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Abstract
Spurious oscillations are one of the principal issues faced by microwave and RF circuit de-
signers. The rigorous detection of instabilities or the characterization of measured spurious
oscillations is still an ongoing challenge.

This project aims to create a new stability analysis CAD program that tackles this chal-
lenge. Multiple Input Multiple Output (MIMO) pole-zero identification analysis is introduced
on the program as a way to create new methods to automate the stability analysis process and
to help designers comprehend the obtained results and prevent incorrect interpretations. The
MIMO nature of the analysis contributes to eliminate possible controllability and observabil-
ity losses and helps differentiate mathematical and physical quasi-cancellations, products of
overmodeling.

The created program reads Single Input Single Output (SISO) or MIMO frequency response
data, and determines the corresponding continuous transfer functions with Vector Fitting. Once
the transfer function is calculated, the corresponding pole/zero diagram is mapped enabling the
designers to analyze the stability of an amplifier.

Three data processing methods are introduced, two of which consist of pole/zero elimina-
tions and the latter one on determining the critical nodes of an amplifier. The first pole/zero
elimination method is based on eliminating non resonant poles, whilst the second method elim-
inates the poles with small residue by assuming that their effect on the dynamics of a system
is small or non-existent. The critical node detection is also based on the residues; the node at
which the effect of a pole on the dynamics is highest is defined as the critical node.

In order to evaluate and check the efficiency of the created program, it is compared via
examples with another existing commercial stability analysis tool (STAN tool).

In this report, the newly created tool is proved to be as rigorous as STAN for detecting
instabilities. Additionally, it is determined that the MIMO analysis is a very profitable addition
to stability analysis, since it helps to eliminate possible problems of loss of controllability,
observability and overmodeling.
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Chapter 1

Introduction and Objectives
Radio Frequency (RF) is the field of high frequency systems and circuits (3 KHz -300 GHz,
see Figure 1.1). Science and technology improvements, as well as a high industrial interest,
have given way to many high-speed applications, such as, wireless communication, navigation,
radar, and scientific equipment in this field. This project focuses mainly on the analysis of
microwave circuits, more concretely on the stability analysis of power amplifiers for satellite
applications and RF instrumentation.

Figure 1.1: Electromagnetic Spectrum

Radio Frequency amplifiers are a key component in Communications Systems as illustrated
in Figure 1.2, since most Communication Systems include Power Amplifiers (PA) as transmit-
ters and Low Noise Amplifiers (LNA) as receivers.

Figure 1.2: Basic Communication System Block Diagrams
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CHAPTER 1. INTRODUCTION AND OBJECTIVES

Spurious oscillations are one of the principal issues faced by microwave circuit designers,
especially for those who focus on RF amplifiers. These oscillations are often encountered
on circuits containing multiple active devices, since these circuits are more prone to oscillate
due to the presence of many feedback loops that reach the oscillation condition at a certain
spurious frequency. Detection of spurious oscillations through simulation is essential to provide
appropriate solutions to eliminate them with a minimum impact over the circuit performances.

Computer Aided Design (CAD) for detection of instabilities is still a challenge for RF
designers. Nevertheless, a Stability Analysis Tool that tackles this challenge named the STAN
tool [1] has recently been proposed. The mentioned commercial and user friendly STAN tool
is a pole-zero stability analysis technique for linear and non-linear microwave circuits, based
on obtaining a closed-loop Single Input Single Output (SISO) transfer function of the circuit
linearized about a given steady state.

This project focuses on creating a CAD program on Matlab, to analyze the stability of DC
solutions of RF amplifiers by obtaining a closed-loop SISO transfer function, like the men-
tioned STAN tool. But goes beyond and expands the mentioned pole-zero identification tech-
nique, by including Multiple Input Multiple Output (MIMO) analysis. The MIMO analysis
is available due to the Vector Fitting algorithm [2][3][4] that formulates multiple continuous
transfer function, with the same denominator, from a given set of frequency responses. MIMO
analysis gives way to creating new methods to further characterize the stability of RF and mi-
crowave amplifiers and helps prevent problems of loss of controllability and observability and
overmodeling.

Objectives

The principal objectives pursued by this project are the following:

• Create a program on Matlab for SISO and MIMO frequency domain response analysis
using Vector Fitting.

• Create and incorporate additional pole/zero elimination methods for further automation
of the stability analysis.

• Create and incorporate a method to determine critical nodes of an amplifier for subse-
quent stabilization approaches.

• Evaluate Vector Fitting as a methodology for the fitting of frequency domain responses
with rational function approximations.

• Evaluate the benefits of MIMO identification for stability analysis of microwave ampli-
fiers.

• Compare the created program with existing stability analysis tools.
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CHAPTER 1. INTRODUCTION AND OBJECTIVES

Structure of the Report

Based on these objectives, the paper is structured as follows:

• Chapters 2, 3 and 4: The techniques and procedures used to perform the project are
analyzed.

• Chapter 5: The results obtained with the designed Stability Analysis CAD tool for two
microwave amplifiers are presented and discussed.

• Chapter 6: The main areas covered throughout the project are summarized and brought
together.
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Chapter 2

Stability in Microwave and RF Circuits
The mandatory requirement when designing an electronic system is its stability because an
unstable system is generally considered useless. So, understanding the stability concept and
defining it, as it is done in this chapter, is essential to design any type of electronic systems that
contains active elements, linear, non-linear, variant or invariant in time.

Regarding microwave circuits and more concretely power amplifiers, carrying out a stability
analysis of the design is indispensable, given that a designer must ensure that an amplifier will
not oscillate under normal operating conditions. A common method to determine possible
instabilities is to calculate the stability factor created by Rollet from the Scattering Parameters,
as discussed on this chapter. However, this conventional method has several limitations, so,
other stability analysis techniques, such as the techniques discussed on this project, are sought.

2.1 Basic Concepts on Stability

There are many existing and not necessarily equivalent definitions for stability of Linear Time-
Invariant (LTI) systems, but the following three are the most employed [5]:

• A system is stable if the output for a bounded input is bounded. This Bounded Input
Bounded Output (BIBO) time domain stability definition is used mainly in matters of
signal processing and control theory.

• A system is stable if
∫∞
0
|g(t)| dt is finite or equivalently if the limx→∞ g(t) = 0 condi-

tion is met, g(t) being the impulse function defined on the time domain.

• A system is stable if all of the poles of the transfer function are on the left hand side
(LHS) of the s plane of the Laplace transform domain. This method and information
regarding poles and transfer functions is defined further in the chapter.

Thus, there is no need to calculate the complete temporal output of the system to determine
its stability information. By analyzing the roots of its characteristic equation, one can determine
whether the electronic system is stable or not. However, there are also other existing criteria
to determine the stability or instability of a system that do not depend on the characteristic
equation, such as [6]:

• Routh-Hurwitz criteria: This algebraic method provides information regarding the ab-
solute stability of a linear time-invariant system. The principal constraint is that the
coefficients of the characteristic equation must be constants. But, the method determines
the number of roots on the jω axis and on the right hand side (RHS) of the s plane.
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CHAPTER 2. STABILITY IN MICROWAVE AND RF CIRCUITS 2.1. BASIC CONCEPTS ON STABILITY

• This semi-graphic method provides information regarding the difference between the
number of poles and zeros of the closed loop transfer function that are on the RHS of the
s plane. This is achieved by observing the behavior of the Nyquist graph (see Figure 2.1)
of the transfer function.

Figure 2.1: Illustration of the Nyquist Trajectory

• Bode Diagram: The Bode diagram is a magnitude (dB) and phase (either radians or de-
grees) graph of the transfer function, with frequency ω on the abscissa axis. The stability
can be determined by monitoring the resonance and anti-resonance peaks of the transfer
function curves.

In view of possible coexistence of various stable solutions on non-linear systems, the dif-
ference between global and local stability is to be stated and illustrated with the intuitive image
of a ball on a hill [1]:

• The absolute stability is a boolean condition that specifies whether a solution is stable or
not (see Figure 2.2). Additionally, a ball at the bottom of an infinite valley represents a
globally stable solution, whilst a ball at the peak of a infinite hill illustrates a globally
unstable system.

Figure 2.2: Illustration of Absolute Stability. The image on the left represents a system with a single
stable solution. Whilst, the only solution of the system on the image on the right is unstable.
Illustration from [1]
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CHAPTER 2. STABILITY IN MICROWAVE AND RF CIRCUITS 2.2. STABILITY OF SYSTEMS

• Once the stability has been proven, determining the degree of stability of the solutions,
that is, determining the local stability, is often suggested. This requires analyzing the
effect that small perturbations such as vibrations and noise have on the solutions of the
system. That is, if a small perturbation dispels the systems from the solutions or if the per-
turbed system returns exponentially in time back to the initial solution (see Figure 2.3).

Figure 2.3: Illustration of Local Stability. A small perturbation will dispel the ball from the unstable
solution on the left, but not from the stable solution on the center. A larger perturbation is
required to dispel the ball from the set stable solution to another solution.
Illustration from [1]

As we see on Figure 2.3 a local stability does not imply a global stability, since a large
perturbation can force the system to abandon a stable solution and relocate on a new stable
solution nearby.

2.2 Stability of Systems

All systems, linear and nonlinear can be modeled mathematically by a state space representa-
tion that relates the outputs and inputs of the system through first-order differential equations
as shown in equation 2.1 [7]. This method can be employed to determine the solution of the
system equations and so, to analyze its stability.

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
(2.1)

Where x represents the state vector, u is the input vector or control vector and y is the output
vector.

Depending on whether a system is linear or non-linear and variant or invariant in time, the
input and state variable dependencies on equation 2.1 vary.
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CHAPTER 2. STABILITY IN MICROWAVE AND RF CIRCUITS 2.2. STABILITY OF SYSTEMS

2.2.1 Stability of Linear Systems

The equation for linear time invariable systems developed from previous equation 2.1 is the
following [8]:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.2)

The output of the system for no input (u(t) = 0) is the solution of the linear ẋ(t) = Ax(t)
equation and takes the form of:

x(t) = c1e
λ1tv1 + c2e

λ2tv2 + . . .+ cne
λntvn (2.3)

The vi and λi parameters on equation 2.3 are the eigenvalues and eigenvectors of the A matrix,
and the ci coefficients depend on the initial conditions of the system.

Computing the Laplace transforms and solving the system for Y (s), U(s) and null initial
conditions, the transfer function matrix [Hij] of a system can be defined:

Y (s) = [H(s)]U(s) =
[
C(sI − A)−1B + D

]
U(s) (2.4)

All elements on the transfer function matrix share the same denominator or characteristic func-
tion on equation 2.5; therefore, all the elements of the transfer function matrix provide the same
poles. And so, as it is discussed in the following Chapter, it is not necessary to analyze all the
elements on the transfer function matrix in order to determine the stability of a linear system.

Y (s) =
Nij(s)

D(s)
=

Nij(s)

det [sI − A]
(2.5)

As hinted on the previous paragraph, each element on transfer function matrix can be defined
as a ratio of two polynomials, function of the complex variable s = σ + jω:

H(s) =
N(s)

D(s)
=

b0s
m + b1s

m−1 + . . .+ bm−1s
1 + bm

a0sn + a1sn−1 + . . .+ an−1s1 + an
(2.6)

Moreover, for convenience, the mentioned polynomials are often factored, which leads to defin-
ing the gain of the transfer function and most importantly, its poles and zeros.

H(s) =
N(s)

D(s)
= K ′

(s− z1)(s− z2) . . . (s− zm−1)(s− zm)

(s− p1)(s− p2) . . . (s− pn−1)(s− pn)
(2.7)

The gain of the transfer function can be determined from previous equation 2.6 asK = bm/am.
On another note, the zi elements, that is, the roots of the N(s) polynomial (N(s) = 0), are
known as zeros of the transfer function. And most importantly for stability analysis, the poles
of a transfer function are defined as the roots of the D(s) polynomial (D(s) = 0), or pi.
Additionally, since all coefficients of N(s) and D(s) are real, the poles and zeros of a transfer
function are either real or come in complex conjugate pairs.
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CHAPTER 2. STABILITY IN MICROWAVE AND RF CIRCUITS 2.2. STABILITY OF SYSTEMS

For further analysis, the poles and zeros of a system are often shown graphically on an s
plane pole/zero plot, which is used with extent in system control and dynamic analysis.

The effect of the pole locations on the systems response can be summarized in the following
Figure 2.4 and list [9]:

• The poles on the LHS or equivalently with negative real part are stable and generate
components that decay in time.

• The poles on the RHS or equivalently with positive real part are unstable and generate
components that grow in time.

• Imaginary poles, that is, poles with null real part, create purely oscillatory elements that
do not grow or decay.

• Poles in the origin generate constant components.

• The oscillatory frequency and decay rate are determined by the distance of the pole to
the origin.

Figure 2.4: Graphic representation of a systems response depending on pole location.
Illustration from [9]

2.2.2 Stability of Non-Linear Systems

A non-linear system can be represented on the state space model as a system of differential non
lineal equations [8]:

ẋ = f(x, t) (2.8)

The equation above has many possible solutions, including the equilibrium point solutions, pe-
riodic solutions, quasi-periodic solutions and chaotic solutions. Anyhow, this project discusses
solely the equilibrium point solutions, given that the project focuses on analyzing the stability
of DC solutions.
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CHAPTER 2. STABILITY IN MICROWAVE AND RF CIRCUITS2.3. STABILITY OF SMALL SIGNAL RF AMPLIFIERS

An equilibrium point is defined as a fixed point that cancels the f(t) function. For example,
the DC solutions (xDC) of an electronic circuit are equilibrium solutions.

f(xDC) = 0 (2.9)

In order to analyze the variations on a system caused by small perturbations, we define ξ(t), a
small perturbation around the DC solution and we determine the new state space model:

x = xDC + ξ(t)

ẋDC + ξ̇(t) = f(xDC + ξ(t))
(2.10)

Since the introduced perturbation is small, a Taylor expansion of f(xDC+ ξ(t)) can be defined.
So, the previous equation can be rearranged by replacing f(xDC + ξ(t)) with the first two
significant terms of the calculated Taylor expansion.

ẋDC + ξ̇(t) = f(xDC) + Jf(xDC)ξ(t)) (2.11)

The Jf(xDC) term is the jacobian matrix of the system evaluated on the DC solution (xDC):

Jf(xDC) =
∂f(x)

∂x

∣∣∣∣
xDC

=


∂f1
∂x1

∣∣∣∣
xDC

· · · ∂f1
∂xn

∣∣∣∣
xDC... . . . ...

∂fn
∂x1

∣∣∣∣
xDC

. . . ∂fn
∂xn

∣∣∣∣
xDC

 (2.12)

And given that xDC is a possible solution of many co-existing system solutions, the perturbed
system can be described as the linear system in equation 2.2. In other words, closely around the
xDC equilibrium point, the non-linear system in equation 2.10 can be approximated through a
linearization of the system around the DC fixed point.

As on linear systems, the roots of the characteristic equation can be defined to determine the
stability of the system. In this case the mentioned roots can be calculated from the eigenvalues
of the Jacobian Matrix.

det [λI − Jf(xDC)] = 0 (2.13)

2.3 Stability of Small Signal RF Amplifiers

Small signal RF amplifiers can be described by the Scattering parameters [S], and throughout
history, different stability analysis methods have been created that employ these parameters
[10].
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CHAPTER 2. STABILITY IN MICROWAVE AND RF CIRCUITS2.3. STABILITY OF SMALL SIGNAL RF AMPLIFIERS

Figure 2.5: Illustration of amplifier represented with Scattering Parameters

The conventional method to analyze the stability of amplifiers proposed by Rollet consists
of checking the following four conditions that, if met, prove the unconditional stability of a
two-port network for any given ZL and ZS loads:

• K = (1− |S11|2 − |S22|2 + |∆|2)/ 2 |S12S21|

• |∆| = |S11S22 − S12S21| < 1

• S11 < 1

• S22 < 1

Checking these four conditions is equivalent to checking whether the negative resistance
condition is met.

Additionally if a transistor is unilateral (S12 = 0), one can determine the unconditional
stability of an amplifier by checking only the |S11| < 1 and |S22| < 1 conditions.

If the conditions are not met, one can calculate the input and output stability circles that
determine the border between the loads that might potentially create instabilities. This is carried
out by calculating the circumferences that meet the Γin = 1 and Γout = 1 conditions, taking
into account the definitions in equations 2.14 and 2.15, and plotting them on a Smith Chart.

Γin = S11 +
S12S21ΓL
1− S22ΓL

(2.14)

Γout = S11 +
S12S21ΓS
1− S11ΓS

(2.15)

Despite how effective this method is to determine the values of the loads that might destabilize
the system, its main limitation is related to the fullfilment of the condition known as Rollet
Proviso. The Rollet stability analysis is limited because it is only valid for systems with no
inner unstable loops. In other words, one must guarantee a priori that none of the poles of
the uncharged system are on the RHS of the s plane, which, for example, is very common in
multistage amplifiers.
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Chapter 3

Stability Analysis Methods Based on
Transfer Functions
The strategy proposed by this project for stability analysis of a DC solution of microwave
circuits consists of obtaining the closed loop transfer function associated to the linearization of
the circuit around its DC solution for the established operating conditions as in [8].

The stability analysis based on transfer functions and frequency responses of a RF amplifier
is commonly carried out following three main steps:

• 1st Step: The first step consists of obtaining the frequency response of an amplifier on
one or multiple nodes via simulation. A frequency response is defined as the output of
a system in response to a frequency varying sinusoidal stimulus and it is mainly used to
characterize the dynamics of a system. Simulations can be carried out on various Com-
puter Aided Design (CAD) programs, Advanced Design Systems (ADS) for example,
but valid simulation models that represent the amplifier with precision are required, as
mentioned further in the chapter.

• 2nd Step: This second step consists of identifying a transfer function that represents the
frequency response obtained on the previous step. This can be accomplished following
many different existing methods, of which two are discussed on this chapter, the Least
Square Method and the Vector Fitting method.

• 3rd Step: This last step is essential for the stability analysis since it is where the poles
and zeros of the transfer function obtained on the previous step are processed and plotted.
This step permits the detection of unstable poles and therefore spurious oscillations and
often, incorporates additional information regarding its origin.

3.1 Formalism of DC Stable Solutions

As mentioned on the second chapter and following [1], it can be shown that the dynamics
of a non-linear circuit around a DC solution can be approximated with the linearization of
the circuit around the DC solution, obtaining the following lineal system that represents the
perturbed system:

ξ̇(t) = Aξ(t) (3.1)
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CHAPTER 3. STABILITY ANALYSIS BASED ON TF 3.2. OBTAINING SISO AND MIMO FREQUENCY RESPONSE

A represents the Jacobian matrix of the circuit evaluated on (xDC) continuous solution. Hence,
the stability analysis of a DC solution can be carried about by calculating the eigenvalues (λi)
of the Jacobian matrix A, which are equal to the roots of the characteristic equation or the poles
of the system.

ξ̇(t) = Jf(xDCξ(t)) (3.2)

To represent the system with a transfer function and prove that the poles are the eigenvalues of
the Jacobian matrix as in previous subsection 2.2.2, arbitrary small signals (u) are introduced
to the system:

ξ̇(t) = Jf(xDCξ(t) + Bu(t) (3.3)

And the following output vector of variables is defined to complete the state space representa-
tion:

y(t) = Cξ(t) (3.4)

Once the inputs and outputs of the system have been defined, the [Hij] transfer function matrix
can be defined as analyzed on chapter 2. Moreover and following the proof on chapter 2, all
Hij elements of the matrix share the same denominator or characteristic equation det [λI − A]
and so, all information regarding the stability of the non-linear circuit around the DC solution
is contained on the poles of any Hij transfer function. Nonetheless, differences on the denom-
inator for each Hij might occur due to exact pole/zero cancellations caused by the losses of
controllability or observability from the observation point. Still and as proven on chapter 2, in
principle, the poles of a system can be obtained from any of the nodes of the system.

For example, by considering the simplest configuration of a single entry u = u and a single
output y = y (SISO) and determining the transfer function (equation 3.5) one can determine
all information concerning the stability of the DC solution.

H(s) =
Y (s)

U(s)
(3.5)

One can try to ensure that the denominator of the transfer function obtained on a node has
not suffered pole/zero eliminations. This can be done by considering more than one input and
output (MIMO), and comparing the denominators or forcing all denominators to be equal when
calculating the transfer functions for all inputs and outputs.

3.2 Obtaining SISO and MIMO Frequency Response

As mentioned on the introduction of this chapter, by following three simple steps one can
obtain the SISO or MIMO frequency responses of an amplifier. This way, one can determine
the characteristic equation of a system and analyze its stability.
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CHAPTER 3. STABILITY ANALYSIS BASED ON TF 3.2. OBTAINING SISO AND MIMO FREQUENCY RESPONSE

The SISO analysis of a system consists of introducing a single input probe to the system
and analyzing the obtained single output. This analysis is often linked to problems of loss
of controllability and observability that depend on the node or branch at which the probe is
introduced. MIMO analysis reduces this problem, since the designer no longer has to choose
a single node or branch and can introduce multiple probes to the system, sequentially. Taking
into consideration the characteristics of the transfer function matrix discussed in section 3.2,
the best way for fitting MIMO data is to force the same characteristic equation on all the nodes.
However, a less precise but valid analysis can be acquired by analyzing the multiple SISO input
separately.

Throughout this section, the three basic steps are described in depth for a CAD simulation
analysis. As mentioned at the beginning of the chapter, a valid simulation model is required to
carry out the simulation and proceed with an accurate stability analysis. Unfortunately, ampli-
fier designers and manufactures often struggle in finding valid simulation models, challenging
the stability analysis process further.

3.2.1 Current and Voltage Probes

Introducing current or voltage probes on one or multiple nodes of a circuit gives access to
the SISO or MIMO frequency responses required for the stability analysis. However, when
introducing these additional sources one must ensure that they will not modify the circuit steady
state under analysis. Therefore, the small-signal current sources should be inserted in parallel
(Impedance Analysis) and small-signal voltage sources in series (Admitance Analysis) [11].

Additionally, when carrying out a MIMO analysis one must sequence the multiple inputs,
avoiding all interferences between the multiple small-signal inputs. That is, MIMO simulations
should be carried about as multiple sequenced SISO simulations.

As proven on the previous section when discussing the formalisms of stable DC solutions,
the current sources and voltage sources can be introduced on any of the nodes or branches of the
circuit. This is true in theory, since the characteristic equations of all the nodes of the system
are equal. However, a resonance that is part of the dynamics is not always detected equally on
all nodes due to the previously mentioned losses of observability and controllability [11]. The
resonance is always detected on the nodes that provide the feedback loops but not always on
the nodes located electrically isolated from the feedback loops. Therefore, for more precision,
obtaining and analyzing MIMO frequency responses by introducing the probes in the proximity
of the inputs and outputs of the transistors is recommended.

Current Probes

The frequency response or transfer function of the linearized circuit can be obtained as the
impedance seen by a small-signal current source in parallel at a given node (see Figure 3.1)
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[11].

H(jw) = Zn(jw) =
vn(jw)

iin(jw)
(3.6)

Figure 3.1: Illustration of current probe.
Illustration from [11]

Voltage Probes

Alternatively, an accurate frequency response or transfer function can also be obtained as the
admittance seen by a small-signal voltage source in series at a particular branch (see Figure 3.2)
[11].

H(jw) = Y b(jw) =
ib(jw)

vin(jw)
(3.7)

Figure 3.2: Illustration of voltage probe
Illustration from [11]

18



CHAPTER 3. STABILITY ANALYSIS BASED ON TF 3.3. TRANSFER FUNCTION IDENTIFICATION

3.3 Transfer Function Identification

There are many algorithms that solve the difficult problem of formulating a continuous transfer
function, ratio of polynomials in s as in equation 2.6, for a measured or calculated frequency
response. These algorithms minimize the error between the measured or simulated frequency
responses and the transfer function models proposed. Some of those algorithms are the max-
imum probability method, the recursive methods, the least-square algorithms and the genetic
algorithms [11]. When choosing between the proposed methods, one must analyze the con-
vergence of each method, the validity of the obtained transfer functions for noisy or distorted
frequency responses and find the most adequate method for each application.

The least-square method is introduced in this chapter, as it is one of the most employed algo-
rithms for identifying linear systems in absence of noise and since the stability analysis method
proposed by this project is based on simulations and therefore, noise free. Subsequently, the
Vector Fitting technique that employs the least-square method to identify transfer functions is
discussed.

Additionally, the quality assessment of the identification for all methods is a highly critical
step for our application since the order of the transfer function H(s) is unknown a priori and
there is no existing method to determine it [12]. The incorrect selection of the order can create
unwanted undermodeling or overmodeling that should be prevented as discussed on following
section 4.4.

3.3.1 Least-Square Method

The least square method is a standard data fitting procedure to determine the best fit of exper-
imental or calculated data points. The method relies on finding a linear combination of linear
or non-linear functions for a given data set {(x1, y1), (x2, y2), ...(xm, ym)} that depends on a x
variable as well as on a β = (β1, β2, ..., βn) vector with dimension (n ≤ m).

y = f(x, β) (3.8)

As mentioned, the procedure consists of minimizing the sum of squares of the error (S), so
one must define the error (ri) and determine the β vector that meets the set error condition in
equation 3.11.

ri = yi− f(xi, β) (i = 1, 2, ...,m) (3.9)

S =
m∑
i=1

r2i (3.10)

That is, one must find the (β) vector that equals the gradient of the sum of squares of the
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error to zero, as follows:

∂S

∂βj
= 2

m∑
i=1

ri
∂ri
∂βj

= 0 (j = 1, 2, ...,m) (3.11)

3.4 Vector Fitting Method

Vector Fitting [2][3][4] is a general methodology for the fitting of frequency domain responses
with rational function approximations created by B. Gustaven. The fitting is achieved by real-
locating a set of starting poles with an improved set via a scaling procedure.

This method is an interesting incorporation to the project since it fits multiple data inputs
with the same set of poles, that is, the same characteristic equation. This characteristic is of
great interest for precise MIMO analysis with no loss of observability and controllability.

Vector Fitting was developed by B. Gustaven and A. Semlyen in 1996 and was made avail-
able two years later as a public Matlab routine that can be found in [13]. On this cited web page
one can find information about the method and a working highly useful Matlab implementation
with a user manual and instructions.

This method estimates the real or complex residues (cn) and poles (an), as well as the real
d and h parameters of the rational function approximation of f (s) in equation 3.12 in order to
fit the input data. The problem is solved as a linear problem and in two steps, as described in
[2], despite it being a nonlinear problem in terms of the unknowns.

f(s) ≈
N∑
n=1

cn
s− an

+ d+ sh (3.12)

1st step: Pole Identification

On this first step, a set of real or complex poles (an) is specified over the frequency range and
an additional unknown frequency dependent function σ(s) is created.

 σ(s)f(s)

σ(s)

 ≈


N∑
n=1

cn
s−an + d+ sh

N∑
n=1

c̃n
s−an + 1

 (3.13)

As we can see on equation 3.13 the rational approximation of σ(s) and σ (s) f (s) share the
same poles, and by rearranging them, an overdetermined linear problem (Ax = b) is obtained.
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The linear equations on equations 3.14 and 3.15 can be solved as a least-square problem, de-
termining the cn, d, h, c̃n unknowns:

(σf)fit (s) ≈ (σfit (s)) f (s)(
N∑
n=1

cn
s− an

+ d+ sh

)
≈

(
N∑
n=1

c̃n
s− an

+ 1

)
f(s)

(3.14)

A rational approximation for f(s) can be obtained by rewriting the equation above as fractions:

(σf)fit(s) = h

N+1∏
n=1

(s− zn)

N∏
n=1

(s− an)

σfit(s) =

N∏
n=1

(s− z̃n)

N∏
n=1

(s− an)

(3.15)

From equations 3.14 and 3.15, one realizes that the poles of f(s) are equal to the zeros of
σfit(s), and that the initial poles are eliminated from the problem. This realization gives way to
a simple method to determine the poles for fitting the f(s) function that consists of determining
the zeros of σfit(s).

f(s) =
(σf)fit(s)

σfit(s)
= h

N+1∏
n=1

(s− zn)

N∏
n=1

(s− z̃n)

(3.16)

Since the σfit(s) residues have been calculated and its poles are the chosen starting poles, the
sum of partial functions of σfit(s) 3.13 is known. So, its zeros, that is, the poles of f(s) can
be calculated easily by rewriting the function as fractions, as in equation 3.15. This potentially
complex calculation is simplified as described in appendix A and B of [2]. The proposed
method consists of determining the eigenvalues of the H matrix shown bellow.

H = A− bc̃T (3.17)

Where A contains the starting poles, b is a column vector with ones and cT is a row vector
containing the mentioned and calculated residues.

2nd step: Residue Identification

The residues can be calculated directly or, more accurately by solving equation 3.12 by setting
the calculated σfit(s) zeros as an and solving the new overdetermined linear problem (Ax = b)
with x containing the cn, d, and h unknowns.
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3.5 Pole/Zero Diagram Analysis

For a correct detection of possible spurious oscillations one must analyze the obtained transfer
function. This can be done by calculating, analyzing and preferably plotting the poles and zeros
of the transfer function, as discussed in subsection 2.2.2.

If poles and zeros with positive real parts are detected, the system will generate an unwanted
spurious oscillations. So in order to eliminate them, one can analyze the system and its insta-
bility in depth from the additional information provided by the pole/zero diagrams of different
nodes. Detecting critical nodes, one can detect possible feedback loops that are at the origin of
the oscillation and modify the amplifier to eliminate them.

However, as mentioned in section 2.3, there is no method to determine the order of the trans-
fer function before fitting the curve. This might create unwanted undermodeling or overmod-
eling problems that might lead to erroneous pole/zero analysis, as illustrated in the following
example described on [12] and illustrated in Figure 3.3.

As we can see in Figure 3.3, the real transfer function (order 6) contains a physical unsta-
ble quasi-cancellation that is not detected if the order is inferior. Thus, a low order can fail in
detecting problematic unstable poles. However, choosing a higher order might create mathe-
matical quasi-cancellations that can be interpreted erroneously as physical quasi-cancellations
leading to misguided conclusions as on the example. The overmodeling product on the exam-
ple is on the right hand side, so it is problematic; however, had it been on the left hand side
it would not modify the stability results. The following chapter proposes two methods to help
discard products of overmodeling.
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Figure 3.3: Example of identification results with order: a) 6 (correct fitting) b) 4 (undermodeling) c) 8
(overmodeling)
Left graphs represent the magnitude and phase of frequency responses, while right graphs
are the corresponding pole/zero diagrams (x: poles, o: zeros).
Illustration of [12]
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Chapter 4

Tools for Stability Analysis Based on Trans-
fer Functions
Many powerful Computer Aided Design (CAD) tools based on harmonic balance, such as Ad-
vanced Design System (ADS) and Microwave Office, allow accurate simulations of microwave
and RF circuits. But the detection of instabilities that potentially give rise to spurious oscilla-
tions is still a challenge.

Despite the mentioned challenging aspect, there are many stability analysis methods to
help microwave and RF designers prevent instabilities, such as, the feedback factor and NDF
by Platzker, the method of the envelope of the stability by Narhu and Valtonen and many more
that can be found more extensively on [1].

There are also rigorous, fast and user-friendly stability analysis tools that are compatible
with existing CAD software programs. Due to their high efficiency in detecting instabilities,
the commercial STAN program and the new program created as a product of this project are
discussed on this chapter. However, these are not the sole existing programs that attempt to
help designers with the stability matter. Searching on the Internet one can find from basic
Rollet factor calculators [14][15] to more complex stability analyzers as the RF-STABILITY
tool [16]. This latter tool with the RFEM add-on, both designed by Dlubal, permits the designer
to analyze the stability of structures by determining critical load factors and the corresponding
stability modes. This complex method has similarities with the two tools discussed on this
chapter since it too analyzes the stability by calculating eigenvalues.

4.1 STAN Tool

The STAN tool, created by the RF and Microwave Research Group of the Department of Elec-
tricity and Electronics of the University of the Basque Country in collaboration with CNES and
AMCAD, offers a stability analysis technique, valid for small-signal and large-signal regimes.
This technique is able to detect and determine the nature of oscillations, such as paramet-
ric oscillations in power amplifiers, with SISO or parametric SISO simulations. A parametric
analysis consists of varying the value of an element on the simulation model and obtaining a fre-
quency response for each parameter value on the sweep. The STAN tool reads these frequency
response inputs, and plots the root locus of the system, that can give additional information of
possible instabilities. The knowledge of the type of oscillation mode, and the pole/zero diagram
of a given frequency response facilitates the insertion of stabilization networks, with a better
balance between the required oscillation avoidance and maintaining the original circuit perfor-
mances. Further reading on this technique can be found on the AMCAD Engineering webpage
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[17], on the PhD Thesis by Aitziber Anakabe from the University of the Basque Country [1]
”Detección y eliminación de inestabilidades paramétricas en amplificadores de potencia para
radiocomunicaciones” and on the these works [12][8].

STAN is compatible with commercial CAD tools for microwave circuit design, and its user-
friendly and efficient interface gives not necessarily expert users a great ability to analyze the
stability of their linear or non-linear design in an intuitive manner.

The stability analysis of a system can be carried out with STAN by following the three steps
described on chapter 3 as follows:

• As a first step, the designer must obtain the SISO frequency response of the system with
a CAD program; ADS will be set as a CAD example program for the project. A valid
simulation model is needed to carry out this step, and current or voltage probes are to
be introduced in the circuit as discussed in section 3.2. The frequency response obtained
must be exported to a .txt, file to be read by STAN on the next step. A more complete
frequency response will be obtained if the following points are taken into account when
simulating:

– From a theoretical point of view, all of the nodes or branches at which the current or
voltage probes are introduced give the same stability information. Nevertheless, in-
troducing the probes near the non-linearity is advised to ensure correct detection of
possible instabilities and to prevent the physical pole/zero cancellations mentioned
in previous section 3.4.

– Choosing the frequency range at which the active devices present gain is advised
for a correct stability analysis.

• The second step, which consists of identifying the transfer function, is automated by the
STAN tool. But the designer can establish different simulation parameters in figure 4.1,
depending on the characteristics of the analysis to be carried out. This automation is
described in more detail in the following paragraphs.

• The results captured by STAN are displayed on graphs and tables, as in figure 4.2, for the
designer to analyze.

The transfer function identification methodology of the STAN tool is based on the following
principal ideas introduced in [1]:

• The fitting method employed by STAN is the least-square method, due to its high effi-
ciency for fitting simulation data. It consists of determining the coefficients of the nu-
merator and denominator of the transfer function by minimizing the square of the error
between the fitted transfer function and the ideal curve.
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Figure 4.1: STAN Input Interface

• STAN introduces an algorithm to determine the order of the transfer function to be fitted
automatically. This is done by dividing the frequency band in small fragments and fitting
the small fragments by iteratively increasing the order for each fragment, until a fixed
phase error is reached.

• In order to help designers understand the pole/zero diagrams displayed, STAN discards
the poles and zeros, result of the transfer function identification, that are not on the fre-
quency range of the frequency response. The reason for it being that STAN fits the data
on the specified frequency range, but the obtained transfer function is not limited to that
frequency range.

One can carry out a MIMO analysis with the STAN tool, by analyzing multiple SISO frequency
responses independently. Unfortunately, STAN does not incorporate a method to force the same
denominator for the multiple inputs, as the program discussed in the following section does.
However, as it is shown on an example in Chapter 5, even though the obtained poles with
MIMO in STAN are not the same for all the nodes, they maintain similar values on all nodes.

4.2 Program Based on Vector Fitting

The stability analysis tool based on Vector Fitting for Matlab described on this section is the
main result and product of this project. The principal objective for creating this program was
to evaluate the benefits of MIMO identification for stability analysis of microwave amplifiers.
Nevertheless, the program is not limited to MIMO analysis since it also reads SISO and para-
metric SISO frequency response inputs, like STAN.

With the objective of describing this newly created program, this section is divided into
three subsections that discuss the basic user interface, some Vector Fitting settings and other
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Figure 4.2: STAN Output Interface includes:
a) Magnitude and phase plots to check fitting, pole/zero diagram to check instabilities and
phase error graph to determine fitting
b) Expanded Pole/Zero Diagram and table with output data

implemented algorithms, such as an algorithm for detection of critical nodes and two algorithms
for pole/zero elimination.

4.2.1 Basic User Interface

Similarly to STAN, this program follows the three steps discussed in length in chapter 3:

• The designer must obtain the SISO or MIMO frequency response of the system with
ADS. This stability analysis program is more restrictive than STAN and permits only .txt
files with concatenated magnitude and phase data on the last column or magnitude/phase
data separated by ’/’ on last column. Additionally, the program proposes two approaches
for MIMO analysis:

– The simplest approach consists of introducing current probes sequentially on dif-
ferent nodes and determining the impedances on each node.

– Another procedure for a systematic stability analysis method consist of introduc-
ing a current probe on the input and output of each transistor and calculating the
impedance as in the ADS schematic example in Figure 4.3.

• The second step is also automated following the Vector Fitting specifications in subsec-
tion 4.2.2, and the simulation parameters on Figure 4.4 can be specified fo the stability
analysis.

• The identified poles and zeros are processed taking into account the algorithms discussed
on subsections 4.2.3 and 4.2.4. The results chosen by the designer are displayed on
graphics and tables for the designer to analyze.
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Figure 4.3: Illustration of systematic stability MIMO analysis in ADS.
The large red square enables the MIMO analysis on the area marked by the blue square. The
green square specifies the impedance to be calculated on a systematic analysis of a single
transistor amplifier.

4.2.2 Vector Fitting Settings

The Vector Fitting User Manual [18] and examples were used at length to establish the correct
settings for this application and determine the Matlab function commands and parameters. The
employed Matlab function call is:

[SER, poles, rmserr, fit] = vectfit3 (f, s, poles, weight, opts)

Where the inputs are:

• f : (n,Ns) f holds the complex (a+ bj) f(s) samples. For MIMO analysis, each input
is to be stored on a new column on f and the fitting of all curves is carried out with the
same poles, forcing the characteristic equation of each node to be equal.

• s: (1, n) This structure holds the frequency samples (rad/s).

• poles: (1, N) Poles holds the initial starting poles. The author advises to choose com-
plex conjugate poles with weak attenuation and with imaginary parts β that cover the
frequency range of interest, to reduce the need for long distance re-allocations of poles.
The created Matlab program allows the designer to choose between linear or logarithmic
spacing of β (see figure 4.4) for faster convergence. Nevertheless, the poles should be
chosen as:

an = −α + jβ an+1 = −α− jβ

α = β/100
(4.1)
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Figure 4.4: Input Interface of Program based on Vector Fitting

• Weight: (n,Ns) Weighting is a useful tool to control the accuracy of the least square
problem. Three weight options are available:

– No weight (recommended choice): weight = 1

– Strong Inverse Weight (for noisy data): weight = 1/ |f |
– Weaker Inverse Weight (for noisy data): weight = 1/

√
|f |

• Opts: For this application, the main Vector Fitting initial settings are set as follows:

– opts.stable=0 Allow unstable poles

– opts.asymp=2 Do not include D and E in fitting (only include it on last iteration)

– opts.relax=1 Use vector fitting with relaxed non-triviality constraint

– opts.skippole=0 Do not skip pole identification

– opts.skipres=1 Do not calculate C,d,e (only on last iteration)

– opts.complexss=1 Create complex state space model

And the outputs of interest for this application are:

• SER structure: This structure contains the poles, and residues of the fitted f(s) data

• Rmserr: The resulting RMS-error of the fitting
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4.2.3 Pole/Zero Elimination

In order to discard the mathematical products of overmodeling discussed on section 3, this
project proposes the following two pole-eliminating techniques:

4.2.3.1 Non Resonant Poles

Resonance is the tendency of a system to oscillate with greater amplitude at certain frequen-
cies. At these frequencies, even small periodic perturbations, such as noise, can produce large
amplitude oscillations.

The resonance in frequency domain is greater for second order systems with low damping
as illustrated on the Bode plot in Figure 4.5. More concretely, for a system with complex
conjugated pairs of poles, no resonance peaks are detected for damping ratios ζ greater than
0.707.

Figure 4.5: Bode plot of second order transfer functions with different dampings that illustrates the
damping effect on the resonance

Non resonant poles located far from the frequency band of the frequency response data are
often products of overmodeling and are not the cause of unwanted oscillations. Therefore, by
calculating the damping ratio ζ of all the poles (a+ bj) from equation 4.2 (or with the damp
function in Matlab) we can discard those poles with damping ratios greater than 0.707, for they
are not resonant poles and, therefore, will not create spurious oscillations.

ζ =
a√

a2 + b2
(4.2)
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Additionally and following the same reasoning as in the STAN tool, the poles whose resonance
is not in the frequency band are discarded. That is, only the poles with a resonance frequency
(ωr) that meets the condition in equation 4.3 are considered.

ωmin ≤ ωr ≤ ωmax (4.3)

Where, the natural frequency (ωn) and the resonance frequency (ωr) are defined as:

ωn =
√
a2 + b2

ωr = wn
√

1− 2ζ2
(4.4)

4.2.3.2 Elimination Based on Residues

Another pole elimination method is introduced in this project, to help designers understand and
analyze the obtained results. This method is based on the residues and requires the input of
a tolerance parameter as we see on Figure 4.4. It consists of not displaying poles with low
residues, by assuming that their effect on the resulting dynamic is of little relevance.

For SISO, the elimination process is simpler, because each pole has one residue value.
Since the MIMO analysis is composed of N individual transfer functions, there are N residues
for each pole. So to have one residue value for each pole as in SISO and to apply the algorithm,
the maximum residue for each pole is chosen, and the node at which this maximum is found is
recorded for critical node detection (discussed in the following subsection).

Initially only the residues were considered as a standardization factor for the pole elimina-
tion, but a posterior analysis proved that considering a normalized residue, as the |residue/pole|
division, was more efficient and reduced the amount of unstable poles eliminated for the same
user input.

The main idea behind this method is to determine the maximum normalized residue relation
in logarithm and compare all other normalized residue logarithmic values with it. Depending on
the tolerance parameter, which represents the margin (expressed in orders) below the maximum
normalized residue value to be considered, more or less poles are eliminated as illustrated on
Figure 4.6.

4.2.4 Detection of Critical Nodes (MIMO)

As hinted on the previous subsection, the detection of critical nodes is directly linked with the
node at which the maximum residue for each pole is found. In other words, the maximum
residue of a pole will be detected at the node at which the effect of the pole on the dynamics of
the system is higher.

The printed stable and unstable poles output of the program incorporates the maximum
residue and critical node information as follows:
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Figure 4.6: Graphic illustration of pole elimination based on residues

• Column1: Resonant Stable poles, Column2: Maximum Residue, Column3: Node corre-
sponding to max residue

• Column1: Resonant Unstable poles, Column2: Maximum Residue, Column3: Node
corresponding to max residue

For an unstable pole, detecting the node at which its effect on the dynamics is higher can
give circuit designers additional information on the feedback loop and help stabilize an unstable
system.
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Chapter 5

Examples
The main objectives of this chapter are to prove the functionality of the Vector Fitting based
program and to determine the differences between the two programs stated on Chapter 4. Fur-
thermore, the additional pole/zero elimination methods and critical node determining method
are evaluated throughout the examples. But, most importantly, the benefits of MIMO identifi-
cation for stability analysis are evaluated.

To do so, the most significant RF amplifier examples analyzed with STAN and the stability
analysis program based on Vector Fitting are represented in this chapter. The first section
analyzes the stability of an L-band amplifier with three examples that illustrate a SISO analysis
with a current probe, a Parametric SISO analysis with a voltage probe and a MIMO analysis
with sequentially introduced current probes. The second section analyzes the stability of a
K-band Multistage Amplifier with a more complex MIMO example.

5.1 Analysis of an L-band Amplifier

The L-band amplifier analyzed on this section was designed as a prototype for radio navigation
applications, more concretely for Galileo. This L-band amplifier is based on a FET transistor
of AsGa on hybrid technology [19].

It was noted and measured that the amplifier oscillated at a given low frequency (13.88MHz)
for certain values of the gate resistor on the feedback loop. This prototype helps illustrate the
methodology discussed throughout this paper and analyze the low frequency oscillation by
plotting the pole/zero plots of the following three examples.

Figure 5.1: Photograph of the L-band FET transistor and the mentioned low frequency oscillation.
Illustration from [19]
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Figure 5.2: Spectrum analyzer output of the L-band FET transistor that illustrates the mentioned low
frequency oscillation at 13.88MHz.
Illustration from [19]

5.1.1 SISO with Current Probe

The topology of the amplifier is illustrated in Figure 5.3, including the electrical model of the
transistor. A current probe is introduced on the input the transistor and the circuit is simulated
in ADS with a 1MHz - 40MHz frequency range. The frequency response in Figure 5.4 is
obtained and extracted to a .txt type file following the indications on the figure. To analyze the
stability of the resulting frequency response, it is identified with STAN and with the VF based
program.

Figure 5.3: The L-band FET amplifier simulation model in ADS with a current probe on the input (red)
of the transistor

34



CHAPTER 5. EXAMPLES 5.1. ANALYSIS OF AN L-BAND AMPLIFIER

Figure 5.4: The L-band FET amplifier simulation model in ADS with a current probe on the input of
the transistor

Program Based on Vector Fitting

The analysis with Vector Fitting of this example is carried out with an order 8 and iteration
number set to 7. These parameters were chosen as follows:

• From orders 2 to 14 only the two unstable poles are displayed, but the fitting for order
two is not precise. The rmserr error can be taken into account to ensure correct fittings
and for the simulated frequency response it varies for different orders as follows:

Order 2 4 6 8 10 12 14 16
rmserr Error 3.1753 0.011561 5.5385e-005 1.7931e-006 1.5327e-007 1.7247e-008 4.8742e-009 3.3653e-009

With an order 16 results of overmodeling are displayed, 2 additional stable poles show up,
that appear quasi-cancelled on the pole/zero plot. However, their residues are small, so
we can eliminate these poles, products of overmodeling with tolerance parameter smaller
than 26. A more graphic example of this pole/zero elimination can be found in the
following MIMO examples.

• The number of iterations improves the error considerably for low order values but re-
mains practically constant for higher values. More iterations are required for complex
frequency responses, in this case, the fitting is correct with a single iteration, however,
the error varies with the number of iterations as in the following table:

Iterations 1 2 3 4 5 6 7 8
rmserr Error 9.8443e-005 1.8612e-006 1.8065e-006 1.7964e-006 1.794e-006 1.7933e-006 1.7931e-006 1.7931e-006

For cases where a certain simulation error to be reached is known a priori, the program
includes an algorithm that allows the designer to prevent unnecessary iterations by deter-
mining a maximum error and a maximum iteration number.

The order and iteration number on the subsequent examples will not be illustrated in such
length, but a similar previous analysis has been carried out on all examples.

The magnitude and phase plots and the pole-zero diagram obtained on Matlab with the
order set to 8 and iterations to 7 can be found in Figure 5.5. The top-left graphic contains
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the real and fitted magnitude curves as well as a curve that indicates the deviation error of the
fitting. We can visually see that the fitting is correct and can also verify from the graphic that
the deviation error is very small, around 10−6 for all frequencies. The phase graphic on the
top-right is also correctly fitted, since the real and fitted curves are completely overlapped. The
bottom figure is the pole/zero diagram of the frequency response for an order 8, where two
unstable complex conjugate poles are plotted. Therefore, by inserting a current probe on the
input of the transistor, the instability is easily detected.
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Figure 5.5: Output graphics and pole/zero diagram of the program based on Vector Fitting.
On top figures the approximation is in dashed red, the initial data is in blue and the green
curve is the complex deviation. On bottom figure a red x indicates an unstable pole.

STAN

The exact same output poles are obtained on STAN, with an automatic order:
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Figure 5.6: Output graphics of the STAN tool

Analysis of the Results

The obtained results on both programs are summarized in the following table:

Stable or Unstable STAN Value VF Value VF Residue
Unstable 132236.1917371 +1.9898520016e7 i 1.32236230780e5 +1.9898519760229e7i 7.90153011799e+9 -4.5547327735038e+8i
Unstable 132236.1917371 -1.9898520016e7 i 1.32236230780e5 -1.9898519760229e7i 7.90153011799e+9 -4.55473277350e+8i

In this example, an unstable complex conjugate set of poles has been detected, which give
way to an oscillation at 19.8MHz. We also note, that 6 of the calculated poles have been elim-
inated by the pole/zero elimination method based on resonances. That is, 6 of the calculated
poles are non resonant, possibly results of overmodeling, but are not displayed on the final
pole/zero diagram due to their low effect on the dynamics of the systems.

5.1.2 Parametric SISO with Voltage Probe

As mentioned previously, the amplifier can be stabilized increasing the value of the gate resistor.
The gate resistor is the resistor connected in series at the gate of the transistor in the gate bias
path. The STAN tool and VF based program can be used to determine the resistor values
that stabilize this FET amplifier, as illustrated on this example. This is achieved by analyzing
the SISO input of the amplifier with a parameter sweep on the critical gate resistance. These
frequency responses are obtained by simulating the following ADS schematic:
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Figure 5.7: The L-band FET amplifier simulation model in ADS with a voltage probe on the input (red)
of the transistor and a parameter sweep (green)

Program Based on Vector Fitting

The output graphics and diagrams in Figure 5.8 are obtained on Matlab with the same order (8)
and iterations (7) as on previous example, since the exact same node is under analysis in this
example:
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Figure 5.8: Output graphics and pole/zero diagram of the program based on Vector Fitting.
On both top figures a curve is mapped for each parameter value. On bottom-left plot each
color represents the poles for a parameter value.
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STAN

Exactly as on the previous example, the poles calculated, for each parameter value in this case,
are the same on both analysis. The pole/zero diagrams calculated with STAN are in Figure 5.9.

Figure 5.9: Output graphics of the STAN tool

Analysis of the Results

Once again, the obtained results on both programs are summarized on the a table to restate the
similarities:

Parameter Value S or U STAN Value VF Value VF Residue
10 U 159776.541996 + 1.990123894145e7 i 1.59775600988e+5 +1.99012383379e+7i 3.9705228484e+3 -2.7507428916e+2i
10 U 159776.541996 -1.990123894145e7 i 1.59775600988e+5 -1.99012383379e+7i 3.9705228484e+3 +2.7507428916e+2i
15 U 132236.807669 + 1.98985201231e7 i 1.32236230807e+5 +1.98985197601e+7i 3.9690427372e+3 -3.3052947700e+2i
15 U 132236.807669 - 1.98985201231e7 i 1.32236230807e+5 -1.98985197601e+7i 3.9690427372e+3 +3.3052947700e+2i
20 U 104637.1802834 + 1.98961791928e7 i 1.04636860319e+5 +1.98961789907e+7i 3.9666890195e+3 -3.8600999137e+2i
20 U 104637.1802834 - 1.98961791928e7 i 1.04636860319e+5 -1.98961789907e+7i 3.9666890195e+3 +3.8600999137e+2i
25 U 76983.399487 + 1.989421758943e7 i 7.69832434480e+4 +1.98942174887e+7i 3.9634601312e+3 -4.4150745172e+2i
25 U 76983.399487 - 1.989421758943e7 i 7.69832434480e+4 -1.98942174887e+7i 3.9634601312e+3 +4.4150745172e+2i
30 U 49281.18616061 + 1.989263670737e7 i 4.92811653597e+4 +1.98926366666e+7i 3.9593541056e+3 -4.9701345632e+2i
30 U 49281.18616061 - 1.989263670737e7 i 4.92811653597e+4 -1.98926366666e+7i 3.9593541056e+3 +4.9701345632e+2i
35 U 21536.457532 + 1.98914379046e7 i 2.15364455504e+4 +1.98914378905e+7i 3.9543685683e+3 -5.5251954392e+2i
35 U 21536.457532 - 1.98914379046e7 i 2.15364455504e+4 -1.98914378905e+7i 3.9543685683e+3 +5.5251954392e+2i
40 S -6245.05224593 + 1.98906224895e7 i -6.24505882755e+3 +1.98906224795e+7i 3.9485007397e+3 -6.0801713968e+2i
40 S -6245.05224593 - 1.98906224895e7 i -6.24505882755e+3 -1.98906224795e+7i 3.9485007397e+3 +6.0801713968e+2i
45 S -34057.4317684 + 1.989019172818e7 i -3.40574497465e+4 +1.98901917051e+7i 3.9417474274e+3 -6.6349753583e+2i
45 S -34057.4317684 -1.989019172818e7 i -3.40574497465e+4 -1.98901917051e+7i 3.9417474274e+3 +6.6349753583e+2i
50 S -61894.74875018 + 1.989014683535e7 i -6.18947850383e+4 +1.98901467903e+7i 3.9341050358e+3 -7.1895183344e+2i
50 S -61894.7487501 + 1.989014683535e7 i -6.18947850383e+4 -1.98901467903e+7i 3.9341050358e+3 +7.1895183344e+2i

We realize on the obtained graph and script outputs that the amplifiers is destabilized for
lower resistance values than 35Ω approximately, and that the frequency of the oscillation for
the simulated 10, 15, 20, 25, 30 and 35 gate resistor values is approximately 20MHz.
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5.1.3 MIMO Analysis with Sequential Current Probes

In this example, a MIMO stability analysis is discussed. Two current probes are sequentially
introduced to the simulation model of the amplifier, one electrically isolated from the feedback
loop, before a RF bypass series capacitor, and another on the output of the amplifier (on the
feedback loop). The frequency responses H1 and H2 are calculated as in previous Figure 4.3 as
we can see in the ADS schematic in Figure 5.10. Additionally and as a designer might do when
beginning to analyze the stability of a created design, a significantly large frequency band is
chosen, 1MHz - 5GHz. This example illustrates the basics of a MIMO analysis as well as how
to solve and prevent some of the problems that a designer might encounter with large frequency
bands.

Figure 5.10: The L-band FET amplifier simulation model in ADS with multiple current probes

In order to illustrate the problem of loss of controllability and observability, a SISO anal-
ysis of the node before the RF bypass series capacitor is carried out. The order was initially
set to 38, and the top two correctly fitted graphics and the leftmost pole/zero diagram in Fig-
ure 5.11 were obtained. We can see that there are many pole/zero quasi-cancellations caused
by overmodeling, and that the unstable poles detected on the previous examples are not found
on this pole/zero plot. The unstable poles are also not detected by increasing the order to
65. Unfortunately, analyzing the stability from the pole/zero diagram of such a high order
(see bottom-right diagram in Figure 5.11) is impossible due to the excessively high number of
quasi-cancellations. Therefore, even if the unstable poles were detected, no precise conclusion
could have been deduced with such a high order.

After introducing the problem of loss of controllability and observability of SISO pole-zero
identifications, a solution to prevent them, that is, MIMO, is illustrated. To do so, the frequency
response outputs obtained from simulating 5.10 in ADS are analyzed with the VF based tool
and the STAN tool.
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Figure 5.11: Output graphics and pole/zero diagram of the SISO analysis obtained with Vector Fitting
based tool. The top two graphics and bottom-left pole/zero diagram are obtained with an
order 38. To illustrate that for high orders the instability is not detected, the pole/zero
diagram of an order 65 is displayed on the bottom-right subfigure.

Program Based on Vector Fitting

Since the magnitude variation of the input data is very large, for a precise setting, a very large
input order is required. After many attempts to choose the precise parameters, and order 38 and
7 iterations were established and the output graphics and pole/zero diagrams in Figures 5.12
and 5.13 were obtained with the VF based program.

STAN

The same .txt file processed by STAN, which analyzes the data as a parametric SISO entry with
an automatic order, results in the pole/zero diagrams on Figure 5.14.

Analysis of the Results

The main conclusion inferred from this example is that MIMO analysis is capable of detect-
ing oscilations that might not be found when analyzing SISO frequency responses. That is,
that MIMO analysis is less likely to encounter problems related to loss of observability and
controllability.

41



CHAPTER 5. EXAMPLES 5.1. ANALYSIS OF AN L-BAND AMPLIFIER

10
6

10
7

10
8

10
9

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Frequency [Hz]

M
ag

ni
tu

de

10
6

10
7

10
8

10
9

−50

0

50

100

150

200

250

300

350

400

450

Frequency [Hz]

P
ha

se
 a

ng
le

 [d
eg

]

−8 −7 −6 −5 −4 −3 −2 −1 0 1

x 10
8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
9

Real

Im
g

Pole Diagram

Figure 5.12: Output graphics and pole/zero diagram of the program based on Vector Fitting.
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Figure 5.13: Output pole/zero diagrams of the individual nodes obtained with Vector Fitting
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Figure 5.14: Output pole/zero diagrams of the individual nodes obtained with STAN tool.

The calculated unstable poles are detected similarly on both programs, whilst the values
of the stable poles are slightly different. Therefore, due mainly to the simplicity of this ex-
ample, the MIMO analysis that forces the same poles on all nodes and the MIMO analysis of
independent SISO data inputs lead to the same conclusion and instability detection.

In this example, the residue obtained with the VF based tool on the Matlab script of the
unstable poles is not the highest residue of the identified transfer function, but takes a con-
siderable value. That is, the unstable pole is not the most significant for the dynamic of the
system in such a large frequency band. Unfortunately, a tolerance parameter value larger than
4 eliminates its display. This example serves to illustrate that one must look at the values of
the residues first to determine a correct tolerance parameter. If all residues are similar as in this
example, no elimination based on residues or a high tolerance parameter is advised.

5.2 Analysis of Output Data of a K-Band Multistage
Amplifier

The two-stage K-band amplifier discussed on this section is more complex than the previous
amplifier. It contains more resonances, and therefore, its analysis is more challenging for sta-
bility analysis tools.
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Figure 5.15: Block diagram of the K-Band Multistage Amplifier.

Due to confidentiality, no additional information on the amplifier details can be mentioned.
Only the output graphics and diagrams obtained with the VF tool are displayed in order to
analyze the stability of the amplifier. This section pretends to illustrate the first steps that a
RF and microwave designer could follow to analyze the stability of a completely unknown
amplifier and restate the problem of loss of controllability and observability.

The output data consists of multiple frequency responses obtained by introducing multiple
probes in the input port of the first stage (1), between the first and second stage (2), in the input
port of the second stage (3) and in the output node (4) that are illustrated in Figure 5.15.

As before and to to illustrate the problem of loss of controllability and observability, the
individual frequency responses of each node are analyzed independently (SISO) with the VF
based tool. The pole/zero diagrams in Figure 5.16 are obtained, where the top-left diagram
corresponds to input node 1, the top-right diagram to intermediate node 2, the bottom-left
diagram to second stage node 3 and the bottom-right diagram to output node 4. As we see in
Figure 5.16 the complex conjugate unstable poles are only detected on nodes 2 and 3, and are
detected with more precision in node 3 since the unstable poles of node 2 have similar valued
zeros near the unstable poles.

Once the SISO analysis has been carried out, we can proceed to analyzing the same results
as MIMO with the VF based program. The MIMO analysis can start by analyzing a wide
frequency range as on the example in 5.3 and establishing an excessively high order (80) and
the numbers of iterations (10) to obtain the top two and bottom-left graphics in Figure 5.17.
Next, a tolerance parameter can be determined by approximation from the residues obtained on
a first compilation, to eliminate the products of overmodeling, that is, possible mathematical
quasi-cancellations. The results of the pole-zero elimination method based on residues for a
tolerance parameter of 4 are illustrated on the bottom-right diagram in Figure 5.17. With the
determined tolerance parameter, we can detect the unstable complex conjugate poles with high
precision.

An unstable complex conjugate pole pair at a frequency of approximately 10GHz have been
identified in this analysis. If a more correct and precise analysis is wanted, a narrower frequency
range around 10GHz should be analyzed. Nevertheless, on this example, very similar results
are obtained with a narrower frequency band. The calculated unstable poles, their residue and
the critical node for the wide band are shown in table 5.1.
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Figure 5.16: Output pole/zero diagrams of the multiple SISO Analysis on nodes 1 (top-left), 2 (top-
right), 3 (bottom-left) and 4 (bottom-right) of a K-Band Multistage Amplifier obtained
with VF based tool

Unstable Poles Maximum residue Critical node
1.457203119183668e+008 +1.000046259092223e+010i 1.643578710378006e+010 +6.632234428154502e+010i 3
1.457203119183668e+008 -1.000046259092223e+010i 1.643578710378006e+010 -6.632234428154502e+010i 3

Table 5.1

We conclude therefore, that the analyzed multistage amplifier is unstable and oscillates at a
frequency of 10GHz and that the critical node is the node at the input port of the second stage.
Most importantly we have illustrated a solution for loss of controllability and observability.
This has been achieved by analyzing an example where the feedback loop was not detected on
2 out of 4 nodes, the input and output nodes, but was detected by analyzing the 4 frequency
responses with a MIMO pole/zero identification tool.
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Figure 5.17: Output graphics and poles for a MIMO Analysis of the K-Band Multistage Amplifier. The
top two graphics and bottom-left diagram correspond to an analysis with order 38 and
no tolerance parameter. The bottom-right diagram is obtained with the same order and a
tolerance parameter 4.
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Chapter 6

Conclusions
The principal achievement of this project is that a rigorous SISO and MIMO pole-zero identi-
fication stability analysis CAD tool, based on Vector Fitting, that can be compared to existing
commercial tools, has been created. As mentioned, the created tool introduces MIMO analysis
that can improve the efficiency of pole-zero identification for stability analysis of microwave
circuits and give way to automating further the stability analysis process.

By forcing the same characteristic equations on all nodes on MIMO analysis, more precise
MIMO outputs are calculated. Therefore, this project demonstrates that Vector Fitting or sim-
ilar fitting programs that force the same denominator whenfitting multiple transfer functions
are an essential incorporation for rigorous MIMO analysis. Additionally, errors due to loss of
controllability and observability are prevented in MIMO, especially if the multiple probes are
systematically introduced in the vicinity of the inputs and outputs of the transistors.

By incorporating MIMO, three new methods to process the obtained results were created
and introduced. These methods have been proved highly efficient to help users understand and
not misinterpret the output graphics and diagrams.

The simple resonant dependent pole-elimination method has been proven highly efficient
for eliminating the products of overmodeling that have close to no effect on the dynamics of
the system. The second pole-eliminating method based on the residues is also a very powerful
asset for the program but lacks automation. As a consequence, studying the automation of
the method via iterations is a way of further improving the functionality of the program. The
critical node or branch detection method was determined as highly useful when evaluating
the created stability analysis tool, since it gives additional information for possible subsequent
stabilization approaches.

To sum up, all of the objectives stated on the first chapter of this chapter have been tackled
thoroughly through the process of shaping and completing this project.

Future work to improve the created program could consist of creating methods to improve
the sensibility of the identifications and reduce the need for fine frequency sweeps to avoid
misinterpretations. For example, an algorithm to determine the order for fitting the frequency
response data automatically would increase considerably the automation of the program. Most
importantly, this report concludes by stating that further work to study the benefits of MIMO
analysis for pole-zero identification will be very profitable for stability analysis of RF and
microwave amplifiers.
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