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This paper investigates a class of self-adjoint compact operators in Hilbert spaces related to their truncated versions with finite-
dimensional ranges. The comparisons are established in terms of worst-case norm errors of the composite operators generated
from iterated computations. Some boundedness properties of the worst-case norms of the errors in their respective fixed points
in which they exist are also given. The iterated sequences are expanded in separable Hilbert spaces through the use of numerable

orthonormal bases.

1. Introduction

Compact operators in infinite-dimensional separable Hilbert
spaces are of relevance in the study of certain relevant applied
problems in control theory and signal theory, [1]. A natural
property of such operators is that they can be represented
with expansions using two orthogonal or orthonormal recip-
rocal bases of the separable Hilbert space. If the bases are
orthonormal then both of them coincide so that this basis is
autoreciprocal and then the formal study is facilitated [1, 2].
Many of the involved operators in mapping map an input
space into an output space in the above problems are in
addition self-adjoint. Another property of such operators is
that they admit truncations using a finite number of the
members of the orthonormal basis so that the truncated
operators are also compact in a natural way, [1, 2]. The
truncated operator describes a natural orthogonal projection
of the involved vectors of the Hilbert space into a finite-
dimensional space whose dimension is deceased as the
number of members of the basis used for its representation
decreases. On the other hand, important attention is being
devoted to many aspects of fixed point theory in metric,
Banach, and more general spaces including the study of map-
pings being contractive, nonexpansive, asymptotically con-
tractive, asymptotically nonexpansive, quasi-nonexpansive,
Kannan and Meir-Keeler and cyclic-type contractions, and so

forth. Also, it has been studied the relevance of the theory
in properties in both general theory and applications such
as the existence and uniqueness of solutions in differential,
difference, and hybrid equations as well as in continuous-
time, discrete-time, and hybrid dynamic systems, stability
theory in the above problems [3-7], the existence/uniqueness
of fixed points and best proximity points, and the bound-
edness of iterated sequences being constructed through the
maps and the convergence of such iterated calculations to
limit points. See, for instance, [3-6, 8-15] and the references
therein. The investigation of existence and uniqueness of
common fixed points and best proximity points for several
mappings and related properties is also important [10-
12]. The study of fixed and best proximity points has also
inherent study of convergence of sequences to such points.
Other studies of properties of convergence of sequences and
operator sequences have been described in different problems
as, for instance, the research on approximating operators
and approximation theorems that of sigma convergence of
double sequences or that of lamda-statistical convergence
and summability. See, for instance, [13-17] and the references
therein.

This paper is devoted to the investigation of self-adjoint
compact operators in separable Hilbert spaces, their finite-
dimensional truncated counterparts, and the relations in-
between the corresponding properties for the norms of the



mutual errors end the errors in-between the corresponding
fixed points and their respective convergence properties
when iterated calculations through the operators are per-
formed. Some examples of interest in signal theory and
control theory are also given. The operators and the iterated
sequences constructed through them are studied by using
the expansions of the operators and their finite dimensional
truncated versions by using a numerable orthonormal basis
of the involved Hilbert space.

2. Preliminaries and Main Results

The following result includes some properties related to the
approximations of x € V and x € H through orthonor-
mal systems of different dimensions, complete orthonormal
systems in H, and orthonormal basis, that is, a maximal
orthonormal system; that is, it is not a proper subset of any
orthonormal system of H, where V and H are an inner
product space and a Hilbert space, respectively. Note that
in the case where H is separable, a complete orthonormal
system is always an orthonormal basis and vice versa.

Lemma 1. Let V be an inner product space of inner product
(w-y :Hx H — C (orR) endowed with a norm | -|| : V —
R, defined by |x| = (x,x)"* for any x € H, where R, =
{zeR:z2>0}, et {en}nl\]:1 and {an}nl\]:1 be a finite orthonormal
system in'V and a given finite or numerable sequence of scalars,
respectively, and let M and N be given integers fulfilling 1 <
M < N < 00. IfN = oo then {e,}}\ is, in addition, assumed
to be numerable. Then, the following properties hold for any
x € H.

. N 2 N 2 M
@) Ix = Xom aneall = lx = 2 pr anenll — X0, I,
2 M 2
en>| + Zn:l |an - (X, en>| .
.. M 2 N 2 N
() lx =, ame,l = lx+ 2, _pm aell — 2,0 Kx,
2 N 2
e+, la, —(x,e)|".
N 2 M 2 N
(iii) IIx—Zanl aze,ll - !x = Y1 Weall = X (K,
e)l” + [{x e,) — a,l).
. i 2 i 2 . . —
@) | Zfl:i a.e,l = Z;:i la,|” any integers i, j(> i) € N =
{1,2,...,N}.
(V) If V = H is a finite-dimensional Hilbert space of

dimension N and a, = (x,e,), foralln € N and
N = M, then

2 N ,
2
+ Y [xae) ] = lxl
n=1

N
x - Z (x,e,)e,
n=1

N m 2 @
2Z|<x’en>| 2Z|<x’en>| :
n=1 n=1

(vi) If V. = H is a finite-dimensional Hilbert space of
dimension N and a,, = (x,e,), forn € N, then

M N M
x - Z aze,| <2 Z |an|2 -3 Z lanlz. )
n=1 n=1 n=1

2
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(vii) If V. = H is a separable infinite-dimensional Hilbert
space and a, = (x,e,), forn € N, then

2 (oe]
< (Z |an|2> < |Ix]*. 3)

n=1

M
X — Z a.e,
n=1

If, in addition, ||x — ZnM:1 anenll2 < +00, then a, — 0 as n(e
N) — oco. If, furthermore, there is some integer &« > M such
that the real sequence {|a,,|},,., converges to zero exponentially
according to la,| < p" < p < 1, forn € N, then

[l = Zanl anenll2 < C(a)+ p/(1-p) for any given x € H with

p € (0,1) being some real constant and C(ex) being a bounded
constant dependent on « satisfying C(M) = 0.

Proof. Properties (i)-(ii) follow from the best approximation
lemma since

2 2

N M M
x— Z ae,| = (x - Z anen) - Z a.e,
n=1 n=M+1 n=1
N 2 M ,
=|lx - Z a.e,l - Z |(x,e,)]
n=M+1 n=1
- 2
+ Z |an - <x’en>| >
n=1
, s (4)
M M N
x— Z ae,| = (x + Z anen) - Z a.e,
n=1 n=M+1 n=1
N 2 N ,
=[x - Z a.e,| - Z |(x,e,)]
n=M+1 n=1
l 2
+ Z |a, — (x,e,)| "
n=1

Property (iii) is a direct consequence of subtracting both
sides of the relations in Properties (i)-(ii). Property (iv) is
Pythagoras theorem in inner product spaces. Property (v)
(Bessel’s inequality) follows directly from Property (i) with
the orthonormal system {en}i | in the Hilbert space H being
a basis of H. Property (vi) follows from Properties (ii)-(iii)
with a, = (x,e,); n € N and the orthonormal system {e,}"\ |
in H being an orthonormal basis of H since one gets from
Property (i)

2 2

N N M ,
x—Zanen =|x - Z ae, —Z|<x,en>|
n=1 n=M+1 n=1
ud 2
+ Z |an - (x,en)|
n=1
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2

N M
2
=|x - Z ae,| - Z lanl
n=M+1 n=1
N 2 M
=0= ||lx - Z a.e, =Z|an|2
n=M+1 n=1

©)

and from (5), Property (i), and a, = (x,e,),n € N

2 2

M N N M 5
x—Zanen =[x+ Z anen—Zanen —Z]an|
n=1 n=M+1 n=1 n=1

N 2 N 2
<2 x—Zanen +2 Z a,e,
n=1 n=M+1

u 2
- Z |an|
n=1

N 2

u 2
=2 Z ae,| — Z |an|
n=M+1 n=1

al 2 A 2
=2 Z |an| - Z |an|
n=M+1 n=1

ul 2 g 2
:22|an| —3Z|an| .
n=1 n=1
(6)

Hence, Property (vi). Property (vii) follows from the assump-
tion that the infinite-dimensional Hilbert space is separable
and Property (vi) leads to

M 2
X — Z a,x,
n=1

- 2 - 2
= Y lal <) |al < I«
n=1

n=M+1

<+00 = (a, — 0 as n(e N) — 00)

7)

which holds under, perhaps, eventual reordering of the
elements of the orthonormal basis of H which is a complete
orthonormal system for the separable Hilbert space H. If
there is some integer &« > M such that the real sequence
{la,[},5, converges to zero exponentially, then

2

M 0 ) o ) o )
X = Z ane,| = Z |aﬂ| = Z |aﬂ| + Z |6ln|
n=1 n=M+1 n=M+1 n=o+1 (8)
<C@+ -,

where |a,| < p" < p < 1, forall n(e N) > a with C(a) =
Y% vt la,)? < +cobeing dependent on a such that C(a) = 0.
Hence, Property (vii). O]

Note that Property (vi) of Lemma 1 quantifies an approxi-
mation of an element of a finite-dimensional Hilbert space H

via an orthonormal system in H of smaller dimension than
that of such a space. Property (vii) relies on the approximation
of an element in an infinite-dimensional separable Hilbert
space by using a numerable orthonormal basis of H.

Lemma 2. Let T H — H be a linear, closed, and
compact self-adjoint operator in an infinite-dimensional sep-
arable Hilbert space H with a numerable orthonormal basis
of generalized eigenvectors {e,}>) T : H — H. Then, the
following properties hold:

(1) TVNx = 32, AN (T)(x, e, e,

forallx € H forany N € N, where A,,(T') € o(T); the spectrum
of the operator T is defined by A, (T) = (Te,,e,), foralln e N
and )\;\](T) = (Ten,en)N € o(TN) with I(Ten,en)lN — 0as
n — oo, forall N € N.

IfP,, is the orthogonal projection operator of H on the one-
dimensional subspace D, generated by the eigenvector e, then

lim (P,(T"x)) = {0} (¢ D,); V¥m N €N, VxeH.
©)

If P,  is the orthogonal projection operator of H on the ng, -
dimensional eigensubspace C);, then

lim (Pg, (T%x)) = {0} (¢ @;); VN €N, Vx e H (10)

with TNx = P (TV)(x) @ (I = Py, (TV))(x) where Py, (T™)
(x) = Py, (TNx), for alln,N € N, for all x € H.

(ii) If, in addition, |T|| < @ < 1, then

Nharnool/\n (T)|N = 0’

0 N (XN
YL@ < <00; VneN,
n=1

1-aN

(1)
lim (P;(T"x)) = {0} (¢ D,),

N — 00

lim (P, (TVx))={0}(e ,); VieN.

N — o0

Proof. Note that there is a numerable orthonormal basis for
H since H is separable and infinite dimensional. Such a basis
{e, )2, can be chosen as the set of generalized eigenvectors
of the linear self-adjoint T : H — H since it is closed and
compact and then bounded

x = Z(x, ee,;; Vxe H. (12)

n=1

Also, since the linear operator T : H — H is closed and
compact, the spectrum o(T) of T : H — H is a proper
nonempty (since T : H — H is infinite dimensional and
bounded since it is compact) subset of C and numerable and
it satisfies o(T) = o‘p(T) U {0}, with o.(T) U 0,(T) = {0},
where 0,(T), 0.(T), and 0,(T) are the punctual, continuous,
and residual spectra of T : H — H, respectively. Note that



{0} € o(T) is also an accumulation point of the spectrum o(T')
since H is infinite dimensional and T : H — H is compact.
Also, since H is separable, the spectrum of T : H — H is

numerable, and (e;, e,) = J;,; for all j,n € N, one gets

[ee) (o]
Te, = Z(Ten,ej)en = Z(Ten, €;)e,0,
=0 =0 (13)
= (Te,,eve, =A,(T)e,; VneN,

where A,,(T) = (Te,,e,) is an eigenvalue of T : H — H; that
is, A,,(T) € a(T), associated with the eigenvector e, since

A, (Te, = A, (T)eyee, = (A, (T)e,e,)e,
= (Te,,e,) = (Te,,e,)e,

(14)

so that

Tx = Z;(Tx’en)en = Z::l T< Z <x e]> ) > €n jn

3 (T (e e e)e,

OZO: A, (T){x,e,)e,; Vxe€H,
n=1
(15)

so that, except perhaps for reordering, [A,(T)| > |A,,1(T)I,
for all n € N with {A,(T)} — 0 since H is separable and
o(T) is numerable. Assume that for any positive integer N
the following identity is true:

TVx = i AN(T) (x,e,) e, (16)

n=1

Then, since {e,},-, is an orthonormal basis of generalized
eigenvectors,

™ x=T (TNx) = i A, (T) (T x, e,)e,

n=1
;A (T)<;A§(T)

X <x, ej> ej,en> e,

Ms
M8

AN(T)A (T)<<x e; >e],e >e

-
0

—
=
I

—

I
™8
M8

[,
I

—_
=
[

—

AT (D)X, (T)

x((xe) epen) Spe
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Afjﬂ (T){x,e,)e,

I
Mg

B
1]
—_

3

Z (Tepe,)™ (xie,) e,

17)

where § in i the Kronecker delta. Then, AI: (T) = (Te,, en)N €
o(TN). Furthermore, TN : H — H is compact as it follows
by complete induction as follows. Assume that T : H — H
is compact, then it is bounded. Note also that TV : H — H is
self-adjoint by construction and then normal. Thus, TV*! =
T(IN):H - His compact since it is a composite operator
of a bounded operator TV : H — H with a compact
operator T : H — H. Then, by complete induction, A} (T') =
(Ten,en)N — 0 (e o(TN))asn — oo, for any N € N since
TN : H — H iscompactand H is infinite dimensional. Also,

P, (TNx) =(Te,e,) 'P, (x) = (Te,.e,) Ve,
=A5(T)en — 0 asn— oo; (18)
VN eN; VxeH,

where P, is the projection operator of H on the one-
dimensional subspace D, generated by the eigenvector e, so
that P,x = (x,x,)x, — Oasn — oo, foral x € H.
Thus, Property (i) has been proved. To prove Property (ii),
take an orthonormal basis associated with the set of finite-
dimensional eigenspaces of the respective eigenvalues. Note
from Cauchy-Schwarz inequality that

M DI = (T enrq)]

<Y

N
< TIM]e

n+qn

(19)
<a¥<1l; Vn,NeN
for some real constant & € (0,1), where {g,}, is
a nondecreasing sequence of finite nonnegative integers
defined by ¢q; = Zl];ll p; being built such that each g,

for n € N accounts for the total of the dimensions p;
of the eigenspaces (2; associated with the set of eigenval-
ues {A,(T),A,(T),...,A,_,(T)} previous to A, (T) for n €
N after eventual reordering by decreasing moduli. Then,
limy _, o |A (DN = 0, forall n € N, and

[P, (1)) = [(Tetvgiq) | 1P 0]

Te. e \N =0 o
< e’+qi’el+4i> Z yi*'%'ei*'%'

Jj=0

1 (20)

SIS P

where {e(])q :j=0,1,...,p,_;} is now a set of p; linearly
independent elements belonging to the orthonormal basis of
H that generate the eigenspace (Q; associated with A,(T") with

(0)
 Pic1}

€. =€y,

itq, 4 Deingan eigenvector and {y(J) 1j=0,1,...
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is a set of complex coefficients. Then, a™e; — 0as — oo,
for all i € N from (20), so that limNHOO(P,-(TNx)) = {0}(e
D;). If there are some multiple eigenvalues, with all being
of finite multiplicity since the operator T : H — H is
compact, the above expression may be reformulated with
projections on the finite-dimensional eigenspaces associated
to each of the eventually repeated eigenvalues leading to
limy _, (P (TVx)) = {0}(e Q) for alli € N. Note that
Q; = D, x D, .. x D, is the finite p;(>1)-dimension of
the eigenspace (); associated with A;(T), where p; is one-
dimensional if A; € o(T) is single. Finally, it follows from (19)
that

2 M =Y [(Terg,y e,
n=1 n=1
(1)
o) AN OCN
< n; o= <o
and Property (ii) has been proved. O

Lemma 2 becomes modified for compact operators on a
finite-dimensional Hilbert space as follows.

Lemma 3. Let T : H — H be a linear closed and com-
pact self-adjoint operator in a finite-dimensional Hilbert space
H of finite dimension p with a finite orthonormal basis of
ei b : Then, the followi

igenvectors {e,},_, of T : H — H. Then, the following
properties hold.

(i) TNx = Y2 AN(T)(x,e,)e,

for any N € N, where A,(T) € o(T); the spectrum of the
operator T is defined by A,(T) = (Te,,e,), for alln € p and
/\i\l(T) = (Ten,en)N € U(TN),for all N € N.

(ii) If, in addition, Iy < nocN for some real constants
a€(0,1)andn > 1, then

N

I, @ <« 1=

oy <0 WYNeN

N, (MY —0 asN— oo Vnep

(22)

P N _ N(p+1)
1 (oc ! ) VN €N,

Y@ <

n=1

1—oN < 005

P
A (DN —0 as N — oo, VpeN.
Y A, ()] p

n=1

Outline of Proof. First note that the spectrumof T: H — H
is nonempty since the operator is self-adjoint. Note also that,
since the Hilbert space is finite-dimensional Hilbert space,
any set of normalized linearly independent eigenvectors of a
self-adjoint operator is an orthonormal basis of such a Hilbert
space [1]. Property (i) is a direct counterpart of Property (i)
of Lemma 2 except that {0} can be a value of the punctual
spectrum of T : H — H but it is not an accumulation

point of such a spectrum o(T') since the Hilbert space is finite-
dimensional. Therefore, the result (Te,,e,) — 0asn — ©o
of Lemma 1 does not hold. Then, Property (i) follows directly
from the above considerations. Property (ii) follows from the
relations

P p
Y @Y = ¥ [(Teygrenig)|
n=1

n=1
(“N _ ‘xN(pH)) (23)

Y < 0.

p
< Z r](an — n
n=1

Remark 4. It turns out that Lemma 2 (ii) and Lemma 3 (ii)
also hold if T : H — H is not self-adjoint since the
corresponding mathematical proofs are obtained by using an
orthonormal basis formed by all linearly independent vectors
generating each of the subspaces. However, if the operator is
not self-adjoint or if it is infinite dimensional while being self-
adjoint, the set of (nongeneralized) eigenvectors is not always
an orthogonal basis of the Hilbert space.

In the following, we relate the properties of operators on
H with their degenerate versions obtained via truncations of
their expanded expansions.

Theorem 5. Let H be a separable Hilbert space and let
T(p) : H — H be a linear degenerated p-finite-dimensional
approximating operator of the linear closed and compact self-
adjoint operator T : H — H. Then, the following properties
hold.

(i) Assume that |T|N < 11(xN, for all N € N for
some real constants « € (0,1) and 5 > 1, where
{e,}.2, is a numerable orthonormal basis of generalized
eigenvectors of T : H — H. Then,

N(p+1)

sup (| Tx =TV (p) x| : Il < 1) < ™

1-aN’

(24)
”TNx—TN (p)x” — 0 as N — oo; Vx € H.

(ii) Assume that there is a finite ny € N such that
Zflino A, (T)| < M, < +0co for some positive real
constant My = M(n,). Thus, for any given positive
real constant € < 1, there are nonnegative finite integers
Po = polesny) > ny and Ny = Ny(py,e€) such
that for any finite p(> p,)-dimensional degenerated
approximating operator T(p) : H — Hof T : H —
H, the following inequality holds

[T (0] < 7] + 210
(25)
< (|t + &) lxl; YN > N, vx € H.

Furthermore,

dim ([T =T ()]} =05 vxeH  (26)

forany T(p) : H — H linear degenerated p(> p,)-finite-
dimensional approximating operator of the linear closed and



compact self-adjoint operator T : H — H and some finite
po €N.

(iii) If{TNx} — zasN — oo forsomex,z € H such that
limy _, o ITNx=TN(p)x]) = 0, then {TN(p)x} — z
as N — o0. Furthermore, such a z is a fixed point of
bothT:H — HandT(p): H — H.

Proof. The operator T : H — H is represented as follows:

Tx—Z(Tx €,) e, —Z;Z«Tx ej>e],e>e
o @7)

A, (T){x,e,) e,

I
M8

1

N
1]

The associated degenerated p-finite-dimensional operator is

P p
p)x = Z (Tx,e,) e, = Z A, (T)(x,e,) e, (28)
n=1 n=1

so that

P 0
X = Z <TNx,en> e, = TNx - Z <TNx, en> e,
n=1

n=p+1

OZO: <TNx, en> e,,.

n=p+1

<T xe>e

HMS

(29)

Thus, assume that T™( p)x = 5:1 )LL\] (T){x,e,)e,. Then,

P
TN+1 (P) x = Z <TN+1X, en> e,
n=1

Il
M~
18

<<TN+1x e]> €jey >e

B
11
—
-
Il
—

1]
M~

<<TN+1x, en> e, en> e,

B
11
—

<<A (T)T X, e >en,e >e

1]
i M*@

<<TNx e >en,e >/\ (Me, (30)

1] Il
M~ 0 M*m

A, (T) <TNx, en> e,

N *
) en>en

:Z o (1) (o, (T e u) €n

B
11
—

1]
M

A, () (. (T

B
I
—_

s}

AN (xe,) e,

M‘m

n=1
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so that the assumption T™( p)x = 5:1 /\fj (T){x,e,)e,istrue
as it has been proved from (30) by complete induction. The
following properties are also direct for any x € H if | TN <
na¥ < 1 for some real constants a € (0,1) and # > 1; for all
N > N and some finite N, € N, we have

p 00
"TNx“ = Z AN(T) (x,e,) e, + Z AN(T) (x,e,) e,
n=1 n=p+1
N(p+1)
IS A @) (ree, + L 'y
n=1
N(p+1)
= ZAN (T) (x.¢,) e, < lxl
o NPHD
=™ (p) | + T I
"TNx -V (p) xH = ;1 <TNx, en> e,
1706N(p+1)
< o Vx € H with x| <1
"TNx—TN (p)x” — 0 as N — oo; Vx € H.

(31)

Property (i) has been proved. On the other hand, if
Ziino A (T)| < M, < +oo for some finite n, € N and
some M, € R,, then for any given real (<I) € R,, there
is a positive finite integer p, = py(e) > ny such that for
any (€ R,) < ¢/M, and any p(> p,) € N, the following
inequalities hold:

Y Ml Y MMM <e
n=p+1 n=py+1
(32)
< Y LM< Y A, @] M,
n=ny+1 n=ny

since [A,(T)| = |A, . (T)|, foralln e N, A(T) — Oasn —
00,0 € 0(T), and [A,,(T)| < &, for all n(> n,) € N. Note that
since M, € R, exists such that 3,2 |1, (T)| < M, < +oo for
some finite #, € N, then, for any given (<1) € R,, (32) holds
forany p(> p,)e N and some p, = p,(e) > n,. Then, one gets

via complete induction for any N(> N;) € N

> Wl § o)
(33)

n=p+1 n=p+1

<N <1
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and Y2 . IA(T)] — 0as N — ooife < 1, forall p(= py)

€ N. Thus, one gets from Lemma 1 (iv)

"TNx“ = i AN(T) {x,e,) e, + i AN(T) (x,e,) e,
n=1

n=p+1

IN

+

Y AT (xe e,

n=p+1

( > <T>|)

n=p+1

P
Z AN(T) (x,e,) e,
n=1

IA

P
Z /\if (T){x,e,)e,
n=1

o0

Z <x’ en> en

n=p+1

+<§

n=p+1

X <

p
YA (@) (xe)e,
n=1

Ay (T>|>

00
Z <.X', en) €
n=1

< +elx|l, VxeH

P
Z AN(T) (x,e,) e,
n=1

(34)

for any p(> p,) € N and for all N(> N;)) € N. Furthermore,
note from (32) thatv — 0 and p, — ocoase — 0and the
function v = v(¢) is nonincreasing. Also, a strictly monotone
decreasing positive real sequence v, = ¥(g,) can be built
with {g,} — 0 since there are infinite many values of the
spectrum o(T') such that the inequality |A,(T)| = |A,, (1)
is strict since, otherwise, the convergence of the sequence
{IA, ()]} to zero would be impossible. Then, from (34) and
Yopil IAN(T)] — 0asN — ooife < 1, forall p(> p,) € N,
there are subsequences of positive real and positive integers
{spo} — 0Oand {po(spo)} — 400, respectively, as N — oo
such that the following subsequent relation holds:

OZO: AN(T) {x,e,) e,

n=p+1

P=po
TNx - Z AN(T) (x,e,) e,
n=1

<& lxll, VxeH

for all N(> N,) € N. Then,

(35)

Pzpo

lim sup< ™ x - Z AN(T) (x,e,) e, ) <0 (36)

N—o00 n=1

and Property (ii) follows directly.
If{TVx} — zandlimy_ (ITNx - T(p)x[) =0as N —
oo for some x,z € H, then 3{Zy} which converges to zero
such that

0= lim [TNx-T (p)x| =z +2Zy-T" (p)x |

N — o0

2 [ =T (p) x| - [l

7
2 [lim sup (|2 = 7 (p) ) - Jim_[n|
= lilr\rnﬁsup ("Z - TN (P) x”)
(37)

and then 3 limy_, ., (Iz - TV(p)x|) = 0. Also, T : H —
H is bounded, since it is compact, and it is then continuous
since it is linear and bounded. Also, T(p) : H — H is of
finite-dimensional and closed image, then compact, and then
bounded and continuous since it is linear. Thus, [|z— TN x| —
0,z - TN(p)xII — 0as N — oo leads to

0 — 1" x 2] = | (1) -
— |Tz-2z| as N — oo

implying z = Tz0 «— "TNJrl (p)x-— z”

(38)
= [T () (17 (p) %) 7|
— |T(P)z-2] asN—o
implying z = T (p) z,
and Property (iii) has been proved. O

Note that Theorem 5 (ii) cannot be generalized, in the
general case, for the case of a finite dimensional approximat-
ing linear operator T(p) : H — H of smaller dimension
P < q to any linear degenerated operator T : H — H
of (finite) dimension gq. The reason is that the property that
0 € o(T) does not any longer hold, in general if T: H — H
is finite dimensional. On the other hand, a way of describing
the operator T : H — H and its approximating finite-
dimensional counterpart T(p) : H — H is through the

absolute error operator Tp(z T -T(p)): H — H. This
is useful if either T : H — H is finite dimensional of
dimension q > p where p is the dimension of T(p) : H —
HorifT : H — H is nondegenerated. Another useful
characterization is the use of the relative error operator T(p) :
H — H satistying the operator identity T(p) = T(I +
T(p)). Another alternative operator identity T = T(p)(I +
T,(p)) cannot be used properly if T : H — H is infinite
dimensional since T(p) : H — H is degenerated of finite
dimension p. We discuss some properties of the operator
identity T(p) = T(I + T( p)) through the subsequent result.

Lemma 6. Let H be a separable Hilbert space and let T :
H — H be a nonnull and nondegenerated (i.e., of infinite-
dimensional image) linear closed and compact operator and let
T(p) : H — H bethe linear degenerated p-finite-dimensional
approximating operator of T : H — H. Then, there is an
operator T(p) : H — H such that T(p) can be represented by
T(p) =TI+ T(p)), Dom(T(p)) € Dom(T), and Im(T(p)) C
Dom(T) with the following properties.

(i) There exists an (in general, nonunique) operator T(p) :
H — H, restricted to T(p) : Dom T(p)l DomT —



ImT(p) € DomT for each approximating T(p) :
H — H of given dimension p.

(ii) The operator TT(p)
unique, and compact.

: H — H is nondegenerated,

(iii) The minimum modulusof T : H — H is y(T(p)) =0
so that if it is invertible, its inverse is not bounded.
IfT H — H is degenerated, that is, finite
dimensional of dimension q > p, injective with closed
image then its minimum modulus is positive and finite.
If, furthermore, T : H — H is invertible then
T(p) : H — H is a compact operator with bounded
minimum modulus y(T(p)).

Proof. The existence of such an operator T( p):H — His
proved by construction. Let {e,},. be an orthonormal basis
of generalized eigenvectors of T : H — H and {v,}, an
orthonormal basis of T(p) : H — H, respectively. Then, one
gets for some sequences of complex coefficients {y”f}jeN’ for

alln e N,

Vn:

M8

YH] ]

-
Il
—

Tx = i (Tx,e,)e, = OZO: A, (T){x,e,) e,
n=1 n=1
p p
T(p)x= ) (Txe)e,= ) A, (D) (xe)e,
n=1 n=1

T(p)x= Y (T o) = Y 0 (T(0) () v,

I
M8
M8

/\n (T (P)) <.X, ynjej> Y

S

I
—_
-

0
—

I
Mg
Mg
Mg

An (T (p)) <x’ anej> ynkek(sjk

=
Il
—
.
I
—
=
Il

1

M2
>~

n (T (P)) (x:¢5) Ve

n=1 j=1
:iozoi/\n T(p) |Vn]' <x e]>e
" (39)
TT(p)x—T<§§/\k T (p) |ij' <x e]> >
k=1 j=1
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M3

>

Mg

= Ay (T) Ay (T p)) 'ij|2 <x, ej> ej0jn

S
I
—
=~

1

Z /\ (1) (ozo: Ak ( )) |Ykn|2> <x’ en> €n-

._.
-
1l

3

(40)

Then, TT( p) H — H is a unique nondegenerated
compact operator from its representation (40). It follows that
the operator identity T(p) = T(I + T( p)) holds on H if and
onlyif T(p)x =TI+ T( p))x; for all x € H and, equivalently,
since T and T( p) are linear,

M8

A, (T) <1 - i M (T (p) kan|2> (x.e,)e,
n=1 k=1

(41)

S

= Z A, (T)(x,e,) e,

Since the vectors in {e,}, .y form an orthonormal basis,
(41), if the following constraints defining the operator T(p) :
H — H, restricted as T(p) : Dom T(p) | DomT —
Im T(p) € Dom T, hold for a nonnull operator T : H — H

P o _
Z Z An (T) /\k (T (p)) h’kn'2 <x’ en> €n
n=1k=1

+zA«nQ+zM(p»m1ymm%=o

n=p+1
(42)
so that (42) holds if and only if
z Ak (T (P)) |Ykn|2 =0 fornep;
k=1
(43)

1+ Z Ay (T (P)) |Ykn|2 =0 forn>p

k=1

since the elements of {e,} are linearly independent. Then (43)
holds under infinitely many combinations of constraints on

the spectrum of T(p) : H — H. In particular, (43) holds if

L (T(p))=0, Vn(eN)#p+1

Ap+1 (T (P)) = _h/;z;
ptln

(44)
|Vp+1,n| =0 forne ﬁ|yp+l,n| =y#0
forn(eN)> p+1.

Equations (43) are also satisfied with y;,, = 0, foralln € p,
forallk € N, and 1+Z,(<X=’1 )tk(T(p))|y,m|2 = 0forn > pwhich
holds, for instance, if |y;,|* = Iy,I° = —1/(Xr, A(T(p))) for
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alln > p. Thus, T : H — H is then non-unique, in general.
Properties (i)-(ii) have been proved.

Now, let u(T) = {inf|Tx| : x € H,|x| = 1} be the
minimum modulus of the linear operator I' : H — H.If
x| = 1,thenif T : H — H is injective with closed image
(this implies that such an image is finite dimensional), then
u(T) > 0 and since T, T : H — H are both bounded since
they are compact, one gets

u(T(p)) <u(TT(p))u(T)

<  max ||Tx -T(p) x|| pt_l (T)

T x(em)=1
<|T-T(p)|u" (1)
<(ITh+ T (p)) ™" (T) < 0.

If T : H — H is infinite dimensional, then u(T) = 0
and it cannot then have bounded inverse. f T : H — H
is degenerated of dimension g = p, then T(p) is the null
operator with y(T) =0.IfT : H — H is degenerated of
dimension q > p and invertible, then y'(T) = u '(T*) =
IT < oo and |T(p)|l < IT'IIT - Tl < oo so that
T(p) : H — H is bounded and compact since it is a
composite operator of a compact operator (T — T(p)) on H
and a bounded operator T~' on H. Property (iii) has been
proved. O

(45)

Example 7. Assume that T, T(p) : H — H are two degen-
erated finite-dimensional operators on a separable Hilbert
space H of, respectively, dimensions two and one defined by
Tx = A (T){x,e;)e; + A,(T)(x,e,)ey; for all x € H and
T(p)x = A,(T){x,e,)e;; for all x € H. Thus, the constraints
(42) hold for an incremental operator T( p) : H — H of
spectrum deﬁnedby)»l(T(p)) = O,AZ(T(p)) = —1/|y22|2 with
Y5, #0 and y,; = 0. Then,
T(p)x = (ver) e
[y22

TT (p)x = -1, (T) A, (T (P)) |Y22|2 (x.e5) €
= -1, (T){x,e,) e,.

Remark 8. If T : H — H is infinite dimensional and
invertible, then T(p) : H — H is not compact, since
T™' : H — H is unbounded, since wT) =06 y"l(T) =
IT™] = oo.

(46)

3. Examples

Hilbert spaces for the formulation of equilibrium points,
stability, controllability [16, 18, 19], boundedness, and square
integrability (or summability in the discrete formalism) of the
solution in the framework of square-integrable (or square-
summable) control and output functions are of relevant
importance in signal processing and control theory and in
general formulations of dynamic systems, in general. See, for

instance, [1, 2, 7, 9, 16, 17, 19, 20] and the references therein.
Two examples with the use of the above formalism to dynamic
systems and control issues are now discussed in detail.

Example 1. Consider the forced linear time-invariant differ-
ential system of real coeflicients and nth as

d'y (t)
"odt

[04

S
= Pu() (47)

i=0

under a piecewise continuous square-integrable forcing func-

tion u : Ry, — R;thatis, u € L*(0,00), with &, #0. The

unique solution for any given initial conditions (dyi(O)) /dt’

fori=0,1,...,s—1is

B T< At B Jt At—7) >
yt)=c |e"x(0)+ — | e bu(t)dr |, (48)
(Xn 0

where the superscript T'stands for transposition, ¢,b € R® are
Euclidean vectors of, respectively, first and last components
being unity and the remaining ones being zero x(t) =

(y@®), (dy@®))/dt, ..., dsfly(t)/dtsfl)T, and

0 1 0 - 00
0 0 1 0 -0

A= N I | (49)
(xn—l (xn—Z _%
« « %y

The matrix function e is a C,-semigroup generated by
the infinitesimal generators A, respectively [17, 19]. Using a
sampling period of length 0, we can write from (48) for time
instants being integer multiples of the sampling period

Xy =x((n+1)0) =T (u,0,n) x,
=T, (0) x, +T;(0)u(n0)

0
= (x,, + B J e bu
g o

X (nf + 1)dt ), Vn e Ny = NU {0},

Yooy = Cx((n+1)0) = cret?

0

x (xn + B J- e bu (nf + 1) dr>, Vn € Ny,
g Jo

(50)

where x,, = x(nf) and g = «, provided that the input is u,, =
u,(0) = u,(7), for all T € [0, (n + 1)0). The matrix function
¢ can be expanded as follows:

u-1 u-1 /-1 9 )
RN ACYIEDY ( > ijQJeAﬂ) VASNE)
k=0 k=0 \ j=0 ¢=0

where 0(A) = {A; : k =0,1,...,9 — 1} is the spectrum of
A, that is, set of ¥ distinct eigenvalues of A with respective
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multiplicities v, for k = 0,1,...,4 — 1 in the minimal
polynomial of A where y = 22:1 v, is the degree of the
minimal polynomial of A, and then 1 < p < sand y
are complex constants. The above o (t); k = 0,1,...,pu -1
are everywhere continuous and linearly independent time-
differentiable functions on R. Then, the unique solution (or
output) of (47) for zero initial conditions is

Y () = (Au) (8) = L Bt 7)u (r) dr
(52)

= jth(t—r)u(r)d‘r
0

with y € L2(0, 0) provided that h € L2(0, 00), guaranteed
from (51) if and only if Re(A) < 0; for all A € o(A) and
h(t,7) = h(t — 7) is a convolution operator and A, is a
convolution integral operator since the differential system
is time-invariant where h(t,7) = 0, for all 7(> t) € Ry,.
Thus, such an operator is normal, since it is time invariant
[1], and then self-adjoint. Now, define the sequence of samples
{y,, = y(n0)}, . for a sampling period 6 as

Vo= A, = (A u) (n 0)

(53)

no
= J h(no,t)u(r)dr; VneN

0
with the operator A being defined from A, on the space
of square-summable sequences £*(0,00), where I, :=
(g Uy ... U, ), foralln € N. Assume that the forcing input
u(t) = u, = u(n0) is piecewise constant, for all n € N, for all
t € [n0, (n+1)0). Note that if h, = 0, then h; (s), the unilateral
Laplace transform of h(t), is strictly proper; that is, it has
more poles than zeros. In the case that i, = h(0) #0, h;(s) is
proper by not strictly proper; that is, it has the same number
of poles and zeros. It turns out that we can define an operator
sequence Tn : £2[0,00) — £2[0,n+1]: foralln € N, with the
second one being a natural projection P,,, on £2[0,7 + 1] of
an operator T on £2[0, 00] so that, by using T, : £*[0,co) —
22 [0,n+ 1]; for alln € N, one gets:
j}\m—l = Tnj;n = Tj;; VneN (54)
with ¥, = (yo,yl,...,yn,O,O...)T; foralln € N, ¥ = (yy, ¥1»

s Y Vst Ymzo -+ ) o = Yo = Toyp» with Ty being the
identity operator. One has from (51) that

h, = h(n)

p=1v-1 9
(z 53 vy

k=0 j=0 ¢=0

> (55)
; VneN,

andh, — Oasn — ocoifRe(A;) < 0;€=0,1,...,9-1.Some
particular cases are discussed below under the assumption
{u,} c €2[0,00) and Re(},) < 0; € = 0,1,...,9 — 1 implying
{h,} € €2[0,00), {|h,|} c £[0,00),s0 that ¥ || = H < +co
and Y h; = H < +00, since {h,} is bounded.
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Proposition 2 (constant piecewise constant open-loop con-
trol). Assume that Re(A) < 0, for all A € 0(A), and consider a
constant open-loop controlu,, = u, for alln € N. The following
properties hold.

(i) The sequence {y,},ex,, satisfies Y1 = Ty, = Tpp1 Yo
subject to y, = uyhy, for alln € Ny, where the operator
T:NyxR — Ris deﬁned as the sequence of scalar
gains (Y i/ S b i), for all n € N in the
Banach space (R, | - |) which is the Euclidean Hilbert
space for the product of real numbers being an inner
product. Furthermore, {y,},ox, — ¥

(ii) Assume that p(e N) > p, for some given p, € N, and
luyl < min(1/H, 1/( 15871 |h,,_;])). Then, |yn|N
and |7n(p)|N — 0as N — oo, foralln € N, for all
p(= py) € N for some finite p, € N.

(iil) There is p, = pole,uy,) € N for each given € € R,
and uy € R such that |y, —y,(p)| < & for all n(e
Ny) = p = p,. Also, for each given u, € R satisfying
3 limy, _, o (|tglmaxgc, 1 (11, = 0, for all n(e
N) > p - 1, it follows that

- 0

dim |y, -7, ()" =0, lim (377 (p)) =0,
Vn(e N)>p-1.
(56)

Proof. Property (i) follows from y,, = uy(Y}, h,_;), or equiv-
alently, y,,, = (Znﬂ hn+1—i)/(2?:0 h, )y for alln € N,
subject to an 1n1t1al condition y, = uyh,. Since {h,} is
bounded, {h,} — Oasn — oo,and Y. h; = H < +00,
then)’n—uo 210 nz)_)y_MOH_uO(21O nz<
+00. Thus, the sequence {Vubnen,, is generated as y,., =
Ty, = T"'y,, subject to y, = uphy, for all n € N,
where the operator T N, x R — R is defined in
the Banach space (R | - |) as the sequence of scalar gains
(8 By )] (X By )}, for all n € N which is the
Euclidean Hilbert space for the product of real numbers
being an inner product. Furthermore, {y,},on, — y*.
Property (i) has been proved. On the other hand, since |1,| <

min(1/H, 1/(X.7 " |h,,_; ), it follows that [y*| < [uH] < 1

and then
L |Z;‘1:0 hnfi |
Wl = u, hn—i < oo 11 <1 Vn € N,
|)’ | | 0|< Z ) & lhil

i=0

. (57)
bl =y <1 asn— oo,
|yn|N—>0 as N — 00, Vn € N,
_ = 2o M
|yn (p)l = |u0l Z hn—i < p;i)l |h |
i=0 i=0 n—i
p-l . 58
Lo il ) e, )
p-1
=0 |hn—i|

17, (p) |N—’0 as N — oo, Vn e N.
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Property (ii) has been proved. Now, note that for any
given ¢ € R, and u, € R, there is p, = p,(e,u,) € N such

that for any p(> p,) € N
|u0|< Z |hn i )
i=py+1

(59)
< |”0|< ) |hn—i|> se
i=py+1

n

2

i=p+1

|yn _711 (p)l = |u0|

for py = po(e,uy) € N satisfying (Z;’fpoJrl b, ]) < eluy| ™" if

uy #0 and such a p, exists since {|h,|} < €[0,00). Note that

ifuy, = 0, then |y, - y,(p)l = 0so that |y, —y,(p)| < ¢
for any p, = py(e) € N. The first part of Property (iii) has

been proved. Note that 3 limy _, .|y~ — 7 (p)| = 0. Then,
the second part of Property (iii) follows since

lim sup lya =7 ()]
(60)

1)-o

Property (iii) follows from Theorem 5 with the operator T, :
22[0,n] — £2[0,n + 1], for all n € N of (58) and its
degenerated finite truncation T,,(p) : £*[0, p], foralln € N in
the subsequent way

< H |up|lim sup <|u0| " max |h,,_;
N — o0

0<i< P

|%—m@n4m—%@m

nfl (P) jjnfl "

= z <|Tn)’0 -T (p) }’0| > |u0|1/zgivi>
i=1

" 1 Vn1 —

x |“0|1/29i"i’

_ (61)
=7 (0)] = [Ta 5 -

Tn—l (P) yn—1||N
= Z < |T”y0 -T () yol
i=1

" _ N-1
|T Yo~ T (p) ,'Vol
X |”0|1/29i1’i> |”0|1/29i"i’

where T : R — R maps each element of the sequence
{ yn}neNo, which is strictly ord.ered according to the time
occurrence, to its next consecutive one,

[

i|hl

if ;>0

62
ith; <0 (62

(then giqu — h; in the second part of (62)), for all i €
Ny, and {v;},,y is a basis of orthogonal vectors v; =

luoh;| e, if ugh;#0 and v, = 0, where ¢, is the ith unit

1

vector in R” with its ith component being one, such that
the set {Iuoll/zx/|hi|vi}i€N is an orthonormal basis so that

(lugl"* NIV, Lo [l v;) = 8 as

(63)

( Zhn,l]y]> Vn e N.

—p+1 j=0

O

Example 2. Consider again (47) with Re(A) < 0, forall A €
o(A). If one measures some more state variables than just the
solution, then an extended solution (48) of the form

z(t) = (y ), %" (t))T

¢ (64)

=C <eAtx 0) + j 2D By (1) dT>
0

is built with z : Ry, — R® which is the output; 1 < s, <
s, z(t) = Cx(t) and x°(¢) is formed by all or some of the
components of x(t) except y(t), C € R, and B € R™»
where s, > 1 is the dimension of the piecewise-continuous
input u : ROJr — R’ which is in L [O 00). If x°(¢) is not
used to (64), then z(t) = y(t) and s, = 1. If z(¢) = x(t), then
so = s. Equation (64) can be expressed as

2 () = (Ayxo) () + (A pu) (1)
=T, () x, + joo Ty (t, ) u(r)dr (65)

0
=T, (t) xo + (Tfu,) (),

Vt € Ry,

with x, = x(0), T;,(t) = C
R’ — R% and Tf
defined as

e and the operators Ty : R}, x
: Lim(—oo, 00) — Lio(—oo, 00) are

Tp(t,r)=T;(t-1)=Ce" "B, VteR,  (66)

(Tfue) (t) = JOO Ce*Bu, (1) w, (1) dr

JOO t-1Nu(r)1(t-1)dr

0

(o]

Tf(t Tu, (1) 1(t -1)dr

(o]

J T, (t- 1w, (Du, (D)ds; Ve € Ry,

(67)

(0]
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so that Tf(t, 7) = 0 for T > t is a convolution operator, where
u,:R — Lzsm(—oo, 00) N PC(R, R°") is piecewise continuous
on R and square integrable defined as u,(t) = u(t) fort € R,
and u(t) = 0; otherwise, w; is a truncated multiplicative (or
truncated gate) from (—co,t] N Rto (0, 1) for each defined as
w,(r) = 1for 0 < 7 < tand w,(r) = 0, otherwise, for all
t € R. Note that w,(t) = 1(t — 7)1(7), for all (¢, 1) € R%. The
multiplicative (or gate) operator w from R to (0, 1) is defined
asw(t) = 1 fort > 0 and w(t) = 1, otherwise; for all t € R.
Now,

P
(T () 0= 3 (T30) 0.0.0) .00

= JOO T (pt—7)u, (1) 1(t—1)dr

-0

=J Tf(P’t_

—00

) w, (1) u, (1) dT,
(68)

where (-, ) is the inner product on Lio(—oo, 00), Tf(p,t -T)
is the kernel of (Tf(p))(t); {6;} and {¢;}; i € p are two
reciprocal orthogonal bases of the pth dimensional subspace
M, of Lio(—oo, 00) and Tf(p) maps u, € Lzsm(—oo, 00)
in the orthogonal projection of (Tfue)(t) on M, for all
t € Ry,. Note that Tf(p) is a self-adjoint, since it is
time invariant (and convolution), compact operator since

its image is finite dimensional. On the other hand, note
that

”io ”Tf (t-1)w, (T)||2d‘[dt

- ” Uy - of @ Pdeae

= Iwlt] < +o0

so that Tf : L2 ( 00,00) — L2 ( 00,00) has a square-
integrable kernel sothatitisa Hllbert Schmidt operator, then

compact, and also self-adjoint since it is time invariant. Note
that [l || = [lull. Thus,

(Tru)® =|  Ce" ?Bu, (1) w, (1) dr

—00

(70)

o0

=2 ((Tyue) 1.6, 0) ¢, ®).

i=1

where {6;} and {¢;}; i € N are two orthogonal complete
systems of the infinite-dimensional separable Hilbert space
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Lio(—oo, 00) and one has from (67) to (69) that

”i"(Tf (t=7) =Ty (p.t = 7)) w, (0 drdt

(71)
—> 0 as p— 00
Tf(t—r>=;wi<t>é,-(r>,
P p—
Tf(p,t—r)=;w,»(t) 0, (1),
(72)

v (t) = ro Ty (t-71)¢;(T)dr, VteRy,

|((Ty =Ty (p) ) ]

[ee]

Y (Tu) 0.6,0)) 9 0

i=p+1

Vt € Ry,

sup (T~ T (p)) | = sup | 3 ((Tyu).6) e,
Jull=1 =1 ||iZpr1
= 'APH (Tf)|

(73)

with u, € Lin(—oo, 00), AP+1(Tf) € U(Tf), being nonzero for
any finite p,y; : R — LZSU(—oo, 00); for all i € N is a linearly
independent set, since the kernel Tf(t - 1) of Tf is bounded
andy; : R — Lio(—oo, 00), for all i € N, and where the
norm is associated with the inner product on Lio(—oo, 00).
Equation (70) describes the truncated error norm on (-0, t]
of (Tf - Tf(p))ue in (71), for all t € Ry, via the formula (69)
while (71) refers to the whole real interval (-0, 00). From
(73), thereis p, = p,(€) such that ||Tf—Tf(p)|| < eforany p >

po and any prefixed € € R,. Since (Tfue)(t) =z(t) - Tp,(t)xo,
(Tr(plu)(t) = zp(t)—Th(t)xO,for allt € Ry, ,and |)Ln(Tf)| —
0asn — oo since Ty :
compact and then

Lim(—oo,oo) — Lio(—oo,oo) is

(T - T (p)) we

-1 3 (Tm)0) e

i=p+1
= Pyt (T)|
<elull, Vp=py VteRy,

lim sup (T = T; (p) u. ®)] = lim sup [HOEENG]

< o ()
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Jim, (1m s (T T, (). 0] )

= Jim_ <liItrL sup |z) -2, (t)||>

< lim A, (Ty)[ =0,

p—)OO

(74)

concluding the following: (a) the true and approximate forced
and complete solutions might be made as close as suited,
in terms of difference of norms, by using a finite-range
operator approximant of sufficiently large range dimension;
(b) if the true asymptotic solution is a fixed point z* =

JOOO Ce"™ Bu(r)dr, then

lim sup |z, ), < [2"[, + £ (p) Il
lim inf |z, O, 2 [|2"], - () 1, 75)

lim lim (“zp t) -z 2) =0,

p— 00t — 00

so that z,(t) — z" as p(e N),t(¢ R) — oo, where
| - I, denotes the spectral norm for vector and matrices. Now,
assume that the dynamics is perturbed with a parametrical
disturbance A in the matrix A, which is nonsingular since
Red < 0,forall A € 0(A) togive A' = A+ A = A(I + A" A),
with I being the nth identity matrix. Thus, A’ is also a stability
matrix if 1 > |A|JA™Y| for any matrix norm since from
Banach perturbation lemma [|A"™|| < [A7/(1 = A7 ||| A])

[7, 19, 21, 22], since A’ oo I+ A_IK)_lA_l, exists and its
maximum modulus eigenvalues do not cross the imaginary
complex axis from the continuity of the eigenvalues with
respect to the matrix entries. Thus, the perturbed dynamic
system has the following solution:

! t —_—
x(t) = e*'x(0) + J A (Bu (1) + Ax (r)) dr
Ot (76a)
=ty 0) + J Ay, (r)dt; VteR,y,,
0

2= (y®), " ®)"

=C <eA’tx (0) + Jt AT (Bu (1) + Ax (T)) dr)
0

! t r
=C <eA ‘x (0) + J A By (1) d‘l’) , VteR,,.
0
(76b)

If the nominal (i.e., unperturbed) solution is a fixed point z*

and, since ||eA’t||2 — 0ast — oosince A" isa stability
matrix, then applying Holder’s inequality to (76a) and (76b),
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it follows that x € L with SUP;cR,, x(®), < M < +0c0, and
then

. " K
lim sup|lx (Il < ||*], + p—A (lul), VteRy,, (77a)
t— 00 A

lim suplz ()] < "1,

o (77b)
N olICi Al sup [x (£)ll,,

vVt € Ry,,
Kapa  ter,, !

* SICI AN, M
tim suplz, (0], < |27, + & () + LB,
e APA
(77¢)

. SICIAl,M
Jim(1im sup [z, @), ) < [2°], + 1SR )
for any § € R, satisfying Al, <8 < 1/]|A7Y, = /\min(ATA),
and K, > 1 and p, > 0 are real constants such that IIeAtIIZ <
K,e P4, for all t € Ry,. In particular, (—p,) is the stability
abscissa of the dominant eigenvalue of A if it is either simple
or it has an associate diagonal Jordan block, or a number
arbitrarily close to it but larger.
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