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Abstract: Fundación Zain is developing new built heritage assessment protocols. The goal

is to objectivize and standardize the analysis and decision process that leads to determining

the degree of protection of built heritage in the Basque Country. The ultimate step in

this objectivization and standardization effort will be the development of an information

and communication technology (ICT) tool for the assessment of built heritage. This paper

presents the ground work carried out to make this tool possible: the automatic, image-based

delineation of stone masonry. This is a necessary first step in the development of the tool,

as the built heritage that will be assessed consists of stone masonry construction, and many

of the features analyzed can be characterized according to the geometry and arrangement

of the stones. Much of the assessment is carried out through visual inspection. Thus, this

process will be automated by applying image processing on digital images of the elements

under inspection. The principal contribution of this paper is the automatic delineation the

framework proposed. The other contribution is the performance evaluation of this delineation

as the input to a classifier for a geometrically characterized feature of a built heritage object.

The element chosen to perform this evaluation is the stone arrangement of masonry walls.

The validity of the proposed framework is assessed on real images of masonry walls.

Keywords: automatic masonry delineation; built heritage analysis; image processing;

probabilistic Hough transform; classifier; fine-grained visual categorization; feature selection
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1. Introduction

In the last decade, machine vision techniques have been increasingly used in order to assist the process

of cultural heritage documentation, preservation and restoration [1–3]. Image-based approaches, for

example, have been used to automatically detect built heritage decay [4–8]. 3D digital modeling for

cultural heritage has recently received a lot of attention from the scientific community [9–14]. Much

work has been done with the objective of automating the process of 3D modeling of cultural heritage

sites or buildings [15–17]. However, the semantic categorization (categorization based on high-level,

overall meaning of the scene as opposed to low-level, individual details) of the related scenes (images or

3D models) has received little attention. 3D modeling of cultural heritage is useful for visualization,

digital archiving and sharing for education, research and conservation. Thus, machine vision and

photogrammetry techniques become appealing in order to achieve the related objectives. In the field of

geometrical documentation of heritage, research has been carried out in order to automate the processing

of 3D point clouds. Rodrı́guez et al. [18] present a semi-automatic method to draw straight lines in the

3D point cloud. This method requires human interaction to specify the segments of interest in the 2D

sections. Some low-cost computer tools for documenting and analyzing built heritage have already been

proposed [19–22].

Fundación Zain is developing new built heritage assessment protocols that standardize the protection

evaluation process in the Basque Country and, also, working on a built heritage analysis and classification

ICT tool that implements said protocols. The remainder of the paper (this paper is an extended version

of the conference paper, [23]) is organized as follows. Section 2 describes the problem statement

and the contributions of this paper. Section 3 presents some related, state-of-the-art work. Section 4

describes the proposed automatic stone masonry delineation framework. Section 5 provides the results

of the delineation and an evaluation of its performance as the input to a classifier for a geometrically

characterized feature. Finally, Section 6 provides conclusions and future work.

2. Problem Statement: Automatic Image-Based Delineation and Classification of Masonry

2.1. General Context

The objective of the built heritage protection ICT tool under development is to assist and to speed up

the protection process, that is, the analysis and decision process that leads to determining the degree of

protection of built heritage. Oses and Azkarate [24] provide a more in-depth description of the tool and

its context. Much of the assessment in this process is carried out through visual inspection. Thus, it will

be automated by applying image processing on digital images of the elements under inspection. The

use of digital images will contribute to making the protection process automatic and sustainable over

time. Many of the features analyzed can be characterized geometrically, and often, this characterization

is related to the arrangement of the stone masonry blocks. This paper presents the ground work carried

out to make this tool possible: the automatic delineation of the masonry. Delineation, in the context of

our work, refers to the extraction of the outline of the construction blocks.

The new protection process will have a protocol for each different type of built heritage (stone bridges,

rural traditional houses, defensive buildings, etc.). Each protocol will analyze many different elements
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of the object under analysis. The validity of this delineation will be shown by evaluating its performance

for one of the elements assessed in the protocols: the arrangement of the masonry.

This paper makes two main contributions. First, it proposes a new framework for the extraction of

geometric primitives from a given masonry image. Second, based on the extracted geometric features,

it provides a study about the statistical feature extraction and selection for the purpose of the automatic

categorization of masonry. We stress that the objective of the paper is not to propose a novel processing

algorithm; rather, we are interested in developing a framework that combines existing image processing

and machine learning tools for solving a challenging, fine-grained categorization problem, namely, the

image-based classification of masonry walls.

Our proposed framework for the automatic delineation and classification of built heritage has two

phases. In the first phase, the test image undergoes a series of processing steps in order to extract a set

of straight line segments from which a statistical signature is inferred. This set of straight line segments

constitutes a partial delineation of blocks. In the second phase, the statistical signature is filtered out and

classified using classifiers. The proposed framework is outlined in Figure 1.

Figure 1. The flowchart of the proposed delineation (Section 4) and classification

(Section 5.2) framework.

2.2. Automatic Delineation of Masonry: Challenges

The built heritage that will be assessed using Fundación Zain’s protection protocols consists of stone

masonry construction. Our objective is to develop image-based tools that help automate the application
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of these protocols. In this paper, we address the image-based extraction of the masonry arrangement

for automatic classification. The fully automatic, image-based delineation of individual stones of built

heritage can be very challenging, due to the characteristics of the objects to be delineated and the

environment in which they are. Stone masonry walls of built heritage are built with many types of stones

and mortar. Often, the same wall contains stones of different colors, sizes, shapes and materials. This can

be appreciated looking at the various walls shown in the different figures in this paper. These walls belong

to construction that is old and outdoors, thus having suffered from prolonged weathering, leading to

different degradation patterns, such as discoloration and biological colonization [25]. Therefore, unlike

crisp (i.e., precisely delimited) and structured regions that are usually present in modern building scenes,

the blocks in the walls under consideration do not have structured and crisp boundaries. Biological

colonization, i.e., vegetation growing in the wall, results in occlusions. As a consequence, the physical

boundaries that delineate individual stones, when imaged, do not always offer meaningful information

about the real boundaries of the stones. These degradation patterns will, often, have a negative impact

on the performance of the delineation algorithms.

Furthermore, the image capturing is performed in an uncontrolled environment, with lighting

conditions possibly changing for different captures. Images can, therefore, have bright and dark areas

and shadows depending on the sun’s position. In the case of bridge walls, the images can also contain

reflections of the water. These undesired effects in the images generate intensity gradients that are, often,

completely unrelated to the physical delineation of the masonry, and as a consequence, conventional

edge-based methods are not useful, since the signal-to-noise ratio is very low.

Figure 2. The original image (scaled) that will be used as a running example to illustrate the

delineation method proposed.

At first glance, one may think of applying automatic image-based granulometry techniques in order

to delineate the individual stones and, then, infer the category from the geometric description of the

delineated individual blocks. However, using classic gradient map based approaches does not help much

in obtaining a good delineation. Very often, gradient map methods applied to our images result in noise.

If we try to adjust the parameters of the gradient map generation algorithm to reduce the amount of

noise, then we lose valuable information. Figure 2 shows the original image (scaled) that will be used as

a running example to illustrate the delineation method proposed. Figure 3 shows the result of applying

the Canny edge detection algorithm [26] to the original image. This sequence of images shows that, with
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the Canny algorithm, we get too much noise or not enough edge points to obtain a meaningful (partial)

delineation for many stones. These challenges motivate the development of a new delineation method

(Section 4) that does not rely on conventional edge detection methods.

Figure 3. Images showing the result of applying the Canny edge detector to the original

image with an aperture size of three and different threshold values. t1 denotes the lower

threshold and t2 the upper threshold.

t1 = 50, t2 = 100 t1 = 50, t2 = 150 t1 = 50, t2 = 200

t1 = 80, t2 = 100 t1 = 80, t2 = 150 t1 = 80, t2 = 200

2.3. Built Heritage Element Classification

As stated earlier, the protocols will analyze many different features of each built heritage object

type before reaching a conclusion. One of the features that can be characterized geometrically and,

thus, is a good candidate to be analyzed automatically through digital image processing is the type of

masonry arrangement. This is the feature we have chosen to prove that the information obtained with

the automatic delineation framework proposed in this paper is meaningful and can be used successfully

in the automatic classification of this type of feature.
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Three classes of masonry arrangements have been defined in these protocols: the first class are blocks

(usually irregular) not arranged in rows (Figure 4a); the second are irregular blocks arranged in rows

(Figure 4b); and, third, regular (rectangular) blocks arranged in rows (Figure 4c). The masonry walls

used in this experiment are located at different sites in the Basque Country: Durango and Urdaibai.

The dataset contains 86 wall images; 33 belong to Class 1, 15 belong to Class 2 and the remaining 38 to

Class 3.

Figure 4. Examples of the three categories to be discriminated. (a) Class 1; (b) Class 2;

(c) Class 3.

(a) (b) (c)

At the beginning of the project, the decision was made to use inexpensive and easily-operated tools,

such as a standard digital camera. The digital camera used for image acquisition is a Pentax Optio M30,

a 7.1-megapixel budget compact camera. When acquiring the image of a wall, the camera was held in a

fronto-parallel configuration, so the perspective effect was reduced. Furthermore, the distance between

the camera and the wall was roughly kept constant for all walls (at about 1.5 m). The size of the original

images was not fixed. However, the captured images should contain a large portion of the wall, so that

good statistics can be collected for that wall.

We stress the fact that this classification problem is quite different from the classic scene

categorization problem [27], where each class can refer to a different concept (sea, street, building,

car, human). Traditional image classification tasks are aimed at classifying objects with large inter-class

differences in semantics. Oppositely, fine-grained visual categorization (FGVC) is an emerging topic

in computer vision [28,29]. A fine-grained image collection typically contains many categories sharing

similar semantics (bird categories or human faces, for example). In many FGVC problems, it is even

difficult for a human to recognize all the categories. Obviously, our masonry classification problem

belongs to the family of FGVC, as can be appreciated from the illustrative class images.

The recent emergence of local binary patterns (LBP) has also led to significant progress in applying

texture methods to various computer vision problems [30,31]. These approaches are able to discriminate

image textures (e.g., face recognition). However, they are prone to failure for correctly classifying our
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masonry data, because the masonry arrangement categories that we need to classify are fully defined by

the geometric arrangement and shape of stones. Thus, texture discrimination tools cannot be used in our

case, since the samples of the same masonry category can have many types of textures, and even the

same instance (a wall) may contain several different textures. This classification problem is discussed

in-depth in Section 5.2.

3. Existing Approaches for Automatic Delineation

3.1. General Purpose Image Processing Tools

Currently, there are software packages that offer functionality related to the delineation of digital

images. The goal of these packages is to vectorize a bitmap image of general content. Many of them bear

the word “trace” in their name, which can be understood as the vectorization of a raster image. Vector

graphics, as opposed to raster images, represent an image by using geometric objects, such as polygons

and curves. The vectorization of the image is, precisely, the objective of the automatic delineation

discussed in this paper. However, the objective of the existing software packages for the vectorization of

images is to make these scalable and, thus, be able to correctly view them at different resolutions. On

the other hand, the ultimate objective of the automatic delineation of this paper is to precisely delimit

the contours of the different elements of built heritage, so that it can be used to perform metric analysis

on these.

For instance, AutoTrace (http://autotrace.sourceforge.net/) and Potrace (http://potrace.sourceforge.net/)

are, probably, the most popular ones, due to their open source and freeware nature. Potrace interprets

black and white bitmaps to produce a set of curves, which makes up the vectorization. AutoTrace’s

objective is to offer functionality similar to that of Corel PowerTRACE or Adobe Streamline (now

replaced by the Live Trace functionality of Adobe Illustrator CS2). The latter two, together with Xara

Designer (Bitmap Tracer), are the most well known commercial packages for image editing.

Figure 5. Potrace output for the original image (Figure 2).

Inkscape (http://www.inkscape.org/en/) is an open source vector graphics editor that uses Potrace to

obtain delineations. It uses three different filters to convert raw images (color or gray scale) into black

and white images, so that they can be fed to Potrace. These filters are the following. The “Brightness
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Threshold” filter merely uses the sum of the red, green and blue (or shades of gray) of a pixel as an

indicator of whether it should be considered black or white. The “Optimal Edge Detection” filter uses

the edge detection algorithm devised by J. Canny as a way of quickly finding isoclines of similar contrast.

The “Color Quantization” filter will find edges where colors change by obtaining a color segmentation

first and, then, deciding black/white on whether the color has an even or odd index. Figure 5 shows

the result of applying Potrace to our original image (Figure 2). The vectorization is based on color

segmentation and edge detection based on gradient maps. Thus, it is not delimiting the contour of the

stones, but delimiting the contours of colors and gradient changes. This, clearly, is not the delineation

we need.

3.2. Image-Based Granulometry

In the last two decades, image analysis for rock particles has become a hot topic of research, and

a number of image systems (discussed next) have been developed for segmenting and measuring rock

particles in different applications, such as gravitational flows, conveyor belts, rock piles and laboratories.

Some of them are still under development [32]. Since the main goal is to measure the size of particles

using their images, these systems include a delineation module that attempts to segment the particles

in the images in order to infer information about sizes and their distribution. Most of these modules

rely on the extraction of intensity gradient-based edges. The following are examples of image-based

granulometry systems.

FragScan system. The FRAGSCAN system [33] measures the size distribution of blasted rock, from

a dumper or on a conveyor belt, with the help of a camera and a mathematical morphology technique.

This system is fully automatic and provides reliable, as well as consistent results, as proven by extensive

experimentation. This system is appropriate for industrial use.

WipFrag system. The WipFrag image analysis software [34] analyzes the digital image of the blasted

rock with a granulometry system to predict the grain size distribution in the muck pile. Typically,

camcorder images of the muck pile are acquired in the field. A scale device is used in each view to

reference the sizing. The muck pile is photographed or videotaped, and this image is transferred to the

WipFrag system. The broken rock image is transformed into a particle map or network. Network areas

are converted into volumes and weights, and the resulting data is displayed as a graph. The fidelity and

speed of fragment edge detection allows fully automatic remote monitoring at a rate of one image per

three to 5 s. More fragments are resolved, over a greater size range. WipFrag allows comparing the

automatically generated net against the rock image. The fragment boundaries are analyzed efficiently

using edge detection variables (EDV).

Fragalyst system. Fragalyst is an image analysis system [35] developed by CMRIRegional Centre,

Nagpur (India) and the Wavelet Group of Pune (India). This system consists in capturing video

photographs of the muck pile and downloading them to the computer or capturing the photos of the

muck pile in the field with a digital camera/ordinary camera and then converting the images to grayscale

and performing image enhancement, calibration and blob (grain) analysis. This system determines the

area, size and shape of the fragments in muck pile/grain aggregates on the basis of grayscale differences.



Remote Sens. 2014, 6 1871

The 2D information available from the software can further be processed for stereological analysis for

3D information.

3.3. Building Modeling and Segmentation

Within the field of built heritage documentation, automatic delineation is being researched using either

optical images [36] or 3D point clouds obtained with terrestrial laser scanners [37,38]. Bienert [39]

proposes a method for automatic vectorization based on extracting the contours of the profiles of a

building. Briese and Pfeifer [37] have developed algorithms for the automatic extraction of lines that

delimit elements in a 3D point cloud, but it still requires manual input. Boulaassal et al. [38] combine

3D point clouds obtained with different laser scanners (terrestrial, airborne and vehicle-based) and

transform this into a model composed of geometric shapes that represents the building. Nevertheless,

none of these methods obtain the delineation, or tracing, we are looking for. Sithole [40], on the other

hand, has developed a method to detect bricks in a wall through segmentation of the 3D point cloud.

However, his method requires that the mortar joining the bricks is at a significantly different depth from

that of the bricks (i.e., the bricks’s surfaces and mortar must be in different planes) and that there is

sufficient separation between bricks. These assumptions do not hold in many of the stone masonry

cases we are analyzing, and thus, this method is irrelevant to us. Demarsin [41] developed a method to

extract straight lines delimiting different elements of industrial parts for his thesis. However, he points

out that the application of this method to a 3D point cloud of an architectural element would not be

appropriate, due to the differences between the point clouds (like the size and the presence of merely

ornamental elements). Hammoudi [42] extracts polygon models for façades from 3D point clouds and

cadastral maps.

In the context of building façade segmentation using images, Burochin [43] introduces a new

unsupervised segmentation method for the extraction of façade main structures, which are characterized

by a horizontal and vertical gradient accumulation, which enhances the detection of repetitive structures.

Hernandez [44] describes an automatic method for the segmentation of building façade images, where

two types of divisions are addressed: intra-façades and inter-façades. The approach introduces several

morphological filters to augment the robustness to problems, such as textured balconies and some

specular reflection.

4. Proposed Delineation Framework

Our ultimate objective is to delineate stone masonry given its image. If we were able to delineate

the individual stones in the whole image, correctly and noise-free, the categorization task for the

geometric features in the protocols would be trivial by performing some basic shape analysis on the

obtained individual shapes. However, the automatic delineation of individual stones is challenging, if

not unfeasible, for built heritage (as discussed in Section 2.2). Therefore, we seek a partial delineation

that provides as much information as possible about the geometric configuration of the stones.

This paper proposes a delineation framework that has been developed by the authors using the open

source computer vision library, OpenCV [45]. The delineation will be achieved by extracting a set of

straight line segments without relying on traditional intensity gradient edge extracting methods.
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The first step of this framework is to convert the color image into a grayscale image. Then, the

grayscale image is partitioned into regions of interest (ROI) of an (empirically) predetermined size

(300 × 300 pixels), starting from the top-left corner of the image, in such way that the ROIs cover

the image completely. All ROIs of the partition are processed, each independently, in order to remove

outliers and equalize their histogram (Section 4.1) and extract delineating straight segments (Section 4.2).

Finally, the results (straight segments) obtained for the ROIs are combined to generate a delineation for

the complete image (Section 4.3). Figure 6 provides a schematic description of the proposed delineation

framework. Figure 7a shows the original image and an example ROI (marked in red). Figure 7b shows

the obtained delineation.

Figure 6. Schematic depiction of the delineation framework. ROI, region of interest.

Figure 7. (a) Original image (scaled with example regions of interest (ROI) marked

in red); (b) the obtained delineation (a set of 2D segments marked in red) using the

proposed framework.

(a) Original (b) Delineation



Remote Sens. 2014, 6 1873

4.1. Preprocessing of an ROI

Each grayscale ROI is prepared for processing by removing outliers and equalizing its histogram.

Outliers are those intensities with a frequency below some threshold in the intensity histogram. The

threshold for removing outliers has been determined empirically and is currently set to 5% of the

maximum frequency in the histogram. Outlier pixels are smoothed out by inpainting (a method

for removing damaged areas by taking the color and texture at the border of the damaged area and

propagating and mixing it inside the damaged area [46]). Then, the histogram is equalized. The images

are not processed as a whole, because equalizing the histograms of the ROIs independently helps avoid

(to a significant extent) the effects of shade, shadows, bright areas, reflections and similar, for our

purposes. Figure 8 shows the main steps related to the processing of a given ROI (in the remainder,

to illustrate the preprocessing and processing of an ROI, we will always use the example ROI from

Figure 7a). See Figure 8a for our example grayscale ROI and Figure 8b after removing outliers and

equalizing its histogram.

4.2. Processing of an ROI

The objective is to use straight segments to delineate the masonry. We have chosen to extract straight

segments, because this allows us to obtain additional information, such as slope (the steepness of a

straight line), length and position of the segment. The statistics of these geometric properties will be

very valuable for subsequent classification tasks. In our framework, the straight 2D segments are not

derived from the image gradients, but from the boundaries of some detected regions in the preprocessed

images, as explained next.

4.2.1. Region Segmentation Using Most Frequent Intensities

For each ROI, a number of its most frequent intensities are chosen. For each chosen intensity (mode),

a binary image is created using an interval of intensities centered on the chosen intensity (mode) and

with a certain radius. This binary image can be thought of as a bipartition of the original image. This

bipartition will result in a region segmentation. The intuition behind using a bipartition based on several

modes is that we can usually find mortar or a dark shadow in between construction blocks, and thus,

this image would go a long way toward delineating the blocks. In the case of a delineating shadow,

this low intensity will quite often not be one of the most frequent intensities, and thus, it is included by

default in the set of modes. In the case of binding mortar being present, the mortar might have been,

originally, of a uniform color. However, due to weathering and lighting effects, it will most likely take

different intensities throughout the ROI. Additionally, the mortar within different parts of an ROI might

belong to different construction phases dating to different periods or different restoration interventions

and, thus, have different colors. For these reasons, we use several intensity modes, each resulting in a

bipartition, i.e., a region segmentation. In our work, we use three intensity modes (one always being

zero, the two remaining modes are chosen from the histogram peaks) and a radius of 50, which was

empirically selected. We stress the fact that the number of modes can be more than three. In our case,

we find that three modes are enough in order to give accurate results.
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By using the three modes and their support in the gray-level scale (which may overlap), one can get

three binary images. Figure 8c shows the three binary images for the chosen three modes. These images

correspond to three region segmentations. Each of these three binary images is processed independently,

and the 2D line segments detected are all saved as part of the delineation set.

Figure 8. The main stages of processing the example ROI in Figure 7a. (a) Grayscale;

(b) preprocessed; (c) region segmentation using three modes; (d) corresponding boundaries;

(e) combined, extracted straight segments. (a) ROI; (b) pre-processed ROI; (c) segmentation

for intensity of zero; (c1) first mode segmentation; (c2) second mode segmentation; (d) first

boundaries map; (d1) second boundaries map; (d2) third boundaries map; (e) extracted 2D

segments associated with the three maps in (d).

(a) (b)

(c) (c1) (c2)

(d) (d1) (d2)

(e)
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4.2.2. Extracting Boundaries by Removing Inner Patches

Once the image regions are segmented, it will be useful to extract their boundaries. To this end,

we remove the inside of solid patches that may be present in the binary images, so that the probabilistic

Hough transform (PHT) [47] can segment the corresponding boundaries only. Inner patches are detected

with an averaging filter. When this filter is run on a binary image, the result for each pixel is directly

proportional to the number of white neighboring pixels (belonging to the segmented region). Those

pixels with a result above a certain threshold (depending on the size of the neighborhood used) will be

identified as being part of a patch, and they will be removed. The usual method for extracting boundaries

is to subtract the eroded binary image from the original. However, our experiments have shown that

the method presented in this paper obtains better results for the purpose at hand. Figure 8d shows the

extracted boundaries obtained from the three binary images associated with the ROI.

4.2.3. Straight Segment Extraction

Once we get the binary boundaries, we apply a closing operation on them. The probabilistic Hough

transform (PHT) (as an implementation of this algorithm, we use the CV HOUGH PROBABILISTIC

method of the cvHoughLines2 function in OpenCV 2.3.1 [45]) is then used in order to extract the 2D

straight line segments. The result of this process for the example ROI can be seen in Figure 8e. In this

figure, we can observe that the line segments are close to each other in some parts of the delineation.

This redundancy is due to the use of three segmented images that may have region boundaries close to

each other. We stress the fact that this redundancy can be beneficial for describing the local geometry of

the masonry and, thus, offering discriminative information that will be explained in the next section.

4.3. Fusion of ROI Delineations and Post-Processing

The final delineation is the set of all the segments detected in all three binary images and in all ROIs.

The post-processing of the delineation consists in joining collinear segments that are close to each other

and removing small segments. Collinear segments are those for which the difference between their polar

coordinates is below some predefined threshold. Two segments that have been classified as collinear

are joined together if the distance between their closest end points is below some predefined threshold.

Joining two segments together means that those two segments are replaced by a new straight segment

delimited by the two furthest end points. Lastly, segments whose length is below the mean length have

been removed from the set, because their slope is not very reliable, and they are often noisy. We point out

that this post-processing step is very useful for overcoming the fragmentation of the detected segments

due to the ROI partition of the full image.

5. Results and Performance Evaluation

In this section, we present, first, delineation results for a selected subset of walls and, then, the

masonry classification results for the whole data sample based on the obtained delineations.
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5.1. Automatic Delineation Results

Figure 7b illustrates the final delineation of the masonry (a set of 2D segments shown in red)

associated with the image. Figure 9 illustrates the obtained delineation associated with four, very

different walls. The two walls on the right show the regular arrangement of regular blocks, whereas

the two on the left show irregular blocks, arranged in rows in the top wall and semi-irregularly in the

bottom wall. The top-left wall shows a case in which some sort of mortar has been applied on the

center-right area of the wall, partly occluding the boundaries between the stones. The bottom-left wall

shows a case in which vegetation is partly occluding the wall.

Figure 9. Examples of delineation results. In each example, the upper part illustrates the

original image and the lower part the obtained delineation. We stress the fact that the white

regions are formed by a set of 2D segments that can be dense at some locations.

If the task at hand were to classify walls of modern, instead of heritage, buildings, then the delineation

task would be simpler. Figure 10 shows the result of applying the proposed delineation method to a

modern brick wall (this wall belongs to a modern building, not to built heritage, and is not in our data

sample). We can see that there is much less noise in this delineation, and almost all bricks are delineated
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correctly. Using the regularity of both the bricks and their arrangement, it would be easy to modify the

delineation method to infer the delineation of the missing bricks.

Finally, Figure 11 illustrates a comparison between the Canny filter-based delineation and our

proposed delineation. To this end, we chose the best Canny filter (Figure 3a) and then applied PHT

with eight different configurations. The best delineations are shown in Figure 11a and Figure 11b. The

delineation obtained with the proposed method is illustrated in Figure 11c. As can be seen, while the

approach based on the Canny filter was able to provide delineation for some of the stones, many of the

stones do not have 2D segments associated with them. On the other hand, our proposed method was able

to provide good 2D segments for many stones.

Figure 10. The result of applying the proposed delineation method to a modern brick wall.

Figure 11. Examples of delineation results. The (a) and (b) delineations were obtained with

the best Canny filter and the best probabilistic Hough transform (PHT) configurations. The

(c) delineation was obtained with the method proposed in this paper.

(a) (b) (c)
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5.2. Performance Evaluation: Masonry Classification

This section is structured as follows. Firstly, we give an overview of the classifiers used. Secondly, we

give a brief description of feature subset selection. Thirdly, we present the experimental results obtained

with the images of masonry walls. Last, we provide a critical analysis of the results. The feature selection

and classification results have been obtained using the Waikato Environment for Knowledge Analysis

(WEKA) as a machine learning tool [48].

5.2.1. Machine Learning Approaches

Classification is the sub-field of supervised learning that is concerned with the prediction of the

category of a given input. The classification model or classifier is trained using a labeled training set

(i.e., a dataset containing observations whose category membership is known). Each observation in the

dataset is an n-dimensional vector, and each element of the vector is called a feature (also attribute or

variable). We have used five classifiers: K nearest neighbor (K-NN) with (K = 1 and K = 3), support

vector machines (SVMs), naive Bayes (NB) and classification trees (C4.5). A brief description of all of

them is included below.

Instance-Based Learning Instance-based learning belongs to the K-NN paradigm, a distance-based

classifier. It computes the distance of a new case to be classified to each of the observations in the

database it uses as the model and decides the class it will assign based on the K nearest cases. We have

used the instance-based algorithm described in [49,50].

Support vector machines (SVMs) SVMs are a set of related supervised learning methods used for

classification and regression. In a bi-class problem, SVM views the input data as two sets of vectors

(one set per class) in an n-dimensional space. The SVM will construct a separating hyperplane in

that space, one which maximizes the margin between the two datasets. To calculate the margin, two

parallel hyperplanes are constructed, one on each side of the separating hyperplane, which are “pushed

up against” the two datasets. Intuitively, a good separation is achieved by the hyperplane that has the

largest distance to the neighboring data points of both classes, since, in general, the larger the margin,

the lower the generalization error of the classifier [51]. SVMs were extended to classify datasets that are

not linearly separable through the use of non-linear kernels. In our work, we use non-linear SVMs with

a radial kernel.

Probabilistic classifiers There are many classifiers based on probability theory. Most of them are

based on Bayes’ theorem and try to obtain the class for which the a posteriori probability is the greatest

given the predictor variables of the case to be classified. In this work, we have used the naive Bayes

(NB) classifier [52]. The name of this classifier comes from its underlying assumption, namely that the

features are independent. This is a very strong assumption and, hence, considered “naive”.

Classification trees A classification tree is a classifier composed of nodes and branches that break the

set of samples into a set of covering decision rules. In each node, a single test is made to obtain the



Remote Sens. 2014, 6 1879

partition. The starting node is called the root of the tree. In the final nodes or leaves, a decision about

the classification of the case is made. In this work, we have used the C4.5 algorithm [53].

5.2.2. Feature Selection

Feature selection (FS) is the process of identifying the features that are relevant to a particular

learning (or data mining) problem. FS is a key process in supervised classification [54] and can

improve classification performance (accuracy, area under the receiver operating characteristic (ROC)

curve (AUC), etc.).

Most algorithms for FS can be categorized as filter or wrapper approaches. In the filter approach, an

attribute (or attribute subset) is evaluated by only using intrinsic properties of the data (e.g., statistical

or information-based measures). Filter techniques have the advantage of being fast and general, in the

sense that the subset obtained is not biased in favor of a specific classifier. However, they lack robustness

against interactions among features. In addition, it is not clear how to determine the cut-off point for

rankings to select only truly important features and exclude noise.

Wrapper algorithms have the advantage of achieving greater accuracy than filters, but with the

disadvantage of being (far) more time-consuming and obtaining an attribute subset that is biased towards

the used classifier. Over the last decade, wrapper-based FS has been an active area of research. Different

search algorithms [55] have been used to guide the search process, while some classifiers (e.g., naive

Bayes, KNN, etc.) are used as a surrogate in order to evaluate the goodness of the subset proposed by

the search algorithm.

5.2.3. Experimental Results

Data Preparation As presented in Section 4, each raw image will undergo the proposed delineation

steps that provide a set of 2D straight segments. Several statistics are extracted from this set of segments

and are used as the predictor variables in the classifier. The statistics extracted are listed next, where the

lengths are expressed as a percentage of the image width, the slopes represented in degrees and the slope

differences the differences between slopes for every pair of segments in the delineation. For the image of

the processed delineation, the sums of the rows (horizontal accumulation) and the sums of the columns

(vertical accumulation) are calculated.

• Regarding the lengths, these statistics are the minimum, maximum, least frequent, most frequent,

mean and standard deviation.

• Regarding the slopes, the statistics used are the maximum, least frequent, most frequent, mean,

standard deviation and percentage of slopes that are vertical (or very nearly vertical, i.e., a

90-degree slope).

• For slope differences, the statistics used are the least frequent, most frequent, mean, standard

deviation, percentage of differences between zero and four degrees (pairs of segments that are

parallel or nearly parallel) and percentage of differences between 86 and 94 degrees (pairs of

segments that are perpendicular or nearly perpendicular).

• For the horizontal accumulation, the maximum (expressed as the percentage of the width), least

frequent, mean and standard deviation are used.
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• For the vertical accumulation, the minimum (expressed as the percentage of the height), maximum,

least frequent, most frequent, mean and standard deviation are used.

Altogether, every image is described by 28 features that summarize statistics about the extracted

straight segments. Every feature was rescaled to the interval [0, 1].

Classifier Parameters The classifiers we have chosen to use are the K Nearest Neighbor (K-NN),

Support Vector Machines (SVM), Naive Bayes (NB), and Classification Trees (C4.5) algorithms. For

K-NN we have chosen to test two possible values of K, the number of nearest neighbors, 1 and 3. For

SVM, we use a non-linear SVM with a Gaussian kernel e(−γ |u−v|2) with γ = 1/N = 1/86 (N being the

number of instances) and the cost parameter C for C-SVC equal to 150.

Classification Using All Features and Manually Selected Features The performance of a classifier

is usually measured in terms of the success rate (or classification accuracy); that is, the proportion of

instances correctly classified given a test set. The test set must contain instances that are not present in

the training set, i.e., the dataset used to train the classifier. When the available dataset is small, splitting it

into training and test sets means the classifier has to be trained and tested, respectively, with few data. In

order to attenuate this problem, we have chosen to follow the leave-one-out cross-validation (LOOCV)

protocol to perform the evaluation. The k-fold cross-validation technique, in general, splits the dataset

into k subsets. Then, it performs k iterations of training and testing, using one of the k subsets as the test

set (a different one each iteration) and the union of the remaining subsets as the training set. After the k

iterations, each instance of the dataset has been classified by the classifier exactly once. These predicted

classifications are then compared to the actual class labels to calculate the success rate. The LOOCV

technique is a particular case of the k-fold cross-validation technique in which k is set to the number of

instances in the data. This, of course, means that each fold contains just one element.

In order to quantify the classification accuracy, we have performed LOOCV tests using the five

classifiers. Table 1 illustrates the classification accuracy obtained with the five classifiers in two cases.

The first case corresponds to the use of the set of the 28 extracted features. The second case corresponds

to the use of a subset of 19 manually selected features out of the 28. These 19 features are of two types:

original features and features that were formed by combining original features. As can be seen, by using

the raw 28 features, the non-linear SVM provided the best performance. However, when the manually

selected features were used, the 1-NN provided the best performance. We can also observe that the use

of manually selected features improved the performance of all classifiers (except for the BN classifier

for which the performance remains the same). For example, the SVM performance increased 2.7%.

Classification with Automatic Feature Selection The above manual selection of features was guided

by some intuition about feature relevance in discriminating classes. However, this manual selection is not

necessarily optimal and can be replaced by automatic feature selection using, for example, the wrapper

technique. The goal is to find a subset among the complete set of features (28 features) that maximizes

the classification accuracy. We evaluated the performance using LOOCV. The search strategy chosen

was a genetic algorithm [56] with the following parameter values: the population size was set to 80; the

maximum number of generations was set to 20; the crossover probability was set to 0.7; and the mutation
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probability to 0.05. This kind of processing is carried out efficiently, since the total number of features

is 28.

Table 1. Overall classification results using all the extracted features (28 features) and the

manually selected subset (19 features). NN, nearest neighbor; NB, naive Bayes; SVM,

support vector machine.

28 Features 19 Features

Classifier Cases No. of Errors Accuracy No. of Errors Accuracy

1-NN 86 24 72.1% 17 80.2%

3-NN 86 22 74.4% 21 75.6%

NB 86 25 70.9% 25 70.9%

J48 86 26 69.8% 23 73.3%

SVM 86 21 75.6% 19 78.3%

Table 2 shows the classification accuracy obtained with the five classifiers and the features selected by

the wrapper method. Compared to the scheme that uses all features (28 features) or the manually selected

features (19 features), the accuracy of all classifiers was improved. For example, the recognition rate of

the 1-NN classifier increased by 12.8% with respect to the result with 28 features and by 4.2% with

respect to the result with the manually selected features (19 features). We can observe that, following

automatic feature selection, the SVM classifier provided the best performance.

Table 2. Classification results using automatic feature selection and leave-one-out

cross-validation (LOOCV) evaluation.

Classifier Cases No. of Errors Accuracy

1-NN 86 13 84.9%

3-NN 86 14 83.7%

NB 86 14 83.7%

J48 86 12 86.0%

SVM 86 11 87.2%

Table 3 illustrates the precision, recall and F1 measure for every class obtained after feature selection

for all classifiers. Finally, Table 4 shows the confusion matrix for the best result obtained, that is, the

SVM classifier with feature selection using the wrapper method.
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Table 3. Recall, precision and F1 measure for all classes and for all classifiers.

Class 1 Class 2 Class 3

Classifier Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1

1-NN 84.8% 87.5% 86.2% 80.0% 66.7% 72.7% 86.6% 91.7% 89.2%

3-NN 97.0% 78.0% 86.5% 53.3% 80.0% 64.0% 84.2% 91.4% 87.7%

NB 97.0% 84.2% 90.1% 60.0% 64.3% 62.1% 81.6% 91.2% 86.1%

J48 90.9% 96.8% 93.7% 73.3% 68.8% 71.0% 86.8% 84.6% 85.7%

SVM 97.0% 82.1% 88.9% 73.3% 78.6% 75.9% 84.2% 97.0% 90.1%

Table 4. Confusion matrix from the SVM classifier with automatic feature selection.

Classified as

Class 1 Class 2 Class 3

Class 1 32 1 0

Class 2 3 11 1

Class 3 4 2 32

Note that the wrapper technique for feature selection makes use of the classifier to evaluate the

different feature subsets. Thus, the optimal subset of features differs from one classifier to another.

Table 5 illustrates the selected features for every classifier. For every feature, we show a binary string

formed by five bits that correspond to the five classifiers, 1-NN, 3-NN, NB, J48 and SVM, respectively.

A zero bit indicates that the feature was not selected by the wrapper technique for the corresponding

classifier. A one bit indicates that the feature was selected. As expected, the relevance of features

depends highly on the classifier used. For instance, the SVM classifier (fifth bit) preferred one feature

related to lengths, four features related to slopes and their differences, two features related to the

percentage of pairwise relation (parallel and perpendicular) and five features about row and column

accumulation. Moreover, we can observe that all classifiers have selected the amount of segment pairs

having a parallelism relation.

Analysis of the Results The results show that all classifiers have more difficulty classifying the

instances of the second class correctly. The reason is twofold. First, this is the class with the least

number of training examples, and this has a direct negative impact on the performance of the classifier.

Second, the geometric arrangement of walls belonging to Class 2 shares many statistics with the two

remaining classes. This is because Class 2 is, by definition, the class in between Classes 1 and 3. Class

2 shares the use of non-regular blocks with Class 1. On the other hand, Class 2 shares with Class 3 that

the blocks are arranged in rows.

In practice, discriminating between Classes 1 and 2 is challenging, even for humans; the boundary is

not at all clear-cut. Figure 12 shows a Class 2 wall that could be easily classified as Class 1. The blocks

in this wall are irregular, so it is clearly not Class 3. However, we could say that the bottom half, in
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which we can clearly see rows, is Class 2 and the top half, in which there are no obvious rows, Class 1.

Therefore, misclassifying Class 1 and 2 instances is not, generally, a fatal error. Additionally, in some

cases, even misclassifying Class 2 and 3 instances might not be fatal.

However, misclassifying Class 1 and 3 instances is always a fatal error. From the confusion matrix

in Table 4, we can conclude that the best performing classifier has made only four fatal errors (4.7%),

and these are all Class 3 instances that have been classified as Class 1. The fatal errors are due to the

incorrect delineation of these images. Figure 13 shows an example in which the delineation framework

proposed almost completely fails to delineate the regular blocks in a Class 3 wall. This is, currently, the

weakest point of the framework and one to which it is imperative that we find a solution.

Table 5. Features selected by the wrapper method.

Feature Selected/Not Selected

1 minimum length 00010

2 maximum length 10100

3 least frequent length 00010

4 most frequent length 00110

5 length mean 11010

6 length standard deviation 01011

7 maximum slope 00110

8 least frequent slope 10101

9 most frequent slope 01010

10 slope mean 00011

11 slope standard deviation 01100

12 percentage of vertical slopes 00100

13 least frequent slope difference 00001

14 most frequent slope difference 00010

15 slope difference mean 00011

16 slope difference standard deviation 00110

17 percentage of pairs of segments nearly parallel 11111

18 percentage of pairs of segments nearly perpendicular 11101

19 maximum row count 00101

20 least frequent row count 10010

21 row count mean 10001

22 row count SD 01000

23 minimum column count 01011

24 maximum column count 10010

25 least frequent column count 10101

26 most frequent column count 11101

27 column count mean 10000

28 column count SD 01000
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Figure 12. Class 2 wall.

Figure 13. Example of Class 3 misdelineation.

In conclusion, the results obtained are promising. The best classifier achieved a 87.2% success rate,

and among the 12.8% of incorrectly classified cases, only four (4.7% of the sample size) were fatal

errors. Nonetheless, the delineation algorithms need to be improved so that, at least, the classifier makes

no fatal errors.

6. Conclusions and Future Work

This paper has presented the foundational work carried out for the development of a built heritage

analysis and classification ICT tool. The goal is to automate the application of new protection protocols

under development with the objective of speeding up the protection process. The new framework

introduced in this paper for the automatic delineation of the stone masonry has been evaluated using

a classification task. The results obtained are very satisfactory and show that the obtained delineation

provides meaningful information.

Since individual stone delineation is infeasible, we have proposed a heuristic that uses image region

boundaries using image quantization (similar to the way Fisher clustering is based on histograms). These

boundaries are then transformed to a set of straight segments that describe the geometric arrangement of

blocks in a given wall. Based on statistics related to these segments, walls can be automatically classified



Remote Sens. 2014, 6 1885

using state-of-the-art classifiers. We have incorporated a wrapper technique in order to select the most

relevant features (statistics). Five different classifiers were tested. The results obtained are promising.

The paper scope was extracting useful information from images of masonry. While any image

processing tool can be affected by the stone lithology variability, our main goal was to provide a generic

purpose ICT tool that can be useful for a wide range of the lithology variability. Indeed, the studied cases

have a lot of variability regarding textures, sizes, surface state, mortars, etc.

Future work will focus on improving the delineation by removing as many noisy segments as possible;

noisy, in this context, meaning all segments that do not belong to the delineation. The use of RGB-D

cameras could be very useful. This has the advantage that lighting conditions, shadows and reflections

have no effect on the depth map. The joint use of image intensity and depth maps can increase the

ability to detect more useful segments that provide better delineation. Furthermore, future work may

investigate the use of probabilistic color and texture gradient maps (similarly to [57]) that can be used as

global descriptors. The other research line will focus on building a subspace by mapping the statistics.

The purpose of using these subspaces is to enhance class discrimination.
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