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SUPPLEMENTARY INFORMATION

for

“A quantitative witness for Greenberger-Horne-Zeilinger entanglement”

by Christopher Eltschka and Jens Siewert

A. Two-qubit GHZ-symmetric states

The twirling operation equation (2) in the main text defines a family of GHZ-symmetric

mixed states for each qubit number N ≥ 2. The simplest case is that of two qubits.

The symmetrization ρS(ρ) of an arbitrary two-qubit state ρ is characterised by two real

parameters for which we choose the following parametrization20

x(ρ) =
1

2
(ρ00,11 + ρ11,00) (S1)

y(ρ) =
1√
2

(
ρ00,00 + ρ11,11 −

1

2

)
. (S2)

We emphasise that these coordinates (as well as those in equations (4), (5) in the main text)

are defined for normalised density matrices. The corresponding states form a triangle in the

xy plane, see Supplementary Fig. S1.

The entanglement monotone considered here is the concurrence C(ψ) = |〈ψ∗|σy ⊗ σy |ψ〉|.

Its convex-roof extension15 is defined in analogy with equation (9) in the main text via

C(ρ) = min
all decomp.

∑
pj C(ψj) , (S3)

i.e., the average concurrence minimised over all possible pure-state decompositions {pj, ψj}

of the two-qubit state ρ =
∑
pj |ψj〉〈ψj|. The concurrence of GHZ-symmetric two-qubit

states is a function of the coordinates20

C(x, y) = max

(
0, 2|x|+

√
2y − 1

2

)
. (S4)

We can rewrite this formula in terms of the matrix elements of the original state ρ using

equations (S1), (S2), keeping in mind that symmetrization cannot increase the concurrence:

C(ρ) ≥ max (0, |ρ00,11 + ρ11,00|+ ρ00,00 + ρ11,11 − 1) (S5)

i.e., we obtain equation (3) of the main text. The analogy with some of the equations in

Ref.11 is remarkable, in particular with equation (6), if we use W2 =
1
2
1l4 − |Φ+〉〈Φ+| as the
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Figure S1. The geometric representation of two-qubit GHZ-symmetric states20. The upper corners

are defined by the Bell states |Φ−〉 = 1√
2
(|00〉− |11〉) (left) and |Φ+〉 = 1√

2
(|00〉+ |11〉) (right). The

lower corner represents the mixture 1
2(|Ψ

+〉〈Ψ+| + |Ψ−〉〈Ψ−|) with |Ψ±〉 = 1√
2
(|01〉 ± |10〉) . The

blue region shows the separable states whereas the states in the green region have non-vanishing

concurrence.

only witness (with the optimal slope r = −2 and the offset c = 0). It arises due to the fact

that the concurrence of GHZ-symmetric two-qubit states is a linear function, and the linear

one-witness approximation in Ref.11 becomes exact. We note also that our concurrence

formula in the main text, C(ρ) = max(0, 2f − 1) tr ρNF, is reminiscent of the so-called fully

entangled fraction4. However, the optimisation of the fully entangled fraction includes only

local unitaries while our approach allows for general SLOCC operations.

B. Normal form of two-qubit states

According to Verstraete et al. it is always possible to obtain a Bell-diagonal (renor-

malised) normal form ρNF for two-qubit states7,18. That is, ρNF can be written as a mixture

ρNF =
4∑

j=1

λj |φj〉〈φj|
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where λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0,
∑
λj = 1 and {φ1, φ2, φ3, φ4} is a permutation of the

four Bell states {Φ+,Ψ+,Ψ−,Φ−}. Evidently the Bell-diagonal form with maximum ρ̃NF
00,11

is one where φ1 = Φ+ and φ4 = Φ−. It is not difficult to see that by applying appropriate

combinations of the local operations 1l2, σx, σy, σz as well as

1√
2

 1 1

1 −1

 and

 1 0

0 i


to the qubits in ρNF, it is always possible to achieve the correct permutation of the φj

19.

Note that this implies that there cannot be another Bell-diagonal normal form derived from

the original two-qubit state ρ with a concurrence larger than that of ρ̃NF.

Bennett et al. have demonstrated that the concurrence of a Bell-diagonal two-qubit

density matrix depends only on its largest eigenvalue4. Therefore C(ρ̃NF) = max(0, 2λ1− 1)

can be determined exactly without reference to the Wootters-Uhlmann method8,9 and does

not change on applying the symmetrization operation equation (2) in the main text.

We mention that in the two-qubit case the different optimisation criteria for step (2)

(i.e., maximal concurrence of ρ̃NF, maximal fidelity with Φ+, maximal Re ρ̃NF
00,11, and minimal

Hilbert-Schmidt distance from Φ+) are equivalent.

C. Entanglement loss in three-qubit symmetrization

In the main text we have mentioned that for three qubits one may not expect to find the

exact three-tangle for arbitrary mixed states, and that in general entanglement is lost in the

symmetrization. This statement is illustrated by the mixtures

ρ1 = p |GHZ+〉〈GHZ+|+ (1− p) |W 〉〈W |

versus

ρ2 = p |GHZ+〉〈GHZ+|+
1− p

2

(
|W 〉〈W |+

∣∣W̄〉〈
W̄

∣∣)
where |W 〉 = 1√

3
(|001〉 + |010〉 + |100〉),

∣∣W̄〉
= σ⊗3

x |W 〉. It is known21,22 that ρ1 has non-

vanishing three-tangle for p & 0.627, as opposed to ρ2 which is GHZ-entangled only for

p > 3/4. Note that ρ2 is already given in the normal form. For ρ1 the normal form can be

calculated analytically.
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In the range 0.70 < p < 0.74 the exact three-tangle of ρ1(p) is 0.19 < τ3(ρ1(p)) < 0.3117

while τ3(ρ2(p)) = 0. The optimisation leaves ρNF
1 / tr ρNF

1 and ρ2 practically unchanged. The

corresponding points in the xy plane are located close to each other and still in the region

of W states, i.e., we obtain the estimates τ3(ρ
S(ρNF

1 )) = τ3(ρ
S(ρ2)) = 0. Hence, the GHZ

entanglement in ρNF
1 will be underrated while that of ρ2 is determined exactly.

D. Relation between projective GHZ witness and quantitative witness

In the discussion part of the main text we mention that the standard projective GHZ

witnessW3 =
3
4
1l8−|GHZ+〉〈GHZ+| can, in modified form, be used as a quantitative witness.

Here we explain this fact in more detail.

The standard witness W3 detects the GHZ-type entanglement in an arbitrary three-qubit

state ρ: it is a GHZ-class state if tr(W3ρ) < 0. Our aim is to elucidate that W ′
3 = −4W3 is

a quantitative witness for ρ, i.e., that

τ3(ρ) ≥ tr(W ′
3ρ) = −4 tr(W3ρ) (S6)

is a lower bound to τ3(ρ) for arbitrary three-qubit states ρ.

It appears obvious that, in order to obtain a non-optimal witness, it is not necessary to

use the GHZ/W line which is difficult to handle analytically. The solution of the two-qubit

case suggests the following simpler alternative: We start at the end point of the GHZ/W

line P = (x = 3
8
, y =

√
3
6
, τ3 = 0) and consider the straight line which contains this point

and is parallel to the lower-left border of the triangle. Its equation is yP =
(
−2x+ 5

4

)
/
√
3.

It crosses the triangle only in the GHZ part, that is, its points lie above the GHZ/W line.

For all the states ρSP which correspond to triangle points on this line the Hilbert-Schmidt

scalar product with GHZ+ equals (GHZ+, ρ
S
P ) ≡ 1

2
tr
(
|GHZ+〉〈GHZ+| ρSP

)
= 3

8
.

From Supplementary Fig. S2 it is easy to see that a plane which contains this line and the

point (xGHZ+ = 1
2
, yGHZ+ =

√
3
4
, τ3 = 1) represents a lower bound to the three-tangle of GHZ-

symmetric three-qubit states. It is straightforward to check that the function ρS 7→ τP3 (ρ
S)

corresponding to the points of that plane is given by

τP3 (ρ
S) = −4 tr

(
W3ρ

S
)

. (S7)

As the plane τP3 (ρ
S) lies below the exact τ3(ρ

S) we have also

τP3 (ρ
S) ≤ τ3(ρ

S) .
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Further, the operator W3 has GHZ symmetry so that for an arbitrary state ρ

tr (W3ρ) = tr
(
W3ρ

S(ρ)
)

.

By combining the preceding relations and the conclusions from the Section “Results” in the

main text we obtain

−4 tr (W3ρ) = −4 tr
(
W3ρ

S(ρ)
)
≤ τ3

(
ρS(ρ)

)
≤ τ3

(
ρS(ρ̃NF)

)
≤ τ3(ρ) (S8)

which confirms the desired result, equation (S6). We mention that also here there is a certain

freedom whether or not one wants to optimise the state ρ before symmetrizing it. One may

note the relation between this type of equation deriving from our method and some of the

findings in Sections 3.4–3.6 of Ref.12, as well as those in Ref.23

Figure S2. The three-tangle for three-qubit GHZ-symmetric states as in equation (6) (grey sur-

face) compared to the non-optimal (but easy-to-handle) quantitative witness, supplementary equa-

tion (S7), blue triangle (see text).

From these remarks one might feel tempted to conclude that our method is a mere

extension to the standard witness approach as it detects GHZ entanglement in a given state
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ρ more or less according to the fidelity of the GHZ state and assigns a number to it. To

clarify this point consider the example

ρ3 = p |GHZ+〉〈GHZ+|+ (1− p) |001〉〈001| .

The exact three-tangle is τ3(ρ3) = p, that is, the state contains GHZ entanglement for

arbitrarily small p. While the standard witness would not detect entanglement for p < 3/4

our approach produces the correct value (with a relative error < 10−2) for values as small

as p ∼ 10−5.


