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Abstract

Background: Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small
catalytic groups. Several studies performed using ‘‘metabolic networks models’’ are helping to understand the degree of
functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used ‘‘dissipative metabolic
networks’’ (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of
enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing
states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration
of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this
kind of functional structure does, indeed, exist in several microorganisms.

Methodology/Principal Findings: Here we have analyzed around 2.500.000 different DMNs in order to investigate the
underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this
global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that
the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the
spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of
enzymes always in an active state.

Conclusions/Significance: This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism,
common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally
characterize these enzymatic self-organized global structures.
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Introduction

One of the most important goals of contemporary biology is to

understand the elemental principles governing metabolic structure

as a whole which underlie the common design of all microorgan-

isms and cells.

This global metabolic structure, conformed by the reactive

interactions of thousands of biochemical species densely integrated

through a labyrinthine web, represents one of the most complex

dynamic systems in nature [1].

During the preceding two decades, different metabolic models

have been studied intensively. Traditional models have focused on

the kinetics of multi-enzyme systems by solving systems of

differential equations and algebraic equations [2]. Petri’s net

theory, among others [3], has been applied to modelling metabolic

pathways [4], decomposition of large metabolic networks into

smaller subnetworks [5] and topological analysis of metabolic

networks [6]. Large networks present many connections between

the nodes, and their degree distributions follow a power law, so

they can be considered as scale-free [7,8]. The presence of ‘‘small-

world’’ features [9] in scale-free networks is being studied [10,11].

Constraint-based modeling approaches, such as flux-balance

analysis, has been applied in several metabolic networks [12,13].

Other mathematical models have been proposed to organize the

networks both in its modular and hierarchical structure [14–16].

In an attempt to get a more accurate comprehension of the

metabolic dynamic phenomena, we have proposed a dynamical

system called ‘‘dissipative metabolic networks’’ or DMNs, which is

basically formed by groups of enzymatic associations dissipatively

structured and interconnected by fluxes and regulatory signals

(allosteric and covalent).

Our model takes into account the fact that the cellular

organization at the molecular level presents two relevant dynamic

characteristics: the presence of enzymes aggregated in clusters and

the emergence of dissipative catalytic patterns.

Experimental observations have shown that enzymes operate

within metabolic pathways, may form functional catalytic associa-

tions and, thus, do not function in isolation of one another. Some of
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the first experimentally isolated enzymatic associations were, among

others, the glycolytic subsystem [17], five enzymes from the cycle of

the tricarboxylic acid [18], a triple multienzymatic-associate formed

by the alpha-ketoglutarate dehydrogenase complex, the isocitrate

dehydrogenase and the respiratory chain [19], and the complex

formed by malate-dehydrogenase, fumarase and aspartate transfer-

ase [20]. Nowadays there are enough experimental data confirming

the existence of numerous enzymatic associations belonging to

metabolic routes, like lipid synthesis, glycolysis, protein synthesis,

Krebs cycle, respiratory chain, purine synthesis, fatty acid oxidation,

urea cycle, DNA and RNA synthesis, amino acid metabolism,

cAMP degradation, etc. [21–28].

Association of various enzymes in large complexes (supramo-

lecular organization) allows the direct transfer of their common

intermediate metabolites (metabolic channelling). In addition,

reversible interactions of enzymes with structural proteins and

membranes are a common occurrence. This results in the

existence of microcompartments within the soluble phases of cells.

The microcompartmentation provides biophysical and biochem-

ical mechanisms of physiological importance for the control of

metabolic pathways [29–32].

The second consideration in our model is the presence of

dissipative catalytic patterns. Each functional enzymatic associa-

tion conforms a catalytic entity as a whole, in which spontaneously

organized molecular oscillations may emerge.

In the far from equilibrium conditions prevailing inside the cell, the

catalytic dynamics of enzymatic sets may present transitions

between different stationary and oscillatory molecular patterns.

When the enzymatic sets exhibit a rhythmic behavior, all the

metabolic intermediaries oscillate with the same frequency but

different amplitudes [33].

It is well known that these biochemical rhythms constitute a new

type of supramolecular organization that may emerge in open

systems far from equilibrium and was called dissipative structure

by Prigogine [34].

It has been found experimentally that many enzymatic

associations may cause oscillatory processes. The first systematic

classification of cellular oscillatory behaviors gathered about 450

different kinds of biochemical rhythms [35], most of them

corresponding to periodic oscillations [33,36].

Nowadays, numerous experimental observations have contrib-

uted towards a better understanding of metabolic rhythms. For

instance, it can be cited, among others: intracellular Ca2+ [37],

free cytosolic ATP [38], intracellular pH [39], NAD(P)H [40],

glycolysis [41], beta-oxidation of fatty acids [42], intracellular

cAMP [43], metabolism of phospholipids [44], metabolism of

amino acids [45], metabolism of mRNA [46], cellular respiratory

processes [47], proteolysis [48], catalase reactions [49], Krebs

cycle [50], and in protein kinase activities [51].

Likewise, numerous works have been carried out on the

mathematical modelization of metabolic rhythms [52–59]. The

understanding of the relation of metabolic rhythms to circadian

processes is also a focus of notable interest [60,61].

Due to the importance of cellular enzymatic rhythms, we have

taken into account this aspect in our model of DMNs, so that the

simulated catalytic processes can present both stationary and

oscillatory activity regimes.

In the dissipatively structured enzymatic associations, the

existence of allosteric enzymes permits the interconnection among

them. The catalytic activity of the allosteric enzymes is modulated

through the noncovalent binding of a specific metabolite at a place

of the protein different from the catalytic site, provoking

alterations of the metabolic state in an interval of seconds. Such

types of modulation may be both positive (activation of their

catalytic rates) and negative (inhibitory modulators). The regula-

tion by means of the covalent interactions can originate ‘‘all-or-

nothing’’ type answers [62].

In agreement with all these considerations, our DMNs model is

composed of a set of catalytic elements (each of them represents a

dissipatively structured enzymatic association called metabolic

subsystem), which are connected by substrate fluxes and regulatory

signals (allosteric and covalent modulations). The metabolic

subsystems may present oscillatory and stationary activity patterns.

In a previous work [63], we have shown the rich variety of self-

organised temporal patterns and global configurations that

appears in the DMNs. One of them is the emergency of a

functional configuration (similar to in vivo) in which a set of

metabolic subsystems are always locked into active states (in

eukaryotic cells they are mainly the Krebs cycle subsystem, the

pyruvate dehydrogenase complex and the oxidative phosphoryla-

tion), whereas the rest of metabolic subsystems present dynamics of

on-off changing states (glycolysis, beta-oxidation of fatty acids,

amino acid degradations, gluconeogenesis, etc).

This type of functional metabolic structure has recently been

shown by Almaas and colleagues for Escherichia coli, Helicobacter

pylori, and Saccharomyces cerevisiae [12,64].

In this paper, we have analyzed around 2.500.000 different

metabolic networks in order to investigate the conditions in which

this global configuration emerges. We have found that this

functional metabolic structure is an emergent property of all

dissipative metabolic networks with a high number of enzymatic

subsystems.

Results

Model
Experimental observations have shown that the enzymes may

form functional catalytic associations in which a new type of

supramolecular self-organization may emerge (for more details, see

the introduction section). These catalytic associations that operate

within far from equilibrium conditions were called dissipative

structures by Prigogine [34] and they conform a catalytic entity as

a whole, in which the catalytic activity is autonomous with respect

to the other enzymatic associations and molecular oscillations and

steady states may emerge spontaneously. We have called

metabolic subsystem to these groups of enzymatic associations

dissipatively structured.

‘‘Dissipative metabolic networks’’ (DMNs) are dynamical

systems basically formed by a given number of groups of

dissipatively structured enzymatic associations (called metabolic

subsystems or MSbs) interconnected by fluxes of substrates and

regulatory signals (both allosteric and covalent).

The metabolic subsystems receive distinct input fluxes of

substrates and three possible types of regulatory signals: activatory,

inhibitory (graduated) and total inhibitory (all-or nothing type).

Each MSb transforms the input fluxes and regulatory signals into

one or several output activities.

In agreement with experimental observations, the output

activity of the MSbs may be oscillatory or steady state [33] and

comprise an infinite number of distinct activity regimes.

In our model, when the set of dissipatively structured enzymes

shows an activity with rhythmic behavior the output activities

present nonlinear oscillations with different levels of complexity, as

could be expected in the cellular conditions ‘‘in vivo’’.

In order to be able to effect these different oscillatory or steady

state patterns in each metabolic subsystem, the input-output

conversion is made in two stages. First, the input fluxes are

transformed into an intermediary activity by means of flux
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integration functions. In a second phase, the ‘‘intermediary

activity’’ is modified by means of the ‘‘regulatory signals

integration’’, which depends on the combination of the received

regulatory signals. Each regulatory signal has an associated

regulatory coefficient which defines the intensity of its influence.

The parameters qi,j, called ‘‘influence coefficients’’, that will be

described in the materials and methods section, represent the

influence of activatory and inhibitory modulators on the metabolic

subsystems. These interactions correspond with the regulatory

activity of the allosteric enzymes.

If the signal is of total inhibition (all-or nothing type), then we

will use a parameter d called threshold value (the level of the

enzymatic covalent regulatory activity). When a given threshold

value is reached it inhibits completely the activity of the MSb.

On the other hand, biological processes with long-term

correlations are of notable interest in the study of complex

dynamics.

Long-term correlations have been observed in, e.g., the

quantification of DNA patchiness [65], physiological time series

[66,67], NADPH series [68], DNA sequences [69–71], K+ channel

activity [72] and neural electrical activity [73,74].

In a previous work with DMNs [63] we have analyzed different

transitions generated by several metabolic networks and we have

observed that these transitions exhibit long-term correlations (in

the studied metabolic subsystems, their activity values depend to

some extent on the previous ones).

In particular, we have characterized the behavior of several

large complex transitions series generated in metabolic subsystems

by means of the Hurst exponent H, which has been shown to be a

robust and reliable test to detect the presence of long-term

correlations [63,74].

For a random series with independent increments, it can be

shown that H should be equal to 0.5. If H?0.5 this is indicative of

the presence of ‘‘persistence’’ in the data, which means that the

present state of the system is affected by previous states.

The studied time series generated by DMNs demonstrate complex

transitions between the activities of the metabolic subsystems and we

have found values for the Hurst exponent of 0.07,H,0.4, indicative

of long term persistence over all the studied ranges. Values of H,0.5

are interpreted as characteristic of ‘‘trend-reversing’’ or ‘‘antipersis-

tence’’ (a type of ‘‘persistence’’). The behavior of the time series tends

to reverse itself, for instance, a decreasing trend in the past usually

implies an increasing trend in the future and conversely, an increase

in the past is likely to be followed by a decrease. The high reliability of

these results was tested with exhaustive Monte Carlo simulations. All

the series studied presented persistence and these results showed

clearly that the complex transitions in the DMNs exhibit long-term

memory phenomena.

In an attempt to study a possible influence of the past activity on

the enzymatic self-organized global structures we have considered

the b parameter (the past influence coefficient) in some of the

DMNs, in the sense that the present activity of each metabolic

subsystem may be affected by its previous activities (see more

details in the materials and methods section).

When the enzymatic activity is considered at the molecular level,

the model must take into account the parameters for this level of

organization. Thus, for example, we have studied the self-

organization of certain enzymes at the molecular level; concretely,

we have modelled the glycolytic subsystem by means of a system of

differential equations with delay. In these studies, we have taken into

account different molecular control parameters such as the

Michaelis constant, dissociations constants, non-exclusive binding

coefficients, equilibrium constants between conformational states,

etc. [75–77].

On the other hand, experimentally, the dynamic structure of the

cellular metabolism as a whole seems to be characterized by

presenting a functional global configuration in which a metabolic

core formed by several sets of enzymes are always in an active

state, whereas the rest of the molecular catalytic sets exhibit

dynamics of on-off changing states [12,64].

Our main goal is to understand the cause for the emergence of

this global supramolecular dynamic organization of enzymes.

Since this main goal focuses on a superior level of organization

than the molecular level, we will consider in this paper the

emergent dynamic behaviors in the DMNs obtained by means of

changes in: the level of enzymatic covalent regulatory activity, the

level of allosteric activity, the number of metabolic subsystems, the

flux topology, the topology of the regulatory signals and the flux

values.

Dissipative metabolic networks dynamics
Among the different dynamic behaviors that the DMNs may

exhibit we have considered three aspects for our analyses.

1- Local activity developed by each metabolic subsystem (periodic

and stationary patterns).

2- Dynamic transitions between steady states and periodic behaviors.

3- Global configurations that the DMNs may adopt:

I. All the subsystems are always in an on state.

II. All the metabolic subsystems always present cycles of

activity-inactivity.

III. A certain number of subsystems are always locked in an

on state conforming a metabolic core, while the rest of the

subsystems are in an on-off switching state.

Study of networks with two metabolic subsystems
In our first study, we have considered the simplest situation,

which corresponds to a metabolic network formed only by two

subsystems (concretely, we have analyzed the network described in

the example of the materials and methods section and figure 1). In

this study (see Table 1) the d threshold value in the regulatory

signals of total inhibition (the level of the enzymatic covalent

regulatory activity) has been fixed as control parameter and we

have taken the past influence coefficient b to be 0.

At small threshold values, for 0#d#0.12 the MSb1 presents a

single oscillatory behavior of one-period. In the interval

0.12,d#0.836 the first subsystem is always active and presents

different cycles of transitions with 2, 3, 6, 12… and more of 100

Figure 1. Network with two metabolic subsystems. DMN formed
by two metabolic subsystems arranged in series with two feedback
loops of regulatory signals (+, activator; 2T, total inhibition). The MSb1
is activated by the second subsystem and the MSb2 is totally inhibited
by the first subsystem when this one reaches a determinate threshold
value.
doi:10.1371/journal.pone.0003100.g001
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periodic patterns. For instance, one can observe how for d= 0.19 the

MSb1, presents a cycle of period three, i.e. the output activity of the

subsystem 1 makes uninterrupted transitions between three different

kinds of periodic oscillations. In figure 2b, it can also be observed

how, for d= 0.3, a cycle of uninterrupted transitions between 8

different periodic oscillations emerges spontaneously in MSb1.

Finally, for 0.836,d#1 deterministic chaotic transitions can be

observed. In this range of d values, the network formed by only

two metabolic subsystems spontaneously auto-organizes, provok-

ing the emergence of a very complex chaotic behavior in which

each subsystem presents infinite transitions between different

periodic patterns. In this situation, the MSb1 modifies uninter-

ruptedly its activity so that it never repeats itself for arbitrary long

periods of time.

The MSb2 for 0#d#0.17 is inactive (small threshold values d
represent high covalent regulatory activity). For 0.17,d#0.67 the

second subsystem presents cycles of activity-inactivity with different

patterns of transitions between steady states and periodic behaviors.

For 0.68#d#1 the MSb2 is locked in an active state. The same as

with the first subsystem, for 0.837#d#1 deterministic chaotic

transitions between steady states and periodic behaviors can be

observed, that is, the MSb2 spontaneously exhibits infinite transitions

between different oscillatory periodic behaviors and steady states.

In figure 2, some dynamical transitions corresponding to the

mean amplitude A0 and the corresponding periodic and stationary

patterns developed by the two subsystems are shown.

The mechanism that determines these behaviors in both

subsystems is not prefixed in any of the parts of the system. There

is no feedback with oscillatory properties nor any other rules that

determine the system to present complex transitions in the output

activities of the metabolic subsystems. The dynamic behaviors

which emerge spontaneously in the network have their origin in

the regulatory structure of the feedback loops, and in the non-

linearity of the constitutive equations of the system (see materials

and methods section for more details).

The introduction in our analyses of a new parameter, the b past

influence coefficient, allows us to observe some changes in the

dynamic behaviors of the metabolic nets formed by only two

subsystems (see Table 2).

At small past influence coefficient b (b= 0.1), the threshold

values d do not provoke qualitative changes in the network. So, for

0#d#1 the first subsystem is always on and chaos emerges

between 0.8,d#1. In these conditions, the second subsystem

exhibits three different activity states: for 0#d#0.2 the MSb2 is

inactive, for 0.2,d#0.6 its state is on-off and for 0.6,d#1 the

second subsystem presents an on state. Chaos emerges when

0.8,d#1.

When b= 0.2 the MSb1 is always on and chaos emerges in two

parametric regions: for d= 0.3 and for 0.7,d#1. The second

subsystem also presents, as the MSb1, chaotic behaviors under

these conditions, however, for d= 0.3 the MSb2 exhibits an on-off

state, and when 0.7#d#1 its state is on.

Table 1. Emergent dynamic behaviors as a function of d in
the DMN formed by two subsystems.

control parameter d MSb1 MSb2

0#d#0.12 P1 Off

0.12,d#0.17 P2 Off

0.17,d#0.22 P3 On-Off SS1

0.22,d#0.25 P6 On-Off SS1

0.25,d#0.29 P12 On-Off SS1

0.29,d#0.37 P8 On-Off SS1

0.37,d#0.42 P8 On-Off SS-P

0.42,d#0.53 P24 On-Off SS-P

0.53,d#0.58 P60 On-Off SS-P

0.58,d#0.64 P40 On-Off SS-P

0.64,d#0.66 P20 On-Off SS-P

d= 0.67 P60 On-Off SS-P

d= 0.68 P30 On SS-P

0.68,d#0.77 P12 On SS-P

d= 0.78 P42 On SS-P

0.78,d#0.82 P56 On SS-P

0.82,d#0.836 P.100 On SS-P.100

0.836,d#1 Chaos On Chaos

on: the metabolic subsystem is always in an active state. on-off: the MSb always
presents cycles of activity-inactivity. off: The metabolic subsystem always
presents an inactive state. Pn: the output activity of the subsystem makes
uninterrupted transitions between n different kinds of periodic oscillations and
steady states. Chaos: the metabolic subsystem exhibits spontaneously infinite
transitions between different behaviors oscillatory periodic and steady states.
SS1: the metabolic subsystem presents a unique steady state. SS-P: the second
subsystem presents cycles of activity-inactivity with different patterns of
transitions between steady states and periodic behaviors. MSb1: metabolic
subsystem 1. MSb2: metabolic subsystem 2. d: the level of the enzymatic
covalent regulatory activity (threshold value).
doi:10.1371/journal.pone.0003100.t001

Figure 2. Dynamical patterns in the DMNs formed by two
subsystems represented in the figure 1. (a) Periodic transitions in
the mean amplitude A0 of the MSb1, and (b) their corresponding cycle
of the different periodic behaviors belonging to the activity of the own
metabolic subsystem; the d threshold value is d= 0.3, which represents
the level of the covalent regulatory activity. (c) Complex periodic
transitions in the mean amplitude A0 in the MSb2 for d= 0.83 and (d)
their corresponding patterns of its activity showing cycles of periodic
oscillations with a steady state. The mean amplitude A0 is represented
as a function of the number of transitions N. The activity C (sequences
of periodic or stationary patterns) developed by each metabolic
subsystem is represented as a function of the time t.
doi:10.1371/journal.pone.0003100.g002
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As b increases, the regions of chaotic behavior augment in

correlation with d. For instance, when b= 0.5 and either

0.1,d#0.6 or 0.8,d#1 chaos emerge in the metabolic net, the

first subsystem is always on and MSb2 is on-off in the first range and

is on in the second one.

If b= 1 the net presents only one chaotic parametric region.

The first subsystem is always on, and chaotic transitions emerges

when 0.2,d#0.8. The second subsystem exhibits two different

behaviors: for 0#d#0.2 and 0.7#d#1 its state is off, and when

0.2,d#0.7 its state is on-off; as occurs in the MSb1, chaotic

transitions between steady state and periodic behaviors emerges

for 0.2,d#0.7.

If we take d as the first reference parameter, it can be observed

in Table 2 that, for relatively large values of b (0.6#b#0.8), the

deterministic chaotic behaviors emerge for almost all the values of

d (the MSb1 for 0.1,d#1 and the MSb2 for 0.2,d#1). When b
takes small values (0.2,b#0.1) chaotic behaviors emerge for high

values of d.

On the other hand, it can be observed that the MSb1 is always

active for all values of d and b. However, the MSb2 may present

one of three general states: always on, always off, or an on-off

changing dynamics. Thus, for low values of d (0#d#0.2) the

metabolic subsystem 2 is always inactive (off) independently of the

values of b. For high values of d the MSb2 shows a behavior in

which it is always active (on) (0.6,d#1 for 0.3#b#0.1, 0.8#d#1

for 0.4#b#0.5 and 0.8,d#1 for 0.6#b#0.7). Finally, the MSb2

presents dynamics of change active-inactive (on-off) for medium

values of d [0.3–0.6], with 0.2#d#1 as the maximum range for

b= 0.8.

Study of metabolic networks with twelve metabolic
subsystems

More interesting situations appear in the DMNs with more than

one flux and one regulatory signal associated to each subsystem. In

figure 3 we show a type of DMN formed by twelve subsystems (in

the graphics only the interconnections by fluxes are reflected; the

corresponding integration function parameters and the coefficient

values of the regulatory signals are shown in Table 3).

Each subsystem may present three states: always on, always off

and an on-off changing dynamic. If we take into account the

dynamics followed by these subsystems, interesting functional

configurations in the whole net can be observed.

Thus, when 0#d#0.29 all the subsystems are inactive. For

0.29,d#0.39, all the subsystems are locked into an on-off

changeable state (figure 3a). In the network a qualitative change

in the dynamical structure emerges for 0.39,d,0.68: various

dissipative catalytic elements develop a set of subsystems locked in

an on state, while the rest of metabolic subsystems are in an on-off

changeable state (figure 3b). The modification of the control

parameter in the range of 0.68#d#1, leads to a new phase

transition in which all the subsystems are in an on state (figure 3c).

In Table 4 are represented different global configurations in

DMNs formed by twelve subsystems in function of b and d. It is

shown in bold the set of nets that present a self-organized global

functional structure in which several subsets of enzymes are always

in an active state (metabolic core) whereas the rest of molecular

catalytic sets exhibit dynamics of on-off changing states. For very

high values of b (0.9#b#1) never emerge DMNs characterized by

presenting a metabolic core.

Table 2. Emergent dynamic behaviors in function of b and d in the DMN formed by two subsystems.

b MSb1 MSb2 b MSb1 MSb2

1 0#d#0.2 P 0#d#0.2 - Off 0.4 0#d#0.1 P 0#d#0.2 - Off

0.2,d#0.8 Ch 0.2,d#0.7 Ch On-Off 0.1,d#0.7 Ch 0.2,d#0.7 Ch On-Off

0.8,d#1 P 0.7,d#1 - Off d= 0.8 P d= 0.8 P On

0.9 0#d#0.2 P 0#d#0.2 - Off 0.8,d#1 Ch 0.8,d#1 Ch On

0.2,d#0.8 Ch 0.2,d#0.8 Ch On-Off 0.3 0#d#0.2 P 0#d#0.2 - Off

0.8,d#1 P 0.8,d#1 P On-Off 0.2,d#0.6 Ch 0.2,d#0.6 Ch On-Off

0.8 0#d#0.1 P 0#d#0.2 - Off 0.6,d#0.8 P 0.6,d#0.8 P On

0.1,d#1 Ch 0.2,d#1 Ch On-Off 0.8,d#1 Ch 0.8,d#1 Ch On

0.7 0#d#0.1 P 0#d#0.2 - Off 0.2 0#d#0.2 P 0#d#0.2 - Off

0.1,d#1 Ch 0.2,d#0.8 Ch On-Off d= 0.3 Ch d= 0.3 Ch On-off

0.8,d#1 Ch On 0.3,d#0.7 P 0.3,d#0.6 P On-Off

0.6 0#d#0.1 P 0#d#0.2 - Off 0.7,d#1 Ch d= 0.7 P On

0.1,d#1 Ch 0.2,d#0.8 Ch On-Off 0.7,d#1 Ch On

0.8,d#1 Ch On 0.1 0#d#0.8 P 0#d#0.2 - Off

0.5 0#d#0.1 P 0#d#0.2 - Off 0.8,d#1 Ch 0.2,d#0.6 P On-Off

0.1,d#0.6 Ch 0.2,d#0.6 Ch On-Off 0.6,d#0.8 P On

0.6,d#0.8 P d= 0.7 P On-Off 0.8,d#0.1 Ch On

0.8,d#1 Ch d= 0.8 P On

0.8,d#1 Ch On

b: the past influence coefficient. d: the level of the enzymatic covalent regulatory activity (threshold value). Each metabolic subsystem may present one of the following
three states: on: the metabolic subsystem is always in an active state, on-off: the MSb always present cycles of activity-inactivity, off: The metabolic subsystem always
presents an inactive state. Ch: deterministic chaotic behaviors. P: transitions between periodic and/or stationary behaviors. MSb1: metabolic subsystem 1. MSb2:
metabolic subsystem 2.
doi:10.1371/journal.pone.0003100.t002
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Figure 3. Global configurations in dissipative metabolic networks. In the DMN three kinds of global configurations may emerge. (a) All the
subsystems exhibit an on-off changeable state, the d threshold value parameter (the level of the covalent regulatory activity) is d= 0.35. (b) A set of
metabolic subsystems are locked into an active state (the MSb2 and the MSb11) while the rest of metabolic subsystems exhibit an on-off changeable
state, for d= 0.42. (c) The modification of the d control parameter leads to a new global configuration of the network in which all the subsystems are
in an on state, d= 0.7. Arrows show substrate fluxes, the subsystems locked always in an active state are shown by dark circles and the metabolic
subsystem that always present cycles of activity-inactivity are represented by white circles.
doi:10.1371/journal.pone.0003100.g003

Table 3. Coefficient values of the regulatory signals and integration function parameters belonging to the DMN formed by 12
subsystems.

MSb Fluses in Flux Parameter 1u Flux Parameter 2u Initial Conditions

1 9 8 .88 .80 .95 .78 .53 .74 .53 .16 .75

2 7 4 .93 .87 .99 .61 .53 .67 .97 .27 .48

3 4 1 .96 .74 .69 .90 .85 .88 .79 .80 .65

4 6 12 .88 .75 .52 .50 .68 .51 .73 .13 .59

5 10 1 .95 .73 .67 .97 .78 .73 .17 .19 .27

6 3 8 .58 .96 .53 .80 .60 .64 .19 .28 .48

7 3 4 .81 .79 .61 .85 .77 .95 .05 .66 .68

8 9 1 .91 .51 .51 .91 .68 .57 .32 .52 .54

9 12 4 .77 .99 .69 .62 .54 .63 .04 .21 .87

10 5 6 .98 .95 .96 .60 .73 .81 .37 .61 .78

11 4 1 .76 .98 .63 .51 .86 .55 .31 .77 .41

12 8 2 .52 .83 .76 .68 .94 .54 .34 .42 .17

MSb Reg. Signals Reg. Sign. Coef. Reg. Sign. Coef. Reg. Sign.Coef.

1 10T 6T 2T 0 0 0 0 0 0 0 0 0

2 12 142 112 .07 .82 .03 .19 .61 .36 .04 .77 .52

3 9+ 5+ 1T .18 .43 .01 .14 .53 .47 0 0 0

4 6+ 9T 122 .19 .86 .29 0 0 0 .19 .58 .77

5 92 82 7T .16 .43 .93 .009 .61 .17 0 0 0

6 12 42 2+ .06 .44 .76 .18 .95 .58 .02 .23 .34

7 4+ 3T 12 .1 .19 .66 0 0 0 .05 .43 .52

8 11+ 7T 6T .05 .68 .76 0 0 0 0 0 0

9 42 6T 2+ .07 .32 .29 0 0 0 .18 .45 .76

10 5T 2T 1T 0 0 0 0 0 0 0 0 0

11 102 2T 7+ .18 .63 .4 0 0 0 .05 .82 .01

12 9T 5+ 2+ 0 0 0 0.05 .002 .74 .02 .67 .09

doi:10.1371/journal.pone.0003100.t003
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It can be observed also that in this kind of networks, for high

covalent regulatory activity (0.1#d#0.4) nets with all metabolic

subsystems in an on-off changing dynamic emerge (small threshold

values d represent high covalent regulatory activity). Last, the

DMNs with low levels of b and high values of d present all their

metabolic subsystems always active (on).

In order to better understand the influence of the control

parameters d and b on the global self-organizations in the DMNs,

we have made a first study of different nets constituted by twelve

metabolic subsystems with three regulatory signals and two input

fluxes by subsystem. In this study all networks present the same

flux configuration described in figure 3. The rest of parameters

that configure the metabolic net, such as flux integration

parameter, influence coefficients, and the regulatory interconnec-

tions were randomly chosen assigning the same probability to each

type of regulatory signal.

A total of 1.210.000 different metabolic nets were built, the

results of this study are shown in figure 4. In the calculations,

10,000 different metabolic networks were taken into account for

each represented point (corresponding to determinate values of d
and b), with 300 iterations per net. In these networks, for a given

set of subsystems, random regulatory signals were settled. Each

one of the regulatory feedbacks that connect the subsystems were

randomly decided, and it was also decided randomly the type of

regulation (activation, inhibition or total inhibition) as well as the

parameters associated to each regulatory signal (see the materials

and methods section for more details). The set of subsystems from

whom a given subsystem receives fluxes was also decided

randomly, (being thus established randomly the flux architecture

of the net) as well as the parameters associated to the flux

integration functions. The probability distribution that we used in

the random selections was the uniform distribution. The control

parameters were varied in steps of 0.1 in the unit interval [0, 1]

and the criterion followed to determinate if a metabolic subsystem

was on, off or changing on-off was that the subsystem had the

corresponding state between the iterations 200 and 300.

In figure 4a, the percentage of DMNs with all their subsystems

unable to change the state is shown (each subsystem is always on or

is always off and never is in an on-off changeable state). It can be

observed that if b is maximum (b= 1) all the percentages are

greater than 50% (between 51.11% for d= 0 and 70.66% for

d= 0.9). When the covalent regulation is very low (0.9,d#1) and

0,b#0.6, the biggest percentages are reached (between 64% and

97.6%). For 0.3,d#0.7 and 0.6,b#0.9 the lowest percentages

are reached (all them are less than 10%).

The maximum percentage of dissipative networks with all its

metabolic subsystems unable to change the state (97.6%) is

obtained when d= 1 and b= 0.1, and the minimum (1.39%) is

attained for d= 0.6 and b= 0.7.

In figure 4b the percentage of networks with all their subsystems

in an off state is represented. They constitute a particular case of

the DMNs showed in figure 4a and they are functionally unviable

metabolic nets. When the past influence coefficient is maximum

(b= 1) the biggest percentages are reached. These values range

from 17.16% for d= 0.1 to 19.97% for d= 0.9. If 0.7#d#1 and

b#0.7 all the percentages are less than 1%.

In figure 4c, the percentage of metabolic networks that present

all their elements in an on-off regime is shown. The biggest

percentages are obtained when b= 0.9 and 0.3#d#0.9. The

lowest percentages (always less than 1%) are found for a value of d

Table 4. Global functional configurations in the nets formed by twelve subsystems.

b = 0 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8 b = 0.9

d= 0.1 10 On-Off 10 On-Off 10 On-Off 10 On-Off 10 On-Off 10 On-Off 10 On-Off 12 Off 12 Off 12 Off

2 Off 2 Off 2 Off 2 Off 2 Off 2 Off 2 Off

d= 0.2 11 On-Off 11 On-Off 11 On-Off 11 On-Off 11 On-Off 12 On-Off 11 On-Off 12 Off 12 Off 12 Off

1 Off 1 Off 1 Off 1 Off 1 Off 1 Off

d= 0.3 12 On-Off 11 On-Off 11 On-Off 12 On-Off 11 On-Off 12 On-Off 12 Off 12 Off 11 On-Off 12 Off

1 Off 1 On 1 Off 1 Off

d= 0.4 11 On-Off 12 Off 11 On-Off 12 On-Off 12 On-Off 12 On-Off 12 On-Off 12 On-Off 12 On-Off 12 Off

1 On 1 On

d= 0.5 9 On-Off 9 On-Off 9 On-Off 9 On-Off 12 On-Off 12 On-Off 12 On-Off 12 Off 12 Off 12 Off

3 On 3 On 3 On 2 On

d= 0.6 3 On-Off 9 On-Off 9 On-Off 9 On-Off 9 On-Off 9 On-Off 12 On-Off 12 On- Off 12 On-Off 12 Off

9 On 3 On 3 On 3 On 3 On 3 On

d= 0.7 12 On 12 On 12 On 9 On-Off 9 On-Off 9 On-Off 11 On-Off 12 On-Off 12 Off 12 Off

3 On 3 On 3 On 1 On

d= 0.8 12 On 12 On 12 On 12 On 12 On 5 On-Off 12 On-Off 11 On-Off 2 On-Off 12 Off

7 On 1 On 10 Off

d= 0.9 12 On 12 On 12 On 12 On 12 On 8 On-Off 11 On-Off 12 On-Off 2 On-Off 2 On-Off

4 On 1 On 10 Off 10 Off

d= 1 12 On 12 On 12 On 12 On 12 On 4 On-Off 5 On-Off 5 On-Off 5 On-Off 2 On-Off

8 On 7 On 7 On 7 On 10 Off

In the DMNs different functional reactive structures may emerge spontaneously: all the subsystems are always in an on state, all the subsystems are always in an on-off
changeable state, a certain number of metabolic subsystems are always locked in an on active state (metabolic core) while the rest of the subsystems remain in an on-off
changing dynamics and nets in which all their subsystems are always off (nets functionally non-viable). It is shown in bold the set of nets in which a metabolic core
emerges. b: the past influence coefficient. d: the level of the enzymatic covalent regulatory activity (threshold value).
doi:10.1371/journal.pone.0003100.t004
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around 0.7 and b#0.4. The maximum percentage (45.5%) is

obtained when b= 0.9 and d= 0.8, and the minimum (0.001%) is

obtained when b= 0.4 and d= 1.

Finally, figure 4d shows the percentage of nets characterized by

having a subset of dissipative metabolic elements locked into an

active state (metabolic core) while the rest exhibit an on-off

changeable state. If the covalent regulatory activity is minimum

(d= 1), the percentage of nets presenting these functional

configuration varies strongly as a function of b, in fact, the

absolute maximum is 87.33% (b= 0.9) and the absolute minimum

is 2.39% (b= 0.1). For a maximum covalent regulation (d= 0) the

biggest percentage is 71.37% (b= 0.8) and the minimum

percentage is 37.09% (b= 0). When 0,d,1, the highest

percentages (about 80%) are attained for a given value of b
between b= 0.5 and b= 0.7 and the minimum values correspond

to b= 1. The 64.4% of the pairs (b, d) present a percentage over

50% for these kind of metabolic nets.

A total of 33.26% of the studied DMNs correspond to the

case in which all its subsystems are unable to change the state,

the 14.09% of the nets present all their elements in an on-off

regime, and the 52.56% are metabolic nets characterized by

having a subset of dissipative metabolic elements locked into an

active state while the rest exhibit an on-off changeable state. The

percentage of networks with all their subsystems in an off state

(functionally unviable metabolic nets) is 4.95% (this percentage

constitutes part of the 33.26% of the nets unable to change its

state).

It can be observed that the global configuration characterized

by having a metabolic core is the one that presents the maximum

percentage when compared with the other two active global

configurations.

In metabolic networks formed by twelve subsystems, complex

dynamical transitions in the activities of each MSb are common

and we have observed that chaotic transitions between steady

states and periodic behaviors may emerge both in subsystems

always on (for example, when d= 0.7 and b= 0) and in metabolic

subsystems that exhibit an on-off changeable state (for example,

when d= 0.8 and b= 0.3).

Figure 4. Analysis of DMN with 12 subsystems. Percentage of DMN that present, respectively, (a) all their subsystems unable to change the
state (each subsystem is always on or is always off and never is in an on-off changeable state), (b) all subsystems in an off state (they constitute a
particular case of the dissipative networks showed in figure 6a and they are functionally unviable metabolic nets), (c) all their elements in an on-off
regime and (d) a subset of dissipative metabolic subsystems locked into an active state while the rest exhibit an on-off changeable state. In the
horizontal axes the d threshold value (the level of the covalent regulatory activity) and the b past influence coefficient are displayed. In total,
1.210.000 different randomly constructed metabolic nets with 12 subsystems and two input flux by subsystem were studied.
doi:10.1371/journal.pone.0003100.g004
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Chaos in dissipative metabolic networks
Under experimental conditions, most of the local dynamic

behaviors of the metabolic subsystems present periodical oscilla-

tory patterns or steady states [33]. However, under cellular

conditions it has been observed that some subsystems can present

chaotic local activities.

In figure 5, two experimental chaotic behaviors are shown. The

first one (figure 5a) corresponds to oscillations in citric acid cycle, a

metabolic subsystem always active under cellular conditions [78]

and the second (figure 5b) represents experimental calcium

oscillations in Xenopus laevis oocyte carried out by our group.

These chaotic oscillations correspond to a subsystem in an on-off

changeable regime.

The blood serum from many animals contains a factor which

activates a membrane receptor that is coupled to the phosphati-

dylinositol second messenger system and produces oscillatory

currents. These currents are elicited by activation of Cl2 channels

sensitive to the intracellular Caz
2 concentration [79].

The enzymatic activity bound to the membrane of the oocyte

after the external stimulus of the Fetal Bovine Serum causes the

dynamic mobilization of the intracellular calcium. This activity

ceases soon after the exposure of the cell to the external agent.

Figure 6 shows time series generated by the MSb6 (belonging to

the network formed by twelve subsystems) for d= 0.8 and b= 0.3.

Under these conditions the subsystem exhibits an on-off switching

state and both the mean amplitude A0 (figure 6a), the amplitude A

(figure 6b) and frequency v (figure 6c) present chaotic behaviors.

In agreement with this kind of transitions the subsystem (MSb6)

exhibits metabolic activity patterns characterized by very complex

oscillatory behaviors (figure 6d).

Study of metabolic networks formed by high numbers of
metabolic subsystems

Finally, in order to study the behavior of the DMNs depending

on d (covalent regulation level) and n (number of subsystems),

similar statistics were also carried out. In this case, networks

formed by subsystems with one regulatory signal for each

metabolic subsystem and one input flux were considered; likewise

the same probability for each regulatory signal was assigned. Each

net subsystem can have an outer input flux with a probability of

0.1, so that a metabolic network could have more than one outer

input flux but at most one for each subsystem. Again, all

parameters, the topology of the regulatory signals and flux

interconnections (flux topology) were randomly configured. The

b parameter was always taken equal to 0.3. For this study (figure 7)

1.250.000 different metabolic networks were analyzed.

In figure 7a, the percentage of metabolic nets with all their

subsystems unable to change their state is shown. In this kind of

nets, each subsystem is always on or is always off, and never is in an

on-off switching state. It can be observed that for a fixed d there is a

remarkable trend towards a decrease in this percentage when the

number of subsystems that conforms the net is increased. When

n = 2, the mean percentage with respect to d is 75.5% and for

n = 50, it is 29.6%. With respect to the behavior of percentages

when the number n of subsystems is fixed, two different clusters are

observed.

Figure 5. Chaotic behaviors in two different metabolic subsystems. (a) Experimental oscillations belonging to the citric acid cycle, a
metabolic subsystem always active under cellular conditions (MacDonald et all, 2003), the a-ketoglutarate concentration is represented as a function
of the time t. (b) Experimental calcium oscillations in oocytes carried out by our group. Application of Fetal Bovine Serum (FBS) (Sigma-Aldrich)
diluted 1:1000 to a Xenopus laevis oocyte promotes the generation of inward Ca2+-dependent Cl2 oscillating currents. The trace shown here
corresponds to a stable phase of the whole current. These chaotic oscillations represent the activity of a subsystem in an active-inactive changeable
regime. The amplitude (mA) is represented versus time.
doi:10.1371/journal.pone.0003100.g005
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For n up to 35 subsystems, the percentage decreases slightly with

d when d is less than 0.8, and increases starting from this value. In

this cluster, the maximum percentage (83.31%) is obtained when

d= 0.1 and n = 2, and the minimum percentage (24.81%) is

obtained when d= 0.7 and n = 35.

For a number of metabolic subsystems greater than 35, the

percentage decreases steadily with respect to d; this decreasing is

very remarked for d.0.5 (that is, when the covalent regulation is

low, the percentage of nets with all their subsystems unable to

change their state diminishes notably). In this second cluster, the

maximum percentage (41.92%) is obtained when d= 0.1 and

n = 40, and the minimum percentage (21.65%) is obtained when

d= 0.9 and n = 50.

The DMNs in which all subsystems are off constitute a

particular case of the nets in which all the metabolic subsystems

are unable to change their state (figure 7b). It is observed that,

when d is fixed, the percentage goes asymptotically to zero. For a

given value of n, the percentage decreases slowly with the

increment of the d value. The maximum percentage (56.37%) is

obtained when n = 2, and its minimum (0.32%) is reached when

n = 50.

In figure 7c the percentage of metabolic nets with all its

dissipative elements in an on-off switching state is shown. For d
fixed, the percentage increases when the number of subsystems is

between 2 and 4, and then it decreases, tending to 0 asymptotically

with the number of subsystems. The global maximum (30.9%) is

reached for d= 0.9 and n = 3, and the global minimum (0.11%) is

reached for d= 0.1 and n = 50.

In figure 7d the percentage of DMNs that develop a metabolic

core of subsystems locked into an active state while the rest of

metabolic subsystems exhibit an on-off changeable state is shown.

When d is fixed, the percentage grows pronouncedly with the

number of subsystems. The rank of growth (that is, the difference

of the percentage between n = 50 and n = 2) is 59.3 for d= 0.1 and

76.3 for d= 0.9. For a given n with n.35 the percentage increases

notably with d.

The minimum percentage (0.61%) is attained when d= 0.1 and

n = 2, and the maximum (77.71%) is obtained when d= 0.9 and

n = 50.

It can be observed that an increase in the number of subsystems

that constitute the net results in a decrease in the percentage of

nets functionally non-viable (with all their subsystems off) as well as

Figure 6. Chaotic behaviors in DMN. Chaotic time series generated by the sixth metabolic subsystem belonging to the network formed by
twelve subsystems (figure 3). The control parameter values are d= 0.8 and b= 0.3. Under these conditions the subsystem exhibits an on-off
changeable state and it can be observed that the mean amplitude A0 (a), the amplitude A (b) and the frequency v (c) present chaotic behaviors. In
agreement with this kind of transitions the subsystem exhibits a metabolic activity pattern characterized by very complex transitions (d). The activity
C of the metabolic subsystem, which represents the concentration of a determinate intermediate metabolite, is represented as a function of the time
t.
doi:10.1371/journal.pone.0003100.g006
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the nets with all their subsystems unable to change state and the

nets with all their subsystems changing. Nevertheless, this

increment in the number of subsystems suggests an asymptotic

trend to reach a percentage of 100% of the nets presenting a global

configuration characterized by having a metabolic core of

subsystems locked into an active state while the rest of metabolic

subsystems exhibit an on-off switching state.

These data seem to indicate that the fundamental element for

the emergence of a global functional configuration characterized

by presenting a metabolic core is a high number of metabolic

subsystems.

Discussion

In order to study the emergent behaviors in metabolic structures

formed by dissipative enzymatic associations (metabolic subsys-

tems) connected by substrate fluxes and regulatory signals

(allosteric and covalent interactions) we have used a type of

dynamic system, which we call ‘‘dissipative metabolic networks’’ or

DMNs.

Three types of basic emergent behaviors can be distinguished:

I. Dynamic transitions corresponding to the mean amplitude,

amplitude and frequency in the activities of each subsystem.

II. Activity patterns developed by the metabolic subsystems.

III. Global functional configurations in the network.

Upon the numerical analysis, a number of different qualitative

types of transitions among the activity patterns of the subsystems can

be observed: steady state-steady state, steady state-periodic regime,

changes between different periodic regimes and chaotic transitions.

Periodic and chaotic transitions in these activity patterns of the

subsystems are common. For the case of periodic cycles of

transitions, the subsystems run repeatedly through the same set of

states, resulting in a cycle of distinct periodic oscillations and

steady states. Chaotic behaviors can be observed even in very

simple nets of two or more subsystems with a single flux and a

unique regulatory signal sent by a catalytic element in the network.

Each metabolic subsystem may present one of the three general

states: always on, always off, or an on-off changing dynamics. If we

Figure 7. Analysis of DMN with a variable number of subsystems. Percentage of DMNs that exhibit, respectively, (a) all subsystems unable to
change the state, (b) all subsystems in an off state (functionally unviable metabolic nets), (c) all their elements in an on-off regime and (d) a subset of
dissipative metabolic subsystems locked into an active state while the rest exhibit an on-off changeable state. In the horizontal axes the d threshold
value (the level of the covalent regulatory activity) and the number of subsystems n are shown. In total, 1.250.000 randomly constructed nets were
studied.
doi:10.1371/journal.pone.0003100.g007
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consider the dynamic behaviors of a metabolic network regarding

only these three general states, interesting global functional

configurations in the overall of the net can be observed.

In fact, for a specific parameter value (for example, the

threshold value in the regulatory signals of total inhibition, i.e.

the level of enzymatic covalent activity) all the subsystems can be

in an on state. In this situation, the dynamics are restricted to the

possible changes in the variables of the active subsystems.

Further modifications in the control parameter may lead to a

new global configuration in which all their dissipative subsystems

are in an on-off changeable state.

A new variation in any control parameter may provoke a

qualitative change in the metabolic net, resulting in the emergence

of a new global configuration, in which a certain number of

subsystems are locked in an active state (metabolic core) while the

rest of the subsystems remain in an on-off changing dynamics.

Besides, all these metabolic subsystems, both those locked in an

always active state and those which are permanently in a process

of activation and inhibition, exhibit local dynamics with transitions

between different steady states and oscillatory behaviors.

In the prevailing conditions inside the cell, catalytic dynamics

seem to show a similar structure to this kind of metabolic global

configuration. The cellular metabolism presents a metabolic core

formed by a set of catalytic associations always in active states (in

eukaryotic cells they are mainly the tricarboxylic acid cycle, the

pyruvate dehydrogenase complex and the oxidative phosphoryla-

tion) while the rest of the catalytic subsystems are in an on-off

changing state (b-oxidation of fatty acids, amino acid degrada-

tions, glycolysis, gluconeogenesis, etc).

Since this global metabolic dynamic may be a genuine and

universal functional configuration of the cellular metabolic

structure common to all living cells, we have focused our efforts

on analyzing the elements which may determine its emergence.

With this purpose, in a first study, we have analyzed 1.210.000

different randomly constructed metabolic nets with only 12

subsystems and with three regulatory signals and two input fluxes

subsystem.

The numerical results show that more than 50% of the analyzed

nets present a global configuration characterized by exhibiting a

metabolic core.

Regarding the rest of the global metabolic configurations, apart

from appearing in smaller percentages than the previous one, it is

observed that these percentages diminish even more when the

level of covalent regulation is not very high, as could be expected

in living cell conditions (here small threshold values d represent

high covalent regulatory activity).

In fact, when the nets with all their subsystems unable to change

its state are studied (this happens for the 33.26% of the networks),

it is noted that the smallest number of these nets is obtained when

the level of covalent regulations is intermediate and the influence

of the past is high (but not maximum, that is b,1).

In the particular case of nets with all their subsystems off (that

case holds for the 4.95% of the nets, and constitutes part of the

33.26% of the nets unable to change its state), it can also be

observed that the percentage of such nets is less than 1% when the

level of covalent regulation is intermediate or low and the

influence of the past is not very high (b,0.7).

As in the previous cases, when nets in which all the subsystems

are in an on-off changeable state are considered (this happens for

the 14.09% of the nets), it is observed that the lowest percentages

are obtained when the level of covalent regulation is not high and

the influence of the past is low.

The nets characterized by having a metabolic core, appear in

the highest percentages, which become particularly high (up to

80%) when the level of covalent regulations is not high and b is

low.

In the light of these results, despite the fact that the control

parameters b and d may cause important changes in the dynamic

behaviors of the nets, it seems clear that none of these control

parameters are determinant in the emergence of a global

metabolic configuration characterized by a set of subsystems

locked into an active regime while the rest is in an on-off switching

state in any generic metabolic net.

In order to better understand which elements could determine

the emergence of this global configuration, we have carried out

simulations including 1.250.000 randomly constructed nets, using

the number n of subsystems that conform each network and the

threshold value d (the enzymatic covalent regulatory activity level)

as control parameters.

The obtained results seem to show that the percentage of nets

with all their subsystems unable to change the state decreases

remarkably with increased numbers of subsystems. This decre-

ment is more notable when the level of covalent regulation in these

nets is not high.

In the particular case of nets with all their subsystems in an off

state (functionally unviable metabolic nets) their percentage tends

asymptotically to zero. In fact, when the number of subsystems is

50, the percentage is negligible.

An analysis of the nets with all their subsystems in an on-off

changeable state shows clearly that this percentage tends also to

zero.

Finally, the study of the remaining nets (the ones with a

metabolic core) shows a rapid increase in their percentage as a

function of the number of subsystems. These values are

particularly high when the level of covalent regulation is moderate.

These results suggest that there is an asymptotic trend leading

towards 100% in the percentages of this global functional

configuration when the number of subsystems increases.

In conclusion, the fundamental element for the emergence of a

global metabolic configuration characterized by presenting a

metabolic core is the number of subsystems. It seems that this

global configuration is an emergent property of all the DMNs with

a high number of subsystems.

It is possible that the complexity inherent to a biochemical

system conformed by a high number of dissipative subsystems

provokes the spontaneous emergence of this fundamental aspect of

the cellular metabolic structure.

Unicellular organisms present a kind of metabolic cellular

structure characterized by having a dynamic functional configu-

ration in which a small group of metabolic subsystems are always

active whereas the rest present on-off catalytic dynamics. Our

numeric analysis seems to show that this global dynamic self-

organization of the metabolism emerges spontaneously in the

cellular metabolic space, as a consequence of the fact that the cells

possess catalytic structures conformed by a big number of

metabolic subsystems.

All living cellular organisms seem to display some metabolic

subsystems that are always active, (these are involved in the

permanent production of ATP), whereas the rest of the subsystems

present on-off reactive dynamics. Taking all this into account, we

can conclude that this global dynamic organization of the reactive

cellular processes is possibly a genuine characteristic of the

metabolism, common to all living cellular organisms, which could

be basic and fundamental in the regulation of the most elementary

cellular processes.

By means of modelling approaches, such as the constraint-based

analysis applied to metabolic networks, E. Almaas, A.L. Barabási

and their group of researchers, [12,64] have shown that the global
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organization of metabolic fluxes in certain bacterial cells is

characterized by displaying a metabolic core of catalytic reactions

always active under different growth conditions, embedded in a

connected set of enzymatic reactions where some enzymatic

pathways are eventually turned off completely.

These studies have been made in Escherichia coli, Helicobacter

pylori, and Saccharomyces cerevisiae metabolism, showing also

that most current antibiotics may interfere with the metabolic core

[64]. The authors suggest that this global organization of the

cellular metabolism ‘‘probably represents a universal feature of

metabolic activity in all cells, with potential implications for

metabolic engineering.’’

The global configuration that emerges in the DMNs, charac-

terized by displaying a metabolic core formed by a set of

subsystems always active embedded in a set of subsystems in an

on-off changeable state, seems to agree remarkably with the

observations of E. Almaas, A.L. Barabási and their group of

researchers. Our numeric results seem to show that this metabolic

global organization is originated by the dissipative dynamics that

spontaneously emerge in the cellular reactive structure formed by

a network with a high number of enzymatic processes.

On the other hand, the emergence of frozen cores in dynamic

networks has also been pointed out in Random Boolean networks.

This interesting kind of dynamical systems was introduced in 1969

by S. Kauffman [81–83].

Under experimental conditions, most of the local dynamic

behaviors of the metabolic subsystems exhibit periodical oscillatory

patterns or steady states. However, it has also been observed that

some subsystems can present chaotic activities. For example, that

occurs in oscillations in citric acid cycle (an always active metabolic

subsystem) and in calcium oscillations in oocytes where the

membrane receptors are activated.

Our results also show that the mean amplitude, amplitude and

frequency in the activities of certain subsystems may present

chaotic patterns. These dynamic behaviors may emerge in the

simplest nets with only two subsystems and in the most complex

nets; likewise, in subsystems always on as well as in metabolic

subsystems that exhibit an on-off switching state chaos can be

observed.

The combination of chaotic dynamics in some subsystems with

a stable functional configuration which presents a metabolic core

may be of biological interest. The stability of this global

configuration is necessary to ensure the maintenance of its

metabolic structure. The existence of chaotic dynamics in the

transitions of the subsystems activity may constitute an advantage

in the self-regulatory control of the system, due to the sensitivity of

chaotic behaviors to initial conditions; these dissipative metabolic

networks with local chaotic patterns may permit fast responses

during the cellular adaptation and in the regulation against

perturbances.

This conception of the cellular metabolic structure as a complex

dissipative catalytic network endowed with a stable global

configuration in which a core of metabolic subsystems are locked

into an active regime, while the rest present complex on-off

changing dynamics, and able to simultaneously develop steady

states, regular oscillations and chaotic transitions, may help to

better understand cytological phenomena and to reinterpret them

in a closer to reality way.

Materials and Methods

1. Dissipative Metabolic Networks model
DMNs consist of a set with n interconnected elements, called

metabolic subsystems or MSbs. Each subsystem represents a group

of enzymes aggregated in clusters and dissipatively structured. This

enzymatic set is considered as an individual catalytic entity.

The subsystems receive both input fluxes (the substrates of the

biochemical reactions) and regulatory signals, which may be of

three types: activatory, inhibitory and total inhibitory (all-or

nothing type). These interactions correspond with the activity of

allosteric enzymes and regulatory enzymes of covalent modula-

tion.

Each MSb converts the input fluxes and regulatory signals into

a unique or several output activities and sends one or several fluxes

and regulatory signals to other subsystems.

The output activity can be periodic or stationary (In accordance

with the experimental observations, in which most of the patterns

are stationary or correspond with periodic oscillatory behaviors

[33]).

The conversion from input to output activity is performed in

two stages. In the first one, the input fluxes are transformed in an

intermediary activity using some of the ‘‘flux integration

functions’’. In the second stage, the received regulatory signals

originate a ‘‘regulatory signal integration’’ which varies the

intermediary activity.

The magnitude of the influence of each regulatory signal is

defined by an associated regulatory coefficient.

In order to simplify the assumptions, we will take first the

periodic oscillations to be harmonic; these harmonic oscillations

will be interspected later with transition regimes that are

combinations of the harmonic oscillations preceding and following

the transition. This will result in nonlinear oscillations with

different levels of complexity (see, figure 6d), as could be expected

in the cellular conditions ‘‘in vivo’’.

So the activity of the i-th subsystem will take the form

yi(t) = (A0)i+Aisin(vit), where (A0)i is the mean amplitude, Ai is the

amplitude of the oscillation and vi is the frequency. Since yi(t) has

to be non-negative, we will take (A0)i$0 and 0#Ai#(A0)i. We will

also suppose that the values of (A0)i and vi are bounded, that is,

there exist constants (A0)max and vmax such that (A0)i#(A0)max and

vi#vmax for all i. The function yi(t) can be characterized by three

variables, xi,1, xi,2 and xi,3, with values between 0 and 1, by taking

(A0)i = xi,1(A0)max, Ai = xi,2(A0)i and vi = xi,3vmax (in fact, the

variables xi,j may be considered as parameters, because they

change very slowly in time). Hereinafter, we will identify the

activity of the i-th subsystem during the k – th dynamical regime

with the triple xk
i,1,xk

i,2,xk
i,3

� �
, and the activity of the complete set

of subsystems with the array xk
i,j

� �
, where i varies from 1 to n,

being n the number of subsystems and where j varies between 1

and 3; the superindex k indicates the current iteration.

The activity will be steady when xi,2 = 0 or xi,3 = 0, and the

subsystem will be in an inactive state when xi,1 = 0.

The normalized activity of each MSb is xk
i,j

� �
.

The temporal period during which each oscillation is main-

tained will be a constant value that we will call T. During the k-th

iteration the time t will vary between (k-1)T and kT.

We proceed now to describe the way the subsystems are

interconnected and how the conversion of the input activities into

a unique output activity is realized. As we said above, the activity

of the whole DMN in the k-th iteration will be

xk
i,j

� �
~

xk
1,1 xk

1,2 xk
1,3

..

. ..
. ..

.

xk
n,1 xk

n,2 xk
n,3

0
BB@

1
CCA,

where the index j in xk
i,j define A0, A and v when j is 1, 2 and 3,
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respectively. This matrix describes the state of the whole net in

each iteration and we will call it the state matrix. The integration

process that transforms xk in xk+1 consists of two stages that will be

fully described in which follows. The first stage is the flux

integration, in which xk~ xk
i,j

� �
is transformed in an intermediary

activity x0k~ x0i,j
k

� �
by means of three integration functions: F1,F2

and F3. The second one is the regulatory signal integration stage,

in which we pass from x0i,j
k

� �
to xkz1

i,j

� �
by using three signal

regulatory functions: the activation function AC, the inhibition

function IN, and the total inhibition function TI.

2. Flux integration
Each subsystem receives an input flux from a subset of the

remaining ones. In the simplest case, the i-th subsystem receives

flux from only one subsystem, say the l-th. The input flux will

consist of the three values xk
l,1,xk

l,2 and xk
l,3, and the integrated

input flux will consist of the numbers x0i,1
k~

F1 xk
l,1,pi,1

� �
, x0i,2

k~F2 xk
l,2,pi,2

� �
, and x0i,3

k~F3 xk
l,3,pi,3

� �
.

The qualitative behaviors of the amplitude and frequency in the

glycolytic subsystem were studied in detail by Goldbeter and

Lefever [80] (see figure 8). We have used piecewise linear functions

approximating the nonlinear functions obtained by Goldbetter

and Lefever. Thus, we have calculated the integrated input flux by

using the functions F1,F2,F3 defined as follows:

F1 x,pð Þ~F2 x,pð Þ~

0, if xƒ0:1

2:5 x{0:1ð Þ if 0:1vxƒ0:3

0:5z p{0:5
0:5 x{0:3ð Þ if 0:3vxƒ0:8

p
0:1 0:9{xð Þ if 0:8vxƒ0:9

0, if xw0:9

8>>>>>><
>>>>>>:

and

F3 x,pð Þ~

0, if xƒ0:1

2:5 x{0:1ð Þ if 0:1vxƒ0:3

0:5z p{0:5
0:6 x{0:3ð Þ if 0:3vxƒ0:9

p, if xw0:9:

8>>><
>>>:

Where p is a parameter associated to each flux integration

function.

In the most general case, the i-th subsystem receives flux from

more than one subsystem. We will define the integrated flux as the

arithmetic mean of the received integrated fluxes.

Each subsystem can also have an outer input flux, consisting of

three fixed values x
1
i,1,x

1
i,2 and x

1
i,3 that are integrated with the

same functions F1,F2,F3 that were defined before, but for other

parameter values p0i,1,p0i,2 and p0i,3. These integrated outer fluxes

must be taken into account in the evaluation of the arithmetic

mean together with the integrated inner fluxes.

3. Signal-regulatory integration
When the flux integration has been done, we proceed next with

the signal regulatory integration. First, we will describe the process

in the simple case in which a MSb has only one regulatory signal.

Let us suppose that the i-th MSb receives a regulatory signal from

the l-th one. Let xk
l,j be the j-th component (which describe A0, A or

v) of the activity of the subsystem which regulates at the beginning

of the k+1-th iteration, and x0i,j
k the j-th component of the activity

of the regulated MSb after the input flux integration.

If the signal is of inhibitory type (negative allosteric modulation),

then the activity x0i,j
k is reduced by multiplying it by a factor q0i,j in

the unit interval [0,1]. It will be 1 when xk
l,j is 0, and a parameter

qi,j when xk
l,j is 1. In the remaining cases it will vary affinely with

xk
l,j , so that q0i,j~ qi,j{1

� �
xk

l,jz1 and xkz1
i,j ~q0i,jx

0
i,j

k. Let us stress

that when xk
l,j is 0, x0i,j

k is unaltered, and when xk
l,j is 1, the

inhibition is maximum and the activity is reduced by a factor of qi,j.

Thus, we have IN x0i,j
k,xk

l,j ,qi,j

� �
~ qi,j{1

� �
xk

l,jz1
� �

x0i,j
k.

If the signal is of activatory type (positive allosteric modulation),

the function is similar to the one described above, once we take

into account that to augment a value x in [0, 1] is equivalent to

reducing 1-x to a smaller value x9 in [0, 1]. So, we will define the

activatory functions by

AC x0i,j
k,xk

l,j ,qi,j

� �
~1{ qi,j{1

� �
xk

l,jz1
� �

1{x0i,j
k

� �
:

We will call the parameters qi,j ‘‘influence coefficients’’; they

represent the influence of each modulator on each subsystem.

If the signal is of total inhibition type, then we will use a

parameter d, that will be called threshold. The activity x0i,j
k will be

unaltered when the activity xk
l,j does not reach that threshold and

will be 0 when it trespass this value, that is,

TI x0i,j
k,xk

l,j ,d
� �

~
x0i,j

k if xk
l,jvd

0, if xk
l,j§d:

(

In the general case in which a MSb receives regulatory signals

from several subsystems, they act sequentially, so that if there are r

regulatory signals for each MSb, then we have r intermediary

Figure 8. Amplitude and frequency in the glycolytic subsystem.
Variation of the period and the amplitude of the oscillations in the
glycolitic subsystem in function of the input speed in the substrate
made by Goldbeter and Lefever.
doi:10.1371/journal.pone.0003100.g008
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states xs,k, where s varies between 1 and r, (besides of the

intermediary state x9k obtained after the flux integration was done).

In this case, we replace in the previous formulas x0i,j
k, by xs,k

i,j so

that if the signal is inhibitory then we have

xsz1,k
i,j ~IN xs,k

i,j ,xk
l,j ,qi,j,s

� �
~ qi,j,s{1

� �
xk

l,jz1
� �

xs,k
i,j ,

and if the signal is activatory then we have

xsz1,k
i,j ~AC xs,k

i,j ,xk
l,j ,qi,j,s

� �
~1{ qi,j,s{1

� �
xk

l,jz1
� �

1{xs,k
i,j

� �
,

and, finally, if the signal is of the total inhibition type (enzymatic

covalent regulation) then we have

xsz1,k
i,j ~TI xs,k

i,j ,xk
l,j ,d

� �
~

xs,k
i,j , if xk

l,jvd

0, if xk
l,j§d:

(

At the end we obtain xr,k = xk+1.

Now we will describe some additional rules for the integration of

the activities of each subsystem.

When after the flux integration stage x0i,j
k~0 (that is, if the

input flux is 0), then we will ignore the signal regulatory

integration stage and we put simply xkz1
i,j ~0. Also, if in the l-th

stage of the signal regulatory integration a total inhibition acts and

the threshold is reached then we will ignore the subsequent

regulatory signals for that component (A0, A or v) and we will take

xkz1
i,j ~0. Also, we will ignore regulatory signals from an inactive

MSb: if the i-th subsystem receives a regulatory signal from the l-th

one and xk
l,1~0, then the corresponding regulatory integration

will not be performed.

Finally, when xk
i,1~0, the MSb will be off independently of

xk
i,2 and xk

i,3. In this case, we will take xk
i,2~xk

i,3~0.

The DMNs are discrete and deterministic dynamical systems.

Once the parameters of the net are fixed, there is only one solution

in the net. In the simplest case, each metabolic subsystem presents

a unique dynamic behavior, which can be a steady state or a

periodic oscillation. However, the net can self-organize spontane-

ously in such a way that each metabolic subsystem shows a

solution characterised by presenting uninterrupted transitions

between various behaviors periodic and/or stationary. In the most

complex cases deterministic chaotic solutions can emerge

spontaneously, originating infinite transitions between different

periodic and/or stationary behaviors. In this situation, each

metabolic subsystem modifies uninterruptedly its enzymatic

activity in such a way that it changes between different periodic

and/or stationary regimes that never repeat its activity along

arbitrarily long periods of time.

The dynamic behaviors that emerge spontaneously in the

DMNs have their origin in the regulatory structure of the feedback

loops, in the non-linearity of the constitutive equations of the

system and in the complexity of the own dynamics that are

generated in the network.

4. Representation of the activity of the metabolic
subsystems

Now we will describe the way we pass from a sequence of terns

xk
1,xk

2,xk
3

� �
representing the mean amplitude, amplitude and

angular speed of a given subsystem to a continuous function

representing the activity level of the subsystem. We consider a

number N of transitions and, in the k-th stage, we suppose that the

oscillation is harmonic, that is, the activity of the subsystem is

described by a function of the form y(t) = (A0)+A sin(vt), where

A0~xk
1A0max, A~xk

2A0 and v~xk
3vmax and where A0max and

vmax are given fixed parameters independent of the stage number

and of the subsystem. The duration of the harmonic oscillation is a

given parameter Th independent also of the stage and of the

subsystem. In between two stages, a mixed transition regime is

maintained with a duration Ttr independent of the stage number

and of the subsystem. If the transition goes from the k-th stage to

the (k+1)-th stage then, during the Ttr seconds of transition regime,

the activity is given by a function of the form y(t) = A(t)y1(t)+B(t)y2(t),

where y1(t) is the activity corresponding to the prolongation in time

of the previous harmonic activity in the k-th stage, and y2(t) is the

back-propagation in time of the subsequent harmonic activity in

the (k+1)-th stage. The numbers A(t) and B(t) depend on time and

indicate the weights with which the activities of the subsystem in

the previous and posterior stage are present during the transition

time. At the beginning of the transition, say at t = t0, A(t0) is 1 and

B(t0) is 0, and at the end of the transition, say at t = t1, A(t1) is 0 and

B(t1) is 1. At the rest of the transition times A(t) and B(t) vary

affinely. Thus, A tð Þ~ t{t1

t0{t1
, B tð Þ~ t{to

t1{t0
. Putting all this

together, during the transition time the activity is given by

y tð Þ~ t{t1

t0{t1

xk
1Amaxzxk

1xk
2Amaxsin xk

3vmaxt
� �� �

z

t{t0

t1{t0
xkz1

1 Amaxzxkz1
1 xkz1

2 Amaxsin xkz1
3 vmaxt

� �� �
:

The transition regimes are combinations of two harmonic

oscillations with nonconstant coefficients A(t) and B(t) depending

on time. Thus, the introduction of these transition regimes

provokes the emergence of nonlinear oscillatory behaviors, both

simple and complex (see for example figure 6d).

5. Dependence of the past
In an attempt to take into account a influence of the past in

some of the DMNs, taking into account that each activity of the

subsystem (besides of depending on incoming fluxes and regulatory

signals) depends also on some activities developed in the past, we

have considered the following aspects: the state x00i,j
k resulting from

the flux integration and signal-regulatory-integration stages is

augmented or diminished in function of xk
i,j and xk{1

i,j (i.e., of the

state in the k-th stage and of the previous state); when xk
i,j§xk{1

i,j ,

x00i,j
k

� �
is diminished, and when xk

i,jƒxk{1
i,j , x00i,j

k
� �

is augmented.

In the first case, x00i,j
k

� �
is multiplied by a factor b9 belonging to [0,

1] whose value is 1 when xk
i,j{xk{1

i,j ~0, a fixed constant b when

xk
i,j{xk{1

i,j ~1 and have an affine variation with xk
i,j{xk{1

i,j . Thus

b0~ xk
i,j{xk{1

i,j

� �
b{1ð Þz1 and

xkz1
i,j ~ xk

i,j{xk{1
i,j

� �
b{1ð Þz1

� �
x00i,j

k

In the second case, the difference 1{x00i,j
k is reduced multiplying

it by an analogous factor b9 belonging to [0, 1] whose value is 1

when xk{1
i,j {xk

i,j~0, the same constant b of the precedent

discussion when xk{1
i,j {xk

i,j~1 and have an affine variation with

xk{1
i,j {xk

i,j .
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Thus b0~ xk{1
i,j {xk

i,j

� �
b{1ð Þz1 and xkz1

i,j ~1{ xk{1
i,j {

���
xk

i,jÞ b{1ð Þz1Þ 1{x00i,j
k

� �
Þ. Then,

xkz1
i,j ~

xk
i,j{xk{1

i,j

� �
b{1ð Þz1

� �
x00i,j

k if xk
i,j§xk{1

i,j

1{ xk{1
i,j {xk

i,j

� �
b{1ð Þz1

� �
1{x00i,j

k
� �� �

if xi,j
k
ƒxk{1

i,j

8><
>: :

To overcome the need to know two initial states in the first

stage, that is, when k = 1, we have obtained the state x2 from x1

without taking into account the dependence of the past, which is

equivalent to define x0 = x1.

In some of our studies we have considered b as one of the

control parameters.

Example 1
We will consider the simple DMN formed by two subsystems

arranged in series with two feedback loops of regulatory signals.

The MSb1 is activated by the second subsystem and the MSb2 is

totally inhibited by the first subsystem when this one reaches a

determinate threshold value (figure 1). The MSb1 input flux value

is x
1
1,1~0:19, x

1
1,2~0:15, x

1
1,3~0:25, with p01,1~0:79, p01,2~0:82,

p01,3~0:91. The parameter values for the integration functions of

MSb2 are: p2,1 = 0.78, p2,2 = 0.83, p2,3 = 0.94. The catalytic

dissipative element MSb1 is activated by the second MSb, with

q1,1 = 0.18, q1,2 = 0.02, q1,3 = 0.15 and the MSb2 is totally inhibited

by MSb1, with a threshold d= 0.1. We have fixed the value

b= 0.7, where b is the past influence coefficient.

The initial state is

x1
1,1~0:68, x1

1,2~0:26, x1
1,3~0:84,

x1
2,1~0:52, x1

2,2~0:38, x1
2,3~0:64:

As we said before, we will not consider the influence of the past

for the calculation of the next state, and we will use only the flux

integration and the regulatory integration. The details of these

integrations will be omitted for brevity in this first stage, but the

calculations will be completely developed in the next stage. The

second state that we obtain is

x2
1,1~0:55546 x2

1,2~0:4508 x2
1,3~0:715,

x2
2,1~0, x2

2,2~0, x2
2,3~0:

After the flux integration stage we reach an intermediary state

x01,1
2~F1 0:19,0:79ð Þ~0:225,

x01,2
2~F2 0:15,0:82ð Þ~0:125,

x01,3
2~F3 0:25,0:91ð Þ~0:375,

x02,1
2~F1 0:55546,0:78ð Þ~0:642576,

x02,2
2~F2 0:4508,0:83ð Þ~0,599561,

x02,3
2~F3 0:715,0:94ð Þ~0:8433,

After the signal regulatory integration stage we obtain the

following state

x001,1
2~AC 0:225,0,0:18ð Þ~0:225,

x001,2
2~AC 0:125,0,0:02ð Þ~0:125,

x001,3
2~AC 0:375,0,0:15ð Þ~0:375,

x002,1
2~TI 0:64257,0:55546,0:1ð Þ~0,

x002,2
2~TI 0:599561,0:4508,0:1ð Þ~0,

x002,3
2~TI 0:8433,0:715,0:1ð Þ~0:

And, considering the influence of the past for b= 0.7 we obtain

x3
1,1~0:2539, x3

1,2~0:1175, x3
1,3~0:3984,

x3
2,1~0, x3

2,2~0, x3
2,3~0:

Finally, in the DMN the first MSb will fall into a single active

state, corresponding to a periodic oscillation with A0 = 0.225,

A = 0.125, v = 0.35, and the second MSb is locked into an inactive

state.

Example 2
Next, we have considered a DMN formed by two subsystems

arranged in series, which represent in a very simplified way the

main interconnections between the pyruvate dehydrogenase

complex (PDH) and Krebs cycle, so-called tricarboxylic acid cycle

(TCA) (Fig. 9).

Pyruvate dehydrogenase is a large multienzymatic subsystem

containing many copies of three enzymes: pyruvate dehydroge-

nase, dihydrolipoyl transacetylase and dihydrolipoyl dehydroge-

nase. This metabolic subsystem (MSb1) receives an input flux of

pyruvate yielding acetyl-CoA, H+ and NADH by a process called

pyruvate decarboxylation which is mainly inhibited by the ratio

ATP/ADP [62]. When ATP, the energy-rich end product of the

tricarboxylic acid cycle and oxidative phosphorylation, accumu-

lates to high levels, the rate of formation of acetyl-CoA is slow.

Acetyl CoA, a product of the pyruvate dehydrogenase reactions

is a central compound in metabolism with several functions: as

input to the Krebs cycle, where the acetate moiety is further

degraded to CO2, and as donor of acetate for synthesis of fatty

acids, ketone bodies, and cholesterol.

One of the factors controlling the MSb2 is the NADH. The

citrate synthase enzyme is the primary control point in the Krebs

cycle and is negatively regulated by NADH. Isocitrate dehydro-

Figure 9. Network with two metabolic subsystems: pyruvate
dehydrogenase and Krebs cycle. DMN formed by two subsystems
arranged in series, which represent in a very simplified way the main
interconnections between the pyruvate dehydrogenase complex (PDH)
and Krebs cycle.
doi:10.1371/journal.pone.0003100.g009
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genase and a-ketoglutarate dehidrogenase are also strongly

inhibited by the negative allosteric modulator NADH [62].

Therefore, the catalytic dissipative element MSb1 is inhibited by

the ATP from the second subsystem and the MSb2 receives an

inhibitory signal of NADH from the MSb1.

The parameters considered in this DMN are the following ones:

the first subsystem MSb1 receives an input flux of pyruvate with

x
1
1,1~0:55, x

1
1,2~0:72 and x

1
1,3~0:88, being the values of the

parameters of the integration functions of (p1,1 = 0.54, p1,2 = 0.60,

p1,3 = 0.78) and b= 0.2. The initial states are the same that the

ones belonging to the DMN shown in the example 1.

The MSb2 receives an input flux of acetyl-CoA from MSb1,

being the values of the parameters of the integration functions of

(p2,1 = 0.398, p2,2 = 0.516, p2,3 = 0.5).

In order to simplify we have equalized the three influence

coefficients of A0, A and v belonging to each inhibitory signal

(qi1 = qi2 = qi3 = qi).

First, we have considered as control parameter q1, the ATP

influence coefficient, and we have fixed q2 = 0.01 which represents

the influence coefficient value of NADH (small values of the

influence coefficient represents high inhibitory activity so for

q1 = 0.1 and q2 = 0.01 both subsystems are strongly inhibited).

After the numeric integration of the DMN it can be observed

that for 0.1#q1#0.9 both subsystems are active and the two

subsystems exhibit one periodical activity. Some of the values of

the amplitude and oscillatory frequencies are shown below:

q1 = 0.1 (MSb1) A0 = 0.3085, A = 0.3614 and v= 0.3457.

(MSb2) A0 = 0.3477, A = 0.3290 and v= 0.3429.

q1 = 0.5 (MSb1) A0 = 0.3779, A = 0.4366 and v= 0.4187.

(MSb2) A0 = 0.3168, A = 0.2994 and v= 0.3252.

q1 = 0.9 (MSb1) A0 = 0.4360, A = 0.4994 and v= 0.4847.

(MSb2) A0 = 0.2904, A = 0.2729 and v= 0.3049.

When the inhibition provoked by the ATP descends (by

increasing the values of the influence coefficient) the activity of

the MSb1 increases as well as the contribution of NADH and as a

consequence of it the activity of the MSb2 descends.

We have considered now p2 as control parameter, the NADH

influence coefficient, and we have fixed the ATP influence

coefficient value (q1 = 0.01). This q1 value represents a strong

inhibition of the pyruvate dehydrogenase complex due to high

levels of the energy-rich end product of the tricarboxylic acid cycle

and oxidative phosphorylation. Under these parametric conditions

the metabolic network can present different dynamic behaviors for

q2 values.

When q2 ranges from 0.1 to 0.87, both subsystems are active

and exhibit a single periodical activity. For example:

q2 = 0.1 (MSb1) A0 = 0.2918, A = 0.3331 and v= 0.3205.

(MSb2) A0 = 0.3536, A = 0.3547 and v= 0.3626.

q2 = 0.5 (MSb1) A0 = 0.2783, A = 0.2987 and v= 0.2946.

(MSb2) A0 = 0.3838, A = 0.4225 and v= 0.4119.

q2 = 0.87 (MSb1) A0 = 0.2684, A = 0.2859 and v= 0.2825.

(MSb2) A0 = 0.4063, A = 0.4476 and v= 0.4394.

As it can be observed, for q2 = 0.1 the two subsystems are

strongly inhibited and both show a low activity. When increasing

p2 values (0.1,d#0.87) the inhibition provoked by the NADH

decreases and as a consequence of it the activity of the MSb2 is

increased and the MSb1 activity diminishes due to the increment

in the production of ATP.

For 0.87,q2#1 the two subsystems undergoes a variation of the

oscillatory evolution, emerging very complex transitions and the

output activity of the both subsystems make uninterrupted

transitions between more of 200 different kinds of periodic

oscillations.

Under experimental conditions, the complex temporal structure

in Krebs cycle has been observed [78] and it has been verified the

complex transitions that characterize the intermediates of the

Krebs cycle. See figure 5a for more details.

In the network the two metabolic subsystems remain always

active for all the parametric conditions studied.

6. Experimental calcium oscillations in Xenopus laevis
oocyte

In order to study chaotic oscillations in a subsystem with an on-

off changeable regime we carried out experimental observations of

intracellular calcium oscillations in Xenopus laevis oocyte.

Laboratory-reared Xenopus laevis frogs were obtained from

Blades Biological (Cowden, Kent, UK). Oocytes at stageV were

plucked from the ovaries and defolliculated by treatment with

collagenase (type 1, Sigma) at 80–630 units/ml in frog Ringer’s

solution (115 mM NaCl, 2 mM KCl, 1.8 mM CaCl, 5 mM

HEPES at pH 7.0) for 20 min to remove the surrounding

follicular and epithelial cell layers. Oocytes were maintained at

18uC in Barth’s solution (88 mM NaCl, 1 mM KCl, 2.4 mM

NaHCO3, 0.33 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM

MgSO4, 5 mM HEPES at pH 7.4+gentamicin 70 mg/ml).

Membrane currents were recorded with a standard two-

electrode voltage clamp (Warner Instruments, Oocyte Clamp

OC-725C) and digitized in a PC computer (Digidata 1200 and

Axoscope 8.0 software, Axon Instruments). Oocytes were

continually superfused with Ringer’s solution at room temperature

(,22uC).

The membrane was usually voltage clamped at 260 mV. Fetal

Bovine Serum (FBS) (Sigma-Aldrich) diluted 1:1000 in Ringer

solution were perfused to achieve the generation of voltage

oscillations.
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