
Oligodendrocyte differentiation from adult multipotent
stem cells is modulated by glutamate
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We used multipotent stem cells (MSCs) derived from the young rat subventricular zone (SVZ) to study the effects of glutamate in
oligodendrocyte maturation. Glutamate stimulated oligodendrocyte differentiation from SVZ-derived MSCs through the
activation of specific N-methyl-D-aspartate (NMDA) receptor subunits. The effect of glutamate and NMDA on oligodendrocyte
differentiation was evident in both the number of newly generated oligodendrocytes and their morphology. In addition, the levels
of NMDAR1 and NMDAR2A protein increased during differentiation, whereas NMDAR2B and NMDAR3 protein levels decreased,
suggesting differential expression of NMDA receptor subunits during maturation. Microfluorimetry showed that the activation of
NMDA receptors during oligodendrocyte differentiation elevated cytosolic calcium levels and promoted myelination in
cocultures with neurons. Moreover, we observed that stimulation of MSCs by NMDA receptors induced the generation of reactive
oxygen species (ROS), which were negatively modulated by the NADPH inhibitor apocynin, and that the levels of ROS correlated
with the degree of differentiation. Taken together, these findings suggest that ROS generated by NADPH oxidase by the
activation of NMDA receptors promotes the maturation of oligodendrocytes and favors myelination.
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Myelination and remyelination are critical steps for the correct
functioning and repair of the central nervous system, as
evidenced by the consequences of various demyelinating
diseases. During early myelinogenesis, oligodendrocytes
extend highly branched processes that contact and enwrap
axons, forming the myelin sheath,1 a process that results from
oligodendrocyte-astrocyte-neuron cross talk. Thus, axonal
signals control the timing of oligodendrocyte differentiation, as
well as the activation of myelinogenesis.2

Understanding regarding the molecular signals that control
multiple stages of oligodendrocyte and myelin development is
needed in order to devise strategies for promoting myelin
repair; pharmacological treatment for multiple sclerosis and
other demyelinating diseases is still limited to palliative cures.3,4

Myelin repair is critical to the outcome of demyelinating
disorders because myelin/oligodendrocytes, in addition to
axonal insulation, provide essential trophic support for long-
term axonal survival (for a recent review, see Dutta and Trap5).

One possible strategy for remyelination is oligodendrocyte
replacement. Adult oligodendrocytes are generated from
oligodendrocyte precursor cells, which are derived from
committed multipotent stem cells (MSCs; glial progenitors).
Oligodendrogenesis is modulated by molecular pathways that
commit neural stem cells and glial progenitors to the
oligodendrocyte lineage. Adhesion molecules and cytoskele-
ton proteins have a critical role in the first step of this
process; among which the expression of PSA-NCAM and
nestin characterizes uncommitted neural progenitor cells.6,7

In addition, polydendrocytes, which also give rise to oligoden-
drocytes, express proteoglycan NG2.8 Polydendrocytes are
present in the subventricular zone (SVZ) and preferentially
differentiate into oligodendrocytes, as well as, to a lesser
extent, astrocytes and neurons.9 Polydendrocytes express
specific markers of oligodendrocyte differentiation, such as
platelet-derived growth factor (PDGF) receptor a and O4 that
remain expressed until maturation, as well as Olig2, which is
transiently modulated during differentiation. The persistence
of polydendrocytes in the adult brain and the ability to
generate oligodendrocytes suggests a potential use of these
cells for cell replacement in demyelinating lesions.

Glutamate enhances the survival and proliferation of neural
progenitors derived from the SVZ.10 NG2 cells and oligoden-
drocytes express glutamate receptors,11 which can trigger cell
demise under pathological conditions.12,13 In the present
study, we aimed to analyze the effect of glutamate in
modulating oligodendrocyte differentiation from a population
of NG2-positive adult MSCs. We found that extracellular
glutamate stimulates signaling at N-methyl-D-aspartate
(NMDA) receptors, promoting oligodendrocyte differentiation
and myelination from an adult multipotent stem cell population.

Results

Effect of glutamate on oligodendrocyte differentiation. SVZ
from young rats (P2–P4) were dissociated to obtain proliferating
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MSC. Cells were maintained for 7 days in vitro (DIV) in the
presence of the mitogenic factors epidermal growth factor
(EGF), bFGF and pigment epithelium-derived factor (PEDF)
(Figure 1a). After 7 DIV, neurospheres were pre-committed to
an oligodendrocytic phenotype for 3 days and differentiated for
up to 10 days. Differentiation was calculated as the percentage
of O4-positive cells among the total number of cells counter-
stained with Hoechst. We obtained 50% of differentiation after
1 day, 60% after 3 days and 72% after 7 days (Figure 1b).
Decreasing number of O4-positive cells after 10 days was
because of incoming cell death (data not shown). To investigate
the effect of glutamate on oligodendrocyte differentiation, pre-
committed neurospheres were differentiated for 3 days in the
presence of glutamate receptor agonists (Figure 2a).

The proportion of O4-positive cells in oligodendrocyte
differentiation medium (ODM) in the absence of glutamate
was 53% (CTRL in Figure 2a). The addition of 1 mM glutamate
to the medium increased the number of differentiated
oligodendrocytes to 70%. This increase is visualized in
Figure 2b with O4 immunostaining. However, lower concen-
trations of glutamate were ineffective. Similarly, activation of
NMDA receptors with NMDA (100 mM), in the presence of
100mM glycine, supported oligodendrocyte differentiation
(Figure 2a). The pro-differentiating effects of both glutamate
and NMDA were abolished by the NMDA receptor antagonist
MK801 (Figure 2c). In contrast, selective activation of
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
and kainate receptors with AMPA and kainate in conjunction
with GYKI53655 (100 mM), respectively, did not affect
differentiation rates (Figure 2a). The application of kainate
alone (100 mM) was toxic to the cells (data not shown, and

see Matute12). Finally, selective activation of mGluR1/5
with 50 mM (S)-3,5-3, 5-dihydroxyphenylglycine (DHPG)
decreased differentiation rate (13% with respect to control).
This effect of DHPG was reverted by simultaneous application
of DHPG with antagonist SIB 1757 (Figure 2c).

Glutamate-induced oligodendrocyte differentiation was
further assessed by western blotting to determine CNPase
protein levels. Glutamate induced a 44% increase in CNPase
expression (Figure 2d), whereas the levels of NG2 protein
decreased by 36% (Figure 2e). These findings indicate that
glutamate increased the oligodendrocyte marker CNPase,
which was accompanied by a reduction in the levels of the
more immature marker NG2.

Glutamate and NMDA also affected oligodendrocyte
morphology. Oligodendrocytes exposed to glutamate or
NMDA had a more branched morphology, as illustrated by
O4 staining (Figure 3). Quantification of the area covered by
oligodendrocyte arborization indicated that glutamate and
NMDA increased the area covered by the processes two- and
threefold, respectively, an effect that was prevented by the
NMDA receptor antagonist MK801. Taken together, these
data indicate that NMDA receptors are the main type of
glutamate receptors involved in the modulation of oligoden-
drocyte differentiation.

Characterization of NMDA receptors in differentiating
oligodendrocytes. Next, we studied the expression of NMDA
subunits during proliferation and differentiation. Functional
NMDA receptors are structurally formed from the NR1 subunit
and other subunits. Therefore, we initially assessed the
expression of Grin1, which encodes NR1, using quantitative
RT-PCR at various stages of development in culture. The
mRNA transcripts were isolated during neurosphere proli-
feration, pre-commitment, and after 3 days of differen-
tiation. The level of NR1 transcripts increased dramatically,
up to five- to sixfold during the pre-commitment and differen-
tiation stages (Figure 4a). As expected, the level of Olig2
transcripts also increased during differentiation, whereas the
expression of the pluripotent gene marker Sox2 remained
constant during cell culture (Figure 4a).

The increase in NR1 subunit during differentiation was also
confirmed by western blot analysis (Figures 4b and c). NR1
protein was expressed at low levels during proliferation but
strongly upregulated (approximately four- to fivefold) during
pre-commitment and differentiation. The NR2A subunit was
overexpressed during differentiation, whereas the NR2B and
NR3 subunits were predominantly expressed during prolifera-
tion and pre-commitment, and downregulated later during
differentiation (Figures 4b and c).

The functional responses to glutamate were examined
using calcium microfluorimetry. Consistent with the pattern of
NMDA receptor subunit expression, cells at the pre-com-
mitted stage responded to glutamate and DHPG, but not to
NMDA (Figure 4d). In contrast, oligodendrocytes in differ-
entiation stages were responsive to both glutamate and
NMDA as well as to DHPG (Figure 4d).

Adult neural stem cells express high levels of reactive
oxygen species (ROS), which are generated by NADPH
oxidase (NOX) and act as second messengers, activating
normal cellular processes through the PI3K/AKT pathway.14,15
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Figure 1 Protocol used to obtain differentiated oligodendrocytes from SVZ-
derived neurospheres. (a) Schematic view of the protocol showing the time course
and culture conditions. During proliferation, cells were cultivated in suspension in
the presence of 20 ng/ml EGF, 10 ng/ml bFGF, and 10 ng/ml PEDF. After 7 DIV,
cells were pre-committed (Precomt.) to an oligodendrocyte phenotype in
differentiation medium in the presence of 10 mg/ml NT3 and 1 mg/ml CNTF.
Cultures were maintained for 3 days in suspension and then differentiated on cover
slips treated with polyornithine in the same medium for up to 10 additional days. The
beginning of differentiation was referred as 0D at the end of the pre-commitment
period. (b) Histogram showing the proportion of differentiated oligodendrocytes
identified by immunofluorescence with O4 antibody marker compared with the total
number of cells revealed with Hoechst 33258 counterstaining. Counts were
performed after 7 days of proliferation (P), and after different duration of
differentiation (1, 3, 7, and 10 D). Counts represent means±S.E.M. (n¼ 6
independent experiments, five fields each). **Po0.01, ***Po0.001 compared with
the proliferation stage
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Because the activation of NMDA receptors can also generate
ROS via NOX activation in neurons,16 we investigated whether
this occurs in differentiating oligodendrocytes. ROS levels
were higher in differentiating oligodendrocytes when the cells
were exposed to glutamate or NMDA, a feature that parallels
the proportion of O4 cells in culture (Figures 5a and b).
Intracellular ROS levels partially decreased when NOX activity
was inhibited by apocynin (Apo) during differentiation
(Figure 5a). Notably, we also found that NOX blockade
negatively modulated oligodendrocyte differentiation when
Apo was present, either alone or in combination with glutamate
or NMDA (Figure 5b).

To explore the myelinating potential of differentiated
oligodendrocytes, we cocultured pre-committed NG2-
positive neurospheres with primary cortical neurons in the
presence or absence of glutamate or NMDA. Coculture was

performed with 8 DIV neuronal cultures. This stage was
chosen because axonal phosphorylation was maximal,17 as
demonstrated by SMI31 immunostaining (Figure 6a). Before
coculture with neurons, pre-committed neurospheres were
immune-selected with NG2 antibody (Figures 6b–d). As
expected, axons in single neuronal cultures lacked myelin
(data not shown), but coculturing pre-committed NG2-
positive cells and cortical neurons in differentiating medium
yielded myelinated axons (Figures 6e–g). The extent of
myelination was evaluated by double immunofluorescence
of neurofilament light (NFL) and myelin basic protein (MBP)
by counting the number of myelinated axons and assessing
myelin elongation (Figure 6h). In control, untreated cultures
(Figure 6e), 12% (±3) of axons were myelinated and the
average myelinated extent of individual axons was 14 mm
(±2). The number of myelinated axons increased up to 20%
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Figure 2 Effect of glutamate receptor activation on oligodendrocyte differentiation. (a) Neurospheres were differentiated for 3 days in the absence (CTRL) or presence of
glutamate or glutamate receptor agonists. Kainate (KA) was used with Gyki53655. The differentiation rate was calculated after immunofluorescence by directly counting the
percentage of O4-positive cells compared with the total number of cells counterstained with Hoechst 33258. All experiments with NMDA were performed in the presence of
100mM glycine. Counts represent means±S.E.M. (n¼ 5 independent experiments, five fields in each). **Po0.01 versus CTRL, ##Po0.01 versus 1mM NMDA or 100mM
glutamate. (b) Representative fields showing O4 staining (red) during differentiation in the absence (CTRL) or presence of glutamate (1 mM). Scale bar¼ 50mm. (c) The
modulation of oligodendrocyte differentiation by glutamate and NMDA was abolished by NMDA receptor antagonist MK801. The differentiation rate was calculated as
described above. ##Po0.01 glutamate or NMDA alone versus in conjunction with MK801, and DHPG alone versus in conjunction with SIB 1757. (d and e) Western blots and
quantitative histograms with average±S.E.M. showing that glutamate increased the level of CNPase and decreased NG2 protein expression. Protein quantification was
performed by densitometric analysis after normalization with GAPDH. ***Po0.001
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(±7) in cultures treated with 1 mM glutamate (Figure 6f) or
19% (±6) with 100 mM NMDA (Figure 6g), whereas axonal
stretch covered by myelin was between 19 (±2) and 25 mm
(±5) (Figure 6h).

Discussion

In the present study, we provide evidence showing that
oligodendrocyte differentiation from adult MSCs is modulated
by glutamate through the activation of NMDA receptor and the
ensuing generation of NOX-dependent oxidative stress.

Initially, we developed a protocol to obtain an enriched
population of differentiated oligodendrocytes using PEDF to
sustain neurosphere proliferation and an intermediate step
before differentiation, which was referred to in this study as the

pre-commitment stage. PEDF was chosen because of its
expression in the two principal neurogenic niches, the SVZ
and subgranular zone.18–20 Moreover, PEDF is reported to
promote the self-renewal of adult neural stem cells in vitro
through Notch signaling.19 The proliferation protocol and pre-
commitment stage used in the present study allowed us to
generate a high number of cells pre-committed to the
oligodendrocytic phenotype.

To test the effects of glutamate in oligodendrocyte differ-
entiation, we stimulated rapidly differentiating cells. Under
these conditions, we observed that glutamate has a pivotal role
in modulating oligodendrocyte differentiation through the
activation of NMDA receptors. In contrast, we found that
activation of mGluR1/5 reduces oligodendrocyte differentia-
tion. Thus, this suppressive effect may somehow mask the pro-
differentiation effects of glutamate on NMDA receptors. NMDA
receptor subunits were expressed at all stages of differentiation
examined, which is in line with the idea that most cells in the
oligodendrocyte lineage have functional NMDA receptors, as
shown by electrophysiology in brain tissue slices.21 In addition,
NMDA receptors in differentiating oligodendrocytes are perme-
able to calcium, though the amplitude of this response was
small, which is in agreement with what was reported recently in
NG2 cells.11 The channel maximal open probability (P0) has
been reported to span from 0.5 for NR2A-containing receptors
to 0.1 for NR2B-containing receptors.22 However, the role of
the NR3 subunit is debated. Together with the structural NR1
subunit, NR3 binds to and is gated by glycine.23 When
expressed as a heterodimer with NR1 alone or with NR2 in
Xenopus oocytes, NR3 markedly decreases NMDA- and
glutamate-induced currents.24,25 In particular, NR3A subunit,
that possesses low affinity for glutamate,23 can act as a
dominant negative element in activating NMDA receptors.
When expressed, NR3A subunit binds glycine with a much
higher affinity than NR1 subunit, and besides it induces
structural modifications by allosteric regulation of NR1.23

In accordance with these observations, we found that the
robust expression of NR3 with weak NR1 subunit expression
during proliferation and the pre-commitment stages results in a
lack of NMDA receptor function (as a heterodimer with NR1 or
as a NR1/NR2/NR3 triheteromer), as suggested by Ulbrich and
Isacoff 26. Thus, our data support the idea that the NR3 subunit
is relevant to the modulation of NMDA receptor function during
oligodendrocyte differentiation.

Finally, we observed that activation of NMDA receptors in
cells of the oligodendrocyte lineage induces NOX-dependent
generation of ROS, as observed in neurons.16 In addition, we
found that ROS generated in this manner stimulate oligoden-
drocyte differentiation as Apo, and inhibitor of NOX prevents
this effect. ROS generated after NMDA stimulation activates
the PI3K/AKT pathway and it is relevant to NMDA receptor
function.16 Importantly, ROS-mediated enhancements in self-
renewal and neurogenesis are dependent on PI3K/Akt
signaling14 and thus, it may also act as a second messenger
for sustaining oligodendrocyte differentiation.

In summary, the results of the present study indicate that
NMDA receptors are differentially expressed during oligoden-
drocyte commitment and differentiation from MSCs, and that
their activation favors oligodendrocyte differentiation and
maturation.
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Materials and Methods
Cell cultures
Neurosphere assay. MSC cultures were prepared from 4- to 7-day-old
Sprague-Dawley rat pups. The subventricular zone was isolated and minced with a
Mc Illwain tissue chopper (Ted Pella, Inc., Lafayette, IN, USA). SVZ tissue from 2–3
brains was digested for 10 min at 371C in 5 ml of trypsin/EDTA (Sigma, Madrid, Spain).
Digestion was stopped by adding an equal volume of trypsin inhibitor (Sigma) and
0.01% DNAse I for 5 min at room temperature. The cell suspension was centrifuged
for 10 min at 600� g and the pellet mechanically dissociated 25 times in NeuroCult
medium (Stem Cell Inc., Grenoble, France) using a glass Pasteur pipette and
20 times using 1 ml pipette tips. Undissociated cells were decanted and the single
cell suspension counted using the Neubauer method. Cells were seeded in prolif-
eration medium (NeuroCult with 10% neural stem cell factors from Stem Cell Inc.,
2 mM glutamine, penicillin/streptomycin mix, 20 ng/ml EGF (Promega, Madrid, Spain),
10 ng/ml bFGF (Promega), 10 ng/ml PEDF (Millipore, Madrid, Spain) at a density of
104 cells/cm2 and cultivated in suspension for 7 days at 371C, 5% CO2. EGF, bFGF,
and PEDF were added fresh every 2–3 days.
Oligodendrocyte differentiation. After 7 DIV, cells were aggregated as
clonogenic neurosphere cultures. Neurospheres were maintained for 3 days in ODM
composed of DMEM with 4.5 mg/ml glucose and sodium pyruvate (Gibco, Barcelona,
Spain), SATO (100mg/ml BSA, 100mg/ml transferrin, 16mg/ml putrescine, 40 ng/ml
thyroxine, 30 ng/ml tri-iodothryronine, 60 ng/ml progesterone, 40 ng/ml selenium, all of
from Sigma), 6.3 mg/ml N-acetyl-cysteine (Sigma), 0.5 mg/ml insulin (Sigma), 1mg/ml
CNTF (Peprotech, London, UK), and 10mg/ml NT3 (Peprotech). This step was
considered to be the pre-commitment stage before oligodendrocyte differentiation.
After 3 DIV, floating neurospheres were attached on cover slips previously treated
with polyornithine in the same ODM and differentiated for 1–10 DIV. Differentiation
was evaluated by immunofluorescence as a ratio of O4 (from R&D System, Madrid,
Spain; used at 1 : 100)-positive cells and total nuclei staining with Hoechst 33258.
Primary cortical neurons. Cortical neurons were obtained from the cortical
lobes of E18 Sprague-Dawley rat embryos according to previously described
procedures.26–28 Neurons were resuspended in B27 Neurobasal medium (Gibco,
Madrid, Spain) plus 10% FBS and then seeded onto poly-L-ornithine-coated glass
cover slips (12 mm in diameter) at 10 000 cells/cm2. After 24 h, the medium was
replaced with serum-free, B27-supplemented Neurobasal medium. The cultures were
essentially free of macroglia and microglia, and maintained at 371C and 5% CO2.
Neurosphere-derived oligodendrocyte and cortical neuron cocultures. Pre-
committed neurospheres were immunoselected for NG2 expression by the immuno-
magnetic cell isolation system (Easysep, Stem Cell Technology, Grenoble, France).
Neurospheres were magnetically labeled and sorted using 1.5mg of monoclonal
NG2 antibody (Abcam, Cambridge, UK). Positive selection was evaluated by double
immunostaining with NG2 (Abcam) and Sox2 (Santa Cruz, Biotech., Heidelberg,
Germany) antibodies. NG2-positive neurospheres were seeded 48 DIV primary
cortical neurons. The coculture medium consisted of the same proportion of the
medium used for cortical neurons and ODM. Cocultures were maintained for 3–5
DIV before confocal analysis with mouse anti-MBP (Millipore, 1 : 1000) and rabbit
anti-NFL (Cell Signaling, Barcelona, Spain; 1 : 200). See the scheme in Figure 6b.
To prevent toxicity, the cultures were treated with glutamate and NMDA in
magnesium-containing medium.

Immunocytochemistry. Cell cultures and cocultures were fixed in 4%
paraformaldehyde and permeabilized with 0.05% Triton and 5% normal goat serum
in phosphate-buffered saline (PBS). Primary antibodies were incubated at different
concentrations (O4 (R&D) 1 : 100; NFL (Cell Signaling, Denver, MA, USA) 1 : 300;
MBP (Abcam) 1 : 400; SMI31 (Abcam) 1 : 1000; NG2 (Abcam) 1 : 300; and Sox2
(Santa Cruz Biotech) 1 : 100) for 2 h at room temperature and then washed three
times with 0.05% Triton in PBS. Secondary conjugated antibodies were incubated
for 1 h in the dark at room temperature. All secondary antibodies were diluted at
1 : 200 (Molecular Probes, Barcelona, Spain). After three washes with 0.05% Triton

(except for O4) in PBS, cells or cocultures were stained for 1 min at room
temperature with Hoechst 33258 and further washed with PBS. Immunostaining
with O4 antibody was performed in PBS without Triton. Finally, cover slips were
mounted with Glycergel (Dako, Barcelona, Spain) and analyzed by fluorescence
using the Apotome system (Zeiss, Goettingen, Germany).

mRNA extraction and quantitative RT-PCR. Neurospheres from a
60-mm petri dish (B5000 neurospheres) during proliferation, pre-commitment, and
3 days of differentiation were collected and lysed with Trizol (Invitrogen, Carlsbad,
CA, USA). The total RNA extracted was checked on agarose gel and 1 mg was
retro-transcribed at 601C for 60 min using Superscript SSIII (Invitrogen). A 2-ml
aliquot of each mRNA were used for real-time quantitative PCR. Commercial
primers specific for Grin1, Sox2, and Olig2 were acquired from Qiagen (QuantiTect
Primer Assay, Barcelona, Spain), whereas GAPDH primers (forward sequence,
50-GAAGGTCGGTGTCAACGGATTT-30; reverse sequence, 50-CAATGTCCACTTTG
TCACAAGAGAA-30) used for normalization and the standard curve were designed by
PrimerExpress software (Applied Biosystems, Madrid, Spain). Real-time quanti-
tative PCR reactions were performed in an ABI PRISM 7000 Sequence Detection
System (Applied Biosystems, Carlsbad, CA, USA) as described previously.29

Protein separation and western blot. Total protein was extracted on ice
using RIPA buffer (50 mM Tris-HCl pH 7.4, 1% NP-40, 0.25% Na-deoxycholate,
150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1 mg/ml each aprotinin, leupeptin, an
pepstatin, 1 mM Na3VO4, and 1 mM NaF) in the presence of protease inhibitor
cocktail (Complete, Mini EDTA-free tablets, Roche, San Cugat, Spain). Proteins
were denatured for 5 min at 901C in the presence of sample buffer (6.25 mM
Tris pH 6.8, 12.5% glycerol, 2.5% SDS, 0.025% bromophenol blue, and 5%
b-mercaptoethanol) and separated by 12% SDS-polyacryamide gel electrophoresis
(10mg per lane). Separated proteins were transferred overnight at 41C to a
nitrocellulose membrane (Hybond ECL, Amersham Biosciences, Barcelona, Spain)
in a wet transference system (Mini Trans-Blot ElectrophoreticTransfer Cell, Bio-Rad,
Madrid, Spain). Protein transfer was evaluated by Ponceau staining. All membrane
incubations were performed in TBST buffer (50 mM Tris Base, 200 mM NaCl, 0.1%
Tween-20, pH 7.4). Membranes were saturated in blocking solution (TBST, 5% non-
fat dry milk) for 30 min at room temperature with and successively hybridized
overnight at 41C with the different primary antibodies (mAb CNPase, 1 : 500; NG2,
1 : 500; NMDAR1, -R2A/B, or NR3, all 1 : 300; mAb GAPDH, 1 : 500, all from Chemicon,
Madrid, Spain). Membranes were washed three times with washing solution (TBST) and
incubated for 2 h with different HRP secondary antibodies (all 1 : 5000, Sigma), washed
three times, and revealed with peroxidase using ECL (Super Signal West Dura, Pierce,
Madrid, Spain). The luminescence of the reaction product was detected by the ChemiDoc
XRS Imaging System (Bio-Rad), and the intensity of the bands was quantified using
Quantity One (Bio-Rad) software corrected by Gaussian curves.

Fluorimetric measurement of cytosolic calcium. Whole neuro-
spheres at different DIV were attached to polyornithine-coated cover slips and
loaded with fura-2 AM (5mM; Invitrogen) in differentiation medium for 45 min at 371C.
Cells were washed in HBSS containing 20 mM HEPES (pH 7.4), 10 mM glucose, and
2 mM CaCl2 (incubation buffer) for 5 min at room temperature. Experiments were
performed in a cover slip chamber continuously perfused with incubation buffer at
1 ml/min. The perfusion chamber was mounted on the stage of a Zeiss (Oberkochen,
Germany) inverted epifluorescence microscope (Axiovert 35, Carl Zeiss, Barcelona,
Spain) equipped with a 150-W Polychrome IV xenon lamp (T.I.L.L. Photonics,
Martinsried, Germany) and a Plan Neofluar 40� oil immersion objective (Zeiss).
Single cells were selected using a high-resolution digital black/white CCD camera
(ORCA; Hamamatsu Photonics Iberica, Barcelona, Spain), and image acquisition and
data analysis were performed using the AquaCosmos software program (Hamamatsu
Photonics Iberica).

Figure 6 Myelination of cortical neurons by oligodendrocytes derived from SVZ neurospheres. (a) Primary cortical neurons stained with SMI31 at 3 and 8 DIV. Cell nuclei
were counterstained with Hoechst 33258. Scale bar¼ 20mm. (b) Scheme illustrating the temporal profile of individual and conjunct cultures. Only NG2-positive neurospheres
were co-cultivated with primary neurons. Myelination in cocultures was assessed at 5 DIV. (c and d) Neurosphere sorting was assessed by immunofluorescence for NG2 (red)
and Sox2 (green) before (c) and after (d) immunoselection. Yellow staining and arrowheads indicate NG2-positive neurospheres. Scale bar¼ 100 mm. (e and g)
Representative fields showing the myelination of axons in control, untreated cultures (e) and cultures treated with 1 mM glutamate (f) or 100mM NMDA (g). (h) Histogram
illustrating the degree of myelination as a percentage of axonal structures (NFL) co-localized with MBP (filled bars) or as myelin elongation expressed in micrometers (empty
bars). All experiments with NMDA were performed in the presence of 100mM glycine. Data represent mean±S.E.M. of three independent experiments (10–12 fields each).
*Po 0.05 versus CTRL, #Po0.05 versus 1 mM glutamate or 100mM NMDA
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Measurement of intracellular ROS. Cells were attached to cover slips
previously treated with polyornithine and loaded with 30 mM CM-H2DCFDA
(Invitrogen) for 20 min. ROS levels were normalized with respect to the total protein.
Fluorescence was measured using a Synergy-HT fluorimeter (Bio-Tek Instruments
Inc., Beverly, MA, USA) using excitation at 485 nm and emission at 527 nm. All
experiments (nZ3) were performed in triplicate and plotted as means±S.E.M.

Statistical analysis. Results were evaluated using SPSS software
(version 15; New York, NY, USA). All data were tested with the Shapiro-Wilks
normality test using the Lilliefors correction and subsequently analyzed by
non-parametric tests (Friedman, Kruskal-Wallis, Mann–Whitney U, and Wilcoxon
tests). Significance was set at Po0.05.
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