From transistor to trapped-ion computers for quantum chemistry
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SUPPLEMENTARY MATERIAL

In this Supplementary Material we give further details of our proposal, including a thorough explanation of the
quantum simulation of molecules involving fermionic and bosonic degrees of freedom with trapped ions, and electric
dipole transition measurements with a trapped-ion quantum simulator.

A. Quantum simulation

In general, quantum simulation can be divided into two classes, namely analog and digital. Analog quantum
simulation requires the engineering of the Hamiltonian of a certain system to mimic the Hamiltonian of a target
system. Digital quantum simulation employs a quantum computer, which decomposes the simulation process into
pieces of sub-modules such as quantum logic gates. However, the use of quantum logic gates is not absolutely necessary
for digital quantum simulation. For example, consider the case of trapped ions; we will see that certain simulation
steps requires us to apply quantum logic gates to implement fermionic degrees of freedom, together with some quantum
operations for controlling the vibronic degrees of freedom, which are analog and will implement bosonic modes.

For simulating quantum chemistry, it is possible to work in either the first-quantization representation or the second-
quantization representation. This work mainly includes the latter approach, because the number of qubits required is
less than that in the former approach, especially when low-energy state properties are considered. However, we note
that many techniques described here are also applicable for the first-quantization approach.

B. Computational complexity of quantum chemistry

To the best of our knowledge, there is no rigorous proof showing that quantum computers are capable of solving
all ground-state problems in quantum chemistry. Instead, some results indicate that some ground-state problems in
physics and chemistry are computationally hard problems [1]. For example, the N-representability problem is known
to be QMA-complete, and finding the universal functional in density functional theory is known to be QMA-hard. In
spite of the negative results, quantum computers can still be valuable for solving a wide range of quantum chemistry
problems. These include ground state energy computations [2, 3], as well as molecular dynamics [4].

C. Simulating electronic structure involving molecular vibrations

After the potential surface is constructed by the electronic method, we can include the effect of molecular vibrations
by local expansion, e.g. near the equilibrium position, as we show below.

1. FElectronic transitions coupled with nuclear motion

We point out that within the Born-Oppenheimer approximation, the molecular vibronic states are of the form,
¢n (r,R) Xno (R) where r and R respectively refers to the electronic and nuclear coordinates. The eigenfunctions
¢n (r,R) of the electronic Hamiltonian are obtained at a fixed nuclear configuration. The nuclear wavefunction
Xnw (R), for each electronic eigenstate n, is defined through a nuclear potential surface Eéf) (R), which is also one of
the eigenenergies of the electronic Hamiltonian.

With a quantum computer, the potential energy surface that corresponds to different electronic eigenstates can be
systematically probed using the phase estimation method. We can then locate those local minima where the gradient
of the energy is zero, and approximate up to second order in R, = R, — Rax, the deviation of the nuclear coordinate
R, from the equilibrium configuration R,.. The energy surface can be modeled as
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where DQB(R,(kn)) = (1/2) GQES)(R:REK"))/@RaaRg is the Hessian matrix. With a change of coordinates for the

Hessian matrices, we can always choose to work with the normal modes x(") = {x((xn)} for each potential energy



surface, such that
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Most of the important features of vibronic coupling can be captured by considering the transition between two
Born-Oppenheimer electronic levels [5]. In the following, we will focus on the method of simulation of the transition
between two electronic levels, labeled as [1) and |}), when perturbed by an external laser field. The Hamiltonian of
the system can be written as

H =) (| ® He + 1) (1| ® Hg, (3)

where Hg = A, + H, is the Hamiltonian for the nuclear motion in the electronic ground state and similarly Hg =
A, + H. is the nuclear Hamiltonian in the excited state. Here A, and A, are the energies of the two bare electronic
states. In the second-quantized representation,

H, = Zw,&g)alak and H, = Zw,&e)bgbk (4)
k k

are diagonal, as viewed from their own coordinate systems. However, in general, the two sets of normal modes are
related by rotation and translation, which means that a transformation of the kind by = > ; Skjt; + Ak is needed for
unifying the representations (see Secs. E and F in this Supplementary Material).

To illustrate our method of quantum simulation with trapped ions, it is sufficient to consider one normal mode (for
example, linear molecules). For this case, we assume H, = wData, H, = w@bth, and b = a + \ where X is a real
constant. From Eq. (3), we need to simulate the following Hamiltonian,

H=Hgs+Q(0.)a’a+ %)\w(e) (I+o0.)(a"+a), (5)

where the term Hg = % (A, — A.)o. contains only local terms of the spin, and Q(0.) = %(w(g) +w(e))I +
1 (w9 —w(®) o, represents a spin-dependent frequency for the effective boson mode.
In order to examine the response of the system under external pertubations, we consider the dipole correlation

function

Coup (8) =Y pn (0, L e e puln, 1) (6)

Under the Condon approximation, assuming real electronic eigenstates, the dipole operator p has the form,

= pge (1) (M1 +11) (L) = pgeoa. (7)

Thus, the problem of simulating absorption resulting from the coupling of electronic and nuclear motion in chemistry
reduces to computing expectation values of the unitary operator

Ud — etho,xeftho_x’ (8)

and weighting the final result by pn,uge. The final spectrum is, of course, obtained through a Fourier transform

Tabs (W) = /00 dt e “tC,,.(t). (9)
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2. Simulation of vibronic coupling with trapped ions

The dynamics associated with the Hamiltonian in Eq. (5) can be generated easily with two trapped ions. As Hg
commutes with the rest of the terms in Eq. (5), it can be eliminated via a change to an interaction picture. Considering
a digital quantum simulation protocol, the remaining task is to implement the interactions exp[—if) (o.)ta’a] and
exp[—idw(® (I + 0.) (al + a) t/2] in trapped ions. The first one corresponds to the evolution associated with a detuned
red sideband excitation applied to one of the ions (a dispersive Jaynes-Cummings interaction), and a rotation of its
internal state in order to eliminate the residual projective term. To implement the second term we will use both ions.
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The term related to the operator o, (af + a) corresponds to the evolution under red and blue sideband excitations
applied to one of the ions (a Jaynes-Cummings and anti Jaynes-Cummings interactions with appropriate phases). We
will use the second ion to implement the term (af +a). The latter can be generated by applying again the same scheme
of lasers that generates the interaction o.(a' + a) where now the operator o, acts on the internal state of the second
ion. Preparing this state in an eigenstate of o, one obtains the desired effective Hamiltonian. As we have shown here,
one of the main appeals of a quantum simulation of quantum chemistry with trapped ions is the possibility to include
fermionic (electronic) as well as bosonic (vibronic) degrees of freedom, in a new kind of mixed digital-analog quantum
simulator. The availability of the motional degrees of freedom in trapped ions, that straightforwardly provide the
bosonic modes in an analog way, makes this system especially suited for simulating this kind of chemical problems.

D. Electric transition dipoles through weak measurement

Here we sketch the method for obtaining the transition dipole between a pair of electronic states |g) and |e).
This method is similar, although not identical, to the weak measurement method using a qubit as a measurement
probe. To make the presentation of our method more general, our goal is to measure the matrix element (e| A|g)
for any given Hermitian matrix A. We assume that a potential energy surface between these two electronic levels is
probably scanned, and the energy levels for higher excited states can be ignored. Suppose we started with a reasonable
good approximation of the ground state |g), and we can prepare the exact ground state using the phase estimation
algorithm. Then, we apply a weak perturbation ), e.g. e~**?, to the ground state and obtain (to order O()\)) the
state |i) = e7? |g) ~ |g) + ¢\ |e). Here )\ is a small positive real number. The actual form of the Hermitian operator
@ is not important, as long as (e| @ |g) = iqg # 0. Note that the eigenstates are defined up a phase factor. Therefore,
without loss of generality, we can assume ¢ is a positive real number as well. In fact, the absolute value |g| can be
measured with repeated applications of the phase estimation algorithm.

Now, we prepare an ancilla qubit in the state |+) = (]0) + |1)) /v/2, and apply a control-U 4, where Us = e~**4. The
resulting state becomes (|0) |i) + |1) U4 |i)) /v/2. The phase estimation algorithm allows us to perform post-selection
to project the system state to |€). The resulting state of the ancilla qubit is o (e|i)|0) 4+ (e|U|i)|1). To the first-order
expansion in A\, we have (before normalization)

gA[0) + (g —ile[ Alg)) A1), (10)

where we used (e|i) = gX, and (e|Ua |i) = (e|Ua |g) + g (e|Ua |e) = —i(e| Alg) A+ gA. Since the value of ¢ is known,
a state tomography on the ancilla qubit state reveals the value of the matrix element (e| A |g).

Returning to the case of the electric dipole moment, it is defined as ¢ = —e ), r;. In the second quantized form
is =Y, Upghag, where upy = —e [ ¢% (r)rgy (r) dr is nothing but the single-particle integral. The simulation of
the corresponding operator Uy = e~
Jordan-Wigner transformation.

, with A replaced by p, can be performed efficiently after performing the

E. Derivation of the spin-boson coupling

Consider the full Hamiltonian of two potential energy surfaces,
H =) ()| ® Ha + 1) (1| ® Hp, (11)
where
He=A,+H, (12)
is the Hamiltonian for the nuclear motion in the electronic ground state and similarly
Hg=A.+ H, (13)
is the nuclear Hamiltonian in the excited state. Here A, and A, are the zero-point energies of the two potential
energy surfaces. In the second-quantized representation, we consider one normal mode for each local minimum in the

potential energy surface,

Hy=w9ala and H, =wbb. (14)



Here the two normal modes are related by a shift of a real constant A\, namely
b=a+ A (15)
Now, we will rewrite the full Hamiltonian in terms of the Pauli matrix

o= (5 ) =mul-wul. (16)

First of all, we write H = Hgp + Hg, where

Hgp = 1) (| @ wWala+ 1) (1] ® w(@bTb, (17)
and
Hs = 1) (L 1Ag + 1) (T A
= LBy H AT+ L (A~ Ao (18)
Next, we use Eq. (15) to write Hgp as

Hsp=Q(0.)®a'a+ix® (I+0.)® (af +a), (19)

where the frequency of the effective mode becomes spin-dependent,
Q(02) = 1) (1w + 1) (4 o (20)

_ % (w@) n w<e>) I+ % (w<g> _ w(e)) -

F. Multimode extension of simulating vibronic coupling

In order to extend the method of simulating vibronic coupling to the case with multiple bosonic modes, we now
consider the case of Eq. 4. If we express the excited state modes in terms of the ground state modes such that

by = Zskjaj + Ak, (21)
J
we can write H as
H=H,+){|®He+ 1) (1| ® Hg, (22)
where
c = Zw,ﬁg)akak, (23)
k
and
Hp = Zwk sk]slka a; + Zw SkjMk (a; + aj) . (24)
kjl kj

In the definition of H/, the only change from Hy is given by
=Ac+ > A (25)
k

With knowledge of s;; and A; for all modes, we can then repeat the above procedure to determine the absorption
spectrum for a complicated system using a quantum computer. The above Hamiltonian can be written in a form
more familiar to quantum computation as

H—H’—i—ZQk o) alak
4z Zskj Il +02)(al + ay)

+ = ZZskjslkwk I+Jz)aTal (26)

k j#l



where we define

(w (g)Jrskkw( ))I+ (wy (9) sikw,(:))crz. (27)
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Qi(o,) = 5

In cases where Duchinsky rotations of the normal modes can be neglected (s;; = d;;), this expression can be further
reduced to

H=H, —i—XjQ?C az)alak
T - Zw@xk I+0.)(al +ap) (28)

with the simplification

1
Q//Yc(UZ) _ 5((’L)I(Cg) (6))] += ( (9) ](Ce))gz' (29)
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