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ABSTRACT

The development of techniques for oncogenomic
analyses such as array comparative genomic hybrid-
ization, messenger RNA expression arrays and
mutational screens have come to the fore in
modern cancer research. Studies utilizing these
techniques are able to highlight panels of genes
that are altered in cancer. However, these candidate
cancer genes must then be scrutinized to reveal
whether they contribute to oncogenesis or are coin-
cidental and non-causative. We present a computa-
tional method for the prioritization of candidate (i)
proto-oncogenes and (ii) tumour suppressor genes
from oncogenomic experiments. We constructed
computational classifiers using different combina-
tions of sequence and functional data including
sequence conservation, protein domains and inter-
actions, and regulatory data. We found that these
classifiers are able to distinguish between known
cancer genes and other human genes. Furthermore,
the classifiers also discriminate candidate cancer
genes from a recent mutational screen from other
human genes. We provide a web-based facility
through which cancer biologists may access our
results and we propose computational cancer gene
classification as a useful method of prioritizing can-
didate cancer genes identified in oncogenomic
studies.

INTRODUCTION

The transformation of a normal cell into a cancer cell is a
multi-step process with each intermediate stage conferring
a selective advantage on the cell (1). These changes result
primarily from genetic alterations to the cell’s DNA,

although epigenetic modifications are also important con-
tributory factors. Normal cellular homoeostasis and divi-
sion are tightly controlled processes that incorporate
signals from many pathways to regulate the expression
of the appropriate genes. Mutations or alterations to
genes involved in these processes can contribute to cellular
transformation by unbalancing the natural physiological
equilibrium of a cell. Indeed, cancer progression is the accu-
mulation of a series of genetic alterations in a somatic cell.
The genetic alterations leading to cancer occur only in

certain genes. Cancer-causing genes have been tradition-
ally classified as either proto-oncogenes or tumour sup-
pressor genes. Proto-oncogenes normally function as
proliferative agents. When mutated or misregulated in
cancer, they promote uncontrolled cell growth. Usually,
they are phenotypically dominant requiring a pertinent
mutation or chromosomal alteration of one allele to
become oncogenic. Conversely, tumour suppressor genes
are endowed with anti-proliferative properties and gener-
ally require inactivation of both alleles to induce cancer.
In addition to proto-oncogenes and tumour suppressor
genes, more recently stability genes have been proposed
as a further type of cancer gene (2).
Until now, most cancer genes have been identified by

positional cloning (3). However, modern cancer research
has become a hybrid of molecular and bioinformatics
methods. There aremanymolecular techniques for the ana-
lysis of tumour samples and the identification of the
causative agents therein (4). Cytogenetic methods such as
karyotyping, fluorescence in situ hybridization (FISH) and
comparative genome hybridization (CGH), have been used
to analyse large structural chromosomal changes, gains
and losses of specific genes, and genome-wide gains and
losses. Over the past decade, the use of cDNA microarrays
to simultaneously analyse the expression of thousands of
genes in tumour samples has become prevalent in cancer
research. Studies have shown that gene expression data
from tumours are clinically relevant in breast cancer and
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lymphoma prognosis (5,6) and are able to define cancer
subtypes and response to therapies (7).
The use of mutational profiling of tumour genomes has

yielded important results over the past few years (8).
Large-scale exon resequencing of human tumours has
been used to identify point mutations in candidate
cancer genes in a variety of different tumours (9–14).
Indeed, more sophisticated studies exploiting data from

different techniques are becoming common in cancer res-
earch (15). Recently, a number of studies have revealed the
effectiveness of integrative functional genomics in cancer
research, whereby information from complementary
experimental data sources are combined to provide greater
insight to the process of tumourigenesis (16–21). Studies
have combined data from different microarray experiments
(16,17), expression and copy number change data (19,20),
and expression of mRNAs and microRNAs (21).
In 2004, Futreal et al. (3) published a census of human

cancer genes gleaned from published literature. Sub-
sequent additions to the initial census of 291 genes have
increased the total to over 350 genes in 2006 (htpp://
www.sanger.ac.uk/CGP). A number of criteria were used
for inclusion in the census. Only genes in which cancer-
causing mutations have been reported were included.
Furthermore, a requirement for two independent reports
of mutations in primary clinical samples was used. Genes
involved in translocation or copy-number change were
included. However, genes for which there was only evi-
dence of differential expression level evidence or aberrant
promoter DNA methylation in tumours were excluded.
Many issues remain to be determined in understanding

oncogenesis in different tumour types, for example eluci-
dation of candidate causative agents, distinguishing
between driver and passenger alterations (22,23) and char-
acterization of the function of cancer genes in the onco-
genic process (24). Oncogenomic experiments are now
providing the cancer research community with numerous
candidate causative genes. However, it is then imperative
to prioritize the more promising candidates from genes
that are unlikely to be contributing to tumourigenesis. A
number of previous computational studies have aimed at
predicting cancer-associated missense mutations (25,26).
Our approach is different in that we are attempting to
predict genes that are likely to be involved in cancer, irre-
spective of the oncogenic alteration. We envisage compu-
tational cancer gene prediction as a useful method of
candidate cancer gene prioritization when allied with the
results of oncogenomic experiments.
We have shown before that it is possible to develop an

accurate classifier for distinguishing between Cancer Gene
Census genes and other human genes (27). However, it is
evident from cancer biology that altered proto-oncogenes
and tumour suppressor genes promote oncogenesis in dif-
ferent manners. Furthermore, we have also shown that
differences in sequence and regulatory properties exist
between these two types of cancer genes (28). These
issues have prompted us to devise separate classifiers for
proto-oncogenes and tumour suppressor genes. We intend
to ascertain if we can accurately distinguish between the
following types of human genes: (i) proto-oncogenes and
other genes, (ii) tumour suppressor genes and other genes,

(iii) proto-oncogenes and tumour suppressor genes and
(iv) cancer genes and Mendelian disease genes. In addi-
tion, we analyse the efficacy of our classifiers on candidate
cancer genes identified in a mutational screen (14) and a
recent comparative oncogenomic study (29). In this study,
we include in the method a large number of different prop-
erties types, and we aim to evaluate how different sets of
properties perform in these tasks. In summary, the pur-
pose of this study is (i) to develop a method to accurately
distinguish oncogenes and tumour suppressor genes from
the rest of genes, (ii) to evaluate the performance of dif-
ferent sets of properties in this task and (iii) to assess the
performance of our classifiers on candidate cancer genes.
The results from our classifiers are available at http://
bg.upf.edu/cgprio.

METHODS

Datasets

The list of genes involved in cancer was obtained from the
Cancer Gene Census (3). Using the NCBI LocusLink data-
base (30) and the Ensembl version 37 database (31), we
located the corresponding gene sequence records. T-cell
receptor loci and immunoglobulin loci were not included
in the list as these genes are usually implicated in cancer by
translocations of other genes downstream of the promoters
of the loci (3). The result was a list of 338 genes associated
with human cancer (C). All other Ensembl protein-coding
genes were classified as unlabelled (UNL; n=21787).
Therefore, the unlabelled gene dataset potentially contains
cancer genes that are not included in the Cancer Gene
Census as yet. Cancer genes were classified as cancer domi-
nant (CD; n=272) or cancer recessive (CR; n=66)
according to the Cancer Gene Census (3). Genes in which
both type of mutations (dominant and recessive) have been
found were not used for the study. The colon cancer (CC;
n=140) and breast cancer gene (BC; n=140) sets were
obtained from Wood et al. (14), removing any genes
included in the Cancer Gene Census. Dominant (DD)
and recessive (DR) disease genes were manually curated
from the OMIM database (32) as described elsewhere (33).

Property sets

The different types of data were used to construct six data-
sets, summarized in Table 1 and detailed in Supplementary
Table 1. Protein conservation score (CS) was calculated as
described previously (27). Protein conservation was calcu-
lated using CS, which is an estimation of the divergence
that has occurred between a pair of proteins during evolu-
tion, and is independent of the length of the proteins.
The Ensembl comparison proteomes used were Homo
sapiens, Mus musculus, Rattus norvegicus, Canis familiaris,
Bos taurus, Monodelphis domestica, Gallus gallus, Xenopus
tropicalis, Takifugu rubripes, Tetraodon nigroviridis, Danio
rerio, Ciona intestinalis, Anopheles gambiae, Apis mellifera,
Drosophila melanogaster, Caenorhabditis elegans and
Saccharomyces cerevisiae. Gene structure information
was taken from the Ensembl database (31) and consisted
of coding sequence length, gene length, total exon length,
total intron length and total exon number. Protein domain
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information comprised Interpro (34) domains present in
�30 human proteins (n=244 domains). Overrepresenta-
tion of protein domains in the CD and CR gene sets was
conducted by generating 10 000 random sets of genes and
calculating z-scores for each domain. Domains with
|Z-scores| of 2.5 were included. Protein–protein interaction
(PPI) data were independently analysed from a previously
generated human interactome (35) and consisted of total
number of protein interactions per protein and number of
interactions with Cancer Gene Census proteins (3). Reg-
ulatory data used were promoter conservation, number of
promoter CpG islands, 30 UTR length and number of puta-
tive microRNA targets. This information was taken from
our previous study (28), which was based on alignments of
human–mouse–rat–dog orthologues (36).

As the protein conservation and gene structure data con-
tain some redundant information (e.g. CS in mouse and CS
in rat), a feature selection step, using an adaptation of the
CFS algorithm (37), was performed on this dataset. In this
step, our algorithm selects a subset of variables that have a
high correlation with the class (i.e. dominant or recessive
cancer) and a low correlation between each other. In the
protein conservation and gene structure dataset, the vari-
ables selected by the algorithm were gene length, CS in
mouse, CS in yeast and total exon length for dominant
cancer genes, and coding sequence length, exon number,
CS in human (i.e. conservation of paralogues) and total
exon length for recessive cancer genes. Feature selection
was also conducted for InterPro domains to reduce the
number of variables to be used for prediction. Therefore,
the base for each dataset was the selected variables from the
relevant protein conservation and gene structure datasets
plus (i) selected InterPro domains, (ii) the protein–protein
interaction data, (iii) the regulatory data and (iv) selected
InterPro domains, protein–protein interaction data and
regulatory data.

Prediction

Averaged positive naive Bayes. The algorithm selected for
the prediction is the averaged positive naive Bayes [APNB,
(38)]. This algorithm is based on the positive naive Bayes
(39), which takes as input a set of positive and unlabelled
instances and outputs a naive Bayes predictor (40). In order
to induce the model the a priori probability of the positive

class (that is, the probability that a given instance, in our
case a gene, is positive, which is cancer related) is needed.
This probability cannot be estimated from the dataset if no
negative examples are available and, thus, we have to set it.
We set the parameters of the algorithm to result in an aver-
age probability of 0.1, as it has been suggested that up to
10% of human genes could be involved in cancer (41).
Setting the parameters to result in an average probability
of 0.01 or 0.05 produces very similar results (data not
shown). The APNB algorithm takes into account all the
possible values this parameter can take, weighting each
value according to a probability distribution.
In order to compute the enrichment obtained with a

given classifier, we need to obtain, for the positive cases,
an accurate estimation of the probability of being positive.
If we simply learn the classifier from all the instances and
then we use it to predict the probability of being positive
for the known cancer genes, we will get an optimistically
high probability (and thus an optimistically high enrich-
ment) because we have used a these examples to train the
classifier. In order to avoid this over-fitting, we have used
a cross-validation scheme to estimate the probabilities of
the positive cases. We convert the probabilities assigned to
genes by a classifier to rank probabilities by ranking the
probabilities in ascending order and dividing each rank
(R) by the total number of genes (N), where the rank
probability (RP) of a gene is calculated by RPi=Ri/N.
In this way, the most likely candidate cancer gene has a
ranking of 1 (in the absence of ties) and the least likely
candidate has a ranking of 1/N (in the absence of ties).

Implementation

For prediction purposes each dataset was further divided
into two sets of two distinct subsets: (i) positive dominant
(containing the dominant cancer genes present in the rele-
vant dataset; Table 1, column 4) and unlabelled dominant
(containing the remainder of the genes in the dataset), and
(ii) positive recessive (containing the recessive cancer genes
present in the relevant dataset; Table 1, column 5) and
unlabelled recessive (containing the remainder of the
genes in the dataset). Recessive cancer genes are denoted
as unlabelled dominant for prediction of dominant cancer
genes and vice versa. A dominant and recessive prediction
was conducted 10 times for each dataset with cross-valida-
tion (10-fold for dominant, 5-fold for recessive due to low
sample size) (38).

Application to random gene sets

In addition, we generated 100 positive sets of randomly
chosen genes from each dataset with the remainder of the
genes being treated as unlabelled instances. For each of
the 100 positive sets, a classifier was built and applied in
an identical manner to the proto-oncogene and tumour
suppressor gene classifiers. The performance of each clas-
sifier was assessed on the random positive and unlabelled
datasets, and on the proto-oncogene and tumour suppres-
sor genes.

Table 1. The information types in the datasets used to construct the

dominant cancer gene classifiers (Onc-C) and recessive cancer gene

classifiers (TSG-C) and the number of genes in each dataset

Dataset Information Total CD CR

PC–GS Protein conservation
(PC), Gene structure (GS)

22 125 272 66

PC–GS–PD PC, GS and Protein
domains (PD)

16 300 259 62

PC–GS–PI PC, GS and Protein
interaction (PI)

14 847 266 66

PC–GS–RD PC, GS and Regulatory
data (RD)

13 928 238 58

PC–GS–PD–PI–RD PC, GS, PD, PI and RD 11 560 226 54
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RESULTS

Constructing the classifiers

The set of properties that follow different trends in the
group of proto-oncogenes and tumour suppressor genes
compared to the rest of genes can be used to build a
classifier that will rank all the genes with their probability
of being an oncogene or a tumour suppressor gene. Since
in this case there is no reliable set of negative examples
available, as it is not possible to ensure that a given gene is
not related to cancer, we have approached this task as a
partially supervised classification problem. In order to
assess how different combinations of properties are able
to identify proto-oncogenes and tumour suppressor genes,
we have built five different classifiers, each with a different
set of properties (Table 1) to rank proto-oncogenes (Onc-
C, for oncogenes classifiers) and five classifiers to rank
tumour suppressor genes (TSG-C, for tumour suppressor
genes classifiers) and have assessed the performance of
each of them in this predictive task (Figure 1). For the
purpose of proto-oncogene classification, the set of posi-
tive genes is the 272 genes annotated as cancer dominant
in the Cancer Gene Census list, while the rest of human
genes are considered as unlabelled. Similarly, in the case of
tumour suppressor genes, the set of positive genes com-
prises the 66 genes annotated as cancer recessive in the
Cancer Gene Census and the remainder of human genes
are considered unlabelled. In total, we have constructed 10
classifiers and each of these provides us with a probability
of each gene being an oncogene or a tumour suppressor
gene. These probabilities have been ranked for assessment
and comparison (see Methods section), and the ranked
probabilities can be accessed through the following URL
(http://bg.upf.edu/cgprio) and through CARGO (42).

Assessing the different classifiers

In order to assess the ability of each of the classifiers to
distinguish between proto-oncogenes and the rest of
genes we have compared the ranked probabilities given
by the classifiers in different sets of genes (Figure 1,
Table 2). The five sets of properties assign significantly
higher ranked probabilities to the set of positive genes
(CD or CR) than to the unlabelled genes (Figure 1).
The classifiers that discriminate better between cancer
(CD or CR) and unlabelled genes are the ones that include

more data (PC–GS–PD–PI–RD: protein conservation—
gene sequence—protein domains—protein interactions—
regulatory data) (Figure 2). The mean ranked probability
for oncogenes (CD) of the Onc-C is 0.75, compared to the
0.49 of the unlabelled genes (Table 2) and the mean prob-
ability of TSG-C for the recessive cancer gene classifier is
0.83 compared to 0.50 of the unlabelled genes (Table 2).
However, these classifiers can give a rank probability only
to those genes for which we have all the information (11 560
genes). On the other hand, the classifiers that use only pro-
tein conservation and gene sequence data (PC–GS) can
rank all human genes (n=22125), as we have this informa-
tion for all of them. This classifier, even using very simple
data, can distinguish the set of CD genes fairly well (mean
probability for CD is 0.73 compared to 0.50 for unlabelled
and 0.71 for CR compared to 0.50 for unlabelled).

Figure 1. Schematic representation of the process to construct the classi-
fiers and obtain the probability ranks. (a) The set genes labelled as CD are
used as the positive set for the Onc-C and the rest as unlabelled. For the
TSG-C, the set of CR genes are used as the positive set and the rest as
unlabelled. (b) Next, the Averaged Positive Naı̈ve Bayes method is applied
to these sets with the corresponding property sets (PC–GS, PC–GS–PI,
etc.). (c) The classifiers are obtained and applied to all genes (d) in order to
obtain a probability rank for each human gene (e).

Table 2. Mean ranked probabilities obtained by the dominant cancer gene classifier (Onc-C) and the recessive cancer gene classifier (TSG-C) for

different sets of genes generated using different property sets

Onc-C TSG-C

Unlabelled CD CR DD DR BC CC NonCAN Unlabelled CD CR DD DR BC CC NonCAN

PC–GS 0.50 0.73 0.71 0.63 0.63 0.78 0.78 0.69 0.50 0.61 0.71 0.56 0.62 0.75 0.74 0.64
PC–GS–PD 0.50 0.72 0.65 0.57 0.55 0.73 0.73 0.63 0.50 0.59 0.76 0.53 0.62 0.76 0.74 0.63
PC–GS–PI 0.49 0.73 0.78 0.60 0.55 0.73 0.74 0.63 0.50 0.67 0.80 0.58 0.59 0.76 0.75 0.64
PC–GS–RD 0.50 0.71 0.58 0.58 0.46 0.69 0.76 0.61 0.50 0.59 0.73 0.52 0.58 0.75 0.73 0.62
PC–GS–PD–PI–RD 0.49 0.75 0.71 0.59 0.46 0.70 0.74 0.61 0.50 0.66 0.83 0.55 0.56 0.73 0.71 0.62

CD=cancer dominant, CR=cancer recessive, DD=disease dominant, DR=disease recessive, BC=breast cancer candidate genes, CC=colon
cancer candidate genes, NonCAN=genes with mutations that are not candidate cancer genes.
Cancer dominant and cancer recessive coloumns are set in bold.

e115 Nucleic Acids Research, 2008, Vol. 36, No. 18 PAGE 4 OF 9

 at U
N

IV
E

R
SID

A
D

 D
E

L
 PA

IS V
A

SC
O

 on A
pril 1, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


PC-GS

PC-GS-PD

PC-GS-PI

PC-GS-RD

PC-GS-PD-PI-RD 

Onc-C TSG-C

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rank probability
0.0 0.2 0.4 0.6 0.8

rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

0.0 0.2 0.4 0.6 0.8
rank probability

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fr
eq

ue
nc

y

Cancer Dominant Cancer Recessive Unlabelled

Figure 2. Distribution of ranked probabilities for Cancer Gene Census dominant and recessive cancer genes and unlabelled genes (the rest of human
genes) using different datasets for proto-oncogenes (left) and tumour suppressor gene (right) classifiers.
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Another important question to take into account is the
ability of the classifiers to distinguish between CD and CR
genes. The Onc-C that uses all data (PC–GS–PD–PI–RD)
cannot distinguish between CD and CR genes, as it gives
high probabilities to both (mean RP of 0.75 for CD and
0.71 for CR); however, the TSG-C with the same data can
distinguish the two group significantly well (mean RP of
0.83 for CR and 0.66 for CD) (Figure 2 and Table 2).
Similarly, the Onc-C that uses the PC–GS–PI property
set assigns high probabilities to both CD and CR genes
(mean RP 0.73 and 0.78, respectively).
Finally, we also compared the probabilities assigned to

Mendelian disease genes classified as dominant (DD) or
recessive (DR). Some of the properties used to build the
classifiers were previously found to follow specific trends
in hereditary disease genes, such as conservation and
sequence properties (43,44). Thus, it is important to
assess if the classifiers are able to distinguish between
cancer and disease genes or, alternatively, are just predict-
ing genes that are more prone to random mutations and
that may cause any disease. We observe that all classifiers
assign higher probabilities to CD and CR genes than to
disease genes (DD and DR). Moreover, the classifiers that
include data that are more relevant (PC–GS–PD–PI–RD)
seem to distinguish CD and CR genes from disease genes
more successfully (Table 2, Supplementary Figure 1).

Validating the prediction methods with classifiers
created with random positive sets

To further validate the performance of the methods, we
constructed predictions with random positive sets of genes
for each classifier (see Methods section for details). In each
of these random classifiers, the positive set is a group of
genes taken randomly from all human genes containing
the same number of genes as the CD set or the CR set
(Table 1), and the classifiers are built with the same sets of
properties. For each of the 10 classifiers, we built 100
classifiers each with a different random set of positive
genes and we averaged the results. With this procedure,
we can examine two issues: (i) whether with these five
different property sets it is possible to create a classifier
that would predict any positive set of genes; thus, that it is
not just a unique characteristic of cancer genes and (ii) the
ability of these random classifiers to predict cancer genes.
We first analysed the ranked probabilities that each

random classifier gives to the positive set. The probabil-
ities obtained for the positive sets are not significantly
different to the unlabelled set of genes (Table 3), and the
SDs of the ranked probabilities of the 100 random positive
sets are low (0.02–0.06), thus indicating that these sets of
properties are not able to predict any set of genes. Next,
we studied the ranked probabilities given by the random
classifiers to the set of CD and CR. In general, these prob-
abilities are low, but interestingly, by using some property
sets the predictions are higher for CD and CR even
though the classifiers were not constructed with cancer
genes as positive sets. This may indicate that there is a
bias in those properties with regard to the set of cancer
genes. The datasets exhibiting this behaviour are those
that include protein interactions and protein domains.

We analysed the number of annotations for CD, CR
and the rest of genes for these properties and we see that
CD and CR genes have in general more annotated protein
interactions and more annotated protein domains (data
not shown).

Application of prediction to mutational screens of tumours

To investigate if our techniques are capable of identifying
candidate cancer genes from other studies, we have
applied our prediction methods to the results of a muta-
tional screen of human breast and colon tumours (11,14).
This study analysed transcripts representing >18 000 genes
and found at least one non-silent mutation in 1718 genes
in either a breast or colon tumour sample. To distinguish
between driver and passenger mutations they developed a
statistical technique, which culminated in the identifica-
tion of a set of 140 colon cancer candidate genes and a
set of 140 breast cancer candidate genes. These two sets of
genes (colon, n=113 and breast, n=117, having
removed Cancer Gene Census genes) are systematically
ranked higher with all the classifiers than unlabelled
genes or disease genes (Table 2). Interestingly, the sets of
breast and colon cancer candidate genes are ranked even
higher than cancer genes with the simplest classifier (PC–
GS) indicating that this group of genes identified by
Sjoblom et al. (11) have very similar conservation and
sequence properties to the genes in the Cancer Gene
Census (28).

In total, Wood et al. found non-silent mutations in 1718
genes. They developed a statistical technique, using an
empirical Bayes analysis, to ascertain if the mutations in
a candidate gene reflect a mutation rate that is greater
than the passenger rate (14). Applying this procedure,
they discriminated between the 280 candidate cancer
genes (CAN genes) and the remainder of the candidates
(non-CAN genes). In Table 2, we show that our classifiers
assign lower mean rank probabilities to these non-CAN

Table 3. Mean ranked probabilities and standard deviation for one

hundred positive and unlabelled randomly selected datasets using the

variables from the dominant cancer gene classifier (Onc-C) and the

recessive cancer gene classifier (TSG-C). Means of the cancer dominant

and cancer recessive sets ranked probabilities from the random

classifiers are included

Positive
mean

Positive
�

Unlabelled
mean

Unlabelled
�

CD
mean

CR
mean

Onc-C
PC–GS 0.49 0.03 0.50 0.00 0.51 0.52
PC–GS–PD 0.49 0.03 0.50 0.00 0.55 0.48
PC–GS–PI 0.50 0.02 0.50 0.00 0.50 0.51
PC–GS–RD 0.49 0.03 0.50 0.00 0.48 0.50
PC–GS–PD–PI–RD 0.50 0.03 0.50 0.00 0.56 0.53

TSG-C
PC–GS 0.48 0.06 0.50 0.00 0.50 0.50
PC–GS–PD 0.47 0.06 0.50 0.00 0.51 0.57
PC–GS–PI 0.48 0.06 0.50 0.00 0.53 0.55
PC–GS–RD 0.48 0.06 0.50 0.00 0.52 0.51
PC–GS–PD–PI–RD 0.49 0.05 0.50 0.00 0.54 0.61
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genes than to the CAN genes prioritized in the original
study (Table 2 and Supplementary Table 2).

Using the predictions

In addition, we apply our method to the results of a com-
parative oncogenomic study which identified a gene
involved in metastasis in melanoma (29). This study char-
acterized an amplification in a mouse melanoma model
syntenic to human chromosome 6p25-24, and with expres-
sion analysis identified Nedd9 as the primary candidate
metastasis gene. If we examine the rank probabilities
from our classifiers for human chromosomal band 6p25-
24 (92 genes), we consistently see Nedd9 as one of the top
candidates (Supplementary Table 3 and http://bg.upf.edu/
cgprio). Furthermore, all Onc-C assign the gene a much
higher ranked probability than the equivalent TSG-C
(Supplementary Table 4).

DISCUSSION

The purpose of this study is to provide an aid to biologists
conducting oncogenomic experiments that result in a large
number of candidate cancer genes. We envisage that the
necessary prioritization of some candidate genes (driver
genes) over others (passengers) (22) is a task that can be
facilitated by our study, in conjunction with experimental
evidence. The success of integrative approaches in the
study of cancer has underscored the utility of blending
different interrogative techniques to produce a more thor-
ough analysis of cancer states. Significant results have
been achieved recently by the combination of comparative
genomic hybridization and expression arrays (22,29,45).
Furthermore, it is evident from the variety of potential
oncogenic events, such as coding and non-coding point
mutations, copy number variations, translocations and
epigenetic alterations, that to obtain a more complete
view of the underlying causes of tumourigenesis it is
imperative that different types of experimental results
are combined. We propose our method of computational
cancer gene prediction as a different, yet complementary,
approach to the prioritization of candidate cancer genes.

Our method is based on a number of salient features:
(i) we have used gene and protein properties that are likely
to contribute to a gene’s potentiality to be oncogenic,
(ii) we have attempted to use relatively unbiased data
and (iii) in the case of the classifiers using protein conser-
vation and gene structure, we can apply them in a genome-
wide manner. We have previously shown that greater gene
length and protein conservation are indicative of genes in
the Cancer Gene Census (27). Indeed, these simple types
of sequence properties are quite successful at separating
cancer genes from other genes, in general, but obviously
share similar patterns in this regard with Mendelian dis-
ease genes (Figure 2 and Table 2) (43). The original ana-
lysis of the Cancer Gene Census genes included a protein
domain analysis, showing an over-representation of
kinase and DNA-binding domains, amongst others (3).
However, human proteins in total contain more than
4900 different InterPro protein domains (34), hence it
was necessary to reduce this number significantly for the

purpose of prediction. We used nine domains for the
proto-oncogene classifier and 10 for the tumour suppres-
sor classifier (Supplementary Table 1; see Methods section
for details). These data help to distinguish between the
cancer genes and disease genes, and also between domi-
nant and recessive cancer genes (Figure 2 and Table 2).
Recently, it has been shown that Cancer Gene Census

proteins participate in more PPIs than other genes (35).
We have used these data to calculate two PPI variables,
total number of PPIs of each human protein and total
number of PPIs with Cancer Gene Census proteins,
based on the premise that proteins that interact with
cancer proteins are more likely to be candidate cancer
proteins. Tumour suppressor genes have more PPIs than
proto-oncogenes (28) and this is highlighted by the fact
that both classifiers predict tumour suppressor genes
better than any other type of gene (Figure 2 and Table 2).
We have also included pertinent regulatory data in this

study, as we have previously described differences between
cancer genes, in particular proto-oncogenes, and other
genes in terms of proximal promoter conservation,
number of CpG islands, 30 UTR length and frequency of
30 UTR putative microRNA targets (28). In particular, we
felt it appropriate to include evidence of the existence of
miRNA targets due to the mounting body of experimental
and computational work supporting a significant role for
miRNAs in tumourigenesis and metastasis (21,46–49).
The addition of these data helps to significantly distin-
guish both proto-oncogenes and tumour suppressor
genes from each other, and from disease genes (Figure 2
and Table 2). Our final dataset amalgamates all of the
previous data types (PC and GS, PDs, PPIs and RD).
While both the proto-oncogene and TSG-C are able to
distinguish between cancer genes and both unlabelled
genes and disease genes, only the tumour suppressor
gene classifier differentiates between the two groups of
cancer genes (Figure 2 and Table 2).
The method we describe is only useful if it can assist in

the detection of previously unidentified cancer genes. We
have used a set of candidate cancer genes from a muta-
tional screen of breast and colon cancers to test our classi-
fiers (11,14). These two sets of candidate genes, breast and
colon, were included as unlabelled genes in our classifiers.
In all classifiers, both the breast and colon candidate genes
obtain higher average ranked probabilities than unlabelled
genes, disease genes and in some cases Cancer Gene Census
genes (Table 2). This is in part due to similarities between
the breast and colon candidate genes Cancer Gene Census
genes in gene structure and sequence conservation, as we
have shown previously (28). Nevertheless, these candidate
genes were found using an unbiased genome-wide screen of
solid tumours in a method completely different to the dis-
covery of most of the Cancer Gene Census genes, which
were mainly detected as translocations in haematological
disorders (3).
In addition, we apply our method to the results of a

comparative oncogenomic study which, through array
CGH and expression studies, identified the Nedd9 gene
as an oncogene involved in metastasis in melanoma (29).
Nedd9 is consistently ranked by our proto-oncogene clas-
sifiers as one of the top candidates in the chromosomal
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band in which it resides (Supplementary Table 3 and web-
site). Other genes are ranked more highly than Nedd9 in
this region by our classifiers, some of which would also be
viable candidate cancer genes such as male germ cell asso-
ciated kinase (a protein kinase) in different tumour types.
At present our classifiers are not sufficiently sophisticated
to be able to differentiate tumour-specific candidate cancer
genes.
We acknowledge that even though our methods work

well with the examples provided there are some limitations
to the classifiers. For example, as proto-oncogenes and
tumour suppressor genes share some sequence properties
in general, such as higher PC, longer gene and protein
sequences (27), and greater number of PPIs (28), the clas-
sifiers relying on these properties do not discriminate well
between the two types of cancer genes. In addition, the use
of protein domain information and to a lesser extent PPIs
(and only in the case of tumour suppressor genes) appear
to bias our methodology when we conduct simulations
with random sets of positive genes (Table 3). In terms of
PPI data, we have only incorporated the data from one
study (35) and although it has been reported that human
PPI maps generated from different sources only have a
small overlap, it has shown to be statistically significant
(50). We previously included Gene Ontology annotations
(51) in a cancer gene prediction tool (27). However, as
many of these are based on protein domain information
included in InterPro and classifiers based on Gene
Ontology annotations perform similarly to those using
InterPro data (data not shown), we excluded this type of
information from the present study.
Most oncogenomic experimental techniques will pro-

duce a number of false positives, and it is this very point
that emphasizes the need for a combinatorial approach in
cancer biology. Furthermore, with large cancer biology
initiatives such as The Cancer Genome Atlas (TCGA;
http://cancergenome.nih.gov) and the Cancer Genome
Project (www.sanger.ac.uk/genetics/CGP) producing vast
amounts of data for the foreseeable future, the need for
complementary approaches for candidate cancer gene
prioritization is clear. To this end, we have made all our
proto-oncogene and tumour suppressor gene predictions
available at http://bg.upf.edu/cgprio. Researchers are able
to search for a particular gene or upload a list of genes, or
search by chromosomal location. As we have included all
10 (five proto-oncogene and five tumour suppressor gene)
classifiers, a researcher may choose the predictions accord-
ing to the data types used to construct the classifier. In
summary, it is envisaged that our classifications will be a
useful prioritization aid to experimental cancer biologists
in combination with experimentally derived results.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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