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Along with the vast progress in experimental quantum technologies there is an increasing demand for the
quantification of entanglement between three or more quantum systems. Theory still does not provide
adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational
methods that allow for efficient entanglement quantification. Here we put forward an analytical approach
that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger–type
multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to
Wootters’ seminal result for the concurrence. It establishes a close link between entanglement quantification
and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more
than three parties.

I
t is a fundamental strength of physics as a science that most of its basic concepts have quantifiability built into
their definition. Just think of, e.g., length, time, or electrical current. Their quantifiability allows to measure and
compare them in different contexts, and to build mathematical theories with them1. There is no doubt that

entanglement is a key concept in quantum theory, but it seems to resist in a wondrous way that universal principle
of quantification. The reason for this is, in the first place, that entanglement comes in many different disguises
related to its resource character, i.e., what one would like to do with it. In principle, there are numerous task-
specific entanglement measures2,3. However, most of them cannot be calculated easily (nor measured or esti-
mated) for generic mixed quantum states, and therefore it is difficult to use them.

There are notable exceptions, the concurrence4 and the negativity for bipartite systems5. These measures have
already provided deep insight into the nature of entanglement, but they also have their shortcomings. The
concurrence is strictly applicable only to two-qubit systems while for the negativities it is not known how to
distinguish entanglement classes. The generalisations of the concurrence (such as the residual tangle6) do quantify
task-specific entanglement even for multipartite systems but again it is not known how to estimate them for
general mixed quantum states.

There is another difficulty. An N-qubit density matrix r is characterised mathematically by 22N 2 1 real
parameters. Reducing it to its so-called normal form7—which contains the essential entanglement informa-
tion—removes 6N parameters. The entanglement measure is determined by the remaining exponentially many
parameters which need to be processed to calculate the precise value. Even an operational method similar to that
of Wootters-Uhlmann8,9 would quickly reach its limits with increasing N. Therefore it is desirable to develop
methods which provide useful approximate answers even for larger systems. If one asks for mere entanglement
detection, witnesses10 are such a tool because here the number of required parameters (both for measurement and
processing) can be reduced substantially. There are also estimates of entanglement measures using witness
operators11,12 which, however, have not yet produced practical methods for entanglement quantification.

Here we develop an easy-to-handle quantitative witness for Greenberger-Horne-Zeilinger (GHZ) entangle-
ment13 in arbitrary three-qubit states. It yields the exact three-tangle for the family of GHZ-symmetric states14,
and those states which are locally equivalent to them. For all other states, the method gives an optimised lower
bound to the three-tangle. Due to this feature we call the approach a witness.

We start by defining the GHZ symmetry14 and stating our central result. Then we prove the validity of the
statement for two qubits. We obtain a method equivalent to that of Wootters-Uhlmann, i.e., it gives the exact
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concurrence for arbitrary density matrices. Subsequently we explain
the extension of the approach to arbitrary three-qubit states.

Results
The procedure. The N-qubit GHZ state in the computational basis is

defined as GHZj i: 1ffiffiffi
2
p 00 . . . 0j iz 11 . . . 1j ið Þ. It is invariant under:

(i) Qubit permutation. (ii) Simultaneous spin flips i.e., application of
s6N

x . (iii) Correlated local z rotations:

UN~eiQ1sz6eiQ2sz6 . . . e{i
PN{1

1
Qj

� �
sz ð1Þ

where sx, sy, sz are Pauli matrices. An N-qubit state is called GHZ
symmetric and denoted by rS if it remains invariant under the
operations (i)–(iii). An arbitrary N-qubit state r can be
symmetrized by the operation

rS rð Þ~
ð

dUGHZUGHZrU{
GHZ ð2Þ

where the integral denotes averaging over the GHZ symmetry group
including permutations and spin flips. Notably, the GHZ-symmetric
N-qubit states form a convex subset of the space of all N-qubit states.

Observation: If an appropriate entanglement measure m is known
exactly for GHZ-symmetric N-qubit states rS, it can be employed to
quantify GHZ-type entanglement in arbitrary N-qubit states r. Here,
m(y) is a positive SL 2,Cð Þ6N -invariant function of homogeneous
degree 2 in the coefficients of a pure quantum state y, and m(r) is
its convex-roof extension15. The estimate for m(r) is found in the
following sequence of steps:

(1) Given a state r, derive a normal form rNF(r), i.e., apply local
filtering operations so that all local density matrices are proportional
to the identity7 (see Section Methods). If rNF(r) 5 0 the procedure
terminates here, and m(r) 5 0.

(2) Renormalise rNF/tr rNF and transform it using local unitaries
V [ SU 2ð Þ6N to obtain the state

~rNF rð Þ~V
rNF

tr rNF
V{

according to appropriate criteria (see below) so that the entanglement
of rS(rNF/tr rNF) is enhanced.

(3) Project the state onto the GHZ-symmetric states ~rNF rð Þ.
rS ~rNFð Þ. The estimate for m(r) is obtained after renormalisation

m rS ~rNF
� �� �

tr rNF
ƒm rð Þ:

Two qubits. For two qubits the entanglement measure under
consideration is the concurrence C(r) (Refs. 4,8). From the
symmetrization rS(r) of an arbitrary two-qubit state r we find (for
details see Supplementary Information):

C rð Þ§max 0, r00,11zr11,00

�� ��zr00,00zr11,11{1
� �

: ð3Þ

In the symmetrization entanglement may be lost, as illustrated by the

state Y{j i~ 1ffiffiffi
2
p 01j i{ 10j ið Þ for which inequality (3) gives the poor

estimate C(Y2) $ 0. Therefore, the optimisation steps (1) and (2) are
necessary to avoid unwanted entanglement loss in the symmetri-
zation (3). The goal is to augment the right-hand side of inequality
(3) up to the point that equality is reached. We will show now that for
two qubits this can indeed be achieved.

It is fundamental that the maximum of an SL 2,Cð Þ6N -invariant
function m(r) under general local operations can be reached by
applying the optimal transformation r.ArA{

�
tr ArA{ where A

5 A1 fl…flAN and Aj [ SL 2,Cð Þ is an invertible local operation7.
Consider first the normal form rNF(r) which is obtained from r

by iterating determinant-one local operations7 (see also Methods).
Such operations (represented by SL 2,Cð Þ matrices) describe stochastic
local operations and classical communication (SLOCC). Consequently,
the normal form is locally equivalent to the original state r, that is, it
lies in the entanglement class of r. Note that the iteration leading to the
normal form minimises the trace of the state. Subsequent renormalisa-
tion increases the absolute values of all matrix elements in equation (3).
Here, the correct rescaling of the mixed-state entanglement measure is
crucial. This is why homogeneity degree 2 of m(y) is required16,17.

Hence, transforming r to its normal form increases the moduli of
r00,00, r00,11, r11,00, r11,11 (and also the concurrence) as much as
possible for a state that is SLOCC equivalent with r. The sum of
the off-diagonal matrix elements in equation (3) reaches its max-
imum if r00,11 is real and positive. As this can be achieved by a z
rotation on one qubit we may consider it part of finding the normal
form and drop the absolute value bars in equation (3). Then, the sum
of matrix elements equals, up to a factor 1/2, the fidelity of rNF/tr rNF

with the Bell state Wzj i~ 1ffiffiffi
2
p 00j iz 11j ið Þ. The question is how

large this fidelity may become.
To find the answer we transform rNF/tr rNF to a Bell-diagonal form

using local unitaries (this is always possible7,18,19). If then
rNF

00,11v rNF
01,10

�� �� we apply another SU(2)fl2 operation to maximise

rNF
00,11 (see Supplementary Information). The result is a Bell-diagonal

~rNF with maximum real off-diagonal element ~rNF
00,11 (please note that

~rNF denotes a normalised state, whereas rNF is not normalised).
However, Bell-diagonal two-qubit density matrices with this prop-
erty can be made GHZ symmetric without losing entanglement4 (see
also Supplementary Information).

Hence, our optimised symmetrization procedure (1)–(3) leads to
the exact concurrence for arbitrary two-qubit states r. In passing, we
have demonstrated that the concurrence is related via C(r) 5 max(0,
2f 2 1) ? tr rNF to the maximum fidelity f ~ Wz ~rNFj jWzh i that can be
achieved by applying invertible local operations to r.

Three qubits. For three qubits, the GHZ-symmetric states are de-
scribed by two parameters14 and therefore form a two-dimensional
submanifold in the space of all three-qubit density matrices. It turns
out that it has the shape of a flat isosceles triangle, see Fig. 1. A
convenient parametrisation is

x rð Þ~ 1
2

r000,111zr111,000

� �
ð4Þ

y rð Þ~ 1ffiffiffi
3
p r000,000zr111,111{

1
4

� �
ð5Þ

Figure 1 | The triangle of GHZ-symmetric three-qubit states. The upper

corners correspond to GHZ+j i: 1ffiffiffi
2
p 000j i+ 111j ið Þ and the lower corner

to rS(001), cf. Ref. 14. The grey area shows GHZ-class states (t3 . 0) whereas

the yellow area comprises states with vanishing t3 (‘‘W ’’). The border

between GHZ-class and W-class states is the GHZ/W line, equation (10) (red

solid line). We also show a state rS(x0, y0) together with the point (xW
0 , yW

0 )

that is required to determine the three-tangle t3(x0, y0), equation (6).

www.nature.com/scientificreports
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as it makes the Hilbert-Schmidt metric in the space of density ma-
trices conincide with the Euclidean metric. This way geometrical
intuition can be applied to understand the properties of this set of
states. All entanglement-related properties of GHZ-symmetric states
are symmetric under sign change x « 2x as this is achieved by
applying sz to one of the qubits.

The GHZ-class entanglement of three-qubit states is quantified
by the three-tangle t3 (Refs. 6,17, see also Methods). For GHZ-
symmetric three-qubit states rS(x0, y0) the exact solution for the
three-tangle20 (see also Methods) is

t3 x0,y0ð Þ~

0 for x0vxW
0 and y0vyW

0

x0{xW
0

1
2
{xW

0

~
y0{yW

0ffiffiffi
3
p

4
{yW

0

otherwise

8>><
>>:

ð6Þ

where x0 $ 0 and (xW
0 , yW

0 ) are the coordinates of the intersection of
the GHZ/W line with the direction that contains both GHZ1 and
rS(x0, y0) (cf. Fig. 1). The grey surfaces in Fig. 2 illustrate this solution.

Now we turn to constructing a quantitative witness for the three-
tangle of arbitrary three-qubit states by using the solution in equation
(6). As before, the main idea is that an arbitrary state can be symme-
trized according to equation (2) and thus is projected into the GHZ-
symmetric states. Again, we assume r000,111 real and nonnegative, so
that x(r) $ 0. From Figs. 1 and 2 it appears evident that the entan-
glement of the symmetrization image rS(r) can be improved by
moving its point (x(r), y(r)) closer to GHZ1. More precisely, the
entanglement measure is enhanced upon increasing one of the coor-
dinates without decreasing the other (cf. equations (3) and (6)).

In this spirit, finding the normal form in step (1) is appropriate as it
yields the largest possible three-tangle for a state rNF/tr rNF locally
equivalent to the original r (cf. Ref. 7). As the normal form is unique
only up to local unitaries it does not automatically give the state with
minimum entanglement loss in the symmetrization. Therefore, the
unitary optimisation step (2) is required to generate the best coordi-
nates.

In the symmetrization the information contained in various
matrix elements is lost. For two qubits, however, the concurrence
of the optimised Bell-diagonal states depends only on ~rNF

00,00z~rNF
00,11

and the loss of ~rNF
01,10 in the symmetrization does not harm. In con-

trast, the three-qubit normal form depends on 45 parameters. We

may not expect that t3(r) depends only on two of them and, hence,
entanglement loss in the symmetrization (3) is inevitable (cf.
Supplementary Information). Consequently, steps (1)–(3) lead to a
lower bound for the three-tangle that coincides with the exact t3(r) at
least for those states which are locally equivalent to a GHZ-symmet-
ric state. The most straightforward optimisation criterion in step (2)
is to maximise m rS ~rNFð Þð Þ. Alternative criteria which generally do
not give the best t3(r) but can be handled more easily (possibly
analytically) are maximum fidelity GHZz rS ~rNFð Þj jGHZzh i, min-
imum Hilbert-Schmidt distance of rS ~rNFð Þ from GHZ1, or max-
imum Re ~rNF

0...0,1...1.

Discussion
Evidently this approach can be generalised. Therefore we conclude
with a discussion of some of its universal features. The essential
ingredients are an exact solution of the entanglement measure for
a sufficiently general family of states with suitable symmetry, and the
entanglement optimisation for a given arbitrary state r via general
local operations. The former determines the border where the entan-
glement vanishes. The latter ensures an appropriate fidelity of the
image rS(r) with the maximally entangled state. This reveals a
remarkable relation between entanglement quantification through
SL(2, C) invariants and the standard entanglement witnesses which
we briefly explain in the following.

A well-known witness for two-qubit entanglement is

W2~
1
2 4{ Wzj i Wzh j. It detects the entanglement of an arbitrary

normalised two-qubit state r2qb if

0wtr r2qbW2

� �
~

1
2
{ Wzh jr2qb Wzj i:

On the other hand, from our concurrence result

C r2qb
� �

~max 0, max
A~A16A2

2 Wzh jAr2qbA{ Wzj i{tr Ar2qbA{� �	 
� �

§2 Wzh jr2qb Wzj i{tr r2qb
� �

~{2tr r2qbW2
� �

ð7Þ

we see, by dropping the optimisation over SLOCC A 5 A1 fl A2, that
W’2~{2W2 is a (non-optimised) quantitative witness for two-
qubit entanglement. In other words, W’2 yields one of the many
possible lower bounds to the exact result. Analogously it is straight-
forward to establish the relation between the standard GHZ witness

W3~
3
4 8{ GHZzj i GHZzh j and the non-optimal quantitative

witness W’3~{4W3. The latter represents a linear lower bound
to the three-tangle obtained via the optimisation steps (1)–(3) (see
Supplementary Information).

Finally we mention that our approach can be used without opti-
misation, i.e., either without step (1), or (2), or both. This renders the
witness less reliable but more efficient. At best it requires only four
matrix elements (for any N). We note that, if we apply the witness to a
tomography outcome the measurement effort can be reduced by
using the prior knowledge of the state and choosing the local mea-
surement directions such that the fidelity with the expected GHZ
state is measured directly. This implements optimisation step (2)
right in the measurement.

Methods
Normal form of an N-qubit state. The normal form of a multipartite quantum state
is a fundamental concept that was introduced by Verstraete et al.7. It applies to
arbitrary (finite-dimensional) multi-qudit states. Here we focus on N-qubit states
only.

In the normal form of an N-qubit state r, all local density matrices are proportional
to the identity. Therefore the normal form is unique up to local unitaries. Remarkably,
the normal form can be obtained by applying an appropriate local filtering operation

Figure 2 | Illustration of the procedure for finding the three-tangle of a
general mixed three-qubit state r. In the xy plane, there is the triangle of

GHZ-symmetric states while on the vertical axis, the three-tangle for each

GHZ-symmetric state (cf. equation (6)) is shown. Simple projection

r . rS generates a non-optimal GHZ-symmetric state. The optimisation

steps (1), (2) move the symmetrization image to ropt,S:rS ~rNFð Þ with

enhanced three-tangle.

www.nature.com/scientificreports
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rNF~ A16 . . .6ANð Þr A16 . . .6ANð Þ{

where Aj [ SL 2,Cð Þ. Therefore rNF is locally equivalent to the original state r. The
normal form rNF is peculiar since it has the minimal norm of all states in the orbit of r
generated by local filtering operations. Practically, the normal form can be found by a
simple iteration procedure described in Ref. 7. It is worth noticing that GHZ-
symmetric states – which play a central role in our discussion – are naturally given in
their normal form.

Three-tangle of three-qubit GHZ-symmetric states. The pure-state entanglement
monotone that needs to be considered for three-qubit states is the three-tangle t3(y),
i.e., the square root of the residual tangle introduced by Coffman et al.6:

t3 yð Þ~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1{2d2z4d3j j

p
,

d1~y2
000y2

111zy2
001y2

110zy2
010y2

101zy2
011y2

100

d2~y000y001y110y111zy000y010y101y111z

zy000y011y100y111zy001y010y101y110z

zy001y011y100y110zy010y011y100y101

d3~y000y110y101y011zy100y010y001y111:

ð8Þ

Here yjkl with j,k,l [ 0,1f g are the components of a pure three-qubit state in the
computational basis. The three-tangle becomes an entanglement measure also for

mixed states r~
P

j pj yj

��� E
yj

D ��� via the convex-roof extension15

t3 rð Þ~ min
all decomp:

X
pjt3 yj

� �
, ð9Þ

i.e., the minimum average three-tangle taken over all possible pure-state
decompositions {pj, yj}. In general it is difficult to carry out the minimisation
procedure in equation (9), but there exist various approaches for special families of
states16,17,20–23. For GHZ-symmetric three-qubit states, the convex roof of the three-
tangle can be calculated exactly (see equation (6)). This solution is shown in Fig. 2 and
can be understood as follows. The border between the W and the GHZ states is the
GHZ/W line which has the parametrised form14

xW~
v5z8v3

8 4{v2ð Þ , yW~

ffiffiffi
3
p

4
4{v2{v4

4{v2
ð10Þ

with 21 # v # 1. The solution for the convex roof is obtained by connecting each

point of the GHZ/W line (xW, yW, t3 5 0) with the closest of the points (xGHZ+~+
1
2

,

yGHZ+~

ffiffiffi
3
p

4
, t3 5 1). That is, the three-tangle is nothing but a linear interpolation

between the points of the border between GHZ and W states, and the maximally
entangled states GHZ6.
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