v 6∈ L(s1). However, L(s1) does not contain the formula ◦(δ1 U v) mentioned in

Proposition 3.4.5.

Corollary 3.4.6. If b is a cyclic branch of TΦ and the label of the last node of b is elementary,

then every selected eventuality in b is fulfilled.

3. Dual Systems of Tableaux and Sequents for PLTL 36

Proof. By Proposition 3.4.5 since, whenever there is an unfulfilled selected eventuality in a

branch, the presence of the formulas δ` makes impossible the existence of a loop.

It is trivial, by construction, that every stage in a cyclic branch of TΦ is αβ-saturated. Hence,

by Proposition 3.4.4 and Corollary 3.4.6, we can refine the sufficient conditions for being an

expanded branch of TΦ (see Definition 3.3.12) as follows

Proposition 3.4.7. Let b be an open branch of TΦ, if b satisfies the following three conditions:

(i) b is cyclic

(ii) for every eventuality γ ∈ preclo(Φ) such that γ ∈ L(first(s)) for all s ∈ stages(cycle(b)),

there exists some s′ ∈ stages(cycle(b)) such that selfun(first(s′)) = {γ}

(iii) the label of the last node of b is elementary

then b is an expanded branch.

Proof. By Proposition 3.4.4, non-selected unfulfilled eventualities are preserved from one stage

to its successor. In addition, by Corollary 3.4.6, every selected eventuality in a cyclic branch

whose last node is labelled by an elementary set, is fulfilled. Hence, by condition (ii), every

eventuality from preclo(Φ) that occurs in L(first(s)) for every s ∈ stages(cycle(b)) should be

selected (at least) once and, hence, should be fulfilled.

Consequently, we use the three conditions in Proposition 3.4.7 to refine the implementation

of the procedure unmarked branches

Remark 3.4.8. Whenever a branch b satisfies conditions (i), (ii) and (iii) of Proposition 3.4.7,

the procedure unmarked branches considers b to be marked as expanded.

Note that a branch can satisfy the conditions stated in Definition 3.3.12 without satisfy-

ing conditions (i), (ii) and (iii) of Proposition 3.4.7. This means that sometimes the sys-

tematic algorithm does not detect that a branch is already expanded and goes on extending

it until conditions (i), (ii) and (iii) of Proposition 3.4.7 are satisfied. For example, an ex-

panded branch for the set {pU q, ◦� (pU q), rU v, ◦� (rU v)} is given by the sequence of nodes

b = n0, n1, n2, n3, n4, n5 such that

L(n0) = {pU q, ◦� (pU q), rU v, ◦� (rU v)}
L(n1) = {pU q, ◦� (pU q), v, ◦� (rU v)}
L(n2) = {q, ◦� (pU q), v, ◦� (rU v)}
L(n3) = {�(pU q),�(rU v)}
L(n4) = {�(pU q), rU v, ◦� (rU v)}
L(n5) = {pU q, ◦� (pU q), rU v, ◦� (rU v)}

where selfun(n0) = selfun(n1) = {pU q}, selfun(n2) = selfun(n3) = ∅ and selfun(n4) =
selfun(n5) = {rU v}. The branch b gives rise to two stages s0 = n0, n1, n2 and s1 =

n3, n4, n5, n1, n2. The branch b is cyclic, fulfilling and the stages are αβ-saturated. Conse-

quently, b satisfies the conditions in Definition 3.3.12, but b does not satisfy condition (iii) in

Proposition 3.4.7 and consequently the algorithm has to enlarge the branch. For instance, the

systematic algorithm can build the branch b · n6, n7 such that

3. Dual Systems of Tableaux and Sequents for PLTL 37

L(n6) = {q, ◦� (pU q), rU v, ◦� (rU v)}
L(n7) = {q, ◦� (pU q), v, ◦� (rU v)}

and selfun(n6) = {rU v} and selfun(n7) = ∅. The stages of the branch b · n6, n7 are x0 =
n0, n1, n2 and x1 = n3, n4, n5, n6, n7, additionally, path(stages(b)) = x0 · 〈x1〉ω. The branch

b · n6, n7 satisfies conditions (i), (ii) and (iii) in Proposition 3.4.7.

By Corollary 3.4.6 and Remark 3.4.8, TTM satisfies the WASP with respect to the following

notion of closure.

Definition 3.4.9. Let Φ be a set of formulas. The closure of Φ, clo(Φ), is the following set of

formulas:

clo(Φ) = preclo(Φ)∪conj(Φ)∪ Ω

where

Ω = {(γ1 ∧ γ2)U ψ, ◦((γ1 ∧ γ2)U ψ) | ϕU ψ ∈ sf(Φ) and γ1, γ2 ∈ conj(Φ)}

Since in the systematic tableaux the formulas of the form

◦((ϕ ∧ ¬∆0 ∧ ¬∆1 ∧ . . .∧ ¬∆k)U ψ)

built up by using the rule (U)2 can only contain one repetition of a negated context, i.e., since

there can only exist at most two values g and h such that 1 ≤ g < h ≤ k and ¬∆g = ¬∆h,

γ1 and γ2 are enough to represent such possible repetition of a negated context. In other words,

L(n) ⊆ clo(Φ) holds for all node n in TΦ, by Corollary 3.4.6 and Remark 3.4.8. In addition,

the closure set of a finite set of formulas is finite.

Proposition 3.4.10. If Φ is a finite set of formulas, then clo(Φ) is also finite.

Proof. It is easy to see that, if |preclo(Φ)| = n then |negctx(Φ)| ∈ O(2n). As a consequence

|conj(Φ)|, |clo(Φ)| ∈ O(2O(2n)).

The above results jointly with the fairness of fair select, allows us to ensure that the algo-

rithm in Figure 3.9 finitely computes an expanded tableau TΦ for any input Φ.

Lemma 3.4.11. The algorithm in Figure 3.9, for any input Φ, stops leaving in TΦ an expanded

tableau.

Proof. By König’s lemma, the only possibility for infinite iteration would be the infinite expan-

sion of (at least) one branch, namely b. By Propositions 3.4.5, 3.4.7 and 3.4.10, the branch

b should contain an eventuality that is never selected, which contradicts the fairness of the

fair select procedure.

Note that the use of a fair strategy for selecting the eventualities in each branch of the tableau

is essential for proving that the algorithm in Figure 3.9 finishes.

We would like to remark that previous tableau methods for PLTL, with the exception of the

one-pass proposal of [117], for obtaining a model of a satisfiable set of formulas (when deciding

satisfiability) should generate the whole graph of possible states and all the successive tableaux

required for constructing this graph. However, we can use a depth-first strategy and, as soon

as a branch is marked expanded, the algorithm could stop providing a model for the original

3. Dual Systems of Tableaux and Sequents for PLTL 38

(a) “pU F”

F

#
p, ¬F,

“◦((p ∧ F)U F)”

“(p ∧ F)U F”

F

#
p ∧ F, ¬F,

“◦((p ∧ F ∧ F)U F)”

p, F, ¬F,

“◦((p ∧ F ∧ F)U F)”

#

(b) (U)2

(unnext)

(U)2

(∧)

#

Figure 3.10: Systematic closed tableau for the set of formulas {pU F}

set of formulas. It is also worth noting that in the tableau calculus introduced by Schwendi-

mann in [117], the fulfillment of eventualities may depend on more than one cyclic branch, and

consequently, unlike in TTM, a fully expanded cyclic branch may not yield a model by itself.

3.4.3 Examples of Systematic Tableaux

In this subsection, we give four expanded tableaux built by using the systematic tableau algo-

rithm in Figure 3.9. In order to show each tableau we follow the same notation as in Subsection

3.3.5. The only difference is that in the systematic tableaux, we also manage the selection func-

tion selfun. So that, the formulas selected by the function selfun appear between the quotation

marks “ and ”. When in a node of the (a) part there is a formula χ between the quotation marks

“ and ”, i.e. “χ”, that means that the value of selfun for such node is {χ}. If a node does not

contain any formula between the quotation marks, then the value of selfun for such node is ∅.
In the first two examples we provide the systematic expanded tableaux that correspond to

the tableaux showed in Example 3.3.15 (Figure 3.3) and Example 3.3.16 (Figure 3.5) in Section

3.3.5.

Example 3.4.12. In Figure 3.10 the systematic expanded tableau for the unsatisfiable set of

formulas {pU F} is showed. This tableau is closed.

By following the algorithm for systematic tableau construction, the only available eventu-

ality, pU F, is selected. Hence the value of the selection function selfun for the first node is

{pU F}. Then the β-rule (U)2 is applied to the formula pU F with the empty set of formulas

as context. The application of (U)2 splits the branch into two branches. The branch on the left

is closed because the label of its last node contains F. For the branch on the right, the label of

the new node contains the new formula ◦((p ∧ F)U F). The formula F that appears on the left

hand-side of the formula ◦((p ∧ F)U F) corresponds to the negation of the empty set of formu-

las. The value of the selection function selfun for this second node in the branch on the right

is {◦(pU F)}. Since the label is elementary, the operator unnext is applied in order to jump to

3. Dual Systems of Tableaux and Sequents for PLTL 39

(a) p, ◦¬p, “¬FU ¬p”

p,

¬p,

◦¬p
#

p, ◦¬p,¬F,¬¬p,

“◦((¬F ∧ ¬(p ∧ ◦¬p))U ¬p)”

p, ◦¬p,¬F,

“◦((¬F ∧ ¬(p ∧ ◦¬p))U ¬p)”

¬p, “(¬F ∧ ¬(p ∧ ◦¬p))U ¬p”

¬p

(1) ∅

(1) ∅

¬p, ¬F ∧ ¬(p ∧ ◦¬p), ¬¬p,

“◦((¬F ∧ ¬(p ∧ ◦¬p) ∧ ¬¬p)U p)”
#

(b) (U)2

(¬¬)

(unnext)

(U)2

(unnext)

(1) (unnext)

(1)

#

Figure 3.11: Systematic expanded tableau for the set of formulas {p,◦¬p,¬FU ¬p}

the next state. The value of the selection function selfun for the new node (the third one in this

branch) is {(p ∧ F)U F}. By applying the rule (U)2, the branch is split into a closed branch

on the left and a branch with a new node whose label contains the formula ◦((p ∧ F ∧ F)U F).

The second F from the left, in the formula ◦((p ∧ F ∧ F)U F), corresponds to the negation of

the empty set of formulas, which was the context in this second application of the rule (U)2.

Finally by applying the α-rule (∧) to the formula p ∧ F, an inconsistent node is generated.

It is worth noting that in the construction of the tableau in Figure 3.3 the rules (U)1 and

(U)2 are used whereas the systematic tableau in Figure 3.10 does not include any application

of the rule (U)1.

Example 3.4.13. In Figure 3.11 we provide the systematic expanded tableau for the satisfiable

set of formulas {p, ◦¬p,¬FU ¬p}. In the first application of the rule (U)2, the context is

{p, ◦¬p} and in the second application of the rule (U)2, the context is {¬p}. The negations

of these two sets of formulas are used to generate, respectively, the formulas ◦((¬F ∧ ¬(p ∧
◦¬p))U p) and ◦((¬F ∧ ¬(p ∧ ◦¬p) ∧ ¬¬p)U p) obtained by means of the two applications

of the rule (U)2. The central open branch represents the collection of models explained in

Example 3.3.16.

Note that the formula ¬FU ¬p can also be expressed as �¬p.

The next two examples are related to the induction on time. These examples illustrate the

use of both the derived rule (�)2 in Figure 3.2 and the rule (U)2 in Figure 3.1.

Example 3.4.14. In Figure 3.12 and Figure 3.13 we depict a systematic closed tableau for the

set Φ = {p,�(¬p ∨ ◦p), �¬p}. The subset Σ = {p,�(¬p ∨ ◦p)} states, by means of the so-

called induction on time, that �p holds. Hence, Φ is unsatisfiable. Note that the formula
∧

Σ

3. Dual Systems of Tableaux and Sequents for PLTL 40

(a) p, � (¬p ∨ ◦p), “�¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ¬p,

◦ψ,

“�¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ◦p,

◦ψ,

¬p
#

p, ◦p, ◦� (¬p ∨ ◦p),

¬¬p, “◦((¬∆0)U ¬p)”

p, ◦p, ◦� (¬p ∨ ◦p),“◦((¬∆0)U ¬p)”

p, � (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p,

◦ψ,

“(¬∆0)U ¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p),

“(¬∆0)U ¬p”

p,

◦p,

◦ψ,

¬p
#

p, ◦p, ◦ψ,

¬(p ∧ ◦p ∧ ◦ψ), ¬¬p,

“◦((¬∆0 ∧ ¬∆1)U ¬p)”

p, ◦p, ◦ψ,

¬(p ∧ ◦p ∧ ◦ψ),

“◦((¬∆0 ∧ ¬∆1)U ¬p)”

p, ◦p,

◦ψ, ¬p,

“ϕ”
#

p, ◦p, ◦ψ,

¬(◦p ∧ ◦ψ),

“ϕ”

p, ◦p,

◦ψ, ¬◦p,

“ϕ”

#

p, ◦p,

◦ψ, ¬◦ψ,

“ϕ”

#

where ψ = � (¬p ∨ ◦p)
∆0 = ∆1 = {p, ◦p, ◦ψ}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p ∧ ◦ψ)

ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p)

Figure 3.12: Systematic closed tableau for {p,� (¬p ∨ ◦p),�¬p} by using (�)2 and (U)2 (Part 1 of 2)

3. Dual Systems of Tableaux and Sequents for PLTL 41

(b) (�)

(∨)

(�)2

(¬¬)

unnext

(�)

(∨)

(U)2

(¬¬)

(¬∧)

(¬∧)

#

Figure 3.13: Systematic closed tableau for {p,� (¬p ∨ ◦p),�¬p} by using (�)2 and (U)2 (Part 2 of 2)

is an invariant that contradicts the eventuality �¬p. The sets of formulas that label the nodes

appear in Figure 3.12 whereas the rules applied at each step appear in Figure 3.13.

The algorithm for systematic tableau construction, first selects the only available eventuality

�¬p. So the value of the selection function selfun for the first node is {�¬p}. Then the α-rule

(�) is applied to the formula � (¬p ∨ ◦p) enlarging the branch with a new node (the second

one). In the second node, the β-rule (∨) is applied to the formula ¬p ∨ ◦p and two new nodes

are generated. The one on the left is inconsistent and it yields a closed branch. In the one

on the right every formula, with the exception of the selected eventuality, is elementary and

consequently the rule (U)2 is applied to �¬p with context ∆0 = {p, ◦p, ◦� (¬p ∨ ◦p)}. The

application of the rule (U)2 splits the brach by creating two new nodes. The one on the left is

inconsistent and gives rise to another closed branch. For the new node on the right, the new

value of the selection function selfun is {◦((¬∆0)U p)}. Since the set that labels the node on

the right is non-elementary –because of the formula ¬¬p– the α-rule (¬¬) is applied and a

new node with elementary label is obtained. Consequently, the operator unnext is applied and

the branch is enlarged with a new node. The value of the selection function selfun for this node

is {(¬∆0)U ¬p}. The following two steps are like the two initial steps, i.e., the α-rule (�)
enlarges the branch and the β-rule (∨) splits the enlarged branch giving rise to a closed branch

and a branch where only the selected eventuality (¬∆0)U ¬p is non-elementary. So the latter

branch is split again by applying the rule (U)2 with context ∆1 = ∆0. The node in the left is

3. Dual Systems of Tableaux and Sequents for PLTL 42

(a) (1) p, � (¬p ∨ ◦p), �¬p

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), �¬p

p, ¬p, ◦� (¬p ∨ ◦p), �¬p
#

p, ◦p, ◦� (¬p ∨ ◦p), �¬p

p, ◦p,

◦� (¬p ∨ ◦p),

¬p
#

p, ◦p, ◦� (¬p ∨ ◦p),

¬¬p, ◦�¬p

p, ◦p, ◦� (¬p ∨ ◦p), ◦�¬p

(1) p, � (¬p ∨ ◦p), �¬p

(b) (1)(�)

(∨)

(�)1

(¬¬)

unnext

(1)

Figure 3.14: Non-systematic and non-expanded open tableau for {p,� (¬p ∨ ◦p),�¬p}

inconsistent and the branch is closed. The label of the node on the right is non-elementary and

the value of the selection function selfun is {◦((¬∆0 ∧ ¬∆1)U p)}. Moreover, the repetition

of the context, i.e., ∆1 = ∆0, leads to inconsistency since the label of this node contains the

formulas {p, ◦p, ◦ψ,¬(p∧◦p∧◦ψ)}. First the branch is enlarged by means of the rule ¬¬ and

finally, two consecutive applications of the β-rule (¬∧) produce three closed branches.

It is worth noting that by using only the rule (U)1, the fulfillment of an eventuality can

be indefinitely delayed. As shown in Figure 3.14, the set Φ = {p,�(¬p ∨ ◦p), �¬p} cannot

be TTM-refuted without using the rules (�)2 and (U)2. In the third branch from the left, we

obtain the initial set after applying the operator unnext. Although the branch is cyclic, it is not

fulfilling, so it is not expanded. If the rules (�)2 and (U)2 are not properly used as shown in

Figure 3.12 and Figure 3.13, the process will give rise to an infinite branch. Obviously, this

derivation does not follow the algorithm for systematic tableau construction.

Example 3.4.15. In Figure 3.15 we depict a systematic expanded tableau for the satisfiable set

3. Dual Systems of Tableaux and Sequents for PLTL 43

(a) p, � (¬p ∨ ◦p), “�p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “�p”

p, ¬p,

◦� (¬p ∨ ◦p),

“� p”
#

p, ◦p, ◦� (¬p ∨ ◦p), “�p”

(1) p, ◦p, ◦� (¬p ∨ ◦p)

p, � (¬p ∨ ◦p)

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p)

p, ¬p,

◦� (¬p ∨ ◦p)
#

(1) p, ◦p,

◦� (¬p ∨ ◦p)

p, ◦p, ◦� (¬p ∨ ◦p),

¬p, “◦((¬∆0)U ¬p)”
#

Where ∆0 = {p, ◦p, ◦� (¬p ∨ ◦p)}
¬∆0 = ¬(p ∧ ◦p ∧ ◦� (¬p ∨ ◦p))

(b) (�)

(∨)

(�)2

(1)unnext

(�)

(∨)

(1)

#

Figure 3.15: Systematic expanded tableau for {p,� (¬p ∨ ◦p),�p} obtained by using (�)2.

3. Dual Systems of Tableaux and Sequents for PLTL 44

Ψ = {p,�(¬p ∨ ◦p), � p}. The tableau is formed by four branches. Three of them are closed

and one is open (the third one from the left). The open branch, let us call it b, contains seven

nodes, so that, it is of the form n0, . . . , n6 where L(n3) = L(n6). The branch b is cyclic, the

label of its last node is elementary and in the cycle there are no eventualities, hence the sufficient

conditions for the algorithm to mark it as an expanded branch hold. We mark the leaf of b and

the internal repeated node with the superscript (1). This open branch is formed by two stages

x0 = n0, n1, n2, n3 and x1 = n4, n5, n6 and path(b) = x0 · 〈x1〉ω which describes a model in

which p is true in every state because p ∈ L(x0) and p ∈ L(x1).

3.4.4 Completeness

In this subsection we prove the refutational completeness of TTM by showing that if Φ is satis-

fiable then we can associate to any expanded branch b of the systematic tableau for Φ a cyclic

PLTL-structure Gb that yields a model of Φ.

Definition 3.4.16. For any expanded branch b, we define the PLTL-structure Gb = (SGb
, VGb

)
such that SGb

= path(stages(b)) and VGb
(s) = {p | p ∈ L(s) and p ∈ Prop}.

Note that termination of the systematic tableau construction is guaranteed by the finiteness

of the closure (see Proposition 3.4.10) together with the fairness in selecting until-formulas.

Consequently, since every maximal branch of TΦ is closed or expanded, then any expanded

branch must have two nodes with the same label (see Remark 3.4.8) which necessarily belong

to two different stages, since one stage cannot contain two identical nodes. Summarizing, any

expanded branch of TΦ has at least two nodes, at least two stages, and is cyclic. In the rest of

this subsection we will assume that b = n0, . . . , nk is an expanded branch of TΦ, hence b is

cyclic, and that Gb is the cyclic PLTL-structure associated to b.

In the previous Subsection 3.4.2 we prove some properties about the behaviour of eventual-

ities along the branches of TΦ, that obviously can be applied to Gb. The next proposition shows

the behaviour of negated eventualities in Gb.

Proposition 3.4.17. Let sj ∈ SGb
such that ¬(ϕU ψ) ∈ L(sj). Then, every finite subsequence

π = sj , sj+1, . . . , sk of SGb
satisfies one of the two following properties:

(a) {ϕ,¬ψ,¬◦(ϕU ψ)} ⊆ L(si) for all i ∈ {j, . . . , k}

(b) There exists i ∈ {j, . . . , k} such that {¬ϕ,¬ψ} ⊆ L(si) and {ϕ,¬ψ,¬◦(ϕU ψ)} ⊆ L(s`)
for all ` ∈ {j, . . . , i− 1}.

Proof. By induction on k− j. The case k = j is trivial. For k− j ≥ 1, the induction hypothesis

guarantees that π′ = sj , s1, . . . , sk−1 satisfies one of the properties (a) or (b). If π′ satisfies (b),

so does π. If π′ satisfies (a) then, by αβ-saturation, we have {ϕ,¬ψ,¬◦(ϕU ψ)} ⊆ L(sk) or

{¬ϕ,¬ψ} ⊆ L(sk). Hence, π verifies (a) or (b), respectively.

Therefore, we can prove that each state of Gb satisfies its labels, that is the set of formulas

labelling all nodes that constitute the concerned stage.

Lemma 3.4.18. For every s ∈ SGb
, if ϕ ∈ L(s) then 〈Gb, s〉 |= ϕ.

3. Dual Systems of Tableaux and Sequents for PLTL 45

Proof. By structural induction on ϕ. The case of literals is trivial by definition of Gb.

For formulas of the form ¬¬ϕ, ϕ ∧ψ,¬(ϕ∧ ψ), ◦ϕ and ¬◦ϕ the property holds because every

stage in SGb
is αβ-saturated and the induction hypothesis on {ϕ}, {ϕ, ψ}, {¬ϕ,¬ψ}, {ϕ} and

{¬ϕ}, respectively.

For ϕU ψ, by Propositions 3.4.4 and 3.4.5, there should exist a finite subsequence s0, s1, . . . , sn
of SGb

such that s0 = s, ψ ∈ sn and ϕ ∈ si for every i ∈ {0, . . . , n − 1}. By the induction

hypothesis, 〈Gb, sn〉 |= ψ and 〈Gb, si〉 |= ϕ for every i ∈ {0, . . . , n − 1} and consequently

〈Gb, s〉 |= ϕU ψ.

For ¬(ϕU ψ) formulas, by the above Propositions 3.4.3 and 3.4.17 and the induction hypothe-

sis, there does not exist any finite path s0, s1, . . . , sn in SGb
such that s0 = s, 〈Gb, sn〉 |= ψ and

〈Gb, si〉 |= ϕ for every i ∈ {0, . . . , n − 1}. Consequently 〈Gb, s〉 6|= ϕU ψ and hence 〈Gb, s〉
|= ¬(ϕU ψ).

Corollary 3.4.19. Gb |= Φ

Proof. Immediate consequence of Lemma 3.4.18.

By means of the collection of results proved in this section, we provide an alternative proof

of the result that states that “every satisfiable set of PLTL-formulas has a cyclic model” (see

Theorem 7.1 in [128] and Theorem 1 in [15]). Our proof is constructive in the sense that it gives

a tableau-based procedure that constructs the cyclic model Gb for any satisfiable Φ.

Now, we prove the refutational completeness of the tableau system TTM.

Theorem 3.4.20. If Φ is unsatisfiable then there exists a closed tableau for Φ.

Proof. Suppose that it does not exist any closed TTM-tableau for Φ. Then the systematic tableau

TΦ would be open and there would be at least one expanded branch b of TΦ. By Corollary 3.4.19,

Gb |= Φ. Consequently Φ would be satisfiable.

Moreover, the tableau method TTM is also complete.

Theorem 3.4.21. If Φ is satisfiable then there exists a (finite) open expanded tableau for Φ.

Proof. The systematic tableau TΦ suffices to prove this fact.

Hence, the system TTM can be used as a satisfiability decision procedure for PLTL.

3.4.5 Improving Eventuality Handling

The application of the rule (U)2 builds up complex formulas that involve the whole context.

Hence, for practical purposes, it is interesting to simplify these formulas as much as possible. In

this subsection we are going to show some ideas for avoiding redundant formulas in the negated

context produced by application of the rule (U)2. That is, we introduce a new rule (U)3 (see

Figure 3.16) that is an improvement of (U)2 that prevents two kinds of redundancy:

1. Disjuncts stating that the next stage fails to satisfy a formula which the context ensures

forever.

2. Duplication of formulas.

3. Dual Systems of Tableaux and Sequents for PLTL 46

The first kind of redundancy is related to the logical equivalence of the formulas �δ1 ∧
◦((ϕ ∧ (¬�δ1 ∨ ¬δ2))U ψ) and �δ1 ∧ ◦((ϕ ∧ ¬δ2)U ψ). By means of this improvement,

formulas of the form ◦i�ϕ and syntactical variants (which are called persistent formulas in the

forthcoming Definition 3.4.24 and Proposition 3.4.23) are left out of the context. The second

kind of redundancy corresponds to the equivalence of ϕ ∧ ϕ and ϕ.

At the end of this subsection, we analyze the gain of the new rule with respect to the older

one.

In order to deal with the first kind of redundancy, we introduce the following notion of

persistence.

Definition 3.4.22. A formula ϕ is called persistent iff for allM and all sj ∈ SM, if 〈M, sj〉 |=
ϕ then 〈M, sk〉 |= ϕ for all k > j.

When decomposing formulas in a systematic derivation process some syntactical patterns

may be used to detect persistent formulas. That is the case of the formulas of the form �ϕ and

◦�ϕ. By taking also into account that

�ϕ ≡ ¬�ϕ ≡ ¬(TU ϕ) ≡ ¬(¬FU ϕ) ≡ FRϕ ≡ ¬TRϕ

it is easy to prove the following result which constitutes a syntactical characterization of a subset

of persistent formulas.

Proposition 3.4.23. Every formula that matches one of the following patterns:

◦i�ϕ, ◦i¬�ϕ,¬◦i�ϕ, ◦i¬(TU ϕ),¬◦i(TU ϕ),

◦i¬(¬FU ϕ),¬◦i(¬FU ϕ), ◦i(FRϕ),T,¬F

is persistent.

Note that we have characterized a proper subset of the set of all the persistent formulas. For

example, ¬((¬(ϕ ∧ ¬ϕ))U ψ) is a persistent formula which does not match any of the above

syntactic patterns.

Definition 3.4.24. For any set of formulas Φ, we write persist ch(Φ) to denote the set of all

γ ∈ Φ such that γ fits one of the forms considered in Proposition 3.4.23.

On one hand, in order to avoid the inclusion of persistent formulas in the negation of the

context, we define the following operator:

∆̃ = ¬(∆ \ persist ch(∆))

Therefore, to get rid of the above first kind of redundancy, the rule (U)3 applies this new

operator ˜ instead of the previous operator ¬() to the context.

On the other hand, we define an operator e in order to prevent duplication of formulas. First,

we need to extract all the negative conjuncts of a formula. The set cnjts(ϕ) consists of all the

conjuncts of ϕ and is recursively defined as follows:

cnjts(ϕ) =

{
cnjts(ϕ1)∪ cnjts(ϕ2) if ϕ is ϕ1 ∧ ϕ2

{ϕ} otherwise

3. Dual Systems of Tableaux and Sequents for PLTL 47

Rule β B1(β) B2(β,∆)

(U)3 ϕU ψ {ψ} {ϕ,¬ψ, ◦((ϕ e ∆̃)U ψ)}

(�)3 �ϕ {ϕ} {¬ϕ, ◦(∆̃U ϕ)}

Figure 3.16: The Rules (U)3 and (�)3

Then, the set of all negative conjuncts of ϕ is

negcnjts(ϕ) = {ψ | ψ ∈ cnjts(ϕ) and ψ is F or a formula of the form ¬γ}

Consequently, the operator e is defined as follows:

ϕ e ∆̃ =





F if (∆ \ persist ch(∆)) = ∅ or F ∈ negcnjts(ϕ)

F if ∆ ∈ {cnjts(ψ) | ¬ψ ∈ negcnjts(ϕ)}
F if (∆ \ persist ch(∆)) ∈ {cnjts(ψ) | ¬ψ ∈ negcnjts(ϕ)}

ϕ ∧ ∆̃ otherwise

Now we give some details to clarify the four cases in the definition of ϕ e ∆̃. First of all, let us

consider the set

Σ1 = {χ1, . . . , χn, γ1, . . . , γm, ϕ,¬ψ, ◦((ϕ ∧ ¬(χ1 ∧ . . . ∧ χn ∧ γ1 ∧ . . .∧ γm))U ψ)}

where persist ch(Σ1) = {χ1, . . . , χn}. The set Σ1 is equivalent to the set

Σ2 = {χ1, . . . , χn, γ1, . . . , γm, ϕ,¬ψ, ◦((ϕ ∧ ¬(γ1 ∧ . . .∧ γm))U ψ)}

Consequently, in the definition of ϕ e ∆̃, we can exclude the persistent formulas in ∆ that

belong to persist ch(∆). In the first case, on one hand, if ∆ \ persist ch(∆) = ∅ then, since

the negation of the empty set is F, we consider the equivalence ϕ ∧ F ≡ F. On the other

hand, if F ∈ negcnjts(ϕ) then we consider the equivalence F ∧ ϕ ≡ F. In the second case,

if ∆ ∈ {cnjts(ψ) | ¬ψ ∈ negcnjts(ϕ)} then ϕ is of the form ϕ1 ∧ . . . ∧ ϕk with k ≥ 1 and

ϕj = ¬∆ for some j ∈ {1, . . . , k}. Therefore, we could consider the equivalence ϕ ∧ ¬∆ ≡ ϕ

and state that in the second case ϕ e ∆̃ is ϕ. However, {χ, (γ ∧ ¬χ)U λ} is equivalent to

{χ, FU λ} for any formulas χ, γ and λ and, consequently, we choose ϕ e ∆̃ to be F. The third

case is like the second one, but without considering the persistent formulas. The fourth case is

the general case where the only simplification consists in leaving out the persistent formulas.

By taking into account the above explanation, it is easy to see that the following two sets of

formulas are logically equivalent:

∆∪{◦((ϕ e ∆̃)U ψ)} and ∆∪{◦((ϕ ∧ ¬∆)U ψ)}

The rule (U)3 in Figure 3.16 refines the rule (U)2 in Figure 3.1 since the second premise

◦((ϕ∧¬∆)U ψ) of the rule (U)2 is substituted by ◦((ϕe ∆̃)U ψ) in the rule (U)3. It is easy

to derive, from the new rule (U)3, the corresponding rule (�)3 for the defined connective � .

Now, let us give two examples that make use of these two new rules (�)3 and (U)3 showed

in Figure 3.16. In these examples, the tableaux are built by using the systematic tableau algo-

rithm in Figure 3.9 and the rules (�)3 and (U)3 instead of the rules (�)2 and (U)2. In order to

3. Dual Systems of Tableaux and Sequents for PLTL 48

show each tableau we follow the same notation as in Subsection 3.4.3 (and Subsection 3.3.5).

As in the applications of the rules (�)2 and (U)2, in the applications of the rules (�)3 and (U)3
we only underline the eventuality to which the rule is applied.

Example 3.4.25. In Figures 3.17 and 3.18 we depict a systematic tableau for {p,�� p} obtained

by using the rules (�)3 and (U)3. As expected from the satisfiability of the root set, the tableau

is open. Concretely, there are two cyclic (expanded) branches with a common repeated node.

Both rules (�)3 and (U)3 are used twice. In the first application (from the top) of the rule

(�)3, the persistent formula ◦�� p is left out of the negation of the context. Consequently, only

the negation of p is considered in the formula ◦((¬p)U p), which belongs to the label of the

child on the right. In the second application of the rule (�)3, again the persistent formula

◦�� p is left out of the negation of the context. Since there are no more formulas, the set of

non-persistent formulas is empty and the formula ◦(FU p) is in the label of the child on the

right. In both applications of the rule (U)3, the selected eventuality is FU p. In both cases,

the corresponding context contains at least one formula that is not persistent but, by definition

of the operator e, the formula ◦(FU p) is produced in both cases because of the formula F in

FU p.

The left-most open brach, b1, is formed by six nodes n0, . . . , n5 where L(n2) = L(n5), and

yields two stages, x0 = n0, n1, n2 and x1 = n3, n4, n5. Consequently path(b1) = x0 · 〈x1〉ω.

The right-most open brach, b2, is formed by ten nodes n′0, . . . , n
′
9 where L(n′2) = L(n′9) and

gives rise to three stages, y0 = n′0, n
′
1, n

′
2, y1 = n′3, n

′
4, n

′
5 and y2 = n′6, . . . , n

′
9. Therefore

path(b2) = y0 · 〈y1, y2〉ω. In the models described by b1, p is true in all the states. In the models

described by b2, p is true in the states s0, s2, s4, . . . whereas ¬p is true in the remaining states

(s1, s3, s5, . . .).

Example 3.4.26. By means of Figures 3.19 and 3.20, we show a systematic closed tableau for

the unsatisfiable set {p,�(¬p ∨ ◦p), �¬p}. In this tableau we use the rules (�)3 and (U)3.

In the nodes where (�)3 and (U)3 are applied the context is {p, ◦p, ◦� (¬p ∨ ◦p)} and the

set persist ch({p, ◦p, ◦� (¬p ∨ ◦p)}) = {p, ◦p}. Therefore, when the rule (�)3 is applied, the

considered set of formulas is ∆0 = {p, ◦p} and the formula ◦((¬∆0)U ¬p) is obtained. In

the same way, when the rule (U)3 is applied, the considered set of formulas is ∆1 = {p, ◦p}.
However, since ∆0 = ∆1, the application of the rule (U)3 yields the formula ◦(FU ¬p) instead

of the formula ◦((¬∆0 ∧ ¬∆1)U ¬p) generated by the rule (U)2 in Figure 3.12. As can be

appreciated in the definitions of ∆0 and ∆1, the persistent formula ◦� (¬p∨◦p) is left out of the

context in the applications of the rules (�)3 and (U)3. Additionally, the application of the rule

(U)3 avoids the repetition of ∆0 and obtains a simplified formula by using F. As a consequence

of these improvements the tableau has one branch less than the tableau constructed in Example

3.4.14 and the longest branch contains one node less than the longest branch in Example 3.4.14

(Figure 3.12).

Finally, we formally analyze the gain of using the rule (U)3 instead of the rule (U)2. This

analysis yields a small difference between both worst cases, although the improvement is very

useful for practical implementation.

We reformulate the notion of closure for the system (TTM\{(U)2})∪{(U)3}. To this end,

we also need to redefine some other previously defined sets of formulas. However, other auxil-

iary sets, e.g. preclosure, remain defined as before. In order to stress which sets are redefined,

3. Dual Systems of Tableaux and Sequents for PLTL 49

(a) p, �� p

p, “� p”, ◦�� p

(1)(2) p, ◦�� p

�� p

“� p”, ◦�� p

(1) p, ◦�� p ¬p, ◦�� p, “◦(FU p)”

�� p, “FU p”

� p, ◦�� p, “FU p”

p, ◦�� p, “FU p”

(2) p,

◦�� p
p, F, ¬p,

◦�� p,

◦(FU p)
#

¬p, ◦�� p,

◦� p, “FU p”

¬p, p,

◦� p,

◦�� p
#

¬p, ◦� p,

F, ◦�� p,

“◦(FU p)”
#

p,

◦�� p,

¬p,

“◦((¬p)U p)”
#

Figure 3.17: Systematic expanded tableau for {p,��p} by using (�)3 and (U)3 (Part 1 of 2)

3. Dual Systems of Tableaux and Sequents for PLTL 50

(b) (�)

(�)3

(1)(2) (unnext)

(�)

(�)3

(1) (unnext)

(�)

(�)1

(U)3

(2) #

(U)3

#

#

Figure 3.18: Systematic expanded tableau for {p,��p} by using (�)3 and (U)3 (Part 2 of 2)

we use the prefix new . The new definitions for the sets of negated contexts and conjunctions

are:

new negctx(Φ) = {¬∆ | ∆ ⊆ (preclo(Φ) \ persist ch(preclo(Φ)))}.

new conj(Φ) = {
∧

δ∈Γ

δ | Γ ⊆ new negctx(Φ) and Γ is adequate}.

where we say that Γ ⊆ new negctx(Φ) is adequate iff

cnjts(δ) 6= cnjts(δ′) for every pair (¬δ,¬δ′) ∈ Γ× Γ such that δ 6= δ′.

Now, the closure of Φ can be redefined as follows:

new clo(Φ) = preclo(Φ)∪new conj(Φ)∪ Ω

where

Ω = {(ϕ ∧ γ)U ψ, ◦((ϕ ∧ γ)U ψ), FU ψ, ◦(FU ψ) | ϕU ψ ∈ sf(Φ) and γ ∈ new conj(Φ)}

Hence, the cardinality of this closure is a bit smaller than stated in Proposition 3.4.10. Actually,

if |preclo(Φ)| = n then |new negctx(Φ)| ∈ O(2n). Therefore

|new conj(Φ)|, |new clo(Φ)| ∈ O(22n

).

Recall that |clo(Φ)| ∈ O(2O(2n)).

3. Dual Systems of Tableaux and Sequents for PLTL 51

(a) p, � (¬p ∨ ◦p), “�¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ¬p,

◦ψ,

“�¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p), “�¬p”

p, ◦p,

◦ψ,

¬p
#

p, ◦p, ◦� (¬p ∨ ◦p),

¬¬p, “◦((¬∆0)U ¬p)”

p, ◦p, ◦� (¬p ∨ ◦p), “◦((¬∆0)U ¬p)”

p, � (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p ∨ ◦p, ◦� (¬p ∨ ◦p), “(¬∆0)U ¬p”

p, ¬p,

◦ψ,

“(¬∆0)U ¬p”
#

p, ◦p, ◦� (¬p ∨ ◦p),

“(¬∆0)U ¬p”

p,

◦p,

◦ψ,

¬p
#

p, ◦p,

◦� (¬p ∨ ◦p),

¬(p ∧ ◦p), ¬¬p,

“◦(FU ¬p)”

p, ◦p,

◦� (¬p ∨ ◦p),

¬(p ∧ ◦p),
“◦(FU ¬p)”

p, ◦p,

◦ψ, ¬p,

“◦(FU ¬p)”
#

p, ◦p,

◦ψ, ¬◦p,

“◦(FU ¬p)”
#

where ψ = � (¬p ∨ ◦p)
∆0 = ∆1 = {p, ◦p}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p)

Figure 3.19: Systematic closed tableau for {p,� (¬p ∨ ◦p),�¬p} by using (�)3 and (U)3 (Part 1 of 2)

3. Dual Systems of Tableaux and Sequents for PLTL 52

(b) (�)

(∨)

(�)3

(¬¬)

unnext

(�)

(∨)

(U)3

(¬¬)

(¬∧)

#

Figure 3.20: Systematic closed tableau for {p,� (¬p ∨ ◦p),�¬p} by using (�)3 and (U)3 (Part 2 of 2)

3.5 The Sequent Calculus TTC

In this section we introduce the sequent calculus TTC that directly corresponds to the previously

introduced tableau system TTM. It is a reformulation of TTM as a one-sided sequent calculus

that serves as a bridge from TTM to the two-sided sequent calculus GTC that we introduce in the

next section (Section 3.6).

The sequent calculus TTC follows the left-handed one-sided approach (also known as Tait-

style, [123]), where sequents are formed by a set of formulas. We write ∆ ` to represent a

sequent whose set of formulas is ∆ and whose intended meaning is
∧

∆→ F, i.e. ¬(
∧

∆).

The rules of TTC (see Figure 3.21) are obtained essentially from the TTM-rules writing them

upside down with the difference that in TTC we have left-handed sequents and in TTM we have

simply sets of formulas. The only exception is the rule (◦) that corresponds to the application of

the operator unnext in TTM. This direct relation between both systems makes possible to obtain

a TTC-proof from any closed TTM-tableau in a straightforward manner.

The strong similarity between tableau refutations and left-handed sequent proofs that are

cut-free, contraction-free and weakening-free is evident. As a consequence, TTC is cut-free,

invariant-free, weakening-free and contraction-free.

We have split the primitive rules of TTC into three packages. Two of them consist of rules

for classical and temporal connectives, respectively. These rules follow the traditional style of

introduction of the connective and its negation in the sequent. In addition, we need two structural

rules which form the third package.

3. Dual Systems of Tableaux and Sequents for PLTL 53

Rules for the Classical Connectives

(¬¬)
∆, ϕ `

∆,¬¬ϕ `
(∧)

∆, ϕ, ψ `

∆, ϕ ∧ ψ `
(¬∧)

∆,¬ϕ ` ∆,¬ψ `

∆,¬(ϕ∧ ψ) `

Rules for the Temporal Connectives

(◦)
unnext(∆) `

∆ `
(U)1

∆, ψ ` ∆, ϕ,¬ψ, ◦(ϕU ψ) `

∆, ϕU ψ `

(¬◦)
∆, ◦¬ϕ `
∆,¬◦ϕ `

(U)2
∆, ψ ` ∆, ϕ,¬ψ, ◦((ϕ ∧ ¬∆)U ψ) `

∆, ϕU ψ `

(¬U)
∆,¬ϕ,¬ψ ` ∆, ϕ,¬ψ,¬◦(ϕU ψ) `

∆,¬(ϕU ψ) `

Structural Rules

(Cd1)
∆, ϕ,¬ϕ `

(Cd2)
∆, F `

Figure 3.21: Primitive TTC-Rules

As TTC is sound and complete (Theorems 3.5.1 and 3.5.3), given a set of formulas ∆, it

holds that ∆ is unsatisfiable if and only if there is a TTC-proof for ∆ `.

A TTC-derivation is a possibly infinite tree labelled with sequents and built according to the

inference rules in TTC. A TTC-proof is a finite derivation where the sequent to be proved labels

its root and the leaves are labelled with axioms (which are rules without premises).

A set of formulas Γ is TTC-consistent if and only if there is no any TTC-proof for the sequent

Γ `.

The soundness of TTC means that every TTC-provable sequent, namely Γ `, is correct re-

garding to satisfiability. In particular, every satisfiable set of formulas Γ is TTC-consistent.

In the TTC sequent calculus all the non-structural rules are invertible with the exception of

the rule (◦). A rule is invertible when it holds that if the conclusion is provable, so are the

premises.

Theorem 3.5.1. (Soundness) For any set of formulas Γ, if Γ is not TTC-consistent, i.e., if there

exists a TTC-proof, then Γ is unsatisfiable.

Proof. By induction on the length of the TTC-proof, it suffices to prove that every primitive rule

of TTC (see Figure 3.21) is correct in the sense that if the set of formulas of each premise is

unsatisfiable then the set of formulas of the conclusion is unsatisfiable. The only difficult case

3. Dual Systems of Tableaux and Sequents for PLTL 54

is the case of the rule (U)2. The justification for that case is already given in Theorem 3.4.2.

Next, we prove that TTC is a complete calculus by relating its completeness to the complete-

ness of TTM.

Proposition 3.5.2. For any set of formulas Φ, if TΦ is a closed expanded tableau for Φ then

there exists a TTC-proof for the sequent Φ `.

Proof. Since each TTM-rule has its corresponding TTC-rule, the TTC-proof is directly obtained

from the closed TTM-tableau for Φ.

Theorem 3.5.3. (Completeness) For any set of formulas Φ, if Φ is unsatisfiable, then there

exists a TTC-proof for Φ.

Proof. If Φ is unsatisfiable then there exists a closed TTM-tableau for Φ. Hence, by Proposition

3.5.2 there exists a TTC-proof for Φ.

As in the case of TTM, the exhaustive application of the rules in the calculus TTC, with-

out any additional restriction or strategy, does not yield a decision procedure for PLTL. The

reason is that TTC, by itself, does not satisfy the weak analytic superformula property (WASP)

(see Subsection 3.4.2). Remember that the systematic tableau algorithm of Subsection 3.4.2

incorporates a strategy for the application of (U)2 which contributes to the satisfaction of the

WASP.

When building a TTC-derivation we can use primitive rules, derived rules and also admis-

sible rules. The admissible rules are new sound rules that cannot be derived from the primitive

rules of TTC, but do not add deductive power to the system. That is, a set Φ is consistent with

respect to TTC if and only if Φ is consistent with respect to TTC plus the admissible rules. In

other words, for every TTC-proof that includes the use of some admissible rules there exists

another TTC-proof that does not use any admissible rule.

The derived rules can be used as a shortcut for several lines of proofs that are built by using

only primitive and admissible rules.

Among the admissible rules the most outstanding ones are the following classical structural

rules of Weakening and Cut:

(Wk)
∆ `

∆,∆′ `
(Cut)

∆, ϕ ` ∆,¬ϕ `

∆ `

The sequent calculus TTC is cut-free since we have already proved its soundness and complete-

ness and the cut rule is omitted in TTC. Since TTC is complete without the cut rule, the cut rule

is admissible in TTC. However, the classical syntactical techniques for cut elimination cannot

be applied here because of the context used in the rule (U)2. Hence, we have been unable to

give a syntactic proof of cut elimination. However, we are aware of the work of K. Brünnler,

who introduced the notion of deep sequent and gave a cut-elimination procedure for modal logic

([19]). It remains open to see whether the same technique applied to our calculi (extended with

the cut rule) could yield a syntactical cut-elimination procedure for PLTL.

3. Dual Systems of Tableaux and Sequents for PLTL 55

(∨)
∆, ϕ ` ∆, ψ `

∆, ϕ ∨ ψ `
(R)

∆, ϕ, ψ ` ∆,¬ϕ, ψ, ◦(ϕRψ) `

∆, ϕRψ `

(¬∨)
∆,¬ϕ,¬ψ `

∆,¬(ϕ ∨ ψ) `
(¬R)1

∆,¬ψ ` ∆,¬ϕ, ψ, ◦(¬ϕU ¬ψ) `

∆,¬(ϕRψ) `

(¬R)2
∆,¬ψ ` ∆,¬ϕ, ψ, ◦((¬ϕ ∧ ¬∆)U ¬ψ) `

∆,¬(ϕRψ) `

(�)
∆, ϕ, ◦�ϕ `

∆,�ϕ `
(�)1

∆, ϕ ` ∆,¬ϕ, ◦(TU ϕ) `

∆, �ϕ `

(¬�)
∆,¬ϕ,¬◦�ϕ `

∆,¬�ϕ `
(�)2

∆, ϕ ` ∆,¬ϕ, ◦((¬∆)U ϕ) `

∆, �ϕ `

(¬�)1
∆,¬ϕ ` ∆, ϕ, ◦(TU ¬ϕ) `

∆,¬�ϕ `

(¬�)2
∆,¬ϕ ` ∆, ϕ, ◦(¬∆U ¬ϕ) `

∆,¬�ϕ `

Figure 3.22: Some Derived Rules for TTC

The weakening rule (Wk) is non-invertible so it must be used carefully. The rules (T) and

(¬F), that appear below, are particular cases of the rule (Wk) but they are invertible. So they

can be used to eliminate the formulas T and ¬F knowing that the equivalence with respect to the

TTC-consistency is preserved:

(T)
∆ `

∆,T `
(¬F)

∆ `

∆,¬F `

Since TTC is also contraction-free, admissible rules could be obtained by associating to

every non-structural rule (R) the rule (RC) that produces an (implicit) contraction in (R). For

example, the rule below (∧C) is the admissible rule that corresponds to the primitive rule (∧).

(∧C)
∆, ϕ ∧ ψ, ϕ, ψ `

∆, ϕ ∧ ψ `

Regarding derived rules, first we use the usual abbreviations of defined connectives in order

to derive the rules in Figure 3.22. It is easy to check that (∨) is derived from (¬∧) and (¬¬);

(¬∨) from (¬¬) and (∧); (R) from (¬U) and (¬¬); for i ∈ {1, 2}: (¬R)i is derived from

3. Dual Systems of Tableaux and Sequents for PLTL 56

q, F `
(Cd2)

F `
(Cd2)

F `
(Cd2)

F,¬F, ◦(FU F) `
(Cd2)

FU F `
(U)3

p ∧ ¬q,¬F, ◦(FU F) `
(◦)

(p ∧ ¬q)U F `
(U)3

q, p,¬F, ◦((p ∧ ¬q)U F) `
(◦)

q, pU F `
(U)3

Figure 3.23: TTC-proof for the set of formulas {q, pU F}

(¬¬) and (U)i; for i ∈ {1, 2}: (�)i is derived from (U)i and (T); (¬�) is derived from (¬U),

(T), (¬¬) and (Cd)2; (�) from (¬�), (¬¬), (T) and (¬◦); and for i ∈ {1, 2}: (¬�)i from

(¬¬), (�)i and (T).

The soundness and invertibility of these derived rules is guaranteed by the fact that they have

been obtained using only sound and invertible rules. Note that if the rule (Wk) is used instead

of (T) for deriving the previous rules their invertibility could not be directly guaranteed.

It is well known that the connective U is not expressible in temporal logic with only ◦, � ,

and � as temporal connectives (cf. [80, 53]). As a consequence, a complete calculus for the

sublogic that uses � instead of U cannot be derived (by abbreviation) from TTC, since the rule

(�)2 needs the connective U for expressing its second premise.

Finally, let us recall the respective refinements (�)3 and (U)3 of the rules (�)2 and (U)2
that allow us to avoid the inclusion of persistent formulas and duplications in the negation of the

context (see Subsection 3.4.5):

(�)3

∆, ϕ `

∆,¬ϕ, ◦(∆̃U ϕ) `

∆, �ϕ `
(U)3

∆, ψ `

∆, ϕ,¬ψ, ◦((ϕ e ∆̃)U ψ) `

∆, ϕU ψ `

Now, let us illustrate the TTC-style of reasoning by means of some examples of TTC-proofs.

In order to enhance readability, we have underlined, at each step, the principal formula. How-

ever, when the rule (◦) is applied, we do not underline any formula. In the nodes in which we

apply the rules (U)2, (�)2, (U)3 or (�)3, we only underline the eventuality to which the rule is

applied.

Actually, each derivation can be seen as an inverted closed TTM tableau.

Example 3.5.4. The TTC-proof in Figure 3.23 shows that the set of formulas {q, pU F} is un-

satisfiable.

Note that in the first application (from the bottom) of the rule (U)3 the obtained premises

coincide with the ones that we would obtain by using the rule (U)2. By contrast, in the second

application of the rule (U)3, the right-hand premise is different from the one that we would

obtain by using the rule (U)2. By using (U)2 we would obtain the sequent p ∧ ¬q,¬F, ◦((p ∧
¬q ∧ F)U F) ` instead of the sequent p ∧ ¬q,¬F, ◦(FU F) `. It is also worth noting that this

TTC-proof does not exactly follow the strategy formalized by means of the systematic tableau

algorithm in Figure 3.9. In particular, in the second application (from the bottom) of the rule

(◦) the sequent p ∧ ¬q,¬F, ◦(FU F) ` is not formed only by elementary formulas.

3. Dual Systems of Tableaux and Sequents for PLTL 57

q,¬q, ◦¬� q `
(Cd1)

q,¬◦� q,¬q `
(Cd1)

p,¬¬q,¬q, ◦(FU q), ◦¬� q `
(Cd1)

p ∧ ¬¬q,¬q, ◦(FU q), ◦¬� q `
(∧)

(p ∧ ¬¬q)U q, ◦¬� q,¬q `
(U)3

(p ∧ ¬¬q)U q,¬◦� q,¬q `
(¬◦)

(p ∧ ¬¬q)U q,¬� q `
(¬�)

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q `
(◦)

pU q,¬q, ◦¬� q `
(U)3

pU q,¬q,¬◦� q `
(¬◦)

Figure 3.24: TTC-proof for the set of formulas {pU q,¬◦� q,¬q}

◦�¬p,¬p, p `
(Cd1)

�¬p, p `
(�)

¬p, ◦�¬p, p `
(Cd1)

�¬p, p `
(�)

�¬p, F,¬p, ◦(FU p) `
(Cd2)

�¬p, FU p `
(U)3

◦�¬p,¬p, ◦(FU p) `
(◦)

�¬p,¬p, ◦(FU p) `
(�)

�¬p, � p `
(�)3

Figure 3.25: TTC-proof for the set of formulas {�¬p,�p}

Example 3.5.5. In Figure 3.24 we depict a TTC-proof for the unsatisfiable set of formulas

{pU q, ¬◦� q, ¬q}.
Note that in the first application (from the bottom) of the rule (U)3, we avoid to consider the

permanent formula◦¬� q in the negation of the context. Consequently in the right-hand premise

we obtain the sequent p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q ` instead of the sequent p,¬q, ◦((p ∧
¬¬q ∧ ¬◦¬� q)U q), ◦¬� q ` that we would obtain by using the rule (U)2. In the second

application of the rule (U)3, we obtain the sequent p ∧ ¬¬q,¬q, ◦(FU q), ◦¬� q ` as the

right-hand premise because we dispense with the persistent formula ◦¬� q and because the

negation of ¬q (i.e. the negation of the context without persistent formulas) is a conjunct of the

left-hand subformula of (p ∧ ¬¬q)U q.

Example 3.5.6. In Figure 3.25 we show a TTC-proof for the unsatisfiable set of formulas

{�¬p, � p}.
Note that, when the rule (�)3 is applied to the sequent �¬p, � p `, the formula �¬p is

left out of the negation of the context. Therefore the negation of the context without persistent

formulas is F. When the rule (U)3 is applied to the sequent �¬p, FU p `, on one hand the

formula �¬p is left out of the negation of the context. On the other hand, the negation of the

3. Dual Systems of Tableaux and Sequents for PLTL 58

context without persistent formulas is F. However, F is not repeated in the new formula that

contains the connective U , i.e., the new formula is ◦(FU p) instead of ◦((F∧F)U p), which we

would obtain if the rule (U)2 were used. Note also that this TTC-proof does not exactly follow

the strategy formalized by means of the systematic tableau algorithm in Figure 3.9, because the

rules (U)3 and (�)3 are applied to sets of formulas that are not elementary.

Example 3.5.7. The TTC-proof in Figure 3.26 shows that the set of formulas {p,�(¬p ∨
◦p), �¬p} is unsatisfiable. Actually, this proof can be obtained by inverting the closed tableau

built in Example 3.4.14 (Figures 3.12 and 3.13). Note that every set Σi, with i ∈ {0, . . . , 5}, is

inconsistent and the rule (Cd1) is used for each of them. In particular, sets Σ0, . . . ,Σ3 contain

p and ¬p, Σ4 contains ◦p and ¬◦p and Σ5 contains ◦ψ and ¬◦ψ where ψ = � (¬p ∨ ◦p).

3.6 The Sequent Calculus GTC

In this section we present the sequent calculus GTC (see Figure 3.27) that is two-sided and one-

conclusioned (or asymmetric). We prove the soundness of GTC and, then, we discuss about

admissible and derived rules. Afterwards, we prove the completeness of GTC with the help of

some previously derived rules. Finally, we give four examples of GTC-proofs.

The calculus GTC (see Figure 3.27) is straightforwardly obtained from the previous calculus

TTC. Actually, almost each primitive rule of TTC has a counterpart in GTC that results from

adding a conclusion χ to each sequent in the rule. The only exception are the rules where the

context is combined with the principal formula to produce the sequents in the numerator, where

χ (or better ¬χ) behaves as part of the context. Moreover, admissible or derived rules in GTC

are the same kind of counterparts of TTC rules as the primitive ones.

The soundness of GTC means that every GTC-provable sequent, namely Γ ` χ, is correct re-

garding to logical consequence. In particular, every satisfiable set of formulas is GTC-consistent.

Theorem 3.6.1. (Soundness) For any set of formulas Γ∪{χ}, if Γ ` χ is GTC-provable then

Γ |= χ.

Proof. By induction on the length of the GTC-proof, it suffices to prove that every primitive rule

of GTC (see Figure 3.27) is correct in the sense of preserving the logical consequence relation

between the antecedent and the consequent.

The correctness proof of most rules is just routine. Actually, the only correctness proof that

poses some difficulties is the proof of the rule (U L)2. Hence, we only give the details for this

rule.

We prove, by contradiction, that if χ is a logical consequence of the antecedents of the

premises of the rule (U L)2 then, χ is also a logical consequence of ∆∪{ϕU ψ}. Let us

assume that χ is not a logical consequence of the set of formulas ∆∪{ϕU ψ}, i.e. the set

∆∪{ϕU ψ,¬χ} is satisfiable. Then, by Proposition 3.3.3, the set ∆∪{ψ,¬χ} or the set

∆∪{ϕ,¬ψ, ◦((ϕ∧¬(∆∪{¬χ}))U ψ),¬χ} (at least one them) is satisfiable. Consequently,χ

is not a logical consequence of ∆∪{ψ} or χ is not a logical consequence of ∆∪{ϕ,¬ψ, ◦((ϕ∧
¬(∆∪{¬χ}))U ψ)}. So that, we can build a countermodel for some of the two premises of the

rule (U L)2.

3
.

D
u

al
S

y
stem

s
o

f
T

ab
leau

x
an

d
S

eq
u

en
ts

fo
r
P
LT

L
5

9

Σ0 `
(Cd1)

Σ1 `
(Cd1)

Σ2 `
(Cd1)

Σ1 `
(Cd1)

Σ3 `
(Cd1)

Σ4 `
(Cd1) Σ5 `

(Cd1)

p, ◦p, ◦ψ,¬(◦p ∧ ◦ψ), ϕ `
(¬∧)

p, ◦p, ◦ψ,¬(p ∧ ◦p ∧ ◦ψ), ϕ `
(¬∧)

p, ◦p, ◦ψ,¬¬p,¬(p ∧ ◦p ∧ ◦ψ), ϕ `
(¬¬)

p, ◦p, ◦ψ, (¬∆0)U ¬p `
(U)2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), (¬∆0)U ¬p `
(∨)

p,�(¬p ∨ ◦p), (¬∆0)U ¬p `
(�)

p, ◦p, ◦� (¬p ∨ ◦p), ◦((¬∆0)U ¬p) `
(◦)

p, ◦p, ◦� (¬p ∨ ◦p),¬¬p, ◦((¬∆0)U ¬p) `
(¬¬)

p, ◦p, ◦� (¬p ∨ ◦p), �¬p `
(�)2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), �¬p `
(∨)

p,�(¬p ∨ ◦p), �¬p `
(�)

where ψ = � (¬p ∨ ◦p)
ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p)
∆0 = ∆1 = {p, ◦p, ◦ψ}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p ∧ ◦ψ)
Σ0 = {p,¬p, ◦ψ, �¬p}
Σ1 = {p, ◦p, ◦ψ,¬p}
Σ2 = {p,¬p, ◦ψ, (¬∆0)U ¬p}
Σ3 = {p, ◦p, ◦ψ,¬p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ4 = {p, ◦p, ◦ψ,¬◦p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ5 = {p, ◦p, ◦ψ,¬◦ψ, ◦((¬∆0 ∧ ¬∆1)U ¬p)}

Figure 3.26: TTC-proof for the set of formulas {p,� (¬p ∨ ◦p),�¬p}

3. Dual Systems of Tableaux and Sequents for PLTL 60

Rules for the Classical Connectives

(¬L)
∆ ` ϕ

∆,¬ϕ ` χ
(R¬)

∆, ϕ ` F

∆ ` ¬ϕ

(∧L)
∆, ϕ, ψ ` χ

∆, ϕ ∧ ψ ` χ
(R∧)

∆ ` ϕ ∆ ` ψ

∆ ` ϕ ∧ ψ

Rules for the Temporal Connectives

(¬◦L)
∆, ◦¬ϕ ` χ
∆,¬◦ϕ ` χ

(R◦L)
unnext(∆) ` ϕ

∆ ` ◦ϕ
(R◦¬)

∆ ` ¬◦ϕ
∆ ` ◦¬ϕ

(U L)1
∆, ψ ` χ ∆, ϕ,¬ψ, ◦(ϕU ψ) ` χ

∆, ϕU ψ ` χ

(RU)
∆,¬ϕ ` ψ ∆, ϕ,¬◦(ϕU ψ) ` ψ

∆ ` ϕU ψ

(U L)2
∆, ψ ` χ ∆, ϕ,¬ψ,◦((ϕ ∧ ¬(∆∪{¬χ}))U ψ) ` χ

∆, ϕU ψ ` χ

Structural Rules

(As)
∆, ϕ ` ϕ

(Cd)
∆,¬ϕ ` F

∆ ` ϕ
(◦F)

∆ ` ◦F
∆ ` χ

Figure 3.27: Primitive Rules for the Sequent Calculus GTC

3. Dual Systems of Tableaux and Sequents for PLTL 61

(FL)
∆, F ` χ

(CdL)
∆, ϕ,¬ϕ ` χ

(¬¬L)
∆, ϕ ` χ

∆,¬¬ϕ ` χ

(¬ ∧ L)
∆,¬ϕ ` χ ∆,¬ψ ` χ

∆,¬(ϕ∧ ψ) ` χ
(◦L)

unnext(∆) ` F

∆ ` χ

(¬U L)
∆,¬ϕ,¬ψ ` χ ∆, ϕ,¬ψ,¬◦(ϕU ψ) ` χ

∆,¬(ϕU ψ) ` χ

Figure 3.28: Some Derived GTC-Rules

The calculus GTC is more versatile than TTC, in particular GTC allows not only refutation

proofs, but also goal-directed proofs or, in general, the consequent can directly be used as prin-

cipal formula in GTC-proofs. As a consequence, in GTC, we can derive rules that have no sense

in one-sided systems. For example, the contraposition rules:

(Cp1)
∆,¬ϕ ` ψ

∆,¬ψ ` ϕ
(Cp2)

∆, ϕ ` ψ

∆,¬ψ ` ¬ϕ

which can be derived in the usual way from the primitive GTC-rules for the classical connectives.

The derived rules in Figure 3.28 are useful for proving the completeness of GTC. They are

easily derived with the help of the above rules (Cp1) and (Cp2). It is easy to check that (FL) is

derived from (Cd) and (As); (CdL) from (¬L) and (As); (◦L) from (◦F) and (R◦L); (¬¬L)

from (Cp1) and (Cp2); (¬ ∧ L) from (Cp1) and (R∧); and (¬U L) from (Cp1) and (RU).

Now, we can associate to each TTC-proof a GTC-proof.

Proposition 3.6.2. If Φ ` is TTC-provable then Φ ` F is GTC-provable.

Proof. Suppose that Φ ` is TTC-provable. Then, by admissibility of the rule (¬F) (see Section

3.5), Φ,¬F ` is also TTC-provable.

It is easy to see that for each TTC-rule there is a closely related (primitive or derived) GTC-

rule. In particular, TTC-rules are GTC-derived rules or single instances of GTC-rules. More

precisely, the TTC-rules (¬¬), (∨), (¬∨), (◦), (U)1, (U)2, (¬◦), (¬U), (Cd1) and (Cd2), re-

spectively correspond to (¬¬L), (∨L), (¬∨L), (◦L), (U L)1, (U L)2, (¬◦L), (¬U L), (CdL)
and (FL). As a consequence, we can construct a GTC-proof of the two-sided sequent Φ,¬F ` F.

Therefore, using the GTC-rule (Cd), the sequent Φ ` F, is also GTC-provable.

Theorem 3.6.3. (Completeness) For any set of formulas Γ∪{χ}, if Γ |= χ then Γ ` χ is

GTC-provable.

Proof. If Γ ` χ is not GTC-provable, then by rule (Cd) the sequent Γ∪{¬χ} ` F is not GTC-

provable. By Proposition 3.6.2, Γ∪{¬χ} ` is not TTC-provable, which is a contradiction by

Theorem 3.5.3.

3. Dual Systems of Tableaux and Sequents for PLTL 62

Using the abbreviations �ϕ and �ϕ for TU ϕ and ¬�¬ϕ, respectively, we are also able to

derive the following useful rules:

(�L)1

∆, ϕ ` χ
∆,¬ϕ, ◦(TU ϕ) ` χ

∆, �ϕ ` χ
(�L)2

∆, ϕ ` χ
∆,¬ϕ, ◦(¬(∆∪{¬χ})U ϕ) ` χ

∆, �ϕ ` χ

(R�)
∆,¬◦�ϕ ` ϕ

∆ ` �ϕ
(�L)

∆, ϕ, ◦�ϕ ` χ
∆,�ϕ ` χ

(R�)1

∆ ` ϕ
∆, ◦(TU ¬ϕ) ` ¬ϕ

∆ ` �ϕ
(R�)2

∆ ` ϕ
∆, ◦(¬∆U ¬ϕ) ` ¬ϕ

∆ ` �ϕ

In addition, the TTC-rules (U)3 and (�)3 produce the corresponding GTC-rules where ∆′ =

∆∪{¬χ}:

(U L)3

∆, ψ ` χ

∆, ϕ,¬ψ, ◦((ϕ e ∆̃′)U ψ) ` χ

∆, ϕU ψ ` χ
(�L)3

∆, ϕ ` χ

∆,¬ϕ, ◦(∆̃′ U ϕ) ` χ

∆, �ϕ ` χ

and it is easy to derive the following rule (R�)3 for the defined connective � :

(R�)3

∆ ` ϕ

∆, ◦(∆̃U ¬ϕ) ` ¬ϕ

∆ ` �ϕ

Note that, by (�L) and (CdL), the following contradiction rule is also derivable:

(Cd�)
∆,�ϕ,¬◦�ϕ ` χ

Let us now illustrate the GTC-style of reasoning by means of some examples of GTC-proofs.

In order to enhance readability, we underline, at each step, the principal formula. However,

we do not underline any formula in the applications of the rules (R◦L), (◦F) and (◦L). Both

primitive and derived rules are used in the derivations.

Example 3.6.4. The GTC-proof in Figure 3.29 shows that the formula q is a logical consequence

of the set of formulas {pU q, ¬◦� q}. This GTC-proof is similar to the TTC-proof showed in

Example 3.5.5 (Figure 3.24).

Note that in the first application (from the bottom) of the rule (U L)3 the persistent formula

◦¬� q is left out of the negation of the context. In the second application of the rule (U L)3 we

obtain, in the right-hand premise, the formula ◦(FU q) because we dispense with the persistent

formula ◦¬� q and because the negation of ¬q is a conjunct of the subformula p ∧ ¬¬q in the

formula (p ∧ ¬¬q)U q.

3. Dual Systems of Tableaux and Sequents for PLTL 63

q, ◦¬� q ` q
(As)

q,¬◦� q ` q
(As)

p,¬¬q,¬q, ◦(FU q), ◦¬� q ` q
(CdL)

p ∧ ¬¬q,¬q, ◦(FU q), ◦¬� q ` q
(∧)

(p ∧ ¬¬q)U q, ◦¬� q ` q
(U L)3

(p ∧ ¬¬q)U q,¬◦� q ` q
(¬◦L)

(p ∧ ¬¬q)U q ` � q
(R�)

(p ∧ ¬¬q)U q,¬� q ` F

(¬L)

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q ` ◦F
(R◦L)

p,¬q, ◦((p ∧ ¬¬q)U q), ◦¬� q ` q
(◦F)

pU q, ◦¬� q ` q
(U L)3

pU q,¬◦� q ` q
(¬◦L)

Figure 3.29: GTC-proof that shows that the formula q is a logical consequence of {pU q,¬◦� q}

Example 3.6.5. The GTC-proof in Figure 3.30 shows that the formula ¬� p is a logical conse-

quence of the set of formulas {�¬p}. This GTC-proof is similar to the TTC-proof in Example

3.5.6 (Figure 3.25).

Note that, when applying the rule (�L)3 and (U L)3, the persistent formulas �¬p and ¬F

are left out of the negation of the context. As in the case of the TTC-proof in Example 3.5.6

(Figure 3.25), this GTC-proof does not strictly follow the strategy presented by means of the

systematic tableau algorithm in Figure 3.9, because the rules (U L)3 and (�L)3 are applied to

sets of formulas that are non-elementary.

Example 3.6.6. By means of the GTC-proof in Figure 3.31, we show that the formula �p is a

logical consequence of the set of formulas {p,�(¬p ∨ ◦p)}. The sets Σi, with i ∈ {0, . . . , 5},
are inconsistent since they contain a formula and its negation and the derived rule (CdL) is

applied to each of them. Although the structure of the proof is the same as the TTC-proof in

Figure 3.26 of Example 3.5.7, the set Σ0 is different and the set Σ1 appears only once. In the

place of the first appearance (from the left) of the set Σ1 in Figure 3.26 of Example 3.5.7 now,

in Figure 3.31, we use the structural rule (As).

Note that, since we use (R�)2 and (U L)2, the persistent formula ◦ψ = ◦� (¬p ∨ ◦p)
is included in the negation of the context and that repetitions are not avoided in the formula

ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p). However, the formula ◦ψ could be left out of the negation of the

context and the repetition in ϕ could also be avoided as shown in Example 3.6.7.

Example 3.6.7. As well as the proof given in Example 3.6.6, the GTC-proof in Figure 3.32

shows that the formula �p is a logical consequence of {p,�(¬p ∨ ◦p)}. However, in Figure

3.32 we use the rules (R�)3 and (U)3 whereas in Figure 3.31 the rules (R�)2 and (U)2 are

used. Additionally, the approach in Figure 3.32 is more “goal-directed” in the sense that in

order to prove that the formula �p follows from the set of formulas {p,�(¬p ∨ ◦p)}, in the

first derivation step �p is the principal formula. By contrast, the GTC-proof in Figure 3.31 is

3. Dual Systems of Tableaux and Sequents for PLTL 64

¬p, ◦�¬p, p ` F

(CdL)

�¬p, p ` F

(�L)

¬p, ◦�¬p, p ` F
(CdL)

�¬p, p ` F
(�L)

�¬p, F,¬p, ◦(FU p) ` F

(FL)

�¬p, FU p ` F

(U L)3

◦�¬p,¬p, ◦(FU p) ` ◦F
(R◦L)

◦�¬p,¬p, ◦(FU p) ` F

(◦F)

�¬p,¬p, ◦(FU p) ` F

(�L)

�¬p, � p ` F
(�L)3

�¬p ` ¬� p
(R¬)

Figure 3.30: GTC-proof that shows that the formula ¬� p is a logical consequence of {�¬p}

a direct adaptation of the TTC-proof in Figure 3.26 and is not driven by the “goal”, i.e. by the

formula �p, which we want to proof from {p,�(¬p ∨ ◦p)}.
The GTC-proof in Figure 3.32 does not strictly follow the strategy presented by means of

the systematic tableau algorithm in Figure 3.9. In order to follow such strategy, either the rule

(U L)3 or the rule (U L)2 should be used instead of the rule (U L)1.

3.7 Related Work

In Section 3.1 we have briefly surveyed the main representatives of the different approaches in

the tableau and sequent frameworks. In this section we add more details about these related

proposals.

3.7.1 Tableau Systems

The traditional tableau methods for temporal logic (e.g. [128, 73, 8, 87, 79, 81]) are based on

the usual inductive definitions of the temporal connectives. A traditional rule system for the

tableau framework can be obtained from TTM (Figure 3.1) by just removing the rule (U)2.

In such systems an auxiliary graph is built in a first pass. For instance, an auxiliary graph

for the set of formulas {p,�(¬p ∨ ◦p), �¬p} is very similar to the right-most branch of the

tableau in Figure 3.14 (a). Edges would be directed downwards and instead of the last node

of the branch, there would be an edge from the previous node to the root node. So that, the

whole auxiliary graph would be a strongly connected component made up of five nodes. The

second pass serves to check whether an infinite path that yields a model for the root set can be

built from the graph. With that purpose, maximal strongly connected components that are not

fulfilling for some eventuality and from which no other maximal strongly connected component

can be reached, are deleted. This process is repeated until no node can be eliminated. In the

above mentioned example, the only maximal strongly connected component (i.e. the whole

auxiliary graph) would be removed because it is not fulfilling for the eventuality �¬p and no

other nodes can be reached from it. Since the result would be an empty graph, the root set

would be classified as unsatisfiable. Our tableau method TTM is one-pass. In Figure 3.12 it

3
.

D
u

al
S

y
stem

s
o

f
T

ab
leau

x
an

d
S

eq
u

en
ts

fo
r
P
LT

L
6

5

Σ0 ` �p
(CdL)

p, ◦p, ◦ψ ` p
(As)

Σ2 ` F

(CdL)
Σ1 ` F

(CdL)

Σ3 ` F

(CdL)
Σ4 ` F

(CdL)
Σ5 ` F

(cdL)

p, ◦p, ◦ψ,¬(◦p ∧ ◦ψ), ϕ ` F

(¬∧)

p, ◦p, ◦ψ,¬(p∧ ◦p ∧ ◦ψ), ϕ ` F

(¬∧)

p, ◦p, ◦ψ,¬¬p,¬(p ∧ ◦p ∧ ◦ψ), ϕ ` F

(¬¬L)

p, ◦p, ◦ψ, (¬∆0)U ¬p ` F

(U L)2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), (¬∆0)U ¬p ` F

(∨)

p,�(¬p ∨ ◦p), (¬∆0)U ¬p ` F

(�L)

p, ◦p, ◦� (¬p ∨ ◦p), ◦((¬∆0)U ¬p) ` ¬p
(◦L)

p, ◦p, ◦� (¬p ∨ ◦p) ` �p
(R�)2

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p) ` �p
(∨)

p,�(¬p ∨ ◦p) ` �p
(�L)

where ψ = � (¬p ∨ ◦p)
ϕ = ◦((¬∆0 ∧ ¬∆1)U ¬p)
∆0 = ∆1 = {p, ◦p, ◦ψ}
¬∆0 = ¬∆1 = ¬(p ∧ ◦p ∧ ◦ψ)

Σ0 = {p,¬p, ◦ψ}
Σ1 = {p, ◦p, ◦ψ,¬p}
Σ2 = {p,¬p, ◦ψ, (¬∆0)U ¬p}
Σ3 = {p, ◦p, ◦ψ,¬p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ4 = {p, ◦p, ◦ψ,¬◦p, ◦((¬∆0 ∧ ¬∆1)U ¬p)}
Σ5 = {p, ◦p, ◦ψ,¬◦ψ, ◦((¬∆0 ∧ ¬∆1)U ¬p)}

Figure 3.31: GTC-proof that shows that the formula � p is a logical consequence of the set of formulas {p,� (¬p ∨ ◦p)} (1st version)

3
.

D
u

al
S

y
stem

s
o

f
T

ab
leau

x
an

d
S

eq
u

en
ts

fo
r
P
LT

L
6

6

p, ψ ` p
(As)

p,¬p, ◦ψ, ◦(¬pU ¬p) ` ¬p
(As)

p, ψ,¬p ` F

(CdL)
p, ψ,¬p,¬¬p, ◦(¬pU ¬p) ` F

(CdL)

p,�(¬p ∨ ◦p),¬pU ¬p ` F

(U L)1

p, ◦p, ◦� (¬p ∨ ◦p), ◦(¬pU ¬p) ` ¬p
(◦L)

p,¬p ∨ ◦p, ◦� (¬p ∨ ◦p), ◦(¬pU ¬p) ` ¬p
(∨L)

p,�(¬p ∨ ◦p), ◦(¬pU ¬p) ` ¬p
(�L)

p,�(¬p ∨ ◦p) ` �p
(R�)3

where ψ is � (¬p ∨ ◦p)

Figure 3.32: GTC-proof that shows that the formula � p is a logical consequence of the set of formulas {p,� (¬p ∨ ◦p)} (2nd version)

3. Dual Systems of Tableaux and Sequents for PLTL 67

can be appreciated that, by using the TTM-rules (�)2 and (U)2 and by following the systematic

tableau algorithm in Figure 3.9, we are able to close all the branches without a second pass.

The first one-pass tableau method for PLTL was presented by Schwendimann in [117] and

it avoids the second pass by adding extra information to the nodes in the tableau. This method

is also based on the usual inductive definition of the temporal connectives. As in TTM, branches

can be seen as sequences of stages s0, s1, . . . , si where each stage sj is a sequence of nodes

n0
j , n

1
j , . . . , n

kj

j . Each application of the rule Nexttime (which corresponds to an application

of the operator unnext in TTM) to an elementary set of formulas gives rise to a new stage. Each

node nh
j of a tableau is labelled with a triple of the form (Γh

j , Save
h
j , Res

h
j) where

• Γh
j is a finite set of formulas.

• Savehj is a pair of the form (Evh
j , Brj) that serves to store history information. More

precisely, Evh
j is a set of formulas representing the eventualities that are fulfilled in the

nodes n0
j , n

1
j , . . . , n

h
j , and Brj (which only depends on the stage) is the sequence of pairs

(Γk0

0 , Ev
k0

0), (Γk1

1 , Ev
k1

1), . . . , (Γ
kj−1

j−1 , Ev
kj−1

j−1) representing the current branch. Note that

Γ
kg
g is the set of formulas of the last node of the stage sg for every g ∈ {0, . . . , j − 1}.

• Reshj is a pair of the form (rh
j , uev

h
j) that is used to store partial result information.

More precisely, rh
j is a natural number that represents the earliest node n

y
x (i.e. x ≤ j)

that is reachable from nh
j . On the other hand, uevh

j is the set formed by the unfulfilled

eventualities of the current branch.

The information in Savehj is produced in a top-down manner, from parent to child, whereas

the information in Reshj is synthesized bottom-up, from children to parent. The bottom-up

synthesis of information starts once a terminal rule is applied (i.e. a leaf is generated). The

information synthesized bottom-up in Reshj is needed because an eventuality that appears in a

cyclic branch but is not fulfilled directly in such branch, can be fulfilled in some other reachable

branch.

In TTM the fulfillment of an eventuality depends only on one branch. Consequently, given a

satisfiable set of formulas as root set, an expanded open branch yields a model for the root set in

TTM whereas in [117] more than one cyclic branch may be required to obtain a cycle that gives

rise to a model for the set of formulas in the root. Additionally, nodes in TTM do not require so

much extra information. Moreover, given an unsatisfiable set of formulas, instead of expanded

non-fulfilling cyclic branches, TTM obtains closed branches (whose last nodes are inconsistent,

see Definition 3.3.5). For instance, if we consider the set of formulas {p,�(¬p ∨ ◦p), �¬p},
Schwendimann’s tableau method would obtain a tree that contains the same nodes as the tableau

in Figure 3.14 (a), but with the above indicated extra information in each node. Then, in the

right-most branch, the bottom-up synthesis would be necessary to detect that �¬p cannot be

fulfilled. By contrast, TTM obtains the closed tableau showed by means of Figures 3.12 and

3.13. The rule (U)2 together with the strategy expressed by means of the systematic tableau

algorithm in Figure 3.9 are the key for this different deductive approach for PLTL.

In order to detect whether an open cyclic branch is expanded, i.e. in order to decide whether

a cyclic branch is fulfilling, the systematic tableau algorithm for TTM does not directly check

whether each eventuality is fulfilled, instead it checks whether the eventualities that belong to

the first node of each stage of the cycle have been selected along the cycle (see Definition 3.3.12

3. Dual Systems of Tableaux and Sequents for PLTL 68

and Remarks 3.3.13 and 3.4.8). This is another remarkable difference with respect to the above

mentioned approaches.

The complexity of the two-pass methods is exponential (even in the average case) due to

the fact that the size of the graph is exponential in the size of the set of formulas in the root,

although some improvements such as not building the unreachable nodes can be considered (see

e.g. [81]). The worst case complexity for Schwendimann’s tableau method and TTM is doubly

exponential. However, it has been shown by means of experimental analysis (see e.g. [76])

that, in some cases, doubly exponential algorithms can outperform exponential ones because

the occurrence of the worst case in the doubly exponential algorithms is rare. We are convinced

that a practical implementation that incorporates the simplifications explained in Section 3.4.5

may compete with traditional methods in several cases –e.g. when most of the formulas (in

the context) are always-formulas– and even be faster in others, e.g. when satisfiability can be

detected without constructing the whole graph. Of course, a lot of experimental work needs

to be done in order to precisely compare the performance of these different approaches. As

a first step, we have implemented a preliminary prototype for the TTM tableau method which

is available online in http://www.sc.ehu.es/jiwlucap/TTM.html. A report about the

implementation details of this prototype for the TTM tableau method can be found in [63].

3.7.2 Sequent Systems

The sequent calculus FC introduced in [60] is the first finitary sequent calculus for PLTL that

dispenses with the cut rule and also with invariant-based rules. This cut-freeness and invariant-

freeness is achieved by means of the rule (U)2 and the strategy represented by the systematic

tableau algorithm for TTM. The sequent calculus FC is very similar to GTC. However, in order

to prove the completeness of FC, the weakening rule (Wk), as well as a hidden contraction, are

used in [60] (in Lemma 22 and Lemma 11, respectively). By contrast, the sequent calculus GTC

is weakening-free and contraction-free. In this sense, the completeness result obtained for GTC

is an improvement of the completeness result obtained for FC. This improvement is achieved

by using the duality of GTC with the tableau system TTM.

Traditional sequent systems include either an infinitary rule or an invariant-based rule. For

instance, in one of the sequent calculi presented in [105] we can find an infinitary rule that, in

terms of this dissertation, i.e., with non-relevant minor syntactical changes, is as follows:

∆, ϕ ` χ ∆, ◦ϕ ` χ ∆, ◦2ϕ ` χ . . .

∆, �ϕ ` χ

Note that the above rule contains infinite premises.

We can also find an invariant-based rule in the sequent calculi introduced in [105] which, in

our notation, can be presented as follows:

∆ ` ψ ψ ` ◦ψ ψ ` ϕ

∆ ` �ϕ

The above formulaψ is called the invariant formula. These kinds of invariant-based rules require

an additional search for the invariant that is not addressed by the sequent calculi. A similar

invariant-based rule can be found in e.g. [104, 121].

The cut-free and also invariant-free sequent calculus LT2 for PLTL introduced in [20] is right

handed. So that, sequents are of the form ` ψ1, . . . , ψn. The meaning of a sequent ` ψ1, . . . , ψn

3. Dual Systems of Tableaux and Sequents for PLTL 69

is T→ ψ1∨ . . .∨ψn or equivalentlyψ1∨ . . .∨ψn. This sequent calculus is dual to our sequent

calculus TTC in the sense that a TTC-proof for ∆ ` states that ∆ is unsatisfiable whereas an

LT2-proof for ` ∆ states that ∆ is valid, i.e., ∆ is true in every state of every PLTL-structure.

Additionally, the LT2-rule that corresponds to the TTM-rule (U)2 deals with annotated formulas

of the form ϕRHψ, 7 where the annotation or history H is a finite set of finite sets of formulas

{Γ1, . . . ,Γn}. If Γi = {ϕ1, . . . , ϕm}, the meaning of Γi is ϕ1∨ . . .∨ϕm and the corresponding

formula for H is Γ1 ∧ . . . ∧ Γn. The formula represented by the annotated formula ϕRHψ is

(ϕ ∨ ¬H)R (ψ ∨ ¬H). The key rule that deals with the annotated formulas is as follows:

` ∆, ψ,¬H ` ∆, ◦(ϕRH,∆ψ), ϕ,¬H

` ∆, ϕRHψ

where H,∆ means H ∪{∆} in the subindex of the connective R . This rule is similar to our

rule (U)2. As already mentioned in Section 3.1, the idea behind the way in which eventualities

are dealt with and the strategy that leads to completeness coincide in the sequent calculi LT2

and TTC, even in the fairness requirement in the selection of eventualities. However, unlike TTC,

the sequent calculus LT2 incorporates the selection of eventualities in the rule system by means

of a rule that carries out the selection of an eventuality by generating an annotated formula

ϕR ∅ψ from a formula ϕRψ. Additionally, the strategy of sticking to a selected eventuality

–which is an annotated formula– until it is fulfilled, is also incorporated in the system sequent

by not allowing more than one annotated formula in each sequent of a derivation. Note also

that annotated formulas do not belong to the logical language. In other words, an additional

variable –or annotation– for saving the history is used in LT2 whereas in TTC all the formulas

belong to the logical language and no extra variable is used for history management. Moreover,

in TTC, the restrictions that lead to completeness are not incorporated in the sequent system. As

a consequence, we allow different strategies and different derivations, although we follow the

systematic tableau algorithm to guarantee completeness.

7 Note that the use of the connective R on the right-hand side of a sequent corresponds to the use of the connective

U on the left-hand side. So that, a formula of the form ϕRψ on the right-hand side of a sequent represents an

eventuality.

4. INVARIANT-FREE CLAUSAL TEMPORAL RESOLUTION FOR PLTL

4.1 Introduction

In this chapter, we deal with clausal resolution for PLTL. The method of resolution, invented by

J.A. Robinson in 1965 ([111]), is an efficient refutation proof method that has provided the basis

for several well-known theorem provers for classical logics. As well as tableau methods, in the

case of decidable logics, resolution methods yield decision procedures for the satisfiability of

sets of formulas.

Different approaches have been proposed in the literature for adapting the classical reso-

lution method to temporal logic but without consensus in the clausal normal form or in the

temporal resolution itself. The earliest temporal resolution method [1] uses a non-clausal ap-

proach, hence a large number of rules are required for handling general formulas instead of

clauses. There is also early work (e.g. [12, 29]) related to clausal resolution for (less expressive)

sublogics of PLTL. In the language considered in [12] there are no eventualities at all, whereas

in [29] the authors consider the strictly less expressive sublanguage of PLTL defined by using

only ◦ and � as temporal connectives. The early clausal method presented in [126] tackles full

PLTL and uses a clausal form similar to ours, but completeness is only achieved in absence of

eventualities. More recently, a fruitful trend of clausal temporal resolution methods, starting

with the seminal paper of M. Fisher [40], achieves completeness for full PLTL by means of a

specialized temporal resolution rule that needs to generate an invariant formula from a set of

clauses that behaves as a loop. The methods and techniques developed in such an approach

have been successfully adapted to Computation Tree Logic (CTL) (see [18]) and some exten-

sions of CTL such as ECTL and ECTL+ (see [17, 16]), but not to Full Computation Tree Logic

(CTL?). It is remarkable that the clausal normal forms used in [12], [29], [126] and [40] are

quite different.

In this thesis, we introduce a new clausal resolution method that is sound and complete

for full PLTL. Our method is based on the dual methods of tableaux and sequents for PLTL

presented in the previous chapter. On this basis we are able to perform clausal resolution in the

presence of eventualities avoiding the requirement of invariant generation. We define a notion of

clausal normal form and prove that every PLTL-formula can be translated into an equisatisfiable

set of clauses. Our resolution mechanism explicitly simulates the transition from one world to

the next one. Inside each world, we apply two kinds of rules: (1) the resolution and subsumption

rules and (2) the fixpoint rules for decomposing temporal literals. The latter split a clause with

a temporal literal into a finite number of new clauses. We prove that the method is sound and

complete. In fact, it finishes for any set of clauses deciding its (un)satisfiability, hence it gives

rise to a new decision procedure for PLTL. In Section 4.8 we compare our approach with the

methods in [29, 1, 126, 40]. We also give more details on the relation between TRS-resolution

and the TTM tableau method that is its forerunner.

Outline of the chapter. In Section 4.2 we introduce the syntactic notion of clause (Subsec-

4. Invariant-Free Clausal Temporal Resolution for PLTL 72

tion 4.2.1), we show that any PLTL-formula can be transformed into a set of clauses (Subsection

4.2.2) and we analyze the complexity of this transformation (Subsection 4.2.3). In Section 4.3

we introduce the system TRS of inference rules in two subsections: the first one presents the ba-

sic rules and the second one presents the rule for solving eventualities in a way that prevents their

indefinite delay. Then, in Section 4.4, we present the notion of TRS-derivation, provide some

sample derivations and study the relationship between TRS-resolution and classical (proposi-

tional) resolution. The soundness of TRS is proved in Section 4.5. In Section 4.6 we propose an

algorithm for systematically obtaining, for any set of clauses Γ, a finite derivation that proves

that Γ is either satisfiable or unsatisfiable. We also show some examples of application of the

algorithm in Subsection 4.6.2. An important issue for this algorithm is to prove its termination

for every input. This proof is presented in Subsection 4.6.3. In Subsection 4.6.4 we provide a

bound of the worst-case complexity of the algorithm. In Section 4.7, we prove the completeness

of TRS-resolution on the basis of the algorithm that outputs a finite derivation for every set of

clauses. Finally, in Section 4.8 we discuss significant related work.

4.2 The Clausal Language

In this section we first define the conjunctive normal form of a formula. This is the basis for our

notion of clause. In the second subsection we explain how to convert any formula into a set of

clauses. Thirdly, we give the worst case complexity of the translation.

4.2.1 Conjunctive Normal Form for Formulas

Our notion of literal extends the classical notion of propositional literal. This extension intro-

duces both temporal literals and (possibly empty) prefixed chains of the connective ◦ in front of

temporal and propositional literals. That is, using the usual BNF-notation:

P ::= p | ¬p

T ::= P1 U P2 | P1RP2 | �P | �P

L ::= ◦iP | ◦iT

where p ∈ Prop and i ∈ IN . P stands for a propositional literal, T for a (basic) temporal literal

and L for a literal. In the sequel, we use the term literal in the latter sense and only if needed we

will specify whether a literal is propositional or temporal.1 Sub- and superscripts are used when

necessary.

We extend the classical notion of the complement L̃ of a literal L as follows:

p̃ = ¬p, ¬̃p = p, ◦̃L = ◦L̃, P̃1 U P2 = P̃1R P̃2 and P̃1RP2 = P̃1 U P̃2

It is easy to see that �̃P = � P̃ and �̃P = � P̃ . Although �P and �P can be respectively

defined by P̃ U P and P̃ RP , we have intentionally introduced �P and �P as temporal literals

because of technical convenience.

A now-clauseN is a finite disjunction of literals (above denoted by L):

N ::= ⊥ | L ∨N

1 Note that ◦ is the only temporal connective that does not occur in the so-called (basic) temporal literals.

4. Invariant-Free Clausal Temporal Resolution for PLTL 73

where ⊥ represents the empty disjunction (or the empty now-clause). We identify finite dis-

junctions of literals with sets of literals. Hence, we assume that there are neither repetitions nor

any established order in the literals of a clause. This assumption is especially advantageous for

presenting the resolution rule, because it avoids factoring and ordering problems. However, for

readability, we always write the disjunction symbol between the literals of a clause.

A clause is either a now-clause or a now-clause preceded by the connective �

C ::= N | � N

A clause of the form � N is called an always-clause. In this chapter, we use the superscript b

varying in {0, 1} to represent a formula with or without a prefixed unary connective (in particular

a clause with or without a prefixed �). For instance, �
bϕ is �ϕ whenever b is 1 and ϕ whenever

b is 0. Along the rest of the chapter superscripts starting by b (from bit) range in {0, 1}. These

kinds of superscripts are notation, hence they are not part of the syntax. Note that the formula

�
b⊥ represents the two possible syntactic forms of the empty clause, as now- or always-clause.

For a clause C = �
b(L1 ∨ . . . ∨ Ln) we denote by Lits(C) the set {L1, . . . , Ln} and for a

set of clauses Γ we denote by Lits(Γ) the set
⋃

C∈Γ Lits(C).

Definition 4.2.1. The set of all clauses in Γ that contain the literal L is denoted by Γ � {L}, i.e.

Γ � {L} = {C ∈ Γ | L ∈ Lits(C)}.

Since ◦ distributes over disjunction, for a given now-clause N = L1 ∨ . . .∨ Ln, we denote

by ◦N the now-clause ◦L1 ∨ . . . ∨ ◦Ln. We say that a clause C is ◦-free if Lits(C) does not

contain any literal of the form ◦L.

Definition 4.2.2. Given a set of clauses Γ, we define alw(Γ) = {�N | �N ∈ Γ} and now(Γ) =
Γ \ alw(Γ).

Note that a formula of the form �P , can be understood as a now-clause consisting of one

temporal literal or as an always-clause consisting of one propositional literal. If a set of clauses

Γ contains this kind of formulas, by convention those formulas are considered to be in alw(Γ).

Definition 4.2.3. For any set of clauses Γ

(a) drop�(Γ) = now(Γ)∪{N | �N ∈ alw(Γ)}.

(b) BTL(Γ) = {T | T ∨N ∈ drop�(Γ)}.

(c) unnext(Γ) = alw(Γ) ∪ {N | � b(◦N) ∈ Γ}.

The set drop�(Γ) is formed by all the now-clauses in Γ together with the inner now-clause

of all the always-clauses in Γ.

BTL(Γ) is the set of all the (basic) temporal literals that occur in Γ. Hence, BTL(Γ) is a

subset of Lits(Γ). It is worth noting that any literal in Lits(Γ) that does not belong to BTL(Γ)
is either a propositional literal P or a literal of the form ◦L, according to the grammar at the

beginning of this subsection.

The set unnext(Γ) consists of all the clauses that should be satisfied at the next state of a

state that satisfies Γ. This definition of unnext is an adaptation to clauses of the operator unnext

presented in Definition 3.3.4. Note also that unnext implicitly uses the equivalence between

�N and {N,�◦N}.

4. Invariant-Free Clausal Temporal Resolution for PLTL 74

A formula is in conjunctive normal form whenever it is a conjunction of clauses. For sim-

plicity, we identify a set of clauses with the conjunction of the clauses in it. Concretely, we

identify any formula in conjunctive normal form

N1 ∧N2 ∧ . . .∧Nr ∧ �Nr+1 ∧ . . .∧ �Nk

with the set of clauses

{N1, N2, . . . , Nr,�Nr+1, . . . ,�Nk}

where each Ni is a now-clause, k ≥ 1 and r ∈ {0, . . . , k}.

4.2.2 Transforming Formulas into CNF

In this subsection we present a transformation CNF which maps any formula ϕ to its conjunctive

normal form CNF(ϕ). First, we show that any formula ϕ can be transformed into another

formula NNF(ϕ), called the negation normal form of ϕ, such that every connective ¬ is in

front of a proposition. Second, we introduce an intermediate notion of normal form, called

distributed normal form, denoted DtNF(ϕ) for input formula ϕ. The transformations NNF and

DtNF preserve logical equivalence. Finally we present the transformation of any formula to

its conjunctive normal form. The formulas ϕ and CNF(ϕ) are equisatisfiable (Definition 2.2.2)

although, in general, they are not logically equivalent.

Proposition 4.2.4. For any formula ϕ there exists a logically equivalent formula NNF(ϕ) such

that χ ∈ Prop for every subformula of NNF(ϕ) of the form ¬χ.

Proof. NNF(ϕ) is obtained by repeatedly applying to any subformula of ϕ the following reduc-

tion rules until no one can be applied

¬¬ψ
nnf
7−→ ψ ¬(ψ1 ∨ ψ2)

nnf
7−→ ¬ψ1 ∧ ¬ψ2

¬◦ψ
nnf
7−→ ◦¬ψ ¬(ψ1 ∧ ψ2)

nnf
7−→ ¬ψ1 ∨ ¬ψ2

¬�ψ
nnf
7−→ �¬ψ ¬(ψ1 U ψ2)

nnf
7−→ ¬ψ1R¬ψ2

¬�ψ
nnf
7−→ �¬ψ ¬(ψ1Rψ2)

nnf
7−→ ¬ψ1 U ¬ψ2

It is routine to see that the relation
nnf
7−→ (defined above) preserves logical equivalence and the

process of repeatedly applying the transformation
nnf
7−→ stops after a finite number of steps.

Therefore, ϕ and NNF(ϕ) are logically equivalent.

Now, in the distributed normal form, every connective ¬ is in front of a propositional vari-

able, every connective ∨ is distributed over ∧, temporal connectives that are distributive over

∨ and ∧ are distributed, for formulas of the form ϕU (δ U ψ) and of the form ϕR (δRψ) the

subformulas ϕ and δ are different and non-empty sequences of the form � . . .� and of the form

� . . .� are of length 1.

Definition 4.2.5. A formula is in distributed normal form if it has the form (γ1
1 ∨ . . . ∨ γ

k1

1) ∧

. . .∧ (γ1
n ∨ . . .∨ γ

kn
n) where each γ

j
g denotes a formula of one of the following forms

• ◦iP

4. Invariant-Free Clausal Temporal Resolution for PLTL 75

• ◦i(αR β) for some α and β 6= αRψ for any ψ

• ◦i(β U α) for some β and α 6= β U ψ for any ψ

• ◦i�β for some β 6= �ψ for any ψ

• ◦i�α for some α 6= �ψ for any ψ

where α and β denote two special cases of distributed normal form. Concretely, β stands for

a formula of the form (γ1
1 ∨ . . . ∨ γ

k1

1) with k1 ≥ 1 and α stands for either a formula γ1
1 or a

formula (γ1
1∨. . .∨γ

k1

1)∧. . .∧(γ1
n∨. . .∨γ

kn
n) with n ≥ 2 and kh ≥ 1 for every h ∈ {1, . . . , n}.

Note that if a formula is in distributed normal form then it is also in negation normal form.

Proposition 4.2.6. For any formula ϕ there exists a logically equivalent formula DtNF(ϕ) such

that DtNF(ϕ) is in distributed normal form.

Proof. First, we transform ϕ into NNF(ϕ) and then we repeatedly apply to NNF(ϕ) the follow-

ing reduction rules

(ϕ1 ∧ ϕ2) ∨ ψ
dtnf
7−→ (ϕ1 ∨ ψ) ∧ (ϕ2 ∨ ψ) ψ ∨ (ϕ1 ∧ ϕ2)

dtnf
7−→ (ψ ∨ ϕ1) ∧ (ψ ∨ ϕ2)

◦(ϕ1 ∨ ϕ2)
dtnf
7−→ ◦ϕ1 ∨ ◦ϕ2 ◦(ϕ1 ∧ ϕ2)

dtnf
7−→ ◦ϕ1 ∧ ◦ϕ2

ψ U (ϕ1 ∨ ϕ2)
dtnf
7−→ (ψU ϕ1) ∨ (ψ U ϕ2) ψR (ϕ1 ∧ ϕ2)

dtnf
7−→ (ψRϕ1) ∧ (ψRϕ2)

(ϕ1 ∧ ϕ2)U ψ
dtnf
7−→ (ϕ1U ψ) ∧ (ϕ2 U ψ) (ϕ1 ∨ ϕ2)Rψ

dtnf
7−→ (ϕ1Rψ) ∨ (ϕ2Rψ)

� (ϕ1 ∨ ϕ2)
dtnf
7−→ �ϕ1 ∨ �ϕ2 � (ϕ1 ∧ ϕ2)

dtnf
7−→ �ϕ1 ∧ �ϕ2

ψ1 U (ψ1 U ψ2)
dtnf
7−→ ψ1 U ψ2 ψ1R (ψ1Rψ2)

dtnf
7−→ ψ1Rψ2

��ψ
dtnf
7−→ �ψ ��ψ

dtnf
7−→ �ψ

It is routine to see that this reduction always terminates giving a formula in distributed normal

form. Additionally, it must be proved that every
dtnf
7−→-rule preserves logical equivalence. For

that, the only non-trivial
dtnf
7−→-rules are the ones for transforming ψ U (ϕ1 ∨ϕ2), (ϕ1 ∧ϕ2)U ψ,

ψR (ϕ1 ∧ ϕ2), and (ϕ1 ∨ ϕ2)Rψ. Here, we give the proof details for the first one. The re-

maining three are similar.

Suppose that 〈M, sj〉 |= ψ U (ϕ1 ∨ϕ2). Then, there exists k ≥ j such that 〈M, sk〉 |= ϕ1 ∨ϕ2

and 〈M, si〉 |= ψ for every i such that j ≤ i < k. Hence, for such k, either 〈M, sk〉 |= ϕ1 or

〈M, sk〉 |= ϕ2. In the former case, 〈M, sj〉 |= ψU ϕ1, whereas in the latter 〈M, sj〉 |= ψ U ϕ2.

Therefore 〈M, sj〉 |= (ψU ϕ1) ∨ (ψU ϕ2).

Conversely, if 〈M, sj〉 |= (ψU ϕ1) ∨ (ψU ϕ2), then either 〈M, sj〉 |= (ψU ϕ1) or 〈M, sj〉 |=
(ψ U ϕ2). Hence, there exists k ≥ j such that 〈M, si〉 |= ψ for all i such that j ≤ i < k and

〈M, sk〉 |= ϕ1 or 〈M, sk〉 |= ϕ2. Then, 〈M, sk〉 |= ϕ1 ∨ ϕ2 and 〈M, si〉 |= ψ for every i such

that j ≤ i < k. Therefore, 〈M, sj〉 |= ψU (ϕ1 ∨ ϕ2).

As the following theorem shows, we will use the distributed normal form as a preliminary

step for transforming a formula into its conjunctive normal form.

4. Invariant-Free Clausal Temporal Resolution for PLTL 76

Theorem 4.2.7. For any formula ϕ there exists an equisatisfiable formula CNF(ϕ) such that

CNF(ϕ) is in conjunctive normal form.

Proof. First, we transform ϕ into DtNF(ϕ). Second, we repeatedly apply the following rules

until no one can be applied. In the rules bellow ψ is the whole formula (in distributed normal

form) and the expressions of the form ψ[α⇒ β] denote the formula obtained by simultaneously

replacing all the occurrences of the subformula α in ψ by the formula β, where α is any non-

literal subformula of any conjunct of ψ that is not a clause yet.

ψ
cnf
7−→ ψ[◦i(ϕ1 U ϕ2)⇒ ◦

i(p1 U p2)] ∧ CNF(� (¬p1 ∨ ϕ1)) ∧ CNF(�(¬p2 ∨ ϕ2))

ψ
cnf
7−→ ψ[◦i(ϕ1Rϕ2)⇒ ◦

i(p1R p2)] ∧ CNF(� (¬p1 ∨ ϕ1)) ∧ CNF(�(¬p2 ∨ ϕ2))

ψ
cnf
7−→ ψ[◦i�γ ⇒ ◦i�p] ∧ CNF(�(¬p ∨ γ))

ψ
cnf
7−→ ψ[◦i� γ ⇒ ◦i� p] ∧ CNF(�(¬p ∨ γ))

ψ
cnf
7−→ ψ[�(γ ∨ �χ)⇒ � (γ ∨ �p)] ∧ CNF(� (¬p ∨ χ))

ψ
cnf
7−→ ψ[�(�χ ∨ γ)⇒ � (�p ∨ γ)] ∧ CNF(� (¬p ∨ χ))

where p, p1 and p2 are fresh new propositional variables and the formula χ is not a propositional

literal. Note that the new conjunctions of the form CNF(� (¬ψ1 ∨ψ2)) serve to define the fresh

new symbols ψ1. We will prove that the transformation from ϕ to CNF(ϕ) stops after a finite

number of steps and both formulas are equisatisfiable.

On one hand, each application of a
cnf
7−→-rule reduces the depth of (at least) one non-literal

subformula of a formula in DtNF-form. Additionally, the number of fresh new variables is

bounded by the number of subformulas. These two facts ensure termination.

On the other hand we prove, by structural induction, that the formulas in both sides of each
cnf
7−→-rule are equisatisfiable. Here we only show the details for the first rule above (the remaining

rules are similar or particular cases). Suppose that 〈M, sj〉 |= ψ whereψ is in distributed normal

form and ◦i(ϕ1 U ϕ2) is a non-literal subformula of any conjunct of ψ that is not a clause yet.

Then, since p1 and p2 are fresh, p1, p2 6∈ VM(sk) for all k ≥ 0. Therefore, we defineM′ to be

the extension ofM such that ph ∈ VM′(s′k) iff 〈M, sk〉 |= ϕh for all k ≥ 0 and h ∈ {1, 2}.
As a consequence, for all k ≥ 0, 〈M, sk〉 |= ◦

i(ϕ1 U ϕ2) iff 〈M′, s′k〉 |= ◦
i(p1U p2) and

〈M′, s′k〉 |= � (¬p1 ∨ ϕ1) ∧ � (¬p2 ∨ ϕ2). Hence,

〈M′, s′k〉 |= ψ[◦i(ϕ1 U ϕ2)⇒ ◦
i(p1 U p2)] ∧ � (¬p1 ∨ ϕ1) ∧ � (¬p2 ∨ ϕ2).

By the induction hypothesis, the transformation of � (¬p1∨ϕ1) and � (¬p2∨ϕ2) to conjunctive

normal form preserves equisatisfiability.

Conversely, consider any model M of the right-hand part of the first
cnf
7−→-rule. If 〈M, s0〉 6|=

◦i(p1 U p2), then 〈M, s0〉 must satisfy some other disjunct in every conjunct of the formula ψ

where ◦i(p1 U p2) occurs in. ThereforeM is also a model of ψ. If 〈M, s0〉 |= ◦
i(p1 U p2), then

there exists a j ≥ i such that 〈M, sj〉 |= p2 and 〈M, sk〉 |= p1 for all k such that i ≤ k < j.

Additionally, for all k ≥ 0, 〈M, sk〉 |= � (¬ph ∨ ϕh) for h ∈ {1, 2}. Therefore, 〈M, sj〉 |= ϕ2

and 〈M, sk〉 |= ϕ1 for all k such that i ≤ k < j. Hence, 〈M, s0〉 |= ◦
i(ϕ1 U ϕ2), which means

thatM must be a model of ψ.

4. Invariant-Free Clausal Temporal Resolution for PLTL 77

Example 4.2.8. Let us consider the following formula ϕ = ¬(p ∧ r ∧ � (¬(p ∧ r) ∨ ◦(p ∧ r)))
Note that ϕ is equivalent to ¬� (p ∧ r) by means of induction on time. First, we transform ϕ

into

NNF(ϕ) = ¬p ∨ ¬r ∨ � (p ∧ r ∧ ◦(¬p ∨ ¬r))

Then, its distributed normal form is

DtNF(ϕ) = ¬p ∨ ¬r ∨ � (p ∧ r ∧ (◦¬p ∨ ◦¬r))

Finally, the conjunctive (or clausal) normal form of ϕ is

CNF(ϕ) = (¬p ∨ ¬r ∨ �a) ∧ CNF(� (¬a ∨ (p ∧ r ∧ (◦¬p ∨ ◦¬r)))) =

= (¬p ∨ ¬r ∨ �a) ∧ � (¬a ∨ p) ∧ � (¬a ∨ r) ∧ � (¬a ∨ ◦¬p ∨ ◦¬r)

where a new propositional variable a ∈ Prop has been introduced and new clauses that define

the variable a have been added. The formula CNF(ϕ) can also be understood as the set of

clauses {(¬p ∨ ¬r ∨ �a),�(¬a ∨ p),�(¬a ∨ r),�(¬a ∨ ◦¬p ∨ ◦¬r)}.

4.2.3 Complexity of the Translation

In this subsection we show that the worst case of the translation to CNF is bounded by an

exponential on the size of the input formula.

Definition 4.2.9. Given a formula ϕ, we define the size of ϕ, namely size(ϕ), as the number of

connectives cnt(ϕ) plus the number of propositional variables, pv(ϕ) in ϕ.

Proposition 4.2.10. For any formula ϕ, size(CNF(ϕ)) ∈ 2O(size(ϕ)).

Proof. The complexity of the first transformation from ϕ to NNF(ϕ) is linear because the worst

case is when the connective ¬ appears only once and it occurs as the outermost connective, i.e.

ϕ is of the form ¬ψ for some formula ψ. In such a case ¬ will end up appearing in front of

every propositional variable. Hence, size(NNF(ϕ)) = cnt(ϕ)− 1 + 2× pv(ϕ) which is smaller

or equal than 2× size(ϕ).

In the second transformation to DtNF(ϕ), each use of the distribution laws can almost double

the size of the initial formula. So, we only can ensure that size(DtNF(ϕ)) ≤ 2size(NNF(ϕ)) or

equivalently that size(DtNF(ϕ)) ∈ O(2size(ϕ)).

Finally, the last transformation to CNF(ϕ) has again linear complexity. This is basically because

–in the rules of Theorem 4.2.7– each new variable replaces a subformula of a formula ψ that is

already in DtNF form.

Summarizing, size(CNF(ϕ)) ∈ O(2O(size(ϕ))) = 2O(size(ϕ)).

We would like to remark that the exponential blow-up is only due –as in classical cnf– to

the distribution laws and it can be prevented using fresh variables as it is made in the so-called

definitional cnf (see [39]). Therefore, as in classical cnf, for practical purposes, we could use

new variables to achieve a transformation to clausal form of linear complexity.

4. Invariant-Free Clausal Temporal Resolution for PLTL 78

(Res)
�

b(L∨N) �
b′(L̃ ∨N ′)

�
b×b′(N ∨N ′)

Figure 4.1: The Resolution Rule

(Sbm) {� bN,� bN ′} 7−→ {� bN ′} if N ′ ⊆ N

Figure 4.2: The Subsumption Rule

4.3 The Temporal Resolution Rules

In this section, we present the rules of our temporal resolution system. In addition to a resolution-

like rule (Res), the Temporal Resolution System TRS includes a subsumption rule (Sbm) and

also the three so-called fixpoint rules –(RFix), (U Fix) and (U Set)– for decomposing tem-

poral literals. The rule (Sbm) is a natural extension of (traditional) clausal subsumption. The

rules (RFix) and (U Fix) are based on the usual inductive definition of the connectives R
and U , respectively, whereas (U Set) is based on a more complex inductive definition of U
(already explained in the previous chapter of this thesis) that is the basis of our approach. There-

fore, this section is split into two subsections. The first subsection is devoted to the first four

rules which we call Basic Rules. The details about the rule (U Set) are explained in the second

subsection. The corresponding derived rules for � and � are showed in both subsections. In the

sequel, the rules explained in this section are called TRS-rules and the system is called TRS.

4.3.1 Basic Rules

Considering that Γ is the current set of clauses, the resolution rule (Res) in Figure 4.1 is applied

to two clauses (the premises) in Γ and obtains a new clause (the resolvent). The rule (Res) is

a very natural generalization of classical resolution for always-clauses, and it is written in the

usual format of premises and resolvent separated by a horizontal line. (Res) applies to two

clauses (the premises) that contain two complementary literals. Both premises can be headed

or not by an always connective (depending on superscripts b and b′ whose range is {0, 1}). By

means of the product b × b′ in the superscript of the resolvent, only when both premises are

always-clauses, the resolvent is also an always-clause. In particular, when N and N ′ are both

⊥, the resolvent is �
b×b′⊥, i.e. either �⊥ or ⊥. The resolvent is added to Γ while the premises

remain in Γ. That is, each application of the rule (Res) adds a clause to the current set of

clauses. On the contrary, the remaining TRS-rules replace a set of clauses Σ ⊆ Γ with another

set of clauses, namely Ψ. We write them as transformation rules Σ 7→ Ψ. The sets Σ and Ψ

are respectively called the antecedent and the consequent and they are in general equisatisfiable

but in some cases logically equivalent. So that, each application of these transformation rules

removes the clauses in Σ from the current set of clauses and adds the clauses in Ψ.

The first transformation rule is the subsumption rule (Sbm) in Figure 4.2, which generalizes

4. Invariant-Free Clausal Temporal Resolution for PLTL 79

(RFix) {� b((P1RP2) ∨N)} 7−→ {� b(P2 ∨N)
�

b(P1 ∨ ◦(P1RP2) ∨N)}

(U Fix) {� b((P1 U P2) ∨N)} 7−→ {� b(P2 ∨ P1 ∨N)

�
b(P2 ∨ ◦(P1 U P2) ∨N)}

Figure 4.3: The Fixpoint Rules (RF ix) and (U F ix)

(�Fix) {� b(�P ∨N)} 7−→ {� b(P ∨N), �
b(◦�P ∨N)}

(�Fix) {�b(�P ∨N)} 7−→ {� b(P ∨ ◦�P ∨N)}

Figure 4.4: The Fixpoint Rules (�F ix) and (�F ix)

classical subsumption to always-clauses.2 This rule can be applied to any set that contains a

clause of the form �
bN and a clause of the form �

bN ′, such that N ′ ⊆ N . The application of

the rule (Sbm) eliminates the clause �
bN while the clause �

bN ′ remains. Regarding these two

clauses in the antecedent, it is said that the clause �
bN is subsumed by the clause �

bN ′. Our

resolution mechanism requires the rule (Sbm) for completeness. Actually, subsumption is used

in Lemma 4.6.13 which allows to prove Theorem 4.6.14.

The fixpoint rules (RFix) and (U Fix) in Figure 4.3 serve to replace a clause of the form

�
b(T∨N) with a logically equivalent set of clauses. The rule (RFix) splits the temporal literal

P1RP2 by using the well-known inductive definition of the connective R : P1RP2 ≡ P2 ∧
(P1 ∨ ◦(P1RP2)). Likewise, the rule (U Fix) uses the inductive definition of the connective

U : P1 U P2 ≡ P2 ∨ (P1 ∧ ◦(P1 U P2)). In both cases, a simple distribution gives the equivalent

set of two clauses that is shown in the consequent of each rule. In order to illustrate this point

let us consider the case of the connective U . By the inductive definition of U and distributivity

of ∨ over ∧,

P1 U P2 ≡ P2 ∨ (P1 ∧ ◦(P1 U P2)) ≡ (P2 ∨ P1) ∧ (P2 ∨ ◦(P1 U P2)).

Hence, �
b((P1 U P2)∨N) is logically equivalent to the conjunction of the two clauses �

b(P2∨
P1 ∨N) and �

b(P2 ∨ ◦(P1 U P2)∨N). So that, the antecedent of the rule (U Fix) is logically

equivalent to the conjunction of the two clauses in the consequent.

Since the connectives � and � can be seen as particular cases of R and U respectively, the

rules in Figure 4.4 constitute the corresponding specializations of the rules in Figure 4.3.

4.3.2 The Rule (U Set)

The rule (U Set) in Figure 4.5 is an adaptation to the resolution system of the TTM-rule (U)2
presented in Figure 3.1. The construction of the consequent of the rule (U Set) takes into

2 Note that the same superscript b occurs in both clauses.

4. Invariant-Free Clausal Temporal Resolution for PLTL 80

(U Set) Φ ∪ {� bi((P1 U P2) ∨Ni) | 1 ≤ i ≤ n}

7−→ Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}

∪ {P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}

∪ CNF(def(a, P1,∆))

∪ {� (◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1

∆ = now(Φ)
a ∈ Prop is fresh

def(a, P1,∆) = � (¬a ∨ (P1 ∧ ¬∆)) if ∆ 6= ∅
def(a, P1,∆) = �¬a if ∆ = ∅

Figure 4.5: The Rule (U Set)

account, not only a (non-empty) set whose clauses include a temporal atom P1 U P2, but also

the remaining clauses. Consequently, the antecedent of the rule (U Set) is

Φ∪ {�bi((P1 U P2) ∨Ni) | 1 ≤ i ≤ n}

where n ≥ 1 and Φ stands for the set consisting of all the remaining clauses in the set to which

(U Set) is applied. The antecedent of (U Set) must be interpreted as a partition of the whole

set of clauses (on which we are applying temporal resolution) into two sets. The second set

{� bi((P1 U P2) ∨Ni) | 1 ≤ i ≤ n} in the antecedent is a non-empty set of clauses that contain

the same (basic) temporal literal P1 U P2. It is worth noting that the literal P1 U P2 can also

occur in Φ. The opposite restriction is not required for soundness. However, for achieving

completeness the rule (U Set) is applied over a partition of the current set of clauses into a set

formed by all the clauses that include P1 U P2 and the remaining clauses.

Example 4.3.1. Let us apply the rule (U Set) to the eventuality rU s in the set of clauses

{p, ◦q,�u,� ((rU s) ∨ (◦t))}.

Then Φ = {p, ◦q,�u} and ∆ = now(Φ) = {p, ◦q}, where now is the operator on sets of

clauses introduced in Definition 4.2.2. Therefore, the consequent of this (U Set) application is

{p, ◦q,�u} ∪ {s ∨ r ∨ ◦t, s ∨ ◦(aU s) ∨ ◦t}
∪ {�(¬a ∨ r),�(¬a ∨ ¬p ∨ ◦¬q)}
∪ {�((◦(rU s)) ∨ (◦◦t))}

where a is the fresh variable and def(a, r,∆) = {� (¬a ∨ r),�(¬a ∨ ¬p ∨ ◦¬q)}. Below we

justify the construction of ∆ = now(Φ) for excluding always-clauses from the definition of the

fresh variable a. We call ∆ the context. Let us give a clue on context handling through this

example. If we used the whole set Φ instead of ∆ in the definition of a, then the second clause

in def(a, r,Φ) would be � (¬a ∨ ¬p ∨ ◦¬q ∨ �¬u). However, since �u is in Φ, the clause �u

also belongs to the consequent. Therefore, the disjunct �¬u of the above clause, would never

be satisfied.

4. Invariant-Free Clausal Temporal Resolution for PLTL 81

Next, we explain the intuition behind the rule (U Set) and introduce the definition of con-

text.

The crucial idea behind the rule (U Set) (and, hence, behind the TRS resolution system)

is based on the equisatisfiability result presented in Proposition 3.3.3 (Section 3.3.2). Here we

provide an adaptation of Proposition 3.3.3 to the clausal language.

Proposition 4.3.2. Let ∆ be a set of formulas, Σ1 = ∆∪{P2 ∨ P1 ∨ β, P2 ∨ ◦(P1 U P2) ∨ β}
and Σ2 = ∆∪{P2∨P1∨β, P2∨◦((P1∧¬∆)U P2)∨β}. Then Σ1 and Σ2 are equisatisfiable.

Proof. Suppose that Σ1 has a modelM. If 〈M, s0〉 |= ∆∪{P2} or 〈M, s0〉 |= ∆∪{β}, then

M is also a model of Σ2. Otherwise, 〈M, s0〉 |= {P1, ◦(P1 U P2)} and P2 should be satisfied

in some state sj with j ≥ 1 and P1 is true in all the states sh such that 0 ≤ h < j. Let k be

the greatest index in {0, . . . , j − 1} such that 〈M, sk〉 |= ∆ and ∆ is not satisfied in the states

sk+1, . . . , sj−1 ofM. Then, we can construct a modelM′ of ∆ by simply deleting the states

s0, . . . , sk−1 inM. As a consequence of the choice of k, the PLTL-structureM′ is also a model

of {P1, ◦((P1∧¬∆)U P2)}. Hence,M′ |= Σ2. Conversely, any model of Σ2 is a model of Σ1.

Now, we transform the antecedent of (U Set) into its consequent, while preserving equisat-

isfiability (indeed, logical equivalence is preserved at most steps).

The first transformation step is based on the equivalence �ψ ≡ ψ ∧ �◦ψ. Consequently, each

clause �
bi((P1U P2) ∨ Ni) such that bi = 1 is split (while clauses with bi = 0 remain un-

changed). So that, the set in the antecedent of (U Set):

Ψ0 = Φ ∪ {�bi((P1 U P2) ∨Ni) | 1 ≤ i ≤ n}

is equivalent to

Ψ1 = Φ ∪ {(P1 U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {� bi((P1 U P2) ∨Ni) | bi = 1, 1 ≤ i ≤ n}

Then, as explained for the rule (U Fix), the set Ψ1 is equivalent to the set

Ψ2 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦(P1 U P2) ∨Ni | 1 ≤ i ≤ n}

∪ {� bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

Let Υ be the last set in the description of Ψ2, that is

Υ = {� bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n},

we replace the above underlined set (inside Ψ2) with the following set

{P2 ∨ ◦((P1 ∧ ¬(Φ∪Υ))U P2) ∨Ni | 1 ≤ i ≤ n} (4.1)

Hence, we obtain

Ψ3 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦((P1 ∧ ¬(Φ∪Υ))U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {�bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

By Proposition 4.3.2, the sets Ψ2 and Ψ3 are equisatisfiable. Additionally, any set of the form

{�χ1,�χ2, . . . ,�χm, ◦((ϕ ∧ (γ ∨ ¬�χ1 ∨ ¬�χ2 ∨ . . . ∨ ¬�χm))U ψ)}

4. Invariant-Free Clausal Temporal Resolution for PLTL 82

is equivalent to the set

{�χ1,�χ2, . . . ,�χm, ◦((ϕ ∧ γ)U ψ)}

because if the formulas χ1, χ2, . . . , χm are true from now forever, then the truth of the formula

◦((ϕ ∧ (γ ∨ ¬�χ1 ∨ ¬�χ2 ∨ . . .∨ ¬�χm))U ψ)

does not depend on the truth of the disjunction¬�χ1 ∨ ¬�χ2 ∨ . . . ∨ ¬�χm which should be

false. Consequently, it is not necessary to consider the clauses that belong to alw(Φ)∪Υ (see

Definition 4.2.2) in the subset of Ψ3 considered in (4.1) because only clauses in now(Φ) are

needed. Therefore, we replace the subformula ¬(Φ∪Υ) with ¬now(Φ) in Ψ3 and we obtain

the following (logically equivalent) set

Ψ4 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦((P1 ∧ ¬now(Φ))U P2) ∨Ni | 1 ≤ i ≤ n}
∪ {�bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

The logical equivalence of Ψ3 and Ψ4 motivates the following notion of context.

Definition 4.3.3. In an application of the rule (U Set) (see Figure 4.5) to an antecedent that is

partitioned in the two sets Φ and {� bi((P1 U P2)∨Ni) | 1 ≤ i ≤ n}, we say that ∆ = now(Φ)
is the context. 3

Since the above formula ◦((P1 ∧ ¬now(Φ))U P2) is not (in general) a literal, we should

transform Ψ4 into clausal form. For that, we substitute the subformula P1 ∧ ¬now(Φ) by the

fresh variable a and we add the clauses that define the meaning of a. This gives the following set

Ψ5 where def(a, P1, now(Φ)) is the result of transforming the formula � (¬a∨(P1∧¬now(Φ)))

to a set of clauses (whose definition is given in Figure 4.5):

Ψ5 = Φ ∪ {P2 ∨ P1 ∨Ni | 1 ≤ i ≤ n}
∪ {P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}
∪ CNF(def(a, P1, now(Φ)))

∪ {� bi(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

Finally, let us check that the sets Ψ4 and Ψ5 are equisatisfiable. On the one hand, since a does not

appear in Ψ4, a modelM′ of Ψ5 can be built from a modelM of Ψ4 by just defining VM′(s′j) as

VM(sj)∪{a} if P1∧¬now(Φ) is true in the state sj ofM and by defining VM′(s′j) as VM(sj)\
{a} if P1 ∧ ¬now(Φ) is not true in the state sj ofM. On the other hand, since every model of

Ψ5 satisfies the formula � (¬a∨ (P1 ∧¬now(Φ))), we can ensure that P1 ∧¬now(Φ) is true in

any state s of a model of Ψ5 whenever a is true in s. Consequently, ◦((P1 ∧¬now(Φ))U P2) is

true in any state s of a model of Ψ5 whenever ◦(aU P2) is true in s. Therefore, every model of

Ψ5 is also a model of Ψ4.

At first sight it could seem that the definition of the fresh variable a should be given by the

cnf form of the formula � (¬a∨(P1∧¬now(Φ)))∧� (a∨¬(P1∧¬now(Φ))). However, as can be

seen in the above reasoning, the clauses that correspond to the formula � (a∨¬(P1∧¬now(Φ)))
are not needed for equisatisfiability. Therefore, we do not add the clauses that correspond to

� (a ∨ ¬(P1 ∧ ¬now(Φ))).

To summarize, the initial set Ψ0 –which is the antecedent of the rule (U Set)– and the last set

Ψ5 –which is the consequent of the rule (U Set)– are equisatisfiable.

3 The operator now is introduced in Definition 4.2.2.

4. Invariant-Free Clausal Temporal Resolution for PLTL 83

(�Set) Φ ∪ {� bi(�P ∨Ni) | 1 ≤ i ≤ n}

7−→ Φ ∪ {P ∨ ◦(aU P) ∨Ni | 1 ≤ i ≤ n}

∪ CNF(def(a,∆))

∪ {� (◦�P ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1
∆ = now(Φ)

a ∈ Prop is fresh

def(a,∆) = � (¬a ∨ ¬∆) if ∆ 6= ∅
def(a,∆) = �¬a if ∆ = ∅

Figure 4.6: The Rule (�Set)

The correctness of the rule (U Set) is shown in detail in the proof of Proposition 4.5.2.

The rule (U Set) leads to a complete resolution method that does not require invariant gen-

eration. This is mainly due to the above explained management of the so-called contexts by

means of the rule (U Set). An adaptation to clauses of the strategy followed in the systematic

tableau algorithm for TTM (Figure 3.9), prevents from postponing indefinitely the satisfaction

of P1 U P2. Example 4.4.4 in Section 4.4 illustrates how contexts are handled to cause incon-

sistency whenever the fulfillment of an eventuality could be infinitely delayed. There is a finite

number of possible different contexts and the repetition of a previous context, while postpon-

ing an eventuality, also causes inconsistency. Therefore, there is a clear strategy to achieve

termination and completeness.

The rule (�Set) in Figure 4.6 is the specialization of (U Set) that corresponds to the equiv-

alence of �P ≡ P̃ U P . Consequently, along the rest of the chapter, the rule (�Set) is treated

as a derived rule, in the sense that most technical details are given only for the general rule

(U Set).

4.4 Temporal Resolution Derivations

A classical resolution derivation for a set of propositional clauses Γ is a sequence of sets of

clauses

Γ0 7→ Γ1 7→ . . . 7→ Γk

where Γ = Γ0 and each Γi+1 is obtained from Γi by means of a resolution-step that consists in

applying the (classical) resolution rule. The sequence ends when either Γk contains the empty

clause ⊥ or every application of the resolution rule on formulas in Γk yields a formula that is

already in Γk. For classical propositional logic, resolution is sound, refutationally complete and,

even, complete. Soundness and refutational completeness mean that the method obtains a set

Γk that contains ⊥ for some k ∈ IN if and only if Γ is unsatisfiable. Moreover, in classical

propositional resolution the sequence obtained is always finite (if the pairs of clauses for apply-

ing the resolution rule are selected fairly) and consequently classical propositional resolution is

also complete and serves as a decision procedure.

4. Invariant-Free Clausal Temporal Resolution for PLTL 84

In this section we first extend the classical notion of derivation –to the temporal case of

PLTL– introducing TRS-derivations. We also provide some sample TRS-derivations. The notion

of TRS-derivation is the basis of the sound, refutationally complete, and complete resolution

mechanism that is presented in this chapter. In the second subsection we prove technical results

on the relationship between TRS-resolution and classical (propositional) resolution.

4.4.1 TRS-Derivations and Examples

Our notion of derivation explicitly simulates the transition from one state to the next one, in the

sense that whenever in the current set of clauses no more resolution resolvents can be added,

then we use the operator unnext (see Definition 4.2.3) to get the clauses that must be satisfied

in the state that follows (is next to) the current one. Inside each state, the TRS-rules are applied,

hence the so-called local derivations are (roughly speaking) an extension of classical derivations.

Definition 4.4.1. A TRS-derivation for a set of clauses Γ is a sequence

D = Γ0
0 7→ Γ1

0 7→ . . . 7→ Γh0

0 Z⇒ Γ0
1 7→ Γ1

1 7→ . . . 7→ Γh1

1 Z⇒ . . . Z⇒ Γ0
i 7→ Γ1

i 7→ . . .

where

(a) Γ0
0 = Γ

(b) 7→ represents the application of a TRS-rule

(c) Z⇒ represents the application of the operator unnext.

If any set Γj
i in D contains �

b⊥, then D is called a refutation for Γ. We say that a TRS-

derivation is a local derivation if it does not contain any application of the operator unnext. A

local derivation is called a local refutation if it is a refutation.

Note that we use two different symbols (7→ and Z⇒) to highlight the difference between the

application of a TRS-rule and the application of the operator unnext. The former applications

produce sets Γj+1
i from Γj

i and are called TRS-steps. The latter applications yield Γ0
i+1 from Γhi

i

and are called unnext-steps.

In the sequel we only use the prefix TRS- whenever confusion might result, otherwise we

simply say derivation.

Now we give four examples of refutations. For readability, the derivations are represented

as vertical sequences of rule applications with the name of the applied rule at the right-hand side

of each step. In addition, the clauses to which each rule affects have been underlined. However,

we do not underline any formula in the applications of the operator unnext. The first example

shows that in some cases, even if temporal literals are involved, the refutation is achieved using

only the resolution rule (Res) and the operator unnext. The second example illustrates that

sometimes the rule (U Set) is not necessary and the rule (U Fix) is enough. The third example

shows how contexts are handled to cause inconsistency whenever the fulfillment of an eventu-

ality could be infinitely delayed. Finally, in the fourth example, the rule (U Set) is applied to a

proper subset of the set of clauses that contain the literal pU q. In general, it can be applied to

any non-empty subset.

Example 4.4.2. In Figure 4.7 a TRS-refutation for the unsatisfiable set of clauses

4. Invariant-Free Clausal Temporal Resolution for PLTL 85

Γ0
0 = {� (r ∨ � p),�◦¬r, ◦�¬p,�(◦r ∨ ¬q ∨ � p), p ∨ q,¬q} (unnext)

Γ0
1 = {� (r ∨ � p),�◦¬r,¬r,�¬p,�(◦r ∨ ¬q ∨ � p)} (Res)

Γ1
1 = {� (r ∨ � p),�◦¬r,¬r,�¬p,�(◦r ∨ ¬q ∨ � p), �p} (Res)

Γ2
1 = {� (r ∨ � p), �p,�◦¬r,¬r,�¬p,�(◦r ∨ ¬q ∨ � p),⊥}

Figure 4.7: TRS-refutation for the set of clauses {� (r∨� p),�◦¬r,◦�¬p,� (◦r∨¬q∨�p), p∨ q,¬q}

Γ0
0 = {�¬p,� (rU p), (¬r)U p} (U Fix)

Γ1
0 = {�¬p, (¬r)U p,�(p ∨ r),�(p ∨ ◦(rU p))} (U Fix)

Γ2
0 = {�¬p,�(p ∨ r),� (p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p)} (Res)

Γ3
0 = {�¬p,�(p ∨ r),�(p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p),�r} (Res)

Γ4
0 = {�¬p,� (p ∨ r),�(p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p),�r,¬r} (Res)

Γ5
0 = {�¬p,� (p ∨ r),�(p ∨ ◦(rU p)), p ∨ ¬r, p ∨ ◦((¬r)U p),�r,¬r,⊥}

Figure 4.8: TRS-refutation for the set of clauses {�¬p,� (rU p), (¬r)U p}

{� (r ∨ � p),�◦¬r, ◦�¬p,�(◦r ∨ ¬q ∨ � p), p ∨ q,¬q}

is provided. It is worth remarking that in the TRS-step that yields Γ2
1 from Γ1

1 the formula �¬p
is treated as a now-clause formed by a temporal literal. Although (basic) temporal literals are

involved in the derivation process, the rules for decomposing temporal literals are not needed.

Example 4.4.3. In Figure 4.8 a TRS-refutation for the unsatisfiable set of clauses

{�¬p,�(rU p), (¬r)U p}

is showed. In this example the formulas �¬p and �r are treated as always-clauses formed

by one propositional literal. Although literals that contain the connective U are involved, the

refutation is obtained without using the rule (U Set). The rule (U Fix) is enough in this case.

Example 4.4.4. Let Γ0
0 = {� (¬p∨ ◦p), p, rU ¬p}. Then, by applying (U Set) to rU ¬p in Γ0

0

where Φ = {� (¬p ∨ ◦p), p} and ∆ = {p}, we obtain

Γ1
0 = {� (¬p ∨ ◦p), p,¬p∨ r,¬p ∨ ◦(aU ¬p),�(¬a ∨ ¬p),�(¬a ∨ r)}

where a is the fresh variable whose meaning is defined to be r ∧ ¬p by the last two clauses.

Note that ¬p is ¬∆. Then, by four applications of the rule (Res) that respectively resolve the

singleton clause p with the four occurrences of ¬p, we obtain

Γ5
0 = {� (¬p ∨ ◦p), ◦p, r, p,¬p∨ r,¬p∨ ◦(aU ¬p), ◦(aU ¬p),¬a,�(¬a ∨ ¬p),�(¬a∨ r)}.

4. Invariant-Free Clausal Temporal Resolution for PLTL 86

Γ0
0 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s} (Res)

Γ1
0 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s, (pU q)} (U Set)

Γ2
0 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s, q ∨ p,

q ∨ ◦(aU q),�¬a}
(Res)

Γ3
0 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s, q ∨ p,

q ∨ ◦(aU q),�¬a, ◦(aU q)}
(unnext)

Γ0
1 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s,�¬a, aU q} (U Set)

Γ1
1 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s,�¬a, q ∨ a,

q ∨ ◦(bU q),�¬b}
(Res)

Γ2
1 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s,�¬a, q ∨ a,

q ∨ ◦(bU q),�¬b, q}
(Res)

Γ3
1 = {�((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s,�¬a, q ∨ a,

q ∨ ◦(bU q),�¬b, q,⊥}

Figure 4.9: TRS-refutation for the set of clauses {� ((pU q) ∨ r),� ((pU q) ∨ � s),�¬q,�¬s}

Now, the operator unnext produces

Γ0
1 = {� (¬p ∨ ◦p), p, aU ¬p,� (¬a ∨ ¬p),�(¬a ∨ r)}.

Hence, the application of (U Set) to aU ¬p in Γ0
1 where Φ = {� (¬p ∨ ◦p), p,�(¬a ∨

¬p),�(¬a ∨ r)} and ∆ = {p} yields

Γ1
1 = {� (¬p∨◦p), p,¬p∨a,¬p∨◦(bU ¬p),�(¬b∨¬p),� (¬b∨a),�(¬a∨¬p),� (¬a∨r)}

where the fresh variable b is defined as a ∧ ¬p by the clauses � (¬b ∨ ¬p),�(¬b ∨ a). Then,

the application of (Res) to p and ¬p ∨ a yields a. Finally, the resolution of p and � (¬a ∨ ¬p)
yields ¬a. Hence, the empty clause is immediately obtained from a and ¬a.

Roughly speaking, a holds whenever the satisfaction of ¬p (or equivalently the fullfilment of

rU ¬p) is postponed. However, a means r ∧ ¬p, where ¬p is the negated context. So that, the

part of the definition of a given by the clause � (¬a ∨ ¬p) allows the inference of ¬a, which

leads to the inconsistency.

Example 4.4.5. In Figure 4.9 we show a TRS-refutation for the unsatisfiable set of clauses

{� ((pU q)∨r),�((pU q)∨� s),�¬q,�¬s}. Note that the formula �¬s is treated as a literal

in Γ0
0 and as an always-clause in Γ1

0. Besides, it is worth noting that in Γ1
0 there are three

occurrences of pU q, but the rule (U Set) is applied by considering the set Φ to be formed by

the first four clauses, i.e., Φ = {� ((pU q) ∨ r),�((pU q) ∨ � s),�¬q,�¬s}. So that, in this

case the set Φ includes clauses that contain the literal pU q.

4. Invariant-Free Clausal Temporal Resolution for PLTL 87

4.4.2 Relating TRS-Resolution to Classical Resolution

In this subsection we define the notion of linear local derivation and, based on it, we establish

a relation between TRS-resolution and classical resolution that enables us to use well-known

results from classical propositional logic.

Definition 4.4.6. A set of clauses Γ is closed with respect to TRS-rules (shortly, TRS-closed) iff

it satisfies the following three conditions:

(a) BTL(Γ) = ∅ (i.e. any literal in Γ is either propositional (p or ¬p) or starts by ◦)4

(b) The subsumption rule (Sbm) cannot be applied to Γ

(c) Every clause obtained from Γ by application of the resolution rule (Res) is already in Γ or

it is subsumed by some clause in Γ.

Definition 4.4.7. Let Γ be a set of clauses, we denote by Γ∗ any set such that there exists a local

derivation Γ 7→ . . . 7→ Γ∗ and either �
b⊥ ∈ Γ∗ or Γ∗ is TRS-closed.

Note that, in general, given a set of clauses Γ, a local derivation that yields a set Γ∗ that

either contains the clause �
b⊥ or is TRS-closed, may include some applications of the rules

(U Set) and (�Set).

Definition 4.4.8. Let Γ be a set of clauses, the non-deterministic operation that yields Γ∗ from

Γ without any application of the rules (U Set) and (�Set) is denoted by fix close.

In the algorithm presented in Figure 4.10 (Section 4.6) we use the procedure fix close that

implements the operation fix close during the construction of a derivation.

Definition 4.4.9. A set of clauses Γ is locally inconsistent iff there exists a local refutation for

Γ. Otherwise it is locally consistent.

Proposition 4.4.10. For any TRS-closed set of clauses Γ, if �
b⊥ 6∈ Γ then Γ is locally consis-

tent.

Proof. If Γ is TRS-closed, every clause that can be obtained by means of the rule (Res) is al-

ready in Γ or is subsumed by some other clause in Γ. If �
b⊥ is not in Γ then there is no way to

obtain it by means of a local derivation.

The following notion is an adaptation of the concept of linear resolution based on a clause

(see e.g. Section 2.6 in [115]).

Definition 4.4.11. A local derivation D for Γ is linear with respect to a clause C ∈ Γ iff it

satisfies the following three conditions

(a) Every TRS-step in D is an application of the rule (Res)

(b) C is one of the premises for (Res) in the first TRS-step

(c) For every TRS-step in D, with the exception of the first one, one of the premises is the

resolvent obtained in the previous TRS-step.

4 see Subsection 4.2.1.

4. Invariant-Free Clausal Temporal Resolution for PLTL 88

Next, we formulate a useful relationship between TRS-resolution and classical propositional

resolution.

Definition 4.4.12. Let Γ be a set of clauses, prop(Γ) is the set that results from drop�(Γ) by

replacing all the occurrences of each non-propositional literal L ∈ Lits(drop�(Γ)) with a fresh

propositional literal in a coherent way, in the sense that complementary literals are replaced

with complementary propositional literals.

Proposition 4.4.13. Let Γ be a set of clauses such that BTL(Γ) = ∅.

(i) drop�(Γ) is locally inconsistent iff prop(Γ) is inconsistent (in classical logic).

(ii) Γ is locally inconsistent iff drop�(Γ) is locally inconsistent.

Proof. (i) For the left to right implication, since BTL(Γ) = ∅, if drop�(Γ) is locally incon-

sistent then there exists a local refutation for drop�(Γ) where every TRS-step is an ap-

plication of the rule (Res) or the rule (Sbm). Hence, we can trivially build a classical

refutation for prop(Γ) with the same number of steps and using classical resolution and

subsumption instead of (Res) and (Sbm), respectively.

Conversely, if prop(Γ) is inconsistent then by completeness of classical propositional res-

olution there exists a refutation for prop(Γ) where only the classical resolution rule is

used. Then, it is easy to obtain a local refutation for drop�(Γ) applying the resolution

rule (Res) to the corresponding clauses.

(ii) Since BTL(Γ) = ∅, if Γ is locally inconsistent then there exists a local refutation D for Γ
where every TRS-step is an application of the rule (Res) or the rule (Sbm). From D we

can build a local refutation D′ for Γ where every TRS-step is an application of the rule

(Res). It suffices to remove from D the TRS-steps in which the rule (Sbm) is applied and

to keep (or add) the clauses subsumed in D by the applications of the rule (Sbm). From

D′ we can obtain a local refutation for drop�(Γ) in a trivial manner, by using a clause N

whenever the original derivationD′ uses the corresponding �N .

If drop�(Γ) is locally inconsistent then, by (i) and the completeness of classical propo-

sitional resolution, there exists a refutation D for prop(Γ) where every TRS-step is an

application of the classical resolution rule. From D, it is straightforward to obtain a local

refutationD′ for drop�(Γ) where every TRS-step is an application of the rule (Res). This

local refutation is trivially convertible into a local refutation for Γ, by using the clause

�N ∈ Γ instead of N ∈ drop�(Γ) whenever N 6∈ Γ.

Next, we provide a basic result that is used in Section 4.7 for proving completeness. This

result is an adaptation of the completeness of classical linear resolution (see Section 2.6 in [115])

that states

Given a consistent set of propositional clauses Φ, if for a propositional clause β 6∈ Φ
the set Φ∪{β} is inconsistent then there exists a refutation for Φ∪{β} that is linear

with respect to the clause β.

Proposition 4.4.14. Let Γ be a locally consistent set of clauses such that BTL(Γ) = ∅ and let

C be a clause that is not in Γ such that BTL({C}) = ∅. If Γ∪{C} is locally inconsistent then

there exists a local refutation for Γ∪{C} that is linear with respect to the clause C.

4. Invariant-Free Clausal Temporal Resolution for PLTL 89

Proof. If Γ∪{C} is locally inconsistent, by Proposition 4.4.13 the set prop(Γ∪{C}) is incon-

sistent and, by completeness of classical linear resolution (see above), there exists a refutation

D′ for prop(Γ∪{C}) that is linear with respect to the clause C′ ∈ prop(Γ∪{C}) that corre-

sponds to the clause C. From D′, it is trivial to build a local refutation D for Γ∪{C} that is

linear with respect to C.

4.5 Soundness

A resolution system is sound if, whenever a refutation exists for a set of clauses Γ, then Γ

is unsatisfiable. The soundness of a system can be guaranteed rule by rule, where a rule is

sound whenever it preserves the satisfiability. Often some rules preserve stronger properties

than satisfiability. In this section, we analyze each rule from the point of view of soundness and

stronger properties and prove that the resolution system TRS is sound.

Proposition 4.5.1. The Basic Rules of Subsection 4.3.1 are sound. Moreover, every application

of these rules yields a new set of clauses that is logically equivalent to the initial set.

Proof. When (Res) is applied to two clauses (the premises) �
b(L ∨ N) and �

b′(L̃ ∨ N ′) in

Γ, the resolvent �
b×b′(N ∨ N ′) is a logical consequence of {� b(L ∨ N),�b′(L̃ ∨ N ′)} and,

consequently, the new set of clauses Γ′ = Γ∪{� b×b′(N ∨ N ′)} is logically equivalent to the

set of clauses Γ.

For soundness of (Sbm), suppose that �
bN and �

bN ′ are in Γ and thatN ′ (N . It is trivial

that any model of Γ is also a model of Γ \ {� bN} and vice-versa.

Given a set of clauses Γ, the rule (U Fix) replaces a clause �
b((P1 U P2) ∨ N) ∈ Γ

with two clauses �
b(P2 ∨ P1 ∨ N) and �

b(P2 ∨ ◦(P1 U P2) ∨ N) obtaining a new set Γ′

= (Γ \ {�b((P1U P2) ∨ N)})∪{�b(P2 ∨ P1 ∨ N),�b(P2 ∨ ◦(P1 U P2) ∨ N)}. The two

sets, Γ and Γ′, are logically equivalent since the clause that contains the literal of the form

P1 U P2 is replaced with the clauses obtained by taking into account the inductive definition

of the connective U . Similarly, the rule (RFix) replaces a clause �
b((P1RP2) ∨ N) ∈

Γ with two clauses �
b(P2 ∨ N) and �

b(P1 ∨ ◦(P1RP2) ∨ N) obtaining a new set Γ′ =

(Γ \ {� b((P1RP2) ∨ N)})∪{� b(P2 ∨ N),�b(P1 ∨ ◦(P1RP2) ∨ N)}. The sets Γ and

Γ′ are logically equivalent because the clause that contains the literal of the form P1RP2 is

substituted by the clauses obtained by using the inductive definition of the connective R. In

particular, every application of the rules (�Fix) and (�Fix) yields a new set of clauses that is

logically equivalent to the initial set. Therefore, they are also sound.

Proposition 4.5.2. The rule (U Set) is sound. Moreover, the initial and the target sets of every

application of (U Set) are equisatisfiable.

Proof. When the rule (U Set) is applied to a set of clauses Γ, a non-empty subset

{� bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n}

is replaced with a set of clauses

4. Invariant-Free Clausal Temporal Resolution for PLTL 90

Ψ = {P2 ∨ P1 ∨Ni, P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}

∪ CNF(def(a, P1,∆))

∪ {�(◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

where ∆ = now(Γ \ {� bi(P1 U P2 ∨ Ni) | 1 ≤ i ≤ n}), a ∈ Prop is fresh, def(a, P1,∆) =
� (¬a ∨ (P1 ∧ ¬∆)) if ∆ 6= ∅ and def(a, P1,∆) = �¬a if ∆ = ∅.

So the new set Γ′ is

(Γ \ {� bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n})∪Ψ.

We first show, in item (a), that if Γ′ is satisfiable then Γ is satisfiable and then, in item (b),

we show that if Γ is satisfiable then Γ′ is satisfiable:

(a) By Theorem 4.2.7, the set Ψ and the following set Υ are equisatisfiable:

Υ = {P2 ∨ P1 ∨Ni, P2 ∨ ◦(aU P2) ∨Ni | 1 ≤ i ≤ n}

∪ def(a, P1,∆)

∪ {� (◦(P1 U P2) ∨ ◦Ni) | bi = 1 and 1 ≤ i ≤ n}

Consequently, the set Γ′ and the set

Γ′′ = ((Γ′ \Ψ)∪ Υ) = ((Γ \ {�bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n})∪ Υ)

are equisatisfiable. Let 〈M′′, s′′0〉 |= Γ′′, since a does appear neither in the P2 ∨Ni’s nor

in Γ, we build a modelM of Γ in the following two cases:

1. If 〈M′′, s′′0〉 |= P2 ∨Ni for all i ∈ {1, . . . , n}, then we can define the modelM for

Γ as follows

• a 6∈ VM(sj) for every j ∈ IN

• p ∈ VM(sj) iff p ∈ VM′′(s′′j) for all j ∈ IN and all p ∈ Prop such that p 6= a.

2. If 〈M′′, s′′0〉 6|= P2 ∨Ni for some i ∈ {1, . . . , n}, then it should be that 〈M′′, s′′0〉 |=
{P1, ◦(aU P2)}. Let x be the least z ≥ 1 such that 〈M′′, s′′z〉 |= P2. If x = 1 then,

since a does not appear in P2 and 〈M′′, s′′0〉 |= P1, the modelM of Γ can be built

just as in the case 1 of this item (a). If x > 1, then

〈M′′, s′′y〉 |= {a} ∪ def(a, P1,∆)

for every y such that 1 ≤ y < x. Note that ∆ cannot be the empty set ∅ because in

such case a would not be true for any y such that 1 ≤ y < x. As a consequence,

〈M′′, s′′y〉 |= {a} ∪{P1 ∧ ¬∆}

for every y such that 1 ≤ y < x.

So that the modelM of Γ can be built just as in the case 1 of this item (a).

(b) Now we show the converse implication. Let 〈M, s0〉 |= Γ, since a does not appear in the

Ni’s, we build a modelM′ of Γ′ in the following two cases.

4. Invariant-Free Clausal Temporal Resolution for PLTL 91

1. Let us consider that 〈M, s0〉 |= Ni for all i ∈ {1, . . . , n}. Then we can define a

modelM′ for Γ′ as follows:

• a 6∈ VM′(s′j) for every j ∈ IN

• p ∈ VM′(s′j) iff p ∈ VM(sj) for all j ∈ IN and all p ∈ Prop such that p 6= a

2. If 〈M, s0〉 6|= Ni for some i ∈ {1, . . . , n}, then it should be that 〈M, s0〉 |=
P1 U P2. Let x be the least z ≥ 0 such that 〈M, sz〉 |= P2. If x = 0 then, since a

does not appear in P2, a modelM′ of Γ′ can be built just as in the case 1 of item

(b). If x > 0, let y be the greatest z such that 0 ≤ z < x and

〈M, sz〉 |= now(Γ \ {� bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n})∪{P1 U P2}.

Note that at least z = 0 must satisfy the above set of clauses. As a consequence of

the choice of x and y, it holds that

〈M, sy〉 |= {P1,¬P2, ◦((P1∧¬now(Γ\{�bi(P1 U P2∨Ni) | 1 ≤ i ≤ n}))U P2)}.

Besides, 〈M, sy〉 |= now(Γ \ {� bi(P1 U P2 ∨Ni) | 1 ≤ i ≤ n}). So that, we can

define a modelM′ for Γ′ as follows

• p ∈ VM′(s′j) iff p ∈ VM(sj+y) for all j ∈ IN and all p ∈ Prop such that p 6= a

• a 6∈ VM′(s′0)

• a ∈ VM′(s′j) for every j ∈ {1, . . . , x− y − 1}

• a 6∈ VM′(s′j) for every j ≥ x− y.

As a particular case of Proposition 4.5.2, the derived rule (�Set) is also sound.

Proposition 4.5.3. The operator unnext (see Definition 4.2.3) preserves satisfiability.

Proof. IfM is a model of Γ then unnext(Γ) is true in the state s1 ofM, which obviously gives

a model for unnext(Γ).

Note that the equisatisfiability, in general, of initial and target sets of unnext cannot be

ensured. For example, {p,¬p, ◦q} is unsatisfiable, but unnext({p,¬p, ◦q}) = {q} is satisfiable.

As a direct consequence of the above Propositions 4.5.1, 4.5.2 and 4.5.3, we have the fol-

lowing soundness theorem:

Theorem 4.5.4. If the resolution system TRS produces a refutation from Γ, then Γ is unsatisfi-

able.

4.6 The Algorithm SR for Systematic TRS-Resolution

The nondeterministic application of the set of TRS-rules yields sound derivations but it does not

guarantee completeness, even with the proviso of fairness. In this section we first introduce an

algorithm for systematic resolution derivation called SR that uses the system TRS in a more

(not fully) deterministic way which ensures completeness. Then, in the second subsection we

provide some detailed examples of application of SR. In the third and fourth subsections we

respectively provide the termination and the worst case complexity results for SR.

4. Invariant-Free Clausal Temporal Resolution for PLTL 92

Input: A finite set of clauses Γ

Output: A resolution proof for Γ called D(Γ)

1 Γ0
0 := Γ; i := 0; j := 0;

2 sel ev set0 := fair select(Γ0
0);

3 loop

4 if sel ev seti 6= ∅
5 then (Γ1

i , sel ev set∗i) := apply U Set(Γ0
i , sel ev seti); j := 1;

6 else sel ev set∗i := ∅
7 end if;

8 Γ∗
i := fix close(Γj

i);

9 if �
b⊥ ∈ Γ∗

i or is cycling(D(Γ)) then exit; end if;

10 Γ0
i+1 := unnext(Γ∗

i);

11 if sel ev set∗i ∩ event(Γ0
i+1) = ∅ then sel ev seti+1 := fair select(Γ0

i+1);

12 else sel ev seti+1 := sel ev set∗i
13 end if;

14 i := i+ 1; j := 0;

15 end loop;

Figure 4.10: The Algorithm SR for Systematic TRS-Resolution

4.6.1 The Algorithm SR

The algorithm SR, for any input set of clauses Γ, obtains a finite resolution proof –calledD(Γ)–

of the form

Γ0
0 7→ . . . 7→ Γh0

0 Z⇒ Γ0
1 7→ . . . 7→ Γh1

1 Z⇒ . . . Z⇒ Γ0
k 7→ . . . 7→ Γhk

k

As we will respectively show in Subsection 4.6.3 and Section 4.7, D(Γ) is always finite and

D(Γ) is a refutation whenever the input set Γ is unsatisfiable. When convenient, we represent

D(Γ) by sequences of pairs

(Γ0,Γ
∗
0) Z⇒ (Γ1,Γ

∗
1) Z⇒ . . . Z⇒ (Γk,Γ

∗
k)

where Γi and Γ∗
i coincide with Γ0

i and Γhi

i respectively, for every i ∈ {0, . . . , k}.
Derivations (refutations) obtained by means of the algorithm SR are called systematic

derivations (refutations) and systematic TRS-derivations (refutations).

The construction of D(Γ), for any input Γ, is expressed by means of a while-program in

Figure 4.10, called the algorithm SR, which we explain next. In order to ensure that D(Γ) is

finite, the rule (U Set) is applied exactly to one eventuality5 (if there is any) between each two

consecutive unnext-steps (see Subsection 4.4.1). For that purpose, the algorithm SR keeps two

variables sel ev seti and sel ev set∗i for every i ≥ 0. Both variables sel ev seti and sel ev set∗i
take as value a set that is a singleton or empty, depending on whether Γ0

i contains at least one

5 see Definition 2.2.1.

4. Invariant-Free Clausal Temporal Resolution for PLTL 93

eventuality or not, respectively. The variable sel ev seti stands for the selected eventuality in

Γ0
i , whereas sel ev set∗i corresponds to the eventuality selected in every set of the sequence from

Γ1
i until Γhi

i .

The algorithm SR (see Figure 4.10) initializes both the set of clauses for starting the derivation

Γ0
0 to be the input set Γ and the variable sel ev set0 to be either, a fairly selected eventuality

in Γ0
0 if there is any, or empty, otherwise. The expression fair select(Γ`

g) encapsulates the fair

selection of an eventuality in Γ`
g, where fairness means that if an eventuality appears as available

(from some moment onwards) for being selected whenever an eventuality must be selected, such

eventuality cannot remain indefinitely unselected.

After initialization, each iteration-step of the algorithm SR serves to extend the derivation from

Γ0
i to Γ∗

i by means of the following process:

• The lines 4 to 8 serve to extend the derivation from Γ0
i to Γ∗

i .

First, by lines 4-7, the rule (U Set) is applied exactly to the selected eventuality provided

that sel ev seti 6= ∅. More precisely, if sel ev seti = {T}, then the rule (U Set) is

applied to a partition of Γ0
i of the form Φ∪ (Γ0

i � sel ev seti),6 producing the set Γ1
i in

D(Γ). Additionally, as part of this application of the rule (U Set), the variable sel ev set∗i
gets the value {aU P} where aU P is the new eventuality introduced by the rule (U Set)
with a fresh variable a. Otherwise, if sel ev seti is empty, the rule (U Set) is not applied

and sel ev set∗i gets the value ∅.
Second, by line 8, the remaining TRS-rules are repeatedly applied to Γ

j
i (where j = 0 or

j = 1) to construct Γ∗
i . The operation fix close is introduced in Definition 4.4.8. Hence,

Γ∗
i is either TRS-closed (see Definition 4.4.6) or contains the empty clause. Moreover, the

variable sel ev set∗i is not changed by the operation fix close. Hence, at line 11 the value

of sel ev set∗i is the same as at line 7.

• In line 9, the loop is exited if either the empty clause has been added to Γ∗
i or a cycle in

D(Γ) is detected according to the following definition.

Definition 4.6.1. Let D = (Γ0,Γ
∗
0) Z⇒ (Γ1,Γ

∗
1) Z⇒ . . . Z⇒ (Γj ,Γ

∗
j) Z⇒ . . . Z⇒ (Γk,Γ

∗
k)

be a derivation (where 0 ≤ j ≤ k), we say that D is cycling with respect to j and k iffD
satisfies the following conditions

1. �
b⊥ 6∈ Γ∗

i for every i ∈ {0, . . . , k}

2. now(unnext(Γ∗
k)) = now(Γj)

3. For every eventuality T such that T ∈ Lits(now(Γg)) for all g ∈ {j, . . . , k}, there

exists h ∈ {j, . . . , k} such that sel ev seth = {T}.

The function is cycling (line 9) is supposed to implement a test of the conditions (2) and

(3) in Definition 4.6.1 on the current derivationD(Γ) = (Γ0,Γ
∗
0) Z⇒ . . . Z⇒ (Γi,Γ

∗
i).

• Otherwise, if the loop is not exited, the operator unnext (Definition 4.2.3) is applied to

the TRS-closed set Γ∗
i to yield Γ0

i+1 (line 10), which will be the Γ0
i of the next step, after

increasing i (line 14).

6 See Definition 4.2.1.

4. Invariant-Free Clausal Temporal Resolution for PLTL 94

• Finally, the lines 11 to 13 serve to initialize the variable sel ev seti+1. Note that, after the

application of the subsumption rule and/or of the operator unnext, every clause that in-

cludes the selected eventuality sel ev set∗i could have disappeared from the current Γ0
i+1.

In other words, although ◦(aU P) occurs in some Γj
i , it could happen that the selected

eventuality aU P does not occur in Γ0
i+1. The function event (line 11) returns the set of

all eventualities occurring in an input set of clauses, that is

Definition 4.6.2. Let Ψ be a set of clauses, event(Ψ) = {P1 U P2 |�
b((P1 U P2) ∨N) ∈

Ψ}.

Therefore, if sel ev set∗i∩ event(Γ0
i+1) is non-empty, then the selected eventuality remains

selected. Otherwise, the function fair select is used to fairly select an eventuality from

event(Γ0
i+1).

We would like to remark the following three issues about the construction of D(Γ) by the

algorithm SR

1. Although (Sbm) can be correctly applied whenever it is possible, in order to guarantee

termination it suffices to apply (Sbm) just before testing for a cycling derivation. This

can be seen in the proof of Lemma 4.6.13.

2. For achieving completeness the operator unnext must always be applied to TRS-closed

sets. Otherwise, equisatisfiability is not guaranteed because the operator unnext preserves

satisfiability (Proposition 4.5.3) but, in general, does not preserve unsatisfiability.

3. In the intermediate sets Γj
i of the process for obtaining Γ∗

i from Γi, literals can appear that

are neither in Γ∗
i nor in Γi. This fact can be easily observed applying the algorithm SR

to (e.g.) the set Γ = {pU q, q}.

4.6.2 Examples

In this subsection we apply the algorithm SR to some illustrative examples. As in the examples

showed in Subsection 4.4.1, the clauses to which each rule affects have been underlined but

we do not underline any formula in the applications of the operator unnext. Since these TRS-

derivations are built by using the algorithmSR, in each figure we show the value of the variables

sel ev seti and sel ev set∗i .

Example 4.6.3. The derivation in Figure 4.11 is a refutation of the unsatisfiable set of clauses

{p,�(¬p ∨ ◦p), �¬p} that has been obtained following the algorithm SR. First of all, in Γ0,

i.e., in Γ0
0 the selected eventuality is �¬p and consequently sel ev set0 = {�¬p}. Then, the

application of the rule (�Set) with context {p} (always-clauses are excluded from the negation

of the context) introduces a new propositional variable a and transforms the clause �¬p into the

last two clauses in Γ1
0, ¬p ∨ ◦(aU ¬p) and � (¬a ∨ ¬p). Additionally, the value of sel ev set∗0

is set to {aU ¬p}. Then, the rule applications that correspond to the operation fix close (line 8,

Figure 4.10) are performed and the TRS-closed set Γ5
0, i.e., Γ∗

0 is obtained. In order to obtain the

TRS-closed set Γ5
0 from Γ1

0 the resolution rule (Res) is applied three times and the subsumption

rule (Sbm) is applied once. In the application of the rule (Res) to the set Γ1
0, the clauses p and

� (¬p ∨ ◦p) are the premises and the resolvent is the last clause ◦p in Γ2
0. Then the rule (Res)

is applied to the first and third clauses in Γ2
0, giving the last clause ◦(aU ¬p) in Γ3

0. Again, by

4. Invariant-Free Clausal Temporal Resolution for PLTL 95

Γ0 = Γ0
0 = {p,�(¬p ∨ ◦p), �¬p} (�Set) sel ev set0 = {�¬p}

Γ1
0 = {p,� (¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p)}
(Res) sel ev set∗0 = {aU ¬p}

Γ2
0 = {p,� (¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p), ◦p}
(Res)

Γ3
0 = {p,� (¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p), ◦p, ◦(aU ¬p)}
(Res)

Γ4
0 = {p,�(¬p ∨ ◦p),¬p ∨ ◦(aU ¬p),

� (¬a ∨ ¬p), ◦p, ◦(aU ¬p),¬a}
(Sbm)

Γ∗
0 = Γ5

0 = {p,�(¬p ∨ ◦p),�(¬a ∨ ¬p), ◦p,
◦(aU ¬p),¬a}

(unnext)

Γ1 = Γ0
1 = {� (¬p ∨ ◦p),�(¬a ∨ ¬p), p, aU ¬p} (U Set) sel ev set1 = {aU ¬p}

Γ1
1 = {� (¬p ∨ ◦p),�(¬a ∨ ¬p), p,¬p ∨ a,

¬p ∨ ◦(bU ¬p),�(¬b ∨ a),
� (¬b ∨ ¬p)}

(Res) sel ev set∗1 = {bU ¬p}

Γ2
1 = {� (¬p ∨ ◦p),�(¬a ∨ ¬p), p,¬p ∨ a,

¬p ∨ ◦(bU ¬p),�(¬b ∨ a),
� (¬b ∨ ¬p), a}

(Res)

Γ3
1 = {� (¬p ∨ ◦p),�(¬a ∨ ¬p), p,¬p∨ a,

¬p ∨ ◦(bU ¬p),�(¬b ∨ a),
� (¬b ∨ ¬p), a,¬a}

(Res)

Γ∗
1 = Γ4

1 = {� (¬p ∨ ◦p),�(¬a ∨ ¬p), p,¬p∨ a,
¬p ∨ ◦(bU ¬p),�(¬b ∨ a),
� (¬b ∨ ¬p), a,¬a,⊥}

Figure 4.11: Systematic TRS-refutation for the set of clauses {p,� (¬p ∨ ◦p),�¬p}

4. Invariant-Free Clausal Temporal Resolution for PLTL 96

resolution of the first and fourth clauses in Γ3
0, we obtain the clause ¬a in Γ4

0. By subsumption,

the third clause is dropped, since it is subsumed by the sixth one, yielding Γ5
0. Then, since

no other rule can be applied, the operator unnext transforms the TRS-closed set Γ5
0 into Γ1.

The latter represents the clauses that must be satisfied in the state s1, provided that the state

s0 satisfies Γ0. Since aU ¬p belongs to event(Γ0
1), the value of the set sel ev set1 is {aU ¬p}.

Since the selected eventuality must be immediately handled (after the application of the operator

unnext), the rule (U Set) is applied to Γ1 = Γ0
1. Note that, the context is again {p}. Then,

Γ1
1 contains four new clauses that substitute the clause aU ¬p. A new propositional variable b

occurs in the new clauses and sel ev set∗1 is {bU ¬p}. Finally, by three consecutive applications

of the rule (Res) –which correspond to the operation fix close– to the three underlined pairs of

clauses, the empty clause is obtained in Γ4
1. Note that the repeated context in Γ0 and Γ1 leads

to find a contradiction.

In the previous example, if we had used the rules (�Fix) and (U Fix) instead of the rules

(�Set) and (U Set), we would have not obtained the empty clause. The following example

illustrates this fact.

Example 4.6.4. In Figure 4.12 we show a derivation whose initial set Γ0
0 coincides with the

initial unsatisfiable set considered in Example 4.6.3 (Figure 4.11). Whereas in the refutation

presented in Figure 4.11 we first apply the rule (�Set), we start the derivation in Figure 4.12 by

applying the rule (�Fix). Then the resolution rule (Res) is applied twice and the subsumption

rule (Sbm) once, obtaining the TRS-closed set Γ4
0. The application of the operator unnext to

the set Γ4
0 yields the set Γ0

1 which contains the same clauses as Γ0
0. By repeating this process,

we could obtain an endless resolution derivation. Indeed, we will never obtain the empty clause

unless we use the rules (�Set) and (U Set) in an appropriate manner. Obviously, the derivation

in Figure 4.12 does not follow the algorithm SR.

The next example shows how the systematic TRS-resolution deals with clauses of the form

�P .

Example 4.6.5. In Figure 4.13 we provide a systematic TRS-refutation for the unsatisfiable set

of clauses {�p, �¬p}. Since the procedure fix close in the algorithm SR uses the function

BTL (see Definitions 4.2.3 and 4.4.8) in order to decide whether a set of clauses is TRS-closed

(Definition 4.4.6) and since BTL is based on the function drop� (Definition 4.2.3), clauses of

the form �P are considered always-clauses formed by one propositional literal and not now-

clauses formed by one (basic) temporal literal. So following the algorithm SR we obtain the

refutation in Figure 4.13. But we would like to remark that if we do not follow the algorithm

SR, it is possible to build the refutation in Figure 4.14.

The following two examples show that the subsumption rule (Sbm) is required to guarantee

the termination of the algorithm SR. In the case of Example 4.6.6 the concerned set of clauses

is satisfiable, whereas in Example 4.6.7 is not.

Example 4.6.6. Let us consider the derivation for the satisfiable set of clauses {(pU q) ∨
�r,�¬p,�¬q} that is showed split (due to space reasons) in Figures 4.15 and 4.16. The

derivation is only developed until the first application of the operator unnext, which yields the

set Γ0
1.

It is worth noting that if the rule (Sbm) were not applied to the sets from Γ11
0 to Γ21

0 , then

the set Γ1 would be

4. Invariant-Free Clausal Temporal Resolution for PLTL 97

Γ0
0 = {p,�(¬p ∨ ◦p), �¬p} (�Fix)

Γ1
0 = {p,�(¬p ∨ ◦p),¬p ∨ ◦�¬p} (Res)

Γ2
0 = {p,�(¬p ∨ ◦p),¬p ∨ ◦�¬p, ◦p} (Res)

Γ3
0 = {p,�(¬p ∨ ◦p),¬p ∨ ◦�¬p, ◦p, ◦�¬p} (Sbm)

Γ4
0 = {p,�(¬p ∨ ◦p), ◦p, ◦�¬p} (unnext)

Γ0
1 = {p,�(¬p ∨ ◦p), �¬p}

. . .

Figure 4.12: Non-systematic TRS-derivation for the set of clauses {p,� (¬p ∨ ◦p),�¬p}

Γ0 = Γ0
0 = {�p, �¬p} (�Set) sel ev set0 = {�¬p}

Γ1
0 = {�p,¬p ∨ ◦(aU ¬p),�¬a} (Res) sel ev set∗0 = {aU ¬p}

Γ2
0 = {�p,¬p ∨ ◦(aU ¬p), ◦(aU ¬p),�¬a} (Sbm)

Γ∗
0 = Γ3

0 = {�p, ◦(aU ¬p),�¬a} (unnext)

Γ1 = Γ0
1 = {�p, aU ¬p,�¬a} (U Set) sel ev set1 = {aU ¬p}

Γ1
1 = {�p,�¬a,¬p ∨ a,

¬p ∨ ◦(bU ¬p),�¬b}
(Res) sel ev set∗1 = {bU ¬p}

Γ2
1 = {�p,�¬a,¬p ∨ a,¬p ∨ ◦(bU ¬p),

�¬b, a}
(Res)

Γ∗
1 = Γ3

1 = {�p,�¬a,¬p ∨ a,¬p ∨ ◦(bU ¬p),
�¬b, a,⊥}

Figure 4.13: Systematic TRS-refutation for the set of clauses {� p,�¬p}

Γ0
0 = {�p, �¬p} (Res)

Γ1
0 = {�p, �¬p,⊥}

Figure 4.14: Non-systematic TRS-refutation for the set of clauses {� p,�¬p}

4. Invariant-Free Clausal Temporal Resolution for PLTL 98

Γ0 = Γ0
0 = {(pU q) ∨ �r,�¬p,�¬q} (U Set) sel ev set0 = {pU q}

Γ1
0 = {q ∨ p ∨ �r, q ∨ ◦(a1 U q) ∨ �r,

�¬p,�¬q,�¬a1}
(�Fix) sel ev set∗0 = {a1 U q}

Γ2
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ �r,�¬p,�¬q,�¬a1}
(�Fix)

Γ3
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1}

(Res)

Γ4
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r}

(Res)

Γ5
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r}

(Res)

Γ6
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ r}

(Res)

Γ7
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ r, ◦(a1 U q) ∨ ◦�r}

(Res)

Γ8
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ r, ◦(a1 U q) ∨ ◦�r, q ∨ r}

(Res)

Γ9
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r, p ∨ ◦�r,
◦(a1 U q) ∨ r, ◦(a1 U q) ∨ ◦�r,
q ∨ r, q ∨ ◦�r}

(Res)

Γ10
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ r, ◦(a1 U q) ∨ ◦�r,
q ∨ r, q ∨ ◦�r, r}

(Res)

Figure 4.15: Systematic TRS-derivation for the set of clauses {(pU q) ∨ � r,�¬p,�¬q} (Part 1 of 2)

4. Invariant-Free Clausal Temporal Resolution for PLTL 99

Γ11
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r, q ∨ ◦(a1 U q) ∨ ◦�r,
�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ r, ◦(a1 U q) ∨ ◦�r,
q ∨ r, q ∨ ◦�r, r, ◦�r}

(Sbm)

Γ12
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

q ∨ ◦(a1 U q) ∨ r,

�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ r, ◦(a1 U q) ∨ ◦�r,
q ∨ r, q ∨ ◦�r, r, ◦�r}

(Sbm)

Γ13
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ r, ◦(a1 U q) ∨ ◦�r,
q ∨ r, q ∨ ◦�r, r, ◦�r}

(Sbm)

Γ14
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
◦(a1 U q) ∨ ◦�r,
q ∨ r, q ∨ ◦�r, r, ◦�r}

(Sbm)

Γ15
0 = {q ∨ p ∨ r, q ∨ p ∨ ◦�r,

�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,
q ∨ r, q ∨ ◦�r, r, ◦�r}

(Sbm)

Γ16
0 = {q ∨ p ∨ r,�¬p,�¬q,�¬a1,

p ∨ r, p∨ ◦�r,
q ∨ r, q ∨ ◦�r, r, ◦�r}

(Sbm)

Γ17
0 = {�¬p,�¬q,�¬a1, p ∨ r, p∨ ◦�r,

q ∨ r, q ∨ ◦�r, r, ◦�r}
(Sbm)

Γ18
0 = {�¬p,�¬q,�¬a1, p ∨ r,

q ∨ r, q ∨ ◦�r, r, ◦�r}
(Sbm)

Γ19
0 = {�¬p,�¬q,�¬a1, p ∨ r,

q ∨ r, r, ◦�r}
(Sbm)

Γ20
0 = {�¬p,�¬q,�¬a1, p ∨ r, r, ◦�r} (Sbm)

Γ21
0 = {�¬p,�¬q,�¬a1, q ∨ r, r, ◦�r} (Sbm)

Γ∗
0 = Γ22

0 = {�¬p,�¬q,�¬a1, r, ◦�r} (unnext)

Γ1 = Γ0
1 = {�¬p,�¬q,�¬a1,�r} sel ev set1 = ∅

. . .

Figure 4.16: Systematic TRS-derivation for the set of clauses {(pU q) ∨ � r,�¬p,�¬q} (Part 2 of 2)

4. Invariant-Free Clausal Temporal Resolution for PLTL 100

{(a1 U q) ∨ �r,�¬p,�¬q,�r,�¬a1}

and sel ev set1 = {(a1 U q)}. Indeed, every set Γi (such that i ≥ 1) obtained after i unnext-

steps would be of the form

{(ai U q) ∨ �r,�¬p,�¬q,�r} ∪{�¬ah | 1 ≤ h ≤ i}

and sel ev seti = {(ai U q)}. Consequently, it would be impossible to obtain two sets Γj and

Γk such that 0 ≤ j ≤ k and now(Γj) = now(unnext(Γ∗
k)). Hence, the resolution process

would not stop. Actually, from the eleven applications of the rule (Sbm) in Figure 4.16, only

the application of the rule (Sbm) to the set Γ14
0 is crucial. This application removes the clause

◦(a1 U q) ∨ ◦�r and yields the set Γ15
0 . Note that the other ten clauses removed, respectively,

by the remaining ten applications of the rule (Sbm) would also be removed by the application

of the operator unnext. This example shows that the rule (Sbm) is needed for completeness of

the TRS-system.

Example 4.6.7. For the unsatisfiable set of clauses {(pU q) ∨ (rU s),�¬p,�¬q,�¬s}, if the

first selected eventuality is pU q then the same problem as in Example 4.6.6 happens, but with

(ai U q)∨ (rU s) instead of (ai U q)∨�r, where ai is a fresh variable. This example shows that

the rule (Sbm) is also needed for refutational completeness of the TRS-system.

One could think that if there are more than one eventuality that can be selected by the

fair select operation, then it could be that not all of the eventualities were right choices (e.g.

because the program prevents the satisfaction of some of them). This view leads to the idea that

wrong choices will have to be repaired by backtracking to the choice point and changing the

selection. Moreover, sometimes one eventuality ϕ must be necessarily fulfilled before another

eventuality ψ. In those cases, one could think that selecting ψ before selecting ϕ could end

up requiring backtracking. In the next example we illustrate that TRS-resolution does not need

backtracking (independently of the selection strategy).

Example 4.6.8. We consider the satisfiable set of clauses Γ = {� q, �r,�(¬q ∨ �¬r)}. There

are two eventualities, � q and � r, that must be fulfilled, but the third clause � (¬q ∨ �¬r)
states that once the eventuality � q is fulfilled, the eventuality � r cannot be fulfilled. So that,

the eventuality � r must be fulfilled before the eventuality � q is fulfilled. The selection function

fair select could first select the eventuality � q or could first select the eventuality � r. However,

if fair select first selects � q, it does not mean that � q is fulfilled before � r is fulfilled. Actually,

since � r must be fulfilled before � q, that is what happens. The corresponding cycling systematic

TRS-derivation is shown in detail in Figures 4.17 and 4.18 (it is split due to space reasons).

After the first selection, sel ev set0 = {� q}. Then the application of the rule (�Set) with

context {� r} generates the clauses q ∨ ◦(aU q) and � (¬a ∨ �¬r) where a is a fresh propo-

sitional variable. At the same time, the value of sel ev set∗0 is set to {aU q}. Then, the rule

applications that correspond to the fix close operation (see Figure 4.10, line 8) are carried out

and the TRS-closed set of clauses Γ12
0 is obtained. Next, by the application of the operator

unnext, the set Γ0
1 is generated. Since the literal aU q belongs to event(Γ0

1), it remains as the

selected literal and, consequently, the rule (U Set) is applied to Γ0
1 with aU q as selected lit-

eral (i.e., sel ev set1 = {aU q}) and with empty context, obtaining the set of clauses Γ1
1 and

setting sel ev set∗1 to {bU q}, where b is a fresh propositional variable. The operation fix close

that yields the TRS-closed set Γ7
1 from Γ1

1, encapsulates several applications of the rule (Res)
and the rule (Sbm). The set Γ0

2 is obtained from Γ7
1 by using the operator unnext. Since the

4. Invariant-Free Clausal Temporal Resolution for PLTL 101

Γ0 = Γ0
0 = {� q, �r,�(¬q ∨ �¬r)} (�Set) sel ev set0 = {� q}

Γ1
0 = {� r,�(¬q ∨ �¬r), q ∨ ◦(aU q),

� (¬a ∨ �¬r)}
(�Fix) sel ev set∗0 = {aU q}

Γ2
0 = {�(¬q ∨ �¬r), q ∨ ◦(aU q),

� (¬a ∨ �¬r), r ∨ ◦� r}
(�Fix)

Γ3
0 = {q ∨ ◦(aU q),�(¬a ∨ �¬r), r ∨ ◦� r,

� (¬q ∨ ¬r),�(¬q ∨ ◦�¬r)}
(�Fix)

Γ4
0 = {q ∨ ◦(aU q), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),

� (¬a ∨ ◦�¬r)}

(Res)

Γ5
0 = {q ∨ ◦(aU q), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),
� (¬a ∨ ◦�¬r), r ∨ ¬q}

(Res)

Γ6
0 = {q ∨ ◦(aU q), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),
� (¬a ∨ ◦�¬r), r ∨ ¬q,¬q}

(Res)

Γ7
0 = {q ∨ ◦(aU q), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),

� (¬a ∨ ◦�¬r), r ∨ ¬q,¬q, r ∨ ¬a}

(Res)

Γ8
0 = {q ∨ ◦(aU q), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),
� (¬a ∨ ◦�¬r), r ∨ ¬q,¬q, r ∨ ¬a,¬a}

(Res)

Γ9
0 = {q ∨ ◦(aU q), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),
� (¬a ∨ ◦�¬r), r ∨ ¬q,¬q, r ∨ ¬a,
¬a, ◦(aU q)}

(Sbm)

Γ10
0 = {q ∨ ◦(aU), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),
� (¬a ∨ ◦�¬r),¬q, r ∨ ¬a,¬a, ◦(aU q)}

(Sbm)

Γ11
0 = {q ∨ ◦(aU q), r ∨ ◦� r,�(¬q ∨ ¬r),

� (¬q ∨ ◦�¬r),�(¬a ∨ ¬r),
� (¬a ∨ ◦�¬r),¬q,¬a, ◦(aU q)}

(Sbm)

Γ∗
0 = Γ12

0 = {r ∨ ◦� r,�(¬q ∨ ¬r),�(¬q ∨ ◦�¬r),
� (¬a ∨ ¬r),�(¬a ∨ ◦�¬r),¬q,¬a,
◦(aU q)}

(unnext)

Figure 4.17: Cycling systematic TRS-derivation for {� q, � r,� (¬q ∨ �¬r)} (Part 1 of 2)

4. Invariant-Free Clausal Temporal Resolution for PLTL 102

Γ1 = Γ0
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r), aU q}
(U Set) sel ev set0 = {aU q}

Γ1
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r),

q ∨ a, q ∨ ◦(bU q),�¬b}

(Res)

Γ2
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r),
q ∨ a, q ∨ ◦(bU q),�¬b, q ∨ ¬r}

(Res)

Γ3
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r),
q ∨ a, q ∨ ◦(bU q),�¬b, q ∨ ¬r,¬r}

(Res)

Γ4
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r), q ∨ a,
q ∨ ◦(bU q),�¬b, q ∨ ¬r,¬r, a∨ ◦�¬r}

(Res)

Γ5
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r), q ∨ a,
q ∨ ◦(bU q),�¬b, q ∨ ¬r,¬r, a ∨ ◦�¬r,◦�¬r}

(Sbm)

Γ6
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r), q ∨ a,
q ∨ ◦(bU q),�¬b,¬r, a∨ ◦�¬r,◦�¬r}

(Sbm)

Γ∗

1 = Γ7
1 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r), q ∨ a,
q ∨ ◦(bU q),�¬b,¬r,◦�¬r}

(unnext)

Γ2 = Γ0
2 = {� (¬q ∨ ¬r),� (¬q ∨ ◦�¬r),

� (¬a ∨ ¬r),� (¬a ∨ ◦�¬r),�¬b,�¬r}
(Sbm) sel ev set2 = ∅

Γ1
2 = {� (¬q ∨ ◦�¬r),� (¬a ∨ ¬r),

� (¬a ∨ ◦�¬r),�¬b,�¬r}
(Sbm) sel ev set∗2 = ∅

Γ∗

2 = Γ2
2 = {� (¬q ∨ ◦�¬r),� (¬a ∨ ◦�¬r),

�¬b,�¬r}

now(unnext(Γ2
2)) = now(Γ0

2)
{¬q, r,¬a} 7→ {q,¬r,¬b} 7→ {¬r,¬b} 7→ {¬r,¬b} · · ·

Figure 4.18: Cycling systematic TRS-derivation for {� q, � r,� (¬q ∨ �¬r)} (Part 2 of 2)

4. Invariant-Free Clausal Temporal Resolution for PLTL 103

set event(Γ0
2) is empty, the value of sel ev set2 as well as the value of sel ev set∗2 is the empty

set. Therefore no context-dependent rule is applied to Γ0
2 and we get the TRS-closed set Γ2

2 by

applying the rule (Sbm) twice. At this point the derivation is cycling with respect to j = 2 and

k = 2 (see Definition 4.6.1). In particular this means that now(unnext(Γ2
2)) = now(Γ0

2). The

sets Γ∗
0 = Γ12

0 , Γ∗
1 = Γ7

1 and Γ∗
2 = Γ1

2 characterize a collection of models for the initial set of

clauses Γ. All the models of such collection make true the literals {¬q, r,¬a} in s0, the literals

{¬r,¬b} in s1 and also the literals {¬r,¬b} in all the states sj such that j ≥ 2. Additionally, q

must be true in sk for some k ≥ 1. Therefore, if we choose to make q true as soon as possible,

i.e. in the state s1, we can obtain an ultimately periodic modelM of Γ with states s0, s1, s2, . . .

such that VM(s0) = {r}, VM(s1) = {q} and VM(sj) = ∅ for every j ≥ 2.

In Example 4.6.8 we can see that the strategy for selecting eventualities does not compro-

mise the completeness of TRS-resolution. However it can affect efficiency. In particular, if we

had selected the eventuality � r instead of the eventuality � q, the derivation would have been

considerably longer.

Remark 4.6.9. Note that when Γ is a satisfiable set of (non-temporal) classical propositional

clauses, the derivationD(Γ) obtained by the algorithm SR is of the form Γ0
0 7→ . . . 7→ Γh0

0 Z⇒
Γ0

1, and it can also be represented as (Γ0,Γ
∗
0) Z⇒ (Γ1,Γ

∗
1), where Γ0 = Γ0

0 = Γ, Γh0

0 = Γ∗
0,

Γ1 = Γ∗
1 = unnext(Γ∗

0) = ∅. The set Γ0
1 –which is at the same time Γ1 and Γ∗

1– is TRS-closed

and additionaly produces a cycle because D(Γ) verifies the three items of Definition 4.6.1 and,

in particular the second one since now(unnext(Γ∗
1)) = now(Γ1). So the cycle is from Γ0

1 to

Γ0
1. Sets of temporal clauses, e.g. the singleton {◦P}, can also give rise to this kind of cycling

derivation ended in an empty set. However, the singleton {�P} produces a cycle with non-

empty set of clauses. In general, every systematic derivation that is not a refutation becomes

cyclic.

Along the rest of the chapter, we will denote by D(Γ) any derivation of the form (Γ0,Γ
∗
0)

Z⇒ (Γ1,Γ
∗
1) Z⇒ . . . Z⇒ (Γj ,Γ

∗
j) Z⇒ . . . Z⇒ (Γk,Γ

∗
k) obtained by SR with initial set Γ0 = Γ. In

particular, D(Γ) may be a refutation or a cycling derivation with respect to j and k.

4.6.3 Termination

In this subsection we show that the algorithm SR always obtains either a refutation or a cycling

derivation after a finite number of iterations. Remember that we assume that SR uses a fair

strategy for selecting eventualities.

The rule (U Set) introduces new eventualities involving fresh variables. In order to justify

that derivations that (potentially) use the rule (U Set) are finite, we have to show that, when-

ever a refutation is not obtained, the cycling conditions in Definition 4.6.1, in particular its third

requirement, will be satisfied after a finite number of iteration steps. In other words, the ter-

mination proof of SR requires to show that the algorithm cannot generate an infinite number

of new propositional variables. A priori, there are two ways for generating new propositional

variables in SR. The first is the translation to CNF applied in the output to the rule (U Set).

However, no new variable is introduced by SR in this way. The reason is that the translation to

CNF is applied to a formula that only needs DtNF-rules to be in CNF and DtNF-rules do not

use extra variables (see Proposition 4.2.6).

The second source of new propositional variables is the explicit occurrence of a fresh vari-

able in the consequent of the rule (U Set). However, as we will show, the sequence of new

4. Invariant-Free Clausal Temporal Resolution for PLTL 104

eventualities produced by successive applications of the rule (U Set) is always finite. There is a

twofold reason for the latter. On one hand, the clauses defining a new variable (see function def

in Figure 4.5) are always-clauses, which are excluded from the negated context. On the other

hand, in the algorithm SR, the rule (U Set) is always applied to sets where the propositional

variables introduced (as fresh) by previous applications of (U Set) are also out of the context.

In order to prove the termination result, we first define the set univlit(Γ) (Definition 4.6.10)

formed by all the literals that could appear in the clauses obtained from Γ by means of all the

TRS-rules with the exception of the rule (U Set) (and the derived rule (�Set)). Then the closure

of a set of clauses Γ (Definition 4.6.11) is formed by all the clauses that can be generated from

the literals in univlit(Γ).

Definition 4.6.10. Let Γ be a set of clauses. The set univlit(Γ) is the smallest set of literals

defined as follows7

• Lits(Γ) ⊆ univlit(Γ)

• If L ∈ univlit(Γ), then L̃ ∈ univlit(Γ)

• If P1 U P2 ∈ univlit(Γ), then {◦(P1 U P2), P1, P2} ⊆ univlit(Γ)

• If P1RP2 ∈ univlit(Γ), then {◦(P1RP2), P1, P2} ⊆ univlit(Γ)

• If �P ∈ univlit(Γ), then {◦�P, P } ⊆ univlit(Γ)

• If �P ∈ univlit(Γ), then {◦�P, P } ⊆ univlit(Γ)

• If ◦L ∈ univlit(Γ), then L ∈ univlit(Γ).

The set univlit(Γ) is finite for any set of clauses Γ since we only consider finite sets of

clauses and finite clauses. Now, we define the closure of a set of clauses.

Definition 4.6.11. Let Γ be a set of clauses. The set closure(Γ) is the set formed by all the

clauses C such that Lits(C) ⊆ univlit(Γ).

As a consequence of the finiteness of univlit(Γ) and of the fact that clauses do not contain

repeated literals, the set closure(Γ) is also finite.

We additionally consider the notions of direct descendant and sequence of descendants.

Definition 4.6.12. Let D(Γ) = (Γ0,Γ
∗
0) Z⇒ . . . Z⇒ (Γk,Γ

∗
k) be the derivation constructed by

the algorithm SR (Figure 4.10). We say that an eventuality T ′ is the direct descendant of an

eventuality T in D(Γ) iff for some i ∈ {0, . . . , k}: sel ev seti = {T} and sel ev set∗i = {T ′}.
Let S = T0, T1, . . . , Tn be a sequence of eventualities. We say that S is the sequence of descen-

dants of T0 inD(Γ) iff Ti+1 is a direct descendant of Ti inD(Γ) for all i ∈ {0, . . . , n− 1}.

For example, �¬p, aU ¬p, bU ¬p is the sequence of descendants of �¬p in the derivation

in Example 4.6.5.

Next we first show that for all D(Γ) and every selected eventuality T inD(Γ), the sequence

of descendants of T in D(Γ) is finite (Lemma 4.6.13). The proof is based on the fact that the

algorithm SR follows a specific strategy with two crucial features. First, the algorithm keeps at

7 Remember that Lits(�
b(L1 ∨ . . . ∨ Ln)) = {L1, . . . , Ln} and Lits(Γ) =

S

C∈Γ
Lits(C).

4. Invariant-Free Clausal Temporal Resolution for PLTL 105

most one selected eventuality to which the rule (U Set) can be applied and when a new even-

tuality is generated, by application of (U Set), that new eventuality has priority to become the

selected eventuality for the next application of the rule (U Set) (after an unnext-step). Second,

the rule (U Set) is applied before any other rule in each iteration step. As a consequence of these

two crucial features of the strategy followed by the algorithm SR, when the rule (U Set) is ap-

plied with selected eventuality T , eventualities generated by previous applications of (U Set)
do not appear in the set of clauses Φ (see Figure 4.5) and the propositional variables introduced

(as fresh) by previous applications of (U Set) appear only in always-clauses. Hence, the con-

text (Definition 4.3.3) is always a subset of the closure set, which is finite. Therefore, since the

number of possible different contexts is finite, if the sequence of descendants of an eventuality

were infinite, some context would be repeated, but context repetition produces the end of the

sequence of descendants (as shown in the proof of Lemma 4.6.13).

Lemma 4.6.13. For allD(Γ) and every selected eventuality T inD(Γ), the sequence of descen-

dants of T in D(Γ) is finite.

Proof. Let T be P0 U P . Suppose that T occurs in the set Γ0
0 in D(Γ), sel ev set0 = {P0 U P}

and the sequence of descendants of T in D(Γ) is infinite. When the rule (U Set) is applied to

a partition of Γ0
0 of the form Φ0 ∪ Γ0

0 � {P0 U P}, the set Γ0
0 � {P0 U P} is replaced with the

union of the following five disjoint sets of clauses

Ψ1
0 = {P ∨ P0 ∨N0 | �

b((P0 U P) ∨N0) ∈ Γ0}
Ψ2

0 = {P ∨ ◦(a1 U P) ∨N0 | � b((P0U P) ∨N0) ∈ Γ0}
Ψ3

0 = {� (◦(P0 U P) ∨ ◦N0) | � ((P0 U P) ∨N0) ∈ Γ0}
Ψ4

0 = {� (¬a1 ∨ P0)}
Ψ5

0 = CNF(�(¬a1 ∨ ¬now(Φ0)))

where Ψ4
0 ∪Ψ5

0 corresponds to CNF(def(a1, P0, now(Φ0))) (see Figure 4.5).

Hence, the set Γ1
0 is the union of Φ0 and the above five sets, and the new selected eventuality

is a1 U P , i.e., sel ev set∗0 = {a1 U P}. The fresh variable a1 only occurs in Ψ2
0 and Ψ4

0 ∪Ψ5
0.

The latter is a set of always-clauses, and the occurrences of a1 in Ψ4
0 ∪Ψ5

0 are not preceded by

◦. Consequently, after the operations fix close and unnext (lines 8 and 10 in Figure 4.10), all

the occurrences of a1 in the set Γ0
1 are either in an always-clause or in a now-clause that comes

from Ψ2
0. Hence, the only now-clauses where a1 occurs in Γ0

1 are of the formN ∨a1 U P , where

a1 U P is the new selected eventuality. Hence, the next application of the rule (U Set) does

not introduce any occurrence of a1 in the negated context, because always-clauses and clauses

containing a1 U P are both excluded from the context. Moreover, CNF(� (¬a1 ∨ ¬now(Φ0)))
does not contain any other fresh variable (apart from a1). The reason is that DtNF(� (¬a1 ∨
¬now(Φ0))) is already in conjunctive normal form, so the only transformation that uses new

fresh variables –which is detailed in the proof of Theorem 4.2.7– is left out.

The above reasoning about the construction of Γ0
1 from Γ0

0 can be generalized to the con-

struction of Γ0
i+1 from Γ0

i with selected eventuality ai U P to obtain a direct descendant ai+1 U P
as follows. When the rule (U Set) is applied to a partition of Γ0

i of the form Φi ∪ Γ0
i �

4. Invariant-Free Clausal Temporal Resolution for PLTL 106

{ai U P}, then the consequent Γ1
i is the union of Φi and the following five disjoint sets

Ψ1
i = {P ∨ ai ∨Ni | �

b((ai U P) ∨Ni) ∈ Γi}
Ψ2

i = {P ∨ ◦(ai+1 U P) ∨Ni | � b((ai U P) ∨Ni) ∈ Γi}
Ψ3

i = {� (◦(ai U P) ∨ ◦Ni) | � ((ai U P) ∨Ni) ∈ Γi}
Ψ4

i = {� (¬a1 ∨ P0),�(¬a2 ∨ a1), . . . ,�(¬ai ∨ ai−1),�(¬ai+1 ∨ ai)}
Ψ5

i = CNF(� (¬ai+1 ∨ ¬now(Φi)))

where (Ψ4
i \ Ψ4

i−1)∪Ψ5
i corresponds to CNF(def(ai+1, ai, now(Φi))) whenever i ≥ 1 (see

Figure 4.5). Now, the fresh variables a1, . . . , ai, ai+1 occur in the above five sets Ψj
i . The oc-

currences of fresh variables in Ψ2
i ∪Ψ4

i ∪Ψ5
i are not filtered to the negated context in Γ0

i+1 by

the reasons explained above for Γ0
1. Regarding the occurrences of ai in the set Ψ1

i , since they

are not preceded by ◦, no one of them can be filtered to Γ0
i+1. Additionally, Ψ3

i is empty for all

i ≥ 1. To realize this fact, it suffices to check the following three facts. First, whenever the rule

(U Set) is applied to the set Γ0
i−1, by considering the partition Φi−1 ∪(Γ0

i−1 � sel ev seti−1),

the new literal ◦(ai U P) appears only in now-clauses. Second, the remaining basic rules (reso-

lution, subsumption and fixpoint rules), that are applied to obtain the TRS-closed set Γ∗
i−1 from

Γ1
i−1, cannot introduce (in Γ∗

i−1) an always-clause C such that ◦(ai U P) ∈ Lits(C). Third,

since Γ0
i is obtained from Γ∗

i−1 by unnext, then Γ0
i cannot include an always-clauseC such that

◦(ai U P) ∈ Lits(C).

Consequently, every fresh variable a` is not in Lits(now(Γ0
h)) for all h ≥ ` and all ` ≥ 1. There-

fore, fresh variables do not occur in any context of any application of the rule (U Set). So that,

the successive contexts are exclusively formed by formulas from the closure of Γ0
0.

Since the set closure(Γ0
0) is finite, if the sequence of descendants of P0 U P were infinite, there

would necessarily be two sets Γ0
g and Γ0

h such that g < h and now(Γ0
g \ Γ0

g � sel ev setg) =

now(Γ0
h \ Γ0

h � {ah U P})8. Without loss of generality, we consider g = 0 and h = i. By

repeatedly applying the rule (Res) to now(Γ0
0 \Γ0

0 � {P0 U P}) and CNF(� (¬a1 ∨¬now(Γ0 \
Γ0 � {P0 U P}))), the algorithm SR obtains ¬a1 which resolves with � (¬a2 ∨ a1) produc-

ing ¬a2. Then ¬a2 resolves with � (¬a3 ∨ a2). At the end of this process ¬ai−1 resolves

with � (¬ai ∨ ai−1) producing ¬ai. This literal resolves with every clause in {P ∨ ai ∨ Ni |
(ai U P) ∨Ni ∈ Γi} producing the clauses in {P ∨Ni | (ai U P) ∨ Ni ∈ Γi} which subsume

the clauses in {P ∨ ◦(ai+1 U P) ∨ Ni | (ai U P) ∨ Ni ∈ Γi}. Therefore, the selected tempo-

ral literal ai+1 U P disappears after the following unnext-step. Hence, ai+1 U P cannot be the

selected eventuality at the next step, i.e., sel ev seti+1 6= {ai+1 U P}. This is a contradiction

because the sequence of descendants of P0 U P has been supposed to be infinite.

In the above proof we have considered that (U Set) is always applied with a non-empty

context. The proof for possibly empty contexts is just a especial case. Note also that the ap-

plication of the subsumption rule, together with the subsequent use of the operator unnext, is

essential in the above proof.

Theorem 4.6.14. The algorithmSR, for each input Γ, terminates giving a resolution proof.

Proof. Suppose that SR does not produce �
b⊥. On one hand, by Lemma 4.6.13, SR cannot

generate an infinite sequence of descendants of any selected eventuality. Besides, when the se-

quence of descendants of one eventuality finishes because the last one, namely T , ceases to be

8 sel ev setg = {P0 U P} if g = 0, and sel ev setg = {ag U P} if g > 0.

4. Invariant-Free Clausal Temporal Resolution for PLTL 107

the selected eventuality in Γi for some i ≥ 1 (i.e. sel ev set∗i−1 = {T} and sel ev seti 6= {T}),
then the set now(Γi) is included in closure(Γ) because the fresh variables introduced by (U Set)
only occur in alw(Γi). If the process continues and the algorithm SR selects another eventual-

ity, finiteness of sequences of descendants (Lemma 4.6.13) guarantees the existence of Γg, with

g > i, such that now(Γg) is included in closure(Γ). As the closure is finite, there must exist

j and k such that j ≤ k and the set of now-clauses of Γj is exactly the set of now-clauses of

unnext(Γ∗
k).

On the other hand, fairness ensures that the third condition in Definition 4.6.1 must be satisfied

at some moment.

4.6.4 Complexity

In order to analyze the worst case complexity of the algorithm SR, we first consider the

set closure(Γ) (see Definition 4.6.11) of all the possible clauses formed using the literals in

univlit(Γ) (see Definition 4.6.10).

Proposition 4.6.15. The number of clauses in closure(Γ) is 2n, where n is the number of literals

in univlit(Γ).

Then, the set of all possible sets of clauses that could appear as context when applying

(U Set) has double-exponential size in n.

Proposition 4.6.16. Let contexts(Γ) = {∆ | ∆ ⊆ closure(Γ)}, then the number of sets in

contexts(Γ) is 22n
.

Therefore, the worst case complexity of the algorithm SR can be bounded to O(2O(2n)).

Proposition 4.6.17. The number of clauses generated by the resolution method is bounded

by O(2O(2n)) and the number of new variables is also bounded by O(2O(2n)) where n is the

number of literals in univlit(Γ).

Proof. In the worst case, each clause in closure(Γ) contains a selected eventuality that generates

a sequence of descendants with an eventuality for each possible context in contexts(Γ) plus a

repeated context. That is, each of the 2n initial clauses may generate 1 + 22n
clauses with new

eventualities. So, f(n) = 2n × (1 + 22n
) = 2n + 2n+2n

is the maximum number of different

clauses (with new eventualities) that can appear in a derivation. Since, each new eventuality

is associated to a new variable, 2n + 2n+2n

also bounds the number of fresh variables. In the

worst case, the definition of each new variable generates 2n new clauses. So that, g(n) =

22.n + 22.n+2n

bounds the number of clauses defining new variables. To sum up, the worst case

is bounded to

2n + f(n) + g(n) = 2n + 2n + 2n+2n

+ 22.n + 22.n+2n

where the leftmost 2n stands for the size of the closure which bounds the initial set of clauses.

That is, in the worst case, the number of clauses is inO(2O(2n)) and the number of new variables

is inO(2O(2n)) .

4. Invariant-Free Clausal Temporal Resolution for PLTL 108

4.7 Completeness

A resolution method is refutationally complete if, whenever a set of clauses Γ is unsatisfiable, a

refutation for Γ can be constructed. In our case we prove the refutational completeness of TRS-

resolution showing that there exists a model of Γ whenever the resolution proof D(Γ) obtained

by the algorithm SR is a cycling derivation. This result together with the proof of termination

(Theorem 4.6.14) shows that our algorithm for systematic resolution (Figure 4.10) is complete

and, hence, a decision procedure for PLTL.

For the rest of this section we fix the derivation

D(Γ) ≡ (Γ0,Γ
∗
0) Z⇒ (Γ1,Γ

∗
1) Z⇒ . . . Z⇒ (Γj,Γ

∗
j) Z⇒ . . . Z⇒ (Γk,Γ

∗
k)

to be cycling with respect to j and k. In order to prove the existence of a model of Γ from the

existence of D(Γ) we will show that the sets Γ∗
i in D(Γ) can be extended (with literals of their

own clauses) preserving its local consistency. These extensions, denoted as Γ̂∗
i , are literal-closed

in the sense that they contain at least one literal from each clause in Γ∗
i . Remember that the sets

Γ∗
i in D(Γ) are TRS-closed (see Definition 4.4.6) which, in particular, means that BTL(Γ∗

i) = ∅
(Definition 4.2.3). Actually, inside the collection of all the locally consistent literal-closed (lclc,

in short) extensions of each Γ∗
i , we define the subclass of the so-called standard extensions. In

particular, standard lclc-extensions of the sets Γ∗
i inD(Γ) allow us to ensure the model existence.

We define a successor relation on lclc-extensions of the sets Γ∗
i that gives rise to infinite paths

of standard lclc-extensions. These infinite paths can be used to characterize or define PLTL-

structures. Finally we show that at least one of those paths satisfies the suitable conditions

for defining a model of Γ. Hence, this section is divided into a first subsection devoted to the

notion of lclc-extensions of sets of clauses and their main properties, including the existence of

a non-empty subclass of standard lclc-extensions for any locally consistent and TRS-closed set

of clauses. In the second subsection, we define the notion of successor and prove the existence

of infinite paths. Lastly, in the third subsection, we prove the existence of a model of Γ.

4.7.1 Extending Locally Consistent TRS-Closed Sets of Clauses

In this subsection we show that every TRS-closed set of clauses has at least one locally consistent

extension that is literal-closed and standard. We gradually define the notions and prove the

results.

Definition 4.7.1. A set of clauses Γ is literal-closed iff Γ ∩ Lits(C) 6= ∅ for every C ∈ Γ.9

Besides, lclc(Γ) denotes the collection of all locally consistent sets of clauses Γ̂ such that Γ ⊆
Γ̂ ⊆ Γ∪ Lits(Γ) and Γ̂ is literal-closed. We say that each Γ̂ ∈ lclc(Γ) is an lclc-extension of Γ.

Note that if �
b⊥ is in Γ then lclc(Γ) = ∅ by local inconsistency. Besides, since only literals

included in some clause in Γ are used to build the elements in lclc(Γ), if no clause in Γ includes

any (basic) temporal literal (i.e. BTL(Γ) = ∅, see Subsection 4.2.1) then every Γ̂ ∈ lclc(Γ) also

satisfies that BTL(Γ̂) = ∅. In particular, if Γ = ∅ then lclc(Γ) = {∅}.
Next, we show that for every locally consistent set of clauses Γ that does not contain (basic)

temporal literals there exists at least one lclc-extension of Γ.

Proposition 4.7.2. If Γ is a locally consistent set of clauses such that BTL(Γ) = ∅ then

lclc(Γ) 6= ∅.

9 Note that literals in Lits(C) are viewed as singleton clauses.

4. Invariant-Free Clausal Temporal Resolution for PLTL 109

Proof. We will show that there exists a sequence S = Ω0,Ω1,Ω2, . . . ,Ωg such that g ≥ 0,

Ω0 = Γ and Ωh+1 = Ωh∪{L} (for every h ∈ {0, . . . , g − 1}) for some L ∈ Lits(C) and

some C ∈ Ωh such that Lits(C) ∩ Ωh = ∅ and Ωh ∪{L} is locally consistent. In addition,

Ωg ∈ lclc(Γ) whereas Ωh 6∈ lclc(Γ) for all h ∈ {0, . . . , g − 1}. Since the number of clauses is

finite, this inductive construction is also finite and shows that lclc(Γ) 6= ∅.
We have to show that, for every h such that Ωh 6∈ lclc(Γ), there exists a locally consistent

Ωh+1 that extends Ωh with a new literal from some clause in Γ. Since Ωh 6∈ lclc(Γ) there exists

(at least one) clause C = �
b(L1 ∨ . . . ∨ Ln) ∈ Ωh such that Li 6∈ Ωh for all i ∈ {1, . . . , n}.

Suppose that Ωh ∪{Li} is not locally consistent for all i ∈ {1, . . . , n}. Then, by Proposition

4.4.14, there exists a local refutationDi for Ωh ∪{Li} that is linear with respect to Li, for every

i ∈ {1, . . . , n}. From these n local refutations we are able to construct a local refutation D for

Ωh that is linear with respect to C, contradicting the assumption that Ωh is locally consistent.

Hence, Ωh ∪{Li} must be locally consistent for some i ∈ {1, . . . , n}.

Definition 4.7.3. Let Γ be a set of clauses such that lclc(Γ) 6= ∅ and let Λ ⊆ Lits(Γ). We say

that Λ represents Γ if Γ̂∩Λ 6= ∅ for all Γ̂ ∈ lclc(Γ). If, in addition, for every Λ′ (Λ there exists

Γ̂ ∈ lclc(Γ) such that Γ̂ ∩ Λ′ = ∅, then we say that Λ minimally represents Γ.

The following result shows that the minimal representatives of a TRS-closed set of clauses

Γ are included (as clauses) in Γ.

Proposition 4.7.4. For every Λ that minimally represents a non-empty locally consistent TRS-

closed set of clauses Γ there is a clause C ∈ Γ such that Lits(C) = Λ.

Proof. First we will show that Γ must contain at least one clause C such that Lits(C) ⊆ Λ. We

partition Γ into the following two sets:

Π1 = {C ∈ Γ | Lits(C) ∩ Λ = ∅}
Π2 = {C ∈ Γ | Lits(C) ∩ Λ 6= ∅}

We split the clauses in Π2 into the sub-clauses formed by literals that do not appear in Λ and

the sub-clauses formed by literals that appear in Λ. These sets of clauses respectively are the

following sets Σ1 and Σ2.

Σ1 = {N | �
b(N ∨N ′) ∈ Π2, Lits(N) ∩ Λ = ∅ and Lits(N ′) ⊆ Λ}

Σ2 = {N ′ | � b(N ∨N ′) ∈ Π2, Lits(N) ∩ Λ = ∅ and Lits(N ′) ⊆ Λ}

Since Γ is locally consistent, Π1, Π2 and also their proper subsets are locally consistent. In

addition, Γ is TRS-closed, hence BTL(Γ) = ∅ and every set of clauses considered along the rest

of this proof does not contain any clause that includes any (basic) temporal literal.

Now we show, by contradiction, that ⊥ ∈ Π1 ∪Σ1 and, since Π1 is locally consistent, it

follows that ⊥ ∈ Σ1 and, consequently, there exists a clause C ∈ Γ such that Lits(C) ⊆
Lits(Σ2), i.e., Lits(C) ⊆ Λ.

Let us suppose that ⊥ 6∈ Π1 ∪Σ1. First, suppose that Π1 ∪Σ1 is locally consistent. By

Proposition 4.7.2, the set lclc(Π1 ∪Σ1) is non-empty and for every Ψ ∈ lclc(Π1 ∪Σ1) the set

Ω = Γ∪{L | L ∈ Ψ} is in lclc(Γ) and satisfies Ω ∩ Λ = ∅. This contradicts that Λ minimally

represents Γ.

Second, suppose that Π1 ∪Σ1 is locally inconsistent, there exists some minimal locally

inconsistent subset Φ of Π1 ∪Σ1 (i.e. Φ does not contain locally inconsistent proper subsets

of Π1 ∪Σ1). Since every subset of Π1 is locally consistent, then Φ ∩ Σ1 6= ∅. Let N be any

4. Invariant-Free Clausal Temporal Resolution for PLTL 110

clause in Φ∩Σ1. By Proposition 4.4.14, there exists a local refutationD for Φ that is linear with

respect to N . By using the original clauses in Π2 instead of their sub-clauses in Φ ∩Σ1, we can

build from D a derivation D′ whose last set contains a clause C such that Lits(C) ⊆ Lits(Σ2).

Hence, ⊥ ∈ Σ1 and this contradicts that⊥ 6∈ Π1 ∪Σ1.

So, since considering⊥ 6∈ Π1 ∪Σ1 leads to a contradiction when we consider that Π1 ∪Σ1

is locally consistent and when we consider that Π1 ∪Σ1 is locally inconsistent, it follows that

⊥ ∈ Π1 ∪Σ1. Therefore ⊥ ∈ Σ1 because Π1 is locally consistent and, consequently, there are

a clause C ∈ Γ such that Lits(C) ⊆ Λ.

Finally, Lits(C) cannot be a proper subset of Λ because Lits(C) also represents Γ and that

would contradict the minimality of the representation of Γ by Λ (see Definition 4.7.3). Hence-

forth, Lits(C) = Λ.

Next we introduce the notion of standard lclc-extensions of a set of clauses.

Definition 4.7.5. Let Γ be a locally consistent TRS-closed set of clauses. We say that Γ̂ ∈ lclc(Γ)
is standard iff it satisfies the following conditions:

(a) If ◦L ∈ Γ̂, then there exists a clause �
b(◦L ∨ ◦N) ∈ Γ

(b) For every propositional literal P ∈ Lits(Γ), if Γ̂∪{P} is locally consistent, then P ∈ Γ̂.

(c) If ◦L ∈ Γ̂, then Γ∪ (Γ̂ \ {◦L}) is not literal-closed.

The following lemma ensures the existence of at least one standard lclc-extension of any

locally consistent TRS-closed set of clauses.

Lemma 4.7.6. Let Γ be a locally consistent TRS-closed set of clauses. There exists at least one

standard set in lclc(Γ).

Proof. We first prove that there exists Ω ∈ lclc(Γ) that satisfies item (a) in Definition 4.7.5.

Second, we show that there exists Σ ⊇ Ω such that Σ ∈ lclc(Γ) and satisfies (a) and (b) in

Definition 4.7.5. Third, we show that there exists ∆ ⊆ Σ such that ∆ ∈ lclc(Γ) and satisfies

(a), (b) and (c) in Definition 4.7.5.

1. By Proposition 4.7.2, lclc(Γ) is non-empty. Now, let us suppose that for every set in

lclc(Γ) there exists a literal of the form ◦L such that ◦L 6∈ Lits(�
b◦N) for every clause

�
b◦N ∈ Γ. Then, for every Γ̂ ∈ lclc(Γ), there exists some L ∈ Γ̂ that belongs to the

following set

Ψ = {◦L ∈ Lits(Γ) | ◦L 6∈ Lits(�
b◦N) for every clause �

b◦N ∈ Γ}

Hence Ψ represents Γ and there should exist some Λ ⊆ Ψ that minimally represents Γ.

Therefore, by Proposition 4.7.4, there exists a clause C ∈ Γ such that Lits(C) = Λ. This

is a contradiction because the literals in Ψ, and in particular the literals in Λ, do not belong

to any clause of the form �
b◦N in Γ. Therefore, there exists some set Ω in lclc(Γ) that

satisfies Definition 4.7.5(a).

2. Since Ω is locally consistent and BTL(Ω) = ∅, the sequence Ω0,Ω1,Ω2, . . . ,Ωg in the

proof of Proposition 4.7.2 is easily adapted for ensuring that each Ωi satisfies Definition

4.7.5(a) and that Ωg satisfies Definition 4.7.5(b). So that Σ = Ωg.

4. Invariant-Free Clausal Temporal Resolution for PLTL 111

3. We show that Σ should contain a subset ∆ that satisfies the lemma. Since Σ belongs to

lclc(Γ), verifies Definition 4.7.5(a) and (b) and is a finite set, we can ensure the existence

of a finite sequence Σ0,Σ1,Σ2, . . . ,Σr such that r ≥ 0, Σ0 = Σ, Σr \ {◦L} 6∈ lclc(Γ)

for all ◦L ∈ Σr, and Σh+1 = Σh \ {◦Lh} for some ◦Lh ∈ Σh and Σh+1 ∈ lclc(Γ)
for every h ∈ {0, . . . , r − 1}. Therefore, Σh satisfies Definition 4.7.5(a) and (b) for all

h ∈ {0, . . . , r} and Σr additionally satisfies (c). Hence, Σr is the set ∆ we were looking

for.

For locally consistent TRS-closed sets, the subclass of their standard lclc-extensions repre-

sents the whole class of their lclc-extensions with respect to sets of next-literals in the sense

shown by the following proposition.

Proposition 4.7.7. Let Γ be any locally consistent TRS-closed set of clauses and Λ ⊆ Lits(Γ)

be a set such that every literal in Λ is of the form ◦L. If Γ̂ ∩ Λ 6= ∅ for every standard set

Γ̂ ∈ lclc(Γ), then Λ represents Γ.

Proof. Consider any Λ that satisfies the hypothesis but does not represent Γ. Hence, there exists

some non-standard set Ψ ∈ lclc(Γ) such that Ψ ∩ Λ = ∅. Now, let

Π = {N | � b(N ∨N ′) ∈ Γ, Lits(N) ∩ Λ = ∅ and Lits(N ′) ⊆ Λ}
Φ = {N ∈ Π | no clause in Π subsumes N}

Then, Φ is TRS-closed and locally consistent. The former holds because Γ is TRS-closed. For

the latter suppose that Φ is not locally consistent. By Proposition 4.4.10, ⊥ ∈ Φ. Hence, by

definition of Φ, there exists a clause C ∈ Γ such that Lits(C) ⊆ Λ. But this contradicts the

assumption Ψ ∩ Λ = ∅ because Ψ is an lclc-extension of Γ and, consequently, Lits(C) ∩ Ψ

cannot be empty.

Since Φ is TRS-closed and locally consistent, by Lemma 4.7.6, there is some Ω ∈ lclc(Φ)

that is standard. Hence, consider Σ = Γ∪{L | L ∈ Ω} for some standard Ω ∈ lclc(Φ). First,

Σ is an lclc-extension of Γ because Lits(Ω) ⊆ Lits(Γ) and because for every clause C ∈ Γ

there exists a clause N ∈ Φ such that Lits(N) ⊆ Lits(C). Second, Σ is standard because Ω is

a standard lclc-extension of Φ and Λ contains only literals of the form ◦L, so that Σ satisfies

Definition 4.7.5. Consequently, Σ is a standard lclc-extension of Γ such that Σ ∩ Λ = ∅. This

contradicts that Γ̂ ∩ Λ 6= ∅ for all standard Γ̂ ∈ lclc(Γ). Therefore, Λ represents Γ.

4.7.2 Building Infinite Paths of Standard Lclc-Extensions

In order to build sequences of standard lclc-extensions of the TRS-closed sets Γ∗
i –in the cycling

derivation D(Γ)– that represent models of Γ, such sequences must be coherent with respect

to the meaning of temporal connectives. We mean that, e.g. if ◦p belongs to a set Ω in the

sequence, then p must belong to the set that is the successor of Ω in the sequence. Similarly, for

eventualities where also the selections performed along D(Γ) are relevant. As a consequence

a successor relation is defined for the lclc-extensions of the TRS-closed sets that appear in the

derivationD(Γ):

(Γ0,Γ
∗
0) Z⇒ (Γ1,Γ

∗
1) Z⇒ . . . Z⇒ (Γj,Γ

∗
j) Z⇒ . . . Z⇒ (Γk,Γ

∗
k)

which is cycling with respect to j and k. This successor relation on

{lclc(Γ∗
i)× lclc(Γ∗

i+1) | 0 ≤ i < k} ∪ (lclc(Γ∗
k)× lclc(Γ∗

j))

4. Invariant-Free Clausal Temporal Resolution for PLTL 112

is presented in Definition 4.7.8. Along the rest of this chapter, Γ̂∗
i denotes a member of lclc(Γ∗

i).

Definition 4.7.8. Let i = h + 1 if h ∈ {0, . . . , k − 1} and let i = j if h = k, we say that

Γ̂∗
i is a successor of Γ̂∗

h or that Γ̂∗
h is a predecessor of Γ̂∗

i if for every ◦L ∈ Γ̂∗
h there is some

S ∈ nxcloi(◦L) such that S ⊆ Γ̂∗
i , where nxcloi is defined as follows

• nxcloi(◦P) = {{P}} where P is a propositional literal.

• nxcloi(◦◦L) = {{◦L}}

• nxcloi(◦(P1 U P2)) =




{{P2}, {P1, ◦(P1 U P2)}} if P1 U P2 6∈ sel ev seti
{{P2}, {P1, ◦(aU P2)}} otherwise

where aU P2 ∈ sel ev set∗i

• nxcloi(◦�P) =




{{P}, {◦�P}} if �P 6∈ sel ev seti
{{P}, {◦(aU P)}} otherwise

where aU P ∈ sel ev set∗i

• nxcloi(◦(P1RP2)) = {{P2, P1}, {P2, ◦(P1RP2)}}

• nxcloi(◦�P) = {{P,�P}, {P, ◦�P}}.

The set of successors of a given set Γ̂∗
h is denoted by succ(Γ̂∗

h).

The definition of nxcloi(◦�P) arises from the fact that the literal ◦�P can be either a

singleton now-clause or a literal properly contained in a clause C. In the first case, Γi contains

the always-clause �P which will not be affected by the rule (�Fix). Consequently, in such a

case Γ∗
i contains necessarily �P . However, in the second case, the literal ◦�P is introduced by

application of the rule (�Fix) to the clause C.

The existence of infinite paths of standard lclc-extensions is based on the existence of a

predecessor for each standard lclc-extension of a TRS-closed set in the derivation which is a

standard lclc-extension of the previous TRS-closed set in the derivation.

Proposition 4.7.9. For every i ∈ {1, . . . , k} and every standard Γ̂∗
i ∈ lclc(Γ∗

i), there exists a

standard Γ̂∗
i−1 ∈ lclc(Γ∗

i−1) such that Γ̂∗
i ∈ succ(Γ̂∗

i−1).

Proof. LetW` = {Γ̂∗
` ∈ lclc(Γ∗

`) | Γ̂
∗
` is standard } for each ` ∈ {0, . . . , k}. If there exists some

Γ̂∗
i−1 ∈Wi−1 such that Γ̂∗

i−1 does not contain any clause of the form ◦L, then Γ̂∗
i ∈ succ(Γ̂∗

i−1)

for all Γ̂∗
i . Otherwise, every set Γ̂∗

i−1 ∈ Wi−1 contains at least one clause of the form ◦L. We

proceed by contradiction. Let us suppose that Γ̂∗
i is a member of Wi such that Γ̂∗

i 6∈ succ(Γ̂∗
i−1)

for all Γ̂∗
i−1 ∈Wi−1. Hence, there exists at least one ◦L in every Γ̂∗

i−1 ∈Wi−1 such that S 6⊆ Γ̂∗
i

for all S ∈ nxcloi(◦L). Therefore, the set

Λ = {◦L | ◦L ∈
⋃

dΓ∗

i−1
∈Wi−1

Γ̂∗
i−1 such that S 6⊆ Γ̂∗

i for all S ∈ nxcloi(◦L)}

4. Invariant-Free Clausal Temporal Resolution for PLTL 113

satisfies that Λ ∩ Γ̂∗
i−1 6= ∅ for all Γ̂∗

i−1 ∈ Wi−1. Therefore, by Proposition 4.7.7, Λ represents

Γ∗
i−1 and, consequently there exists some set Ω ⊆ Λ that minimally represents Γ∗

i−1. By Propo-

sition 4.7.4, there exists a clause C = �
b(◦L1 ∨ . . .∨ ◦Lr) in Γ∗

i−1 such that Lits(C) = Ω and

r ≥ 1. Since unnext({C}) ⊆ Γi, then the clause C′ = L1 ∨ . . .∨ Lr is in Γi. Now, let

{S1, . . . , Sn} =

r⋃

g=1

nxcloi(◦Lg)

(note that n ≥ 1) and let {C1, . . . , Cm} be the set of all clauses of the form L1 ∨ . . . ∨ Ln

such that Lh ∈ Sh for all h ∈ {1, . . . , n}. By subsumption, Γ∗
i contains a non-empty set of

(non-empty) clauses {D1, . . . , Dm} such that Lits(Dt) ⊆ Lits(Ct) for all t ∈ {1, . . . , m}. By

constructionS 6⊆ Γ̂∗
i for all S ∈ nxcloi(◦Lg) and all g ∈ {1, . . . , r}. Hence, for each pair (g, S)

such that g ∈ {1, . . . , r} and S ∈ nxcloi(◦Lg), we can choose at least one literal L such that

L ∈ S and L 6∈ Γ̂∗
i . As a consequence, there exists a clause Dt ∈ Γ∗

i with t ∈ {1, . . . , m} such

that Lits(Dt) ⊆ Lits(Ct) where Dt ∩ Γ̂∗
i = ∅. This contradicts the fact that Γ̂∗

i contains at least

one literal from each clause in Γ∗
i .

Proposition 4.7.10. For every i ∈ {1, . . . , k} and every standard Γ̂∗
i , there exists a sequence

Γ̂∗
0, Γ̂

∗
1, . . . , Γ̂

∗
i of standard sets such that Γ̂∗

h ∈ succ(Γ̂∗
h−1) for every h ∈ {1, . . . , i}.

Proof. By Lemma 4.7.6 and Proposition 4.7.9.

Proposition 4.7.11. For every standard Γ̂∗
j there exists at least one standard Γ̂∗

k such that Γ̂∗
j =

succ(Γ̂∗
k).

Proof. The proof is very similar to the one of Proposition 4.7.9, but using that now(Γj) =

now(unnext(Γ∗
k)) instead of Γi = unnext(Γ∗

i−1) and also using the fact that the set {N |
�◦N ∈ Γ∗

k} is contained into the set now(unnext(Γ∗
k)) (by definition of the operator unnext).

We construct pre-models of Γ by means of sequences of standard lclc-extensions of the sets

in D(Γ) which will be ordered by the successor relation. For that, we need some notation on

such sequences. For g and h, where 0 ≤ g ≤ h ≤ k, we denote by D(Γ)[g..h], the set of

all intervals of standard lclc-extensions Γ̂∗
g, Γ̂

∗
g+1, ..., Γ̂

∗
h such that Γ̂∗

i ∈ succ(Γ̂∗
i−1) for every

i ∈ {g + 1, . . . , h}. The functions first and last respectively return the first and the last set of a

given interval. We use superscripts notation to denote subsequences of an interval s ∈ D(Γ)[g..h]

as follows. For n and m such that g ≤ n ≤ m ≤ h, the subsequence sn..m denotes the

subsequence formed by the sets Γ̂∗
n, Γ̂

∗
n+1, . . . , Γ̂

∗
m of s. In particular, if n = m we write

sn instead of sn..n and intentionally confuse the sequence of one set with the set itself. For

s ∈ D(Γ)[g..h], we denote by range(s) the set of natural numbers {n | g ≤ n ≤ h}. Since

D(Γ) is cycling with respect to j and k, the two sets of intervals D(Γ)[0..j−1] and D(Γ)[j..k] are

respectively called initial and inner. Note that, since j could be 0, the set D(Γ)[0..j−1] could be

empty, but D(Γ)[j..k] is non-empty for any D(Γ).

Proposition 4.7.12. For each standard Γ̂∗
j there exists s ∈ D(Γ)[j..k] such that Γ̂∗

j ∈ succ(last(s)).

Proof. By Propositions 4.7.10 and 4.7.11.

4. Invariant-Free Clausal Temporal Resolution for PLTL 114

Note that in the above proposition Γ̂∗
j and first(s) can be different.

Now, we define when a sequence of elements from D(Γ)[j..k] forms a cycle, which is called

a D(Γ)-cycle. Then we prove that there exists at least one D(Γ)-cycle.

Definition 4.7.13. A D(Γ)-cycle is a finite non-empty sequence s0, s1, . . . , sn such that

(i) si ∈ D(Γ)[j..k] for all i ∈ {0, . . . , n}

(ii) first(si+1) ∈ succ(last(si)) for all i ∈ {0, . . . , n− 1} and

(iii) first(s0) ∈ succ(last(sn)).

Proposition 4.7.14. There exists at least one D(Γ)-cycle.

Proof. By Lemma 4.7.6, there exists at least one standard set in lclc(Γ∗
j). Let us consider any

standard Γ̂∗
j in lclc(Γ∗

j). By Proposition 4.7.12, there exists an interval r0 ∈ D(Γ)[j..k] such that

Γ̂∗
j ∈ succ(last(r0)). Additionally, by repeatedly applying Proposition 4.7.12, we can build an

infinite sequence of intervals r0, r1, . . . in D(Γ)[j..k] such that first(ri−1) ∈ succ(last(ri)) for

every i ≥ 1. Since D(Γ)[j..k] is finite, rg = rh must hold for some g and h such that 0 ≤ g < h.

Then, the reverse of the sequence rg, . . . , rh−1, i.e. the sequence rh−1, . . . , rg is a D(Γ)-cycle.

Note that the minimal cycles consist of exactly one interval s ∈ D(Γ)[j..k] such that first(s) ∈
succ(last(s)).

4.7.3 Model Existence

In this subsection we prove that there exists at least one model of Γ on the basis of the cy-

cling derivation D(Γ). First, we define a graph structure GD(Γ) whose nodes are intervals in

D(Γ)[0..j−1] and D(Γ)[j..k]. There is a (directed) edge (s, s′) in GD(Γ) whenever first(s′) ∈
succ(last(s)). Note that every node in GD(Γ) is related to a node from D(Γ)[j..k]. Second, we

define a notion of self-fulfilling path in this graph. Then, we prove that GD(Γ) contains at least

one strongly connected component (a D(Γ)-cycle) that is self-fulfilling. Finally, we define a

model of Γ on the basis of this strongly connected component in GD(Γ).

Definition 4.7.15. We associate to D(Γ) the graph GD(Γ) that is formed by the following set of

nodes SD(Γ) and the following edge-relationRD(Γ) on SD(Γ):

• SD(Γ) = D(Γ)[0..j−1] ∪D(Γ)[j..k]

• sRD(Γ)s
′ iff s′ ∈ D(Γ)[j..k] and first(s′) ∈ succ(last(s)).

Paths and strongly connected components in GD(Γ) are defined as usual in graph theory. The

notion of D(Γ)-cycle (see Definition 4.7.13) has an obvious extension to GD(Γ). Therefore, by

Proposition 4.7.14, the graph GD(Γ) has at least one cycle. The minimal graphs GD(Γ) consist of

exactly one node n with one edge from n to n.

We would like to remark that, from a locally consistent literal-closed set, interleaved unnext-

steps and TRS-steps could yield a TRS-refutation. As a consequence, there could exist some

interval s in SD(Γ) such that no s′ ∈ SD(Γ) satisfies sRD(Γ)s
′ and, hence, there could exist

lclc-extensions that do not belong to any interval in SD(Γ).

4. Invariant-Free Clausal Temporal Resolution for PLTL 115

The paths in GD(Γ) are formed by standard lclc-extensions of TRS-closed sets which do not

include any (basic) temporal literal. Consequently, any occurrence of an eventuality in the states

of GD(Γ) must be preceded by a connective ◦. This fact leads us to define the following notion

of eventuality fulfillment in the paths of GD(Γ).

Definition 4.7.16. Let π = s0, s1, . . . be a path in GD(Γ) such that ◦(P1 U P2) ∈ sig for some

g ≥ 0 and i ∈ range(sg). We say that π fulfills ◦(P1 U P2) iff either

• there exists h ∈ range(sg) such that h > i, P2 ∈ shg and P1 ∈ s`g for all ` ∈ {i +

1, . . . , h− 1}, or

• there exist r > g and h ∈ range(sr) such that P2 ∈ s
h
r and P1 ∈ s

`
z for all (z, `) such

that g < z < r and ` ∈ range(sz) and P1 ∈ s`r for all ` ∈ {j, . . . , h − 1} and P1 ∈ s`g
for all ` ∈ {i+ 1, . . . , m} where m is the maximum in range(sg).

A path π is self-fulfilling iff π fulfills every ◦(P1 U P2) that occurs in any of its sets. Besides, a

D(Γ)-cycle σ in GD(Γ) is self-fulfilling if the path σω is self-fulfilling.

Since ◦�P and ◦(P̃ U P) are equivalent, the fulfillment notion for ◦�P is a particular case

of Definition 4.7.16.

The next three propositions are auxiliary results about the fulfillment of eventualities, which

are useful for proving the Lemma 4.7.20.

Proposition 4.7.17. Let s be an interval inD(Γ)[g..k] for some g ∈ {0, . . . , k−1}. If ◦(Pg U P) ∈
sg and Pg U P ∈ sel ev setg+1, then P ∈ si for some i ∈ {g + 1, . . . , k}.

Proof. Let us suppose that P 6∈ si for every i ∈ {g + 1, . . . , k}. Then, since s is an inter-

val, si ∈ succ(si−1) for every i ∈ {g + 1, . . . , k}. Hence, by Definition 4.7.8, there exists a

sequence of literals of the form Pg+1 U P, . . . , Pk U P such that sel ev set∗h = {Ph U P} for

every h ∈ {g + 1, . . . , k} and Ph U P is the direct descendant of Ph−1 U P in D(Γ) for every

h ∈ {g + 1, . . . , k}. Since sk is standard, by item (a) in Definition 4.7.5, there exists a clause

of the form ◦N ∈ Γ∗
k such that ◦(Pk U P) ∈ Lits(◦N). Consequently, since D(Γ) is a cycling

derivation with respect to j and k, there exists N ∈ Γj such that Pk U P ∈ Lits(N). This

contradicts the fact that Pk is (according to the rule (U Set)) a fresh variable that cannot appear

in the set Γj .

Proposition 4.7.18. Let s be an interval in D(Γ)[g..h] for some g and h such that 0 ≤ g < h ≤
k − 1. If ◦(Pg U P) ∈ sg, Pg U P ∈ sel ev setg+1 and P 6∈ si for all i ∈ {g + 1, . . . , h}, then

Pg ∈ si for all i ∈ {g + 1, . . . , h}.

Proof. If h = g+1 then Pg ∈ s
h because sh is a successor of sg (see Definition 4.7.8). Now, in

the case of h ≥ g+2, let us suppose that there exists some r ∈ {g+2, . . . , h} such that Pg 6∈ sr.

Since s is an interval, s` ∈ succ(s`−1) for every ` ∈ {g+1, . . . , h}. Hence, by Definition 4.7.8,

there exists a sequence of literals of the form Pg+1 U P, . . . , Ph U P such that P` U P is the

direct descendant of P`−1 U P in D(Γ), sel ev set∗` = {P` U P} and {P`−1, ◦(P` U P)} ⊆ s`

for every ` ∈ {g + 1, . . . , h}. Then, Pr−1 ∈ sr. Additionally, by construction of D(Γ),

there exists either a clause of the form Ci = � (¬Pi ∨ Pi−1) or Ci = �¬Pi in sr for every

4. Invariant-Free Clausal Temporal Resolution for PLTL 116

i ∈ {g + 1, . . . , r}.10 Since we are supposing that Pg 6∈ sr, then {¬Pg+1, . . . ,¬Pr} ⊆ sr must

hold because sr is literal-closed. Then, ¬Pr−1 is also in sr. Therefore {Pr−1,¬Pr−1} ⊆ sr,

which contradicts the fact that sr is locally consistent.

Proposition 4.7.19. Let π = s0, s1, . . . , sn be aD(Γ)-cycle. If there exists a literal◦(P0 U P) ∈
univlit(Γ) such that ◦(P0 U P) ∈ si` for some ` ∈ {0, . . . , n} and some i ∈ {j, . . . , k}, and the

path πω does not fulfill ◦(P0 U P), then P0 U P 6∈ sel ev setg and {P0, ◦(P0 U P)} ⊆ s
g
h for

every h ∈ {0, . . . , n} and every g ∈ {j, . . . , k}.

Proof. Since π is a D(Γ)-cycle and πω does not fulfill ◦(P0 U P), we can ensure, by Def-

initions 4.7.13, 4.7.8 and 4.7.16 that P0 ∈ s
g
h and P 6∈ s

g
h for every h ∈ {0, . . . , n} and

every g ∈ {j, . . . , k}. Therefore, by using Proposition 4.7.17 and Proposition 4.7.18, we can

ensure that P0 U P 6∈ sel ev setg for every g ∈ {j, . . . , k}, since otherwise πω would ful-

fill ◦(P0 U P). Consequently, by Definition 4.7.8 and Definition 4.7.13, we can ensure that

{P0, ◦(P0 U P)} ⊆ sgh for every h ∈ {0, . . . , n} and every g ∈ {j, . . . , k}.

Next, we prove that everyD(Γ)-cycle in GD(Γ) is self-fulfilling. As a consequence, we know

that there exists at least one self-fulfilling infinite path in the graph GD(Γ).

Lemma 4.7.20. For any cycling derivation D(Γ), the graph GD(Γ) contains at least one self-

fulfillingD(Γ)-cycle.

Proof. By Proposition 4.7.14 there is at least one D(Γ)-cycle in GD(Γ). We show, by contra-

diction, that every D(Γ)-cycle in GD(Γ) is self-fulfilling. For that, let us suppose that there is

a D(Γ)-cycle π = s0, s1, . . . , sn in GD(Γ) that is non-self-fulfilling, i.e., the path πω does not

fulfill a literal ◦(P0 U P) ∈ si` for some ` ∈ {0, . . . , n} and some i ∈ {j, . . . , k}. Then, by

Proposition 4.7.19, P0 U P 6∈ sel ev setg for every g ∈ {j, . . . , k} and {P0, ◦(P0 U P)} ⊆ si`
for every ` ∈ {0, . . . , n} and every i ∈ {j, . . . , k}. Since s

g
h is standard for every ` ∈ {0, . . . , n}

and every i ∈ {j, . . . , k}, we conclude that, for every i ∈ {j, . . . , k}, the set Γ∗
i contains a clause

C = �
b◦N such that ◦(P0 U P) ∈ Lits(C) and, consequently, P0 U P ∈ Lits(now(Γi)) for ev-

ery i ∈ {j, . . . , k}. Therefore, by Definition 4.6.1(3), D(Γ) is not a cycling derivation, which is

a contradiction.

The particular case of Propositions 4.7.17, 4.7.18 and 4.7.19 and Lemma 4.7.20 for eventu-

alities of the form �P follows easily.

Next, we introduce pre-models as a kind of paths along GD(Γ).

Definition 4.7.21. PMod(GD(Γ)) is the collection of all finite paths π = s0, s1, s2, . . . , sn in

GD(Γ) such that

(a) s0 ∈ D(Γ)[0..j−1] and σ = s1, s2, . . . , sn ∈ cycles(GD(Γ)), if D(Γ)[0..j−1] 6= ∅

(b) π = s0, s1, . . . , sn ∈ cycles(GD(Γ)), if D(Γ)[0..j−1] = ∅

where cycles(GD(Γ)) is the collection of all the self-fulfilling cycles in GD(Γ).

10 The form of the clause respectively depends on whether the context is empty or not when the rule (U Set) is

applied to Γi.

4. Invariant-Free Clausal Temporal Resolution for PLTL 117

As a direct consequence of Propositions 4.7.10 and 4.7.14 and Lemma 4.7.20, there exists

at least one pre-model in the graph GD(Γ).

Proposition 4.7.22. PMod(GD(Γ)) is non-empty.

Finally, the above pre-model allows us to construct a model of Γ. This proves the complete-

ness of our TRS-resolution system.

Theorem 4.7.23. For any set of clauses Γ, if Γ is unsatisfiable then there exists a TRS-refutation

for Γ.

Proof. Suppose that there is no TRS-refutation for Γ, then the algorithm SR in Figure 4.10

produces a cycling derivation D(Γ). By Proposition 4.7.22, there exists a pre-model π =
s0, s1, s2, . . . , sn in PMod(GD(Γ)). If D(Γ)[0..j−1] = ∅ we define σ as the infinite path πω.

Otherwise σ = s0 · ρ
ω where ρ = s1, s2, . . . , sn. Now, we define the PLTL-structureMσ =

(σ, VMσ) where the states are the standard lclc-extensions that form the intervals in σ which can

be seen as

Ω0
0, . . . ,Ω

r
0,Ω

j
1, . . . ,Ω

k
1,Ω

j
2, . . . ,Ω

k
2, . . . ,Ω

j
n, . . . ,Ω

k
n,Ω

j
`, . . . ,Ω

k
` , . . .

where r = j − 1 and ` = 1 if D(Γ)[0..j−1] 6= ∅, whereas r = k and ` = 0 if D(Γ)[0..j−1] = ∅.
Additionally, Ωg

h is in lclc(Γ∗
g) and VMσ(Ωg

h) = {p ∈ Prop | p ∈ Ωg
h} for every g ∈ {0, . . . , k}

and every h ∈ {0, . . . , n}. It is routine to see that 〈Mσ,Ω
i
h〉 |= C holds for all C ∈ Γ∗

i . Since

any lclc-extension contains at least one literal of C, this is made by structural induction on the

form of the literal and using Definition 4.7.8 and the fact that σ is self-fulfilling (by Lemma

4.7.20). In particular,Mσ is a model of Γ∗
0 and, by Propositions 4.5.1 and 4.5.2, the set Γ0 is

satisfiable. Hence, since Γ = Γ0, the set of clauses Γ is satisfiable.

4.8 Related Work

In this section we describe the contributions in the literature that are more closely related to our

approach to clausal temporal resolution. First, we explain the relation with the tableau method

TTM (presented in the previous chapter) that inspired TRS-resolution. And then, we discuss

and compare the four clausal resolution methods ([29, 1, 126, 40]) that are more similar to

TRS-resolution.

4.8.1 The TTM Tableau Method [58, 61]

The TRS-resolution method is strongly inspired in the TTM tableau method introduced in the

previous chapter (see also [58, 61]). Indeed, the TRS-rule (U Set) is a clausal variant of the

TTM-rule (U)2. In Chapter 3 (see also [60, 61]), the idea behind the rule (U)2 is used for

achieving cut-freeness (in particular, invariant-freeness) in the framework of sequent calculi

for PLTL. In particular, the cut-free sequent calculus GTC that is dual to the one-pass tableau

method TTM is presented.

The crucial point –in both rules (U)2 and (U Set)– is the fact that whenever a set of for-

mulas ∆∪{ϕU ψ} is satisfiable, there must exist a model M (with states s0, s1, . . .) that is

minimal in the following sense:

4. Invariant-Free Clausal Temporal Resolution for PLTL 118

M satisfies either ∆∪{ψ} or ∆∪{ϕ, ◦((ϕ ∧ ¬∆)U ψ)}

In other words, in a minimal modelM such that 〈M, s0〉 6|= ψ, the so-called context ∆ cannot

be true from the state s1 until the state where ψ is true. Regarding tableaux, the rule (U)2
–which is crucial in our approach for getting a one-pass method– allows to split a branch con-

taining a node labelled by ∆∪{ϕU ψ} into two branches respectively labelled by ∆∪{ψ} and

∆∪{ϕ, ◦((ϕ ∧ ¬∆)U ψ)}. Hence, the negation of the successive contexts ∆ will be required

by the postponed eventuality. Provided that the number of possible contexts ∆ is finite, the ful-

fillment of ϕU ψ cannot be indefinitely postponed, without getting a contradiction. Of course,

the procedure must fairly select an eventuality to ensure termination. Tableau rules handle gen-

eral formulas, whereas resolution needs a preliminary transformation to the clausal language

before the rules can be applied. The rule (U Set) introduced in this chapter is an adaptation –to

the clausal language setting– of the tableau rule (U)2, in the sense that (U Set) is applied to a

set of clauses and the eventuality is inside a clause whereas in (U)2 the eventuality is itself a

formula.

Regarding worst-case complexity, the upper bound given for TTM in Proposition 3.4.10 co-

incides with the one for TRS-resolution (see Proposition 4.6.17). The computational cost of

introducing the negation of the context in postponed eventualities not only depends on the size

of the context but also on its form. As pointed out in Subsection 3.4.5, there are syntactically

detectable classes of formulas that can be disregarded when negating the context. In particular

the most remarkable class is formed by formulas of the form �ϕ. The rule (U Set), by defini-

tion, does not consider the always-clauses when negating the context. Since often most of the

clauses are always-clauses, i.e. formulas of the form �ϕ where ϕ is in clausal normal form, the

rule (U Set) is specifically well suited for clausal resolution.

4.8.2 The Resolution Method of Cavali & Fariñas del Cerro [29]

The complete resolution method presented in [29] deals with a language that is strictly less ex-

pressive than full PLTL since only the temporal connectives ◦, � and � are allowed. The normal

form is based only on distribution laws, and renaming is not used to remove any nesting of op-

erators. Consequently, their translation into the normal form does not introduce new variables,

at the price of achieving little reduction of nesting of classical and temporal connectives. A

formula in Conjunctive Normal Form is a conjunction of clauses C1 ∧ . . . ∧ Cr where every

clause Cj has the following recursive structure

L1 ∨ . . .∨ Ln ∨ �δ1 ∨ . . .∨ �δm ∨ � κ1 ∨ . . .∨ �κh

Here each Lj is of the form ◦ip or ◦i¬p with p being a propositional atom, each δj is a clause

and each κj is a conjunction where every conjunct is a clause. The resolution method is based on

considering different cases in order to check whether formulas that must be satisfied at the same

state are contradictory or not. For instance, for deciding whether {�ϕ, �ψ} is unsatisfiable,

the unsatisfiability of {� (ϕ ∧ ψ)} is analyzed. Similarly, in order to decide whether {�ϕ, �ψ}
is unsatisfiable, the unsatisfiability of {�ϕ, ψ} and {ϕ, �ψ} is analyzed. Also formulas of the

form ϕ ∨ ◦ϕ ∨ . . .∨ ◦iϕ and of the form ¬ϕ ∧ ◦¬ϕ ∧ . . . ∧ ◦i−1¬ϕ ∧ ◦iϕ are considered for

dealing with �ϕ and formulas of the form ϕ∧◦ϕ∧. . .∧◦iϕ for dealing with �ϕ, with i ranging

in a finite set of the form {0, . . . , g} where g ≥ 0. These latter cases represent an attempt to

decide whether there exists a future state (in a finite scope) in which the involved formula (the

4. Invariant-Free Clausal Temporal Resolution for PLTL 119

formula ϕ from �ϕ or from �ϕ) does not generate an inconsistency. However, there is not a

clear algorithm to construct derivations and, therefore, complexity cannot be analyzed. In our

approach, the nesting of connectives in the normal form is much more restricted. Our resolution

method is based on reasoning “forwards in time” state by state. And, finally, our method is

complete for full PLTL and we provide a terminating algorithm to construct derivations. In [28]

an extension of the resolution method presented in [29] is shown and the full expressiveness

of PLTL is achieved by means of the connectives ◦ and P (“precedes”) such that ϕP ψ is

equivalent to the until-formula (¬ψ)U (ϕ ∧ ¬ψ), but the completeness result for the extended

method is not provided.

4.8.3 The Nonclausal Resolution Method of Abadi & Manna [1]

A nonclausal resolution method for full PLTL is presented in [1] (see also [4]). Eventualities

are expressed by means of the connectives � and P (“precedes”). Since they deal with general

formulas (instead of clauses), the provided rules enable the manipulation and simplification of

subformulas at any level but with some restrictions for preserving soundness. The resolution

rule is of the form

ϕ[χ], ψ[χ] 7−→ ϕ[true] ∨ ψ[false]

where the occurrences of the subformula χ in ϕ and ψ that are replaced with true and false,

respectively, are all in the scope of the same number of ◦’s and are not in the scope of any

other modal operator in either ϕ or ψ. They also use modality rules, such as e.g. �ϕ, �ψ 7−→
� ((�ϕ)∧ψ) and �ϕ, �ψ 7−→ � ((�ϕ)∧ψ)∨ �(ϕ∧ �ψ), that makes this non-clausal method

very different from our proposal. However, they also introduce induction rules for dealing with

eventualities. These induction rules are very close to our rule (U Set). Here, for simplicity and

clarity, we only describe the induction rule for �, which in terms of the present thesis says

∆,∆′, �ϕ 7−→ ∆,∆′, � (¬ϕ ∧ ◦(ϕ ∧ ¬∆)) if ` ¬(∆ ∧ ϕ)

where ∆ and ∆′ are set of formulas. This rule states that if ∆ and ϕ cannot hold at the same

time but ϕ eventually holds, then there must be a sate sj where ϕ does not hold and at the next

state sj+1 the formulas ϕ and ¬∆ hold. Hence, the above ∆ (called a fringe in [1]) resembles

our context, but the technical handling of fringes in [1] is quite different from our treatment

of contexts. The first important difference is that induction rules use an aside condition (see

` ¬(∆ ∧ ϕ) above) for choosing the fringe ∆. In our approach, contexts are syntactically

determined without any auxiliary derivation. Second, in (U Set) accumulation of the contexts

is made in the non-eventuality part of the until-formula, i.e. the left-hand subformula of the

until-formula. Indeed, the consequent of the TRS-rule (�Set) introduces an until-formula with

the negated context in the left-hand subformula. In contrast, negated fringes are accumulated in

the eventuality part. Third, the method in [1] does not impose any deterministic or systematic

strategy to apply the induction rules although the completeness proof outlines a strategy based

on the finiteness of the set of possible fringes. We provide, by means of the algorithm SR, a

systematic method. Additionally, in our method when a context is repeated, the derivation of

a refutation is straightforward, whereas in [1] obtaining a refutation after a repetition is not so

direct. The reason is that our forward reasoning approach keeps a better structure for detecting

the contradiction between a context and its negation. This fact can be seen by looking at the

following example {p,�(¬p ∨ ◦p), �¬p}. In our method a refutation is easily achieved when

4. Invariant-Free Clausal Temporal Resolution for PLTL 120

the context {p} is repeated (see Example 4.6.3). However, by using the induction rule in [1]

with ∆ = {p} and ∆′ = {�(¬p ∨ ◦p)}, they get

{p,�(¬p ∨ ◦p), � (¬¬p ∧ ◦(¬p ∧ ¬p))}.

Applying some other rules, which we cannot detail here, this set is transformed into

{p, ◦p, ◦� (¬p ∨ ◦p), � (p ∧ ◦¬p)}.

The resolution rule is not enough for achieving a contradiction from the latter set. Fourth, [1]

does not address the problem of satisfiable input sets, whereas we ensure the existence of a

model for any satisfiable input through the notion of cycling derivation. Finally, complexity is

not discussed in [1, 4] and is difficult to assess due to the lack of a clear strategy for applying

the rules.

4.8.4 Venkatesh’s Temporal Resolution [126]

The resolution method presented in [126] is very similar to ours in everything but the way of

dealing with eventualities. The normal form and even the way in which the new variables are

used during the translation process are the same as ours. The resolution rule and the way of

unwinding temporal literals –in the case of our rules (U Fix) and (RFix)– follow the same

idea. Also the approach of reasoning forwards, i.e., jumping to the next state carrying the

clauses that must be necessarily satisfied in the next state, appears in both methods. However,

in sharp contrast to our TRS-resolution, the method in [126] needs invariant property generation

for dealing with eventualities that can unwind indefinitely (or whose fulfillment can be delayed

indefinitely). More precisely, cyclic sequences of sets of clauses that contain the so-called per-

sistent eventualities –eventualities that can be unwound indefinitely and cannot be satisfied–

must be detected and the persistent eventualities must be removed. Detecting those cycles can

be seen as finding an invariant property χ that ensures that a given eventuality ϕU ψ cannot

be fulfilled because �¬ψ follows from χ. Finding the invariant property requires an additional

process whose development is not tackled in [126], therefore the complexity of the method can-

not be directly assessed. Instead of invariant properties, we use the concept of context –in the

applications of the rule (U Set)– for preventing indefinite unwinding of eventualities.

4.8.5 Fisher’s Temporal Resolution [40]

The resolution method presented in [40] is also for full PLTL. The structure of a formula in the

Separated Normal Form (SNF) is �C1∧. . .∧�Cr and since it is equivalent to � (C1∧. . .∧ Cr),

the calculations are made using only the so-called PLTL-clauses C1, . . . , Cr, without � . Each

Cj is of one of the following three forms

start→ δ κ→ ◦ δ κ→ �λ

where→ is the classical connective of implication (i.e. χ → γ ≡ ¬χ ∨ γ), start is a nullary

connective that is only true in the initial state, δ is a disjunction of propositional literals, κ is

a conjunction of propositional literals and λ is a propositional literal. The use of start makes

possible to differentiate the clauses that refer only to the first state and the clauses that refer to all

the states. Additionally, in SNF only the temporal connectives ◦ and � are kept, since any clause

involving one of the remaining connectives (U , � , etc.) is expressed by a set of new clauses

whose only temporal connectives are ◦ and � . A formula and the corresponding set of clauses

4. Invariant-Free Clausal Temporal Resolution for PLTL 121

in SNF are equisatisfiable but, in general, they are not logically equivalent. The three kinds of

clauses are called, respectively, initial PLTL-clauses, step PLTL-clauses and sometime PLTL-

clauses. Resolution between the former two kinds of clauses is a straightforward generalization

of classical resolution but the so-called temporal resolution rule for sometime PLTL-clauses is

more complicated:

κ0 → ◦ δ0, . . . , κn→ ◦ δn, κn+1 → �λ
SNF(κn+1 → (¬κ0 ∧ . . .∧ ¬κn)Wλ)

where the unless or weak until connectiveW is defined as ϕWψ ≡ (ϕU ψ)∨�ϕ. Additionally

the following loop side conditions must be valid

δj → ¬λ and δj → (κ0 ∨ . . .∨ κn) for every j ∈ {0, . . . , n}

The idea is that if the set Ω = {κ0 → ◦ δ0, . . . , κn → ◦ δn} satisfies the loop side conditions,

then it follows that (κ0 ∨ . . . ∨ κn) → ◦�¬λ. In such a case Ω is called a loop in � λ and

κ0 ∨ . . . ∨ κn is called a loop formula (also called invariant) in ¬λ. So the method is based on

searching for the existence of these invariant properties. This task requires specialized graph

search algorithms (see [45, 33]) and is the most intricate part of this approach. The worst-

case complexity is discussed in [45], where the translation to SNF is proved to be linear in

the length of the input, whereas resolution is doubly exponential in the number of proposition

symbols. An improved and simplified version of the resolution method in [40] can be found

in [32]. The main differences with respect to TRS-resolution method are three. First, although

the technique of renaming complex subformulas by a new proposition symbol is used in both

approaches, in our normal form the temporal connectives U and R are kept. Second, we follow

the approach of reasoning forwards and jumping to the next state when necessary, whereas the

method presented in [40] involves reasoning backwards. Actually, contradictions are achieved

at the initial state. Third, the most remarkable difference is the way of dealing with eventualities,

since we dispense with invariant generation by means of the rule (U Set) and the strategy

presented in the algorithm SR.

5. LOGICAL FOUNDATIONS FOR MORE EXPRESSIVE DECLARATIVE

TEMPORAL LOGIC PROGRAMMING LANGUAGES

5.1 Introduction

Temporal Logic Programming (TLP) deals with the direct execution of temporal logic formulas.

Hence TLP provides a single framework in which dynamic systems can be specified, developed,

validated and verified by means of executable specifications that make possible to prototype,

debug and improve systems before their final use. In TLP, the direct execution of a formula

corresponds to building a model for that formula. The idea of directly executing logic formulas

has been thoroughly studied in (classical) Logic Programming (LP). Given a program Π, the

computation of a goal ⊥ ← γ with respect to Π in an LP system is a search for a refutation

proof of Π∪{¬γ}. However, this proof search can also be seen as an attempt to build a model

of Π∪{γ}. This model is (in general) partially specified, because it only determines the truth

value of the atoms (from Π) that are involved in the refutation proof. We illustrate this view (of

LP) in the next example.

Example 5.1.1. Let us consider the following (classical) logic program:

q(0)← >
q(X)← q(Y) ∧X = Y + 1
r(X)← q(Y) ∧X = Y + 2

w(X)← q(Y) ∧X = Y + 3

The computation of the goal⊥ ← r(Z) gives rise to the infinite sequence of answer substitutions

{Z ← 2}, {Z ← 3}, {Z ← 4}, . . . that partially shows the implicit step by step construction of

the infinite minimal model {q(j), r(j+ 2) | j ∈ IN} for the body of the goal (i.e. r(Z)) and the

subprogram that contains the first three program clauses. However, this model does not specify

which instances of w(X) are true.

TLP, in a broad sense, means programming in any language based on temporal logic. In

TLP two different approaches have arisen: the imperative future approach and the declarative

approach. In the imperative future approach a program is a set of rules of the form ϕ → ◦ψ
asserting that whenever the formula ϕ is true in a state s, the next state s′ must make true the

formula ψ. The imperative future approach tries to construct a model of the whole input pro-

gram by using a forward chaining process. By contrast, the declarative approach to TLP is

based on extending classical resolution for dealing with temporal connectives. Hence the (im-

plicit) attempt of constructing a model is driven by the goal. As the above Example 5.1.1 shows,

such model determines only the predicates involved in the refutational process. Next, we briefly

review the most significant proposals in the literature for both approaches. More discussion

and references about programming languages with capabilities for reasoning about time can be

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 124

found e.g. in [67, 44, 98, 100].

Imperative future TLP languages. The most significant representatives of this approach

are Tempura [94] and MetateM [9]. The language Tempura is based on a fragment of Interval

Temporal Logic with a restricted use of eventualities. The Tempura approach has been contin-

ued ([27, 95]) and extended to Framed Tempura and Projection Temporal Logic Programming

[37, 38, 129].

The language MetateM develops the methodology outlined in [54]. MetateM is based on First-

order Linear-time Temporal Logic (FLTL) and formulas are written in the Separated Normal

Form (SNF) presented in [40, 41]. The propositional fragment of MetateM is complete, how-

ever, since FLTL is incomplete ([92, 122, 121]), the execution of a first-order MetateM program

attempts to build a model, but the success of such construction is not guaranteed (see Example

5.1.4). In MetateM disjunctions are seen as choices and one disjunct is selected from each dis-

junction as part of the process of building a model. If a choice is later shown to be inappropriate,

because it leads to inconsistency, then backtracking is used to return to the last point where a

choice was made. In propositional MetateM the termination is addressed by explicitly consid-

ering the small model property, which allows to calculate an upper bound of forward chaining

steps. If a model is not obtained bellow this upper bound, then the attempt is given up and the

procedure backtracks. MetateM was extended to Concurrent MetateM in [42]. Among its ap-

plications we can mention, e.g., the development of agent systems ([43, 47]). More references

on MetateM, Concurrent MetateM and their applications can be found in [44]. A fragment

of Linear-time Temporal Logic is presented as imperative future TLP language in [93]. This

language, for efficiency, restricts the use of eventualities (and also disjunctions). The clausal

normal form and the idea of forward chaining construction of models introduced in MetateM

are used in [6, 7] to obtain a temporal extension of the Answer Set Programming paradigm

(non-monotonic reasoning).

Finally, we also mention the assembly-like TLP language XYZ/E that was presented in [124,

125] as a vehicle for providing temporal semantics to programs written in conventional imper-

ative programming languages. An imperative program is expressed in XYZ/E on the basis of

the execution sequences that it generates along the timeline. A similar approach can be found in

Chapter 3 of [44].

Declarative TLP languages. There are several works on extending classical LP (in partic-

ular Prolog) for reasoning about time. Some proposals are purely based on temporal logic and

extensions of SLD resolution, but the incompleteness of FLTL becomes a delicate issue for us-

ing fragments of FLTL as TLP languages. Also the complexity result is a drawback even for the

propositional fragment (see [119]). Additionally, the interaction between the � (“always”) and

the ◦ (“next”) connectives makes possible to encode the so-called induction on time by means

of loops or hidden invariants (see Section 2.4) that, in an indirect way, state that a formula

is satisfied in every moment in time. The presence of these loops or hidden invariants makes

necessary to consider quite intricate mechanisms for detecting (un)satisfiable eventualities (Def-

inition 2.2.1). Many temporal extensions of LP are not purely founded on temporal logic due to

their extra-logical features for handling eventualities. Next, we summarize representative pub-

lished work concerning the variety of proposals in declarative TLP languages (including some

approaches that are not purely based on temporal logic).

The language Tokio [52, 82, 83, 96] extends Prolog by adding temporal reasoning capabilities

inspired by both Linear-time Temporal Logic and Interval Temporal Logic. In Tokio there are

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 125

restrictions regarding the use of temporal connectives and, unlike Prolog variables, the so-called

temporal variables used in Tokio have state, what makes possible to express properties like

◦Y = Y + 1 stating that the value of the variable Y in the next time instant will be its present

value plus one. Obviously, this kind of expressions are no supported by conventional temporal

logic.

A different temporal extension of Prolog was introduced by Hrycej in [74, 75] where time inter-

vals are considered as conceptual primitives. The Hrycej’s language is a non-modal approach

based on first-order logic with capabilities to deal with time intervals. More precisely, the first-

order “reified” logic ([108, 118]) is considered as the basis for the implementation of the lan-

guage.

Metric temporal operators and dense time are considered in [21, 22, 24, 23, 25, 26] where ex-

ecution is based on translating temporal logic programs into Constraint Logic Programming.

Temporal Annotated Constraint Logic Programming is presented in [50, 49, 51, 107].

The Temporal Prolog presented in [114] extends Prolog by introducing linear-time temporal

connectives. Programs are transformed into a normal form that is similar to the Separated Nor-

mal Form used in MetateM. This transformation removes most temporal connectives by intro-

ducing fresh predicates. The transformation of eventualities yields negated atoms. If negated

atoms (i.e., eventualities) are involved in a program, then the Herbrand universe must be finite

and, in this case, computation is performed on the basis of a nondeterministic finite automaton

that corresponds to the program. Two implementation options are devised: first, by translat-

ing programs into Prolog (if the program contains negation, then a pure Prolog program is not

obtained) and second, asserting the facts which are true at each point in time (although this im-

plementation option is not explained in detail, it resembles, at first sight, the imperative future

approach).

A sequent-based proposal for establishing logical foundation for declarative TLP is presented in

[106]. This approach considers a complete fragment of FLTL where eventualities are allowed.

In order to handle eventualities, the sequent system contains an invariant-based rule.

We finally review the three existing declarative TLP languages that are based on pure extensions

of classical logic programming languages and resolution, which are Chronolog [127, 99], Tem-

plog [2, 3, 10, 11, 12, 13, 14] and Gabbay’s Temporal Prolog [55]. Chronolog and Templog are

the most studied and the most representative languages in the purely declarative approach. The

underlying logic for the languages Templog and Chronolog is FLTL. In the case of Gabbay’s

Temporal Prolog, the presented system is intended for both branching-time and linear-time tem-

poral logic. In Chronolog, the connectives first (to refer to the state s0) and next (to refer to

the next state) are the only temporal connectives. Templog’s syntax allows the always connec-

tive (�) to occur in clause heads and the eventually connective (�) in clause bodies. However,

Templog programs are expressible by using ◦ as the unique temporal connective in clause heads

and bodies ([12, 14]) and consequently it has the same expressive power as Chronolog. This

restriction is so strong that it allows reducing any temporal program to a (possibly infinite)

classical logic program. Templog and Chronolog have also the same metalogical properties

of existence of minimal model and fixpoint characterization. Gabbay’s Temporal Prolog is a

more expressive language that allows eventualities in clause heads (although it does not allow

� in clause bodies). The resolution-based computation procedure outlined in [55] is proved to

be sound, however its completeness has not been addressed. The development of these three

declarative languages was mainly done in the early nineties, in contrast to the imperative future

approach (e.g. Tempura and MetateM) which has been evolving until present days. During the

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 126

last two decades, no other clausal sublanguage of linear-time temporal logic has been proposed

as declarative TLP language. Hence, nowadays, Templog, Chronolog and Gabbay’s Temporal

Prolog remain as the most expressive proposals of declarative TLP languages. Later extensions

of Chronolog (e.g. [103, 102, 112, 113, 68]) did not add significant temporal expressiveness. In

the case of Gabbay’s Temporal Prolog, although the expressive power was considerably high, it

seems that the lack of completeness was a handicap for further study and development.

In general, it seems that the troublesome solving (in the resolution sense) of the so-called

eventualities has been blocking the steps toward more expressive resolution-based declarative

TLP languages. Indeed, even in the propositional fragment –i.e. in PLTL– the solving of even-

tualities is the most intricate part that often requires techniques such as invariant generation

([40, 45]).

In this thesis, we contribute to the effort of increasing the temporal expressiveness of declar-

ative TLP languages on the basis of the temporal resolution-based mechanism presented in

the previous chapter (see also [62]) that is complete (in the propositional setting). As already

explained in Chapter 4, the main novelty of this temporal resolution lies in a new approach

to handle eventualities. We introduce a purely declarative propositional TLP language, called

TeDiLog, that allows both � and � in clause heads and bodies. Hence, TeDiLog is strictly more

expressive than the propositional fragments of the above mentioned purely declarative propos-

als: Templog [3, 12], Chronolog [127, 99] and Gabbay’s Temporal Prolog [55]. Additionally

TeDiLog is as expressive as propositional MetateM [9]. However, MetateM follows the imper-

ative future approach and is not based on resolution. Two crucial differences of our proposal

with MetateM are that TeDiLog does not need backtracking and the resolution mechanism of

TeDiLog directly manages unsatisfiable eventualities, hence upper bounds are not needed.

A very preliminary version of the content provided in this chapter was presented at the

Spanish Workshop PROLE 2009 (see [64]).

Along the chapter, we compare TeDiLog with its most closely related proposals: Templog,

Chronolog, the linear-time Gabbay’s Temporal Prolog and MetateM. The technical content of

this chapter is focused on the propositional language TeDiLog. However, for a better illustration

of the aim of our proposal, we next discuss some first-order program examples. They are written

in the natural extension of TeDiLog with predicates and variables.

Example 5.1.2. Consider the following program (on Fibonacci numbers):

fib(0)← >
◦fib(1)← >

� (◦2fib(V)← fib(X)∧ ◦fib(Y) ∧ V = X + Y)

The goal ⊥ ← ◦3fib(Z) yields the answer substitution {Z ← 2}. The goal ⊥ ← � fib(Z)

produces an infinite sequence of answer substitutions {Z ← 0}, {Z ← 1}, {Z ← 1}, {Z ←
2}, . . . , that is, the sequence of Fibonacci numbers. Now, consider the goal ⊥ ← �fib(Z)

which is not expressible in Templog, Chronolog and Gabbay’s Temporal Prolog. The TeDiLog

computation does not finish and does not produce any answer. Note that �fib(j) is not a logical

consequence of the program for any j ∈ IN .

The above program is expressible in MetateM through a simple transformation. The MetateM

program execution, which does not need a goal, builds the infinite model

{fib(0), ◦fib(1), ◦2fib(1), ◦3fib(2), . . .}

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 127

for the above program.

Example 5.1.3. The following program encodes the so-called induction on time (for q(a)):

q(a)← >
� (◦q(X)← q(X))

Hence, q(a) is true at every instant along the time. The goal ⊥ ← ◦3q(Z) yields the an-

swer substitution {Z ← a}. The goal ⊥ ← � q(Z) generates the infinite sequence of answer

substitutions {Z ← a}, {Z ← a}, {Z ← a}, {Z ← a}, The goal ⊥ ← �q(Z) also

yields the answer substitution {Z ← a}. The latter goal is neither expressible in Templog,

nor Chronolog, nor Gabbay’s Temporal Prolog. The MetateM system builds the infinite model

{q(a), ◦q(a), ◦2q(a), . . .} for the above program.

Example 5.1.4. The following program shows that, as expected, the natural first-order extension

of TeDiLog gives rise to an incomplete system:

q(0)← >
� (◦q(X)← q(X))
� (◦q(X)← q(Y) ∧X = Y + 1)

� (w(X)← �q(X))

This fact is due to the interaction between the infinite domain and the connective � in the body

of the last clause. By means of the first three clauses, for every i ∈ IN , q(i) holds in all

states sj such that j ≥ i. As a consequence, w(i) holds in a state sj if i ≥ j. Indeed, the

atoms w(0), ◦w(0), ◦w(1), ◦2w(0), ◦2w(1), ◦2w(2), . . . are logical consequences of the pro-

gram. However, the first-order extension of our resolution method will neither yield any answer

for the goal ⊥ ← �w(Z) nor for any goal ⊥ ← ◦kw(Z) where k ≥ 0. The reason is that, by

contrast with the previous Example 5.1.3, here the goal⊥ ← �q(V) does not give any answer

(due to the infinite domain), and consequently the last program clause cannot be used to pro-

duce w(V).

In order to obtain a MetateM program, the last program clause above is translated into SNF

giving rise to two clauses: � (◦r(X) ← q(X) ∧ ¬w(X)) and � (�¬q(X) ← r(X)), where

r is a fresh predicate symbol. Consequently MetateM attempts to construct a model for the

following program1:

q(0)← >
� (◦q(X)← q(X))
� (◦q(X)← q(Y) ∧X = Y + 1)

� (◦r(X)← q(X) ∧ ¬w(X))
� (�¬q(X)← r(X))

Then, the atoms in {q(0), ◦q(0), ◦q(1), ◦2q(0), ◦2q(1), ◦2q(2), . . .} are successively obtained.

In addition, since there is no clause with head w(Z), we can suppose that ¬w(X) succeeds in

a time instant for any X such that q(X) is true at that time instant. Therefore, the atoms

{◦r(0), ◦2r(0), ◦2r(1), ◦3r(0), ◦3r(1), ◦3r(2), . . .}

1 Actually this program is not in pure SNF yet (see e.g. [41]). Some minor syntactical changes are still needed,

but they are irrelevant for our discussion.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 128

are also generated. According to the last program clause, the system attempts to satisfy�¬q(X),

however at each step the system must delay this task for the next step. Therefore, MetateM (as

TeDiLog) is not able to generate a model for this program.

In the rest of the chapter we restrict ourselves to the propositional setting. Hence, the logic

that underlies TeDiLog is the well-known Propositional Linear-time Temporal Logic (PLTL),

which is complete and decidable. We endow TeDiLog with logical and operational semantics

and prove their equivalence. The logical semantics is given by the set of all the (finite) formulas

of the form α1 ∨ . . . ∨ αn that are logical consequences (in PLTL) of the program and where

each αj is either a body or a body prefixed by the connective �. The operational semantics of

TeDiLog is based on the invariant-free resolution method that is presented in detail in Chapter

4 of this thesis (see also [62]) and dispenses with invariant generation. We cannot expect to

have the classical Minimal Model Property (MMP in short) that assigns to any program a min-

imal model, which is the intersection of all its models. The reason for this is twofold. First,

the non-conjunctive temporal connective � appearing in clause heads, and also the non-finitary

connective � appearing in clause bodies, both (separately) prevent from holding the MMP (see

[101, 99]). For Gabbay’s Temporal Prolog the MMP does not hold because of the use of the

connective � in clause heads. The second reason is that our resolution mechanism produces (in

computation time) disjunctive clauses, so TeDiLog is located in the disjunctive logic program-

ming (DLP) paradigm, which does not enjoy the MMP even in the classical (non-temporal)

case. In the DLP framework, the semantics of a program consists of the collection of all its

minimal models (see e.g. [89]). Temporal disjunctive logic programming has previously been

addressed in [68] where Chronolog is extended with DLP features. The satisfiability of a Tem-

plog/Chronolog program can be reduced to the satisfiability of a classical logic program. As a

consequence, the minimal model characterization of Templog and (Disjunctive) Chronolog (see

[12, 68, 127, 99]) is a straightforward adaptation of the classical (disjunctive) case. In the case of

TeDiLog, due to the fact that syntactical cut elimination seems to be unfeasible in PLTL (indeed,

it is an open problem in [20] and [61]), the collection of minimal models associated to a program

should be related to every possible goal. This results in a too intricate (hence, unseemly) model-

theoretic characterization to be used as declarative semantics for TeDiLog. Indeed, although

a continuous immediate consequence operator can be associated to every program, there are

great difficulties (related to cut elimination) for using this operator in a customary completeness

proof. Hence, we prove completeness with respect to the logical semantics through a particular

model construction.

Our resolution system requires the expressive power of full temporal logic. That is, the

resolution of a �-goal, necessarily generates subgoals involving the strictly more expressive

connective U . Hence, we directly formulate our language in terms of the temporal connectives

U and its dual: the connective R . We present a complete algorithm which performs resolution

of a goal with respect to a program. This algorithm is based on a natural extension of the classi-

cal LP rule for (binary) resolution in two senses: temporal (� in front of clauses) and disjunctive

(disjunction in clause heads). The algorithm not only performs the standard (linear) resolution

between the current goal and a selected program clause, but also a controlled kind of resolution

called nx-resolution. This nx-resolution is performed to infer (from program clauses) all the

(program) clauses that have a connective ◦ in front of every literal. Intuitively, nx-resolution

allows to extract all the implicit information about the next state that is crucial to achieve com-

pleteness.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 129

L ::= p | ¬p
T ::= LU p | LR p | � p | �p
A ::= ◦ip | ◦iT

H ::= ⊥ | A ∨H
B ::= > | A ∧B
D ::= �

b(A ∨H ← B)
G ::= �

b(⊥ ← B)

where p ∈ Prop, i ∈ IN ,⊥ is the empty disjunction,

> is the empty conjunction and b ∈ {0, 1}.

Figure 5.1: Syntax of TeDiLog

Outline of the chapter. In Section 5.2 we introduce the syntax of TeDiLog, some preliminary

definitions and a sample TeDiLog specification of a reactive system. In Section 5.3 we present

the system of rules that are the basis for the operational semantics of TeDiLog. Section 5.4 is

devoted to the operational and logical semantics and their equivalence. In Subsection 5.4.1 we

present the operational semantics of TeDiLog. Then, in Subsection 5.4.2 we detail some sample

derivations. The logical semantics is described in Subsection 5.4.3. We prove the equivalence

between both semantics in Subsection 5.4.4. Finally, we discuss relevant related work in Section

5.5.

5.2 The Language TeDiLog

In this section we introduce the syntax of TeDiLog along with an illustrative example of a

TeDiLog specification for a reactive system.

The syntax of TeDiLog (Figure 5.1) is an adaptation, to the usual logic programming style,

of the clausal normal form previously presented for clausal temporal resolution (Section 4.2).

The programming language TeDiLog is a twofold extension of propositional Horn clauses that

incorporates temporal connectives in atoms and disjunctions in clause heads. It is the Temporal

Disjunctive Logic programming language given in Figure 5.1, where the metavariable A de-

notes atom, L stands for (classical) literal, T for temporal atom, H for head, B for body, D for

(disjunctive) program clause, and G for goal clause. As in the previous chapter, we use the su-

perscript b varying in {0, 1} to represent a formula with or without a prefixed unary connective

(in particular for the connectives � and �). So that, along the rest of the chapter superscripts b

(from bit) range in {0, 1}. These kinds of superscripts are notation, hence they are not part of

the syntax. Due to the superscript b, the metavariable D represents two kinds of clauses. The

expression �
b(H ← B), for b = 0, represents H ← B, which is called a now-clause, whereas

for b = 1, it represents � (H ← B), which is called an always-clause. The same classification

applies to the goal clauses denoted by G. In particular, �
b(⊥ ← >) represents the two possible

syntactic forms of the empty clause, as now- or always-clause.

Definition 5.2.1. Given a set of clauses Φ, the set alw(Φ) is formed by all the always-clauses

in Φ, i.e. all the clauses of the form � (H ← B). In addition, the set now(Φ) is Φ \ alw(Φ).

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 130

A program is a set of program clauses and a goal is a set of goal clauses.

The set of atoms of a clause C = �
b(A1 ∨ . . . ∨ Am ← A′

1 ∧ . . . ∧ A
′
n) is the set

{A1, . . . , Am, A
′
1, . . . , A

′
n}. We assume that there is neither repetitions nor established order

in the atoms of a head or a body. An atom is said to be ◦-free if it is a temporal atom or a

classical propositional atom. The connective ◦ is distributive over every other connective and,

consequently, ◦� (A1 ∨ . . . ∨ Am ← A′
1 ∧ . . . ∧ A

′
n) is equivalent to � (◦A1 ∨ . . . ∨ ◦Am ←

◦A′
1 ∧ . . . ∧ ◦A

′
n). Given a head, body, program clause or goal clause ψ, we denote by ◦ψ the

head, body, program clause or goal clause that is obtained by adding one connective ◦ to every

atom in ψ. For instance, ◦� (p∨q ← ◦r) denotes � (◦p∨◦q ← ◦◦r) and ◦� (⊥← ◦r) denotes

� (⊥ ← ◦◦r). Note that ◦⊥ is written just⊥ and ◦> is written>.

A clause �
b(H ← B) is semantically equivalent to the formula �

b(H∨¬B). Consequently,

not only the temporal atoms of the form � p and LU p that occur in the head H of the clause

behave as eventualities, but also the temporal atoms �p and LR p in the bodyB, which respec-

tively correspond to (temporal) literals ¬�p and ¬(LR p). Hence, we define the eventuality

literals of a clause, on the basis of the notion of eventuality (see Definition 2.2.1).

Definition 5.2.2. Let C be a clause �
b(A1 ∨ . . . ∨ Am ← A′

1 ∧ . . . ∧ A
′
n). Lits(C) denotes

the set {A1, . . . , Am,¬A′
1, . . . ,¬A

′
n} whose elements are called the temporal literals of C.

Additionally, EventLits(C) denotes the set of all the eventuality literals in C, i.e. {N | N ∈
Lits(C) and N is an eventuality}.
Both notations are extended to a set of clauses Ψ in the obvious manner:

Lits(Ψ) =
⋃

C∈Ψ Lits(C) and EventLits(Ψ) =
⋃

C∈Ψ EventLits(C).

Note that eventuality literals from clauses have one of the following four forms: � p, LU p,

¬�p and ¬(LR p), where p is a propositional variable and L a classical literal.

TeDiLog is syntactically a sublanguage of PLTL, but every PLTL-formula can be translated

into TeDiLog by using, in general, new propositional variables. The translation yields an equi-

satisfiable set of (program and goal) clauses. For example, the PLTL-formula �¬p ← q (i.e.

�¬p ∨ ¬q) can be translated into TeDiLog as the goal ⊥ ← q ∧ � p but also as the set formed

by the program clause �r ← q and the goal clause � (⊥ ← r ∧ p) where r is a fresh proposi-

tional variable. For the PLTL-formula � (x ∨ y) ← z we obtain the program clauses �w ← z

and � (x ∨ y ← w) where w is a fresh propositional variable. A detailed translation method is

presented in Subsection 4.2.2.

To finish this section, let us illustrate (with an example) how TeDiLog can be used to specify

reactive systems and to verify properties that are satisfied by these systems. We also use the next

example to compare the expressiveness of TeDiLog with the more closely related proposals in

the literature.

Example 5.2.3. Let us consider a system where a device (dv) and a system manager (sm) inter-

act with each other. When the device dv needs to execute a process, it sends a request req dv to

the system manager sm to get permission and goes into waiting-state until the system manager

sm sends the acknowledgement signal ack sm giving permission to execute the process.

� (waiting dvU ack sm← req dv) (5.1)

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 131

Whenever dv asks for permission, the system manager sm will eventually give permission by

sending the acknowledgement signal ack sm in a later state.

� (◦� ack sm← req dv) (5.2)

Once the system manager produces the signal ack sm (giving permission), the device dv goes

into working-state until it communicates the end of the process by means of the eop dv signal.

� (working dv U eop dv ← ack sm) (5.3)

Whenever the device generates the eop dv signal, then it will not be in working-state until it

receives the ack sm signal giving permission to execute another process.

� (¬working dvU ack sm← eop dv) (5.4)

From time to time, the system manager generates a control signal ctr sm

� (� ctr sm← >) (5.5)

The interaction generated after the control signal ctr sm corresponds to the fact that the system

manager has to regularly control whether the device is correctly connected to the system. This

signal ctr sm is always eventually followed by the signal conn sm which is received by the

device.

� (� conn sm← ctr sm) (5.6)

After receiving the signal conn sm, the device dv answers by sending the signal conn dv to the

system manager.

� (◦� conn dv ← conn sm) (5.7)

The device dv is considered to be in communicating-state (com dv) while the arising of the

conn dv signal (now or in a future moment) is guaranteed.

� (com dv ← � conn dv) (5.8)

We would like to remark that the clauses (5.2) and (5.5)-(5.7) cannot be expressed neither in

Chronolog nor in Templog because of the eventualities in their heads. However, all of them are

syntactically correct in Gabbay’s Temporal Prolog. As for the clauses (5.1), (5.3) and (5.4), they

contain the connective U which is not allowed in the above mentioned three declarative TLP

languages.

Now, we can check whether the system specified by the TeDiLog clauses (5.1)-(5.8) verifies

some properties such as fairness, liveness, safety, mutual exclusion, etc. This is made by writing

the intended property as a TeDiLog goal and then checking if that goal can be inferred from the

program. For example we would be interested in checking whether the device dv will always

keep in communicating-state. The corresponding goal would be {⊥ ← �com dv}. Actually,

the refutational mechanism of TeDiLog checks the unsatisfiability of the eventuality �¬com dv

with respect to the specification.

None of the just above mentioned three languages (Chronolog, Templog and Gabbay’s Temporal

Prolog) allows always-atoms in clause bodies, hence the previous goal is not expressible in any

of these declarative TLP languages.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 132

(Res)
�

b(A ∨H ← B) �
b′(H ′← A ∧ B′)

�
b×b′(H ∨H ′← B ∧ B′)

b, b′ ∈ {0, 1}

Figure 5.2: The Resolution Rule

The program clauses (5.1)-(5.8) can be expressed in propositional MetateM, although some

translation into SNF is needed. For the resulting specification, the MetateM execution system

builds a model step by step in the imperative future style. The process will stop when a loop

that gives rise to an ultimately periodic model for the program is detected. If we add to the

specification the SNF clauses that correspond to the goal⊥ ← �com dv, then MetateM finitely

detects the unsatisfiability of the extended specification.

5.3 The Rule System

In this section, we introduce the rule system that constitutes the basis of the operational seman-

tics of TeDiLog. This rule system is a straightforward adaptation ot the TRS-system presented

in Section 4.3. Hence our system includes a Resolution Rule, a collection of Temporal Rules for

decomposing temporal atoms, and two auxiliary rules respectively for jumping to the next state

and for subsumption. We explain these four kinds of rules in the following four subsections.

5.3.1 The Resolution Rule

The TeDiLog’s resolution rule (Res) is a natural generalization of the classical rule for binary

resolution. It is depicted in Figure 5.2 in the usual format of premises and resolvent separated

by an horizontal line. The rule (Res) applies to two temporal clauses such that one of the atoms

in the head of one clause is in the body of the other clause. The premises can be headed or not

by an always connective. By means of the product b × b′ in the superscript of the resolvent,

the resolvent is an always-clause if and only if both premises are always-clauses. Note that the

resolvent is in general a program clause, but in particular when the premises respectively are a

single-headed program clause and a goal clause, the resolvent is a goal clause.

5.3.2 The Temporal Rules

The temporal rules serve to transform the set of clauses according to the inductive definitions

of temporal atoms. We write them as transformation rules Φ 7→ Ψ where Φ and Ψ are sets of

clauses, respectivelly called the antecedent and the consequent. Temporal rules are grouped into

two classes. On the one hand, the context-free rules are based on the usual inductive definitions

of the temporal connectives. The antecedent and consequent of any context-free rule are logi-

cally equivalent. On the other hand, the context-dependent rules come up from a more complex

inductive definition of the connective U (already presented in the previous chapters), and their

antecedent and consequent are equisatisfiable.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 133

(U H+) �
b((p1 U p2) ∨H ← B)
7−→ {� b(p2 ∨ p1 ∨H ← B), �

b(p2 ∨ ◦(p1U p2) ∨H ← B)}

Figure 5.3: The Context-Free Rule (U H+)

(U H−) �
b((¬p1 U p2) ∨H ← B)

7−→ {�b(p2 ∨H ← p1 ∧ B), �
b(p2 ∨ ◦(¬p1 U p2) ∨H ← B)}

(U B+) �
b(H ← (p1 U p2) ∧B)
7−→ {�b(H ← p2 ∧ B), �

b(H ← p1 ∧ ◦(p1 U p2) ∧ B)}

(U B−) �
b(H ← (¬p1 U p2) ∧B)
7−→ {�b(H ← p2 ∧ B), �

b(p1 ∨H ← ◦(¬p1 U p2) ∧B)}

Figure 5.4: The Context-Free Rules (U H−), (U B+) and (U B−)

Context-Free Rules

In the context-free rules, the antecedent Φ is a singleton and we write directly its unique clause.

The context-free rule (UH+) –depicted in Figure 5.3– deals with an atom of the form p1 U p2

that appears in the head of a clause. This rule replaces a clause of the form �
b((p1U p2) ∨

H ← B) with a logically equivalent set of (two) clauses according to the well-known inductive

definition p1 U p2 ≡ p2 ∨ (p1 ∧ ◦(p1U p2)), from which the distribution law guarantees the

equivalence

p1 U p2 ≡ (p2 ∨ p1) ∧ (p2 ∨ ◦(p1 U p2)) (5.9)

which justifies that the antecedent (p1 U p2)∨H ← B of the rule (U H+) is logically equivalent

to the conjunction of the two clauses in its consequent: p2 ∨p1 ∨H ← B and p2 ∨◦(p1U p2)∨
H ← B.

Our system also includes (see Figure 5.4) the rules (UH−), (U B+) and (U B−) for the re-

spective occurrences of ¬p1 U p2 in the clause head and p1 U p2 and ¬p1 U p2 in the clause body.

The rules (U H−), (U B+) and (U B−) are respectively obtained by using the inductive defi-

nitionLU p ≡ p∨ (L∧ ◦(LU p)) for ¬p1 U p2 in the clause head, and p1 U p2 and ¬p1 U p2 in

the clause body. Additionally, the rules (RH+), (RH−), (RB+) and (RB−) in Figure 5.5

are obtained from the inductive definitionLR p ≡ p∧ (L∨ ◦(LR p)) by considering the same

four kinds of occurrences of the release connective R in a clause.

Context-Dependent Rules

The context-dependent rules are based on an inductive definition of U that takes into account,

not only the clauses where the temporal atom occurs, but also the remaining now-clauses in the

antecedent of the rule. The rule (U C+) in Figure 5.7 is the context-dependent rule that deals

with atoms of the form p1 U p2 in clause heads. This rule is obtained by a direct adaptation,

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 134

(RH+) �
b((p1R p2) ∨H ← B)
7−→ {�b(p2 ∨H ← B), �

b(p1 ∨ ◦(p1R p2) ∨H ← B)}

(RH−) �
b((¬p1R p2) ∨H ← B)

7−→ {�b(p2 ∨H ← B), �
b(◦(¬p1R p2) ∨H ← p1 ∧B)}

(RB+) �
b(H ← (p1R p2) ∧ B)
7−→ {�b(H ← p2 ∧ p1 ∧ B), �

b(H ← p2 ∧ ◦(p1R p2) ∧B)}

(RB−) �
b(H ← (¬p1R p2) ∧ B)

7−→ {�b(p1 ∨H ← p2 ∧ B), �
b(H ← p2 ∧ ◦(¬p1R p2) ∧ B)}

Figure 5.5: The Context-Free Rules (RH+), (RH−), (RB+) and (RB−)

def(a, L, ∅) = {� (⊥ ← a)}
def(a, p,∆) = {� (p← a)} ∪{� (H ← B ∧ a) | H ← B ∈ ¬∆} if ∆ 6= ∅
def(a,¬p,∆) = {�(⊥ ← p ∧ a)} ∪{� (H ← B ∧ a) | H ← B ∈ ¬∆} if ∆ 6= ∅

Figure 5.6: The set of clauses def(a, L,∆)

to the syntax of TeDiLog, of the rule (U Set) in Figure 4.5. The antecedent of (U C+) must

be interpreted as a partition of the whole set of clauses (on which we are applying temporal

resolution) into two sets. The second set {� bi((p1 U p2) ∨ Hi ← Bi) | 1 ≤ i ≤ n} in the

antecedent is a non-empty set of clauses that contain the same temporal atom p1 U p2 in the

head. The first set, Ω, is formed by all the remaining clauses. The now-clauses that belong

to Ω form what we call context (see Definition 4.3.3 and Subsection 4.3.2). The crucial idea

behind the context-dependent rule (U C+) (and, hence, behind the resolution mechanism of

TeDiLog) is based on the equisatisfiability result in Proposition 4.3.2. The transformation of

such proposition into the syntax of TeDiLog is trivial because a TeDiLog clause of the form

�
b(A1∨. . .∨Am ← A′

1∧. . .∧A
′
n) corresponds to the clause �

b(A1∨. . .∨Am∨¬A′
1∨. . .∨¬A

′
n)

in the clausal language presented in Chapter 4.

All the rules used in TeDiLog are straightforward adaptations of the rules used in the TRS

resolution system. For instance, the transformation of the antecedent of (U C+) into its conse-

quent follows the same steps as the transformation of the antecedent of the rule (U Set) into its

consequent, showed in detail in Subsection 4.3.2.

Our system also includes a similar context-dependent rule (U C−) for ¬p1 U p2 in the head,

which is depicted in Figure 5.8. The context-dependent rules (RC+) and (RC−) in Figure 5.8

are due to the fact that a release atom appearing in the body of a clause C is an eventuality literal

of C (see Definition 5.2.2). The rules for R are explained by its duality with U . Additionally,

by using the definitions �ϕ ≡ ¬ϕU ϕ and �ϕ ≡ ¬ϕRϕ, the context-free rules (�H+),

(�B+), (�H+) and (�B+) and the context-dependent rules (�C+) and (�C+) are derived.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 135

(U C+) Ω∪{� bi((p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p2 ∨ p1 ∨Hi ← Bi, p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a, p1, now(Ω))

∪ {� bi(◦(p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1, a ∈ Prop is fresh and def(a, p1, now(Ω)) is defined in Figure 5.6.

Figure 5.7: The Context-Dependent Rule (U C+)

(U C−) Ω∪{� bi((¬p1 U p2) ∨Hi ← Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p2 ∨Hi ← p1 ∧ Bi, p2 ∨ ◦(aU p2) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a,¬p1, now(Ω))

∪ {� bi(◦(¬p1 U p2) ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(RC+) Ω∪{� bi(Hi ← (p1R p2) ∧ Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {Hi ← p2 ∧ p1 ∧ Bi, Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n}

∪ def(a,¬p1, now(Ω))

∪ {� bi(◦Hi ← ◦(p1R p2) ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(RC−) Ω∪{� bi(Hi ← (¬p1R p2) ∧Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p1 ∨Hi ← p2 ∧ Bi, Hi ← p2 ∧ ◦(¬aR p2) ∧Bi | 1 ≤ i ≤ n}

∪ def(a, p1, now(Ω))

∪ {� bi(◦Hi ← ◦(¬p1R p2) ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1, a ∈ Prop is fresh and def(a, L, now(Ω)) is defined is in Figure 5.6.

Figure 5.8: The Context-Dependent Rules (U C−), (RC+) and (RC−)

These derived rules are depicted in Figure 5.10.

5.3.3 The Rule for Jumping to the Next State

The rule (Unx) in Figure 5.11 applies to a pair formed by a program and a goal, giving a new

pair of program and goal. The expression unnext(Ψ) stands for the set of all clauses that should

be satisfied at the next state of a state that satisfies the set of clauses Ψ. Note that the definition

of the function unnext implicitly uses the equivalence �ϕ ≡ ϕ ∧ �◦ϕ and also that the unnext

target of a program (resp. goal) is also a program (resp. goal). It is worth remembering that >
and ⊥ respectively represent the empty body and the empty head, and it holds that every atom

in > and ⊥ is of the form ◦A. For example, unnext({� (◦r ← >),�(q ← >)}) is the set

{� (◦r ← >),�(q ← >), r← >}.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 136

def(a, now(Ω)) =

{
{� (⊥← a)} if now(Ω) = ∅
{� (H ← B ∧ a) | H ← B ∈ ¬now(Ω)} otherwise

Figure 5.9: The set of clauses def(a, now(Ω))

(�H+) �
b(� p ∨H ← B) 7−→ {� b(p ∨ ◦� p ∨H ← B)}

(�B+) �
b(H ← � p ∧B) 7−→ {� b(H ← p ∧B), �

b(H ← ◦� p ∧ B)}

(�H+) �
b(�p ∨H ← B) 7−→ {�b(p ∨H ← B), �

b(◦�p ∨H ← B)}

(�B+) �
b(H ← �p ∧ B) 7−→ {�b(H ← p ∧ ◦�p ∧B)}

(�C+) Ω∪{� bi(� p ∨Hi ← Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {p ∨ ◦(aU p) ∨Hi ← Bi | 1 ≤ i ≤ n}

∪ def(a, now(Ω))

∪ {� bi(◦� p ∨ ◦Hi ← ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

(�C+) Ω∪{� bi(Hi ← �p ∧Bi) | 1 ≤ i ≤ n}
7−→ Ω ∪ {Hi ← p ∧ ◦(¬aR p) ∧Bi | 1 ≤ i ≤ n}

∪ def(a, now(Ω))

∪ {� bi(◦Hi ← ◦�p ∧ ◦Bi) | bi = 1 and 1 ≤ i ≤ n}

where n ≥ 1, a ∈ Prop is fresh and def(a, now(Ω)) is defined in Figure 5.9

Figure 5.10: Derived Rules for � and �

5.3.4 The Subsumption Rule

The rule (Sbm) is formulated in Figure 5.12. Regarding the clauses in the antecedent, it is said

that the clause �
b(H ← B) is subsumed by the clause �

b(H ′← B′).

Our resolution mechanism requires (Sbm) for completeness. Actually, subsumption is used in

Lemma 5.4.11, which is used in the proof of Proposition 5.4.24 and allows us to prove Theorem

5.4.28.

5.4 TeDiLog Semantics

In this section we summarize our results on TeDiLog semantics. The first subsection is devoted

to the operational semantics that is formalized by means of the algorithm in Figure 5.13. The

second subsection shows three sample derivations. In the third subsection we define the logical

semantics. Finally, in the last subsection we prove the equivalence between the operational and

the logical semantics.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 137

(Unx) (Π,Γ) 7−→ (unnext(Π), unnext(Γ))

where unnext(Ψ) = alw(Ψ) ∪ {H ← B | � b(◦H ← ◦B) ∈ Ψ}

Figure 5.11: The Rule (Unx)

(Sbm) {� b(H ← B),�b(H ′ ← B′)}7−→{� b(H ′ ← B′)}

where H ′ ⊆ H and B′ ⊆ B.

Figure 5.12: The Rule (Sbm)

5.4.1 Operational Semantics

In this subsection we formulate the operational semantics of TeDiLog. We refer to the refuta-

tion procedure underlying TeDiLog as IFT-resolution (for Invariant-Free Temporal resolution).

Every step of an IFT-derivation consists in applying one of the rules presented in Section 5.3.

However, as in the tableau method TTM and the resolution system TRS, the nondeterministic

application of those rules does not guarantee completeness. In Figure 5.13 we show the IFT-

resolution procedure that applies the rules in Section 5.3 in a more (not fully) deterministic way

that is complete. The algorithm in Figure 5.13 is an adaptation of the algorithm SR in Figure

4.10 to the language TeDiLog. Consequently, this subsection is an adaptation of Subsection

4.6.1 into the language TeDiLog.

The IFT-resolution procedure constructs an IFT-derivation from an input program Π and an

input goal Γ that we call D(Π,Γ) and consists of a (possibly infinite) sequence

S0 Z⇒ S1 Z⇒ S2 Z⇒ . . .

where each Sj is a finite sequence of pairs

(Π0
j ,Γ

0
j) 7→ (Π1

j ,Γ
1
j) 7→ . . . 7→ (Π

hj

j ,Γ
hj

j)

such that

(a) (Π0
0,Γ

0
0) = (Π,Γ)

(b) (Π0
k,Γ

0
k) = (unnext(Π

hk−1

k−1), unnext(Γ
hk−1

k−1)) for every k ≥ 1

(c) Every pair (j, i) such that j ≥ 0 and i ∈ {1, . . . , hj} satisfies one of the following two

conditions

(i) Πi
j ∪Γi

j = Πi−1
j ∪Γi−1

j ∪{� b(H ← B)} where �
b(H ← B) is the resolvent ob-

tained by applying the rule (Res) to some pair of clauses in Πi−1
j ∪Γi−1

j

(ii) Πi
j ∪Γi

j = ((Πi−1
j ∪Γi−1

j)\Σ)∪Ψ where Σ ⊆ (Πi−1
j ∪Γi−1

j) and Σ 7→ Ψ according

to a temporal rule or the subsumption rule.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 138

1 (Π0
0,Γ

0
0) := (Π,Γ); i := 0; j := 0;

2 sel ev set0 := fair select(Π0
0,Γ

0
0);

3 loop

4 if sel ev seti 6= ∅
5 then (Π1

i ,Γ
1
i , sel ev set∗i) := apply ctx dep(Π0

i ,Γ
0
i , sel ev seti); j := 1;

6 else sel ev set∗i := ∅;
7 end if;

8 (Π∗
i ,Γ

∗
i) := supported free close(Πj

i ,Γ
j
i);

9 if �
b(⊥← >) ∈ Π∗

i ∪Γ∗
i then exit; end if;

10 (Π0
i+1,Γ

0
i+1) := (unnext(Π∗

i), unnext(Γ∗
i));

11 if sel ev set∗i ∩ EventLits(Π0
i+1 ∪Γ0

i+1) = ∅
12 then sel ev seti+1 := fair select(Π0

i+1,Γ
0
i+1);

13 else sel ev seti+1 := sel ev set∗i ;

14 end if;

15 i := i+ 1; j := 0;

16 end loop;

Figure 5.13: The IFT-Resolution Procedure

Note that we use two different symbols (7→ and Z⇒) to highlight the difference between applying

the rule (Unx) and any other rule. We say that an IFT-derivation is a local derivation if it

does not contain any application of the rule (Unx). Each sequence Sj is a local derivation and

(Unx) serves to jump from each Sj to the next sequence Sj+1. In other words, the application

of (Unx) yields each (Π0
j+1,Γ

0
j+1) from each (Π

hj

j ,Γ
hj

j).

The IFT-resolution procedure first initializes (see line 1 in Figure 5.13) the pair (Π0
0,Γ

0
0)

with the input pair (Π,Γ). Then, the procedure iterates extending the derivation D(Π,Γ) with

new pairs and stopping only if the empty clause is obtained (line 9). In this case, the reso-

lution proof D(Π,Γ) is called an IFT-refutation. The IFT-resolution procedure uses a mark-

ing strategy for applying exactly one context-dependent rule between each two consecutive

applications of the rule (Unx).2 For that, it keeps two variables sel ev seti and sel ev set∗i
for every i ≥ 0. Both variables, sel ev seti and sel ev set∗i , take as value the empty set or

a singleton that contains an eventuality literal, depending on whether EventLits(Π0
i ∪Γ0

i) –

see Definition 5.2.2– is empty or not, respectively. The variable sel ev seti stands for the

selected eventuality literal N in (Π0
i ,Γ

0
i), whereas sel ev set∗i corresponds to the eventual-

ity literal obtained from N by the application of the corresponding context-dependent rule,

which remains selected in all pairs from (Π1
i ,Γ

1
i) to (Πhi

i ,Γ
hi

i). Consequently, in line 2 (Fig-

ure 5.13), the variable sel ev set0 is initialized with a singleton that contains a fairly selected

temporal literal from EventLits(Π0
0 ∪Γ0

0) whenever EventLits(Π0
0 ∪Γ0

0) is non-empty. On the

contrary, if EventLits(Π0
0 ∪Γ0

0) is empty, the variable sel ev set0 is initialized with the empty

set (line 2). The expression fair select(Π0
h,Γ

0
h) encapsulates the fair selection of a literal from

EventLits(Π0
h∪Γ0

h), where fairness means that a literal that belongs to every set in a sequence

of the form

2 Whenever there is at least one eventuality literal, exactly one is selected as the designated eventuality of the

corresponding context-dependent rule. Otherwise, no context-dependent rule is applicable.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 139

EventLits(Π0
g ∪Γ0

g), EventLits(Π0
g+1 ∪Γ0

g+1), EventLits(Π0
g+2 ∪Γ0

g+2), . . .

cannot remain indefinitely unselected in the derivation Sg Z⇒ Sg+1 Z⇒ Sg+2 Z⇒

In addition to the above explained marking strategy, IFT-resolution requires a controlled

kind of saturation (with respect to the rules introduced in Section 5.3) before jumping from a

sequence Sj to the next sequence Sj+1, which is also needed for completeness. Actually, every

pair (Π
hj

j ∪Γ
hj

j) is IFT-closed (or saturated) in the sense given by the following definition.

Definition 5.4.1. Let Π be a program and Γ a goal. The pair (Π,Γ) is IFT-closed if and only if

it satisfies the following four conditions:

(a) The set of atoms of the clauses in Π∪Γ is exclusively formed by atoms in Prop and atoms

of the form ◦A.

(b) The subsumption rule (Sbm) cannot be applied to (Π,Γ).

(c) Every clause that can be obtained by applying the rule (Res) to a clause in Π and a clause

in Γ, is already in (Π,Γ) or it is subsumed by some clause in (Π,Γ).

(d) Every clause of the form �
b(◦H ← ◦B) that can be obtained by means of a local derivation

where in each derivation step the rule (Res) is applied to two program clauses, is already

in (Π,Γ) or it is subsumed by some clause in (Π,Γ).

Items (c) and (d) represent two particular forms of the well-known set-of-support restriction

of resolution3 (see e.g. Section 2.6 in [115] and [34]). Note that, by (c), the pair (Π∪Γ) is

saturated with all the resolvents that can be obtained from a program clause and a goal clause.

We call goal-resolution to every application of the rule (Res) related to (c). However, by (d),

the program Π is saturated with all the resolvents R of two program clauses such that every

atom in R is preceded by the connective ◦. We call nx-resolution to every application of the rule

(Res) related to (d). The need of nx-resolution is illustrated in Example 5.4.5.

Definition 5.4.2. Let Π be a program and Γ a goal. We denote by (Π∗,Γ∗) any pair such that

there exists a local derivation (Π,Γ) 7→ . . . 7→ (Π∗,Γ∗) and either �
b(⊥ ← >) ∈ Γ∗ or

(Π∗,Γ∗) is IFT-closed.

Consequently, the lines 4 to 8 (in Figure 5.13) serve to extend the derivation from (Π0
i ,Γ

0
i) to

(Π∗
i ,Γ

∗
i). First, by lines 4-7, if there is a selected eventuality literal, i.e., if sel ev seti 6= ∅, then

the corresponding context-dependent rule is applied considering that Ω = (Π0
i ∪Γ0

i) \ {C ∈
(Π0

i ∪Γ0
i) | EventLits(C) ∩ sel ev seti 6= ∅}. The value of sel ev set∗i is the singleton that

contains the new eventuality literal that is introduced by the applied context-dependent rule

(i.e. the eventuality literal that appears in the consequent of the applied context-dependent rule

preceded by a ◦ connective). If there is no selected literal, none of the context-dependent rules

is applicable in the current iteration step and, additionally, the value of sel ev set∗i is the empty

set. Then, in line 8, denoted as supported free close, the context-free rules, the resolution rule

and the subsumption rule are repeatedly and nondeterministically applied until either an IFT-

refutation or an IFT-closed pair (see Definition 5.4.1) is obtained.

3 Also known as set-of-support strategy for resolution.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 140

Definition 5.4.3. Let (Π,Γ) be a pair where Π is a program and Γ a goal, the non-deterministic

operation that yields (Π∗,Γ∗) from (Π,Γ) without any application of the context-dependent

rules is denoted by supported free close.

In the algorithm presented in Figure 5.13 we use the procedure supported free close that

implements the operation supported free close during the construction of a derivation.

Once an IFT-closed pair is obtained –if a refutation is not found in line 9– the rule (Unx)
is applied (line 10). Then, an eventuality literal that belongs to EventLits(Π0

i+1 ∪Γ0
i+1), is

fairly selected for the next iteration step (lines 11-14). If sel ev set∗i is empty or if the literal in

sel ev set∗i does not appear in EventLits(Π0
i+1 ∪Γ0

i+1) (line 11), then a new literal that belongs

to EventLits(Π0
i+1 ∪Γ0

i+1) is fairly selected for the next iteration step (line 12). Otherwise, the

literal in sel ev set∗i is kept as the selected one for the next iteration step (line 13).

5.4.2 Examples

In this section we present three detailed examples that illustrate the IFT-resolution procedure. In

Example 5.4.4 we simply show how IFT-resolution deals with eventualities. The Example 5.4.5

illustrates the need of nx-resolution (Definition 5.4.1 (d)). Finally, Example 5.4.7 shows that

the order in which eventuality literals a selected –by means of the fair select operation– does

not necessarily determine the order in which eventuality literals are fulfilled. Moreover, this

example also serves to illustrate that the fulfillment of eventualities is handled by IFT-resolution

without backtracking. The three sample derivations are showed in the respective figures, where

we indicate which rule is applied and we underline the clauses designated by the rule application,

except for the rule (Unx). The values of sel ev seti and sel ev set∗i are pointed out too.

Example 5.4.4. We consider the program Π = {q U r ← >} and the goal Γ = {� (⊥ ← r)}.
The goal clause is equivalent to the formula �¬r and Π∪Γ is unsatisfiable. In Figure 5.14 we

show an IFT-refutation for (Π,Γ). First, Π0
0 and Γ0

0 are respectively initialized as Π and Γ. Since

q U r is the only eventuality literal in a clause that belongs to Π∪Γ, it is selected. Therefore

sel ev set0 = {q U r}. We apply the rule (U C+) to Π0
0 ∪Γ0

0 with selected literal q U r and

empty context. Hence, we obtain the new program clauses r∨q ← > and r∨◦(aU r)← > and

the goal clause � (⊥ ← a), where a is a fresh variable. Since the context is empty (its negation

is ⊥), the goal clause � (⊥ ← a) gives meaning to the fresh variable a. The new atom aU r is

the new selected literal, i.e, sel ev set∗0 = {aU r}. Then the resolution rule and the subsumption

rule are applied twice, and the IFT-closed pair (Π5
0,Γ

5
0) is obtained. These applications of the

rules (Res) and (Sbm) correspond to the operation supported free close (Definition 5.4.3).

Since a refutation cannot be obtained in this state, the application of the rule (Unx) serves to

jump to the next state, generating Π0
1 and Γ0

1. Since the atom aU r appears as eventuality literal

in a clause that belongs to Π0
1 ∪Γ0

1, it is kept as selected literal, i.e., sel ev set1 = {aU r}.
Now the rule (U C+) is applied to the set Π0

1 ∪Γ0
1 with selected literal aU r and empty context.

Then, we obtain two new program clauses, r ∨ a ← > and r ∨ ◦(bU r) ← >, and the goal

clause � (⊥ ← b), where b is a fresh variable. Now sel ev set∗1 = {bU r}. Two additional

applications of the rule (Res) –that correspond to the operation supported free close– yield

the empty clause⊥ ← >.

In the next example we illustrate why nx-resolution (Definition 5.4.1 (d)) is necessary for

completeness. This example is an adaptation, to TeDiLog, of the Example 4.6.3 (Figure 4.11).

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 141

Π0
0 = {q U r ← >} Γ0

0 = {� (⊥← r)} (U C+) sel ev set0 = {q U r}

Π1
0 = {r ∨ q ← >,

r ∨ ◦(aU r)← >}
Γ1

0 = {� (⊥← r),

� (⊥ ← a)}
(Res) sel ev set∗0 = {aU r}

Π2
0 = {r ∨ q ← >,

r ∨ ◦(aU r)← >,
q ← >}

Γ2
0 = {� (⊥← r),

� (⊥ ← a)}
(Sbm)

Π3
0 = {r ∨ ◦(aU r)← >,

q ← >}

Γ3
0 = {� (⊥← r),

� (⊥ ← a)}
(Res)

Π4
0 = {r ∨ ◦(aU r)← >,

q ← >,
◦(aU r)← >}

Γ4
0 = {� (⊥← r),

� (⊥ ← a)}
(Sbm)

Π5
0 = {q ← >,

◦(aU r)← >}
Γ5

0 = {� (⊥← r),

� (⊥ ← a)}
(Unx)

Π0
1 = {aU r ← >} Γ0

1 = {� (⊥← r),
� (⊥ ← a)}

(U C+) sel ev set1 = {aU r}

Π1
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >}
Γ1

1 = {� (⊥← r),

� (⊥ ← a),
� (⊥ ← b)}

(Res) sel ev set∗1 = {bU r}

Π2
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >,
a← >}

Γ2
1 = {� (⊥← r),

� (⊥ ← a),

� (⊥ ← b)}

(Res)

Π3
1 = {r ∨ a← >,

r ∨ ◦(bU r)← >,
a← >}

Γ3
1 = {� (⊥← r),

� (⊥ ← a),

� (⊥ ← b),
⊥ ← >}

Figure 5.14: IFT-Refutation for Π = {q U r ← >} and Γ = {� (⊥ ← r)}

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 142

Π0
0 = {q ← >,

� (◦q ← q)}
Γ0

0 = {⊥ ← �q} (�C+) sel ev set0 = {¬�q}

Π1
0 = {q ← >,

� (◦q ← q)}

Γ1
0 = {⊥ ← q ∧ ◦(¬aR q),

� (⊥← q ∧ a)}
(Res) sel ev set∗0 = {¬(¬aR q)}

Π2
0 = {q ← >,

� (◦q ← q)}

Γ2
0 = {⊥ ← q ∧ ◦(¬aR q),

� (⊥← q ∧ a),
⊥ ← ◦(¬aR q)}

(Sbm)

Π3
0 = {q ← >,

� (◦q ← q)}
Γ3

0 = {�(⊥ ← q ∧ a),

⊥ ← ◦(¬aR q)}
(Res)

Π4
0 = {q ← >,

� (◦q ← q)}
Γ4

0 = {�(⊥ ← q ∧ a),
⊥ ← ◦(¬aR q),
⊥ ← a}

(Res)

Π5
0 = {q ← >,

� (◦q ← q),
◦q ← >}

Γ5
0 = {�(⊥ ← q ∧ a),

⊥ ← ◦(¬aR q),
⊥ ← a}

(Unx)

Π0
1 = {� (◦q ← q),

q ← >}
Γ0

1 = {�(⊥ ← q ∧ a),
⊥ ← ¬aR q}

(RC−) sel ev set1 = {¬(¬aR q)}

Π1
1 = {� (◦q ← q),

q ← >,
a← q,

� (a← b)}

Γ1
1 = {�(⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b)}

(Res) sel ev set∗1 = {¬(¬bR q)}

Π2
1 = {� (◦q ← q),

q ← >,
a← q,

� (a← b)}

Γ2
1 = {�(⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b),
⊥ ← a}

(Res)

Π3
1 = {� (◦q ← q),

q ← >,
a← q,

� (a← b)}

Γ3
1 = {�(⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b),
⊥ ← a,

⊥ ← q}

(Res)

Π4
1 = {� (◦q ← q),

q ← >,
a← q,

� (a← b)}

Γ4
1 = {�(⊥ ← q ∧ a),

⊥ ← q ∧ ◦(¬bR q),
� (⊥← q ∧ b),
⊥ ← a,

⊥ ← q,

⊥ ← >}

Figure 5.15: IFT-refutation for Π = {q ← >,� (◦q ← q)} and Γ = {⊥ ← � q}

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 143

Now we use the propositional variable q instead of the variable p that is used in Example 4.6.3.

Example 5.4.5. Let us consider the program Π = {q ← >,�(◦q ← q)} and the goal

Γ = {⊥ ← �q}. The set of clauses Π∪Γ is unsatisfiable. The IFT-refutation for (Π,Γ) is

shown in Figure 5.15. The goal clause ⊥ ← �q contains the only eventuality literal, ¬�q,

in (Π,Γ). Hence sel ev set0 = {¬�q} and the application of the rule (�C+) with context

{q ← >} generates the goal clauses ⊥ ← q ∧ ◦(¬aR q) and � (⊥ ← q ∧ a), where a is a

new propositional variable. Additionally, we have that sel ev set∗0 = {¬(¬aR q)}. Now the

operation supported free close is carried out, which consists in three applications of (Res) and

one application of (Sbm). By applying the resolution rule to the program clause q ← > ∈ Π1
0

and the goal clause ⊥ ← q ∧ ◦(¬aR q) ∈ Γ1
0, the goal clause ⊥ ← ◦(¬aR q) is obtained as

resolvent. Then, by (Sbm), the goal clause⊥ ← q∧◦(¬aR q) is subsumed by⊥ ← ◦(¬aR q).

The second application of (Res), this time with the program clause q ← > and the goal clause

� (⊥ ← q ∧ a) as premises, yields the goal clause ⊥ ← a. Then the rule (Res) is applied to

the two program clauses q ← > and � (◦q ← q) and the program clause ◦q ← > is obtained

as resolvent before jumping to the next state by applying the rule (Unx) to the IFT-closed pair

(Π5
0,Γ

5
0).

Remark 5.4.6. Note that (Π5
0,Γ

5
0) is obtained by nx-resolution from (Π4

0,Γ
4
0). Let

us explain that this step is essential. In (Π4
0,Γ

4
0) goal-resolution is not applicable.

If instead of applying nx-resolution to the clauses q ← > and � (◦q ← q) in Π4
0,

we applied the rule (Unx) to the pair (Π4
0,Γ

4
0), then we would obtain the program

Π′ = {� (◦q ← q)} and the goal Γ′ = {⊥ ← ¬aR q,�(⊥ ← a)}. Since Π′ ∪Γ′

is satisfiable, the refutation of Π∪Γ would never be found.

By applying the rule (Unx) to (Π5
0,Γ

5
0), we obtain the pair (Π0

1,Γ
0
1). Then, we apply the context-

dependent rule (RC−) with respect to the selected eventuality literal¬(¬aR q) and the clause

q ← > as context. The pair (Π1
1,Γ

1
1) is obtained by replacing the goal clause ⊥ ← ¬aR q in

Γ0
1 with the program clauses a ← q and � (a ← b) and the goal clauses ⊥ ← q ∧ ◦(¬bR q)

and � (⊥ ← q ∧ b), where b is a fresh propositional variable. The value of sel ev set∗1 is

{¬(¬bR q)}. In (Π1
1,Γ

1
1) the resolution rule is applied with the program clause q ← > and

the goal clause � (⊥ ← q ∧ a) as premises, obtaining the goal clause ⊥ ← a as resolvent. In

(Π2
1,Γ

2
1) the resolution between the program clause a ← q and the goal clause ⊥ ← a yields

the goal clause ⊥ ← q. Finally, since Π3
1 contains the program clause q ← > and Γ3

1 contains

the goal clause ⊥ ← q, the empty clause is obtained by applying the resolution rule (Res) to

these two clauses.

Next we straightforwardly adapt Example 4.6.8 (Figures 4.17 and 4.18) to the syntax of

TeDiLog. Let us recall that this example illustrates that our resolution mechanism does not need

backtracking (independently of the selection strategy carried out by the operation fair select).

Example 5.4.7. We consider the program Π = {� q ← >, � r ← >} and the goal Γ =

{� (⊥ ← q ∧ � r)}. The set Π∪Γ is satisfiable. There are two eventualities, � q and � r,

that must be fulfilled, but the goal clause states that once the eventuality � q is fulfilled, the

eventuality � r cannot be fulfilled. An infinite IFT-derivation for Π∪Γ is shown in detail in

Figures 5.16, 5.17 and 5.18 (it is split due to space reasons). Although the eventuality � q is

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 144

Π0
0 = {� q ← >, � r← >} Γ0

0 = {� (⊥← q ∧ � r)} (�C+) sel ev set0 = {� q}

Π1
0 = {� r ← >,

q ∨ ◦(aU q)← >}
Γ1

0 = {� (⊥← q ∧ � r),
� (⊥← a ∧ � r)}

(�H+) sel ev set∗0 = {aU q}

Π2
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ2

0 = {� (⊥← q ∧ � r),
� (⊥← a ∧ � r)}

(�B+)

Π3
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ3

0 = {� (⊥← a ∧ � r),
� (⊥← q ∧ r),
� (⊥← q ∧ ◦� r)}

(�B+)

Π4
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >}
Γ4

0 = {� (⊥← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r)}

(Res)

Π5
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q}

Γ5
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r)}

(Res)

Π6
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q}

Γ6
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q}

(Res)

Π7
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q,

r ← a}

Γ7
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),

� (⊥← a ∧ ◦� r),
⊥ ← q}

(Res)

Π8
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q,

r ← a}

Γ8
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Res)

Π9
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r← >,
r ← q,

r ← a,

◦(aU q)← >}

Γ9
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Sbm)

Figure 5.16: IFT-derivation for Π = {� q ← >,� r ← >} and Γ = {� (⊥← q ∧ � r)} (Part 1 of 3)

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 145

Π10
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r ← >,
r← a,

◦(aU q)← >}

Γ10
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Sbm)

Π11
0 = {q ∨ ◦(aU q)← >,

r ∨ ◦� r ← >,
◦(aU q)← >}

Γ11
0 = {� (⊥← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Sbm)

Π12
0 = {r ∨ ◦� r ← >,

◦(aU q)← >}
Γ12

0 = {� (⊥← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
⊥ ← q,⊥← a}

(Unx)

Π0
1 = {aU q ← >} Γ0

1 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r)}

(U C+) sel ev set1 = {aU q}

Π1
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >}
Γ1

1 = {� (⊥ ← q ∧ r),
� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),

� (⊥ ← a ∧ ◦� r),
� (⊥ ← b)}

(Res) sel ev set∗1 = {bU q}

Π2
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r}

Γ2
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b)}

(Res)

Π3
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r}

Γ3
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),⊥← r}

(Res)

Π4
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r,

a← ◦� r}

Γ4
1 = {� (⊥ ← q ∧ r),

� (⊥ ← q ∧ ◦� r),
� (⊥ ← a ∧ r),
� (⊥ ← a ∧ ◦� r),
� (⊥ ← b),⊥← r}

(Res)

Figure 5.17: IFT-derivation for Π = {� q ← >,� r ← >} and Γ = {� (⊥← q ∧ � r)} (Part 2 of 3)

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 146

Π5
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
q ← r,

a← ◦� r}

Γ5
1 = {�(⊥ ← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),

⊥ ← r,⊥ ← ◦� r}

(Sbm)

Π6
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >,
a← ◦� r}

Γ6
1 = {�(⊥ ← q ∧ r),

� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),
⊥ ← r,⊥← ◦� r}

(Sbm)

Π7
1 = {q ∨ a← >,

q ∨ ◦(bU q)← >}
Γ7

1 = {�(⊥ ← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),

⊥ ← r,⊥← ◦� r}

(Unx)

Π0
2 = ∅ Γ0

2 = {�(⊥ ← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),
⊥ ← � r}

(�B+) sel ev set2 = ∅

Π1
2 = ∅ Γ1

2 = {�(⊥ ← q ∧ r),
� (⊥← q ∧ ◦� r),
� (⊥← a ∧ r),
� (⊥← a ∧ ◦� r),
� (⊥← b),

⊥ ← r,⊥← ◦� r}

(Unx) sel ev set∗2 = ∅

...
...

Π0
2 = Π0

j ,Γ
0
2 = Γ0

j ,Π
1
2 = Π1

j ,Γ
1
2 = Γ1

j and

sel ev setj = sel ev set∗j = ∅ for every j ≥ 3

{¬q, r,¬a} 7→ {q,¬r,¬b} 7→ {¬r,¬b} 7→ {¬r,¬b} · · ·

Figure 5.18: IFT-derivation for Π = {� q ← >,� r ← >} and Γ = {� (⊥← q ∧ � r)} (Part 3 of 3)

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 147

selected first by the operation fair select, the eventuality � r is fulfilled before � q. Note that

backtracking is not used.

After the first selection, sel ev set0 = {� q}. Then the application of the rule (�C+) with

context {� r ← >} generates the program clause q ∨ ◦(aU q) ← > and the goal clause

� (⊥ ← a∧� r) where a is a fresh propositional variable. Additionaly the value of sel ev set∗0 is

set to {aU q}. Then, the rule applications that correspond to the supported free close operation

(see Figure 5.13, line 8 and Definition 5.4.3) are carried out and the IFT-closed pair (Π12
0 ,Γ

12
0)

is obtained. Next, by rule (Unx), the pair (Π0
1,Γ

0
1) is generated. Since the atom aU q belongs

to EventLits(Π0
1 ∪Γ0

1), it remains as the selected literal and, consequently, the rule (U C+)

is applied to (Π0
1 ∪Γ0

1) with aU q as selected literal (i.e., sel ev set1 = {aU q}) and with

empty context, obtaining the pair (Π1
1 ∪Γ1

1) and setting sel ev set∗1 to {bU q}, where b is a

fresh propositional variable. The operation supported free close that yields the IFT-closed pair

(Π7
1 ∪Γ7

1) from (Π1
1 ∪Γ1

1), encapsulates several applications of the rule (Res) and the rule

(Sbm). The pair (Π0
2,Γ

0
2) is obtained from (Π7

1 ∪Γ7
1) by using the rule (Unx). Since the set

EventLits(Π0
2 ∪Γ0

2) is empty, the value of sel ev set2 as well as the value of sel ev set∗2 is the

empty set. Therefore no context-dependent rule is applied to (Π0
2,Γ

0
2) and we get the IFT-closed

pair (Π1
2,Γ

1
2) by applying the context-free rule (�B+). From that point onwards the derivation

is a repetition where Π0
j = Π0

2, Γ0
j = Γ0

2, Π1
2 = Π1

j , Γ1
2 = Γ1

j and sel ev setj = sel ev set∗j = ∅
for every j ≥ 3.

The pairs (Π12
0 ,Γ

12
0), (Π7

1,Γ
7
1), (Π

1
2,Γ

1
2), (Π

1
3,Γ

1
3), . . . characterize a collection of models

for the initial pair (Π,Γ). All the models of such collection make true the literals {¬q, r,¬a} in

s0, the literals {¬r,¬b} in s1 and also the literals {¬r,¬b} in all the states sj such that j ≥ 2.

Moreover, the atom q must be true in sk for some k ≥ 1. For instance, the PLTL-structureM
with states s0, s1, s2, . . . such that VM(s0) = {r}, VM(s1) = {q} and VM(sj) = ∅ for every

j ≥ 2 is a model of Π∪Γ.

By means of Example 5.4.7 we would like to stress that the strategy for selecting eventuali-

ties does not compromise the completeness of our resolution mechanism, although it can affect

efficiency. As already pointed out after Example 4.6.8 , if we had selected the eventuality � r
instead of the eventuality � q, the derivation would have been considerably longer.

5.4.3 Logical Semantics

In this subsection we define the logical characterization of the declarative meaning of TeDiLog

programs.

The logical characterization of the declarative semantics of a TeDiLog program Π is given,

as usual in Logic Programming, by the set of all the formulas that represent (in a particular

simplified way) negations of goals and that are logical consequences of the program Π.

In classical LP (see e.g. [88]), and also in some extensions like Templog ([12]) and Chronolog

([127, 103, 99]), where a goal is of the form ⊥ ← B, the declarative meaning of a program is

formalized in three equivalent ways:

1. Logically, as the set of bodies that are logical consequences of the program.

2. Model-theoretically, by means of the minimal model of the program.

3. By fixpoint characterization, based on the immediate consequence operator.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 148

These three formalizations are equivalent in the sense that, on one hand, the bodies that are

logical consequences of the program are just the bodies that are satisfied by the minimal model

of the program and, on the other hand, the minimal model of the program is the fixpoint of the

immediate consequence operator.

In DLP ([89]), and existing temporal extensions of DLP ([68]), where a goal is of the form

{⊥ ← B1, . . . ,⊥ ← Bn}, the logical characterization of the declarative meaning of a program

is provided by the set of formulas of the form B1 ∨ . . . ∨ Bn (i.e. disjunctions of bodies) that

are logical consequences of the program. The model-theoretic characterization is provided by

means of all the minimal models (in general there is no only one minimal model). The fixpoint

characterization can also be extended to the disjunctive paradigm as shown in [89, 68].

In TeDiLog a goal Γ = {�b1(⊥ ← B1), . . . ,�
bn(⊥ ← Bn)} is understood as the conjunc-

tion of the goal clauses in Γ. Since a goal clause �
b(⊥ ← B) represents the formula ¬� bB,

the set Γ is logically equivalent to the formula ¬� b1B1 ∧ . . . ∧ ¬� bnBn or equivalently to

¬(� b1B1 ∨ . . .∨ � bnBn).

Definition 5.4.8. The declarative semantics of a TeDiLog program Π is logically characterized

as the set of all the formulas of the form � b1B1 ∨ . . .∨ � bnBn that are logical consequences of

Π.

We do not provide model-theoretical and fixpoint characterizations for TeDiLog due to tech-

nical difficulties that we explain in the next subsection.

5.4.4 Equivalence between operational and logical semantics

In this subsection we address the soundness and completeness of IFT-resolution with respect to

the logical semantics of TeDiLog.

Soundness and completeness results guarantee the equivalence between operational and log-

ical semantics.

Soundness is a consequence of the fact that each rule preserves satisfiability (indeed, some

of them preserve logical equivalence).

Theorem 5.4.9. (Soundness) If there exists an IFT-refutation from Π with top-goal Γ, then

Π∪Γ is unsatisfiable.

Proof. If �
b(⊥ ← >) ∈ Γ′ for some (Π′,Γ′) in an IFT-derivation from (Π,Γ), then Π′ ∪Γ′ is

unsatisfiable. Therefore, since the rule (Unx) preserves satisfiability and the initial set and the

target set of every application of the remaining rules are equisatisfiable, Π∪Γ is also unsatisfi-

able.

For more details about the proof of the above theorem see Section 4.5.

In logic programming, completeness proofs are usually addressed through the minimal

model and the immediate consequence operator. In the case of TeDiLog there are many dif-

ficulties for using classical notions of minimal model and immediate consequence operator TΠ

in a customary completeness proof. The main reason is related to the contexts that are essential

for IFT-resolution. Concretely, context handling prevents to deduce the refutability of T n
Π(∅)

from the refutability of T n+1
Π (∅) (see e.g. Lemma 4.6 in [12]). As pointed out in Section 5.1,

these difficulties are closely related to the problem of syntactical cut elimination in PLTL. We

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 149

have explored non-conventional notions of minimal model and immediate consequence oper-

ator, which are not only based on programs, but also need to consider all the possible goals.

Unfortunately, these intricate notions of minimal model and immediate consequence operator

do not facilitate the understanding of the declarative meaning of TeDiLog programs. Hence, we

decided not to include them in this thesis.

TeDiLog’s completeness means that whenever a set of clauses Π∪Γ is unsatisfiable, the

IFT-resolution algorithm gives a refutation for (Π,Γ). Since the algorithm for IFT-resolution

is a straightforward adaptation of the systematic algorithm SR in Subsection 4.6.1, the idea

behind the completeness proof and the involved technical details are very similar with respect

to the ones presented to proof the completeness of the TRS resolution method. The main differ-

ences arise from the fact that, for satisfiable sets of clauses, the algorithm SR produces cyclic

derivations whereas the algorithm for IFT-resolution produces infinite derivations. In this sub-

section, we adapt notions and results introduced in Section 4.4, Subsection 4.6.3 and Section 4.7

to TeDiLog. To prove completeness, we build a modelM of any satisfiable set of clauses Π∪Γ

on the basis of the infinite IFT-derivationD(Π,Γ) obtained by the IFT-resolution algorithm. The

main difficulty in the construction of the modelM are the eventuality literals. In particular, we

must ensure that the fulfillment of eventualities is not infinitely delayed in the PLTL-structures

obtained from D(Π,Γ) and that are intended to give rise to models of Π∪Γ. 4 With such a

purpose, we first show that the sequence of the so-called descendants of a selected eventuality

is finite.

Definition 5.4.10. We say that an eventuality literalN ′ is a direct descendant of other eventual-

ity literal N with respect to an IFT-derivationD, if sel ev seti = {N} and sel ev set∗i = {N ′}
in D. The sequence of descendants of N with respect to D, is the longest sequence N0, N1, . . .

such that N0 = N and for all j ≥ 0: Nj+1 is a direct descendant of Nj with respect to D. Any

literal Nj in that sequence is called a descendant of N if j ≥ 1.

An infinite sequence of descendants for the selected eventuality requires the existence of an

infinite number of different contexts, since the repetition of a context yields a refutation. An

infinite number of different contexts is only possible if the IFT-resolution procedure introduces

fresh propositional variables in the context. A priori, there could be two ways for generating new

propositional variables in the IFT-derivation. The first is the translation to clausal form applied

in the output to the context-dependent rules (function def). However, no new variables are

introduced in this way because classical distribution laws are enough to obtain the clausal form

(more details in Subsection 4.6.3 and Subsection 4.2.2). The second potential source of new

propositional variables is the explicit occurrence of a fresh variable in the consequent of each

context-dependent rule. However, we can ensure that the new variables explicitly introduced

by the context-dependent rules are never part of the context. Indeed, it is a consequence of the

following three facts:

1. The clauses defining a new variable are always-clauses, which are excluded from the

negated context.

2. The context-dependent rules are always applied just after the application of the rule (Unx)
to sets where the propositional variables introduced (as fresh) by previous applications of

4 Under the assumption that the strategy for selecting eventualities is fair in the sense that every eventuality that

from some moment onwards is available for being selected whenever an eventuality must be selected, is selected at

some time.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 150

context-dependent rules are also out of the context.

3. The marking strategy prioritizes the selection of the descendants of an eventuality literal

that has previously been selected.

Consequently, the number of possible different contexts is finite and the construction ofM is

based on the following auxiliary lemma that ensures that clauses containing eventuality literals

can be (finitely) satisfied inM.

Lemma 5.4.11. Let D(Π,Γ) be a derivation and let N be an eventuality literal such that N ∈
sel ev seti for some i ≥ 0. The sequence of descendants of N with respect to D(Π,Γ) is finite.

Proof. This is a particular case of Lemma 4.6.13 in Chapter 4.

Next, we construct a modelM of (Π,Γ) from the infinite IFT-derivationD(Π,Γ). First, we

introduce some auxiliary notions and results. In particular we need to extend (with literals) the

pairs in the derivationD(Π,Γ) in a coherent way that allows us to get models.

Definition 5.4.12. A local derivation is called a local refutation if it is a refutation. Given a

program Π and a goal Γ, the pair (Π,Γ) is locally inconsistent iff there exists a local refutation

for (Π,Γ). Otherwise it is locally consistent.

Definition 5.4.13. Let Π be a program and Γ a goal. A literal-based extension of (Π,Γ) is any

pair (Π̂, Γ̂) of sets that satisfies the following conditions:

(a) Π ⊆ Π̂ ⊆ (Π∪Lits(Π)) and Γ ⊆ Γ̂ ⊆ (Γ∪ Lits(Π∪Γ))

(b) For every literal N ∈ Π̂∪ Γ̂, if N is of the form A then A 6∈ Γ̂ and if N is of the form ¬A
then ¬A 6∈ Π̂.

Given a literal-based extension (Π̂, Γ̂) of (Π,Γ), we denote as PG(Π̂, Γ̂) the pair formed by the

program Π∪{A← > | A ∈ Π̂∩Lits(Π)} and the goal Γ∪{⊥ ← A | ¬A ∈ Γ̂∩Lits(Π∪Γ)}.

Definition 5.4.14. Let Π be a program, Γ a goal and (Π̂, Γ̂) a literal-based extension of (Π,Γ).

The pair (Π̂, Γ̂) is literal-closed iff (Π̂∪ Γ̂) ∩ Lits(C) 6= ∅ for every C ∈ Π∪Γ. Besides,

lclc(Π,Γ) denotes the collection of all the literal-based extensions (Π̂, Γ̂) of (Π,Γ) such that

(Π̂, Γ̂) is literal-closed and PG(Π̂, Γ̂) is locally consistent. We say that each (Π̂, Γ̂) ∈ lclc(Π,Γ)
is an lclc-extension of (Π,Γ).

Proposition 5.4.15. If (Π,Γ) is a locally consistent pair such that the set of atoms of the clauses

in Π∪Γ is exclusively formed by atoms in Prop and atoms of the form ◦A then, lclc(Π,Γ) 6= ∅.

Proof. Straightforward adaptation of Proposition 4.7.2.

Next we introduce the notion of standard lclc-extensions of a pair formed by a program and

a goal.

Definition 5.4.16. Let (Π,Γ) be a locally consistent IFT-closed pair where Π is a program and

Γ a goal. We say that (Π̂, Γ̂) ∈ lclc(Π,Γ) is standard iff it satisfies the following conditions:

(a) If ◦A ∈ Π̂, then there exists a clause �
b(◦A ∨ ◦H ← ◦B) ∈ Π

(b) If ¬◦A ∈ Γ̂, then there exists a clause �
b(◦H ← ◦A ∧ ◦B) ∈ (Π∪Γ)

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 151

(c) If A ∈ Π̂, then (Π̂ \ {A}, Γ̂) 6∈ lclc(Π,Γ).

(d) If ¬A ∈ Γ̂, then (Π̂, Γ̂ \ {¬A}) 6∈ lclc(Π,Γ).

The following lemma ensures the existence of at least one standard lclc-extension of any

locally consistent IFT-closed pair (Π,Γ).

Lemma 5.4.17. Let (Π,Γ) be a locally consistent IFT-closed pair. There exists at least one

standard pair in lclc(Π,Γ).

Proof. Straightforward adaptation of Lemma 4.7.6.

We build standard lclc-extensions of each IFT-closed pair (Π∗
i ,Γ

∗
i) in D(Π,Γ). Note that

each (Π∗
i ,Γ

∗
i) is the last pair of the sequence Si (see Section 5.4.1) for every i ≥ 0. We denote

by (Π̂∗
i , Γ̂

∗
i) any lclc-extension of (Π∗

i ,Γ
∗
i). The infinite sequences of (Π̂∗

i , Γ̂
∗
i) will represent

models of Π∪Γ. Such infinite sequences must be coherent with respect to the meaning of

temporal connectives. To this end, a successor relation is defined for the lclc-extensions of the

IFT-closed pairs (Π∗
i ,Γ

∗
i). This successor relation on

{lclc(Π∗
i−1,Γ

∗
i−1)× lclc(Π∗

i ,Γ
∗
i) | i ≥ 1}

is presented in Definition 5.4.18.

Definition 5.4.18. Let i ≥ 1. We say that a pair (Π̂∗
i , Γ̂

∗
i) is a successor of (Π̂∗

i−1, Γ̂
∗
i−1) if

for every ◦λ ∈ (Π̂∗
i−1 ∪ Γ̂∗

i−1) ∩ Lits(Π∗
i−1 ∪Γ∗

i−1) there is some S ∈ nxcloi(◦λ) such that

S ⊆ Π̂∗
i ∪ Γ̂∗

i , where nxcloi is defined as follows

1. nxcloi(◦p) = {{p}} and nxcloi(¬◦p) = {{¬p}}

2. nxcloi(◦◦A) = {{◦A}} and nxcloi(¬◦◦A) = {{¬◦A}}

3. nxcloi(◦(p1U p2)) = {{p2}, {p1, ◦(p1 U p2)}} if p1 U p2 6∈ sel ev seti

4. nxcloi(◦(p1U p2)) = {{p2}, {p1, ◦(aU p2)}} if p1 U p2 ∈ sel ev seti and

aU P2 ∈ sel ev set∗i

5. nxcloi(¬◦(p1 U p2)) = {{¬p2,¬p1}, {¬p2,¬◦(p1 U p2)}}.

The definition of nxcloi for each of the remaining cases –i.e. ◦(¬p1 U p2), ¬◦(¬p1 U p2),

◦(LR p), ¬◦(LR p), ◦� p, ¬◦� p, ◦�p and ¬◦�p– follows straightforwardly from the cor-

responding equivalence.

If (Π̂∗
i , Γ̂

∗
i) is a successor of (Π̂∗

i−1, Γ̂
∗
i−1), we also say that (Π̂∗

i−1, Γ̂
∗
i−1) is a predecessor of

(Π̂∗
i , Γ̂

∗
i).

The set of successors of a given pair (Π̂∗
j , Γ̂

∗
j) is denoted by succ(Π̂∗

j , Γ̂
∗
j).

The existence of infinite paths of standard lclc-extensions is based on the existence of a

predecessor for each standard lclc-extension of an IFT-closed pair in the derivation which is a

standard lclc-extension of the previous IFT-closed set in the derivation.

Proposition 5.4.19. For every i ≥ 1 and every standard pair (Π̂∗
i , Γ̂

∗
i) ∈ lclc(Π∗

i ,Γ
∗
i), there

exists a standard pair (Π̂∗
i−1, Γ̂

∗
i−1) ∈ lclc(Π∗

i−1,Γ
∗
i−1) such that (Π̂∗

i , Γ̂
∗
i) ∈ succ(Π̂∗

i−1, Γ̂
∗
i−1).

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 152

Proof. Straightforward adaptation of Proposition 4.7.9.

Proposition 5.4.20. For every h ≥ 0 and every standard pair (Π̂∗
h, Γ̂

∗
h) ∈ lclc(Π∗

h,Γ
∗
h), there

exists a sequence (Π̂∗
0, Γ̂

∗
0), (Π̂

∗
1, Γ̂

∗
1), . . . , (Π̂

∗
h, Γ̂

∗
h) such that

(i) (Π̂∗
j , Γ̂

∗
j) ∈ lclc(Π∗

j ,Γ
∗
j) and (Π̂∗

j , Γ̂
∗
j) is standard for all j ∈ {0, . . . , h} and

(ii) (Π̂∗
k, Γ̂

∗
k) ∈ succ(Π̂∗

k−1, Γ̂
∗
k−1) for all k ∈ {1, . . . , h}.

Proof. By induction on h. For h = 0 it holds trivially. For h ≥ 1, by Proposition 5.4.19, there

exists a standard (Π̂∗
h−1, Γ̂

∗
h−1) ∈ lclc(Π∗

h−1,Γ
∗
h−1) such that (Π̂∗

h, Γ̂
∗
h) ∈ succ(Π̂∗

h−1, Γ̂
∗
h−1),

therefore, by induction hypothesis on (Π̂∗
h−1, Γ̂

∗
h−1), we can ensure the existence of the se-

quence (Π̂∗
0, Γ̂

∗
0), (Π̂

∗
1, Γ̂

∗
1), . . . , (Π̂

∗
h, Γ̂

∗
h).

Definition 5.4.21. We associate to D(Π,Γ) the set GD(Π,Γ) that is formed by all the infinite

sequences of the form (Π̂∗
0, Γ̂

∗
0), (Π̂

∗
1, Γ̂

∗
1), . . . such that (Π̂∗

j , Γ̂
∗
j) ∈ lclc(Π∗

j ,Γ
∗
j) is standard for

all j ≥ 0 and (Π̂∗
k, Γ̂

∗
k) ∈ succ(Π̂∗

k−1, Γ̂
∗
k−1) for every k ≥ 1.

Proposition 5.4.22. If D(Π,Γ) is an infinite IFT-derivation, then the set GD(Π,Γ) is non-empty.

Proof. A direct consequence of Proposition 5.4.20.

Definition 5.4.23. A sequence σ ∈ GD(Π,Γ) is fulfilling for some (Π̂∗
j , Γ̂

∗
j) in σ and some literal

◦(p1 U p2) ∈ (Π̂∗
j , Γ̂

∗
j) iff there exists k > j such that p2 ∈ (Π̂∗

k, Γ̂
∗
k) and p1 ∈ (Π̂∗

h, Γ̂
∗
h) for all

h ∈ {j + 1, . . . , k− 1}.
The fulfilling notion is extended to literals ¬p1 U p2, ¬(LR p), � p and ¬�p in the obvious

manner. A sequence σ is fulfilling iff it is fulfilling for every eventuality literal that occurs in any

of its pairs.

The next three propositions are auxiliary results about the fulfillment of eventualities, which

are useful for proving Lemma 5.4.27. In the three propositions only the case of eventuality

literals of the form pU q has been considered. The proofs for the remaining cases –i.e. (¬p)U q,

¬(pR q), ¬((¬p)R q), � q and ¬�q– are very similar.

Proposition 5.4.24. Let σ be a sequence in GD(Π,Γ) and (Π̂∗
j , Γ̂

∗
j) a pair in σ such that j ≥ 0

and ◦(pj U p) ∈ Π̂∗
j and pj U p ∈ sel ev setj+1, then p ∈ Π̂∗

k for some k > j.

Proof. Let us suppose that p 6∈ Π̂∗
i for every i > j. Since σ is infinite and (Π̂∗

h, Γ̂
∗
h) is a succes-

sor of (Π̂∗
h−1, Γ̂

∗
h−1) for every h ≥ 1, there exists, by Definition 5.4.18, an infinite sequence of

descendants for pj U p contradicting the result obtained in Lemma 5.4.11.

Proposition 5.4.25. Let σ be a sequence in GD(Π,Γ) and (Π̂∗
j , Γ̂

∗
j) a pair in σ such that j ≥ 0,

◦(pj U p) ∈ Π̂∗
j and pj U p ∈ sel ev setj+1. If h ≥ j + 1 and p 6∈ Π̂∗

k for every k ∈ {j +

1, . . . , h}, then pj ∈ Π̂∗
k for every k ∈ {j + 1, . . . , h}.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 153

Proof. A straightforward adaptation of Proposition 4.7.18.

Proposition 5.4.26. Let σ be a sequence in GD(Π,Γ). If {p0 U p, ◦(p0 U p)} ∩ Lits(Π∪Γ) 6= ∅

and ◦(p0 U p) ∈ (Π̂∗
j , Γ̂

∗
j) for some j ≥ 0 and σ is not fulfilling for (Π̂∗

j , Γ̂
∗
j) and ◦(p0U p), then

p0 U p 6∈ sel ev setk and {p0, ◦(p0 U p)} ⊆ Π̂∗
k for every k ≥ j + 1.

Proof. Since σ belongs to GD(Π,Γ), by Definitions 5.4.18, 5.4.21 and 5.4.23, we can ensure that

p0 ∈ Π̂∗
k and p 6∈ Π̂∗

k for every k ≥ j + 1. Therefore, by using Propositions 5.4.24 and 5.4.25,

we can ensure that p0 U p 6∈ sel ev setk for every k ≥ j + 1, since otherwise σ would be ful-

filling for (Π̂∗
j , Γ̂

∗
j) and ◦(p0 U p). Consequently, by Definitions 5.4.18 and 5.4.21, we can also

ensure that {p0, ◦(p0 U p)} ⊆ Π̂∗
k for every k ≥ j + 1.

Next we prove that every σ ∈ GD(Π,Γ) is fulfilling. As a consequence, we know that there

exists at least one fulfilling sequence in GD(Π,Γ).

Lemma 5.4.27. For any infinite derivation D(Π,Γ), the set GD(Π,Γ) contains at least one ful-

filling sequence σ.

Proof. By Proposition 5.4.22 the set GD(Π,Γ) is non-empty. We show, by contradiction, that

every sequence in GD(Π,Γ) is fulfilling. For that, let us suppose that there is a sequence σ in

GD(Π,Γ) that is non-fulfilling, i. e., σ does not fulfill a literal ◦(p0 U p) ∈ Π̂∗
j for some j ≥ 0.

Then, by Proposition 5.4.26, p0 U p 6∈ sel ev setk for every k ≥ j+1 and {p0, ◦(p0 U p)} ⊆ Π̂∗
k

for every k ≥ j + 1. This contradicts the fairness of the selection operation.

Theorem 5.4.28. (Completeness) For any program Π and any goal Γ, if Π∪Γ is unsatisfiable

then there exists an IFT-refutation for (Π,Γ).

Proof. If there is no IFT-refutation for (Π,Γ), the algorithm in Figure 5.13 produces an infinite

derivation D(Π,Γ). By Lemma 5.4.27 there exists an infinite fulfilling sequence σ in GD(Π,Γ).

Now we define the PLTL-structureMσ = (σ, VMσ) where the states are the pairs (Π̂∗
k, Γ̂

∗
k) that

form σ, and VMσ((Π̂∗
k, Γ̂

∗
k)) = {p ∈ Prop | p ∈ Π̂∗

k} for every k ≥ 0. It is routine to see that

〈Mσ, (Π̂
∗
k, Γ̂

∗
k)〉 |= C for all C ∈ (Π∗

k,Γ
∗
k) and all k ≥ 0. Since any lclc-extension contains at

least one element λ that belongs to Lits(C), this is made by structural induction on the form of

λ and using Definition 5.4.18 and the fact that σ is fulfilling (by Lemma 5.4.27). In particular

Mσ is a model of Π∗
0 ∪Γ∗

0 and we can ensure that Π0 ∪Γ0 is satisfiable because all the rules

other than (Unx) preserve equisatisfiability. Hence, since Π0 ∪Γ0 = Π∪Γ, the set of clauses

Π∪Γ is satisfiable.

5.5 Related work

In Section 5.1, we have already surveyed the main features of the works that are more close to

our proposal. In this section we add more details.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 154

5.5.1 Templog: Abadi & Manna [2] and Baudinet [12]

The only temporal connectives allowed in the TLP language Templog introduced in [2, 12] are �,

� and ◦. An atom is of the form ◦iAwhereA is a classical atom. A bodyB is recursively defined

as a conjunctionB1 ∧ . . .∧Bn with n ≥ 0 and where each Bi is a classical atom A, a formula

of the form ◦B′ , i.e., a body preceded by the connective ◦, or a formula of the form �B′, i.e.,

a body preceded bay the connective �. Program clauses are of the form �
b((�

b′◦iA) ← B),

with b, b′ ∈ {0, 1}, and goal clauses are of the form ⊥ ← B. Templog does not deal with

eventualities because the connective � appears only in clause bodies. As can be appreciated

in the recursive definition of bodies, the nesting of connectives in Templog clauses is not as

restricted as in TeDiLog. Therefore, the structure of clauses is considerably more complex in

Templog than in TeDiLog. For example, we do not allow the connective � to prefix a conjunction

of atoms. Since this normal form of Templog clauses is not well suited for resolution, the notion

of canonical body is additionally considered in Templog. A canonical body is a body in which

occurrences of the connectives ∧ and � cannot appear in the scope of the connective ◦ and

every atom of the form ◦iA is in the scope of the least possible numbers of �. The equivalences

◦(ϕ ∧ ψ) ≡ ◦ϕ ∧ ◦ψ, ◦�ψ ≡ � ◦ψ and � (��ϕ ∧ �ψ) ≡ � (�ϕ ∧ ψ) are used to obtain

the canonical form of bodies. However, although the bodies of the premises are in canonical

form, the resolvent obtained by a resolution application may yield a clause whose body is not in

canonical form, hence a transformation to obtain the canonical form may be required after each

resolution application. The resolution procedure TSLD ([12]) consists of eight rules obtained

by considering all the possible cases in which temporal atoms of a program clause and a goal

clause can be resolved. For instance, we depict here one of the rules

� (◦jA← B0) ⊥ ← B1 ∧ � (B2 ∧ ◦
iA ∧B3) ∧ B4

⊥ ← B1 ∧ � (◦j−iB2 ∧B0 ∧ ◦
j−iB3) ∧B4

where j ≥ i

This resolution rule states that a program clause of the form � (◦jA ← B0) is resolved

with a goal clause of the form ⊥ ← B1 ∧ � (B2 ∧ ◦
iA ∧ B3) ∧ B4 and the resolvent ⊥ ←

B1∧� (◦j−iB2∧B0∧◦
j−iB3)∧B4 is obtained, whenever j ≥ i. Note thatA is a classical atom.

The Templog resolution procedure does not follow the state by state forward reasoning approach

and, consequently, it does not use any rule similar to our rule (Unx). As already mentioned in

Section 5.1, the satisfiability of a Templog program can be reduced to the satisfiability of a

(possibly infinite) classical logic program. This is easily made by considering, for instance,

that a clause of the form ◦iA ← �B can be expressed by means of the infinite set of clauses

{◦iA ← ◦jB | j ≥ 0} and, in the same way, a clause of the form (�◦iA) ← B can be

expressed by means of the infinite set of clauses {(◦j+iA) ← B | j ≥ 0}. This approach is

possible neither when the connectives � and U appear in the head of a clause nor when the

connectives � and R appear in the body. For instance, note that a clause of the form �A← B

should be replaced with a unique clause ◦kA ← B but the value of such k is unknown. As

a consequence, the minimal model characterization of Templog (see [12]) is a straightforward

adaptation of the classical case. Unlike Templog, TeDiLog does not have the classical Minimal

Model Property (MMP in short). The presence of the connectives � and U in clause heads

and � and R in clause bodies (see [101]) as well as the use of disjunction in clause heads (see

e.g. [89]) prevent from having such property. The compensation for the loss of the MMP is that

TeDiLog is much more expressive than the propositional fragment of Templog.

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 155

In order to study Templog’s expressiveness, Baudinet considers in [12, 14] the propositional

fragment TL1 where the connective � is not allowed at all and � is not allowed in clause heads.

Consequently, TL1 program clauses are of the form �
b(◦iA0 ← ◦

j1A1 ∧ . . . ∧ ◦
jnAn) where

b ∈ {0, 1} and n ≥ 0 and goal clauses are of the form ⊥ ← ◦j1A1 ∧ . . . ∧ ◦
jnAn where

n ≥ 0. Baudinet shows that the expressiveness of TL1 and propositional Templog is the same.

On one hand, Templog clauses of the form �◦ip ← B can be expressed without using the

connective � by introducing a fresh propositional variable. So that, the above program clause

can be expressed by means of the program clauses {q ← B,� (◦ip ← q),�(◦q ← q)} where

q is fresh. On the other hand, each element of the form � ◦ip in a body of a clause, can be

substituted by a fresh propositional symbol q and then the clauses that define the meaning of

q would be added: {� (q ← ◦ip),�(q ← ◦q)}. Moreover, Baudinet shows that, for instance,

it is possible to define, in TL1, a predicate that holds exactly when pU q holds, whereas the

connective U is not expressible in temporal logic with only ◦, � and � (see [80]). So that,

there are predicates that can be defined by using TL1 but are inexpressible in temporal logic.

Baudinet also shows that, for instance, the connective � is not expressible in Templog, in the

sense that is not possible to prove �p or to write a Templog program defining a predicate that

would hold exactly when �p holds. This last result proves that TeDiLog is more expressive than

(propositional) Templog, because in TeDiLog �p can be proved, as has been shown in Example

5.4.5 (Figure 5.15).

5.5.2 Chronolog: Wadge [127] and Orgun [97, 99]

In Chronolog ([127, 97, 99]) the only temporal operators are the unary connectives first and next.

The connective first serves to refer to the state s0. Therefore the connective � is not needed to

differentiate between always- and now-clauses. The TeDiLog now-clauses p ← ◦q, �p ← ◦q
and p ← �◦q ∧ r can be expressed in Chronolog as first p ← first next q, p ← first next q and

first p← next q∧first r, respectively. The TeDiLog always-clause � (p← ◦q) can be expressed

in Chronolog as p← next q. Note that in the Chronolog clauses above, there is a hidden tempo-

ral information not made explicit by means of temporal connectives. Regarding always-clauses

of the form � (�p ← ◦q) and � (s ← � r), the translations pointed out to obtain TL1 clauses

in the previous subsection must be considered for �p and � r. Consequently, intricate sets of

Chronolog clauses are needed for expressing interesting properties. In TeDiLog, the explicit use

of temporal connectives, together with the fact that such connectives are more expressive, facil-

itates readability and understanding of program and goal clauses. In [14], Baudinet shows –by

means of TL1– that Templog and Chronolog have the same expressive power. Hence Chronolog

can be considered as a syntactical variant of Templog. In fact, Templog and Chronolog also co-

incide in the metalogical properties of minimal model existence and fixpoint characterization.

The resolution procedure TiSLD that defines the operational semantics of Chronolog, applies

the resolution rule to rigid instances of program clauses and goal clauses, which are formed by

atoms of the form first nextn p with n ≥ 0. In [99], the inclusion of the temporal connectives

� and � is discussed. However, by taking into account the results presented in [101], and in

order to keep the metalogical properties of Chronolog, only the use of � in clause bodies and

� in clause heads is proposed. This extension would yield a language that would be (syntacti-

cally) very similar to Templog. However, the expressive power would remain unchanged. The

disjunctive extension presented in [68] combines Chronolog with the Disjunctive LP paradigm.

Therefore, only the temporal connectives first and next are used and the results obtained in the

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 156

Disjunctive Logic Programming paradigm are extended to the language presented in [68] in the

same way that the results obtained in classical Logic Programming are extended to Chronolog.

5.5.3 Temporal Prolog: Gabbay [55]

Gabbay’s Temporal Prolog allows eventuality literals in clause heads but not in clause bodies.

In particular, � is allowed in clause heads but � is not allowed in clause bodies. A program

clause is either a now-clause H ← B or an always clause � (H ← B). The head H is either a

classical atom A or a formula of the form ◦�C where C is a conjunction of now-clauses. The

body B is a classical atom A, a conjunction of bodies or a formula of the form ◦�B′ where B′

is a body. A goal clause is of the form ⊥ ← B where B is a body. Additionally, a connective

to express “sometime in the past” is also used. So that, the clausal form of Gabbay’s Temporal

Prolog is more complex than ours. In particular, the nesting of connectives is not so restricted

as in TeDiLog. Although eventuality literals are allowed in clause heads, the way of dealing

with them is very different from our method. For instance, given a goal of the form ⊥ ← ◦� p
the resolution procedure tries to find a program clause whose head is either p or ◦� p. If such

clause is found, a forward jump is produced. The resolution procedure of TeDiLog is based

on a state by state forward reasoning and eventualities are dealt with by means of the context-

dependent rules which do not allow to indefinitely postpone the fulfillment of such eventualities.

As mentioned above, unlike in TeDiLog, the connective � is not allowed in clause bodies, hence

TeDiLog is more expressive. For Gabbay’s Temporal Prolog the MMP does not hold because of

the use of eventualities in clauses heads. Additionally, the completeness proof of the resolution

procedure is not provided. The IFT-resolution procedure for TeDiLog is complete.

5.5.4 MetateM: Barringer et al. [9]

MetateM programs are sets of clauses in the Separated Normal Form (SNF), where clauses are

of the form ϕ → ψ such that ϕ is a conjunction of propositional literals and ψ is either of the

form �χ –where χ is a propositional literal– or a disjunction of propositional literals prefixed by

the connective ◦ (see also Subsection 4.8.5). MetateM is as expressive as TeDiLog and complete

for full PLTL. However, MetateM is based on the imperative future approach and is not based

on resolution. Regarding execution, at each step the MetateM execution procedure must build

the next state by choosing to make true one proposition from the ψ part of each clause for which

the ϕ part is true in the current state. In this way, a sequence of states is produced with the

aim of building a model for the program. Choices that lead to inconsistency must be repaired

by means of backtracking, which serves to choose another disjunct from the corresponding ψ

part. Additionally, the finite-model property is used to calculate an upper bound of forward

chaining steps and, in this way, to detect model construction processes where the fulfillment

of an eventuality is being indefinitely delayed. Such upper bound, in the worst case, is 25|Π|

where |Π| is the size of the initial program Π (see [9] and Subsection 6.2.4 in [44]). The IFT-

resolution procedure underlying TeDiLog does need neither backtracking nor the calculation of

upper bounds. As in TeDiLog, the execution mechanism of MetateM must make sure that the

satisfaction of an eventuality is not continually postponed. For a clause ϕ→ ◦� p, it is possible

to make true p or to make true � p in the next state. If there are two clauses of the form ϕ→ ◦� p
and ϕ′ → ◦�¬p such that ϕ and ϕ′ are satisfied in every state, it is necessary to satisfy p and

¬p in an interleaved way. Therefore, fairness is required when deciding which eventuality to

5. Logical Foundations for More Expressive Declarative Temporal Logic Programming Languages 157

satisfy. This is handled by keeping an ordered list of eventualities (see Subsection 6.2.7 in [44]).

5.5.5 Clausal Temporal Resolution for PLTL: Fisher [40]

The clausal temporal resolution method introduced in [40] (see also [45]) is complete for full

PLTL. Our clausal normal form is different from the Separated Normal Form used in that

method but the crucial difference of our method with respect to that method is that TeDiLog’s

resolution mechanism is powerful enough to deal with eventualities without requiring invariant

generation. See also Subsection 4.8.5 for more details.

6. CONCLUSIONS

This chapter reviews our central results and primary contributions, lists our publications and

relevant research activity related to the results that appear in this thesis and proposes areas for

future research.

6.1 Results and Contributions

In this section, we review the results and contributions that have been presented in previous

chapters.

We have introduced tableau, sequent and resolution methods that differ from previously ex-

isting systems in the way eventualities are dealt with. Traditional two-pass temporal tableaux

and the previously existing one-pass tableau method presented by Schwendimann in [117] need

to check the fulfillment of eventualities in cyclic sequences of states. By contrast, our one-pass

tableau method TTM includes a rule that prevents from indefinitely delaying the fulfillment of

eventualities. As a consequence, TTM generates classical-like tableaux. In the case of unsatisfi-

able sets of formulas, closed branches whose last nodes contain a formula and its negation are

obtained in TTM. Regarding satisfiable sets of formulas, when an open cyclic branch is marked

as expanded (i.e, sufficiently enlarged) in TTM, that branch yields a model. It is worth remark-

ing that given an unsatisfiable set of formulas, the tableau method in [117] may yield –unlike in

classical tableaux– cyclic and non-fulfilling (closed) branches whose last nodes do not contain a

formula and its negation. In order to detect that a cyclic branch is non-fulfilling (i.e. closed) and

that, consequently, it cannot yield a model, an additional handling of information is required

in [117] because accessible branches must be checked to rule out the existence of a fulfilling

cycle that may involve more than one branch. In the case of satisfiable sets of formulas, a cyclic

(open) branch –that cannot be enlarged– may not yield a model by itself in the Schwendimann’s

tableau system because the fulfillment of eventualities may depend on more than one cyclic

branch. The systematic tableau algorithm that we provide gives rise to a decision procedure for

PLTL. On the basis of this new temporal deductive approach, we have defined two cut-free and,

in particular, invariant-free finitary sequent calculi TTC and GTC that are also weakening- and

contraction-free. These tableau and sequent systems allow us to prove that the classical duality

between tableaux and sequents holds also for temporal logic.

By adapting the idea behind the dual tableau and sequent systems to the resolution frame-

work, we have presented a new method for temporal resolution that is sound and complete

for PLTL and does not require invariant generation. This feature is a crucial difference of our

method with respect to the clausal resolution method introduced in [40] (see also [45]) which

needs to generate invariant formulas for solving eventualities. We have provided the conversion

of any formula to clausal form, a resolution system called TRS that extends classical resolution,

and an easily implementable algorithm that decides the satisfiability of any set of clauses. More-

over, together with its yes/no answer, the algorithm provides an (un/)satisfiability proof. That

6. Conclusions 160

is, either a systematic refutation or a canonical model of the set of clauses that has been given as

input. As in the classical case, models are more easily generated from cyclic tableau branches

than from cyclic resolution derivations.

On the basis of the invariant-free resolution method TRS, we have defined the propositional

temporal logic programming language TeDiLog with the aim of providing a single framework

in which dynamic systems can be specified, developed, validated and verified by means of

executable specifications. The language TeDiLog has a purely declarative nature and mathe-

matically defined semantics. This language is strictly more expressive than the propositional

fragments of the main declarative TLP languages in the literature ([2, 12, 127, 99, 55, 68]).

TeDiLog’s resolution mechanism is powerful enough to deal with eventualities and dispenses

with invariant generation. The most significant imperative TLP language MetateM ([9]) is as

expressive as TeDiLog. However, MetateM is a very different approach that is not based on res-

olution and uses an upper bound to detect unsuccessful model constructions and backtracking.

TeDiLog requires neither upper bounds nor backtracking. We see TeDiLog as the propositional

kernel of a new generation of TLP languages based on the invariant-free temporal resolution

method TRS. In this sense we hope that TeDiLog could influence the design of future TLP lan-

guages in order to incorporate more expressive temporal features and new resolution procedures

for temporal reasoning.

To sum up, we have contributed new ideas to the proof-theory of PLTL. In particular, we

believe that automated reasoning in temporal logic can take benefit from the systems presented

in this dissertation.

6.2 Related Publications, Presentations and Research Activity

Below we list the publications, presentations and relevant research activity we carried out in

relation to the results provided in this dissertation.

Journal Publications

• Dual Systems of Tableaux and Sequents for PLTL

J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas

Journal of Logic and Algebraic Programming, 78(8):701–722, 2009.

DOI 10.1016/j.jlap.2009.05.001

• Invariant-Free Clausal Temporal Resolution

J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas

Journal of Automated Reasoning. To appear.

DOI 10.1007/s10817-011-9241-2

Published online: 2 December 2011

Conference Proceedings

• A Cut-Free and Invariant-Free Sequent Calculus for PLTL

J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas

J. Duparc, T. A. Henzinger (eds.) Proceedings of Computer Science Logic, 21st

6. Conclusions 161

International Workshop, CSL 2007, 16th Annual Conference of the EACSL, Lau-

sanne, Switzerland, 11-15 September 2007, volume 4646 of Lecture Notes in Com-

puter Science, pages 481–495. Springer, 2007.

DOI: 10.1007/978-3-540-74915-8

• Systematic Semantic Tableaux for PLTL

J. Gaintzarain, M. Hermo, P. Lucio and M. Navarro

E. Pimentel (ed.) Proceedings of the 7th Spanish Conference on Programming and

Languages (PROLE 2007), Zaragoza, Spain, 11-14 September 2007, Selected Pa-

pers, volume 206 of Electronic Notes in Theoretical Computer Science, pages 59-73,

2008

DOI 10.1016/j.entcs.2008.03.075

• A New Approach to Temporal Logic Programming

J. Gaintzarain and P. Lucio

P. Lucio, G. Moreno, R. Peña (eds.) Proceedings of the 9th Spanish Conference on

Programming and Languages (PROLE 2009), San Sebastián, Spain, 8-11 Septem-

ber 2009, pages 341–350, 2009.

http://www.sistedes.es/ficheros/actas-conferencias/PROLE/2009.pdf

ISBN: 978-84-692-4600-9

• An Implementation of the Context-Based Tableau

J. Gaintzarain, J. A. Hernandez and P. Lucio

P. Arenas, V. M. Gulı́as, P. Nogueira (eds.) Proceedings of the 11th Spanish Con-

ference on Programming and Languages (PROLE 2011), A Coruña, Spain, 5-7

September 2011, pages 169–184, 2011.

http://www.sistedes.es/ficheros/actas-conferencias/PROLE/2011.pdf

ISBN: 978-84-9749-487-8

Contributed Talk

• Invariant-Free Clausal Temporal Resolution

J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas

Workshop on Modal Fixpoint Logics 2008 (WMFL 2008)

http://staff.science.uva.nl/ yde/mfl/

http://staff.science.uva.nl/ yde/mfl/contributed/gaintzarain.pdf

Institute for Logic, Language and Computation, University of Amsterdam.

Amsterdam, The Netherlands, 25–27 March 2008

Research Seminars

• Invariant-Free Clausal Temporal Resolution

J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro and F. Orejas

http://www2.wmin.ac.uk/bolotoa/HSCS SEMINARS/seminars.html

Department of Computer Science and Software Engineering, School of Electronics

and Computer Science, University of Westminster.

6. Conclusions 162

London, United Kingdom, 27 November 2009

• Invariant-Free Deduction Methods for PLTL

P. Lucio and J. Gaintzarain

Department of Computer Science, University of Liverpool.

Liverpool, United Kingdom, 1 February 2011

Research Visit

• Research Area: Invariant-Free Deduction Systems for Temporal Logic

Research Visitor: Jose Gaintzarain

Supervisor: Alexander Bolotov

Distributed and Intelligent Systems Research Group

School of Electronics and Computer Science, University of Westminster.

London, United Kingdom, from 1 October 2009 to 31 January 2010

Journal Paper Under Review

• Logical Foundations for More Expressive Declarative Temporal Logic Pro-

gramming Languages

J. Gaintzarain and P. Lucio

Submitted (Under review)

6.3 Future Work

We believe that the work presented in this dissertation opens many interesting topics for future

research.

The extension of our invariant-free deductive approach to more expressive logics is a wide area

of work. In particular, we hope that the presented resolution method gives an opportunity to

develop the first resolution method for Full Computation Tree Logic CTL?. Although the first

complete tableau system for CTL? has been recently published in [109], a resolution procedure

for CTL? is not known yet. Additionally, a tableau method based on the invariant-free deductive

approach would still be valuable. The extension of TRS-resolution to the incomplete First-order

Linear-time Temporal Logic (FLTL), besides its own relevance, could produce a new class of

decidable fragments of FLTL along with their associated decision procedures based on TRS-

resolution. For instance, one may consider the clausal FLTL-language that is obtained from our

clausal language by allowing, as atoms, predicate symbols applied to first-order terms, instead

of propositional variables. A syntactical restriction of this clausal FLTL-language would be

decidable provided that the set of all possible different contexts –in any application of the rule

(U Set)– were ensured to be finite in the restricted language. Moreover, particular syntactical

restrictions could allow to specialize the general TRS-procedure in order to gain efficiency (as

it is done in [35, 36]). The TRS-resolution method could also be applied to other extensions of

PLTL like spatial, dynamic, etc.

The development of practical automated reasoning tools based on the TTM tableau method

and the TRS resolution system constitutes a broad area of present and future work. At the

6. Conclusions 163

moment, preliminary prototypes for the TTM tableau method and the TRS resolution method

are available online, respectively, in http://www.sc.ehu.es/jiwlucap/TTM.html and

http://www.sc.ehu.es/jiwlucap/TRS.html. A report about the implementation of the

prototype for the TTM tableau method is provided in [63]. On one hand, this prototype for TTM

is a direct implementation of the systematic tableau algorithm. On the other hand, the prototype

for the TRS resolution method is a direct implementation of the transformation CNF and the

algorithm SR. There is only a small amount of nondeterminism in these algorithms. Moreover,

the form of nondeterminism in these algorithms is sometimes called angelic nondeterminism,

in the sense that backtracking is not required to ensure termination. The crucial actions upon

which the implementation of the systematic tableau algorithm and the algorithm SR depends

are the fair selection of eventualities, the application of each rule, and the test for termination.

We plan to gradually improve these prototypes and to compare them with other available auto-

mated reasoning tools for PLTL. In particular with the temporal resolution prover TRP++ [76]

that implements the method introduced in [40]. We are also interested in comparison with the

implementations of the tableau-based methods presented in [79, 117] that are available in the

Logics Workbench Version 1.1 (http://www.lwb.unibe.ch).

The decision problem for PLTL is known to be PSPACE-complete (see e.g. [119]). The

two-pass tableau method presented in [128] works in EXPTIME, hence it is optimal. The worst

case complexity of our tableau and resolution methods (as well as for the tableau method and the

resolution method presented, respectively, in [117] and [40]) is 2EXPTIME, and consequently

suboptimal. However it has been shown by experimental analysis (see e.g. [69, 78]) that for

many randomly generated formulas of some classes, the average performance of a doubly ex-

ponential algorithm can be better than the average performance of an exponential one. The

reason is that, in the former the cases with high complexity rarely occur, while in the latter the

cases with exponential complexity occur very often. The above mentioned classes of formulas

include conjunctions of eventualities, nested eventualities, especial conjunctions of clauses in

Separated Normal Form, etc. The results obtained in the empirical analysis carried out in [77]

give hints about improvements to be considered for a practical implementation. Also the above

mentioned possibility of searching for tractable fragments (see [35, 36]) is open. The accurate

study of the complexity of the TTM tableau method and the TRS resolution method seems to be

also interesting.

We are also considering the possibility of combining TRS-resolution with the one-pass

tableau method TTM to produce a kind of hyper tableaux that would be interesting for prac-

tical implementation purposes.

The implementation of TeDiLog remains as future work. The adaptation of the prototype for

the TRS resolution method (http://www.sc.ehu.es/jiwlucap/TRS.html) to TeDiLog is

straightforward, but much experimentation is needed for optimization and improvement. The

worst case complexity for TeDiLog (regarding the generation of a refutation proof) is doubly

exponential.

It is well known (see [11, 12, 13, 14]) that, although logic programs are formulas of a given

logic, a logic programming language may be in some respects more expressive than its under-

lying logic. Intuitively, a logic formula characterizes just the collection of its models whereas

a logic program characterizes the collection of facts that can be inferred from it. The notion of

deduction intervenes and adds the ability to express properties that are not expressible in the un-

derlying logic. In this sense it would be interesting to compare the expressiveness of TeDiLog to

other formalisms such as PLTL, automata-theoretic formalisms, quantified PLTL (i.e. QPTL),

6. Conclusions 164

µTL, etc. We have already tackled the issue of relating different formalisms. Concretely, in

[59] we studied the translation of the propositional fragment of the logic programming lan-

guage Horn
⊃ into Boolean circuits, Boolean formulas and conjunctions of propositional Horn

clauses. Horn
⊃ is a logic programming language that extends usual Horn clauses by adding

intuitionistic implication in goals and clause bodies.

BIBLIOGRAPHY

[1] M. Abadi and Z. Manna. Nonclausal temporal deduction. In Proceedings of the Interna-

tional Conference on Logics of Programs, volume 193 of LNCS, pages 1–15. Springer,

1985.

[2] M. Abadi and Z. Manna. Temporal logic programming. In Proceedings of the Interna-

tional Symposium on Logic Programming, pages 4–16. IEEE Computer Society Press,

1987.

[3] M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic Computa-

tion, 8:277–295, 1989.

[4] M. Abadi and Z. Manna. Nonclausal deduction in first-order temporal logic. Journal of

the ACM, 37:279–317, 1990.

[5] P. Abate, R. Goré, and F. Widmann. One-pass tableaux for computation tree logic. In

Proceedings of the 14th International Conference on Logic for Programming, Artificial

Intelligence, and Reasoning (LPAR), volume 4790 of LNCS, pages 32–46. Springer, 2007.

[6] F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Strongly equivalent temporal logic pro-

grams. In Proceedings of the 11th European Conference on Logics in Artificial Intelli-

gence (JELIA), volume 5293 of LNAI, pages 8–20. Springer, 2008.

[7] F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Loop formulas for splitable temporal logic

programs. In Proceedings of the 11th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR), volume 6645 of LNCS, pages 80–92. Springer,

2011.

[8] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Proceedings of the

Temporal Logic in Specification, volume 398 of LNCS, pages 62–74. Springer, 1987.

[9] H. Barringer, M. Fisher, D. M. Gabbay, G. Gough, and R. Owens. MetateM: A frame-

work for programming in temporal logic. In Proceedings of the REX (Research and

Education in Concurrent Systems) Workshop on Stepwise Refinement of Distributed Sys-

tems: Models, Formalisms, Correctness, volume 430 of LNCS, pages 94–129. Springer,

1989.

[10] M. Baudinet. On the semantics of temporal logic programming. Technical Report CS-

TR-88-1203, Department of Computer Science, Stanford University, California, USA,

1988.

ftp://reports.stanford.edu/pub/cstr/reports/cs/tr/88/1203/CS-TR-88-1203.pdf.

Bibliography 166

[11] M. Baudinet. Logic Programming Semantics: Techniques and Applications. PhD thesis,

Department of Computer Science, Stanford University, California, USA, 1989.

[12] M. Baudinet. Temporal logic programming is complete and expressive. In Proceedings

of the 16th Annual ACM Symposium on Principles of Programming Languages (POPL),

pages 267–280. ACM Press, 1989.

[13] M. Baudinet. A simple proof of the completeness of temporal logic programming. In

Intensional Logics for Programming, pages 51–83. Oxford University Press, 1992.

[14] M. Baudinet. On the expressiveness of temporal logic programming. Information and

Computation, 117(2):157–180, 1995.

[15] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.

In Highly Dependable Software, volume 58 of Advances in Computers. Academic Press,

2003.

[16] A. Bolotov and A. Basukoski. A clausal resolution method for branching-time logic

ECTL+. Annals of Mathematics and Artificial Intelligence, 46(3):235–263, 2006.

[17] A. Bolotov and A. Basukoski. A clausal resolution method for extended computation tree

logic ECTL. Journal of Applied Logic, 4(2):141–167, 2006.

[18] A. Bolotov and M. Fisher. A clausal resolution method for CTL branching-time temporal

logic. Journal of Experimental & Theoretical Artificial Intelligence, 11(1):77–93, 1999.

[19] K. Brünnler. Deep sequent systems for modal logic. Archive for Mathematical Logic,

48(6):551–577, 2009.

[20] K. Brünnler and M. Lange. Cut-free sequent systems for temporal logic. The Journal of

Logic and Algebraic Programming, 76(2):216–225, 2008.

[21] C. Brzoska. Temporal logic programming and its relation to constraint logic program-

ming. In Proceedings of the International Symposium on Logic Programming (ISLP),

pages 661–677. MIT Press, 1991.

[22] C. Brzoska. Temporal logic programming with bounded universal modality goals. In

Proceedings of the 10th International Conference on Logic Programming (ICLP), pages

239–256. MIT Press, 1993.

[23] C. Brzoska. Temporal logic programming in dense time. In Proceedings of the Interna-

tional Logic Programming Symposium (ILPS), pages 303–317. MIT Press, 1995.

[24] C. Brzoska. Temporal logic programming with metric and past operators. In Proceedings

of the IJCAI’93 Workshop on Executable Modal and Temporal Logics, volume 897 of

LNAI, pages 21–39. Springer, 1995.

[25] C. Brzoska. Programming in metric temporal logic. Theoretical Computer Science,

202(1-2):55–125, 1998.

Bibliography 167

[26] C. Brzoska and K. Schäfer. Temporal logic programming applied to image sequence

evaluation. In Logic Programming: Formal Methods and Practical Applications, Stud-

ies in Computer Science and Artificial Intelligence, pages 381–395. Elsevier Science

B.V./North-Holland, 1995.

[27] A. Cau, H. Zedan, N. Coleman, and B. C. Moszkowski. Using ITL and Tempura for

large-scale specification and simulation. In Proceedings of the 4th Euromicro Workshop

on Parallel and Distributed Processing (PDP), pages 493–500. IEEE Computer Society

Press, 1996.

[28] A. R. Cavalli. A method of automatic proof for the specification and verification of

protocols. Computer Communication Review, 14(2):100–106, 1984.

[29] A. R. Cavalli and L. Fariñas del Cerro. A decision method for linear temporal logic.

In Proceedings of the 7th International Conference on Automated Deduction (CADE),

volume 170 of LNCS, pages 113–127. Springer, 1984.

[30] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Transactions on Programming

Languages and Systems, 8(2):244–263, 1986.

[31] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 2001.

[32] A. Degtyarev, M. Fisher, and B. Konev. A simplified clausal resolution procedure for

propositional linear-time temporal logic. In Proceedings of the International Conference

on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX),

volume 2381 of LNCS, pages 85–99. Springer, 2002.

[33] C. Dixon. Search strategies for resolution in temporal logics. In Proceedings of the

13th International Conference on Automated Deduction (CADE), volume 1104 of LNCS,

pages 673–687. Springer, 1996.

[34] C. Dixon and M. Fisher. The set of support strategy in temporal resolution. In Pro-

ceedings of the 5th International Workshop on Temporal Representation and Reasoning

(TIME), pages 113–120. IEEE Computer Society Press, 1998.

[35] C. Dixon, M. Fisher, and B. Konev. Is there a future for deductive temporal verification?

In Proceedings of the 13th International Symposium on Temporal Representation and

Reasoning (TIME), pages 11–18. IEEE Computer Society Press, 2006.

[36] C. Dixon, M. Fisher, and M. Reynolds. Execution and proof in a Horn-clause temporal

logic. In Advances in Temporal Logic, pages 413–433. Kluwer Academic Publishers,

2000.

[37] Z. Duan, X. Yang, and M. Koutny. Semantics of framed temporal logic programs. In

Proceedings of the 21st International Conference on Logic Programming (ICLP), volume

3668 of LNCS, pages 356–370. Springer, 2005.

[38] Z. Duan, X. Yang, and M. Koutny. Framed temporal logic programming. Science of

Computer Programming, 70(1):31–61, 2008.

Bibliography 168

[39] E. Eder. Relative complexities of first order calculi. Artificial intelligence. Vieweg, 1992.

[40] M. Fisher. A resolution method for temporal logic. In Proceedings of the 12th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), pages 99–104. Morgan Kauf-

mann, 1991.

[41] M. Fisher. A normal form for first-order temporal formulae. In Proceedings of the 11th

International Conference on Automated Deduction (CADE), volume 607 of LNCS, pages

370–384. Springer, 1992.

[42] M. Fisher. Concurrent MetateM – A language for modeling reactive systems. In Pro-

ceedings of the Conference on Parallel Architectures and Languages, Europe (PARLE),

volume 694 of LNCS, pages 185–196. Springer, 1993.

[43] M. Fisher. Implementing BDI-like systems by direct execution. In Proceedings of the

15th International Joint Conference on Artificial Intelligence (IJCAI), volume 1, pages

316–321. Morgan Kaufmann, 1997.

[44] M. Fisher. An Introduction to Practical Formal Methods Using Temporal Logic. John

Wiley & Sons, Ltd, 2011.

[45] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transactions on

Computational Logic, 2(1):12–56, 2001.

[46] M. Fisher, D. Gabbay, and L. Vila, editors. Handbook of Temporal Reasoning in Artificial

Intelligence, volume 1 of Foundations of Artificial Intelligence. Elsevier Press, 2005.

[47] M. Fisher and C. Ghidini. Executable specifications of resource-bounded agents. Au-

tonomous Agents and Multi-Agent Systems, 21(3):368–396, 2010.

[48] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing

Company, 1983.

[49] T. W. Frühwirth. Annotated constraint logic programming applied to temporal reason-

ing. In Proceedings of the 6th International Symposium on Programming Language Im-

plementation and Logic Programming (PLILP), volume 844 of LNCS, pages 230–243,

1994.

[50] T. W. Frühwirth. Temporal logic and annotated constraint logic programming. In Pro-

ceedings of the IJCAI’93 Workshop on Executable Modal and Temporal Logics, volume

897 of LNAI, pages 58–68. Springer, 1995.

[51] T. W. Frühwirth. Temporal annotated constraint logic programming. Journal of Symbolic

Computation, 22(5/6):555–583, 1996.

[52] M. Fujita, S. Kono, H. Tanaka, and T. Moto-Oka. Tokio: Logic programming language

based on temporal logic and its compilation to Prolog. In Proceedings of the 3rd Interna-

tional Conference on Logic Programming (ICLP), volume 225 of LNCS, pages 695–709,

1986.

Bibliography 169

[53] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Pro-

ceedings of the 7th Annual ACM Symposium on Principles of Programming Languages

(POPL), pages 163–173. ACM Press, 1980.

[54] D. M. Gabbay. The declarative past and imperative future: Executable temporal logic for

interactive systems. In Proceedings of the Colloquium on Temporal Logic in Specifica-

tion, volume 398 of LNCS, pages 409–448, 1987.

[55] D. M. Gabbay. Modal and temporal logic programming. In Temporal Logics And Their

Application, pages 197–237. Academic Press, 1987.

[56] D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal logic (vol. 1): mathematical

foundations and computational aspects. Oxford University Press, 1994.

[57] D. M. Gabbay, M. A. Reynolds, and M. Finger. Temporal logic (vol. 2): mathematical

foundations and computational aspects. Oxford University Press, 2000.

[58] J. Gaintzarain, M. Hermo, P. Lucio, and M. Navarro. Systematic semantic tableaux for

PLTL. In Proceedings of the 7th Spanish Conference on Programming and Languages

(PROLE), Selected Papers, volume 206 of Electronic Notes in Theoretical Computer

Science, pages 59–73, 2008.

[59] J. Gaintzarain, M. Hermo, P. Lucio, and M. Navarro. Translating propositional ex-

tended conjunctions of Horn clauses into Boolean circuits. Theoretical Computer Sci-

ence, 411(16-18):1723–1733, 2010.

[60] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. A cut-free and invariant-

free sequent calculus for PLTL. In Proceedings of the Computer Science Logic, 21st

International Workshop, CSL 2007, 16th Annual Conference of the EACSL, volume 4646

of LNCS, pages 481–495. Springer, 2007.

[61] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Dual systems of tableaux

and sequents for PLTL. The Journal of Logic and Algebraic Programming, 78(8):701–

722, 2009.

[62] J. Gaintzarain, M. Hermo, P. Lucio, M. Navarro, and F. Orejas. Invariant-free

clausal temporal resolution. Journal of Automated Reasoning, 2011. To appear. DOI

10.1007/s10817-011-9241-2. Available online.

[63] J. Gaintzarain, J. A. Hernandez, and P. Lucio. An implementation of the context-based

tableau. In Proceedings of the 11th Spanish Conference on Programming and Languages

(PROLE), pages 169–184, 2011.

http://www.sistedes.es/Actas/2011 coruna/PROLE/PROLE/S6/17 article.pdf.

[64] J. Gaintzarain and P. Lucio. A new approach to temporal logic programming. In Pro-

ceedings of the 9th Spanish Conference on Programming and Languages (PROLE), pages

341–350, 2009. http://www.sistedes.es/PROLE/actas Prole2009.pdf.

[65] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift,

39:176–210 and 405–431, 1934. English translation in [66], pages 68–131.

Bibliography 170

[66] G. Gentzen. The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foun-

dations of Mathematics. North-Holland, 1969. Edited by M. E. Szabo.

[67] M. Gergatsoulis. Temporal and modal logic programming languages. In Encyclopedia of

Microcomputers, volume 27, pages 393–408. CRC Press, 2001.

[68] M. Gergatsoulis, P. Rondogiannis, and T. Panayiotopoulos. Temporal disjunctive logic

programming. New Generation Computing, 19(1):87–102, 2000.

[69] V. Goranko, A. Kyrilov, and D. Shkatov. Tableau tool for testing satisfiability in LTL: Im-

plementation and experimental analysis. In Proceedings of the 6th Workshop on Methods

for Modalities, volume 262 of Electronic Notes in Theoretical Computer Science, pages

113–125, 2010.

[70] V. Goranko and D. Shkatov. Tableau-based decision procedure for full coalitional multia-

gent temporal-epistemic logic of linear time. In Proceedings of the 8th International Con-

ference on Autonomous Agents and Multiagent Systems (AAMAS) - Volume 2, pages 969–

976. International Foundation for Autonomous Agents and Multiagent Systems, 2009.

[71] R. Goré. Tableau methods for modal and temporal logics. In Handbook of Tableau

Methods, pages 297–396. Kluwer Academic Publishers, 1999.

[72] R. Goré and F. Widmann. An optimal on-the-fly tableau-based decision procedure for

PDL-satisfiability. In Proceedings of the 22nd International Conference on Automated

Deduction (CADE), volume 5663 of LNCS, pages 437–452. Springer, 2009.

[73] G. D. Gough. Decision procedures for temporal logic. Master’s thesis, Technical report

UMCS-89-10-1, Department of Computer Science, University of Manchester, UK, 1984.

[74] T. Hrycej. Temporal prolog. In Proceedings of the 8th European Conference on Artificial

Intelligence (ECAI), pages 296–301. Pitmann Publishing, 1988.

[75] T. Hrycej. A temporal extension of Prolog. Journal of Logic Programming, 15(1 &

2):113–145, 1993.

[76] U. Hustadt and B. Konev. Trp++2.0: A temporal resolution prover. In Proceedings of the

19th International Conference on Automated Deduction (CADE), volume 2741 of LNCS,

pages 274–278. Springer, 2003.

[77] U. Hustadt and R. A. Schmidt. An empirical analysis of modal theorem provers. Journal

of Applied Non-Classical Logics, 9(4):479–522, 1999.

[78] U. Hustadt and R. A. Schmidt. Scientific benchmarking with temporal logic decision pro-

cedures. In Proceedings of the 8th International Conference on Principles and Knowl-

edge Representation and Reasoning (KR), pages 533–544. Morgan Kaufmann, 2002.

[79] G. Janssen. Logics for Digital Circuit Verification: Theory, Algorithms, and Applications.

PhD thesis, Eindhoven University of Technology, The Netherlands, 1999.

[80] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Department of

Computer Science, University of California at Los Angeles, California, USA, 1968.

Bibliography 171

[81] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full proposi-

tional temporal logic. In Proceedings of the 5th International Conference on Computer

Aided Verification (CAV), volume 697 of LNCS, pages 97–109, 1993.

[82] S. Kono. A combination of clausal and non clausal temporal logic programs. In Proceed-

ings of the IJCAI’93 Workshop on Executable Modal and Temporal Logics, volume 897

of LNAI, pages 40–57. Springer, 1995.

[83] S. Kono, T. Aoyagi, M. Fujita, and H. Tanaka. Implementation of temporal logic pro-

gramming language Tokio. In Proceedings of the 4th Conference on Logic Programming

(LP), volume 221 of LNCS, pages 138–147, 1985.

[84] R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising tableaux. Stu-

dia Logica, 76(1):91–134, 2004.

[85] S. Konur. A survey on temporal logics. CoRR, http://arxiv.org/abs/1005.3199, 2010.

[86] F. Kröger and S. Merz. Temporal Logic and State Systems. Springer, 2008.

[87] O. Lichtenstein and A. Pnueli. Propositional temporal logics: Decidability and complete-

ness. Logic Journal of the IGPL (Interest Group in Pure and Applied Logic), 8(1):55–85,

2000.

[88] J. W. Lloyd. Foundations of Logic Programming, 1st Edition. Springer, 1984.

[89] J. Lobo, J. Minker, and A. Rajasekar. Foundations of disjunctive logic programming.

MIT Press, 1992.

[90] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems –

Specification. Springer, 1992.

[91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems –

Safety. Springer, 1995.

[92] S. Merz. Decidability and incompleteness results for first-order temporal logics of linear

time. Journal of Applied Non-Classical Logics, 2(2):139–156, 1992.

[93] S. Merz. Efficiently executable temporal logic programs. In Proceedings of the IJCAI’93

Workshop on Executable Modal and Temporal Logics, volume 897 of LNAI, pages 69–85.

Springer, 1995.

[94] B. C. Moszkowski. Executing temporal logic programs. Cambridge University Press,

1986.

[95] B. C. Moszkowski. Compositional reasoning using interval temporal logic and Tempura.

In Compositionality: The Significant Difference. International Symposium, COMPOS’97.

Revised Lectures, volume 1536 of LNCS, pages 439–464. Springer, 1998.

[96] H. Nakamura, M. Nakai, S. Kono, M. Fujita, and H. Tanaka. Logic design assistence

using temporal logic based language Tokio. In Proceedings of the 8th Conference on

Logic Programming (LP), volume 485 of LNAI, pages 174–183. Springer, 1989.

Bibliography 172

[97] M. A. Orgun. Intensional Logic Programming. PhD thesis, Department of Computer

Science, University of Victoria, British Columbia, Canada, 1991.

[98] M. A. Orgun. Temporal and modal logic programming: An annotated bibliography.

SIGART Bulletin, 5(3):52–59, 1994.

[99] M. A. Orgun. Foundations of linear-time logic programming. International Journal of

Computer Mathematics, 58(3-4):199–219, 1995.

[100] M. A. Orgun and W. Ma. An overview of temporal and modal logic programming. In

Proceedings of the 1st International Conference on Temporal Logic (ICTL), volume 827

of LNCS, pages 445–479. Springer, 1994.

[101] M. A. Orgun and W. W. Wadge. Towards a unified theory of intensional logic program-

ming. Journal of Logic Programming, 13(4):413–440, 1992.

[102] M. A. Orgun and W. W. Wadge. Extending temporal logic programming with choice

predicates non-determinism. Journal of Logic and Computation, 4(6):877–903, 1994.

[103] M. A. Orgun, W. W. Wadge, and W. Du. Chronolog (Z): Linear-time logic program-

ming. In Proceedings of the 5th International Conference on Computing and Information

(ICCI), pages 545–549. IEEE Computer Society Press, 1993.

[104] B. Paech. Gentzen-systems for propositional temporal logics. In Proceedings of the

2nd Workshop on Computer Science Logic (CSL), volume 385 of LNCS, pages 240–253,

1988.

[105] R. Pliuskevicius. Investigation of finitary calculus for a discrete linear time logic by

means of infinitary calculus. In Baltic Computer Science, selected papers, volume 502 of

LNCS, pages 504–528, 1991.

[106] R. Pliuskevicius. Logical foundation for logic programming based on first order linear

temporal logic. In Proceedings of the First (1990) and Second (1991) Russian Conference

on Logic Programming (RCLP), volume 592 of LNCS, pages 391–406, 1992.

[107] A. Raffaetà and T. W. Frühwirth. Two semantics for temporal annotated constraint logic

programming. In Proceedings of the 12th International Symposium on Languages for

Intensional Programming (ISLIP), pages 126–140. World Scientific Press, 1999.

[108] H. Reichgelt. Semantics for reified temporal logic. In Advances in Artificial Intelligence,

pages 49–61. John Wiley & Sons, Ltd., 1987.

[109] M. Reynolds. A tableau for CTL?. In Proceedings of the 2nd World Congress on Formal

Methods (FM), volume 5850 of LNCS, pages 403–418. Springer, 2009.

[110] M. Reynolds and C. Dixon. Theorem-proving for discrete temporal logic. In Handbook

of Temporal Reasoning in Artificial Intelligence, volume 1 of Foundations of Artificial

Intelligence, pages 279–314. Elsevier Press, 2005.

[111] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of

the ACM, 12:23–41, 1965.

Bibliography 173

[112] P. Rondogiannis, M. Gergatsoulis, and T. Panayiotopoulos. Cactus: A branching-time

logic programming language. In Proceedings of the 1st International Joint Conference

on Qualitative and Quantitative Practical Reasoning (ECSQARU-FAPR), volume 1244

of LNCS, pages 511–524. Springer, 1997.

[113] P. Rondogiannis, M. Gergatsoulis, and T. Panayiotopoulos. Branching-time logic pro-

gramming: The language Cactus and its applications. Computer Languages, 24(3):155–

178, 1998.

[114] T. Sakuragawa. Temporal Prolog. Technical report, Kyoto University, 1986.

http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/99379/1/0586-16.pdf.

[115] U. Schöning. Logic for Computer Scientists. Birkhäuser, 1989.

[116] K. Schutte. Schluweisen-kalkule der pradikatenlogik. Mathematische Annalen, 122:47–

65, 1950.

[117] S. Schwendimann. A new one-pass tableau calculus for PLTL. In Proceedings of the

International Conference on Automated Reasoning with Analytic Tableaux and Related

Methods (TABLEAUX), volume 1397 of LNCS, pages 277–292, 1998.

[118] Y. Shoham. Reified temporal logics: Semantical and ontological considerations. In Pro-

ceedings of the 7th European Conference on Artificial Intelligence (ECAI), pages 183–

190. North-Holland, 1986.

[119] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics.

Journal of the ACM, 32(3):733–749, 1985.

[120] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi au-

tomata with applications to temporal logic. Theoretical Computer Science, 49:217–237,

1987.

[121] A. Szalas. Temporal logic of programs: A standard approach. In Time and Logic. A

Computational Approach, pages 1–50. UCL Press Ltd., 1995.

[122] A. Szalas and L. Holenderski. Incompleteness of first-order temporal logic with until.

Theoretical Computer Science, 57:317–325, 1988.

[123] W. Tait. Normal derivability in classical logic. In The Syntax and Semantics of Infinitary

Languages, volume 72 of Lecture Notes in Mathematics, pages 204–236. Springer, 1968.

[124] C.-S. Tang. Toward a unified logical basis for programming languages. Technical Report

STAN-CS-81-865, Department of Computer Science, Stanford University, California,

USA, 1981.

ftp://db.stanford.edu/pub/cstr/reports/cs/tr/81/865/CS-TR-81-865.pdf.

[125] C.-S. Tang. Toward a unified logical basis for programming languages. In Proceedings of

the 9th World Computer Congress on Information Processing (IFIP–International Fed-

eration for Information Processing), pages 425–429. North-Holland/IFIP, 1983.

Bibliography 174

[126] G. Venkatesh. A decision method for temporal logic based on resolution. In Proceedings

of the 5th Conference on Foundations of Software Technology and Theoretical Computer

Science, volume 206 of LNCS, pages 272–289. Springer, 1985.

[127] W. W. Wadge. Tense logic programming: a respectable alternative. In Proceedings of the

International Symposium on Lucid and Intensional Programming, pages 26–32, 1988.

[128] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72–

99, 1983.

[129] X. Yang, Z. Duan, and Q. Ma. Axiomatic semantics of projection temporal logic pro-

grams. Mathematical Structures in Computer Science, 20(5):865–914, 2010.

