
Designing of Portlet-based Web Portals

Dissertation
presented to

the Department of Languages and Information Systems of
the University of the Basque Country

in Partial Fulfillment of
the Requirements
for the Degree of

Doctor of Philosophy

Ma Aránzazu Irastorza Goñi

Advisor: Óscar Díaz García

Donostia-San Sebastián, Spain, July 2008

iii

.

Nere gurasoei

Summary

The main aim of this dissertation has been improving the design and use of portlet-

centric Web portals. About the first concern, our proposal is a design method with

reuse, i.e., reusing available Web components, that is, portlets. The approach takes

statecharts as the main conduit for describing how portlets are gathered together.
The outcome of the design process of a new Web portal is an annotated statechart

which collects the main design decisions, i.e., tasks, structural and workflow organi-
zation, and aesthetic concerns. The rendering model takes advantage of hierarchical

construction of the orchestration model, i.e., statechart, to specify the presentation

through an inheritance-like mechanism based on the state hierarchy. However, this
approach would remain short, if the portal master had to create the portal code by

hand, while he interprets the annotated statechart sketch. This process would be
error-prone. Thus, the proposal in this dissertation is a model-driven approach to

move automatically from annotated statechart models to implementation concepts
like Web page, CSS class, and the like. Two metamodels and the transformation be-

tween them are described. With the ultimate objective of improving the use of Web
portals, another of the concerns of this dissertation has been the portlet interoper-

ability, that is, the ability of portlets to exchange information. The proposal in this
dissertation is based on Semantic Web, specifically it is a front-end approach, where

presentation fragments of portlets are annotated with information about the render-
ing process. Then, OWL rules are which make inference of data, i.e. carry out the

dataflow.

Contents

1 Introduction 1
1.1 Overview . 1

1.2 Portlet-centric Portals: design . 3

1.3 Portlet-centric Portals: implementation 4

1.4 Portlet-centric Portals: portlet interoperability 5

1.5 The use of standards . 6

1.6 Document Organization . 8

2 Introduction to Web Portals and Portlets 9
2.1 Introduction . 9

2.2 Web portals . 10

2.3 Portlets . 11

2.3.1 Portlets vs. Web services 12

2.3.2 Portlets vs. Web applications 15

2.4 Portlet interoperability: the WSRP standard 17

2.5 Conclusion . 24

3 Model Driven Engineering 25
3.1 Introduction . 25

3.2 Model-Driven Engineering . 26

3.3 Model-Driven Architecture . 28

3.4 Domain-Specific Modelling . 31

3.5 Transformation Languages . 35

3.5.1 Transformation classification 35

3.5.2 A transformation language: RubyTL 37

3.6 Conclusion . 41

vii

viii CONTENTS

4 Portlet-based portal construction: an MDD approach 43
4.1 Introduction . 43

4.2 Outline of an instance of the MDD approach 44

4.3 The WSRP model: a PSM for the WSRP interfaces 48

4.3.1 A WSRP model for the sample case 49

4.4 The SOP model: a PIM for portlet-based portals 49

4.4.1 The TASK metamodel . 51

4.4.2 The ORCHESTRATION metamodel 51

4.4.3 The RENDERING metamodel 56

4.4.4 Portal personalization . 60

4.5 The EXO model: a PSM for the eXo platform 65

4.6 Transformation definition . 68

4.6.1 Mapping from simple states to CSS classes 70

4.6.2 Mapping from state configurations to eXo pages file 72

4.7 Realizing the MDD benefits . 77

4.8 Related work . 79

4.8.1 Integration . 80

4.8.2 MDD for Web application development 82

4.8.3 Modelling approach . 84

4.9 Conclusion . 84

5 Portlet Interoperability Through Deep Annotation 87
5.1 Introduction . 87

5.2 A sample case . 89

5.3 Semantic Web and Annotation . 90

5.4 Outline of using annotation for portlet interoperability 92

5.5 Portlet ontology and Portal ontology 95

5.5.1 Portlet ontology . 95

5.5.2 Portal ontology . 97

5.6 Annotation process . 100

5.6.1 Remote annotation with portlet ontology 102

5.6.2 Mapping rules . 103

5.6.3 Local annotation with portal ontology 105

5.7 Querying process . 106

5.7.1 Completing portal ontology annotation 107

5.7.2 Querying at enactment time 107

CONTENTS ix

5.7.3 More on piping rules . 108

5.8 Related Work . 109
5.8.1 About interoperability or dataflow 109

5.8.2 About semantic approach 111
5.9 Conclusion . 112

6 Conclusion 115
6.1 Main Contributions . 115

6.1.1 Reuse-based Design Method for Web portals 115
6.1.2 Code-generation for Web portals 116

6.1.3 Dataflow among portlets 117
6.2 Future Work . 118

6.3 Some final thoughts . 120

A SOP-to-EXO Transformations 121
A.1 Introduction . 121
A.2 Transformation for CONFIG package 127

A.3 Transformation for CSS package 130
A.4 Transformation for SKIN_CONFIG package 135

A.5 Transformation for PAGES package 143
A.6 Transformation for NAVIGATION package 152

Bibliography 155

x CONTENTS

Chapter 1

Introduction

1.1 Overview

Although there is no common agreement as to what a Web portal is, two main points

of view can be distinguished. On one hand, Web portals as Web sites which act as a
starting point or ’gateway’ to a wide variety of resources (like search engines, news,

discussion groups, references and so on). Hence, the idea of a Web portal is to collect
information from different sources and create an information hub. From this perspec-

tive, Web portals are evolved content managers. On the other hand, Web portals can
also play the role of frameworks for integrating applications and processes across

organizational boundaries. From this viewpoint, Web portals are somehow related

with Enterprise Application Integration (EAI) approaches. This thesis addresses the
second perspective.

Application integration is a long lasting endeavour in Software Engineering. Most
of the approaches so far mainly address back-end integration where integration takes

place behind the scenes. Web portals consider front-end integration. Besides all the
intricacies that go with back-end integration, front-end integration has to tackle also

the GUI issue. In this scenario, GUI usability matters. Indeed, according to Jafari
and Sheehan [47] usability is one of the keys to portal success and usability is the

extent to which a system supports its users in completing their tasks efficiently, ef-

fectively and satisfactorily. This makes interoperability even a more important issue

1

2 Chapter 1. Introduction

than in back-end integration. Interoperability is the ability of software and hardware

on multiple machines from multiple vendors to communicate, and now interoper-
ability extends beyond protocols and parameters to also take into account the GUI.

That is, portal-based integration needs to face not only parameter heterogeneity or
platform discrepancies, but also look-and-feel mismatches between the GUIs of the

applications to be integrated.

As a result of the broad range of aspects to be considered, portal design is far

from being a simple task. Jafari and Sheehan [47] state that “... 80% of the success

of a portal project depends on the quality of its design work and the forward thinking

put into the conceptual and technical architecture of the system. The other 20% of

the project’s success is due to the quality of the portal software ...”.

In light of the previous considerations, this doctoral thesis addresses portlet-

based design of Web portals. Portlets are presentation-oriented Web Services which
are packed to be delivered through third-party Web applications (e.g., a Web por-

tal). Portlets are user-facing (i.e., return markup fragments rather than data-oriented
XML) and multi-step (i.e., they encapsulate a chain of steps rather than a one-shot de-

livering). So far, portlets are mainly used as a modularization technique to structure
portal content. However, their ability to be delivered through other Web applications,

makes portlets be the enablers of service-oriented architectures (SOAs) but now at
the front-end.

From this perspective, portlets strive to play at the front-end the same role that
Web services currently enjoy at the back-end, namely, enablers of application assem-

bly through reusable services. On the portlet case, the difference stems from what is
being reused (i.e., which includes the presentation layer) and where the integration

is achieved (i.e., at the front-end). From this thesis perspective, a main feature of
portlets is that its “container model” has been standardized: Web Services for Re-

mote Portlets (WSRP) 2.0 [74] and Java Portlet Specification (JSR-286) [49]. This
is a main achievement that ensures that portlets developed by IBM’s WebSphere can

be rendered through an Oracle-engineered portal, and vice versa. This ensures “ren-
derization” interoperability, but other design problems are still open. Specifically,

this dissertation is centered around three main areas, that is, Web portal design, Web
portal code generation and application interoperability. Next sections outline each of

these issues. For completeness sake, Section 1.5 outlines related standards. These
standards provide the baseline on which the rest of the work builds up.

1.2. Portlet-centric Portals: design 3

1.2 Portlet-centric Portals: design

Current portal applications tend to be rather monolithic in both conception and sup-
port. This can be due to the fact that many first generation portal development en-

vironments evolved from content management origins. To take hold portal appli-
cations, customers need to look at solutions that support a programming model cen-

tered around service interfaces. Ideally, these service interfaces would be provided by
loosely coupled components that are unshackled from process and relatively free of

dependency on underlying infrastructure technologies. This is a distinct move away
from monolithic portals to the idea of portals as entry points into a combination of

services. The result is a collection of re-usable, and more importantly, easily upgrade-
able services as opposed to those assets being locked into rigid monolithic portals.

As stated in [103], "needed is a development environment designed with an applica-

tion orientation, rather than a content-centric perspective, which offers the ability to

manage portals at component-level across the entire application life-cycle".

The work presented in this dissertation focuses on Web portals as aggregators of

third-party applications, i.e., portlets. Therefore the portal designer will not have to
design their inner functionality. According with her requirements, she will have to de-

cide the tasks the new portal will offer, to choose the appropriate portlets (i.e., portlets
whose functionalities fit the tasks), and then, to design the orchestration among the

tasks. She will have to decide which task must be executed first, if there is any
precedence-rule among tasks, and the like.

However, portal IDEs (Integrated Development Environments) have not yet ex-
ploited the full potential of portlets. The content-management role is still prevalent

in most of current IDEs. The Web portal is still conceived as a conglomerate of pages
where portlets tend to be considered as a modular mechanism during page imple-

mentation. The page is still the main notion, and the portlet is subordinated to the
page. This has important consequences since portlet navigation (i.e., browsing along

the portlet fragments) is completely detached from portal navigation (i.e., browsing
along the portal pages). And all portlets are readily rendered when entering in the

container page.

The new perspective of taking portlets as enablers of service-oriented architec-

tures (SOAs) requires a departure from how current Web portals are envisaged. The
Web portal is no longer perceived as a set of pages, but as an integrated set of Web

components (i.e., portlets) that are now delivered through the Web portal. From this
perspective, the portal page now acts as a mere conduit for portlets. Page and page

4 Chapter 1. Introduction

navigation dilute in favor of portlet and portlet orchestration. This thesis promotes

this service-oriented view of Web portals.
Our contribution is to describe portlet orchestration using statecharts [39]. This

approach was selected because the Unified Modeling Language (UML) uses stat-
echarts as a means for modelling behaviour and UML is a standard. Moreover, al-

though we have not searched this field, the statechart model offers rigorous semantics
for formal analysis on various aspects of portal functionality orchestration, e.g., not

reached states (i.e., tasks), invalid transitions, and the like. Having an analysis and
design model helps the designer to abstract: she works about tasks and their relations

and she does not have to study a new language, probably nearer to the implementa-
tion, and to start specifying namespaces, port descriptions, partner links, and so on,

as it is in the case of Web service orchestration and BPEL language [73].
In addition to the orchestration model, this dissertation also proposes the use of

another two models during portal design: the task model and the rendering model.
The first one describes the set of tasks the new Web portal will offer, while the render-

ing model specifies the parameters for the aesthetic presentation of the portal. This
approach departs from traditional page-centric design approaches towards a design

where the functionality rather than content rendering plays the pivotal role.

1.3 Portlet-centric Portals: implementation

As said, a main effort of this thesis is for Web portal design to be abstracted away

from pages and be conceived in terms of portlets and portlet orchestration. However,
the mapping from portlet orchestration (design time) to page navigation (implemen-

tation time) is too tedious and error-prone. The fact that the same portlet can be
placed in distinct pages produces code clones that are repeated along the pages that

contain this portlet. This redundancy substantiates in the first place the effort to move
to model-driven development (MDD). The combined use of models and transforma-

tions made MDD an excellent reuse technique even if diversity in the implementation
platform is not an issue.

Therefore, this thesis concentrates on an MDD approach to portlet-centric portal
development. It follows the MDA (Model-Driven Architecture) proposal [76], and

defines a Platform Independent Model (PIM), a Platform Specific Model (PSM) and
the mapping transformations between them.

The PIM abstracts portal and portlets into workspace and tasks, respectively. In
this way, portal development is moved away from the technology domain towards

1.4. Portlet-centric Portals: portlet interoperability 5

the concepts of the problem domain. However, one of the big concerns in software

development, in general, is the gap between the design model and the implementa-
tion code. Taking a portal platform, as eXo [27] for instance, developers can use its

assistants to define and configure several components of the new Web portal, e.g.,
portal pages, navigation among them, and so on.

However, they will have to do this process interpreting the model-based design,
previously carried out by them or a designer. This stage may be hazardous and

error-prone depending on the conceptual gap between the design and implementa-
tion models. Thus, our approach specifies a PIM metamodel agglutinating the three

viewpoints of Web portal design, i.e., tasks, orchestration and rendering.
Otherwise, a widely extended open source portal platform, eXo [27], has been

selected and with some of its features a PSM metamodel has been defined.
Finally, the transformation from PIM to PSM has been described and fully imple-

mented, specially the transformation from conceptual concepts such as states, transi-
tions, rendering descriptors, and the like, to implementation concepts, such as pages,

portlets, CSS classes, and so on. The transformation is completely automatic, so the
design and implementation models are concordant, and if a change was necessary in

the design model, the corresponding code could be generated.

1.4 Portlet-centric Portals: portlet interoperability

A key factor for a Web portal to succeed is the support it offers to its users in complet-

ing their tasks satisfactorily. One of these enablers is parameter reuse. In the context
of this thesis, this refers to portlet interoperation, i.e., the exchange of information

between portlets. Aggregating portlets into a Web portal is more than merely invok-
ing these services, or arranging their fragments together in the same portal page (i.e.,

the so-called “side-by-side” aggregation). Information contained in one portlet will
surely be required in another, and forcing the individual end-user to manually copy

and key in data from source to target portlets leads to frustration, lost productivity,
and inevitable mistakes.

Current approaches to portlet interoperation rely on the existence of a common
data structure that supports data exchange. However, such approaches defeat the

view of portlets as SOA-enablers. That is, interoperation should be achieved between
portlets with different origins (i.e., different providers), and this means that no com-

mon data structure will be available (in the same way that traditional Web services do
not rely on the existence of such data structure to exchange data). The new release of

6 Chapter 1. Introduction

WSRP 2.0 [74] addresses this issue by providing an event-based mechanism. Using

a publish/subscribe pattern, portlets can publish events which other portlets can sub-
scribe to, and the Web portal plays the mediator role. By contrast, this thesis proposes

a front-end approach to portlet interoperation.
By “front-end” is meant that the visual part of a portlet, the fragments, are sup-

plemented with information about what these fragments render. Rather than resorting
to another mechanism, “the event” is described as metadata of the fragment using an

annotation approach [35]. Specifically, we consider the so-called deep annotation

as particularly valid for portlet interoperation due to the controlled and cooperative

environment that characterizes the portal setting.
Therefore, the contribution of this thesis rests on two ontologies. First the con-

cept of portlet ontology is defined. It will be used by the portlet producer to annotate
portlet fragments with data about the processes whose rendering each fragment sup-

ports. Due to annotation will not be about presentation concerns, but about semantic
information (which data is rendered, which ontology they fit, and so on), we call it

deep annotation, as Handschuh et al. did also in [36]. Moreover, the concept of por-

tal ontology is also defined, which will be used to weld somehow portlet annotations.

During enactment of portlet fragments, and using their annotations, the Web portal
(i.e., the portlet consumer) will produce portal annotations that will be used to infer

new portal annotations. These inferred annotations will be used to feed other portlet
fragments automatically (i.e., some input widgets will be rendered filled up). The

inference is carried out by a rule set the portal designer will have to define.

1.5 The use of standards

Standards constitute a way to gather the best-proved approaches. Moreover, standards

are a means of communication among developers. Because a workproduct may go
through several developer teams during its lifetime, it is important that those people

are able to comprehend the design and code and to modify it easily. Standards also
offer a set of rules that every developer can follow, understand, and become familiar

with, in other words, standards offer a framework for tested good practice.
Otherwise, looking at developed software products, the use of standards sup-

ports software maintainability and protects software products against obsolescence,
because most of standards are generally designed taking into account version com-

patibility. Moreover, the use of standards assures the interoperability among applica-
tions.

1.5. The use of standards 7

Hence, the adoption of standards is of paramount importance and this work has

tried to use them as much as possible.

• UML statecharts [78] constitute the foundation for our proposal to design the

task orchestration. The designer of Web portals does not need to learn a new
language and there are lots of tools to edit and check statecharts.

• Web Services for Remote Portlets (WSRP) specification [71]. It defines a
Web service interface for accessing and interacting with “interactive presentation-

oriented Web services” (i.e., portlets). Thus, applications can consume those
Web components without having to write unique code for interacting with each

component. Our proposal for Web portal design and portal code generation as-
sumes the reuse of WSRP components and it defines a metamodel for WSRP.

• Java Portlet Specification (JSR-168) [50]. It defines a standard for the Java
portlet API designed to enable interoperability between portlets and Web por-

tals. One of its most important gaps is interportlet communication. Taking

advantage of the extensibility mechanisms available in the standard, we have
proposed to extend the portlet description with an additional ontology property,

thus, facilitating portlet annotation and then portlet interoperability. The new
standard, Java Portlet Specification (JSR-286), published in April 2008 [49],

aligns with WSRP 2.0 [74] and it enables portlets to communicate with each

other through sending and receiving events [74].

• OWL-S [110] is an ontology built on top of Web Ontology Language (OWL)
for describing Semantic Web Services. OWL-S facilitates, amongst others,

composition and interoperation of Web services through their semantic de-
scription. It has been used by an important number of research efforts [25]. Our

proposal for portlet interoperability also takes OWL-S as the baseline ontology
to add annotations in portlet fragments. Besides facilitating portlet interoper-

ability, all the benefits of using explicit ontologies (e.g., better documentation,
search, knowledge acquisition [48]) are brought to the portlet realm.

• Query/View/Transformation (QVT) Specification [80] defines a standard to
write transformations from source models into target models. These models

conform to MOF metamodels. Our proposal for model transformation has used
RubyTL [99], a pattern-based transformation language which also takes EMOF

8 Chapter 1. Introduction

metamodels but it does not implement the standard. At the time of the imple-

mentation, transformation languages conformant to QVT proposal [77] were
not expressive enough to specify the required transformations.

1.6 Document Organization

This dissertation is composed of six chapters, including this one, namely:

• Chapter 2 outlines Web portals and portlets.

• Chapter 3 introduces the software development method known as Model-Driven

Engineering, and two of its most well-known approaches Model-Driven Ar-
chitecture (MDA) and Domain-Specific Modelling (DSM). The chapter also

introduces RubyTL, a transformation language developed by the GTS research
group at the University of Murcia, and extensively used in this dissertation.

• Chapter 4 presents three metamodels: (1) the SOP metamodel, which aggluti-
nates three viewpoints in the design of a portlet-centric portal i.e., tasks, orches-

tration and rendering; (2) the WSRP metamodel, which describes the portlets
to be reused in the portal design, and (3) the EXO metamodel, which describes

the artefacts needed to implement an eXo portal. These metamodels are the
base for the SOP-to-EXO transformation rules, which show the applicability of

the MDA approach for portal code generation.

• Chapter 5 describes how a deep annotation approach can be used for portlets
to share data. First, it defines what an annotation is, and describes portlet and

portal ontologies. Both will be used to produce annotations, the former to
annotate portlet fragments, and the latter to get and infer annotations that will

be useful to flow data from one portlet fragment to another.

• Chapter 6 presents the conclusion of this thesis. It also proposes future research
topics following this work.

Finally, Annexe A describes thoroughly the SOP-to-EXO transformation rules, im-
plementation of our MDD approach.

Chapter 2

Introduction to Web Portals and
Portlets

2.1 Introduction

First Web sites consisted of static pages, with a limited interaction with the user.

Then, Web applications dedicated to e-commerce, content publication, and manage-
ment, focused on enabling users to perform simple operations, like searches, data up-

loads, and browsing of large volumes of data structured in hypertexts. Later, the Web
became a platform for B2B applications, whose goals are intra- and inter-organization

business processes.

Web portals are one of such applications, and they provide integration with third-

party applications at the user interface level, whereas other integration technologies

support business process, functional or data integration. The portal technology is
based on the notion of a portal container that provides the basic infrastructure to

host several applications wrapped up as portlets. Apart from application integration,
features as adaptation and personalization also characterize Web portals.

This chapter presents a summary for Web portal definitions in Section 2.2 and a
description of portlet features in Section 2.3. Moreover, Section 2.4 describes briefly

the Web Services for Remote Portlets 1.0 (WSRP) specification. WSRP defines the
means for using portlets as Web components and for portlet-portal interoperation.

9

10 Chapter 2. Introduction to Web Portals and Portlets

2.2 Web portals

There is no common agreement about what a portal is [113]. Many references point
out that portal is a Web site which acts as a starting point or ’gateway’ and provides

a wide variety of resources, services, tasks and links to other websites. Among those
resources there are search engines, news, e-mail, discussion groups, online shopping,

references and so on. This type of portals, sometimes called horizontal portals [101],
is generally offered by Internet Service Providers or search engines. Yahoo! is an

example, with an index to a lot of services, that is, the first screen that a user will see
when going online, a place to go to find an organized view of the online information

space. More specialized portals, sometimes called vertical portals [101], are those
addressed to a specific interest or field, for example portals with the aim at medical

information. There, users can get information about clinical trials, professional direc-
tories, patient forums, support groups, health articles, health care associations, and

so on. Even more specialized portals, enterprise portals [30] deliver organization-
wide information in a user centric manner, based on user authentication they offer

customized services to specific users, employees, customers, and the like. They offer
support for tasks, workflow, groupware, and the creation and integration of knowl-

edge. In this last category, we can find, for example, the employee portal of an
university. There, employees, in general, can access their salaries, information about

their medical insurances, and the like, and, more specifically, research staff can ac-
cess a service to complete their curriculum vitaes, forms to request financial support

for research, and so on. Personal portals are also distinguished. They are customized
by the user and typically are associated with a search engine and display selected

information such as news, weather, dictionaries and so on. iGoogle and My Yahoo!
are examples of this type of portals.

Next, we summarize the fundamental features of portals:

• Single sign on. A portal is a doorway for a wide range of applications. Rather
than expecting an end-user to remember and maintain a password for each ap-

plication hosted by the portal, the portal offers a strong authentication scheme,
where the end-user only has to remember one password. Once authenticated,

the end-user has unrestricted access to all applications to which she is enti-
tled. For applications external to the portal, a mapping is needed between

authentication parameters of the portal, and the authentication parameters of
the external application.

2.3. Portlets 11

• Personalization. The end-user can change the interface and behaviour of the

portal according with the way she works or with her needs and preferences. She
can subscribe and unsubscribe to channels and alerts, add and remove specific

links, set application parameter defaults, or format portal page (i.e., colours,
fonts, columns, and the like).

• Adaptation. The portal is able to save common tasks the end-user does, her
schedule and workflow, and then, it is able to change services it offers her or to

make new recommendations, depending on the stored information. Therefore,
the portal changes its behaviour depending on context.

• Integration. Companies use portals to help disseminate information to their

employees in a timely and efficient manner. From this perspective, portals
can be seen as the natural evolution of Content Management Systems (CMSs),

but now portals strive to integrate legacy applications. This feature is seen as
paramount. Indeed, some authors define portals “a framework for integrating

applications and processes across organisational boundaries” [9]. Portal sys-
tem features can also be viewed as “managing content”, but what differentiates

them from a CMS is they facilitate the access (integration) to information from
various applications, data sources and structures, and back-end systems. Users

select from a list of pre-defined site components (sometimes called “portlets”,
see Section 2.3) and manage the layout and presentation of this information in

a page location of their choice. They can add selected application interfaces,
real-time data dashboards, reporting functions, and personalize how their page

looks.

This latter feature is the one we would like to highlight. Portals as hubs that offer a

consolidate view of content and services. Content/services can be provided locally
or being offered by third parties or applications. In this scenario is when the notion

of portlet shines up.

2.3 Portlets

Portlets are presentation-oriented Web Services which are packed to be delivered
through third-party Web applications (e.g., a portal). Portlets are user-facing (i.e.,

return markup fragments rather than data-oriented XML) and multi-step (i.e., they
encapsulate a chain of steps rather than a one-shot delivering). So far, portlets are

12 Chapter 2. Introduction to Web Portals and Portlets

mainly used as a modularization technique to structure portal content. However, their

ability to be delivered through other Web applications makes portlets be the enablers
of service-oriented architectures (SOAs) but now at the front-end.

From this perspective, portlets strive to play at the front-end the same role that
Web services enjoy at the back-end, namely, enablers of application assembly through

reusable services. On the portlet case, the difference stems from what is being reused
(i.e., which includes the presentation layer) and where the integration is achieved

(i.e., at the front-end).

To better asses the notion of portlet, next subsections compare portlets with Web

services and traditional Web applications.

Java Specification Request 168 Portlet Specification (JSR-168) [50] standardizes

how Web components, i.e., portlets, are to be developed. It addresses the portlet
life cycle management, the portlet modes, the packaging and deployment, and so on.

The work presented in this dissertation did not aim at the development of portlets, it
has used them as Web components, as necessary pieces of Web portal development,

therefore this chapter does not include a deeper description of that specification.

2.3.1 Portlets vs. Web services

Web Services provide enabling technology to deliver on the promise of Internet-based

business-to-business connectivity. Web service standards facilitate the sharing of the
business logic, but suggest that Web service consumers should write a new presenta-

tion layer on top of the business logic. As an example, consider a Web service that
offers two operations, namely, searchFlight and bookFlight. The former retrieves

flights that match some input parameters (e.g., departureAirport, flightDates and so
on), while bookFlight takes the selected flight and payment data, and books a seat on

this flight.

This WSDL-based API can then be used by a consumer application. First, the

application would collect the departureAirport, flightDates and other parameters via
an input form. Within the form, an http request might support a call to searchFlight

which, in turn, returns a set of flights whose presentation is left to the calling appli-
cation. Next the user selects one of the flights and, through another form, the Web

application collects the user’s information and payment data. This interaction will in
turn invoke bookFlight. This example illustrates the traditional approach where Web

services provide the business logic, and both presentation and control layers are left
to the calling application.

2.3. Portlets 13

This scenario illustrates the traditional use of Web services as a function-integration

technology whereby one application programmatically invokes code that lies in an-
other application. However, such an approach underscores the presentation layer

[88]. This layer not only addresses aesthetic aspects, but a whole range of concerns
like usability issues, state management, error handling, client-side scripting, navi-

gation logic etc. Indeed, most of the aspects that characterize a good Web site are
related to interactive issues [60]. Re-creating this presentation logic in each con-

sumer application has potentially two main limitations, increases time-to-market and
can jeopardize the company’s image [88].

Increasing time to market. The presentation logic is one of the most critical

but also, cumbersome and time-consuming software to be created. As the previous
example highlights, the reconstruction of the screenshots not only involves aesthetic

aspects but also lefts to the consumer application the recomposition of the workflow
among the API’s operations. Current practices imply custom programming to create

a user interface tier for each new Web service. This results in set-up and maintenance
efforts that hinders portal initiatives as the number of Web services increases. There-

fore, an API-based approach as the one provided by traditional Web services, falls
short for complex interactive applications whose flow spans several Web pages.

Jeopardizing the company’s image. The presentation logic realises brand and

customer experience strategies that are becoming critical business factors for a com-
pany to be ahead of its competitors. Letting the consumer application decide both

how parameters are requested or results rendered back, can jeopardize the image of
the service provider. The company might be interested in maintaining this experience

in the case of its services being offered through third-party portals. As a Gartner anal-
ysis pointed out, “Successful software vendors and Web services providers will find

innovations in usability and user interface to be a source of competitive advantage.

Better-than-average usability is one reason why Yahoo, Amazon, AOL, Google, and

Palm came to dominate their respective markets.”

What is required is to leverage Web Service technology as an application-
integration enabler. True application integration results from making one applica-

tion available within the context of another, and this can also include the user interface
[114]. Microsoft OLE objects are a case in point. For example, this technology al-

lows embedding an Excel spreadsheet directly into a Word document through simply
dragging. Once embedded, you can work on the spreadsheet from the Word docu-

ment as if you were within Excel. This is the scenario that portlet proponents aim for
Web applications.

14 Chapter 2. Introduction to Web Portals and Portlets

Figure 2.1: Interaction diagram for a portlet inside a portal.

Let’s go back to our flight-booking application, but now delivered as a portlet. A

flightSearch portlet is defined that encapsulates the previous sequence of operations
(“multi-step”) and the XHTML fragments (“user-facing”). This portlet can then be

used as a Web component to be plugged into third-party applications (e.g., a por-
tal). Figure 2.1 shows the three actors involved, namely, the End-user, the Portlet

Consumer and the Portlet Producer.

What the consumer is now re-using is a whole application. First, portlet oper-

ations might not only return raw data but fully rendered markup such as XHTML
(known as “fragments” in the Portlet parlance) that is to be included within the portal

2.3. Portlets 15

page, with very few changes to be made by the consumer. Second, all interactions

with a given portlet (see Figure 2.1) belong to the very same session, and hence, ses-
sion and state maintenance should be preserved along these interactions. Although it

depends on the approach, this can be the duty of the portlet producer. While in the
Portlet realm, the consumer is relieved of the burden of complex and intricate session

maintenance and control flow.

2.3.2 Portlets vs. Web applications

The previous comparison stresses the notion of a portlet as a full-fledged application.
However, and unlike Web applications, portlets have an additional requirement: they

can “be subject to composition by third parties”. This has two important implica-
tions: clear interfaces and configurability.

Clear interfaces. This implies the existence of well-defined and programmatic

interfaces for the portlet to be plugged into the consumer application. Moreover,
interoperability advises this interface to be generic so that the invoker can interact

with portlets in a standard way. This is precisely the endeavour of the WSRP stan-
dard (see Section 2.4), which offers two methods in the interface: getMarkup() and

performBlockingInteraction().

Broadly speaking, the lifecycle of a portlet session begins when the first get-

Markup() request is issued (see Figure 2.1). Once the first markup is rendered, a

two-phase protocol is initiated [71]. The getMarkup() operation retrieves the markup
that corresponds to the current state of the portlet. The consumer next invokes per-

formBlockingInteraction() on the portlet whose markup the end-user has interacted
with. This is a synchronous operation that routes the user-enacted interaction to the

producer. The consumer has to wait for the response from performBlockingInterac-

tion() before invoking getMarkup() on the portlet it is aggregating, in order to get

the markup of its new state. The portlet will receive only one invocation of perform-

BlockingInteraction() per client interaction, excepting for retries. If this operation

ends successfully, the consumer can then retrieve the next markup by invoking get-

Markup() on all the portlets within the portal page.

Configurability. It is well-known in the component community that, the larger

the component, the more reduced the reuse. Portlets tend to be stateful, coarse-
grained components since they encapsulate the presentation layer and all the navi-

gation that goes with it. Consequently, mechanisms should be in place to configure
the portlet to the environment where the portlet is going to be “hooked on”. This

16 Chapter 2. Introduction to Web Portals and Portlets

context includes the window state, the user profiles, aesthetic guidelines and addi-

tional portlet-specific data collected, as WSRP-compliant portlet preferences. Next
paragraphs outline some of these context properties.

Window state. This property sets the amount of page space that the portal will

assign to the fragment generated by the portlet. Options contemplated by WSRP
include: normal, indicates the portlet is likely sharing the aggregated page with other

portlets; minimized, instructs the portlet not to render visible markup, but lets it free
to include non-visible data such as JavaScript or hidden forms; maximized, specifies

that the portlet is likely the only portlet being rendered in the aggregated page, or that
the portlet has more space compared to other portlets in the aggregated page; and

solo, denotes the portlet is the only portlet being rendered in the aggregated page.
This property is set by the portal among the values supported by the portlet producer.

User profile. The user profile is used to personalize content to the idiosyncrasies

of end-users. Now, this content is offered via portlets. Thus, parameters are de-
fined in WSRP to pass these data from the portal to the portlet producer. User in-

formation attributes are derived from the Platform for Privacy Preferences 1.0 (P3P
1.0) by OASIS where attributes are described such as user.name.given, user.business-

info.telecom.telephone.intcode and the like.

Aesthetic guidelines. Now a portal page is produced as “portlet quilt”. Hence,
it is most important to ensure a common look-and-feel across the distinct portlet

markups to be rendered in the same portal page (i.e., similar background, fonts, ti-

tles and the like). To this end, the portlet markup should use Cascade StyleSheets

(CSSs) [108]. CSSs permit HTML fragments to parametrize some of their aesthetic

aspects. The portlet returns CSS-parametrized fragments which are then processed
by the portlet consumer. This process includes providing the actual values for the

CSS parameters. Interoperability requires these parameters to be standardized so that
the portal can expect always the same terms regardless of how the portlet producer

is. This has also been achieved by the WSRP endowment.

Portlet preferences. A portlet preference is a named piece of string data that
serve to personalize the portlet. As an example, go back to the flightSearch portlet.

Its preferences can include arrivalAirport with values “San Sebastián”, “London” or
“New York”, and departureAirport with value “Madrid”. These preferences offer a

parametrization-based mechanism to adapt the portlet (in this case, the input forms).
These preferences can be changed at configuration time (by the portal administrator)

or at enactment time. In this latter case, values can be set by the portlet itself -based
on the user profile- or prompting the current user.

2.4. Portlet interoperability: the WSRP standard 17

Figure 2.2: Portlet Producers and their Consumers.

Figure 2.3: Portal architecture and WSRP.

2.4 Portlet interoperability: the WSRP standard

Previous subsections have highlighted the role of portlets as SOA enablers. However,

this SOA scenario requires portlet interoperability, whereby portlets developed in, lets
say, Oracle Portal, can be deployed at a Liferay portal, and vice versa.

18 Chapter 2. Introduction to Web Portals and Portlets

The Web Services for Remote Portlets (WSRP) specification [71] brings this in-

teroperability by providing a protocol that decouples portlet providers from portlet
consumers. This provides the infrastructure to make feasible a portlet market à la

COTS1 so that portals can deliver portlets being provided by third parties2 (see Fig-
ure 2.2). “WSRP allows portals to display remotely-running portlets inside their

pages without requiring any additional programming by the portal developers. To

the end-users, it appears that the portlet is running locally within their portal, but

in reality the portlet resides in a remotely-running portlet container, and interaction

occurs through the exchange of SOAP messages” [16]. Figure 2.3 depicts the portal

architecture with their components.

WSRP is a joint effort of two OASIS technical committees, namely, the Web

Services for Interactive Applications (WSIA) and the Web Service for Remote Por-

tals (WSRP) [71]. WSRP layers on top of the existing Web Service stack, utilizing
WSDL for defining a set of interfaces. It standardizes the application programming

interfaces (API) between Consumers and Producers of Portlets (see Figure 2.3), the
communication protocol, and some aspects of the component model (e.g., modes,

personalization descriptions, CSS terms and the like). WSRP interfaces provide the

same core feature set as locally deployed portlets, but JSR-168 is Java only, while
WSRP is platform independent. WSRP includes extension mechanisms.

The specification 1.0 contemplates four interfaces, namely [71]:

• Service Description. This interface allows consumers to ascertain both the
capabilities of the producer and the portlets it hosts. The latter includes the

metadata necessary for a consumer to properly interact with each portlet. It
defines the operation getServiceDescription() for acquiring the metadata of the

producer.

• Markup. This interface allows consumers to request and interact with markup
fragments. This includes the getMarkup() operation that returns the presen-

tation markup which corresponds to the current portlet state, as well as the
performBlockingInteraction() operation which is the means used by the con-

sumer to route the chosen interaction to the producer. As the WSRP does not

1COTS stands for Commercial off-the-shelf.
2Indeed, the Open Source Portlet Repository Project was launched in 2006 to foster the free and

open exchange of portlets. The Portlet Repository is "a library of ready-to-run applications that you
can download and deploy directly into your portal with, in most cases, no additional setups or configu-
rations" [7]. Other similar initiatives include Portlet Swap (jboss.org) and Portlet Exchange (portletex-
change.com).

2.4. Portlet interoperability: the WSRP standard 19

Figure 2.4: WSRP description concepts.

force that neither the producer nor the consumer is stateful, these operations

carry the state necessary for the portlet to render the current markup to be re-

turned to the consumer. If the producer utilizes local state then, it will return a
sessionID to the consumer for using during the lifetime of the session.

• Registration. A registration reflects a particular relationship between a con-
sumer and a producer. It can include how the service is going to be charged or

book-keeping modalities. This optional interface permits consumers to regis-
ter, deregister and modify this relationship information. The portlet function-

ality can be dependent on whether the consumer is registered or not.

• PortletManagement. This optional interface gives consumers access to portlet

state and property information. Specifically, it includes operations for getting
portlet metadata (i.e., getPortletDescription()), cloning portlets for further cus-

tomization, and setting/getting portlet properties.

According to the specification, producers “are presentation-oriented Web Ser-

vices that host Portlets”. Hence, we model a WSRP Producer as a compound of
Portlets. Figure 2.4 shows this situation. Both Producer and Portlet class attributes

correspond to the metadata as retrieved by the getServiceDescription and getPortlet-

Description methods, respectively.

20 Chapter 2. Introduction to Web Portals and Portlets

Figure 2.5: flightSearch portlet with its producer.

As an example of producer metadata, consider “requiresRegistration”. This field
is a boolean which indicates whether the producer requires or does not require the

consumer to be previously registered. On the other hand, “portletHandle” is a Portlet
attribute. A handle serves to uniquely refer to the portlet at hand. Finally, a “clones”

association is introduced to indicate the association between a portlet and its clones.

Both producers and portlets can have properties. A Property carries typed in-

formation between the consumer and the producer. Properties of the producer (e.g.,
billingMethod) are set at registration time, and they affect all the hosting portlets. By

contrast, properties of the portlet (e.g., PreferredDeparture) are set when a portlet
clone is created.

A property is described by a name, a type, a label (i.e., a short, human-readable

name which is used to display in any consumer-generated user interface for adminis-
tering purposes), and a hint (i.e., a short description of the property to be displayed

as a tooltip when the property is edited).

Figure 2.5 depicts an example model with a producer (i.e., EasyJet) that offers

the portlet FlightSearch. Attributes of the metamodel are mapped as tagged values
on the model, and properties are reflected as attributes. The example model describes

that prior registration for the use of that portlet is not required (due to {requiresReg-

istration = false}).

This portlet has a set of tagged values that indicates metadata about the returned

markup. Some examples follow: the supported mime types (e.g., text/xhtml); the
window states supported for each returned mime type ({markupType =... }); a brief

description of the portlet functionality ({description=... }); a set of keywords, which
can be used for search ({keywords... }); a flag which indicates that the generated

markup includes the method get in an HTML form ({usesMethodGet=... }); whether
the portlet requires secure communication on its default markup ({onlySecure=... })

2.4. Portlet interoperability: the WSRP standard 21

and so on.

Next, we will summarize the conversations struck up between portlet producers

and consumers during the configuration and during the interaction with the portal
end-user in the execution.

Conversation between the Portlet Consumer and the Portlet Producer for con-
figuration: an example

1.- The consumer finds out about the producer. This basically implies the consumer
getting the producer’s metadata, with its description of the registration requirements,

and, possibly, the list of the “Producer-offered Portlets”. A snippet of the returned
ServiceDescription structure follows:

<ServiceDescription xmlns="urn:oasis:names:tc:wsrp:v1:types">

<requiresRegistration>true</requiresRegistration>

<requiresInitCookie>none</requiresInitCookie>

<offeredPortlets>

<portletHandle>FlightSearch</portletHandle>

<markupTypes>

<mimeType>text/html</mimeType>

<modes>wsrp:view</modes>

<modes>wsrp:edit</modes>

<windowStates>wsrp:normal</windowStates>

<windowStates>wsrp:solo</windowStates>

</markupTypes>

<title lang="us">

<value>FlightSearch</value>

</title>

<description lang="us">

<value>...</value>

</description>

</offeredPortlets>

</ServiceDescription>

The getServiceDescription() operation provides a discovery means for a consumer to

ascertain the producer’s capabilities. In this example, these characteristics include:
registration is required, no cookies are used, a FlightSearch portlet is available that

uses text/html as the mime type, etc.

2.- The consumer registers with the producer. If registration is permitted, the
consumer can state some of its specificities at this time. For instance, the consumer

22 Chapter 2. Introduction to Web Portals and Portlets

can restrict the modes or window states it is willing to manage by issuing the register()

method with the following parameter:

<RegistrationData xmlns="urn:oasis:names:tc:wsrp:v1:types">
<consumerName>myCompany_Portal</consumerName>
<consumerAgent>...</consumerAgent>
<methodGetSupported>true</methodGetSupported>
<consumerWindowStates>wsrp:normal</consumerWindowStates>

</RegistrationData>

In the example, the consumer myCompany_Portal indicates that “normal” is the only
window state supported.

3.- The consumer finds out about the portlets being offered by the producer it

registered with. Through the getServiceDescription() method, the consumer knows

the set of portlets offered by the producer (see step 1). Once the consumer is regis-
tered, the getPortletDescription() method can be used to obtain detailed information

about those portlets, along with the preference set during registration. The answer is
a PortletDescriptionResponse document as the one that follows:

<PortletDescriptionResponse>
<portletDescription>

<portletHandle>FlightSearch</portletHandle>
<markupTypes>

<mimeType>text/html</mimeType>
<modes>wsrp:view</modes>
<windowStates>wsrp:normal</windowStates>

</markupTypes>
<title lang="us">

<value>FlightSearch</value>
</title>

</portletDescription>
</PortletDescriptionResponse>

4.- The consumer finds out about the properties available to configure the portlet. By

this time, the consumer knows the configuration option available. Now, it discovers
the properties through which it can set the corresponding amendments. To this end,

the getPortletPropertyDescription() returns the following document:

<PortletPropertyDescriptionResponse ...>
<modelDescription>

<propertyDescriptions name="PreferredDeparture" type="types:AirportsType"/>
<propertyDescriptions name="PreferredArrival" type="types:AirportsType"/>

2.4. Portlet interoperability: the WSRP standard 23

...
</modelDescription>
<modelTypes>

<!– XMLSchema Type definitions for the properties –>
<xsd:schema ... >

<xsd:simpleType name="AirportsType">
<xsd:restriction base="xs:NMTOKENS">

<xsd:enumeration value="BIO"/>
<xsd:enumeration value="MAD"/>

</xsd:restriction>
</xsd:simpleType>
...

</xsd:schema>
</modelTypes>

</PortletPropertyDescriptionResponse>

This document states that the FlightSearch portlet supports a set of properties (e.g.,
PreferredDeparture, PreferredArrival) whose types indicate the range of values avail-

able.

Conversation between the Portlet Consumer and the Portlet Producer for inter-
action: an example

1.- The consumer receives a markup from the producer. This is achieved through the

getMarkup() function. A snippet of the returned parameter follows

<MarkupResponse ...>
<markupContext>

<mimeType>text/xhtml</mimeType>
<useCachedMarkup>false</useCachedMarkup>
<markupString><html><tr>..</tr>...</table></markupString>

</markupContext>
...

</MarkupResponse>

2.- The end-user interacts with the portlet fragment, and the consumer sends the

interaction to the producer. This is achieved using the performBlockingInteraction()

function, and one of its parameters contains name-value pairs to be processed. In the

following example, flightNumber and date are two parameters with values filled by
the end-user in a form. Portlet logic will process those values and will decide the new

state of the portlet. To get the markup related to that state the consumer will use the
getMarkup() function again.

24 Chapter 2. Introduction to Web Portals and Portlets

<InteractionParams>
...
<formParameters>

<NamedString>
<name>flightNumber</name>
<value>LF9834</value>

</NamedString>
<NamedString>

<name>date</name>
<value>2008-08-25</value>

</NamedString>
...

</formParameters>
</InteractionParams>

2.5 Conclusion

Nowadays, there are many portal platforms which make hard the implementation of

a Web portal or migrating it from one platform to another. Even using standards like
JSR-168 and WSRP the deployment procedure varies from container to container, so

a means to facilitate this procedure is needed. This is the aim of the work presented
in Chapter 4.

Web Services for Remote Portlets 1.0 (WSRP) specification established the ba-
sis for interoperability between portlets and portals, however interoperability among

portlets remained open. Distinct portlets, within the scope of the same producer,
could share a common piece of information but portlets which pertain to distinct pro-

ducers remained isolated. Although, a later WSRP version has proposed an event-
based mechanism for inter-portlet communication, in the meantime, our work was

concentrated on a semantic Web-based approach which is presented in Chapter 5.

Chapter 3

Model Driven Engineering

3.1 Introduction

Software engineering main efforts concentrate on developing new software systems

and maintaining existing ones [107]. The aim is to get high-quality systems in a
cost-effective way. Different approaches and technologies have been applied along

the years, but with the increasing complexity of problem space many of them fall
short of getting a good solution. Among these complexities we can mention the

heterogeneity of hardware architectures, inherent complexities in network-centric,
dynamic and large-scale systems, strict simultaneous quality of service (QoS) de-

mands, integration of autonomous application domains, and so on. Moreover, we

should not forget complexities related to the solution space, i.e., the use of third-
generation languages to write and maintain manually most application and platform

code, the growth of platform complexity (which has evolved faster than those general-
purpose languages), highly heterogeneous platform, language and tool environments,

the need to integrate legacy applications, the inherent abstraction of reusable compo-
nents and frameworks (which makes it hard to engineer their quality and to manage

their production) [94, 93].

Facing some of those challenges is the rationale behind Model-Driven Engineer-

ing (MDE). Model-Driven Engineering is in the origin of different projects or ap-
proaches, OMG’s Model Driven Architecture (MDA), Domain-Specific Modelling

25

26 Chapter 3. Model Driven Engineering

(DSM), Generative Programming, Software Factories, and so on. While there are

differences between these approaches, the common goal is to achieve a higher-level
of abstraction in software development. This chapter outlines MDE. The aim is not

to provide an exhaustive description of the MDE field but provide the grounds to
understand how MDE principles have been used throughout our work.

This chapter is structured as follows. First, MDE is introduced. Next, two
main approaches, Model-Driven Architecture (MDA) and Domain-Specific Mod-

elling (DSM) are addressed in Sections 3.3 and 3.4, respectively. Finally, Section
3.5 focuses on model transformation, and introduces the transformation language

used in the work presented in this dissertation: RubyTL.

3.2 Model-Driven Engineering

Model Driven Engineering (MDE) can be defined as a software development method
where all the relevant information in the project is stored in some kind of abstract

model. Software design and validation is then carried out as a set of model transfor-
mations. Bézivin [13] compares the evolution and achievements of object technology

with MDE. He claims that the motto “Everything is an object” of object-oriented en-
gineering, has a counterpart in MDE through the principle “Everything is a model”.

Two basic relations give support to that principle: representedBy and conformsTo.
A real system can be captured by a model, i.e., it is represented by a model, and

each model is written in the language of its metamodel (formal specification of an
abstraction), i.e., it conforms to a metamodel.

Kent [52] sets a framework for MDE with following features,

• Dimensions of the modelling space, i.e., a way to structure the modelling space
categorizing perspectives. Kent [52] mentions the followings: the dimension

of the platform (specific vs. independent), the dimension of subject area (e.g.,

the area of the system dealing with customers and the area for processing of
orders), aspect dimension (e.g., concurrency control and distribution), and the

dimensions concerned with the managerial and societal aspects (e.g., author-
ship, version control, and location). The model built in the development pro-

cess will be at the intersection of the different dimensions, i.e., it can take on
different perspectives.

• Modelling languages for the models. Domain models are described using a
language, and thinking about language definitions as a type of models (called

3.2. Model-Driven Engineering 27

metamodels), another language for them is needed. So there are languages for

the models and languages for the metamodels. The latter includes Extensible
Markup Language (XML) and Meta Object Facility (MOF) [52].

• Translations between models. Kent [52] distinguishes between model trans-

lation (as the mappings between models in the same language) and language
translation (as the mappings between models in different languages). Other

authors refer to endogenous transformation for model translation and exoge-

nous transformations for language translations. Model translations should be

writable in the same language (or an extension of it) as the models are ex-
pressed, however language translation must be expressed in terms of the defi-

nitions of the languages themselves (that is, language translation is meta-model
translation).

• Processes. MDE has both models and translations as its main artefacts. And
the process of software construction is conceived as a successive translation

of models till code is obtained. Kent [52] distinguishes between macro pro-
cesses, which concern the order in which models are produced and how they

are coordinated, and micro processes, which guide for producing a particular
model. The definition of the models developed by a particular process and the

definition of that process are dependent on each other.

• Tools. The value of models is greatly enhanced if appropriate tooling is avail-
able for model simulation, validation, verification and transformation. This

point should not be underestimated. Models have been used since the begin-
ning of programming. Statecharts, entity-relationship diagrams or dataflows

have been used for a long time. The difference now is that models are not
just documentation but full-fledged software artefacts, liable to be processed.

But what is meant by “model processing”? Code processing implies compil-
ing or linking. Likewise, model processing implies transforming, validating

or verifying models. The availability of tools to achieve these operations is
inherent in MDE. MDE does not really exist if model tooling is not in place:

tools to check/enforce well formedness constraints on models, to support map-
pings between models, to support model driven testing, for version control and

distributed working, for managing the software process, for working with in-
stances of models, and so on.

Other common names for this discipline are Model-Driven Software Development

28 Chapter 3. Model Driven Engineering

Figure 3.1: The MDA basic framework.

(MDSD) and Model Driven Development (MDD), and among the best known real-

izations of MDE are Model-Driven Architecture (MDA) and Domain-Specific Mod-
elling (DSM). OMG’s MDA focuses on the platform dimension and proposes the use

of the MOF language to describe metamodels, and specifically, UML and its profiles
as metamodel language for modelling of models. DSM is centered in the problem do-

main, it proposes starting with the definition of a Domain-Specific Language (DSL)
to describe the models. MDA and DSM are the topics of the next two sections.

3.3 Model-Driven Architecture

The OMG’s Model-Driven Architecture (MDA) framework [76] is made up of dif-

ferent elements: models, transformations and transformation tools. In [53] all these
elements are defined as:

• “A model is a description of (part of) a system written in a well-defined lan-

guage”. “Platform Independent Model (PIM) is a model with a high level of

abstraction that describes a system without any knowledge of the final imple-

mentation platform”. “Platform Specific Model (PSM) is tailored to specify

the system in terms of the implementation constructs that are available in one

specific technology”. “Computation Independent Model (CIM) describes the

requirements for the system and the situation in which the system will be used.

It shows the system in the environment in which it will operate”.

• “A well-defined language is a language with well-defined form (syntax), and

meaning (semantics), which is suitable for automated interpretation by a com-

puter”.

3.3. Model-Driven Architecture 29

Figure 3.2: MDA’s four-layer organization[13].

• “A transformation is the automatic generation of a target model from a source

model, according to a set of transformation rules. A transformation rule is

a description of how one or more constructs in the source language can be

transformed into one or more constructs in the target language”.

• “A transformation tool performs a transformation for a specific source model

according to a transformation definition”.

The relationship among these elements is shown in Figure 3.1. Moreover, MDA

proposes the metamodelling mechanism to define well-defined languages. A model
defines what elements can exist in the system and these elements come from the

language used in the modelling. In turn, considering a language as a system to be
defined, a model is needed to describe the language: this model will be a metamodel.

Therefore, a metamodel completely defines a language that will be used to write a
model, and MDA framework does not make a distinction between metamodel and

language. Moreover the OMG uses a four-layered framework [13] with two relation-
ships conformsTo and representedBy (see Figure 3.2).

• Layer M0: the instances. They are the items in the business itself, the software
representations of the real world items, and the like [53].

30 Chapter 3. Model Driven Engineering

Figure 3.3: The MDA development process [53].

• Layer M1: the model of the system. The concepts at the M1 layer are all

classifications of instances at the M0 layer. Each element at the M0 layer is
always an instance of an element at the M1 layer. Therefore the real system is

represented by the M1 layer model. An M1 model provides abstractions of a
physical system that allow engineers to reason about that system by ignoring

extraneous details while focusing on relevant ones [13].

• Layer M2: the metamodel of the model. The elements that exist at the M1

layer conform to concepts at M2. The same relationship that is present between
elements of the M0 and M1 layers exists between elements of M1 and M2: the

concepts at the M2 layer are all classifications of instances at the M1 layer.
The model at the M2 layer is called a metamodel. A metamodel is a formal

specification of an abstraction, usually consensual and normative [13], in other
words, a metamodel defines a modelling language in which to write models.

UML is an example of such languages, but MDA is not restricted to UML and
any well-defined language is accepted.

• Layer M3: the metamodel of M2. The elements at the M2 layer conform to ele-

ments at M3, and as before, the concepts at the M3 layer are all classifications
of instances at the M2 layer. Within the OMG, the MOF (Meta Object Facility)

is the standard M3 language, and UML conforms to MOF.

Instead of defining an M4 layer (for the model of M3) and so on, the OMG established

that all elements of the M3 layer must be defined as instances of concepts of the M3
layer itself. The M3 layer allows building coordination between models, based on

different metamodels. One example of such coordination is model transformation
[13].

The main difference of MDA process (see Figure 3.3) from the traditional de-

velopment is that the transformations from model to model and from model to code
are automated, i.e., a transformation tool is used. A transformation generates a tar-

3.4. Domain-Specific Modelling 31

Figure 3.4: Transformation as model [13].

get model from a source model (see Figure 3.1). Applying “Everything is a model”

principle, the transformation itself should be a model. And as a model conforms to a
metamodel, the transformation model (i.e., the transformation definition) conforms to

a metamodel, which defines the common model transformation language (see Figure
3.4). One of these transformation languages is described in Section 3.5.

As for tooling, some examples follow: ArcStyler of Interactive Objects [45],
OptimalJ of Compuware [18], and androMDA [3], to name just a few (for an updated

account refer to http://www.omg.org/mda/committed-products.htm)

The use of model (and abstractions), and the reuse that goes with transformations
are reckoned to achieve the following goals [100]:

• Increase of software development efficiency through automation and avoidance

of redundancy.

• Increase of software quality through propagation of quality attributes from pro-

duction (factory) to product.

• Better changeability and maintainability of software.

3.4 Domain-Specific Modelling

Domain-Specific Modelling narrows down the design space or domain. In other
words, it raises the level of abstraction by specifying the solution directly using do-

main concepts. It uses a Domain-Specific Language (DSL) to represent the various
facets of a system. A Domain-Specific Language is a custom language that targets a

32 Chapter 3. Model Driven Engineering

specific problem domain, it represents the domain knowledge. It is designed so that it

can more directly represent the problem domain which is being addressed. Domain-
Specific Languages usually support higher-level abstractions than general-purpose

modelling languages (e.g., Unified Modelling Language (UML)) and they can only
be used to describe a specific problem. Examples of Domain-Specific Languages in

the industry are the Nokia’s language for SmartPhone applications, Systems Mod-
elling Language (SysML) specified as a UML 2.x Profile and suited for systems

engineering applications, PostScript, its domain is page rendering, to describe the
appearance of text, graphical shapes, and sampled images on printed or displayed

pages, SQL that targets the querying and updating of databases, a very specific do-
main. Domain-Specific Languages are known as modelling languages too, because

they are used to build models of the domains they address.

To define a language another language is needed. The language of a model is
often called a metamodel, so the language for defining a modelling language is a

metametamodel. Usually metametamodels or modelling languages are derived from
or customizations of existing languages, for instance, EBNF, XML Schema, and

MOF. The strengths of those languages tend to be in the standardization of the origi-
nal language.

Of key importance is the ability to define and maintain the Domain-Specific Lan-

guage. Company experts encapsulate their expert knowledge in the modelling lan-
guage, this reflects the problem domain in which developers are working. The pro-

cess for the definition can be divided into three phases [105]: (1) Identifying abstrac-
tions of the problem domain and how they work together; (2) Specifying the language

concepts and their rules (i.e., metamodel) and mapping the major domain concepts
to modelling language objects; (3) Creating the visual representation of the language

(i.e., notation). The first phase demands a thorough domain analysis: identifying
which abstractions are the same for all products and which are different, identifying

their properties and connections, and so on. The constructed metamodel should al-
low to define the concepts and properties of the language, hierarchy structures, and

correctness rules.

A Domain-Specific Language is “a programming language or executable spec-

ification language that offers, through appropriate notations and abstractions, ex-

pressive power focused on, and usually restricted to, a particular problem domain”

[106]. Traditional modelling languages like UML are on the same level of abstrac-

tion as the programming languages supported, and as Tolvanen [105] says “chang-

ing the representation of a construct without increasing the abstraction level doesn’t

3.4. Domain-Specific Modelling 33

Figure 3.5: Domain-Specific Modelling vs. Traditional development [24].

improve productivity. In UML, using a rectangle symbol to illustrate a class in a

diagram and later creating the equivalent code representation in a programming

language does not provide a higher level of abstraction!”. As Kelly [51] states the

modelling language can be used with customers for discussing and thinking about
applications, and therefore, “the tight fit with the problem domain, high level of ab-

straction, precision, and ability to use with customers are clear areas where DSLs

excel over generic languages like UML. ... The greatest productivity increases come

from in-house domains, because the language can be made to precisely fit the needs

of just one company”.

Once the Domain-Specific Language is defined, Domain-Specific Modelling also
includes the idea of code generation. Building a generator is about defining how

model concepts are mapped to code, with the aim for automating the creation of
executable source code in a chosen programming language from the DSL models,

from the high-level specifications. The application is automatically generated from
the high-level specifications with domain-specific code generators in a similar way

as programs in a general-purpose programing language are transformed in code of
assembler language. Figure 3.5 illustrates the difference between the UML-based

development and the domain-specific development [24]. Within the former the de-
veloper has to solve the problem using domain concepts and after he has to map into

UML concepts first and then to map them into code. These steps have to be pro-
cessed by the developer, perhaps with the aid of a tool, but ’by hand’. Getting the

34 Chapter 3. Model Driven Engineering

assembly code is the only step that is automatic, i.e., processed by a compiler. As for

the latter, as been explained in this section, the problem is solved using the domain
concepts, i.e., the language specific for the domain, and the generator creates the code

automatically.

The expert developers also condense their experience into the definition of a code

generator. In Tolvanen’s opinion [105], a good generator should produce complete
code, i.e., the developer should not need modifying the generated product, in the

same way as the machine code created by a C compiler is not modified. Moreover,
model-based generators should target code directly, instead of producing intermediate

models that need to be extended during the development process, i.e., the source
model and the generated code must be completely synchronized. General-purpose

modelling languages such as UML are well suited for documentation, but not as
well suited for generation. UML models are at sketching level and code generation

requires that details are correct too.

Within Domain-Specific Modelling methodology an expert developer, who mas-
ters the problem domain and has experience in developing software in that domain,

defines a Domain-Specific Language containing the chosen domain’s concepts and
rules, and specifies the mapping from that to code in a domain-specific code gen-

erator [105]. The other developers then make models with the modelling language,
guided by the rules. Of note, only the concepts that exist within the Domain-Specific

Language are valid candidates for discussion during the design phase of the new soft-
ware and the model avoids delving into technological details. Once the customers and

developers agree with the models, the code is automatically generated. Another im-
portant question pointed out in [51] is that the company controls the language and

generators, so they can evolve as the problem domain evolves.

Moreover, changes in the technological platform can be added by manipulating
the code generator, leaving the model unchanged.

As for tooling, some examples follow: DOME (the DOmain Modelling Environ-
ment) of Honeywell [42], Software Factories of Microsoft [34], MetaEdit of Meta-

case [62] and GME (the Generic Modelling Environment) of ISIS institute in Van-
derbilt University [44]. These development environments offer tool sets to define

new Domain-Specific Languages, and then, taken the language, to edit a model and
generate the corresponding code.

3.5. Transformation Languages 35

3.5 Transformation Languages

Transformations lie at the heart of MDA. Model transformation is the process of
converting one or more models, called source models, to one output model, the target

model, of the same system (see Figure 3.1). This section first outlines a classification
of transformations along the lines of the one given in [76], [19] and [55]. Next, we

focus on a specific transformation language, RubyTL. Following Chapter 4 uses this
classification and language to support an MDD approach to portal design.

3.5.1 Transformation classification

Koch et al. [55] and MDA Guide [76] distinguish the following aspects of transfor-
mations: type, complexity, use of marks, execution and implementation types.

• Transformation Type. Model transformations can be of type CIM to PIM, PIM

to PSM and PSM to code. Moreover, a model in an abstraction level can be
refined in another one of the same level, i.e., a CIM can be mapped to another

CIM, and the like. Although there is not a complete agreement [55] transforma-
tions like PSM to PIM are also included. This transformation type is required

for abstracting models of existing implementations in a particular technology
into a platform-independent model. This procedure often resembles a “mining”

process that is hard to be fully automated [63].

• Transformation Complexity. [55] A transformation is simple or a merge, de-
pending on the number of source models involved. A merge transformation

combines elements of different source models in order to build a target model.

• Use of Marks. Transformation rules rely on certain marks (types, patterns, tem-

plates or UML profile elements) in order to select the elements to which a rule
applies. These marks can be part of the elements of the source model, such as

stereotypes of UML profiles and patterns, or be included in the transformation
definition, like templates, which are parameterized models that may include

much more specific specifications to guide the transformation.

• Execution Type. Transformations are classified in automatic, semi-automatic
and manual based on the decisions the designer takes on the source and target

models. A transformation is automatic if the source model can provide all
the information needed for implementation, and there is no need to add marks

36 Chapter 3. Model Driven Engineering

in order to be able to generate the target model. The transformation is semi-

automatic if the source model is prepared using a platform independent UML
profile or patterns are used in the specification of a mapping. It is manual if the

designer makes design decisions and is who produces the results.

• Implementation Technique. Czarnecki and Helsen [19] classify transformation
languages into 8 categories:

– Model-to-Code. Code is generated simply as text. Two types are distin-

guished:

∗ Visitor-based approach. It consists in providing some visitor mecha-
nism to traverse the internal representation of a model and write code

to a text stream.

∗ Template-based approach. The template consists of the target text

containing slices of metacode to access information from the source
and to perform iterative expansion.

– Model-to-Model.

∗ Direct-manipulation approach. It offers an internal model represen-
tation plus some API to manipulate it. Users have to implement

transformation rules using a programming language such as Java.

∗ Relational approach. The relation between the source and the target
elements is specified declaratively, using constraints.

∗ Graph-transformation-based approach. It operates on typed, attributed,
labelled graphs, specifically designed to represent UML-like models.

∗ Structure-driven approach. It has two distinct phases: the first phase
is concerned with creating the hierarchical structure of the target

model, whereas the second phase sets the attributes and references
in the target.

∗ Hybrid approach. It combines different techniques from the previ-

ous categories. QVT specification [77] has a hybrid declarative/im-
perative nature, with the declarative part being split into a two-level

architecture.

∗ Other. The transformation framework defined in the OMG’s Com-

mon Warehouse Metamodel (CWM) Specification [75], and XSLT
[109] to transform models serialized using XMI.

3.5. Transformation Languages 37

3.5.2 A transformation language: RubyTL

In order to describe the transformations, MDA proposes the standard Query/Views/-

Transformations Specification (QVT) [77]. We resort to RubyTL [99] because near
the spring of 2006 it could fulfill the transformation requirements posed by our MDD-

approach to portal development. Requirements such as need for recursion, local-to-
global transformations, and in general, “transforming-in-the-large”, which we did not

see clear in QVT. Such characteristics will be better comprehended when providing
the specific cases in Chapter 4.

RubyTL is the main outcome of the current PhD work of Jesus Sánchez Cuadrado,
led by Jesus García Molina at the University of Murcia (GTS Research Group). It

should be said that the use of a beta-program such as RubyTL is always a risky busi-
ness, where bug-amendment should be included as part of the challenges!. We much

appreciate the involvement of the GTS group in helping us to understand (and debug)
RubyTL.

RubyTL supports both model-to-code and model-to-model transformations, the
former in a template-based approach, and the latter, in a hybrid approach. Imperative

constructs described in Ruby could be used to write some kinds of complex trans-
formations, not suitable for a declarative style. Ruby [104] is an object-oriented and

dynamically typed programming language. It is very suitable to embed a Domain-
Specific Language in it and hence RubyTL has been defined as a Ruby internal DSL.

That means that parsing and evaluating the RubyTL transformation definition is on
hands of the Ruby interpreter.

• Source metamodel, target metamodel and source model are XMI files. The

parser reads these input files and a set of Ruby classes are generated and loaded
in the Ruby interpreter. These classes correspond to the classes defined in the

source and target metamodels.

• Once metamodels have been loaded, the transformation definition is read by

the Ruby interpreter itself, which leads to the creation of a set of rule objects.
These rules will be used by the transformation engine to perform the transfor-

mation.

• Applying a rule is simply executing the code block of its mapping part. Just
before a rule is applied, new target elements are created - one element for

each metaclass specified. While the first parameter of the mapping code block
receives the source element, the rest of parameters receive the target elements

38 Chapter 3. Model Driven Engineering

Figure 3.6: SimpleClass and SimpleJava metamodels [99].

created as a result of the rule execution. A source element is never transformed
twice by the same rule.

• Since RubyTL is an embedded DSL, checking if a transformation definition is

well-formed must be achieved at runtime. A transformation definition is well-
formed if for each binding involving two non-primitive types there exist one

or more conforming rules but there is one and only one applicable rule. As for
the “conforming rule” concept, a rule conforms to a binding if the source and

target types in the rule conforms to the types in the left and right parts of the
binding assignment.

• The output of the transformation process is an XMI file containing a target
model conforming to the target metamodel.

A transformation definition in RubyTL is a set of transformation rules packaged
in a transformation module, and each rule has a name and four parts [99]:

• A from part, where the source element metaclass is specified.

• A to part, where the target element metaclass (or metaclasses) is specified.

3.5. Transformation Languages 39

module Transformation
rule ’klass2javaclass’ do

from SimpleClass::Class
to SimpleJava::Class
mapping do |klass, javaclass|

javaclass.name = klass.name
javaclass.attrs = klass.attrs

end
end
rule ’attribute2features’ do

from SimpleClass::Attribute
to SimpleJava::Field, SimpleJava::Method, SimpleJava::Method
filter do |attr| attr.visibility == ’public’ end
mapping do |attr, field, get, set|

field.name = attr.name
field.type = attr.type
field.visibility = ’private’
get.name = ’get’ + attr.name
get.type = attr.type
get.visibility = ’public’
set.name = ’set’ + attr.name
set.visibility = ’public’
set.parameters = attr.type

end
end
...

end

Figure 3.7: Excerpt of a transformation module [99].

• A filter part, where a condition over the source element is specified, such that

the rule will only be triggered if the condition is satisfied; this part is optional
and if a rule has no filter it will always be triggered.

• The mapping specifies relationships between source and target metamodel el-

ements. These relationships can be expressed either in a declarative style,
through a set of bindings, or in an imperative style using Ruby constructs.

However, the declarative style is recommended.

As a sample case consider two metamodels: SimpleClass and SimpleJava metamod-

els. Figure 3.6, taken from [99], provides the details1. Figure 3.7 shows an excerpt of
a transformation definition with two rules. It uses SimpleClass as source metamodel

1According to the SimpleClass metamodel, a class is composed of attributes; an attribute has a name
and a visibility and the type of an attribute can be a class or a primitive type. According to SimpleJava
metamodel a Java class is composed of features which can be fields or methods; a method can have zero
or more parameters; both features and parameters are typed, therefore they inherit from TypedElement,
which gives them a type and a name.

40 Chapter 3. Model Driven Engineering

and SimpleJava as target metamodel. More specifically, it is a transformation from

a class model to a Java model, such that i) each class is transformed to a Java class,
ii) each public attribute of a class is transformed to a pair of get/set methods plus a

private field in the Java class, and iii) each private attribute of a class is transformed
to a private field in the Java class. Next, using the sample transformation we explain

some language features:

• Metamodels are described in packages and to use the metamodel classes (meta-
classes) in the from and to parts the name of the metaclass is prefixed by the

name of the package in which that metaclass is enclosed. Thus, the Sim-

pleClass::Class expression stands for the Class metaclass of the SimpleClass

metamodel.

• The first parameter of the mapping code block receives the source element, the
rest of parameters receive the target elements created as a result of the rule ex-

ecution. In the example, the mapping code block of the attribute2features rule

has four parameters: attr whose type is SimpleClass::Attribute, field whose
type is SimpleJava::Field, and get and set whose type is SimpleJava::Method.

• The binding javaclass.attrs = klass.attrs in the first rule establishes a mapping

from class attributes to Java attributes (features) and yields to the execution of
a rule that specifies such mapping (i.e., the attribute2features rule). Instead

of this type of rule invocation, an explicit invocation is also available, i.e., to
call rules by their name; in the example the binding might have been like this:

javaclass.attrs = attribute2features(klass.attrs).

• The bindings established between primitive types (e.g., field.name = attr.name)
do not involve any rule invocation.

• In the attribute2features rule the attr.visibility == ’public’ filter expression
checks if the attribute visibility is public. The evaluation of the filter decides if

the mapping block is executed or not.

• RubyTL does not use any OCL-like query language, instead it uses a Ruby
library for managing collections. For example, the klass.attrs.select {|attr|

attr.visibility == ’public’} expression collects all the public attributes of a class.

So far the basics of RubyTL are introduced. More advanced features include: the
phasing mechanism (a transformation definition is organized in an ordered set of

3.6. Conclusion 41

phases and each phase consists of a set of rules; the order in which phases are exe-

cuted is decided by the user), top rules (a top rule is always applied to all instances of
the type specified in its from part, thus a transformation definition could have more

than one entry point) or creator rules (rules evaluated more than once for a source
element). The description of these features falls outside the scope of this dissertation

(refer to [99] and [98] for further details).

3.6 Conclusion

This chapter just provides background on MDD needed to understand the work pre-
sented in Chapter 4. Specifically, the artefacts, process and advantages of MDD are

briefly introduced. An introduction to transformation is also presented together with
an outline on RubyTL, the transformation language used in this work.

Chapter 4 defines PIM and PSM metamodels for Web portal development and
then, it defines a RubyTL transformation rule-set.

42 Chapter 3. Model Driven Engineering

Chapter 4

Portlet-based portal construction:
an MDD approach

4.1 Introduction

The significance of portal applications stems not only from being a handy way to

access data but also from being the means of facilitating the integration with third-
party applications. This has led to the so-called portal imperative: the emergence of

portal software as a universal integration mechanism [103].

Key to this view is the notion of portlet (see Chapter 2). Portlets are the enablers

of service-oriented architectures (SOAs) but now at the front-end. This perspective
requires a departure from how current Web portals are envisaged. The Web portal

is no longer perceived as a set of pages but as an integrated set of Web components

(i.e., portlets) that are now delivered through the portal. From this perspective, the
portal page now acts as a mere conduit for portlets. Page and page navigation dilute

in favor of portlet and portlet orchestration.

However, Integrated Development Environments (IDE) for portal construction

have not yet exploited the full potential of portlets (e.g., Plumtree, IBM WebSphere,
Oracle Portals, Liferay, eXo). The content-management role is still prevalent in most

of current IDEs. The Web portal is still conceived as a conglomerate of pages where
portlets tend to be considered as a modular mechanism during page implementation.

43

44 Chapter 4. Portlet-based portal construction: an MDD approach

The page is still the main notion, and the portlet is subordinated to the page. All

portlets are readily rendered when entering in the containing page. This has important
consequences since portlet navigation (i.e., browsing along the portlet fragments) is

completely detached from portal navigation (i.e., browsing along the portal pages).
The work presented in this dissertation promotes the service-oriented view of

Web portals and portal design abstracted from pages. Portal design is now conceived
in terms of portlets and portlet orchestration. More specifically, it abstracts portal

and portlets into workspace and tasks, respectively, and it proposes an extension to
statecharts as a formalism to describe the flow among tasks, i.e., to specify both the

structural organization and the browsing semantics of portlet aggregation [29].
On the other hand, the mapping from portlet orchestration (design time) to page

navigation (implementation time) is too tedious and error-prone. The fact that the
same portlets can be placed in distinct pages produces code clones that are repeated

along the pages that contain these portlets. This redundancy encourages us to look for
a solution around the model-driven development (MDD). The work proposes a MDD

approach to service-oriented portal development. It follows the MDA (Model-Driven
Architecture) proposal [76], and defines a Platform Independent Model (PIM), a Plat-

form Specific Model (PSM) and the mapping transformations from the former to the
latter.

The rest of the chapter is structured as follows. Section 4.2 provides an overview
of portal development as an MDD development process. Section 4.3 introduces a

metamodel for WSRP interfaces. The Platform Specific Model (i.e., the eXo plat-
form) and the Platform Independent Model (i.e., annotated statecharts) are the topics

of Sections 4.5 and 4.4, respectively. The transformation between the PIM and the
PSM is addressed in Section 4.6. Next, Section 4.7 outlines the benefits drawn from

the approach. Related work is presented in Section 4.8. Finally, Section 4.9 sums up
conclusions from this approach.

4.2 Outline of an instance of the MDD approach

The MDD development approach strives to separate platform independent design
from platform specific implementation and, in so doing, to delay as much as possible

the dependence on specific technologies. The idea is to create distinct (meta) models
of a system at different levels of abstraction. Then, transformations are applied that

eventually produce code. Hence, code programming is substituted by modelling and
transforming. Consequently, MDD focuses on the construction of models, specifica-

4.2. Outline of an instance of the MDD approach 45

Type Complexity Approach Execution Techniques

Identify portlets – – – manual –

Get WSRP model code to PSM simple metamodel automatic RubyTL

Transf. from portlets to tasks PSM to PIM simple metamodel automatic RubyTL

Get orchestration skeleton PIM to PIM simple metamodel automatic RubyTL

Complete orchestration model PIM to PIM simple – manual –

Get rendering skeleton PIM to PIM simple metamodel automatic RubyTL

Complete rendering model PIM to PIM simple – manual –

Model merging PIM to PIM simple metamodel automatic RubyTL

Transformat. into eXo model
PIM to PSM

PSM to code
merge metamodel automatic RubyTL

Table 4.1: Characteristics of model transformations in the SOP MDD process.

tion of transformation patterns, and automatic generation of code. And, the software

development process is regarded as a pipeline of model transformations that eventu-
ally leads to a complete application.

Models. The best-known MDD realization is the OMG’s Model-Driven Archi-
tecture (MDA) [76]. MDA suggests building computational independent models

(CIMs), platform independent models (PIMs), and platform specific models (PSMs)
corresponding to different levels of abstraction or viewpoints (see Chapter 4 for more

details). This work focuses on PIMs and PSMs for portlet-based portals. To this end,
three metamodels are introduced, namely,

• WSRP metamodel, which is a PSM metamodel of the interfaces defined by the
WSRP standard,

• SOP metamodel, which is a PIM metamodel that promotes a service-oriented
architecture also for Web portals. The notion of perspective is used to separate

the specification of the portal along three distinct concerns, namely: the TASK
model, the ORCHESTRATION model and the RENDERING model,

• EXO metamodel, which is a PSM metamodel for the eXo platform, better said,

a view on the implementation details of relevance for this work.

These metamodels are described in more detail in Sections 4.3, 4.4 and 4.5, respec-

tively.

Transformations. Model transformation is the process of converting one model
(a.k.a. source model) to another output model (a.k.a. the target model) of the same

46 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.1: The SOP process.

application [76]. Table 4.1 outlines the distinct transformations used in this work

along the characteristics introduced in [55, 76]. Model transformations can be of
type CIM to PIM, PIM to PIM, PIM to PSM, PSM to PIM and PSM to code. Our

work uses extensively the PIM to PSM transformation. However, it is also possible a
bottom-up approach where existing components or legacy systems are wrapped, and

abstracted into higher models to be then integrated into more complex applications
[64]. In our opinion, SOA also requires this PSM to PIM transformations to abstract

from service descriptions into design models that can be later integrated to achieve
broader functionalities through service orchestration. Portlets as front-end Web ser-

vices, use this approach to abstract away the WSRP interface specification. This
allows to integrate also non-WSRP compliant portlets. Additionally, transformations

can be also classified as simple or merge based on the number of source models in-
volved in the mapping process. ’Transformation into eXo model’ is an example of a

4.2. Outline of an instance of the MDD approach 47

merge transformation with two source models: SOP and WSRP.

The MDD process. MDD conceives development as transformation chains where
the artefacts that result from each phase must be models. SPEM (Software Process

Engineering Metamodel) is a notation for defining processes and their components
whose constructs are described in UML notation [81]. In MDD terms, SPEM is a

metamodel for process modelling. Hereafter, SPEM terminology is used to specify
the milestone, roles and dataflow that go with producing an eXo portal from a set of

WSRP-compliant portlets through a chain of model transformations (see Figure 4.1).

First, four distinct ProcessRoles are introduced: the transformer as such (i.e., a

set of rules for model mapping); the task designer, which is responsible for determin-
ing the portlets to be integrated; the orchestration designer, which defines how tasks

are intertwined; and the rendering designer, which focuses on the look-and-feel of

the Web portal.

These roles collaborate along two main WorkDefinitions: modelization and eXo-

Generation. This work views Web portals as integration platforms built upon existing
portlets i.e., portlets are already there when the portal is being designed. Hence,

modelization starts by taking a textual description of the WSRP interfaces of the
available portlets, and producing the TASK model that extracts only those features

that are relevant during design.

Next, this TASK model is used to obtain a first skeleton of the ORCHESTRA-

TION model with the basic milestone of the orchestration. This template is subse-
quently enriched with flow dependencies by the orchestration designer. This OR-

CHESTRATION model serves in turn to produce a first template of the distinct deco-
rators to be faced during the specification of the RENDERING model. This template

is then filled up by the rendering designer with appropriated aesthetic parameters.

Once the three perspectives are completed (i.e., TASK, ORCHESTRATION and
RENDERING), they are integrated into the SOP model which constitutes the main

WorkProduct of the modelization process. This SOP model is used to validate the
interaction of the distinct perspectives as well as to check the correctness of distinct

portal constraints (see next sections for details).

Finally, during the eXoGeneration process, the SOP model is automatically trans-

formed into an EXO model which is later used to generate the eXo code. Interestingly
enough, this final transformation also takes as input the WSRP model which contains

implementation details about how portlets can be deployed.

Next sections introduce the details of the models and transformations.

48 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.2: The WSRP metamodel.

4.3 The WSRP model: a PSM for the WSRP interfaces

WSRP [71] standardizes the programmatic interfaces for portlets (see Chapter 2).
Besides method signatures, WSRP 1.0 standardizes window states, CSS classes for

portlet rendering, P3P-based user profile description, etc. For the purpose of the work
in this chapter it is important to note that WSRP 1.0 treats portlets as isolated entities

where interoperation between portlets occurs beneath the GUI interface (e.g., sharing

some data common to two portlets by using the so-called “portlet application”) [21].
However, a new version, WSRP 2.0, introduces an event-based mechanisms where

portlets can subscribe to events being generated by other portlets. This enhancement
is not considered in this work where portlets are treated as isolated components.

Moreover, another specification more has been taken into account, i.e., the OASIS
ebXML Registry Services Specification [70]. ebXML Registry defines a framework

for global electronic business that will allow service producers to find each other and
conduct business based on well-defined XML messages. A key ingredient of this

framework is the ebXML Registry Information Model where organizations can de-
scribe their profile (the so-called Collaboration Protocol Profile), and offerings can be

canonically described. WSRP portlets have been added as one of these offerings. To
this end, metadata about the Portlet descriptions as well as about the Service Imple-

mentation WSDL [112] for the Producer Service need to be published. Specifically,
ebXML Registry [72] proposes a way to publish the following major WSRP arte-

facts: (1) WSDL description for a WSRP Producer service, (2) metadata describing a
Producer service and the Organization which provides it (optional), and (3) metadata

describing one or more WSRP Portlets hosted within Producer services (optional).
For our purpose, this work just focuses on the latter.

4.4. The SOP model: a PIM for portlet-based portals 49

Ours is a bottom-up approach for Web portal design, which will start gathering

available WSRP portlets. The designer can use ebXML Registry Services and get
WSRP portlet metadata. Thus, the proposed metamodel, shown in Figure 4.2, repre-

sents a simplified description of WSRP metadata.

4.3.1 A WSRP model for the sample case

As an example, the following portlets are available1:

• the IEEESearch portlet, which comprises a subset of the functionality of the

IEEE portal;

• the ACMSearch portlet, which covers part of the offering of the portal.acm.org

for the ACM organization;

• the CiteSeerSearch portlet, which includes the functionality for author search-

ing at citeseer;

• the DBLPSearch portlet, which embodies the functionality for author searching
at Ley’s site;

• the DeliciousStore portlet, which provides the functionality available at del.icio.us

for keeping track of references found in the Web;

• the ISIWoK portlet, which permits to obtain distinct quality parameters of a
journal (e.g., impact factor) or paper through the ISI Web of Knowledge portal.

The portlets could have been developed in house, bought from third-party providers

or generated from existing Web application using wrapping techniques [22], as it is
the case for this sample problem.

4.4 The SOP model: a PIM for portlet-based portals

Portal development platforms conceive Web portals as a compound of different types
of artefacts (e.g., containers, content pages and portlets) where implementation de-

pends on the vendor at hand. We depart from this vision and conceive Web portals
as "universal integration mechanisms" where an increasing amount of their content

1Disclaimer: the portlets used in this chapter were implemented as wrappers of third-party sites.
They are used only for illustrative purposes, and not for commercial advantage.

50 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.3: The SOP metamodel.

Figure 4.4: The TASK metamodel.

comes from outside the Web portal itself. This brings a service-oriented perspective
to Web portal conception where the Web portal is no longer perceived as a set of

pages but as an integrated set of services.

This vision is realized through a PIM where the notion of portal and portlet are

abstracted into the notion of workspace and task, respectively. A Web portal defines
a workspace, i.e., a compendium of front-end tasks which are achieved as portlets.

For the purpose of the work presented in this chapter, Web portal modelling implies
three viewpoints, that is, the SOP2 model to describe the Web portal is composed of

three submodels (see Figure 4.3):

• the TASK model, which describes the functionality, i.e., the set of tasks, that

the Web portal will offer.

• the RENDERING of the portal, i.e., layout and aesthetic considerations which
include addressing how tasks are distributed both among pages and within a

page.

• the ORCHESTRATION of the portal, i.e., the order in which tasks are being

2SOP stands for Service-Oriented Portal.

4.4. The SOP model: a PIM for portlet-based portals 51

made available to the end-user.

The section ends describing how prior metamodels can be completed in order to take
into account the personalization matter.

4.4.1 The TASK metamodel

This metamodel captures the Web portal as a workspace that aggregates the set of
tasks that the Web portal will offer to the users (see Figure 4.4).

A TASK model for the sample case

The components in the WSRP model are abstracted as tasks. Using a bottom-up

design approach, first WSRP portlets are chosen and then WSRP descriptions are
used to return the corresponding TASK model.

As an example, let us build a Web portal for helping researchers in their work,
for searching and storing articles, journals, authors, impact indexes, and the like.

Once analyzed the available WSRP portlets and the functionality the new Web portal
should offer, the designer will decide the tasks the Web portal must include. In this

case, the TASK model is composed of six tasks whose names are IEEESearch, ACM-

Search, CiteSeerSearch, DBLPSearch, DeliciousStore, and ISIWoK, derived from the

names of prior portlets. This sets the pieces for the Browsing portal.

4.4.2 The ORCHESTRATION metamodel

For the purpose of this work, orchestration describes how tasks are seamlessly aggre-

gated into the workspace. Broadly speaking, aggregation can be defined as the pur-
poseful combination of a set of artefacts to achieve a common goal. The peculiarities

of the artefact (i.e., text, Web services, portlets) influence the aggregation model. For
instance, Web Services have input/output parameters. Hence, Web service aggrega-

tion needs to address the role of parameters during aggregation (e.g., using semantic
approaches [85, 97]). By contrast, portlets do not have input/output parameters. In-

stead of delivering a data-based XML document, portlets deliver markup fragments
(e.g., XHTML) ready to be rendered by the Web portal. Moreover, portlets tend to be

stateful, and the interaction lasts for a whole session, rather than the simple request
that characterizes the one-shot interaction of Web Services.

Based on the peculiarities of Web portals, we identify two main requirements for
the portlet aggregation model, namely:

52 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.5: The ORCHESTRATION metamodel.

• hypertext-like navigation style. Portlet aggregation should permit users to ex-

plore the Web portal content freely, by skipping among portlets if required.
This does not preclude that a more conducted process à la workflow could need

to be enforced in some cases, but the free-surfing style should be predominant.

• front-end aggregation. Portlets do not return data structures but markup (i.e.,

semi-structured documents where content and presentation are mixed together).
Therefore, aggregation should be achieved in how markups from distinct portlets

are arranged and sequentially presented. As an example, consider three portlets:
IEEESearch, ACMSearch and DBLPSearch. The Web portal designer wants to

enforce a precedence rule so that a DBLPSearch can not be requested till some
browsing has been conducted through either IEEESearch or ACMSearch. This

rule can be enforced in the back-end through some pre-conditions attached to
the DBLPSearch service or through a some workflow engine enforcing the flow

dependency. By contrast, a “front-end” approach relies on GUI widgets, e.g.,
disabling the “DBLPSearch” button until either IEEESearch or ACMSearch

are enacted. Note that integration is not achieved at the back-end but via pre-
sentation widgets.

4.4. The SOP model: a PIM for portlet-based portals 53

Figure 4.6: Statechart of the Browsing portal.

To accomplish these requirements, the Hypermedia Model Based on Statecharts (HMBS)

[29] is adapted for our purposes. The use of statecharts [39, 38] or their predeces-

sors, state-transition diagrams, is common for modelling hypermedia applications
[29], Web service composition [5, 15] and reactive systems. A hypermedia system,

and hence, a Web portal, may be considered as a reactive system, since it must inter-
actively attend to external events given in the form of user requests during browsing.

Statecharts provide a concise and intuitive visual notation as well as being rigorously
defined with a formal syntax and operational semantics.

Therefore, statecharts are used to define the orchestration. The statechart meta-

model proposed in the UML specification [78] is used as a base for the ORCHES-
TRATION metamodel (see in Figure 4.5 a simplified version, which has been ex-

tended with the notion of “state configuration”). Statecharts extend the classical
formalism of state transition diagrams by incorporating the notions of hierarchy, or-

thogonality (concurrency), a broadcast mechanism for communication between con-
current components, composition, and refinement of states. Specifically, an OR-type

decomposition is used when a state is to be decomposed into a set of exclusive sub-
states, whereas an AND-type decomposition is used to decompose a state into paral-

lel, or orthogonal substates. Each concurrent region in an AND state is delimited by
a dashed row (for a gentle introduction see [82]).

The statechart constructs are used to model the task flow. Simple states stand
for atomic tasks (those defined in the TASK model). Tasks available simultaneously

54 Chapter 4. Portlet-based portal construction: an MDD approach

conform more abstract AND states, whereas alternative tasks are enclosed into OR

states. Both AND and OR states can be successively nested until the statemachine is
complete, and it is the counterpart of the workspace (i.e., portal) itself.

Transitions permit to move among states when an event arises, provided the asso-
ciated condition is met. Conditions permit to personalize orchestration based on the

user profile (e.g., whether the user is a student or a lecturer) or the navigation trace
(whether a given state has already been visited or not). Personalization subject will

be further analyzed in Subsection 4.4.4.

An ORCHESTRATION model for the sample case

From a workspace perspective, tasks are simple states: you are either visualizing
the task or you are not. These tasks can be arranged along a flow as illustrated in

Figure 4.6 for our sample tasks. The portal designer initially considers two states:
you are either searching for something on the Web, or you are storing your finding in

del.icio.us. At any time, you can move to the ISIWoK task to consult the impact of a
specific paper.

Search is an abstract state which contemplates two situations: searching for a
paper or searching for an author. Papers in turn can be located at either IEEE or

ACM. These options are simultaneously available as denoted by the AND state (i.e.,
dotted line). On the other hand, author information can be obtained through either

the CiteSeerSearch task or the DBLPSearch task. Both tasks are also simultaneously
available. At any time, an end-user can move between both searching modes.

For the purpose of this work, it is important to recall the notion of state configu-

ration, i.e., the set of currently active states of the statechart [39]. Basically, a state
configuration comprises one simple state, or more, and its container states, on the un-

derstanding that OR substates can not be simultaneously active, and AND substates
can be simultaneously active, as long as their container states remain also active. For

example, the state configurations for the statechart in Figure 4.6 are:

• configuration1: {Browsing, ISIWoK}

• configuration2: {Browsing, DeliciousStore}

• configuration3: {Browsing, Search, PaperSearch, IEEESearch, ACMSearch}

• configuration4: {Browsing, Search, AuthorSearch, CiteSeerSearch, DBLPSearch}

4.4. The SOP model: a PIM for portlet-based portals 55

Figure 4.7: Presentation counterpart of the state configuration {Browsing, Search, Pa-
perSearch, IEEESearch, ACMSearch}.

Figure 4.8: The RENDERING metamodel.

The importance of state configurations rests on being the PIM counterparts of
portal pages (transformations will make this explicit). For our sample problem, Fig-

ure 4.7 shows the presentation counterpart of configuration3. The details of this
transformation are given in Section 4.6.

56 Chapter 4. Portlet-based portal construction: an MDD approach

4.4.3 The RENDERING metamodel

The orchestration viewpoint is complemented by the rendering viewpoint. The ren-

dering counterparts of the orchestration primitives, i.e., state machine, simple states
and transitions, are workview, windows and anchors, respectively (see Figure 4.8).

Additionally, the RENDERING metamodel contributes with the helpingText con-
struct, a construct to complete the information shown in the Web portal in order to

help users using it. The RENDERING model will indicate how those constructs are
distributed and decorated along the display area. To this end, layout and style param-

eters are used.

Style parameters are those of CSS [108]. CSS files externalize presentation pa-
rameters such as font family, font size, background, border style, border color, etc.

Among style parameters we include background, border-style (values include none,
dotted, dashed, and so on), border-color, border-width, font-family, color (often re-

ferred to as the foreground color), font-size, font-style (values include normal, italic

and oblique), text-alignment (i.e., how text is aligned within the element) and tran-
sition. The latter does not come from CSS and it indicates how anchors are realized.
The value options include button or helping text where the transition is achieved by

clicking on the underlined text. Except transition parameter, the rest of parameters,
with distinct flavors, can be found in most IDEs for portal development such as eXo

[27], Oracle Portal [83] or IBM’s WebSphere [43].

As for the layout, it indicates how windows/anchors are arranged along a table-
like structure using the following parameters: distribution, indicates how to locate

anchors along the portal page, and options include together (i.e., anchors are all lo-
cated together, regardless of their orchestration counterparts, i.e., transitions) and

detached (i.e., anchor A is located beside window W if A stands for a transition that
leaves from the state whose counterpart is W); position, indicates whether anchors are

placed at the top, bottom, left or right of either the page (together) or the associated
window (detached); alignment, indicates how windows are rendered together (values

are column, i.e one below the other, and row, i.e., one by the other); banner/footer, it
holds a banner/footer which is kept constant along the workview.

Layout parameters are related to the overall portal, hence in the RENDERING

metamodel they are described as part of the WorkviewDescriptor, and style parame-
ters are attached to the distinct artefacts through WindowDescriptor, AnchorDescrip-

tor and HelpingTextDescriptor (see Figure 4.8).

The simplicity of this metamodel comes from the fact that portlets free the Web

4.4. The SOP model: a PIM for portlet-based portals 57

portal designer from most of the burden related with rendering concerns. The reason

is two-fold. First, a portal’s primary function is to provide an entry to content already
available elsewhere, not acting as a separate source of information itself. And second,

these external sources of information are portlets which already convey how this
information is presented. Unlike traditional Web Services, portlets deliver markup

ready to be co-located into the portal’s page. Hence, the RENDERING model needs
just to focus on the presentation of the relationship among states and transitions,

leaving outside what happens when in a given state.

According to the metamodel in Figure 4.8, the rendering of a workview is gen-
erated from an aggregate of descriptors. But this does not mean that the designer

has to set a descriptor for each of the orchestration constructs (states and transitions).
Indeed, ensuring a common look-and-feel through the Web portal pages is one of

the main concerns for the portal designer to improve usability and the user experi-
ence. To this end, skins are used, i.e., templates defined at the portal level that set

some presentation properties that are then "inherited" by all the portal pages. Besides
ensuring presentation homogeneity, this mechanism accounts for maintainability as

(some) changes in the presentation uniquely involve updating the skin rather than
modifying the distinct pages.

However, the use of skins in current platforms can be too coarse grained, i.e.,
skins are defined at either the portal or the page level. There is nothing in between.

For large portals where pages can be grouped into clusters based on content or func-
tional grounds, finer grained skins could be most convenient. To this end, we intro-

duce the notion of state skin as a descriptor associated to a state.

The idea is to use the containment hierarchy provided by statecharts (i.e., the
relationship between a state and its substates) to specify the rendering in a stepwise

manner. Rather than attaching descriptors to simple states, this work proposes the
rendering-descriptor inheritance: now a descriptor can also be associated with any

AND or OR state, and its scope includes all contained substates. That is, a descriptor

for state S affects any widget associated with any substate directly or transitively

below S. Moreover, a rendering parameter value (e.g., fontSize =12pt) is overridden if
newly defined in the descriptor of a substate. These descriptors are called state skins.

State diagrams that incorporate state skins are referred to as annotated statecharts.

This approach offers the generality required to provide a common look-and-feel
along the Web portal, while at the same time addressing specificities of certain tasks

or task clusters where presentation singularity is sought. Traditional skins corre-
spond to rendering parameters defined for the upper state (e.g., Browsing) whereas

58 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.9: States and their rendering counterpart.

it is still possible to completely override this skin for a particular simple state (e.g.,
IEEESearch). Next subsection illustrates this approach for the running example.

An important note. Strictly speaking, style and layout parameters are closer to

PSM concerns than to PIM ones. Indeed, a proper rendering PIM should provide
some general guidelines that are later mapped into CSS-like parameters. As stated in

[33] “many of the usability problems can be addressed automatically. For example

the navigation scheme of a Web Application can be provided automatically based

on general guidelines given by the modeler. Of course, a solution at this level of

abstraction can only be applied to a small subset of existing problems and therefore

it should be easy and fast to come up with alternatives or extensions for the code

generation templates”. Here, the transformation hides the guidelines to map from
the PIM rendering constructs to the platform-specific CSS-like constructs.

However, guidelines are distilled from experience, and we do not have enough

4.4. The SOP model: a PIM for portlet-based portals 59

Figure 4.10: Excerpt of another alternative RENDERING model.

acquaintance to provide those rendering guidelines yet. To move rendering parame-
ters up is then a temporal solution till enough experience is collected that permits to

abstract away from CSS-like parameters.

A RENDERING model for the sample case

Figure 4.9 specifies the RENDERING model for the Browsing statechart. For the

sake of clarity, related to each rendering construct the figure also shows its corre-
sponding state of the ORCHESTRATION model (the states are shown in a different

shape). The root state, Browsing, holds the portal skin where the font type and size
for displaying portlet information is set to times and 12pt, respectively, in the Win-

dowDescriptor. Of note, the IEEESearch skin redefines these parameters to courier

and 14pt, respectively. More to the point, the Browsing skin sets that anchors must

be together (distribution attribute in the WorkviewDescriptor) and shown with a solid

5px border-line and in an italic font-style (in the AnchorDescriptor). This specifica-

tion is overridden by the PaperSearch skin and set to a dotted 7px border line. The
rest of the states without explicit skin description inherit rendering guidelines from

the root state skin. The portal page for the state configuration3 is shown in Figure
4.7.

RENDERING and ORCHESTRATION models are orthogonal. That is, the very
same ORCHESTRATION model can be presented along distinct skins to better fit

the user profile, and the other way around, the same skin can be used for distinct OR-
CHESTRATION models. The former situation is illustrated for the running example.

60 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.11: Another presentation counterpart of the state configuration {Browsing, Search,
PaperSearch, IEEESearch, ACMSearch}.

The statechart in Figure 4.6 can have two alternative RENDERING models, namely,

those shown in Figure 4.9 and Figure 4.10 (for the sake of clarity, only different val-
ues are shown). In the latter case, the portal page related to the configuration3 would

have been as shown in Figure 4.11. Anchors are detached in different rows, and in
normal 12pt font with a solid border line thinner than before. Moreover the portal

does not show any helping text.

4.4.4 Portal personalization

In order to avoid misunderstandings, a clear distinction must be made first between

systems that are customizable or adaptable and adaptive or personalized systems.
They differ in the way the adaptation is performed. According to Nielsen “Cus-

tomization is under direct user control”, i.e., the user can configure an interface and
create a profile manually, and “Personalization is driven by the computer which tries

to serve up individualized pages to the user based on some form of model of that
user’s needs”, i.e., the user is seen to be as more passive and it is the system that

4.4. The SOP model: a PIM for portlet-based portals 61

Figure 4.12: The USER metamodel.

Figure 4.13: An ORCHESTRATION model with personalization conditions.

monitors, analyzes and reacts to the user’s behaviour [68].

Personalization of Web sites has become an important issue in Web modelling
methods, and it has been studied from different points of view, namely, personaliza-

tion based on user attributes or their preferences and interests, personalization depen-
dent on domain information, personalization of navigational behaviour, and content

personalization. Web portals being particular Web sites, the SOP metamodel of our
portal design approach also takes personalization into account and next paragraphs

describe the details, i.e., how the previous metamodels have been completed with this
aim.

In the context of Web design methods, to model personalization two models are
used: a personalization model, where personalization rules are defined to store infor-

mation needed to personalize, and to specify different personalization policies, and a
user model, which allows to store data about the beliefs and knowledge the system

62 Chapter 4. Portlet-based portal construction: an MDD approach

Personalization patterns SOP metamodel

Link personalization Orchestration personalization on transition
Structure personalization Orchestration personalization on state
Content personalization Depends on each portlet design

Behaviour personalization Depends on each portlet design

Table 4.2: Personalization patterns and the SOP metamodel.

has about the end-user. In our approach, only the user model has been added, and
the personalization model is scattered among previous metamodels, they have been

modified to be able to include personalization conditions.

For the user model only aspects related to user static attributes have been taken
into account. We have only considered simple users and their P3P-like attributes

[111], those that can be filled in when the user registers in the Web portal. We have
not considered the hierarchy among users, i.e., user groups, nor dynamic aspects as

the number of visited pages, the time of connection, and the like. Therefore, the user
space is composed of the set of portal users, and these are described through some

attributes (see the USER metamodel in Figure 4.12). This metamodel will constitute
the fourth package of the prior SOP metamodel.

According to [8] motivations for personalization can be divided into (1) those that

are primarily to facilitate the work (i.e., enabling access to information content, ac-
commodating work goals, and accommodating individual differences), and (2) those

that are primarily to accommodate social requirements (e.g., eliciting an emotional
response and expressing identity). Our proposal takes into account both and proposes

orchestration personalization, related to enabling access to content or functionality,
and rendering personalization, related to modifying portal presentation to accommo-

date individual differences or an identity, e.g., for visually impaired people or people
joined to a certain group.

Moreover, Schwabe et al. [95] distinguish several personalization patterns, among

them, Link, Structure, Content and Behaviour personalizations. Those patterns pro-
pose personalizing, respectively, the link’s end-point, the Web application’s structure,

the content for a particular information item and other functions apart from naviga-
tion; and they make personalization based on user-related information.

As explained in Subsection 4.4.2, for the ORCHESTRATION metamodel the
UML Statechart package has been used. This specification includes the Constraint

metaclass. Constraint is related to the State and Transition metaclasses, thus a stat-
echart can include constraints linked to states and transitions. In this way, it will

4.4. The SOP model: a PIM for portlet-based portals 63

Figure 4.14: The RENDERING metamodel with personalization.

be possible to limit the access to a state or the use of a transition. As an example,
Figure 4.13 shows a statechart with two constraints related to the CiteSeerSearch

state and the ToDelicious transition. The former indicates the portlet related to the
CiteSeerSearch state will be rendered only to users of LSI department and the latter

specifies that only those users will be able to save references in the Delicious store,
i.e to use the ToDelicious transition. Therefore, as for orchestration personalization,

our proposal uses Constraint metaclass to implement Structure and Link personaliza-
tions. Content and Behaviour personalizations are related to providing individualized

content or responses to a particular operation, respectively. In our approach this func-
tionality is in portlet hands, so it depends on personalization characteristics of each

portlet. Table 4.2 summarizes the approach.

As for Presentation, it offers lots of possibilities for personalization, for instance,
changes in the language in which the content of the Web portal will be shown depend-

ing on the origin of the user, changes in font size depending on the needs of visually
impaired people, and changes in portal layout depending on the device where it will

be shown. In order to include the personalization aspect in the RENDERING meta-
model, we have followed the same idea as UML specification: adding a Constraint

64 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.15: A RENDERING model with personalization conditions.

metaclass (see Figure 4.14). This new metaclass is related to the WorkviewDescriptor

and Descriptor metaclasses. Therefore, the overall portal layout, in general, or the

presentation of a specific portlet or anchor can be conditioned by the user’s attribute
values. As an example, Figure 4.15 shows a RENDERING model that describes two

different workviews, depending on the department of the user. Those workviews
correspond to portal pages shown in Figures 4.7 and 4.11, respectively.

Summing up, this personalization approach is concentrated on portal design de-
pendent on user static characteristics, stored in the USER model, therefore a con-

dition expression is enough. Other website personalization approaches, as [32, 54],
focus the attention on both user-specific information and domain-dependent infor-

4.5. The EXO model: a PSM for the eXo platform 65

Figure 4.16: A sample eXo portal page.

mation (e.g., number of clicks on a certain anchor or using a specific functionality)
and they need ECA-like rules, to specify the actions to perform the personalization.

Besides personalization rules, those approaches need acquisition rules to monitor the
execution environment and obtain the required knowledge to personalize.

4.5 The EXO model: a PSM for the eXo platform

According to the official eXo site (www.exoplatform.com), this platform was the first

portlet container to be JSR-168 certified in 2003, and it is currently one of the most
popular, freeware portal frameworks. The work presented in this dissertation is based

on eXo version 1 [28].

An eXo portal is a compound of four main types of artefacts: the portal itself,
pages, containers and portlets. A portal encompasses a set of pages which in turn,

hold containers, which finally, keep the portlets. Figure 4.16 shows how an eXo page
looks like.

A page is conformed along two directives: the portal template and the page con-

tent. The former specifies a layout in terms of rows and columns. A common pattern
is depicted in Figure 4.16: a banner, a footer, a navigation tree (an index to the main

portal pages), and the page content. Whereas the portal template is shared by all
pages, the page content is specific for each page. It is also described through a set

66 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.17: The EXO metamodel.

4.5. The EXO model: a PSM for the eXo platform 67

of nested rows and columns where each cell contains a portlet. In this way, the page

content is built up by aggregating the presentation of the contained portlets. A page

content is bound to one or several nodes of the navigation tree. By clicking on these

nodes, the user moves along the distinct page contents.

Both the portal template and the page content are specified as XML files, namely

(see Figure 4.17):

• **-config.xml, which describes the portal template, e.g., whether the portal has

banner, footer, or does not have, or how portlets are to be arranged in rows
or columns. The root element of this file is PortalConfig which contains a

PortalLayout. From then on, the layout is described in a tree-like way as a
containment hierarchy where the leaves of the hierarchy are either portlets or a

body (i.e., a kind of canvas that holds page content).

• **-pages.xml, which describes the set of page contents. They sit at the bottom
of the layout hierarchy. A page content can in turn hold other containers and

portlets.

• **-navigation.xml, which describes the hierarchical relationship among the
page content, i.e., which other pages are reachable when in a given page con-

tent. This basically defines the “navigation tree” shown on the left of Figure
4.16.

The previous files describe the layout. Aesthetic parameters (e.g., color, fonts, etc.)

are set through decorators. Since a portal is a compound of four main types of arte-

fact (i.e., the portal itself, containers, pages and portlets), a decorator is defined for
each type of artefact: portlet decorators, container decorators, page decorators and

portal decorators. Moreover, portlet’s fragments can also be the subject of special
CSS which are known as “portlet styles”. Therefore, presentation wise, a portlet pre-

sentation is governed by the decorator (i.e., the component that surrounds the portlet
body) and the portlet style, the latter guides the presentation of the fragments (i.e.,

the markup rendered by the portlet) (see Figure 4.16). The aesthetic of the portal is
then set through skin-config.xml file and some CSS files. The former describes the

decorators and the others contain values of the style parameters.

The information rendered to the user depends on both the user role and the por-

tal state. The user configuration of an eXo portal is described in the organization-

configuration.xml file. This file defines the preconfigured groups and users, and the

68 Chapter 4. Portlet-based portal construction: an MDD approach

Figure 4.18: Presentation counterpart of the state configuration {Browsing, ISIWoK}.

relationships among them. All the layout, content and navigation can be personal-
ized based on the user profile. To this end, distinct files **-config.xml, **-pages.xml

and **-navigation.xml can be provided in a user basis. Actually, “**” stands for the
username (e.g., john-config.xml).

We have described the specification of all those files in the EXO metamodel (see
Figure 4.17), with one subpackage for each file type.

4.6 Transformation definition

Model transformation is the process of converting one model, called source model, to

another model, i.e., the target model, of the same system [76]. Model transformation
languages are used to specify the mapping between constructs of the source models

into constructs of the target model along the so-called transformation pattern [12].
This section illustrates this pattern where the annotated statechart and the eXo plat-

form play the role of the source and target models, respectively. Broadly speaking,
the transformation engine takes an annotated statechart as an input, works out its state

configurations and finally, outputs a set of pages conforming the eXo portal. Figures
4.18 and 4.7 depict the eXo pages for configuration1 {Browsing, ISIWoK} and config-

uration3 {Browsing, Search, PaperSearch, IEEESearch, ACMSearch}, respectively.
Transformations express a correspondence between elements of the source meta-

4.6. Transformation definition 69

task orchestration rendering eXo files
constructs constructs constructs

rule1 state windowDescriptor ****.css
rule2 task state-configuration workviewDescriptor **-pages.xml

Table 4.3: Mapping SOP constructs to eXo files through distinct transformation rules.

model into elements of the target metamodel. Yet, this correspondence is frequently
not unique but distinct ways can exist to map the same source model into alternative

target models. Specifically, statecharts can be mapped into eXo constructs in two
different ways: the interpreted approach and the compiled approach.

The interpreted approach simulates the dynamics of the statechart through a stat-
echart engine code which obtains the portal page on demand. Specifically, at a given

moment, the Web portal is presenting a Web page which corresponds to the current
state configuration. When a user rises a GUI event (e.g., by clicking on a link), the

Web portal transmits it to the transition associated to the triggered event. Then, the
corresponding guard condition is evaluated, and if satisfied, the statechart sets the

target state as active, which in turn, leads to a new state configuration. This new
configuration sets the portlets to be displayed, and a new page is generated in accor-

dance with the associated state skins. This page is finally rendered back to the user,
and this ends the loop. However, this approach happens to suffer from efficiency

problems for large statecharts. A main issue is that the test for activated transitions
is time-consuming, and it should be at workout time and again as the user navigates

throughout the portal.

By contrast, the compiled approach, works out all the pages at generation time. A

Web page is generated from each state configuration, where the page anchors corre-
spond to the transitions available to this state configuration. This approach improves

efficiency as generation does not happen at portal enactment time. It also provides a
solution more akin to current eXo development practices where users are accustomed

to the so-called “navigation tree”, an index to the main portal pages. On the down-
side, the compiled approach prevents some adaptation from taking place at run time

(e.g., some transitions can depend on some execution parameters such as the price of
ticket just bought). This section focuses on the compiled approach.

Transformation wise, a main challenge is the containment structure of statecharts:

a state can contain lower-level states. Specifically, state configurations are not given
by the designer but need to be worked out by the transformer itself. This implies

70 Chapter 4. Portlet-based portal construction: an MDD approach

top_rule ’StateMachine2CssClassSet’ do
from SOP::Orchestration::StateMachine
to EXO::Css::CssClassSet
mapping do |state_machine, class_set|

class_set.name = state_machine.workspace.name
class_set.styles = [state_machine.root_state] + state_machine.simple_states
class_set.decorators = [state_machine.root_state] + state_machine.simple_states
...

end
end
rule ’SimpleState2Style’ do

from SOP::Orchestration::State
to EXO::Css::PortletStyleClass
filter { |state| state.isSimple }
mapping do |state, stylePortlet|

stylePortlet.name = state.name + "PStyle"
stylePortlet.fontFamily = state.windowDescriptor.fontFamily
...

end
end
rule ’SimpleState2Decorator’ do

from SOP::Orchestration::State
to EXO::Css::PortletDecoratorClass
filter { |state| state.isSimple }
mapping do |state, decorator|

decorator.name = state.name + "PDecorator"
decorator.background = state.windowDescriptor.background
...

end
end
...

Figure 4.19: Mapping from simple state to decorator and style CSS classes in RubyTL.

recursive transformation rules that traverse the tree-like structure of the statechart. At

the time of the implementation, popular transformation languages such as QVT [77]
were not expressive enough to specify the required transformations, and we finally

used RubyTL [99] as the transformation language.

The SOP-to-EXO mapping is fully implemented along 69 mapping rules. Next
subsections provide a sample for two representative rules which generate a CSS file

and an “eXo page” file, respectively (see Table 4.3). Annexe A provides further
details about the whole transformation.

4.6.1 Mapping from simple states to CSS classes

Figure 4.19 depicts the StateMachine2CssClassSet rule. This rule takes as an input a

StateMachine from the SOP metamodel (specifically, from the ORCHESTRATION
subpackage of the SOP metamodel, see Figures 4.3 and 4.5) and returns a CssClass-

Set element from the EXO metamodel (see Figure 4.17). That element represents a
CSS file, which governs portlet presentation.

4.6. Transformation definition 71

.ieeeSearchPDecorator-decorator {
background: white;
border-style: dotted;
border-color: blue;
border-width: 4px;

}
.ieeeSearchPStyle-portlet {

font-family: Courier;
color: black;
font-size: 14pt;
font-style: normal;
text-align: justify;

}
.acmSearchPStyle-portlet {

font-family: Times;
color: black;
font-size: 12pt;
font-style: normal;
text-align: justify;

}

Figure 4.20: Snippet of browsing.css file.

Portlet presentation includes the portlet markup itself and the decorator surround-

ing this markup (see Figure 4.16). The style guidelines for presenting the markup and
the decorator are set through CSS classes, specifically, the PortletStyleClass and the

PortletDecoratorClass, respectively (see Figure 4.17). The content of these classes
is obtained through the state skins distributed all along the state hierarchy.

The first rule has three bindings. The first binding uses the workspace asso-

ciated to the statechart in order to name the CssClassSet element (remember, this
element corresponds to the CSS file to be generated). The next two bindings are re-

solved by the execution of the SimpleState2Style and SimpleState2Decorator rules,
respectively. The rules are implicitly invoked through a mechanism similar to XSLT

templates but now, the matching is based on metamodel types rather than XML tags.
Hence, the assignment “class_set.styles=...state_machine.simple_states” triggers the

rule SimpleState2Style for each simple state. This rule creates the style CSS class for
the portlet counterpart of the state: the name is obtained after the state name adding

“PStyle” as a suffix, whereas the CSS attributes (e.g., fontFamily) are taken from the
WindowDescriptor of the corresponding state skin.

It is most important to note that the hierarchical definition of state skins permits

a given state to have a partial definition (or no definition at all) for its state skin. The
complete definition is obtained at transformation time by obtaining missing proper-

ties from its ancestors. For instance, ACMSearch does not have any associated state
skin whereas IEEESearch only provides the fontFamily (courier) and the fontSize

72 Chapter 4. Portlet-based portal construction: an MDD approach

(14pt) (see Figure 4.9). However, eXo forces to have full-fledged IEEESearchPStyle

and IEEESearchPDecorator CSS classes. Therefore, the missing attributes are recur-
sively obtained by looking up to the upper states that contain the IEEESearch state

(i.e., Browsing, Search and PaperSearch), and attribute values at the upper states
are overridden by those values at lower states. The outcome for these two states is

shown in Figure 4.20. It shows that the font-size for the IEEESearch portlet is 14pt,
like specified in the WindowDescriptor of the IEEESearch state, but font-size for the

ACMSearch portlet is 12 pt, i.e., the default value, inherited from the WindowDe-

scriptor of the Browsing state.

Implementation wise, a helper function (e.g., windowDescriptor) is defined that
supports that look-up process. Hence, the expression state.windowDescriptor.fontFamily

found in these rules, recovers the fontFamily value for the current state regardless of
whether the font is locally attached to the state in its corresponding WindowDescrip-

tor or “inherited” from upper levels.

4.6.2 Mapping from state configurations to eXo pages file

As stated previously, the work presented in this dissertation uses a compiled approach

to transform statecharts to eXo pages, i.e., an eXo page is generated from each state
configuration rather than constructing the page dynamically at run time. This trans-

formation is outlined in two figures, 4.21 and 4.22, for the sake of legibility.

The transformation starts in line (13) of Figure 4.22 and takes a SOP::Orchestra-

tion::StateMachine as input (i.e., a StateMachine element of the ORCHESTRATION
viewpoint or subpackage in the SOP metamodel) and returns an EXO::Pages::PageSet

as output (i.e., a PageSet element of the Pages subpackage in the EXO metamodel).
Line (14) creates a new pageSet object.

Line (16) introduces a phase. A phase is a parametrized transformation module
that groups a set of related rules. This mechanism is used to group those rules that

account for the PIM notion of configuration. Specifically, the page phase in Figure
4.21 has a current_config as its IN parameter, and returns an IN-OUT parameter

named page_set that holds the PageSet object. This phase is enacted for each state
configuration. To this end, the all_configurations function (in line (15)) works out all

possible state configurations from the statechart model. For each configuration, the
page phase is explicitly executed (in line (16)), passing the current configuration as

its IN parameter.

The page phase starts with the implicit triggering of its first rule, i.e., Configura-

4.6. Transformation definition 73

phase ’page’
parameter :current_config
parameter :page_set
rule ’Configuration2Page’ do

from SOP::Orchestration::StateConfiguration
to EXO::Pages::Page
filter { |conf| conf == current_config }
mapping do |configuration, page|

page_set.pages = page
(1) page.name = "/" + configuration.page_name

.... <assignment of constant values>
(2) page.decorator = configuration.state_machine.workspace.name + "PageDecorator"
(3) page.container = configuration
(4) page.container = configuration.state_machine.child_states.select { |s| s.isOrthogonal }
(5) page.portlet = configuration.state_machine.child_states.select { |s| s.generate_portlet? }.

select { |s| configuration.states.include?(s) }
end

end
rule ’AndState2Container’ do

from SOP::Orchestration::State
to EXO::Pages::Container
filter { |state| current_config.states.include?(state) && state.isOrthogonal }
mapping do |state, container|

container.renderer = state.windowDescriptor.containerRenderer
(6) container.decorator = state.state_machine.workspace.name + "TransparentDecorator"
(7) container.subcontainers = current_config.orthogonal_sub_states(state)
(8) container.portlets = current_config.simple_sub_states(state)

end
end
rule ’SimpleState2Portlet’ do

from SOP::Orchestration::State
to EXO::Pages::Portlet
filter { |state| state.isSimple }
mapping do |state, portlet|

portlet.renderer = "PortletRenderer"
(9) portlet.decorator = state.name + "PDecorator"
(10) portlet.portletStyle = state.name + "PStyle"

portlet.windowId = "#{state.task.portlet.displayName}/#{state.task.portlet.portletName}/#{state.name}"
...

end
end
rule ’Container4Transitions’ do

from SOP::Orchestration::StateConfiguration
to EXO::Pages::Container

(11) filter { |configuration| configuration.state_machine.workviewDescriptor.distribution==”together”}
mapping do |configuration, container|

container.renderer = "ContainerColumnRenderer"
container.decorator = configuration.state_machine.workspace.name + "TransparentDecorator"

(12) container.portlets = configuration.all_transitions
end

end
rule ’Transition2Portlet’ do

from SOP::Orchestration::Transition
to EXO::Pages::Portlet
mapping do |transition, portlet|

portlet.renderer = "PortletRenderer"
portlet.decorator = transition.name + "AnchorDecorator"
portlet.portletStyle = transition.name + "AnchorStyle"
portlet.windowId = transition.portlet.displayName + "/" +

transition.portlet.portletName + "/" +
transition.name +TransitionId.next.to_s

...
end

end
...

end

Figure 4.21: Mapping from state configurations to eXo pages file. Anchor rendering strategy
is together and top.

74 Chapter 4. Portlet-based portal construction: an MDD approach

explicit_execution do
(13) SOP::Orchestration::StateMachine.all_objects.each do |state_machine|
(14) page_set = EXO::Pages::PageSet.new
(15) state_machine.all_configurations.each |configuration|
(16) execute_phase ’page’,

:current_config => configuration,
:page_set => page_set

end
end

end

Figure 4.22: Mapping from state configurations to eXo pages file. (cont.)

Figure 4.23: Configuration3 and its presentation counterpart.

tion2Page rule (see Figure 4.21). Again the tree-like structure of configuration leads

to a recursive transformation. First, a new page is created: its name and decorator are
generated in lines (1) and (2), respectively, and it holds the results of transforming the

child states. If the child is simple (and not contained in an AND state) then, a port-
let is generated (line (5) that causes the triggering of the SimpleState2Portlet rule).

If the child is an AND state then, a container is generated (line (4) that causes the
triggering of the AndState2Container rule) whose content is the result of recursively

transforming their child substates (line (7)). Finally, OR states have no impact on the
page composition, and the transformation just propagates to their children.

4.6. Transformation definition 75

That is for states. Now transitions whose PSM counterparts are anchors. Accord-

ing with the RENDERING metamodel, active anchors can be placed either together
(distribution = ’together’) or side-by-side to the portlet being the PSM counterpart

of the transition’s origin state (distribution = ’detached’). Orthogonally, depending
on the position attribute value, anchors can be placed left, right, up or down rela-

tive to the page/portlet. This leads us to eight different types of transformations. In
Figure 4.21, the example considers the ’together’/’top’ combination only: the Con-

tainer4Transitions rule is triggered to generate the container (in line (3), before the
rules related to states; moreover that rule has an appropriate filter in line (11)), and

after, one anchor is described for each transition, using the Transition2Portlet rule,
triggered in line (12) with the binding. Of note, rules for the ’detached’ case are also

recursive as anchors are placed along the containers hierarchy.
As an example, consider configuration3 whose active states are {Browsing, Search,

PaperSearch, IEEESearch, ACMSearch}. Figure 4.23(a) shows the containment rela-
tionship between these states, indicating the kind of relationship (i.e., AND or OR).

Transformation proceeds from top to bottom and Figure 4.23(b)3 shows the genera-
tion of the presentation counterpart that results from this state configuration whose

complete presentation page is shown in Figure 4.7.
The process goes as follows:

1. the root, i.e., Browsing state, outputs a container that provides a first skin for
the portal (lines (1) and (2) in Figure 4.21). Moreover, since anchors have a

together distribution and a top position, PSM anchors are displayed at this very
top decorator (line (3) of Figures 4.21 and 4.23(b)). This container also holds

the results of transforming the Browsing’s child, i.e., Search state.

2. Search is an OR state. An OR state does not have a presentation counterpart,
and process continues with Search’s child, i.e., PaperSearch.

3. PaperSearch is an AND state. An AND state is mapped to a transparent dec-
orator (line (6)) that forces its content (generated after PaperSearch substates)

be displayed side-by-side. PaperSearch is a conjunction of two simple states
(i.e., ACMSearch and IEEESearch) which stand for two portlets (line (8)).

4. ACMSearch and IEEESearch are simple states. A simple state produces a port-
let description with a reference to a PortletDecorator class and a PortletStyle

3Numbers in Figure 4.23(b) point to operations in Figure 4.21. These operations generate the corre-
sponding PSM widgets.

76 Chapter 4. Portlet-based portal construction: an MDD approach

<page-set>
<page renderer="PageRowRenderer" decorator="browsingPageDecorator">
<name>/home</name>
<container renderer="ContainerColumnRenderer" decorator="browsingTransparentDecorator">

<portlet renderer="PortletRenderer" decorator="ToAuthorSearchAnchorDecorator">
<portlet-style>ToAuthorSearchAnchorStyle</portlet-style>
<windowId>@owner@:/navigationstep/step/ToAuthorSearch1</windowId>
<portlet-preferences>

<value>ToAuthorSearch</value>
...

</portlet-preferences>
</portlet>
...

</container>
<container renderer="ContainerRowRenderer" decorator="browsingTransparentDecorator">

<portlet renderer="PortletRenderer" decorator="IEEESearchPDecorator">
<portlet-style>IEEESearchPStyle</portlet-style>
<title>IEEE</title>
<windowId>@owner@:/ieeeLibrary/ieeeLibrary/IEEESearch</windowId>

</portlet>
<portlet renderer="PortletRenderer" decorator="ACMSearchPDecorator">
<portlet-style>ACMSearchPStyle</portlet-style>
<title>ACM</title>
<windowId>@owner@:/acmLibrary/acmLibrary/ACMSearch</windowId>

</portlet>
</container>

</page>
...

</page-set>

Figure 4.24: Snippet of the template-pages.xml file.

class (lines (9) and (10) in Figure 4.21) that hold CSS parameters for portlet
markup presentation.

A snippet of the final outcome for configuration3 is depicted in Figure 4.24. The
content of decorator and style classes (IEEESearchPDecorator, IEEESearchPStyle

and the like) has been previously generated by the transformation rule introduced in
Subsection 4.6.1.

It is worth emphasizing that RubyTL is an embedded language in Ruby. The
benefits brought are illustrated in line (14) of Figure 4.22, where an object is explicitly

created, and in line (5) of Figure 4.21, where Ruby facilities to traverse collections
are used. Moreover, since RubyTL is a hybrid language, bindings and rules provide

a clean way to set the mappings in a declarative manner (e.g., in line (4)), while
it is also possible to write imperative code where needed (as shown in line (14)).

For the sake of legibility of the rules, the possibility of using auxiliary functions is
another advantage of RubyTL. Lines (5) and (8) of Figure 4.21 have the same aim,

i.e., triggering the SimpleState2Portlet rule, but to look for the simple substates of a
given AND state, the latter uses the simple_sub_states() auxiliary function, whereas

4.7. Realizing the MDD benefits 77

context SOP::Orchestration::State do
inv ’maximized-only-for-one-simple-state’ do
self.isOrthogonal.implies(
self.child_states.any? { |s| s.isSimple && s.task.portlet.windowState = = ’maximized’ }.

implies(self.child_states.select { |s| s.isSimple }.size = = 1))
end

end

Figure 4.25: Validation rule.

the former uses a long declarative expression.

4.7 Realizing the MDD benefits

Different works address the advantages of MDD in general [96], and to Web devel-

opment, in particular [33]. Rather than going back to their arguments, this section
tries to provide examples of how these advantages turn true for the purpose of this

specific project.

It is commonly stated that a main advantage of MDD is to be able to react effi-
ciently and with low costs to technology changes. Although we are conscious about

the benefits of platform portability, our troubles do not come so much for technol-
ogy changes as for inefficient programming and maintenance. Our main motivation

rests on the important productivity and quality gains that the model+transformation
paradigm can yield as opposed to direct code programming. The rest of the section

is devoted to illustrate these gains based on the experience gained during this project.

Analysis. MDD treats models (e.g., statecharts) not just as documentation but
as a crucial part of the solution. From an analysis perspective, the main gains come

from the verification techniques that statecharts permit and that would have been
much harder to achieve if validation were conducted at the eXo-code level. PIM

offers possibilities for analysis, verification, optimization, parallelization, and trans-
formation in terms of PIM constructs that would be much harder or unfeasible if a

programming language had been used [59]. Indeed, statecharts have long being used
as a simulation technique, and distinct techniques and tools are available to validate

distinct formal properties.

Additionally, portal-specific properties can also be declaratively specified as op-
posed to the convoluted description that an eXo implementation would require. The

window-state restriction is a case in point. This restriction states that a portlet with
a window state “maximized” must be shown alone in the portal page. The window

78 Chapter 4. Portlet-based portal construction: an MDD approach

state is a WSRP property which is captured by the WSRP model. On the other hand,

the ORCHESTRATION model implicitly conveys how many portlets are shown si-
multaneously: if there is an AND state, all its substates must be rendered together.

Therefore, the window-state restriction can be stated as follows: IF the windowState

of the wsrp portlet related to one task is set to “maximized” AND this task pertains

to an “and” state THEN, the number of simple substates in that “and” state must be

1. This constraint could be described in OCL in a declarative way. However, we did

not have an OCL engine to enforce this constraint, so a RubyTL rule counterpart was
specified (see Figure 4.25). This constraint can now be validated against the portal

model (i.e., the SOP model), hence, detecting inconsistencies at design time. The
important point to notice is that this constraint could have been very cumbersome to

enforce directly on eXo artefacts!!

Design. Transformations express a correspondence between elements of the
source metamodel into elements of the target metamodel. Yet, this correspondence is

frequently not unique but distinct ways exist to map the same source model into al-
ternative target models. These design options differ not so much in the functionality

supported but on the so-called non-functional features. For instance, when mapping
statecharts two options were considered: interpreted versus compiled. These options

do not have a major impact on the functionality of the system but they do affect
non-functional characteristics such as performance or extensibility (see Section 4.6).

By using model+transformation rather than direct coding, MDD captures as part of
the transformations, the distinct design alternatives and, what is most important, the

criteria to be used to prioritize one over the others.

For instance, it could have been possible to go for the compiled alternative if the
number of state/transitions were above a certain threshold so that portal performance

does not suffer from large statecharts. By contrary, if the statechart did not reach
this number and it is likely to add new portlets (i.e., new simple states) then, the

interpreted option would be a better bet since the additional overhead of interpreting
the statechart is compensated by its facility to extend it right away. The important

point is that now these criteria are captured in a single place: the transformation.

Implementation. Using MDD practices, most code is generated and derived

from a model. This is especially beneficial in the presence of code clones, i.e., code
fragments repeated in source files of the application. This situation arises at distinct

times during the eXo portal development. For instance:

• the same portlet can appear in distinct pages (i.e., a simple state can belong to

4.8. Related work 79

different state configurations). A page description (i.e., the template-pages.xml

file in Figure 4.24) includes the description of the portlets that form the page
(i.e., the <portlet> element). Therefore, the <portlet> element for the repeat-

ing portlet is a code clone, i.e., it appears in each page description that renders
this portlet.

• portlets, better said, their corresponding simple states, can form higher ab-
straction units (e.g., IEEESearch and ACMSearch are abstracted into the Pa-

perSearch state). Those portlets that belong to the same abstraction unit can
share some presentation parameters. As the notion of abstraction unit is missed

in eXo, those presentation parameters that provide the look-and-feel of the ab-
straction need to be repeated for each portlet that realizes the abstraction unit.

Likewise, other characteristics of the abstraction (e.g., outgoing transitions)
give also rise to code clones being distributed all along the page descriptions

in eXo.

Now more repetitive and error-prone activities are moved to the transformation rules,
which focus most of the care and testing. Hence, the chances for implementation

pitfalls are reduced and development is streamlined.

Maintenance. Web portals are subject to a continuous evolution. They will have

to evolve in response to not only the specific requirements of their stakeholders, but
also to the changes of the underneath component framework or the Web platform.

Thus, for example, after our proposal, eXo platform has released its version 2.0 and
it presents differences in the means to configure the presentation of Web portal pages

(i.e., the part related to skin-config in the EXO metamodel, see Figure 4.17). In order
to adapt our approach to the new release, we will have to modify only the EXO

metamodel, all portal models will remain without change. Moreover, in RubyTL the
feature of phasing, that is, modularizing the rules in phases, let us to refactor the rule

phase related to rendering without modify the rest of rules.

4.8 Related work

The work presented in this chapter is an MDD approach for Web portal designing,
Web portals as a means of integration of portlets, i.e Web components. The work

related to this approach can be classified into three main fields, i.e., integration of
services, MDD for Web application development, and modelling approach.

80 Chapter 4. Portlet-based portal construction: an MDD approach

Data-intensive model Service-oriented model

Structural model Task model
Navigation space model Customized task model

Navigation structure model Orchestration model
Static presentation model Rendering model

Dynamic presentation model –implicit–

Table 4.4: Models for data-intensive portals vs. Models for service-oriented portals.

4.8.1 Integration

Integration can involve an underlying database, external applications (a.k.a. back-end
integration) or presentation components (a.k.a. front-end integration). The former

can be illustrated through work on data-intensive Web applications [31, 17, 58], i.e.,
Web applications that run on top of a back-end database system. These works nor-

mally start with a structural model of the entities involved in the application which
normally reflects the database entities. Around this model, other models are intro-

duced, namely, the navigation space model, which indicates the objects that can be
visited by navigation through the application; the navigation structure model, which

defines a road map on top of the navigation space; the static presentation model,
which describes where and how navigation artefacts will be presented to the user;

and the dynamic presentation model, which addresses the behaviour of the presenta-
tional objects, i.e., the changes on the user interface when the user interacts with the

system [40]. Table 4.4 indicates a tentative mapping between these models and the
ones introduced in this chapter.

These works are for data-intensive Web applications, and hence, the conceptual
model is the starting point on which the rest of the perspectives are constructed, i.e.,

they rely on the existence of a common conceptual model (a.k.a structural model).
However, such a premise is not always true in a service-oriented scenario which

questions the holistic and linear conception that characterizes traditional database
development. In the past, data modelling carried an expectation of unification –a

prerequisite for effective communication and data sharing was the agreement of a
single common data model. However, in a service-oriented approach partners can

be reluctant to disclose their data schemas, and two parties can communicate if they
can agree on a proper mapping between their respective data models without the

existence of a common structural model. Actually, our approach is process-centered

rather than data-centered.

4.8. Related work 81

A recent extension of WebML, a Web modelling language that contemplates the

interplay between Web applications and Web services, is also contemplating process-
intensive applications [11]. To this end, the Conceptual Design phase of process-

intensive applications includes the Process Design task, focusing on the high level
schematization of the processes underlying the application, and the Process Distri-

bution task, which addresses the allocation of subprocesses to different peers, and
therefore occurs only when there are several Web servers involved in the process en-

actment. Process and distribution influence data and hypertext design, which should
take into account process requirements. This moves to front-end integration where

the presentation layer is used to govern the process. It is worth noticing that in [11]
Brambilla et al. consider a multi-user process where Web applications support a pro-

cess view for a particular user role. From this perspective, front-end integration (i.e.,
those based on anchor activation) falls short to enforce constraints between activities

assigned to different users. Thus, synchronization across site views is obtained by
having activities record their progress in a database, and using conditional navigation

(based on the values actually found in the database).

The work presented in this chapter differs from WebML in both the starting set-
ting and the design formalism. Our approach starts with a “palette of components”

(i.e., portlets) rather than a conceptual model, and statecharts are used as the main
formalism. Statecharts are so far expressive enough to capture task flows, and, as

opposed to ad-hoc notations, bring all the experience on validation and verification
techniques, and tooling that are so important when developing Web portals.

Workflow Management Systems are currently slightly evolving towards service-

oriented architectures based on Web Services. However, here integration is at the
back-end where the browser just provides a view for what is happening at the back-

end. This approach was pioneered by WWWorkflow [2]. Designed for intranets where
the users exploit WWW browsers as the only client software, its architecture contains

three main parts: the workflow engine, the workflow database and a CGI-gateway
to the WWW. The latter allows users to interact with the system through a triple

frame presented in their browsers. However, unlike our approach, only one activity
is available at a time, and all the flow dependencies are enforced at the back-end.

Finally, Web applications as conglomerates of presentation components is a more

elusive subject. It has been recently addressed in [115] where a framework is in-
troduced for integrating components by combining their presentation front-ends. A

composite application consists of one or more components and a specification of
the composition model (i.e., integration logics that coordinate the components at

82 Chapter 4. Portlet-based portal construction: an MDD approach

runtime). The work stresses the importance of an event-driven architecture where

the composition model includes event subscription information to facilitate the com-
munication among presentation components. Component coordination is specified

through events and in the application all components are presented side-by-side. The
work presented in this chapter focuses on portlets and portlet orchestration. Both

works have similarities: the component model is similar to our task model, with
portlets, and the composition model in this chapter is described through statecharts

where events are restricted to describe anchor navigation, i.e., intra-portal events in-
stead of intra-portlet events. The work in [115] can be considered a Domain-Specific

Language for composite Web applications. By contrast, the approach of this chapter
attempts to build upon existing formalisms (e.g., statecharts) rather than coming with

a new language, and then, to map this formalism to concrete frameworks where the
one of [115] can be included as a PSM. At the current stage of technology where

presentation integration is still immature, an MDD approach as the one presented in
this chapter, facilitates easy platform portability and user adoption by building on

existing (meta) models.

4.8.2 MDD for Web application development

Like the work of this chapter, the WebSA approach [61] also establishes an in-
stance of the MDA development process. Firstly, the Web application specification

is divided into two viewpoints: the functional-perspective (i.e., Content, Navigation
Structure, Business Processes and Presentation models), and the Subsystem Model

and the Configuration Model, which define the software architecture of the Web Ap-
plication. Then, those viewpoints are integrated by means of transformations between

models. The first transformation step merges the elements of the architectural models
with those of the functional models, and translates them into the Integration Model,

the second transformation step maps the platform specific implementation models

(e.g., J2EE or .NET) from the Integration Model. The transformations are specified
with a visual and textual notation, known as QVT-Partners [86], which is a proposal

for Query/Views/Transformations (QVT) of OMG. The SOP model of the approach
presented in this chapter is similar to the Integration Model and is also generated by

a merge transformation, however the former is conformed only by functional aspects
(that is, tasks, orchestration and rendering), and thus, it is more abstract, i.e., it does

not have descriptions about ports, component connectors, server pages, and the like.

In the same way, Muller et al. [67] apply also the MDA vision to Web engineer-

4.8. Related work 83

ing. Their work describes a metamodel specific to dynamic Web page composition

and navigation. This metamodel is composed of three platform independent pack-
ages, i.e., the Business Model, the Hypertext Model, and the Presentation Model,

related to the typical content, navigation and presentation models, respectively. The
authors have also implemented Xion, an action language based on OCL, used in the

business model to express the methods or to extract information, and in the hypertext
model whenever a constraint or a behaviour has to be expressed. This code helps

to drive the generation of the final Web application. The Web application is gener-
ated through a PIM to PSM translation which has two PSM steps: from PIM to a

platform-dependent layer and from this one to a technology dependent layer. Due to
reusing the business logic from third-party portlets and annotating the orchestration

statecharts with rendering information, our approach does not need any additional
mechanism to express behaviour or extract information. Models are not obscured by

adding transformation-like code.

MDA aside, Nunes and Schwabe [69] show the combination of Model Driven

Design and Domain Specific Languages (DSL’s) for the rapid prototyping of Web
applications. Their HyperDe environment allows the implementation of Web appli-

cations designed using the SHDM method, a model-driven approach based on con-
ceptual, navigational and interface models. The HyperDe also has a Domain Specific

Language, and thus, for instance, the developer can include some DSL code in the
navigational model for retrieving values that flow in the interface. This DSL code

can manipulate both models and SHDM’s metamodel. Therefore, instead of auto-
mated transformations between models to generate code, HyperDe allows to write

DSL code by directly manipulating the models that specify the application. Devel-
opers will have to use this type of code for the business logic that is specific to the

application or for the code in the templates that render the interfaces to the applica-
tion. This chapter has been concentrated on a specific Web application, that is, Web

portals constituted by reused portlets. The burden of business logic is on portlets so
the designer has not to be worried about that. And as for the interface description, it

is distributed among the portlets (reused) and the rendering model of the portal. This
model has enough parameters so that the designer can configure the presentation of

the portal without introducing specific code. Therefore, an MDA approach, with an
automatic transformation from models to code, is really enough.

84 Chapter 4. Portlet-based portal construction: an MDD approach

4.8.3 Modelling approach

For the description of the concepts and semantics used to model Web applications,

Koch and Kraus [56] present a metamodel for the UWE methodology, and Moreno
and Vallecillo [64] describe another metamodel to facilitate the integration of Web

applications with third-party systems, e.g., portlets. Both approaches have chosen to

define the metamodels as UML profiles.

A UML profile is a UML extension mechanism that allows for the definition of
stereotypes, tagged values and OCL constraints to describe new modelling elements.

One of the advantages of defining profiles is that they will be supported by standard
UML CASE-tools with support for the UML extension mechanisms.

Another approach to define new metamodels is the use of MOF [79] and that is
exactly the approach taken in the work of this chapter. Desfray [20] explains that

choosing a MOF-based technique is justified when “(1) the domain is well defined,

and has a unique well accepted main set of concepts; (2) a model realized under the

domain is not subject to be transferred into other domains; and (3) there is no need

to combine the domain with other domains”. Web portal domain fits the latter two

conditions. And about the first one, given that Web portal design is still a research
field, we cannot say that there is a total agreement in the domain and their concepts,

and as if that were not enough, many times the proposed metamodels are subject
to change. Therefore, for now it will probably be the same defining them using a

MOF-based technique or a UML profile-based technique.

4.9 Conclusion

The new releases of the WSRP [74] and JSR-286 [49] standards promise to achieve
portlet interoperability. This will certainly fuel the transition from content syndica-

tion to portlet syndication. In this context, portlet-oriented methodologies will be
highly sought.

This chapter illustrates the use of MDD techniques to achieve such scenario

where Web portal construction is now a pipeline-like process of model transfor-
mations. Specifically, the designer abstracts away from portal pages, and describes

Web portal behaviour and its presentation in terms of annotated statecharts that are
then gradually realized as eXo artefacts. The chapter strives to illustrate the benefits

brought by MDD in general, and the use of statecharts in particular, for the design
of portlet-intensive portals. Advantages are reported for the analysis, design, imple-

4.9. Conclusion 85

mentation and maintenance of the Web portal.

This chapter looks at portlets as “passive components” whereby orchestration is
led by the Web portal (i.e., the portlet container). Moving from one portlet to the

next is achieved just using portal resources: traditional anchors that realize naviga-
tion between pages which hold the portlets. Portlets themselves are unaware of this

navigation. We refer to this orchestration as “navigational orchestration”. But this is
not enough.

Portlets can also be “active components”, which consume/produce events risen in
their environment, i.e., the Web portal. Such perspective, provides a complementary

view to navigational orchestration. Besides direct user interactions, now portlets can
also subscribe to events generated by other portlets or even the portal itself. This is a

main departure from traditional Web design and implementation. This is the topic of
the next chapter.

86 Chapter 4. Portlet-based portal construction: an MDD approach

Chapter 5

Portlet Interoperability Through
Deep Annotation

5.1 Introduction

According to the IEEE Standard Computer Dictionary, interoperability means “the

ability of two or more systems or components to exchange information and to use

the information that has been exchanged”. The previous chapter has not considered

“interoperable portlets”. Rather portlets behave as “passive components”. Portlets
are black-boxes with no-interaction between the portlets themselves.

However, aggregating portlets into a Web portal is more than merely invoking
these services, or arranging their fragments together in the same portal page (i.e.,

the so-called “side-by-side” aggregation). Information contained in one portlet will

surely be required in another, and forcing the individual user to manually copy and
key in data from source to target portlets would lead to frustration, lost productivity,

and inevitable mistakes.

This chapter addresses portlet interoperation, i.e., the exchange of information

between portlets. Current approaches to portlet interoperation rely on the existence
of a common data structure that supports data exchange. However, such approach de-

feats the view of portlets as SOA-enablers. That is, interoperation should be achieved
between portlets with different origins (i.e., different providers or producers), and this

87

88 Chapter 5. Portlet Interoperability Through Deep Annotation

Figure 5.1: Two portlets side-by-side: bookFlight (left), and bookHotel (right).

means that no common data structure will be available (in the same way that tradi-

tional Web Services do not rely on the existence of such data structure to exchange
data).

Therefore, we propose a front-end approach to portlet interoperation. That is,
the visual part of a portlet, the fragments, are supplemented with information about

what these fragments render. This requires the creation, either manually or semi-
automatically, of metadata from existing information, a process known as annotation

[35]. Specifically, we consider the so-called deep annotation as particularly valid for

portlet interoperation due to the controlled and cooperative environment that charac-
terizes the portal setting. The portlet producer can extend a portlet markup, a frag-

ment, with data about the processes whose rendering this fragment supports. Then,
the portlet consumer (e.g., a portal) can use deep annotation to map an output process

in fragment A to an input process in fragment B. This mapping results in fragment B
having its input form (or other “input” widget) filled up.

The rest of the chapter is organized as follows. First, we set the problem state-
ment with the help of an example. Section 5.3 describes the notion of annotation.

Next, Section 5.4 outlines the deep annotation process, particularized for the portlet
interoperability scenario. Sections 5.5, 5.6, and 5.7 present details about that process.

5.2. A sample case 89

Related work is presented in Section 5.8. Finally, Section 5.9 draws the conclusion.

5.2 A sample case

Consider a Web portal for helping customers to arrange their trips. That portal aggre-

gates two portlets, one for flight booking, bookFlight, and the other for hotel booking,

bookHotel (see Figure 5.1). Each portlet has a different provider.
Aggregating these two portlets together is more than merely invoking these ser-

vices, or arranging their fragments together in the same portal page (i.e., the so-called
“side-by-side” aggregation). Rather, data contained in one portlet (e.g., arrival-date

for bookFlight) will surely be required by the other (e.g., entry-date for bookHotel),
and forcing the user to manually copy and key in data from source to target portlets

leads to frustration, lost productivity, and inevitable mistakes. Indeed, the webmaster
wants these two portlets to interoperate so that data can flow smoothly from the for-

mer to the latter. That is, bookHotel can render the fragment which prompts for the
entry-date already filled up from the arrival-date obtained after enacting bookFlight.

For portlet interoperation (i.e., data exchange) distinct mechanisms have been

proposed which can be classified as data-based and API-based. The former permits
distinct portlets share a common piece of information but within the scope of the

same producer. Portlets which pertain to distinct producers remain isolated. On the
other hand, the API-based approach facilitates a programmatic interface for portlets

to communicate their state to interested parties. Unfortunately, at the time of our
research and proposal, there was not yet an agreement on how to standardize this

mechanism. Later, in December 2007, the final draft of the Java Portlet Specification
(JSR-286) [49] was proposed. It introduces the notion of portlet event, as a means

of communication among portlets. The portlet should declare in the portlet.xml de-
ployment descriptor all events that it would like to receive and the ones it would

like to initiate. Events could be either portal or portlet container generated or the
result of a user interaction with other portlets. However, this does not solve semantic

mismatches that can arise between the different interfaces.
Tetlow et al. point out [102] how Semantic Web technologies can be applied in

Systems and Software Engineering. Automatic searching of Web services, model
checking, standardization of the terminology used in different models, interoperabil-

ity in distributed systems and heterogeneous data sources such as data warehouses
are some of the areas where Semantic Web can contribute. In that context, in this

90 Chapter 5. Portlet Interoperability Through Deep Annotation

work we propose another area such as the portlet interoperability. Roman et al. [89]

established that “Semantic markup shall be exploited to automate the tasks of Web

service discovery, composition and invocation, thus enabling seamless interoperation

between them while keeping human intervention to a minimum”. Thus, our approach
is to enable the seamless interoperation among portlets using deep annotation.

5.3 Semantic Web and Annotation

According to the New Oxford Dictionary of English an annotation is a note of expla-
nation or comment added to a text or diagram. Annotations have been used exten-

sively in several fields as programming languages, hypermedia and the like. As an
example, in Java, annotations give the ability to provide hints directly in the source

code which can later be used by the compiler, by other parts of the code, or by another
tool; annotations can be used both at compile time and at runtime.

Within the Semantic Web context annotations are also present. To quote the Se-
mantic Web Agreement Group “The Semantic Web is a Web that includes documents,

or portions of documents, describing explicit relationships between things and con-

taining semantic information intended for automated processing by our machines”.

Those explicit relations and semantic information are precisely annotations, semantic
annotations. These annotations will be defined formally using ontologies, another of

the basic components of the Semantic Web. For the Web “an ontology is a document

or file that formally defines the relations among terms. The most typical kind of on-

tology for the Web has a taxonomy and a set of inference rules” [6]. The taxonomy
defines classes of objects and relations among them. Through the inference rules

the computer can manipulate the terms in an effective manner, that is, it can deduce
information.

On the other hand, as Berners-Lee et al. [6] established, in the Semantic Web “the

information is given well-defined meaning, better enabling computers and people to

work in cooperation”. Besides, they pointed out that “The real power of the Semantic

Web will be realized when people create many programs that collect Web content

from diverse sources, process the information and exchange the results with other

programs. Even agents that were not expressly designed to work together can transfer

data among themselves when the data come with semantics” [6]. So, annotations
based on a common ontology can provide a common framework for the integration

of different programs or systems, that is, they can provide interoperability.
As it has been defined in the Chapter 2, portlets are third-party applications within

5.3. Semantic Web and Annotation 91

a Web portal. However, aggregating portlets into a portal is more than merely invok-

ing these services or arranging their fragments “side-by-side”. Information contained
in one portlet will surely be required in another. Therefore portlet interoperability

should be a must to carry out in the portal design. And, given that according to
Berners-Lee et al. program interoperability may be carried out by annotations, our

proposal is using annotations for portlet interoperability, more specifically, for ex-
change of metadata, i.e., semantic meaning of data, among portlets in order to share

data.

This requires first the creation, either manually or semi-automatically, of meta-
data from existing information, a process known as annotation [35]. Most of the

approaches to annotation build on the assumption that the information sources are
static (e.g., static HTML pages), i.e., they provide metadata about the surface of what

is being annotated, e.g., an HTML page. However, this is not always the case for Web
pages nor is it for portlets. As stated by Handschuh et al. [36], “for dynamic Web

pages (e.g., ones that are generated from a database...) it does not seem to be useful

to manually annotate every single page. Rather one wants to annotate the database

in order to reuse it for one’s own Semantic Web purpose”. This leads to the notion of
deep annotation.

Deep annotation has been proposed by Handschuh et al. [37] as an annota-
tion process that “utilizes information proper, information structures and information

context in order to derive mappings between information structures”. This process
is called deep annotation “as its purpose is not to provide semantic annotation about

the surface of what is being annotated, this would be the Web page, but about the

semantic structures in the background” [1]. For dynamic Web pages, now, the page

also conveys the tables, attributes and the query used to recover the content being

rendered in the page. Thus, the HTML “surface” is used to obtain the underlying
structure, e.g., the database schema. This information structure/context (i.e., tables,

attributes, query) can now be annotated (i.e., mapped) to the information structures/-
context of the client, and in so doing, permits the client, i.e., the querying party, to

consult the database without the help of the HTML “surface” (e.g., through a Web
service).

According with the proponents, deep annotation involves three actors: the back-

end owner (e.g., the database administrator), the annotator, and the querying party.

If the back-end resource is a database as illustrated in [37], then these actors interact
as follows:

92 Chapter 5. Portlet Interoperability Through Deep Annotation

1. The backend owner produces server-side Web page markup according to the

database’s information structures. The outcome is a set of HTML pages that
convey not only the data but also which database columns provide the data

(among other aspects).

2. The annotator produces client-side annotations which conform to the client
ontology and the server-side markup. In this context, an annotation is a set

of instantiations related to a (client) ontology and referring to a (server-based)
HTML document.

3. The annotator publishes the client ontology and the mapping rules derived
from annotations. The goal of the mapping process is to give interested parties

access to the source data. All information, including the structure of all tables
involved in a Web site query, must be published so that users can retrieve data.

4. The querying party loads client’s ontology and mapping rules, and uses them
to query the information source via a Web service API, and without the inter-

vention of the HTML page.

Similar to dynamic Web pages, Web portal pages are generated dynamically from
portlet fragments. Each Web portal page is a conglomerate of portlet fragments,

fragments that can be different depending on the specific portlet state. Therefore,
Web portals are not a candidate to manually annotate every single page either. Thus,

using a deep annotation approach also, portlets could be characterized by their do-
main ontologies and portlet interoperability could be achieved through mappings of

instances of these ontologies. This is the first idea of our proposal, which we will
describe in more detail in next sections.

5.4 Outline of using annotation for portlet interoperability

Consider our running example. We left the webmaster trying to figure out how to

achieve that bookHotel can render the fragment which prompts for the entry-date

already filled up from the arrival-date obtained after enacting bookFlight (see Figure

5.1). In order to use the arrival-date datum, the bookHotel portlet should understand
its semantics or meaning. And in this step is where we see the role of deep annotation.

The key aspects of the approach can be summarized as follows:

5.4. Outline of using annotation for portlet interoperability 93

Figure 5.2: An architecture for deep annotation adapted for the portlet case.

1. Portlets are characterized by their ontologies. Although none of the portlet

standards (i.e., WSRP [71] and JSR-168 [50]) contemplate this option, the
extensibility mechanisms available in both standards can be used to extend the

portlet description with an additional ontology property. Besides facilitating
portlet interoperability, all the benefits of using explicit ontologies (e.g., better

documentation, search, knowledge acquisition [48]) are brought to the portlet
realm. The bookFlight portlet should then publish its ontology, describing the

semantics of its concepts and relations. On the other hand, given that portlets
are independent, the second portlet, bookHotel, has got no reason to know the

former ontology. It should be up to the portal to know the semantics from
both portlets and to act as a mediator between both sides, using also an own

ontology.

2. Portlet fragments extend their markups with information about the processes
these fragments support. So far, the fragment markup is geared towards ren-

dering (e.g., XHTML). Now, this markup also conveys information about the
underlying processes. This idea comes from previous works on deep annota-

94 Chapter 5. Portlet Interoperability Through Deep Annotation

tion.

3. Portlet interoperability is achieved through mappings of the ontology instances.

Mapping is necessary as portlet producers can have their own ontologies, and
mapping is required to indicate how instantiations from one portlet “flows” to

a neighboring portlet.

As seen in Section 5.3, deep annotation approach in [37] is based on three roles:

backend owner, querying party and annotator. In the previous portal scenario, the
backend owner corresponds to the source portlet bookFlight; the querying party maps

to the target portlet bookHotel; and the annotator role is played by the Web portal.
Figure 5.2 gives an overview of this approach:

• At registration time, the portal designer loads the ontologies for the distinct
portlets, and integrates them with the portal’s ontology.

• At enactment time, fragment information is used to produce annotations ac-

cording with the portal’s ontology. The portal keeps track of the distinct in-
teractions with the portlets in terms of instantiations of the portal’s ontology.

• At query time, target portlets can use those instantiations “to feed” their frag-
ments.

Compared with back-end approaches, this mechanism makes explicit what is hidden

in the data-based approach, and unlike the API-based proposal, requires no agreement
with other portlet producers.

As noted by Handschuh et al. [37], deep annotation relies on the cooperation of

the markup producer who has to embed the “underlying information structure” into
the HTML markup. Indeed, our approach rests on fragments being supplemented

with information about the underlying processes. We argue that this assumption (i.e.,
producers cooperation) is valid here. The argument is two-fold. First, the additional

effort required by this extra markup pays off in terms of achieving portlet interoper-
ability. This in turn, leads to improve the user experience of the Web portals where

these portlets are syndicated. Hence, portal masters will favor those portlet produc-
ers that facilitate this feature. Second, the mistrust to share the ontology can be

overcome by requiring prior registration. It is a common scenario to require a Web
portal to register with the producer prior to use its portlets (e.g., for charging matters).

5.5. Portlet ontology and Portal ontology 95

Registration ensures a controlled environment where the producer can feel confident

when disclosing its ontology.
As it has been advanced in the example, our approach raises the following issues:

1. Defining the ontologies for the portlets and the portal.

2. Fragment annotation, i.e., producing a set of instantiations related to the por-
tal’s ontology and referring to the fragment markups of a source portlet.

3. Fragment querying, i.e., “feeding” the markup of a target portlet from annota-
tions kept by the portal.

Next sections address these concerns with the help of the running example.

5.5 Portlet ontology and Portal ontology

For the purpose of this work and in order to describe the semantics of portlets and
Web portals two types of ontologies are defined: portlet’s ontology and portal’s on-

tology. The former describes the concepts of the portlet domain and operations that
work with those concepts, i.e., operations that need data, and operations that output

data. Therefore the portlet’s ontology is a compound of domain and task ontolo-
gies. As for portal’s ontology, it only describes the events in the Web portal. As a

conglomerate of portlets, a Web portal does not have any other role but a mediator
among portlets, so the Web portal is only characterized by the events which happen

in a portlet and that might be of interest to another portlet in the same Web portal.

5.5.1 Portlet ontology

A portlet carries out a multi-step process, rendering a fragment with each step. In
that fragment some result data are shown, or otherwise some data are requested to

the user, i.e., data to produce the result data. Therefore, in this approach a portlet is
characterized by the set of input and output processes that can occur along its lifecycle

(i.e., the task ontology) and by data the portlet provides and requests through those
processes (i.e., the domain ontology). The portlet’s ontology is composed of both

sub-ontologies.
To describe both input and output operations, OWL-S Atomic Processes is used

as the baseline ontology [110]. OWL-S is an initiative of the Semantic Web com-
munity to facilitate automatic discovery, invocation, composition, interoperation and

96 Chapter 5. Portlet Interoperability Through Deep Annotation

Figure 5.3: The portlet’s ontology: task ontology (a) + domain ontology (b).

monitoring of Web services through their semantic description. OWL-S is an OWL

ontology conceptually divided into three sub-ontologies for specifying what a service
does (profile), how the service works (process) and how the service is implemented

(grounding). The task ontology focuses on the process side.

As an example, consider the bookFlight portlet. This portlet comprises a set of
fragments that realizes a multi-step process that ends with the booking of a flight.

5.5. Portlet ontology and Portal ontology 97

The first fragment collects the departureAirport, flightDates and so on. Available

flights matching these criteria are rendered in the second fragment where the user is
prompted to select one of these flights. And so on. The portlet’s ontology, book-

FlightOnto, reflects this step-chain as a collection of input and output OWL-S atomic
processes: returnFlightsAvailable_OS, departureFlightChoice_IS and the like. Fig-

ure 5.3 shows an excerpt of this ontology where the suffix OS (output service) and IS

(input service) denote output and input Atomic Processes, respectively1.

Moreover, the domain ontology describes the concepts included in the parameters
of input/output processes. It describes the concepts, its properties and their relations.

For the previous example, Figure 5.3 shows the Flight class with its properties origin,
destination and, so on. This concept is used in the description of returnFlightsAvail-

able_OS and returnFlightChoice_IS processes, for example.

This basic task ontology can now be extended to specify the order in which pro-
cesses proceed or the relationships between their parameters. For instance, it can be

stated that departureFlightsAvailable_OS should precede departureFlightChoice_IS,
and that, at enactment time, the flight in departureFlightInput parameter of the latter

should be one of the values returned as the departureFlightOutput parameter of de-

partureFlightsAvailable_OS. To this end, orchestration languages can be used [87].

That improvement is left for future works.

5.5.2 Portal ontology

For our work the Web portal is just an aggregator for portlets with no content on

its own. The portal acts as a controller. Based on this perspective, all that matters
are the events that occur during portlet’s enactment. Those events are related to the

input and output processes characterizing a portlet, as an example, an event of the
bookFlight portlet is rendering a list of available departure flights, i.e., execution of

the departureFlightsAvailable_OS process.

Among events we distinguish of two types: events that have already happened
and events that might occur in the future but have not happened yet. We call the

latter eventual events and they capture the permitted range of actions an end-user can
click-on at a given moment and depending on past events. Section 5.6 describes the

1It should be noted that for stable domains, this ontology can be standardized in the same way
that EDI technologies force the standardization of document formats. The Open Travel Alliance,
www.opentravel.org, is a case in point. This consortium defines XML Schemas and corresponding
usage scenarios for messages that support business activities in the travel industry. This standard can be
“OWL-ized”, and used for deep annotating travel websites.

98 Chapter 5. Portlet Interoperability Through Deep Annotation

Figure 5.4: The portal’s ontology (an excerpt).

Figure 5.5: Event instantiation.

5.5. Portlet ontology and Portal ontology 99

Figure 5.6: Eventual Event instantiation.

rationales behind the notion of eventual event more specifically, but now it is a short
sketch. Eventual event is the mechanism used to describe interoperability among

portlets. Eventual event E2 of portlet P2 indicates that event E1 of portlet P1 has
happened and that if the user wished, the event E2 might happen too, using data from

portlet P1. In our example, the booking of a flight may eventually lead to the booking
of a hotel. So when the user books a flight, the booking of a hotel is then an eventual

event (storing some of the data from flight booking). Once the hotel is booked (action
carried out by the end-user, using the stored data or not), it becomes an event.

Hence, the portal’s ontology includes two main classes: the Event class and the

EventualEvent class (see Figure 5.4). The former describes a happening of inter-
est, and its description includes the following properties: the process being enacted,

which keeps an OWL-S AtomicProcess; the timestamp at which this process was en-
acted whose range is OWLTime Instant [84]; and, the data of the process, which

holds a Thing. EventualEvent, an event that might happen, has two properties: the
process that might be enacted, which keeps an OWL-S AtomicProcess; and, the possi-

ble data of the process, which holds a Thing. Figures 5.5 and 5.6 show, respectively,
an instance of an event and an eventual event.

It is worth mentioning that the process properties keep an OWL-S AtomicProcess

(see Figure 5.4). In the Event class, process values will be output atomic processes
from portlets’ task ontologies, and in the EventualEvent class, input atomic processes.

As for the data property, it keeps a Thing (see Figure 5.4). This “thing” stands for any
of the domain classes of the portlet ontologies. For instance, a thing can be a flight,

a city, a hotel, etc. As these domain classes come from distinct ontologies, the portal
master must solve first potential mismatches and ontology mappings between the

different portlet ontologies. Mapping may become necessary as distinct communities
can have their own terms and regulations (e.g., the bookFlight portlet follows the

100 Chapter 5. Portlet Interoperability Through Deep Annotation

Open Travel Alliance standards whereas bookHotel conforms to the normative of a

different committee). Ontology mapping is a tough issue whose implications are
outside the scope of this thesis. But ontology mapping is a must to achieve portlet

interoperability, no matter which approach is used.

5.6 Annotation process

Handschuh et al. [36] define “deep annotation” as “an annotation process that uti-

lizes information proper, information structures and information context in order to

derive mappings between information structures”. Moreover, they describe that pro-
cess as “the treatment of dynamic Web documents by annotation of the underlying .database

when the database owner is cooperatively participating in the Semantic Web”. In a
similar way Agarwal et al. [1] add that this process is called deep annotation “as

its purpose is not to provide semantic annotation about the surface of what is being

annotated, this would be the Web page, but about the semantic structures in the back-

ground”. Bearing in mind those five underlined characteristics, we revise next fea-

tures of our proposal, to conclude that ours is also a deep-annotation approach.

1. The treatment is of portlet fragments. Broadly speaking, a portlet fragment is
a chunk of XHTML code (or any other rendering language). So far, the portlet

producer delivers this fragment with the only purpose of being readily rendered
by the portal.

2. In order that the portal can connect its portlets, those underlying portlets must

be annotated.

3. Portlet producers have to cooperate, including annotations in portlet fragments.
Those annotations are instantiations of the corresponding portlet ontologies.

4. Portlet annotations describe the semantics of tasks carried out by the portlet
and their data, there are not annotations about the presentation layer.

5. Some mapping rules must be defined in the Web portal. Those rules will define

the dataflow from one portlet to another and will use the portlet annotations.
The Web portal will use previous rules to make and store more annotations.

These annotations are instantiations of the portal ontology.

As defined in Section 5.3 an annotation is “a set of instantiations related to an

ontology”, and Handschuh et al. [36] add “and referring to an HTML document”. In

5.6. Annotation process 101

Who How What When Where
remote portlet — portlet portlet design portlet

annotation designer ontology time fragment
local portal automatic portal enactment portal inference

annotation ontology time engine

Table 5.1: Annotation characterization.

Figure 5.7: The markup of the sample fragment of bookFlight (an excerpt).

our context we distinguish two types of annotations, we call them remote and local.

The former ’related to a portlet fragment’ and the latter ’related to the enactment of
a portlet fragment in the portal’. By “remote annotation” we mean third-party, that

is, the portal designer does not have anything to say about it. On the other hand,
in the local annotation it is the Web portal which makes the annotations. Table 5.1

102 Chapter 5. Portlet Interoperability Through Deep Annotation

summarizes the characteristics of both annotation types in our approach. Subsections

5.6.1 and 5.6.3 describe them thoroughly. Subsection 5.6.2 introduces the process of
generation of mapping rules.

5.6.1 Remote annotation with portlet ontology

Portlet annotation process must be carried out by the portlet developer during design

or development time, according with the corresponding portlet ontology. Whether it
is an automatic or manual process is not important for the portal design. At registra-

tion time the portal designer will have to know if the portlet will collaborate in the
inter-portlet communication. If that is so, she will know that at enactment time the

portlet fragments will include instantiations of the portlet ontology, i.e., descriptions
of output and input processes (see Subsection 5.5.1). Those annotations will be used

in the portal annotation process.

Consider our sample fragment of the bookFlight portlet (see Figure 5.1). A snip-

pet of its markup is given in Figure 5.7 where three distinct parts can be distinguished,
namely:

• structure/context information markup (see Figure 5.7 (a)). Specifically, for
each “output” markup chunk (i.e., the one that renders a meaningful set of

data), an additional markup (i.e., an annotation) is inlaid where the outcome is
conceived as the result of a function. Our sample fragment conveys two output

Atomic Processes (i.e., departureFlightsAvailable_OS, and returnFlightsAvail-

able_OS). Each Atomic Process comprises its actual parameters. Process pa-

rameters correspond to instantiations of the domain ontology of the portlet, i.e.,
flightBookOnto. The flightBook namespace is introduced with this purpose.

• query-oriented markup (see Figure 5.7 (b)), which embeds the type of queries
this portlet can make. These queries correspond to widgets such as entry forms

which, so far, can only be “answered” by the end-user. For each “input” widget

an additional markup is introduced where the widgets are conceived as the re-
alization of an input-only atomic process of the portlet’s ontology. Our sample

fragment includes two input Atomic Processes (i.e., departureFlightChoice_IS

and returnFlightChoice_IS).

• rendering-oriented markup (see Figure 5.7 (c)), whose purpose is to be inter-
preted by the browser.

5.6. Annotation process 103

Figure 5.8: The inference rule related to a pipe from bookFlight to bookHotel.

5.6.2 Mapping rules

A Web portal is seen as a collage of portlet fragments. Each fragment can prompt the
user for distinct courses of actions: the bookFlight fragment is waiting for the user to

select a flight, the bookHotel fragment is prompting the user for the date of entrance,
and so on. The aim of our approach is to use deep annotation for “feeding” portlet

fragments automatically. By “feeding” we mean the process of inlaying data into
a current fragment, more specifically in its input widgets. These data are obtained

from other fragments, that is, from data rendered by other portlets. In our example,
(some) data about the booking of a hotel can be obtained from the previous booking

of a flight. In order to get that, we can define a pipe from bookFlight to bookHotel.
A pipe describes a dataflow from the source portlet to the target portlet.

104 Chapter 5. Portlet Interoperability Through Deep Annotation

Defining a pipe between two portlets means that the semantics of those portlets

must be related, that is, a mapping between their ontologies is needed. More specif-
ically, let Ps and Pt be two portlets which play the role of the source and the target,

respectively. A pipe Ps—Pt is a mapping that specifies how parameters of an Input

Atomic Process at Pt can be obtained from the actual values of an Output Atomic

Process at Ps. This definition is decided by the portal designer at portlet registration
time. In the example in order to define a pipe from bookFlight to bookHotel, the de-

signer would define an explicit mapping from departureFlightSelected_OS process
of the bookFlight portlet to searchHotel_IS process of the bookHotel portlet.

Pipes between portlets, that is, mapping rules between their ontologies, will be

used during enactment time by the Web portal, in the role of mediator among portlets.
It is the Web portal which automatically feeds the portlet input widgets. In order to

do that other mappings are needed, from the semantics of portlet processes to Web
portal semantics, that is, events and eventual events. More specifically, given that an

event instance represents a happening in the Web portal, and an output process in the
portlet represents that some data have been rendered in the Web portal, there is an

implicit mapping between Output Atomic Process and Event concepts. On the other
hand, since eventual events are happenings that have not yet occurred, and an input

process means that the portlet is prompting the user for some data, there is a mapping
between Input Atomic Process and EventualEvent concepts.

Given the mappings among portlet and portal ontologies, now we can also define

a pipe Ps—Pt as a mapping that specifies how parameters of an eventual event for Pt

can be obtained from the actual values of an event for Ps.

The definition of a pipe between two portlets (or more specifically, the def-
inition of a mapping rule among their processes) will generate an inference rule

implementation-wise. Figure 5.8 shows the inference rule corresponding to bookFlight—

bookHotel pipe. This rule is described à la PROLOG using Jena [41]. Jena is a Java

framework for building Semantic Web applications. The framework includes both
an RDF and OWL APIs as well as persistent storage for ontologies and statements.

In the example, a Rule object is defined which includes a name, a list of premises,
a list of conclusions, and an optional direction. The premise includes triples, that

check the existence of RDF statements in the Jena repository, built-in user-defined
functions (e.g., subtract), and a set of predefined functions (e.g., makeTemp). The

rule conclusion generates a new instantiation of EventualEvent.

In general, the source of the pipe could be more than one portlet, and composition
policies and data consumption policies could be designed.

5.6. Annotation process 105

Figure 5.9: Pipe definition through definition of mapping and inference rules.

Figure 5.9 summarizes the relation between the pipe rule between portlets and
the mapping rules and the inference rules among portlet and portal ontologies.

While mappings among portlet and portal ontologies are static in the Web portal
definition, mappings among portlet ontologies (i.e., pipes) depend on domain seman-

tics. However as a portlet’s processes are known in advance, during the design, the
set of pipes are also pre-established as part of the Web portal environment. Both

types of mappings will be used by the Web portal in its annotation process.

5.6.3 Local annotation with portal ontology

On the contrary to portlet annotation, annotation process related to portal ontology is
carried out at enactment time. The Web portal is the annotator and it uses the mapping

rules (see Subsection 5.6.2) to carry it out automatically. It is a deep annotating
process, that is, a mapping from the information structures found in the portlet’s

markup to the information structures of the portal. Therefore, in this case, annotations
will be Event and EventualEvent instantiations and they will be stored in the inference

engine of the Web portal.

Based on “output process – event” mapping (see Figure 5.9), the portal generates

106 Chapter 5. Portlet Interoperability Through Deep Annotation

a new Event annotation of the portal ontology when a source portlet renders data,

more specifically, when the portlet fragment contains an annotation of output atomic
process. Data in this annotation will serve to define data of the new event. In the

example, the booking of a flight, that is, the departureFlightSelected_OS process of
the last fragment of the bookFlight portlet will generate an event instance, shown

in Figure 5.5. The annotation process for EventualEvents is different, and it uses
generated event annotations and the inference rules (see Subsection 5.6.2). Next,

Subsection 5.7.1 will describe it, namely, the annotation process used to feed portlet
input widgets.

5.7 Querying process

In a traditional setting, deep annotation permits querying parties to interact with the

background structure without the help of the HTML “surface”. By contrast, we do
not want to get rid of the HTML surface. One of the added-values of a portlet when

compared with traditional Web services is that it comprises the GUI, and we want
to keep this interface. We want to interplay with the HTML surface, but with an

enhanced HTML surface where entry forms are already filled up. More specifically,
we want that some portlet input widgets are filled up with data from other portlets.

Handschuh et al. [36] establishes that mapping rules “enable third parties (query-

ing party) to access and query the (underlying) database on the basis of the semantic

that is defined in the (client) ontology”. In our approach, portlets with input widgets

are the querying parties to access and to query data of source portlets. In the query

they use their proper ontology, with input processes. This querying process imple-
ments the interoperability among portlets. In so doing, the end-user interacts with a

portlet but the effects span along multiple neighboring portlets. However, it should
be stressed that “feeding” is not a substitution for end-user interaction. That is, it is

always up to the end-user to decide whether the hotel is booked with the parameters
obtained from bookFlight or not.

Subsection 5.7.2 gives some details about querying process, but first Subsection

5.7.1 describes the second step in portal annotation through inference rule. Subsec-
tion 5.7.3 discusses about different approaches for piping rules.

5.7. Querying process 107

5.7.1 Completing portal ontology annotation

As we described in Subsection 5.6.3, while portlets render their fragments, the Web
portal stores Event instantiations with data shown in those fragments. However, the

portal annotation process has a second step to generate the EventualEvent instantia-
tions.

This step is carried out using the inference rules (see Subsection 5.6.2) pre-

established in the Web portal environment. The eventual events, since they represent
happenings that have not occurred yet, get their data from those stored past events.

In our example, taking into account the event annotation shown in Figure 5.5,

the inference rule FromBookFlightToBookHotel will generate the eventual event in-
stantiation as shown in Figure 5.6. In the sample, a searchHotel_IS eventual event

is obtained from a pair of departureFlightSelected_OS and returnFlightSelected_OS

events. Specifically, the rule checks the existence of a pair of departure and return

flight events associated to the same passenger and uses a user-defined function, sub-

tract, to calculate the duration of the stay at the hotel.

The final part of the premise uses a predefined function, makeTemp, to indicate the

creation of two new instances, newEE and newData, whose properties are assigned
in the conclusion of the rule. The former is an eventualEvent of type searchHotel_IS

whose data property corresponds to an instantiation of hotelBook. The properties of
this instance are in turn obtained from the variables which have been instantiated in

the premise of the rule, for example, values of entryDate and guest properties are the
same as values of departDate and passenger parameters in the first event instance,

and cityName parameter gets its value based on datum in destination parameter.

As we will see next, these eventual events will be used in the querying process,
that is, to feed those portlet fragments asking for data.

5.7.2 Querying at enactment time

In our context, querying is the process carried out by a portlet when it prompts for
data through an input widget, e.g., an entry form. Portlets with input widgets are the

querying parties to access and query data of source portlets, and in the query they use
their proper ontology with input processes. To this end, a convention is needed to

identify which widget obtains the value of which process property. This is achieved
by identifying the widget parameter from the input process property of the portlet

ontology. Then, based on “input process – eventual event” mappings (see Figure
5.9), the portal is able to obtain required data. The querying process finishes with

108 Chapter 5. Portlet Interoperability Through Deep Annotation

Figure 5.10: The markup of the sample fragment of bookHotel (an excerpt).

“feeding”, that is, an operation that fills up the widget with data from the parameters
of an eventual event instance. Now, it is up to the user to accept these values or

provide her own.

Figure 5.10 shows a snippet of a fragment of the bookHotel portlet (its rendering
can be seen in Figure 5.1). The form inputs are identified from the process properties

(e.g., cityNameInput). Through the “input process – eventual event” mapping the
portal will identify the corresponding eventual event for the searchHotel_IS process

(like that in Figure 5.6) and it will get the cityName content (’Madrid’). Then, the
portal will invoke the getMarkup() operation of the querying portlet. To this end,

the getMarkup() operation has been extended with an eventual-event parameter. On
reception, the portlet producer proceeds to feed the current fragment with this pa-

rameter content, and then returns the result to the portal as usual. In the current
implementation, feeding is implemented as an XSLT stylesheet. A template locates

the corresponding <input> element in the XHTML markup, and introduces a value

attribute whose content comes from the eventual-event parameter.

5.7.3 More on piping rules

Web portals exhibit eclectic navigation styles from hypertext-based to totally con-

strained ones. The former “lets users explore a body of information freely, by fol-

lowing the available links without obeying to predefined sequences of actions. The

power of hypertext is in their feature-rich interfaces for navigating in a non-linear

way a collection of related data.” [10]. This is in contrast with workflows, i.e., soft-

5.8. Related Work 109

ware systems for directing the work of users, by superimposing control over their

activities and supplying only the data needed to accomplish the currently ongoing
tasks. In workflow systems, the sequence of possible actions is predetermined and

the user is accompanied through the activities according to the workflow specifica-
tion. Depending on the task at hand, Web portals can be anyway in between these

two extremes of the navigation spectrum.
Querying, i.e., the process of making the data flow along one of the pre-established

pipes, serves navigation. The time at which querying is enacted can be tuned to the
navigation style that better fits the task at hand. Two options are possible, namely:

• forward style. By triggering piping rules in a forward mode, the target portlet

is fed by the source portlet as soon as the source portlet is enacted. As soon
as an event is risen, this happening is piped to all neighboring portlets. In so

doing, you are conducting the user towards the next tasks to be fulfilled, i.e.,

the portlets at the end of the pipe,

• backward style. Triggering piping rules in a backward mode implies the dataflow

occurring on demand. Here, the happening of an event is not immediately prop-
agated to the piped portlets. There is no update on the fragments of the target

portlets. The end-user is not distracted, and he or she can feed the target port-
let on demand. Implementation-wise, this is achieved by extending the portlet

decorator with an extra icon.

Jena2 includes a general purpose rule-based reasoner which is used to implement the
OWL reasoner. This reasoner supports rule-based inference over RDF graphs, and

provides forward chaining, backward chaining and a hybrid execution model2. The
designer should be aware that the triggering mode can influence not only the moment

at which the derived data are obtained but the data being derived as well. This stems
from event occurrences being inserted in the Jena database continuously as the user

interacts with the portlets.

5.8 Related Work

5.8.1 About interoperability or dataflow

Portlet interoperation has been addressed in [91] where the authors propose the use of
a custom JSP tag library in order to enable portlets to be a source of data. Moreover,

2For clarity sake, the example uses a forward rule.

110 Chapter 5. Portlet Interoperability Through Deep Annotation

the target portlet is defined in a WSDL file with a custom extension to describe the

actions which can consume data transferred from other portlets. At execution time,
a click-able icon is inserted into the portlet fragment. By clicking on this icon, the

user enacts the flow of data from the source portlet to the target portlet. Hence,
this approach follows a “backward style” of navigation, and piping information is

described in the WSDL file. By contrast, our approach uses the fragment markup
to convey this information, and uses ontologies to facilitate portlet interoperation.

Additionally, the use of inference rules enables sophisticated ways of piping that are
“declaratively” described using Jena rules.

This work also relates to Web service composition and orchestration. In the
SELF-SERV architecture [4], the composition of Web services is encoded using stat-

echarts. With the statechart, the service deployer generates the post-processing and
precondition tables, and this information is distributed among the participating ser-

vices. During the definition of the composite service, the producer decides if the
value of the input of a component is obtained from the output of another component

or requested from the user. By contrast, our approach is centralized (i.e., all flow
information, the piping rules, are kept in a single place, the Web portal), and it is

always up to the end-user to accept the values suggested by the piping flow. This is

akin to the portal manners where content is centralized, and freely browsed by the
user.

Yu et al. [115] agree with us saying that “integration does not just mean to put the

GUIs side by side: interactions need to be coordinated so”. In order to get this coor-

dination they propose a framework with two models, that is, a model for presentation
components and an event-based composition model. The former characterizes a com-

ponent with “the notion of state (which defines what the composite application can

see and control in terms of changes to the UI), operations to request state changes,

and events to notify state changes, mainly occurring due to user interactions”. The
final draft of the Java Portlet Specification (JSR-286) [49] also introduces the notion

of portlet events. Events could be either portal or portlet container generated or the
result of a user interaction with other portlets. The portlet should declare in its port-

let.xml deployment descriptor all events that it would like to receive and the ones it
would like to initiate. In our approach the component, that is, the portlet, is described

using input and output processes, in some sense, similar to operations and events,
respectively. The difference is our ’events’ do not notify an UI state change, but the

production, i.e., the rendering, of some data. More specifically, in [115] user actions
are the ones which trigger component-defined events, and they are related to presen-

5.8. Related Work 111

tation changes in any case, still in our approach the business logic of the component

is which decides to notify that new data have been processed and rendered to the user,
the change is more related to the business logic.

Moreover, in Yu’s approach the component communication is immediate, “the

middleware captures an event from a source component and automatically dispatches

it to the designated operations of other components, based on the event listener spec-

ifications in the composition model”. In our approach, using the inference engine, the
mapping between input and output processes can be achieved later, when the target

portlet is being rendered, because target and source portlets can be shown separately.
That apart, inference engine is also useful when more transformations are needed

in data mappings, as shown in the example with the “duration” attribute. Yu et al.

propose the use of XSLT sytlesheets or scripting languages, but we consider using on-

tologies and semantics can be more profitable, because it offers more opportunities,
apart from syntactic transformations.

5.8.2 About semantic approach

Paolucci et al. [85] and Sirin et al. [97] use a semantic approach for Web service
location and composition. DAML-based ontologies are used to describe the inputs

and outputs of the services. The semantic match between a service’s outputs and
another service’s input are determined by the minimal distance between concepts in

a taxonomy tree. This is similar to our piping in which “matching” between portlets
is achieving through the help of the ontology.

IRS-III [23] is an implemented infrastructure which allows the description, pub-

lication and execution of Semantic Web services based on the Web Service Mod-
eling Ontology (WSMO) [89]. Cabral and Domingue [14] present an approach for

mediation in IRS-III. This mediation framework implements data mediation, goal
mediation and process mediation of Semantic Web services. The Process Media-

tor component executes Web service choreography and orchestration, and it handles
mismatches that occur during the invocation or composition of a Web service. The

Process Mediator uses GG-mediators and WW-mediators, two kinds of WSMO me-
diators. The WW-mediator can provide mappings between the input values of the

Web services in the orchestration, i.e., it establishes interoperability between Web
services. The GG-mediator connects goals that characterize the Web services. These

mediators are described using states and transitions, and they play a similar role to
inference rules in our approach. They are used to resolve the mismatching of service

112 Chapter 5. Portlet Interoperability Through Deep Annotation

semantics.

Agarwal et al. [1] describe the use of deep annotation for Web service integra-
tion. WSDL files are extended with an ontology which is used to describe input and

output parameters. The service consumer acts as a querying party by mapping the
Web service ontology with its own. A framework, OntoMat-Service, generates the

mapping rules between the consumer ontology and the ontologies referred to in the
WSDL documents. At enactment time, the data for the Web services are retrieved

automatically from the client’s ontology. From this perspective, our work explores
the use of a rule-based approach where the flow is based not just on the matching

between parameters but in richer flow policies.
Mrissa et al. [65] also propose the use of annotation in WSDL for Web service

mediation. They first annotate WSDL descriptions with semantic metadata for cap-
turing contextual information, and then they propose a rule-based mediation mecha-

nism for Web services composition. Besides domain ontologies they define context
ontologies. Those describe all the modifiers, static and dynamic, that Web service

providers associate to a concept. The rule engine, using Jena 2 as in our approach,
applies appropriate conversion functions and inferring rules to the data transmitted,

so that the value of the source modifier matches the target context. Mediation func-
tionality is implemented through a mediator Web service, which is generated in a

model-driven process. The composition and dataflow is described in a WS-BPEL
process and the mediator Web service is located between every two composed Web

services [66]. By contrast, in our approach portlet composition is described in the
portal pages, putting portlets side-by-side, and dataflow is described through an in-

ference rule and the annotations in composition partners, i.e., portlets. Both, rule and
annotations, must be described by designers, there is no automatic generation.

5.9 Conclusion

Enhancing the user experience is one of the hallmarks of Web portals. This implies
for the user to perceive a Web portal as an integrated workplace where data flow

smoothly among the distinct portlets being framed by the portal. Thus, for example,
the user can see some text boxes in a portlet form already filled in with data from

other portlets or data previously typed by the user in the context of other portlets. This
chapter has presented the use of Semantic Web and, specifically, deep annotation to

portlet interoperation.
We argue that deep annotation is particularly valid for portlet interoperation due

5.9. Conclusion 113

to the controlled and cooperative environment that characterizes the portal setting.

The portlet producer can extend a portlet markup, a fragment, with data about the
processes whose rendering this fragment supports. Then, the portlet consumer (e.g.,

a Web portal) can use deep annotation to map an output process in fragment A to
an input process in fragment B. This mapping results in fragment B having its input

form (or other “input” widget) filled up.
This approach then relies on portlet developers to include annotations in portlet

fragments. We do not think the latter is an optimistic supposition because the reuse
of third-party portlets will depend on the facilities that they offered to be included in

external Web portals.

114 Chapter 5. Portlet Interoperability Through Deep Annotation

Chapter 6

Conclusion

This chapter reviews our main contributions and proposes new topics for future
work.

6.1 Main Contributions

This dissertation has centered around portlet-centric Web portals, and more specifi-

cally, the design and the implementation of dataflow among portlets.

6.1.1 Reuse-based Design Method for Web portals

It goes without saying the importance of design for software development. When the

domain complexity is not handled in the design, it won’t matter that the infrastruc-

tural technology is well conceived [26]. Initially design methods for Web applica-
tions centered in the concerns of content, navigation and presentation. Some of them

evolved taking into account business processes and integrated them with the former
aspects [11, 90, 57]. A business process defines a sequence of activities to be exe-

cuted, and those methods describe processes using activity diagrams. Depending on
the methods, these diagrams are used in different ways to enrich or derive data and

115

116 Chapter 6. Conclusion

navigation models. However, this dissertation takes into account business processes

in a coarser granularity.

Our aim was proposing a design method with reuse, following previous approaches
of Sametinger [92] and Jacobson [46]. Therefore, we can consider that ours is a

bottom-up alternative for Web portal design. Thus, the construction of a new Web
portal is based on gathering the appropriate components, i.e. portlets, that are al-

ready available. Once “the portlet palette” is obtained, the rest of design steps take
that as the baseline. Such design takes statecharts as the main conduit for describing

how portlets are gathered together. Additionally, the rendering model specifies the
aesthetic presentation of each state. The rendering model takes advantage of hierar-

chical construction of orchestration model to specify the presentation in a stepwise

manner. Thus, aesthetic parameters are obtained through an inheritance-like mecha-
nism based on the state hierarchy.

Therefore, the main outcome of the design is an annotated statechart which ac-

counts for the main portal design decisions, i.e. tasks, structural organization and
workflow organization and aesthetic concerns.

This proposal was presented in the 7th International Conference on Web Infor-
mation Systems Engineering (WISE 2006), Wuhan, China: Modeling Portlet Aggre-

gation Through Statecharts. O. Díaz, A. Irastorza, M. Azanza, and F.M. Villoria.
Lecture Notes in Computer Science - 4255, pages 265-276 (ISBN: 3-540-48105-2).

This international conference had an acceptance ratio of 20% (37 out of 183).

Moreover, a preliminary work about different approaches for component-based
design was presented in Software Engineering, Artificial Intelligence, Networking

and Parallel/Distributed Computing (SNPD 2002), Madrid, Spain: Component-Based

Design: Alternatives During Partition Phase A. Irastorza, A. Jaime, and O. Díaz.

Proceedings of the conference, pages 263-271 (ISBN: 0-9700776-4-5). This interna-
tional conference had an acceptance ratio of about 50%.

6.1.2 Code-generation for Web portals

The proposal presented in Chapter 4 for design of Web portals is based on Web com-

ponents. It improves productivity and decreases the cost of production, because it
isolates functionality and allows for debugging and upgrading it in an independent

way. Besides productivity improvement, among our concerns is also the product
quality.

We consider that the development quality is improved through two efforts: code

6.1. Main Contributions 117

reusing and code generation. On one hand, we assume that portlets, as Web com-

ponents, should be included in a repository, should be reliable, appropriately docu-
mented, self-content and sufficiently proved, and they should also use standard archi-

tectures. Therefore, the use of such components would be a guarantee for the quality
of the obtained Web portal.

On the other hand, code generation is also a technique that strives to improve not
only time-to-market but also the quality of the final product by embodying best prac-

tices in the transformation. From this perspective, mechanisms were needed to move
from statechart models (used during design) to implementation concepts, like Web

page, anchor, CSS class, and so on. To this end, an MDD approach is used, specifi-
cally, two metamodels are introduced with their corresponding transformations. The

first metamodel, called SOP, is a PIM (Platform-Independent Model) and comprises
three packages, i.e. task, orchestration and rendering (one for each concern in the

Web portal design). The second metamodel is PSM (Platform-Specific Model): the
eXo platform. The work is completed with the RubyTL implementation of the trans-

formation of PIM-to-PSM and PSM-to-code. The transformation execution is truly
automatic with no user involvement required.

This proposal was accepted for publication in the Journal of Information and Soft-
ware Technology (26th November 2007): From page-centric to portlet-centric Web

development: Easing the transition using MDD. O. Díaz, A. Irastorza, J. Sánchez-
Cuadrado, and L.M. Alonso. (doi:10.1016/j.infsof.2007.11.006). In 2007 this journal

had an impact factor of 0.581 c© Journal Citation Reports 2008.

6.1.3 Dataflow among portlets

Apart from being an access point to data, one of the most important features of Web

portals is its capability for integration. This thesis has been focused on portlet-centric
Web portals, so here integration means portlet interoperability, that is, the ability of

two or more portlets to exchange information.

If the aim of the former contributions was facilitating the work of designers and

developers, now the focus is on end-users. Information shown in one portlet will
surely be required in another, and forcing the end-user to manually copy and key in

data from source to target portlets leads to frustration, and inevitable mistakes.

Although the final draft of the Java Portlet Specification (JSR-286) [49], with the

notion of portlet events as a means of communication among portlets, was proposed
at the end of 2007, at the time of this work, there was not yet an agreement on how

118 Chapter 6. Conclusion

to standardize the portlet interoperability. Our proposal was a front-end approach,

where presentation fragments of portlets were annotated with information about the
rendering process, that is, information about which data, and how, are shown or re-

quest to the end-user. It is a seamless integration approach, where the user does not
need to have an active attitude so that the dataflow takes place. OWL rules are which

make inference of data, i.e. carry out the flow.
This proposal was presented in the 14th International Conference on World Wide

Web (WWW 2005), Chiba, Japan: Improving Portlet Interoperability Through Deep

Annotation. O. Díaz, J. Iturrioz, and A. Irastorza. Proceedings of the conference,

pages 372-381 (ISBN: 1-59593-046-9). This international conference had an accep-
tance ratio of 14% (77 out of 550).

6.2 Future Work

The three basic ideas presented so far has been implemented and proved as feasible

using some sample cases. However more work should be carried out in the Web portal
design approach. More specifically, we should collaborate with different industrial

partners in order to apply our design approach on real problems. Furthermore, this
work might be extended in several areas we present next.

• Complete SOP metamodel. The design approach, materialized in the SOP

metamodel, is focused on functionality, but a Web portal can contain much
more. It can include advertisements, structured and non-structured contents,

and the like, so the SOP model resulting from the design process should take
them into account. Moreover, apart from a user-driven control-flow, a task-

driven control-flow could also be studied. What we mean by task-driven control-

flow is that the end of a task could trigger the beginning of another task in the

Web portal, without the participation of the user. Modelling would need an-

other type of transitions for this control-flow. Furthermore, our proposal for
both rendering and personalization models are preliminary, and more study is

required, for example, to take into account usability guidelines and to look for
the way to describe a CIM (Computation-Independent Model) for them and

then a transformation to the SOP metamodel.

• MDD approach for dataflow design. Chapter 5 describes our approach, based

on deep annotation, for dataflow implementation, however surely portal de-
signers will miss a means to describe dataflow at design-level. Further work

6.2. Future Work 119

is needed to find a model for this design aspect, and then, to apply an MDD-

approach so that inference rules for dataflow can be generated automatically
from that model. More specifically, first the WSRP metamodel presented in

Chapter 4 should be extended with the description of input and output pro-
cesses (used in Chapter 5 to carry out the dataflow) and the association among

them (in order to represent the design of dataflow). Moreover, a metamodel for
the inference rules should also be defined, and then, a transformation from the

WSRP-extended metamodel to the new metamodel of inference rules.

• Dataflow model. Dataflow is implemented through the inference from data of
one portlet to data of another portlet, but more complex semantic rules could

be defined, e.g., inference rules with events from different source portlets as
participants. Besides, the inference rule model should be improved to include

several policies on data events, such us, consumption, deletion and so on.

• Platform and model evolution. MDE promises that both development and
maintenance effort can be reduced by working at the model level. While

distinct experiences provide evidences of the fulfillment of this promise for
model-driven development, model maintenance has not received so much at-

tention. However, system maintenance is reckoned to be the most consuming
software activity, and MDE has yet to demonstrate that really pays off when

facing maintenance. Although, seamless platform evolution was one of the rai-
son d’etre of MDE, it is also true that MDE introduces distinct "abstract plat-

forms" which pose stringent demands when any of these platforms (or their
mappings) need to be evolved. Somehow, we have already suffered from this

pain. The proposal of this thesis and the metamodel for eXo platform are based
on version 1.0 of that platform, but version 2.0 has already been released. This

problem leads us to another research area more focused on MDD. We should
work about how to apply techniques on metamodel evolution to our approach,

and how to modify the SOP or EXO metamodels, so that changes in design
models can be automatically propagated to the corresponding Web portals al-

ready working, or developers can upgrade working portals to the new platform
version.

120 Chapter 6. Conclusion

6.3 Some final thoughts

Model-driven engineering departs from traditional software engineering, with its
mostly monolithic development platform. Instead of one or a few programming lan-

guages, MDE development introduces a multitude of languages that are themselves
artefacts of the development process. Traditional projects require competence in the

PSM. The very same project using MDD, requires competence in both the PSM and
the PIM as well as being knowledgeable about transformation language and MDD

environments. Interesting enough, this drawback is seldom mentioned despite being
a main stumbling block for companies to embrace this paradigm shift.

We “severely” suffer such drawback. Building portlet-based portals require in
itself to master a broad range of technologies. In our case, we had to cope with

eXo platform, WSRP and Java as the PSMs. But this was not enough. We needed
to become familiarized with state machines as the PIM. Finally, model transforma-

tion required to become aware of QVT and ATL, which were finally overridden by
RubyTL. This implies a large bulk of technologies and platforms just to begin to

grasp the solution space.
In a real setting, such heterogeneity calls for a separation between distinct groups.

Research wise, this is more difficult to achieve as the research contribution sometimes
lies in between. That is, we regard as a main contribution of this dissertation, the

engineering practice that demonstrates the feasibility of using statecharts as a PIM for
eXo portals. From this viewpoint, the contribution is not so about statecharts nor the

eXo platform. There were already there. Neither is it about model transformations,

though some improvements in RubyTL were identified during this thesis. Rather, a
main challenge rested on combining all technologies and practices to solve a non-
trivial problem.

Appendix A

SOP-to-EXO Transformations

A.1 Introduction1

This thesis dissertation presents an MDD approach for Web portal construction, fol-
lowing the MDA proposal. Thus, two metamodels have been designed, a PIM named

SOP and a PSM named EXO (both described in Chapter 4), and the transformation
from SOP to EXO has been implemented in the RubyTL language [99]. The main

features of that transformation were also presented in Chapter 4, and this appendix
describes the transformation rules thoroughly.

Figure A.1 depicts the SOP metamodel, with its three viewpoints integrated, i.e.,
TASK, ORCHESTRATION and RENDERING. It also shows the relation among the

concepts from different viewpoints: (a) a Workspace and a Task in TASK are related
to one StateMachine and one SimpleState, respectively, in ORCHESTRATION; (b) a

StateMachine in ORCHESTRATION is related to one WorkviewDescriptor and three
Descriptors in RENDERING, a Transition can be related to one AnchorDescriptor, a

State can be related to one WindowDescriptor and one AnchorDescriptor, and more-
over it can be related to one ’helping text’ (therefore, the overall description of the

portal is at statemachine level, and at state or at transition level special description can
be placed, namely, the special description for a specific state, or its inner substates,

or a specific transition).

1My special gratitude to Luis M. Alonso for his help and support in the creation of this annexe.

121

122 Appendix A. SOP-to-EXO Transformations

Figure A.1: The complete SOP metamodel.

EXO metamodel is composed of five packages: CONFIG, PAGES, NAVIGA-
TION, CSS, and SKIN_CONFIG (see Figure A.2). Each one corresponds to one

of the files to configure the Web portal (**_config.xml, **_pages.xml, **_naviga-

tion.xml, {portalName}.css, and skin_config.xml, respectively2).

Moreover, a third metamodel has also been defined, the WSRP metamodel (see

Figure A.3). It describes the set of WSRP portlets will be used in the new portal
implementation, namely, the portlets which will implement the task collected in the

portal design.

In order to get the XML and CSS files of the new eXo portal, i.e., its code, the
transformation process includes two steps, the first one implements model-to-model

transformations, specifically, from SOP-to-EXO, and the second one, model-to-code
transformations. Figure A.4 depicts the overall process. It takes a SOP model and a

WSRP model as input and gets five eXo files. The process to get the **_config.xml,

2The ** symbol stands for username, since there is a configuration file set for each registered user.

A.1. Introduction 123

Figure A.2: The EXO metamodel.

124 Appendix A. SOP-to-EXO Transformations

Figure A.3: The WSRP metamodel.

Figure A.4: Transformation process.

A.1. Introduction 125

**_navigation.xml, and {portalName}.css files is completely automatic and straight.

In order to get the **_pages.xml and skin_config.xml files, first a merge process must
be carried out to specify the relationship of each simple state in the ORCHESTRA-

TION part with a portlet in the WSRP model, provided that they have equal names,
then the rest of the process takes place as before.

Listing A.1: The template-pages.2code file.
1 main do
2 c o m p o s e _ f i l e ’pages.xml’ do
3 EXO : : Pages : : PageSe t . a l l _ o b j e c t s do | o b j |
4 apply_template ’templates/template-pages.rtemplate’ , : o b j => o b j
5 end
6 end
7 end

Listing A.2: The template-pages.rtemplate file.
<? xml v e r s i o n ="1.0" en c o d i n g ="ISO-8859-1"?>
<page−s e t x m l n s : x s i ="http://www.w3.org/2001/XMLSchema-instance">

<%o b j . pages . each do | page |%>
<page r e n d e r e r ="<%=page.renderer%>" d e c o r a t o r ="<%=page.decorator%>">

<name><%=page . name%>< / name>
< v i e w P e r m i s s i o n ><%=page . v i e w P e r m i s s i o n%>< / v i e w P e r m i s s i o n >
. . .
<%i f page . t e x t P o r t l e t %>
< p o r t l e t r e n d e r e r ="<%=page.textPortlet.renderer%>"

d e c o r a t o r ="<%=page.textPortlet.decorator%>">
< p o r t l e t−s t y l e ><%=page . t e x t P o r t l e t . p o r t l e t S t y l e%>< / p o r t l e t −s t y l e >
< t i t l e ><%=page . t e x t P o r t l e t . t i t l e%>< / t i t l e >
. . .

< / p o r t l e t >
<%end

c o n t a i n e r 4 s t a t e s =page . c o n t a i n e r . c o l l e c t
c o n t a i n e r 4 t r a n s i c i o n e s = c o n t a i n e r 4 s t a t e s . d e l e t e _ a t (0)

i f o b j . l a y o u t == "top"

c o n t a i n e r = c o n t a i n e r 4 t r a n s i c i o n e s
%>
< c o n t a i n e r r e n d e r e r ="<%=container.renderer%>"

d e c o r a t o r ="<%=container.decorator%>"><%
c o n t a i n e r . p o r t l e t s . each do | p |

%>
< p o r t l e t r e n d e r e r ="<%=p.renderer%>"

d e c o r a t o r ="<%=p.decorator%>">
< p o r t l e t−s t y l e ><%=p . p o r t l e t S t y l e%>< / p o r t l e t−s t y l e ><%
i f p . t i t l e != n i l :%>< t i t l e ><%=p . t i t l e%>< / t i t l e ><%end%>
<windowId>@owner@: / <%=p . windowId%>< / windowId><%
. . .

</ p o r t l e t ><%
end # each
%>

< / c o n t a i n e r ><%
end # i f

c o l a C o n t a i n e r s = c o n t a i n e r 4 s t a t e s
c o l a C o n t a i n e r s . r e v e r s e !
w h i l e c o l a C o n t a i n e r s . any ? { | x | t r u e }

c o n t a i n e r = c o l a C o n t a i n e r s . a t (−1)
c o l a C o n t a i n e r s . d e l e t e _ a t (−1)

i f c o n t a i n e r != n i l

126 Appendix A. SOP-to-EXO Transformations

%>
< c o n t a i n e r r e n d e r e r ="<%=container.renderer%>"

d e c o r a t o r ="<%=container.decorator%>"><%
c o n t a i n e r . p o r t l e t s . each do | p |
%>

< p o r t l e t r e n d e r e r ="<%=p.renderer%>"
d e c o r a t o r ="<%=p.decorator%>">

< p o r t l e t−s t y l e ><%=p . p o r t l e t S t y l e%>< / p o r t l e t−s t y l e ><%
<windowId>@owner@: / <%=p . windowId%>< / windowId><%
. . .

</ p o r t l e t ><%
end ### each

c o l a C o n t a i n e r s = c o l a C o n t a i n e r s + [n i l] +
c o n t a i n e r . s u b c o n t a i n e r s . c o l l e c t . r e v e r s e

%>
< / c o n t a i n e r ><%

end # i f
end ### w h i l e c o l a C o n t a i n e r s . any ?

page . s t a t e P o r t l e t s . each do | p |
%>

< p o r t l e t r e n d e r e r ="<%=p.renderer%>" d e c o r a t o r ="<%=p.decorator%>">
< p o r t l e t−s t y l e ><%=p . p o r t l e t S t y l e%>< / p o r t l e t−s t y l e ><%
. . .
<windowId>@owner@: / <%=p . windowId%>< / windowId><%

i f p . p r e f e r e n c e s . any ?
%>

< p o r t l e t−p r e f e r e n c e s ><%
p . p r e f e r e n c e s . each { | l | l . p r e f e r e n c e . each { | p r e f | %>

< p r e f e r e n c e >
<name><%=p r e f . name%>< / name>
< v a l u e ><%=p r e f . v a l u e%>< / v a l u e >

< / p r e f e r e n c e ><%
}}%>

< / p o r t l e t−p r e f e r e n c e s ><%
end%>

< / p o r t l e t ><%
end # each

i f o b j . l a y o u t == "bottom"

. . .
end # i f

. . .
%>

< / page >
<%end%>

< / page−s e t >

Following sections describe the model-to-model transformations thoroughly (i.e.,

the ’2...’ activities in Figure A.4). Each activity has been implemented in RubyTL as
a set of transformation rules grouped in a modular element, named phase [98].

As for the model-to-code transformations (i.e., the ’Template...’ activities in Fig-

ure A.4), they are implemented through jsp-templates. Listing A.1 depicts the Ruby
code which calls the template to be applied to PageSet element, from EXO::Pages

package. An excerpt of that template is shown in Listing A.2. It builds the structure of
the **-pages.xml file, and at the same time it scans the elements of the EXO model,

specifically its Pages package, and when it is necessary it gets a value from the
model (e.g., page.title, page.textPortlet.renderer, and so on).

A.2. Transformation for CONFIG package 127

Figure A.5: A Portal layout.

A.2 Transformation for CONFIG package

Listing A.3 depicts the rule set which creates the CONFIG package of an EXO model,

i.e., the part corresponding to the **_config.xml file. The set of portlets and containers
composing the portal layout can have several combinations, the transformation in

this prototype generates a concrete layout, shown in Figure A.5. This portal layout
contains a banner and a footer, and, in the middle, a container including a body

element (this element will contain the eXo pages, generated in a later transformation
process). Body, Container, PortalLayout and so on are elements of the EXO

metamodel (see Figure A.2). In eXo, banners and footers are shown using portlets.

Specifically, for a StateMachine in the ORCHESTRATION a PortalConfig

element in the EXO::Config package is generated. It contains one single Portal-
Layout object, which is generated by the Rule4PortalLayout rule (line 42).

The structure of that object is completed firing another two rules Rule4Portal-
LayoutContainer and Rule4PortalLayoutPortlet. The former (in line 95)

generates the Container element for the Body element and the latter (in line 64)
generates two Portlet objects, for the banner and the footer. In both cases this

transformation uses the DisplayStaticContent portlet (in line 70), offered by
eXo platform to show static content. The transformation could have been parametrized

in order to be able to configure the use of different portlets. Each portlet has one
PortletPreferences object, which is generated and completed by the Rule4-

128 Appendix A. SOP-to-EXO Transformations

BannerFooterPreferences rule (line 117).

The transformation has the following parameters: view_permission, edit_permission,
and locale. Their values come from the EXO__Config_parameters global vari-

able, defined when the transformation is launched. The EXO__Config_default_-
parameters local variable stores a map with their default values, i.e., owner,

owner and en, respectively (line 8). These values are overridden when the first vari-
able has its proper values (line 17). The Rule4PortalConfig rule will use those

parameter values to complete the content of PortalConfig element.

Listing A.3: The sop2config.rb file.
1 u s e _ l i b r a r y ’helper://state_machine’

2 u s e _ l i b r a r y ’helper://presentation’

4 t r a n s f o r m a t i o n ’SOP2Config’

6 # T r a n s f o r m a t i o n p a r a m e t e r s

8 E X O _ _ C o n f i g _ d e f a u l t _ v a l u e s = { #
9 : v i e w _ p e r m i s s i o n => ’owner’ ,

10 : e d i t _ p e r m i s s i o n => ’owner’ ,
11 : l o c a l e => ’en’

12 }

14 # Take d e f a u l t v a l u e s , i f n o t g i v e n
15 $EXO__Conf ig_parameters | | = E X O _ _ C o n f i g _ d e f a u l t _ v a l u e s
16 $EXO__Conf ig_parameters =
17 E X O _ _ C o n f i g _ d e f a u l t _ v a l u e s . merge ($EXO__Conf ig_parameters) #

19 VIEW_PERMISSION = $EXO__Conf ig_parameters [: v i e w _ p e r m i s s i o n]
20 EDIT_PERMISSION = $EXO__Conf ig_parameters [: e d i t _ p e r m i s s i o n]
21 LOCALE = $EXO__Conf ig_parameters [: l o c a l e]

24 phase ’EXO__Config__PortalConfig__generation’ do

26 # Each S t a t e M a c h i n e i s t r a n s f o r m e d i n t o a P o r t a l C o n f i g o b j e c t ,
27 # c o n t a i n i n g t h e r e f e r e n c e t o a P o r t a l L a y o u t .
28 #
29 t o p _ r u l e ’Rule4PortalConfig’ do
30 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
31 to EXO : : Conf ig : : P o r t a l C o n f i g

33 mapping do | s t a t e _ m a c h i n e , p o r t a l _ c o n f i g |
34 p o r t a l _ c o n f i g . l o c a l e = LOCALE
35 p o r t a l _ c o n f i g . v i e w P e r m i s s i o n = VIEW_PERMISSION
36 p o r t a l _ c o n f i g . e d i t P e r m i s s i o n = EDIT_PERMISSION
37 p o r t a l _ c o n f i g . l a y o u t = s t a t e _ m a c h i n e # f i r e s R u l e 4 P o r t a l L a y o u t
38 end
39 end

42 r u l e ’Rule4PortalLayout’ do #
43 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
44 to EXO : : Conf ig : : P o r t a l L a y o u t

46 mapping do | s t a t e _ m a c h i n e , p o r t a l _ l a y o u t |
47 p o r t a l _ l a y o u t . r e n d e r e r = s t a t e _ m a c h i n e . workview . p o r t a l R e n d e r e r
48 p o r t a l _ l a y o u t . d e c o r a t o r = s t a t e _ m a c h i n e . p o r t a l _ t i t l e + "CDecorator"

49 p o r t a l _ l a y o u t . w id th = "100%"

50 p o r t a l _ l a y o u t . h e i g h t = "100%"

A.2. Transformation for CONFIG package 129

52 p o r t a l _ l a y o u t . p o r t l e t s = #
53 # f i r e s R u l e 4 P o r t a l L a y o u t P o r t l e t s
54 s t a t e _ m a c h i n e
55 p o r t a l _ l a y o u t . c o n t a i n e r s = p o r t a l _ l a y o u t # f i r e s R u l e 4 P o r t a l L a y o u t C o n t a i n e r
56 end
57 end

59 # The P o r t a l L a y o u t c o n t a i n e d i n t h e P o r t a l C o n f i g o b j e c t , c o n t a i n s two
60 # P o r t l e t r e f e r e n c e s , f o r banner and f o o t e r , r e s p e c t i v e l y .
61 # The s o u r c e must be S t a t e M a c h i n e s i n c e i t i s needed t o g e t
62 # some d e s i g n v a l u e s and t o s e t t h e a t r i b u t e s
63 #
64 r u l e ’Rule4PortalLayoutPortlet’ do #
65 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
66 to EXO : : Conf ig : : P o r t l e t , EXO : : Conf ig : : P o r t l e t

68 mapping do | s t a t e _ m a c h i n e , banner , f o o t e r |
69 banne r . showInfoBar = "true"

70 banne r . windowId = "@owner@:/content/DisplayStaticContent/banner" #

72 f o o t e r . showInfoBar = "false"

73 f o o t e r . windowId = "@owner@:/content/DisplayStaticContent/footer"

75 banne r . p r e f e r e n c e s = banne r # f i r e s R u l e 4 B a n n e r F o o t e r P r e f e r e n c e s #
76 f o o t e r . p r e f e r e n c e s = f o o t e r # f i r e s R u l e 4 B a n n e r F o o t e r P r e f e r e n c e s #

78 #add a n o t h e r v a l u e t o each P r e f e r e n c e
79 t m p _ u r i =
80 "uri=war:/#{state_machine.portal_title}/static-content/" +
81 "#{state_machine.workview.banner}"

82 banne r . p r e f e r e n c e s [0] . p r e f e r e n c e s [0] . v a l u e s << #
83 EXO : : Conf ig : : Value . new (: v a l u e => t m p _ u r i)
84 t m p _ u r i =
85 "uri=war:/#{state_machine.portal_title}/static-content/" +
86 "#{state_machine.workview.footer}"

87 f o o t e r . p r e f e r e n c e s [0] . p r e f e r e n c e s [0] . v a l u e s << #
88 EXO : : Conf ig : : Value . new (: v a l u e => t m p _ u r i)
89 end
90 end

92 # The P o r t a l L a y o u t c o n t a i n e d i n t h e P o r t a l C o n f i g o b j e c t ,
93 # c o n t a i n s one C o n t a i n e r o b j e c t
94 #
95 r u l e ’Rule4PortalLayoutContainer’ do #
96 from EXO : : Conf ig : : P o r t a l L a y o u t
97 to EXO : : Conf ig : : C o n t a i n e r

99 mapping do | s t a t e _ m a c h i n e , c o n t a i n e r |
100 c o n t a i n e r . d e c o r a t o r = "default"

101 c o n t a i n e r . body = c o n t a i n e r
102 end
103 end

105 r u l e ’Rule4PortalLayoutContainerBody’ do
106 from EXO : : Conf ig : : C o n t a i n e r
107 to EXO : : Conf ig : : Body

109 mapping do | c o n t a i n e r , body |
110 body . componentType = "page-node"

111 body . component Id = "/"

112 end
113 end

116 # Banner , Foo t e r P r e f e r e n c e s
117 r u l e ’Rule4BannerFooterPreferences’ do #
118 from EXO : : Conf ig : : P o r t l e t
119 to EXO : : Conf ig : : P o r t l e t P r e f e r e n c e s

130 Appendix A. SOP-to-EXO Transformations

121 mapping do | p o r t l e t , p o r t l e t _ p r e f e r e n c e s |
122 p o r t l e t _ p r e f e r e n c e s . p r e f e r e n c e s = p o r t l e t _ p r e f e r e n c e s
123 end
124 end

126 r u l e ’Rule4BannerFooterPreference’ do
127 from EXO : : Conf ig : : P o r t l e t P r e f e r e n c e s
128 to EXO : : Conf ig : : P r e f e r e n c e

130 mapping do | p o r t l e t _ p r e f e r e n c e s , p r e f e r e n c e |
131 p r e f e r e n c e . name = "default"

132 p r e f e r e n c e . v a l u e s = p r e f e r e n c e
133 end
134 end

136 r u l e ’Rule4BannerFooterPreferenceValues’ do #
137 from EXO : : Conf ig : : P r e f e r e n c e
138 to EXO : : Conf ig : : Value , EXO : : Conf ig : : Value

140 mapping do | p r e f e r e n c e , a , b |
141 a . v a l u e = "title=Default Content"

142 b . v a l u e = "encoding=UTF-8"

143 end
144 end
145 end

A.3 Transformation for CSS package

The portal look-and-feel is described through several CSS classes that can be defined

along one or more CSS files. This approach has decided to collect all CSS classes
in one file, represented by CssClassSet metaclass in the EXO metamodel. That

file will have the same name as the Web portal, decided at design level, in the SOP
model. Listing A.4 depicts the rule set which creates the CSS package of an EXO

model, which corresponds to the CSS file. Before giving more details about the rules,
we will explain the used naming convention and some features of eXo, implicit in the

transformation.

In eXo portals almost everything is implemented with portlets. As said in the pre-
vious section, portal banner and footer are shown through a portlet, moreover another

portlet, named navigationStep, implements the transitions among portal pages and a
third portlet, named showText, shows the text that at design level we called ’helping

text’.

Otherwise, eXo platform has four UI component types, namely, portal, page, con-

tainer and portlet. Each component has CSS classes to describe its presentation. As
shown in the EXO metamodel, those classes are classified in three groups: decorator

classes for containers, and portal and pages, as special containers (described through
the ContainerDecoratorClass metaclass), decorator classes for portlets (de-

A.3. Transformation for CSS package 131

scribed with the PortletDecoratorClass metaclass) and font-style classes for

portlet content (described with the PortletStyleClass metaclass). Each page
and each container can have its own decorator class, but in the prototype presented

in this thesis only one class is generated in each case (i.e., every page, and every
container, has the same presentation). Both decorator classes have the portal name

as a prefix in their names, and then, as suffix, TransparentDecorator in the
container decorator3 and PageDecorator in the page decorator.

As for portlets, the naming convention is to put Decorator as suffix for dec-
orator classes and Style for font-style classes. Moreover, those class names will

have the portal name, the portlet name or the transition name as prefix, depending on
the specific portlet:

• The showText portlet will have only one presentation throughout the portal, so

only one decorator class and one font-style class are generated. Therefore, the
portal name is used as prefix. For sake of legibility, moreover TextP is added

in the middle of the name.

• The navigationStep portlet is used for transitions, and its presentation can

be different each time, depending on the design. Therefore, one decorator
class (and one font-style class) must be generated for each transition. The

transition name is used as prefix to distinguish each class name. Moreover,
Anchor is added to indicate that those are classes for transitions, or anchors

in implementation-wise.

• Functionality tasks are implemented through several portlets, each one with its
presentation requirements depending on the design. Therefore, one decorator

class (and one font-style class) is generated for each one and the portlet name
is used as prefix (P is added in the middle to distinguish from previous classes).

Table A.1 sums up what has been described.
Transformation in Listing A.4 generates a CssClassSet element in the EXO:-

:CSS package for a StateMachine in the ORCHESTRATION of a SOP model.
Transformation starts with the Rule4CssClassSet top rule, in line 10; this rule

also fires the generation of the elements contained in the CssClassSet. Specif-
ically, it fires the Rule4Container rule (in line 34) to generate the container

3In this approach containers are used to structure the composition of portlets, side-by-side or one
below the other. They do not have specific presentation features, therefore they are no visible and we
give them a transparent decorator (with no color in the background, no borderline, and so on). That is
why we use TransparentDecorator as the name of the class.

132 Appendix A. SOP-to-EXO Transformations

Decorator Style

Page portalNamePageDecorator —
Container portalNameTransparentDecorator —

Portlet (tasks) portletNamePDecorator portletNamePStyle

Portlet (anchors) transitionNameAnchorDecorator transitionNameAnchorStyle

Portlet (helpingText) portalNameTextPDecorator portalNameTextPStyle

Table A.1: Naming convention for CSS classes of UI components.

decorators (as said before, their names are {portalName}PageDecorator and

{portalName}TransparentDecorator) and then the rules to generate dec-
orator and font-style classes for different portlets, namely,

• The Rule4TextDecorator and Rule4TextStyle rules generate two
CSS classes named {portalName}TextPDecorator and {portalName}-

TextPStyle, respectively. They are the classes for the showText portlet.

• The SimpleState2Decorator and SimpleState2Style rules (in lines 98

and 115, respectively) are fired once for each simple state (since they are re-
lated to portal tasks, i.e., portlets).

• The Transition2Decorator and Transition2Style rules (in lines 133

and 149, respectively) are fired once for each transition. All of them will
be used with the navigationStep portlet. As said before, this portlet imple-

ments transitions among portal pages and in the Web portal is rendered as
an anchor (using the hypermedia terminology). Since presentation features

of each anchor can vary depending on its design, more specifically, on the
AnchorDescriptor values, a class pair is generated for each transition/an-

chor, in other words, for each use of the navigationStep portlet.

The values for attributes in the {portalName}PageDecorator class are copied

from the WorkviewDescriptor element (in the RENDERING package) associ-
ated with the StateMachine. Attribute values of portlet classes come from the

HelpingTextDescriptor, WindowDescriptor, and AnchorDescriptor
elements (in the RENDERING package) which are associated with stateMachine,

state and transition, respectively. Given the hierarchical definition of state-
charts, some states or transitions may not have a rendering descriptor associated or

they may be lacking in some attributes. In such cases, they inherit rendering values
from descriptors associated with their ancestors. This inheritance is achieved through

A.3. Transformation for CSS package 133

some auxiliary functions, such as the window_descriptor and anchor_descriptor

functions, used in the SimpleState2Style and Transition2Style rules (in
lines 115 and 149, respectively), for example.

Listing A.4: The sop2css.rb file.
1 u s e _ l i b r a r y ’helper://state_machine’

3 t r a n s f o r m a t i o n ’SOP2CSS’

5 phase ’sop2CSS’ do

7 # Each S t a t e M a c h i n e i s t r a n s f o r m e d i n t o a C s s C l a s s S e t , t h a t
8 # c o n t a i n s r e f e r e n c e s t o CSS c l a s s e s .
9 #

10 t o p _ r u l e ’Rule4CssClassSet’ do #
11 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
12 to EXO : : CSS : : C s s C l a s s S e t

14 mapping do | s t a t e _ m a c h i n e , c l _ s e t |
15 c l _ s e t . name = s t a t e _ m a c h i n e . p o r t a l _ t i t l e
16 c l _ s e t . c o n t a i n e r s = s t a t e _ m a c h i n e # f i r e s R u l e 4 C o n t a i n e r
17 c l _ s e t . d e c o r a t o r s =
18 # f i r e s r u l e s
19 # R u l e 4 T e x t D e c o r a t o r S i m p l e S t a t e 2 D e c o r a t o r T r a n s i t i o n 2 D e c o r a t o r
20 [s t a t e _ m a c h i n e] +
21 s t a t e _ m a c h i n e . s i m p l e _ s t a t e s + s t a t e _ m a c h i n e . a l l _ t r a n s i t i o n s
22 c l _ s e t . p o r t l e t s =
23 # f i r e s r u l e s
24 # R u l e 4 T e x t S t y l e S i m p l e S t a t e 2 S t y l e T r a n s i t i o n 2 S t y l e
25 [s t a t e _ m a c h i n e] +
26 s t a t e _ m a c h i n e . s i m p l e _ s t a t e s + s t a t e _ m a c h i n e . a l l _ t r a n s i t i o n s
27 end
28 end

30 # Each S t a t e M a c h i n e g e n e r a t e s two C o n t a i n e r D e c o r a t o r C l a s s o b j e c t s named :
31 # p o r t a l _ t i t l e +PageDecorator
32 # p o r t a l _ t i t l e +T r a n s p a r e n t D e c o r a t o r
33 #
34 r u l e ’Rule4Container’ do #
35 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
36 to EXO : : CSS : : C o n t a i n e r D e c o r a t o r C l a s s ,
37 EXO : : CSS : : C o n t a i n e r D e c o r a t o r C l a s s

39 mapping do | s t a t e _ m a c h i n e , page , t r a n s p a r e n t |
40 page . name = #
41 s t a t e _ m a c h i n e . p o r t a l _ t i t l e + "PageDecorator"

42 page . b o r d e r S t y l e = s t a t e _ m a c h i n e . workview . b o r d e r S t y l e
43 page . bo rde rWid th = s t a t e _ m a c h i n e . workview . bo rde rWid th
44 page . background = s t a t e _ m a c h i n e . workview . background
45 page . b o r d e r C o l o r = s t a t e _ m a c h i n e . workview . b o r d e r C o l o r

47 t r a n s p a r e n t . name = #
48 s t a t e _ m a c h i n e . p o r t a l _ t i t l e + "TransparentDecorator"

49 t r a n s p a r e n t . b o r d e r S t y l e = "solid"

50 t r a n s p a r e n t . bo rde rWid th = "4px"

51 t r a n s p a r e n t . background = "transparent"

52 t r a n s p a r e n t . b o r d e r C o l o r = "white"

53 end
54 end

57 # Each S t a t e M a c h i n e g e n e r a t e s one P o r t l e t D e c o r a t o r C l a s s o b j e c t named
58 # p o r t a l _ t i t l e +T e x t P D e c o r a t o r
59 #
60 r u l e ’Rule4TextDecorator’ do #

134 Appendix A. SOP-to-EXO Transformations

61 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
62 to EXO : : CSS : : P o r t l e t D e c o r a t o r C l a s s

64 mapping do | s t a t e _ m a c h i n e , t e x t P |
65 t e x t P . name = #
66 s t a t e _ m a c h i n e . p o r t a l _ t i t l e + "TextPDecorator"

67 t e x t P . background = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . background
68 t e x t P . b o r d e r S t y l e = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . b o r d e r S t y l e
69 t e x t P . bo rde rWid th = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . bo rde rWid th
70 t e x t P . b o r d e r C o l o r = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . b o r d e r C o l o r
71 end
72 end

74 # Each S t a t e M a c h i n e g e n e r a t e s one P o r t l e t S t y l e C l a s s o b j e c t named
75 # p o r t a l _ t i t l e +T e x t P S t y l e
76 #
77 r u l e ’Rule4TextStyle’ do #
78 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
79 to EXO : : CSS : : P o r t l e t S t y l e C l a s s

81 mapping do | s t a t e _ m a c h i n e , c l T e x t P S t y l e |
82 c l P S t y l e . name = #
83 s t a t e _ m a c h i n e . p o r t a l _ t i t l e + "PStyle"

84 c l T e x t P S t y l e . name = #
85 s t a t e _ m a c h i n e . p o r t a l _ t i t l e + "TextPStyle"

86 c l T e x t P S t y l e . f o n t F a m i l y = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . f o n t F a m i l y
87 c l T e x t P S t y l e . f o n t S i z e = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . f o n t S i z e
88 c l T e x t P S t y l e . f o n t S t y l e = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . f o n t S t y l e
89 c l T e x t P S t y l e . c o l o r = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . c o l o r
90 c l T e x t P S t y l e . t e x t A l i g n = s t a t e _ m a c h i n e . t e x t _ d e s c r i p t o r . t e x t A l i g n
91 end
92 end

95 # Each S i m p l e S t a t e g e n e r a t e s a P o r t l e t D e c o r a t o r C l a s s o b j e c t named
96 # s t a t e _ n a m e+PDecorator
97 #
98 r u l e ’SimpleState2Decorator’ do #
99 from SOP : : O r c h e s t r a t i o n : : S t a t e

100 to EXO : : CSS : : P o r t l e t D e c o r a t o r C l a s s
101 f i l t e r do | s t a t e | s t a t e . i s S i m p l e end

103 mapping do | s t a t e , d e c o r a t o r |
104 d e c o r a t o r . name = s t a t e . name + "PDecorator" #
105 d e c o r a t o r . background = s t a t e . w i n d o w _ d e s c r i p t o r . background
106 d e c o r a t o r . b o r d e r S t y l e = s t a t e . w i n d o w _ d e s c r i p t o r . b o r d e r S t y l e
107 d e c o r a t o r . bo rde rWid th = s t a t e . w i n d o w _ d e s c r i p t o r . bo rde rWid th
108 d e c o r a t o r . b o r d e r C o l o r = s t a t e . w i n d o w _ d e s c r i p t o r . b o r d e r C o l o r
109 end
110 end

112 # Each S i m p l e S t a t e g e n e r a t e s a P o r t l e t S t y l e C l a s s o b j e c t named
113 # s t a t e _ n a m e+P S t y l e
114 #
115 r u l e ’SimpleState2Style’ do #
116 from SOP : : O r c h e s t r a t i o n : : S t a t e
117 to EXO : : CSS : : P o r t l e t S t y l e C l a s s
118 f i l t e r do | s t a t e | s t a t e . i s S i m p l e end

120 mapping do | s t a t e , s t y l e P o r t l e t |
121 s t y l e P o r t l e t . name = s t a t e . name + "PStyle" #
122 s t y l e P o r t l e t . f o n t F a m i l y = s t a t e . w i n d o w _ d e s c r i p t o r . f o n t F a m i l y
123 s t y l e P o r t l e t . f o n t S i z e = s t a t e . w i n d o w _ d e s c r i p t o r . f o n t S i z e
124 s t y l e P o r t l e t . f o n t S t y l e = s t a t e . w i n d o w _ d e s c r i p t o r . f o n t S t y l e
125 s t y l e P o r t l e t . t e x t A l i g n = s t a t e . w i n d o w _ d e s c r i p t o r . t e x t A l i g n
126 s t y l e P o r t l e t . c o l o r = s t a t e . w i n d o w _ d e s c r i p t o r . c o l o r
127 end
128 end

A.4. Transformation for SKIN_CONFIG package 135

130 # Each t r a n s i t i o n g e n e r a t e s a P o r t l e t D e c o r a t o r C l a s s o b j e c t named
131 # t r a n s i t i o n _ n a m e+AnchorDecora tor
132 #
133 r u l e ’Transition2Decorator’ do #
134 from SOP : : O r c h e s t r a t i o n : : T r a n s i t i o n
135 to EXO : : CSS : : P o r t l e t D e c o r a t o r C l a s s

137 mapping do | t r a n s i t i o n , d e c o r a t o r |
138 d e c o r a t o r . name = t r a n s i t i o n . name + "AnchorDecorator"#
139 d e c o r a t o r . background = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . background
140 d e c o r a t o r . b o r d e r S t y l e = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . b o r d e r S t y l e
141 d e c o r a t o r . bo rde rWid th = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . bo rde rWid th
142 d e c o r a t o r . b o r d e r C o l o r = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . b o r d e r C o l o r
143 end
144 end

146 # Each t r a n s i t i o n g e n e r a t e s a P o r t l e t D e c o r a t o r C l a s s o b j e c t named
147 # t r a n s i t i o n _ n a m e+A n c h o r S t y l e
148 #
149 r u l e ’Transition2Style’ do #
150 from SOP : : O r c h e s t r a t i o n : : T r a n s i t i o n
151 to EXO : : CSS : : P o r t l e t S t y l e C l a s s

153 mapping do | t r a n s i t i o n , p o r t l e t |
154 p o r t l e t . name = t r a n s i t i o n . name + "AnchorStyle" #
155 p o r t l e t . f o n t F a m i l y = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . f o n t F a m i l y
156 p o r t l e t . f o n t S i z e = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . f o n t S i z e
157 p o r t l e t . f o n t S t y l e = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . f o n t S t y l e
158 p o r t l e t . t e x t A l i g n = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . t e x t A l i g n
159 p o r t l e t . c o l o r = t r a n s i t i o n . a n c h o r _ d e s c r i p t o r . c o l o r
160 end
161 end
162 end

A.4 Transformation for SKIN_CONFIG package

The skin_config.xml configuration file in eXo platform constitutes an index of all the

CSS class names available for the UI elements rendered in the portal. In other words,
it collects all the CSS classes (their names) generated with the transformation shown

in Section A.3. These classes are classified according with the UI element which
they characterize. As shown in the EXO metamodel (see Figure A.2), there are five

main groups: the group of style classes for portlets and the groups of UI element
decorators, i.e., portal decorators, page decorators, container decorators and portlet

decorators. Each group constitutes a list with the names of CSS classes and the paths
of the files which contain them. Figure A.5 depicts an excerpt of a skin_config.xml

file. The Browsing.css file stores all the CSS classes for the portal elements, except
the default CSS classes, contained in default-xxx.css files and offered by the eXo

platform by default. In this example Browsing is the name of the Web portal.

UI element decorators can be classified by the renderer-type. The eXo platform

also offers some by default, like, PortalRenderer, PageRowRenderer, PageColumn-

Renderer, PortletRenderer, and so on. For example, using a PageRowRenderer type

136 Appendix A. SOP-to-EXO Transformations

decorator for pages suggests that elements inside a page will be located one below

the other, in rows. The prototype presented in this thesis uses those basic renderer
types.

Listing A.5: Snippet of a skin_config.xml file.
<? xml v e r s i o n ="1.0" e n c o d i n g ="ISO-8859-1" ?>
< sk in−c o n f i g >

< p o r t a l−d e c o r a t o r s >
< d e c o r a t o r >

< r e n d e r e r−t y p e > P o r t a l R e n d e r e r < / r e n d e r e r−t y p e >
< s t y l e name="default" u r l ="/Browsing/skin/portal/default-portal.css" / >

< / d e c o r a t o r >
< / p o r t a l−d e c o r a t o r s >
<page−d e c o r a t o r s >

< d e c o r a t o r >
< r e n d e r e r−t y p e >PageRowRenderer< / r e n d e r e r−t y p e >
< s t y l e name="default" u r l ="/Browsing/skin/page/default-page.css" / >
< s t y l e name="BrowsingPageDecorator" u r l ="/Browsing/skin/Browsing.css" / >

< / d e c o r a t o r >
< d e c o r a t o r >

< r e n d e r e r−t y p e >PageColumnRenderer < / r e n d e r e r−t y p e >
. . .

< / d e c o r a t o r >
< / page−d e c o r a t o r s >
< c o n t a i n e r−d e c o r a t o r s >

< d e c o r a t o r >
< r e n d e r e r−t y p e > Con ta ine rCo lumnRende re r < / r e n d e r e r−t y p e >
< s t y l e name="default" u r l ="/Browsing/skin/container/default-container.css" / >

< s t y l e name="BrowsingTransparentDecorator" u r l ="/Browsing/skin/Browsing.css" / >
< / d e c o r a t o r >
< d e c o r a t o r >

< r e n d e r e r−t y p e > Conta ine rRowRendere r < / r e n d e r e r−t y p e >
. . .

< / d e c o r a t o r >
< / c o n t a i n e r−d e c o r a t o r s >
< p o r t l e t−d e c o r a t o r s >

< d e c o r a t o r >
< r e n d e r e r−t y p e > P o r t l e t R e n d e r e r < / r e n d e r e r−t y p e >

< s t y l e name="default" u r l ="/Browsing/skin/portlet/decorators/default-decorator.css" / >
< s t y l e name="BrowsingTextPDecorator" u r l ="/Browsing/skin/Browsing.css" / >
< s t y l e name="ieeeSearchPDecorator" u r l ="/Browsing/skin/Browsing.css" / >
< s t y l e name="acmSearchPDecorator" u r l ="/Browsing/skin/Browsing.css" / >
< s t y l e name="ToAuthorSearchAnchorDecorator" u r l ="/Browsing/skin/Browsing.css" / >
< s t y l e name="ToPaperSearchAnchorDecorator" u r l ="/Browsing/skin/Browsing.css" / >

. . .
< / d e c o r a t o r >

< / p o r t l e t−d e c o r a t o r s >
< p o r t l e t−s t y l e−c o n f i g >

< p o r t l e t−name> d e f a u l t < / p o r t l e t−name>
< s t y l e name="default" u r l ="/Browsing/skin/portlet/styles/default-portlet.css" / >
< / p o r t l e t−s t y l e−c o n f i g >
< p o r t l e t−s t y l e−c o n f i g >

< p o r t l e t−name>showText / showText< / p o r t l e t−name>
< s t y l e name="BrowsingTextPStyle" u r l ="/Browsing/skin/Browsing.css" / >

< / p o r t l e t−s t y l e−c o n f i g >
< p o r t l e t−s t y l e−c o n f i g >

< p o r t l e t−name> i e e e L i b r a r y / i e e e L i b r a r y < / p o r t l e t −name>
< s t y l e name="ieeeSearchPStyle" u r l ="/Browsing/skin/Browsing.css" / >

< / p o r t l e t−s t y l e−c o n f i g >
< p o r t l e t−s t y l e−c o n f i g >

< p o r t l e t−name> n a v i g a t i o n s t e p / s t e p < / p o r t l e t−name>
< s t y l e name="ToAuthorSearchAnchorStyle" u r l ="/Browsing/skin/Browsing.css" / >

< / p o r t l e t−s t y l e−c o n f i g >
. . .

< / sk in−c o n f i g >

A.4. Transformation for SKIN_CONFIG package 137

Listing A.6 shows the rule set which creates the SKINCONFIG package of an

EXO model, i.e., the part corresponding to the skin_config.xml file. Specifically, for a
StateMachine in the ORCHESTRATION the top rule generates a SkinConfig

element in the EXO::Skin_Config package. The only data needed for the gen-
eration are the names of simple states and transitions, and the portal name (achieved

through the relation between the statemachine and the workspace).

The generated SkinConfig element is made up of one PortalDecorators
object, one PageDecorators object, one ContainerDecorators object, one

PortletDecorators object and several PortletStyleConfig objects. More
specifically:

• The PortalDecorators object contains one Decorator element, gen-
erated by the PortalDecoratorsGeneration rule (in line 190). The

Style element contained in the Decorator object is created using an ex-
plicit assignment in line 199.

• The PageDecorators object contains two Decorator elements, gener-

ated by the PageDecoratorsGeneration rule (in line 210), and their
renderer-types are PageRowRenderer and PageColumnRenderer, respectively.

Both elements contain two Style elements, whose names are default and

{portalName}PageDecorator.

• The ContainerDecorators object contains two Decorator elements,
generated by the ContainerDecoratorsGeneration rule (in line 248),

and their renderer-types are ContainerRowRenderer and ContainerColumn-

Renderer, respectively. Both elements contain two Style elements, whose

names are default and {portalName}TransparentDecorator.

• The PortletDecorators object contains one Decorator element whose

renderer-type is PortletRenderer and is generated by the PortletDecorators-
Generation rule (in line 289). This elements have several Style ele-

ments, default and {portalName}TextPDecorator, generated by
the PortletDecoratorStyles rule (in line 307), and one element for ev-

ery simple state and every transition in the StateMachine. State styles are
generated by the State2PortletDecoratorStyle rule in line 329 and

transition styles are generated by the Transition2PortletDecorator-
Style rule in line 342.

138 Appendix A. SOP-to-EXO Transformations

• The PortletStyleConfig objects correspond to the showText portlet, the

navigationStep portlet, and the portlets for tasks. The PortletStyle-

Configs and PortletStyleConfigs__HelpingText rules (in lines 94

and 109, respectively) create the default and {portalName}TextPStyle
styles. They have a filter, thus the triggering of one of them depends on whether

the portal design includes or not a ’helpig text’. Otherwise, the style for ev-
ery simple state in the statemachine is generated by the PortletStyle-

Config4State rule in line 138 and style for every transition by the Portlet-
StyleConfig4Transition rule in line 164.

Listing A.6: The sop2skinConfig.rb file.
1 u s e _ l i b r a r y ’helper://state_machine’

2 u s e _ l i b r a r y ’helper://presentation’

4 t r a n s f o r m a t i o n ’SOP2SkinConfig’

5 # A S t a t e M a c h i n e maps t o a S k i n C o n f i g made up o f s e v e r a l
6 # P o r t a l D e c o r a t o r , PageDecorator , C o n t a i n e r D e c o r a t o r
7 # o b j e c t s wich are a g g r e g a t e d i n c o r r e s p o n d i n g c o n t a i n e r s :
8 # P o r t a l D e c o r a t o r s , PageDecorators , C o n t a i n e r D e c o r a t o r s
9 # That S k i n C o n f i g o b j e c t a l s o c o n t a i n s P o r t l e t S t y l e C o n f i g o b j e c t s .

10 #

12 phase ’EXO__Skin_config__SkinConfig’ do #

14 #Some r u l e s o t h e r than t h e t o p r u l e
15 # need a c c e s s t o t h e S t a t e M a c h i n e b e i n g mapped .
16 # T h i s l o c a l v a r i a b l e i s s e t when t h e f i r s t r u l e i s s t a r t e d .
17 s ta te_mach ine__EXO__Skin_Conf ig = n i l

19 # S t a t e M a c h i n e maps t o P o r t l e t S t y l e C o n f i g o b j e c t s and s e v e r a l
20 # P o r t a l D e c o r a t o r , PageDecorator , C o n t a i n e r D e c o r a t o r
21 # wich are a g g r e g a t e d i n c o r r e s p o n d i n g c o n t a i n e r s .
22 # T h i s r u l e g e n e r a t e s t h e a g g r e g a t i n g o b j e c t s
23 #and t h e P o r t l e t S t y l e C o n f i g o b j e c t s
24 #
25 t o p _ r u l e ’SkinConfig’ do
26 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
27 to EXO : : S k i n _ c o n f i g : : S k i n C o n f i g

29 mapping do | s t a t e _ m a c h i n e , s k i n _ c o n f i g |
30 s ta te_mach ine__EXO__Skin_Conf ig = s t a t e _ m a c h i n e

32 s k i n _ c o n f i g . p o r t a l D e c o r a t o r s = s t a t e _ m a c h i n e # f i r e s P o r t a l D e c o r a t o r s #
33 s k i n _ c o n f i g . p a g e D e c o r a t o r s = s t a t e _ m a c h i n e # f i r e s PageDecora tors #
34 s k i n _ c o n f i g . c o n t a i n e r D e c o r a t o r s = s t a t e _ m a c h i n e # f i r e s C o n t a i n e r D e c o r a t o r s #
35 s k i n _ c o n f i g . p o r t l e t D e c o r a t o r s = s t a t e _ m a c h i n e # f i r e s P o r t l e t D e c o r a t o r s #

37 s k i n _ c o n f i g . p o r t l e t S t y l e C o n f i g s = #
38 [s t a t e _ m a c h i n e]+ # f i r e s e i t h e r :
39 # P o r t l e t S t y l e C o n f i g s
40 # P o r t l e t S t y l e C o n f i g s _ _ H e l p i n g T e x t
41 s t a t e _ m a c h i n e . s i m p l e _ s t a t e s + # f i r e s P o r t l e t S t y l e C o n f i g 4 S t a t e
42 s t a t e _ m a c h i n e . a l l _ t r a n s i t i o n s # f i r e s P o r t l e t S t y l e C o n f i g 4 T r a n s i t i o n
43 end
44 end

46 # t r i v i a l r u l e s g e n e r a t i n g
47 # P o r t a l D e c o r a t o r , PageDecorator , C o n t a i n e r D e c o r a t o r

A.4. Transformation for SKIN_CONFIG package 139

49 r u l e ’PortalDecorators’ do
50 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
51 to EXO : : S k i n _ c o n f i g : : P o r t a l D e c o r a t o r s

53 mapping do | s t a t e _ m a c h i n e , p o r t a l _ d e c o r a t o r s |
54 p o r t a l _ d e c o r a t o r s . d e c o r a t o r s = # f i r e s P o r t a l D e c o r a t o r s G e n e r a t i o n
55 p o r t a l _ d e c o r a t o r s
56 end
57 end

59 r u l e ’PageDecorators’ do
60 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
61 to EXO : : S k i n _ c o n f i g : : P a g e D e c o r a t o r s

63 mapping do | s t a t e _ m a c h i n e , p a g e _ d e c o r a t o r s |
64 p a g e _ d e c o r a t o r s . d e c o r a t o r s = p a g e _ d e c o r a t o r s
65 end
66 end

68 r u l e ’ContainerDecorators’ do
69 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
70 to EXO : : S k i n _ c o n f i g : : C o n t a i n e r D e c o r a t o r s

72 mapping do | s t a t e _ m a c h i n e , c o n t a i n e r _ d e c o r a t o r s |
73 c o n t a i n e r _ d e c o r a t o r s . d e c o r a t o r s = c o n t a i n e r _ d e c o r a t o r s
74 end
75 end

77 r u l e ’PortletDecorators’ do
78 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
79 to EXO : : S k i n _ c o n f i g : : P o r t l e t D e c o r a t o r s

81 mapping do | s t a t e _ m a c h i n e , p o r t l e t _ d e c o r a t o r s |
82 p o r t l e t _ d e c o r a t o r s . d e c o r a t o r s = p o r t l e t _ d e c o r a t o r s
83 end
84 end

87 # R u l e s g e n e r a t i n g P o r t l e t S t y l e C o n f i g o b j e c t s .
88 #
89 #The S t a t e M a c h i n e g e n e r a t e s one or two P o r t l e t S t y l e C o n f i g o b j e c t s
90 # depend ing on t h e e x i s t e n c e o f a H e l p i n g T e x t .
91 #The f o l l o w i n g two r u l e s have f i l t e r s which are
92 # m u t u a l l y e x c l u s i v e , so a t most one o f them w i l l be f i r e d

94 r u l e ’PortletStyleConfigs’ do #
95 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
96 to EXO : : S k i n _ c o n f i g : : P o r t l e t S t y l e C o n f i g
97 f i l t e r do | s t a t e _ m a c h i n e | ! s t a t e _ m a c h i n e . h e l p i n g _ t e x t end

99 mapping do | s t a t e _ m a c h i n e , d e f a u l t |
100 d e f a u l t . p o r t l e t N a m e = "default"

101 t m p _ u r l =
102 "/#{state_machine.portal_title}"+
103 "/skin/portlet/styles/default-portlet.css"

104 d e f a u l t . s t y l e s = EXO : : S k i n _ c o n f i g : : S t y l e . new (: name => "default" ,
105 : u r l => t m p _ u r l)
106 end
107 end

109 r u l e ’PortletStyleConfigs__HelpingText’ do #
110 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
111 to EXO : : S k i n _ c o n f i g : : P o r t l e t S t y l e C o n f i g ,
112 EXO : : S k i n _ c o n f i g : : P o r t l e t S t y l e C o n f i g
113 f i l t e r do | s t a t e _ m a c h i n e | s t a t e _ m a c h i n e . h e l p i n g _ t e x t end

115 mapping do | s t a t e _ m a c h i n e , d e f a u l t , h e l p i n g _ t e x t |
116 d e f a u l t . p o r t l e t N a m e = "default"

140 Appendix A. SOP-to-EXO Transformations

117 t m p _ u r l =
118 "/#{state_machine.portal_title}"+
119 "/skin/portlet/styles/default-portlet.css"

120 d e f a u l t . s t y l e s = EXO : : S k i n _ c o n f i g : : S t y l e . new (: name => "default" ,
121 : u r l => t m p _ u r l)
122 t m p _ p o r t l e t = s t a t e _ m a c h i n e . h e l p i n g _ t e x t . p o r t l e t
123 h e l p i n g _ t e x t . p o r t l e t N a m e = t m p _ p o r t l e t . d i sp layName + "/" + t m p _ p o r t l e t . p o r t l e t N a m e
124 tmp_name = "#{state_machine.portal_title}TextPStyle"

125 t m p _ u r l =
126 "/#{state_machine.portal_title}/skin/"+
127 "#{state_machine.portal_title}.css"

128 h e l p i n g _ t e x t . s t y l e s = EXO : : S k i n _ c o n f i g : : S t y l e . new (: name => tmp__name ,
129 : u r l => t m p _ u r l)
130 end
131 end

134 # Every s i m p l e s t a t e g e n e r a t e s a P o r t l e t S t y l e C o n f i g ,
135 # which i s c o n t a i n e d i n t h e S k i n C o n f i g o b j e c t
136 # (s e e t o p r u l e)
137 #
138 r u l e ’PortletStyleConfig4State’ do #
139 from SOP : : O r c h e s t r a t i o n : : S t a t e
140 to EXO : : S k i n _ c o n f i g : : P o r t l e t S t y l e C o n f i g
141 f i l t e r do | s | s . i s S i m p l e end

143 mapping do | s t a t e , p o r t l e t _ s t y l e _ c o n f i g |
144 p o r t l e t _ s t y l e _ c o n f i g . p o r t l e t N a m e =
145 s t a t e . p o r t l e t . d i sp layName + "/" + s t a t e . p o r t l e t . p o r t l e t N a m e

147 # Doing t h i s w i t h a n o t h e r r u l e would e v e n t u a l l y l e a d t o
148 # s e v e r a l r u l e s w i t h t h e same s o u r c e and t a r g e t t y p e s : S t a t e and S t y l e
149 # Moreover , i t i s an a l m o s t t r i v i a l g e n e r a t i o n
150 tmp_name = s t a t e . name + "PStyle"

151 t m p _ u r l =
152 "/#{state.state_machine.portal_title}/skin/"+
153 "#{state.state_machine.portal_title}.css"

154 p o r t l e t _ s t y l e _ c o n f i g . s t y l e s << EXO : : S k i n _ c o n f i g : : S t y l e . new (: name => tmp_name ,
155 : u r l => t m p _ u r l)
156 end
157 end

160 # Every t r a n s i t i o n g e n e r a t e s a P o r t l e t S t y l e C o n f i g ,
161 # which i s c o n t a i n e d i n t h e S k i n C o n f i g o b j e c t
162 # (s e e t o p r u l e)
163 #
164 r u l e ’PortletStyleConfig4Transition’ do #
165 from SOP : : O r c h e s t r a t i o n : : T r a n s i t i o n
166 to EXO : : S k i n _ c o n f i g : : P o r t l e t S t y l e C o n f i g

168 mapping do | t r , p o r t l e t _ s t y l e _ c o n f i g |
169 p o r t l e t _ s t y l e _ c o n f i g . p o r t l e t N a m e =
170 t r . p o r t l e t . d i sp layName + "/" + t r . p o r t l e t . p o r t l e t N a m e

172 #The same as above :
173 #we don ’ t want t o end up w i t h s e v e r a l r u l e s
174 # w i t h t h e same s o u r c e and t a r g e t t y p e s (T r a n s i t i o n and S t y l e)
175 tmp_name = t r . name + "AnchorStyle"

176 t m p _ u r l =
177 "/#{tr.state_machine.portal_title}/skin/"+
178 "#{tr.state_machine.portal_title}.css"

179 p o r t l e t _ s t y l e _ c o n f i g . s t y l e s <<
180 EXO : : S k i n _ c o n f i g : : S t y l e . new (: name => tmp_name ,
181 : u r l => t m p _ u r l)
182 end
183 end

A.4. Transformation for SKIN_CONFIG package 141

186 #The P o r t a l D e c o r a t o r s o b j e c t , whose g e n e r a t i o n was f i r e d
187 # i n t h e t o p r u l e , c o n t a i n s t h e r e f e r e n c e o f a Decora tor o b j e c t
188 # g e n e r a t e d by t h i s r u l e
189 #
190 r u l e ’PortalDecoratorsGeneration’ do #
191 from EXO : : S k i n _ c o n f i g : : P o r t a l D e c o r a t o r s
192 to EXO : : S k i n _ c o n f i g : : D e c o r a t o r

194 mapping do | p o r t a l _ d e c o r a t o r s , d e c o r a t o r |
195 d e c o r a t o r . r e n d e r e r T y p e = "PortalRenderer"

196 t m p _ u r l =
197 "/#{state_machine__EXO__Skin_Config.portal_title}" +
198 "/skin/portal/default-portal.css"

199 d e c o r a t o r . s t y l e s <<
200 EXO : : S k i n _ c o n f i g : : S t y l e . new (: name => "default" ,
201 : u r l => t m p _ u r l)
202 end
203 end

206 #The PageDecora tors o b j e c t whose g e n e r a t i o n was f i r e d
207 # i n t h e t o p r u l e c o n t a i n s t h e r e f e r e n c e o f two Decora tor o b j e c t s
208 # g e n e r a t e d by t h i s r u l e
209 #
210 r u l e ’PageDecoratorsGeneration’ do #
211 from EXO : : S k i n _ c o n f i g : : P a g e D e c o r a t o r s
212 to EXO : : S k i n _ c o n f i g : : D e c o r a t o r , EXO : : S k i n _ c o n f i g : : D e c o r a t o r

214 mapping do | p a g e _ d e c o r a t o r s , d e c o r a t o r _ a , d e c o r a t o r _ b |
215 d e c o r a t o r _ a . r e n d e r e r T y p e = "PageRowRenderer"

216 d e c o r a t o r _ a . s t y l e s = p a g e _ d e c o r a t o r s
217 d e c o r a t o r _ b . r e n d e r e r T y p e = "PageColumnRenderer"

218 d e c o r a t o r _ b . s t y l e s = p a g e _ d e c o r a t o r s
219 end
220 end

222 copy_rule ’PageDecoratorStyles’ do
223 from EXO : : S k i n _ c o n f i g : : P a g e D e c o r a t o r s # t h e S y l e s g e n e r a t e d are c o n t a i n e d i n
224 #a Decora tor o b j e c t b u t
225 # t h e s o u r c e must be PageDecora tors
226 # t o p r e v e n t t h e d e f i n i t i o n o f s e v e r a l r u l e s
227 # w i t h t h e same s o u r c e and t a r g e t t y p e s
228 to EXO : : S k i n _ c o n f i g : : S t y l e , EXO : : S k i n _ c o n f i g : : S t y l e

230 mapping do | p a g e _ d e c o r a t o r s , s t y l e _ a , s t y l e _ b |
231 s t y l e _ a . name = "default"

232 s t y l e _ a . u r l =
233 "/#{state_machine__EXO__Skin_Config.portal_title}"+
234 "/skin/page/default-page.css"

235 s t y l e _ b . name =
236 s ta te_mach ine__EXO__Skin_Conf ig . p o r t a l _ t i t l e + "PageDecorator"

237 s t y l e _ b . u r l =
238 "/#{state_machine__EXO__Skin_Config.portal_title}/skin/"+
239 "#{state_machine__EXO__Skin_Config.portal_title}.css"

240 end
241 end

244 #The C o n t a i n e r D e c o r a t o r s o b j e c t whose g e n e r a t i o n was f i r e d
245 # i n t h e t o p r u l e c o n t a i n s t h e r e f e r e n c e o f two Decora tor o b j e c t s
246 # g e n e r a t e d by t h i s r u l e
247 #
248 r u l e ’ContainerDecoratorsGeneration’ do #
249 from EXO : : S k i n _ c o n f i g : : C o n t a i n e r D e c o r a t o r s
250 to EXO : : S k i n _ c o n f i g : : D e c o r a t o r , EXO : : S k i n _ c o n f i g : : D e c o r a t o r

252 mapping do | c o n t a i n e r _ d e c o r a t o r s , d e c o r a t o r _ a , d e c o r a t o r _ b |
253 d e c o r a t o r _ a . r e n d e r e r T y p e = "ContainerRowRenderer"

254 d e c o r a t o r _ b . r e n d e r e r T y p e = "ContainerColumnRenderer"

142 Appendix A. SOP-to-EXO Transformations

255 d e c o r a t o r _ a . s t y l e s = c o n t a i n e r _ d e c o r a t o r s # f i r e s C o n t a i n e r D e c o r a t o r s S t y l e
256 d e c o r a t o r _ b . s t y l e s = c o n t a i n e r _ d e c o r a t o r s # f i r e s C o n t a i n e r D e c o r a t o r s S t y l e
257 end
258 end

260 # Al though t h e S y l e s are c o n t a i n e d i n a Decora tor o b j e c t ,
261 # t h e s o u r c e must be C o n t a i n e r D e c o r a t o r s ,
262 # so p r e v e n t i n g t h e d e f i n i t i o n o f s e v e r a l r u l e s
263 # w i t h t h e same s o u r c e and t a r g e t t y p e s
264 # Decora tor −> S t y l e
265 #
266 copy_rule ’ContainerDecoratorsStyle’ do
267 from EXO : : S k i n _ c o n f i g : : C o n t a i n e r D e c o r a t o r s
268 to EXO : : S k i n _ c o n f i g : : S t y l e , EXO : : S k i n _ c o n f i g : : S t y l e

270 mapping do | d e c o r a t o r , s t y l e _ d , s t y l e _ a |
271 s t y l e _ d . name = "default"

272 s t y l e _ d . u r l =
273 "/#{state_machine__EXO__Skin_Config.portal_title}"+
274 "/skin/container/default-container.css"

276 s t y l e _ a . name =
277 s ta te_mach ine__EXO__Skin_Conf ig . p o r t a l _ t i t l e + "TransparentDecorator"

278 s t y l e _ a . u r l =
279 "/#{state_machine__EXO__Skin_Config.portal_title}"+
280 "/skin/#{state_machine__EXO__Skin_Config.portal_title}.css"

281 end
282 end

285 #The P o r t l e t D e c o r a t o r s o b j e c t whose g e n e r a t i o n was f i r e d
286 # i n t h e t o p r u l e c o n t a i n s t h e r e f e r e n c e o f a Decora tor o b j e c t
287 # g e n e r a t e d by t h i s r u l e
288 #
289 r u l e ’PortletDecoratorsGeneration’ do #
290 from EXO : : S k i n _ c o n f i g : : P o r t l e t D e c o r a t o r s
291 to EXO : : S k i n _ c o n f i g : : D e c o r a t o r

293 mapping do | p o r t l e t _ d e c o r a t o r s , d e c o r a t o r |
294 d e c o r a t o r . r e n d e r e r T y p e = "PortletRenderer"

295 d e c o r a t o r . s t y l e s = p o r t l e t _ d e c o r a t o r s # f i r e s P o r t l e t D e c o r a t o r S t y l e s #

297 # S t a t e 2 P o r t l e t D e c o r a t o r S t y l e and T r a n s i t i o n 2 P o r t l e t D e c o r a t o r S t y l e r u l e s
298 # are e x p l i c i t l y f i r e d
299 s ta te_mach ine__EXO__Skin_Conf ig . s i m p l e _ s t a t e s . each { | s t |
300 d e c o r a t o r . s t y l e s << S t a t e 2 P o r t l e t D e c o r a t o r S t y l e (s t) }

302 s ta te_mach ine__EXO__Skin_Conf ig . a l l _ t r a n s i t i o n s . each { | t r |
303 d e c o r a t o r . s t y l e s << T r a n s i t i o n 2 P o r t l e t D e c o r a t o r S t y l e (t r) }
304 end
305 end

307 r u l e ’PortletDecoratorStyles’ do #
308 from EXO : : S k i n _ c o n f i g : : P o r t l e t D e c o r a t o r s
309 to EXO : : S k i n _ c o n f i g : : S t y l e , EXO : : S k i n _ c o n f i g : : S t y l e

311 mapping do | p o r t l e t _ d e c o r a t o r s , s t y l e _ a , s t y l e _ b |
312 s t y l e _ a . name = "default"

313 s t y l e _ a . u r l =
314 "/#{state_machine__EXO__Skin_Config.portal_title}" +
315 "/skin/portlet/decorators/default-decorator.css"

317 s t y l e _ b . name =
318 s ta te_mach ine__EXO__Skin_Conf ig . p o r t a l _ t i t l e + "TextPDecorator"

319 s t y l e _ b . u r l =
320 "/#{state_machine__EXO__Skin_Config.portal_title}" +
321 "/skin/#{state_machine__EXO__Skin_Config.portal_title}.css"

322 end
323 end

A.5. Transformation for PAGES package 143

Orchestration + Rendering elements eXo elements
state configuration page

simple state portlet
orthogonal state (and) container
composite state (or) —

transition portlet
helping text portlet

Table A.2: Relation among design elements and eXo platform elements.

326 #Each s t a t e g e n e r a t e s a S t y l e , whose r e f e r e n c e
327 # i s i n c l u d e d i n a Decora tor (s e e P o r t l e t D e c o r a t o r s , above)
328 #
329 r u l e ’State2PortletDecoratorStyle’ do #
330 from SOP : : O r c h e s t r a t i o n : : S t a t e
331 to EXO : : S k i n _ c o n f i g : : S t y l e
332 f i l t e r do | s t a t e | s t a t e . i s S i m p l e end

334 mapping do | s t a t e , s t y l e |
335 s t y l e . name = s t a t e . name + "PDecorator"

336 s t y l e . u r l =
337 "/#{state.state_machine.portal_title}/skin/"+
338 "#{state.state_machine.portal_title}.css"

339 end
340 end

342 r u l e ’Transition2PortletDecoratorStyle’ do #
343 from SOP : : O r c h e s t r a t i o n : : T r a n s i t i o n
344 to EXO : : S k i n _ c o n f i g : : S t y l e
345 f i l t e r do | t r | t r . s o u r c e . i s _ s t a t e ? end

347 mapping do | t r , s t y l e |
348 s t y l e . name = t r . name + "AnchorDecorator"

349 s t y l e . u r l =
350 "/#{tr.state_machine.portal_title}/skin/"+
351 "#{tr.state_machine.portal_title}.css"

352 end
353 end

355 end

A.5 Transformation for PAGES package

In eXo platform a Web portal, apart from header and footer elements, is composed of

a set of pages. eXo page is the UI element shown in the Body container (see Figure
A.5). As the EXO metamodel depicts (see Figure A.2), a page is composed of several

portlets and containers. Containers structure the presentation of portlets, i.e., they can
be used, for example, to put two portlets one next to the other, and a third one below.

On the other hand, the approach of this dissertation work is to design the Web portals,
i.e., to design the organization of its pages, using statecharts. In statecharts, A state

144 Appendix A. SOP-to-EXO Transformations

Figure A.6: A statechart example and two alternative pages corresponding to its {A, B, C,
D, F, H, I} state configuration.

configuration is the set of states active at a given time [39]. In a composite state (OR-
type state) its substates are active one at a time, instead when an orthogonal state

(AND-type state) is active, every substate is also active. The approach presented in
this thesis uses the state configuration concept to define an eXo page. The relation

among design elements (specifically, orchestration and rendering elements) and eXo

elements is summarized in Table A.2. For the aim of this approach, i.e., for the

structure of the corresponding page, three distinct types of state configurations are
distinguished:

• {SimpleState}+. According to the statechart metamodel, a statemachine can
be composed of orthogonal regions which contain simple states, therefore, in

that case there is an only state configuration, and it is a set of those simple
states. At eXo level that state configuration corresponds to a page with a set of

portlets, without any other container.

• {ORstate}∗{SimpleState}. The state configuration is composed of several

nested OR states, and in the end one simple state (only one, because in OR
states only one of its substates is active at a time). That state configuration is

transformed into a page which contains an only portlet related to that simple
state, and without any other container.

A.5. Transformation for PAGES package 145

• {ORstate, ANDstate, SimpleState}∗{SimpleState}+. The most general case,

when the state configuration is composed of several nested states, and in the
end some simple states (there can be more than one, because of the active sub-

states of an AND state). Figure A.6 depicts a statechart example where its {A,
B, C, D, F, H, I} state configuration fits this expression. Its corresponding page

is composed of portlets, besides two containers. Their aim is to structure the
presentation of portlets, in rows or columns. Figure A.6 also depicts two alter-

native pages related to that state configuration. The dotted squares correspond
to the containers, and they are no visible for the user.

As Figure A.1 depicts, StateConfiguration in ORCHESTRATION package is
a derived metaclass. For each SOP model its values will be worked out and then the

transformation (see Listing A.7) will use those state configurations to generate eXo

pages.

Although the main element to build the page set of an eXo portal is the statechart,

some attributes of the WorkviewDescriptor (in the RENDERING package), re-
lated to the StateMachine element, are also needed to make some layout deci-

sions. Using the hypermedia terminology anchors are the links, i.e., the elements to
navigate among pages. Moreover portlets, containers and anchors are arranged along

a table-like structure. Attributes in WorkviewDescriptor, namely, transition,
distribution, position, and alignment, specify different alternatives for the arrange-

ment among them: transition indicates how anchors are realized (the value options
include button or helping text where the transition is achieved by clicking on the un-

derlined text); distribution, indicates how to locate anchors along the portal page,
and options include together (i.e. anchors are all located together, regardless of their

orchestration counterparts, i.e. transitions) and detached (i.e. anchor A is located
beside window4 W if A stands for a transition that leaves from the state whose coun-

terpart is W); position, indicates whether anchors are placed at the top, bottom, left or
right of either the page (when distribution=together) or the associated window

(when distribution=detached); alignment, indicates how windows are rendered
together (values are column, i.e one below the other, and row, i.e. one by the other).

Depending on those attribute values, several design combinations can be defined
and the transformation rules will be different in each case. The transformation pro-

totype presented in this appendix takes into account the combination where transi-

tion=anchor, distribution=together, and position=top. Therefore, all anchors will

4Window is the rendering counterpart of orchestration state and implementation portlet.

146 Appendix A. SOP-to-EXO Transformations

Figure A.7: A portal layout, when design attribute values are: transition=anchor, distribu-
tion=together, and position=top.

appear together and above task portlets. Moreover helping text, if it is included in the
portal design, will be above those anchors. Figure A.7 depicts the portal layout under

these conditions. The only difference from one page to another is the distribution of
portlets and their containers. It is exactly the statechart and its state configurations

which determine that distribution. Moreover, as Figure A.6 depicts, the same state
configuration can be transformed into different pages, in this case depending on the

alignment attribute. For the page on the left, the WindowDescriptor of the A
state has the ’column’ value in the alignment attribute, whereas for the page on the

right the value is ’row’. In both cases, the value for the F state is ’row’.

Each eXo page has a name for identifying it internally. The naming convention
sets that ’/home’ must be the name of the main page, which is the first page the user

sees when logs in. The rest of pages will have any name with ’/ ’ as prefix.

Listing A.7 depicts the rules which generate the PAGES package of an EXO

model, i.e., the part corresponding to the **_pages.xml file. The rules transform
the StateMachine element (in the ORCHESTRATION package of the SOP meta-

model) into a PageSet element in the EXO::Pages package. That element is
made up of several Page objects, one for each state configuration of the StateMachine.

Each Page element is generated by the Configuration2Page rule, in line 50.
As said previously, the page names are ’/home’ or ’/a_name’, depending on whether

the page is or not the main: a conditional statement in Ruby is used to make a de-
cision. In the second case the configuration name is reused. As for the renderer

A.5. Transformation for PAGES package 147

attribute, the {portalName}PageDecorator value is assigned, and recall that

this decorator class is described in the skin_config.xml file, generated through the
transformation rules described in Section A.3.

Moreover, every page is also populated with portlets and some nested containers
(see Figure A.7):

• First, the PagePortlet rule is fired in line 69 to generate the description
for the portlet which must show the called ’helping text’, described in the

HelpingText object of the RENDERING of the source model. This object
is optional in the design, therefore the fire of the rule is under a guard condi-

tion. The PagePortlet rule uses the Preferences4PagePortlet and
PortletPreferences4PagePortletImp rules to complete its task, i.e.,

to define the portlet preferences.

• In line 76 the Container4Transiciones and State2Container rules
are fired, to generate the anchors and the portlets corresponding to transitions

and simple states, respectively.

– The Container4Transiciones rule, in line 129, first generates a

container which is only a means to structure all the anchors. Therefore, its
decorator is the CSS class which specifies the ’transparent’ description,

namely, the class named {portalName}TransparentDecorator
in the transformation of Section A.3. Moreover, for each transition the

Transition2Portlet rule is fired in line 138. The all_transitions
auxiliary function gets the transitions whose source state belongs to the

current state configuration. The Transition2Portlet rule, in line 147,
generates the description for the portlet implementing the anchor func-

tionality in the portal. In that description it assigns the names of the deco-
rator and style classes generated in the transformation of Section A.3 and

it uses the PortletPreferences4Transition and Portlet-

Preferences4TransitionImp rules to define the portlet prefer-

ences. One of these preferences is the target page of the anchor, i.e., the
page where the anchor goes to, and it is calculated in line 185 using an

auxiliary function named fire.

– The State2Container rule is fired for the first orthogonal state (AND-

state) of the state configuration, if there is one. In line 202, that rule
generates a container for functional portlets (corresponding to simple

148 Appendix A. SOP-to-EXO Transformations

states). Like anchor containers, the decorator for these containers is

transparent. Next, if the substates of the current state are simple the
SimpleState2Portlet rule is fired for each one, in line 212, and

if it contains other orthogonal substates, then the State2Container
rule is fired recursively, in line 215. Thus, successive nested Container

objects are generated. The SimpleState2Portlet rule, in line 224,
generates the description for the functional portlet corresponding to the

current simple state.

• When the state configuration has simple states not contained in any orthogo-
nal state (AND-state), their corresponding portlets must be placed without any

specific container, apart from the page itself. Therefore, the SimpleState-
2Portlet rule is fired directly, in line 72.

In the portlet description the windowId attribute is composed of three elements: a

display name, a portlet name and an identifier. The first two are names specified by
its developer in the portlet descriptor, and the identifier is any value to distinguish

the different instances or uses of the same portlet in the portal. For the functional
portlets (corresponding to tasks) the state name is used as identifier, and for anchors,

given that the navigationStep portlet is used always and the same transition name can
appear more than once, a number is used. The TransitionId variable, in line 26,

holds the reference of an auxiliary IdGenerator object, out of the EXO::Pages
package. This object is used to obtain successive integer values to build different

windowId values, in line 159.
As stated above, the generation of the nested containers in a page depends on the

state configuration firing the generation of the page itself; the current_config-
__EXO__Pages variable is used to hold that configuration, in line 67, across the

rules of the phase.

Listing A.7: The sop2pages.rb file.
1 u s e _ l i b r a r y ’helper://state_machine’

2 u s e _ l i b r a r y ’helper://presentation’

3 u s e _ l i b r a r y ’helper://util’

5 t r a n s f o r m a t i o n ’SOP2Pages’

7 # T r a n s f o r m a t i o n p a r a m e t e r s

9 E X O _ _ P a g e s _ d e f a u l t _ v a l u e s = { #
10 : v i e w _ p e r m i s s i o n => ’any’ ,
11 : e d i t _ p e r m i s s i o n => ’owner’

12 }

A.5. Transformation for PAGES package 149

14 # Take d e f a u l t v a l u e s i f n o t g i v e n
15 $EXO__Pages_parameters | | = E X O _ _ P a g e s _ d e f a u l t _ v a l u e s
16 $EXO__Pages_parameters =
17 E X O _ _ P a g e s _ d e f a u l t _ v a l u e s . merge ($EXO__Pages_parameters) #

19 VIEW_PERMISSION = $EXO__Pages_parameters [: v i e w _ p e r m i s s i o n]
20 EDIT_PERMISSION = $EXO__Pages_parameters [: e d i t _ p e r m i s s i o n]

23 phase ’EXO__Pages__PageSet__generation’ do

25 T e x t I d = I d G e n e r a t o r . new
26 T r a n s i t i o n I d = I d G e n e r a t o r . new
27 cur r en t_con f ig__EXO__Pages = n i l

30 # Each S t a t e M a c h i n e i s t r a n s f o r m e d i n t o a PageSet , t h a t
31 # c o n t a i n s r e f e r e n c e s t o Page o b j e c t s .
32 # There i s one Page f o r e v e r y c o n f i g u r a t i o n
33 #
34 t o p _ r u l e ’Rule4PageSet’ do
35 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
36 to EXO : : Pages : : PageSe t

38 mapping do | s t a t e _ m a c h i n e , p a g e _ s e t |
39 p a g e _ s e t . l a y o u t = s t a t e _ m a c h i n e . workview . p o s i t i o n
40 p a g e _ s e t . pages = #
41 # f i r e s C o n f i g u r a t i o n 2 P a g e : once f o r e v e r y c o n f i g u r a t i o n
42 [s t a t e _ m a c h i n e . i n i t i a l _ c o n f i g u r a t i o n] +
43 s t a t e _ m a c h i n e . a l l _ c o n f i g u r a t i o n s . f i n d _ a l l { | c | ! c . i s _ i n i t i a l ?}
44 end
45 end

47 #The Page o b j e c t f o r a g i v e n c o n f i g u r a t i o n .
48 # I t c o n t a i n s a n o t h e r p o r t l e t , i f t h e r e i s a SOP : : Render ing : : H e l p i n g T e x t
49 #
50 r u l e ’Configuration2Page’ do #
51 from SOP : : O r c h e s t r a t i o n : : C o n f i g u r a t i o n
52 to EXO : : Pages : : Page

54 mapping do | c o n f i g u r a t i o n , page |
55 page . r e n d e r e r = "PageRowRenderer"

56 page . name = i f c o n f i g u r a t i o n . i s _ i n i t i a l ? : "/home"

57 e l s e "/" + c o n f i g u r a t i o n . page_name
58 end
59 page . t i t l e = i f c o n f i g u r a t i o n . i s _ i n i t i a l ? : c o n f i g u r a t i o n . owner . p o r t a l _ t i t l e
60 e l s e c o n f i g u r a t i o n . page_name
61 end
62 page . v i e w P e r m i s s i o n = VIEW_PERMISSION
63 page . e d i t P e r m i s s i o n = EDIT_PERMISSION
64 page . d e c o r a t o r = c o n f i g u r a t i o n . owner . p o r t a l _ t i t l e + "PageDecorator"

66 #make c u r r e n t c o n f i g u r a t i o n a v a i l a b l e t o s u b s e q u e n t l y f i r e d r u l e s
67 cu r r en t_con f ig__EXO__Pages = c o n f i g u r a t i o n #

69 page . t e x t P o r t l e t = # f i r e s P a g e P o r t l e t #
70 c o n f i g u r a t i o n i f c o n f i g u r a t i o n . owner . h e l p i n g _ t e x t #

72 page . s t a t e P o r t l e t s = #
73 # f i r e s S i m p l e S t a t e 2 P o r t l e t : once f o r e v e r y s i m p l e r o o t s t a t e
74 c o n f i g u r a t i o n . s i m p l e _ r o o t _ s t a t e s

76 page . c o n t a i n e r = #
77 [c o n f i g u r a t i o n] + # f i r e s C o n t a i n e r 4 T r a n s i c i o n e s
78 c o n f i g u r a t i o n . o r t h o g o n a l _ r o o t _ s t a t e s # f i r e s S t a t e 2 C o n t a i n e r
79 end
80 end

82 # P o r t l e t i n c l u d e d i n a page i f t h e r e e x i s t s a SOP : : Render ing : : H e l p i n g T e x t

150 Appendix A. SOP-to-EXO Transformations

83 #
84 r u l e ’PagePortlet’ do #
85 from SOP : : O r c h e s t r a t i o n : : C o n f i g u r a t i o n
86 to EXO : : Pages : : P o r t l e t

88 mapping do | c o n f i g u r a t i o n , p a g e _ p o r t l e t |
89 p a g e _ p o r t l e t . r e n d e r e r = "PortletRenderer"

90 p a g e _ p o r t l e t . d e c o r a t o r =
91 c o n f i g u r a t i o n . owner . p o r t a l _ t i t l e + "TextPDecorator"

92 p a g e _ p o r t l e t . p o r t l e t S t y l e =
93 c o n f i g u r a t i o n . owner . p o r t a l _ t i t l e + "TextPStyle"

94 p a g e _ p o r t l e t . showInfoBar = "false"

95 tmp = c o n f i g u r a t i o n . owner . h e l p i n g _ t e x t . p o r t l e t
96 p a g e _ p o r t l e t . t i t l e = tmp . windowTi t l e
97 p a g e _ p o r t l e t . windowId = tmp . d isp layName + "/" + tmp . p o r t l e t N a m e +
98 "/" + T e x t I d . next . t o _ s
99 p a g e _ p o r t l e t . p r e f e r e n c e s = p a g e _ p o r t l e t

100 end
101 end

103 r u l e ’Preferences4PagePortlet’ do
104 from EXO : : Pages : : P o r t l e t
105 to EXO : : Pages : : P o r t l e t P r e f e r e n c e s

107 mapping do | p a g e _ p o r t l e t , p r e f e r e n c e s |
108 p r e f e r e n c e s . p r e f e r e n c e = # f i r e s P o r t l e t P r e f e r e n c e s 4 P a g e P o r t l e t I m p
109 p r e f e r e n c e s
110 end
111 end

113 r u l e ’PortletPreferences4PagePortletImp’ do
114 from EXO : : Pages : : P o r t l e t P r e f e r e n c e s
115 to EXO : : Pages : : P r e f e r e n c e
116 mapping do | p r e f e r e n c e s , p r e f e r e n c e |
117 p r e f e r e n c e . name = "text"

118 p r e f e r e n c e . v a l u e = cu r r en t_con f ig__EXO__Pages . owner . h e l p i n g _ t e x t
119 end
120 end

123 # Every page i s p o p u l a t e d w i t h a p o r t l e t f o r
124 # e v e r y t r a n s i t i o n o r i g i n a t i n g i n any o f t h e
125 # c o n f i g u r a t i o n s t a t e s .
126 # A l l such p o r t l e t s are i n c l u d e d i n a c o n t a i n e r ,
127 # g e n e r a t e d by t h i s r u l e .
128 #
129 r u l e ’Container4Transiciones’ do #
130 from SOP : : O r c h e s t r a t i o n : : C o n f i g u r a t i o n
131 to EXO : : Pages : : C o n t a i n e r

133 mapping do | c o n f i g u r a t i o n , c o n t a i n e r |
134 c o n t a i n e r . r e n d e r e r =
135 c o n f i g u r a t i o n . owner . workview . p o r t a l R e n d e r e r
136 c o n t a i n e r . d e c o r a t o r =
137 c o n f i g u r a t i o n . owner . p o r t a l _ t i t l e + "TransparentDecorator"

138 c o n t a i n e r . p o r t l e t s = #
139 # f i r e s T r a n s i t i o n 2 P o r t l e t
140 c o n f i g u r a t i o n . a l l _ t r a n s i t i o n s
141 end
142 end

144 # Every t r a n s i t i o n o r i g i n a t i n g i n any o f t h e s t a t e s
145 # i n t h e c u r r e n t c o n f i g u r a t i o n i s t r a n s f o r m e d i n t o a p o r t l e t .
146 #
147 copy_rule ’Transition2Portlet’ do #
148 from SOP : : O r c h e s t r a t i o n : : T r a n s i t i o n
149 to EXO : : Pages : : P o r t l e t

151 mapping do | t r a n s i t i o n , p o r t l e t |

A.5. Transformation for PAGES package 151

152 p o r t l e t . r e n d e r e r = "PortletRenderer"

153 p o r t l e t . d e c o r a t o r = t r a n s i t i o n . name + "AnchorDecorator"

154 p o r t l e t . p o r t l e t S t y l e = t r a n s i t i o n . name + "AnchorStyle"

155 p o r t l e t . showInfoBar = "false"

156 p o r t l e t . t i t l e = "Step Navigation"

157 p o r t l e t . windowId = t r a n s i t i o n . p o r t l e t . d i sp layName + "/" +
158 t r a n s i t i o n . p o r t l e t . p o r t l e t N a m e + "/" +
159 T r a n s i t i o n I d . next . t o _ s #
160 p o r t l e t . p r e f e r e n c e s = #
161 # f i r e s P o r t l e t P r e f e r e n c e s 4 T r a n s i t i o n
162 t r a n s i t i o n
163 end
164 end

166 copy_rule ’PortletPreferences4Transition’ do #
167 from SOP : : O r c h e s t r a t i o n : : T r a n s i t i o n
168 to EXO : : Pages : : P o r t l e t P r e f e r e n c e s

170 mapping do | t r a n s i t i o n , p r e f e r e n c e s |
171 p r e f e r e n c e s . p r e f e r e n c e = # f i r e s P o r t l e t P r e f e r e n c e s 4 T r a n s i t i o n I m p
172 t r a n s i t i o n
173 end
174 end

176 copy_rule ’PortletPreferences4TransitionImp’ do
177 from SOP : : O r c h e s t r a t i o n : : T r a n s i t i o n
178 to EXO : : Pages : : P r e f e r e n c e , EXO : : Pages : : P r e f e r e n c e
179 mapping do | t r a n s i t i o n , p r e f _ a , p r e f _ b |
180 p r e f _ a . name = "transitionTitle"

181 p r e f _ a . v a l u e = t r a n s i t i o n . name

183 p r e f _ b . name = "pageName"

185 t m p _ t a r g e t _ c o n f = t r a n s i t i o n . f i r e (cu r r en t_con f ig__EXO__Pages) #
186 # t h e c o n f i g u r a t i o n when yhe g i v e n t r a n s i t i o n i s f i r e d
187 # i n t h e c u r r e n t c o n f i g u r a t i o n

189 p r e f _ b . v a l u e = t m p _ t a r g e t _ c o n f . page_name
190 end
191 end

194 # Every o r t h o g o n a l s t a t e i n t h e c u r r e n t c o n f i g u r a t i o n g e n e r a t e s a c o n t a i n e r .
195 # T h i s c o n t a i n e r i s p o p u l a t e d w i t h one p o r t l e t
196 # f o r e v e r y s i m p l e s t a t e i n t h e c o n f i g u r a t i o n ,
197 # which i s c o n t a i n e d i n t h a t o r t h o g o n a l s t a t e .
198 # B e s i d e s t h i s , t h e c o n t a i n e r i s a l s o p o p u l a t e d w i t h
199 # t h e c o n t a i n e r s g e n e r a t e d by any o r t h o g o n a l s t a t e i n t h e same c o n f i g u r a t i o n
200 # which i s c o n t a i n e d i n t h e o r i g i n a t i n g o r t h o g o n a l s t a t e .
201 #
202 copy_rule ’State2Container’ do #
203 from SOP : : O r c h e s t r a t i o n : : S t a t e
204 to EXO : : Pages : : C o n t a i n e r
205 f i l t e r do | s t a t e | s t a t e . i s O r t h o g o n a l end

207 mapping do | s t a t e , c o n t a i n e r |
208 c o n t a i n e r . r e n d e r e r =
209 s t a t e . w i n d o w _ d e s c r i p t o r . p o r t l e t 4 s t a t e s C o n t a i n e r R e n d e r e r
210 c o n t a i n e r . d e c o r a t o r =
211 s t a t e . s t a t e _ m a c h i n e . p o r t a l _ t i t l e + "TransparentDecorator"

212 c o n t a i n e r . p o r t l e t s = #
213 # f i r e s S i m p l e S t a t e 2 P o r t l e t
214 cu r r en t_con f ig__EXO__Pages . s i m p l e _ s u b _ s t a t e s (s t a t e)
215 c o n t a i n e r . c o n t a i n e r = #
216 # f i r e s S t a t e 2 C o n t a i n e r
217 cu r r en t_con f ig__EXO__Pages . o r t h o g o n a l _ s u b _ s t a t e s (s t a t e)
218 end
219 end

152 Appendix A. SOP-to-EXO Transformations

221 # T r a n s f o r m s a S i m p l e S t a t e i n t o a p o r t l e t . Every S i m p l e S t a t e i s a lways
222 # mapped i n t o a p o r t l e t , i n c l u d e d i n a c o n t a i n e r or i n a page .
223 #
224 copy_rule ’SimpleState2Portlet’ do #
225 from SOP : : O r c h e s t r a t i o n : : S t a t e
226 to EXO : : Pages : : P o r t l e t
227 f i l t e r do | s t a t e | s t a t e . i s S i m p l e end

229 mapping do | s t a t e , p o r t l e t |
230 p o r t l e t . r e n d e r e r = "PortletRenderer"

231 p o r t l e t . d e c o r a t o r = s t a t e . name + "PDecorator"

232 p o r t l e t . p o r t l e t S t y l e = s t a t e . name + "PStyle"

233 p o r t l e t . showInfoBar = "false"

234 p o r t l e t . t i t l e =
235 s t a t e . p o r t l e t . w indowTi t l e i f s t a t e . p o r t l e t . showInfoBar
236 p o r t l e t . windowId =
237 "#{state.portlet.displayName}/#{state.portlet.portletName}/#{state.name}"

238 end
239 end
240 end

A.6 Transformation for NAVIGATION package

Just as the skin_config.xml file constitutes an index for the CSS classes defined in the

{portalName}.css file, the **-navigation.xml file constitutes an index for the pages
defined in the **-pages.xml file. Although for the aim of the prototype presented

in this appendix a list of the pages is enough, the index must have a hierarchical
structure, as the EXO metamodel (in Figure A.2) shows. Therefore, in this case

the main page, related to the initial state configuration, defines the root node and
the rest of pages are its subnodes. Listing A.8 depicts the rule set which creates

the NAVIGATION package of an EXO model, i.e., the part corresponding to the
**_navigation.xml file.

Specifically, the StateMachine in the SOP:Orchestration package is

transformed into a NodeNavigation element in the EXO::Navigation pack-
age, using the Rule4NodeNavigation rule, in line 23. This NodeNavigation

element is made up of several nested Node objects, in this prototype one root Node
and its subnodes: the first one generated by the Rule4MainNode rule (in line 35),

and the latter generated by the Node4Configuracion rule, fired in line 47 for
each state configuration, except for the initial one.

Apart from label, name, uri and reference, the node description is com-

pleted with the edit and view permission values, two attributes which indi-
cate who has permission to edit and view that node, respectively. The chosen default

values are any and owner. They are stored in a map whose reference is kept in
the local variable EXO__Navigation_default_parameters (in line 7). If

A.6. Transformation for NAVIGATION package 153

the EXO__Navigation_parameters global variable is not defined with spe-

cific values when the transformation is launched, it will be created and assigned the
value of EXO__Navigation_default_parameters (in line 15), otherwise

the default values are overridden.

Listing A.8: The sop2navigation.rb file.
1 u s e _ l i b r a r y ’helper://state_machine’

3 t r a n s f o r m a t i o n ’sop2navigation’

5 # T r a n s f o r m a t i o n p a r a m e t e r s

7 E X O _ _ N a v i g a t i o n _ d e f a u l t _ v a l u e s = { #
8 : v i e w _ p e r m i s s i o n => ’any’ ,
9 : e d i t _ p e r m i s s i o n => ’owner’

10 }

12 # Take d e f a u l t v a l u e s i f n o t g i v e n
13 $EXO__Naviga t ion_paramete r s | | = E X O _ _ N a v i g a t i o n _ d e f a u l t _ v a l u e s #
14 $EXO__Naviga t ion_paramete r s =
15 E X O _ _ N a v i g a t i o n _ d e f a u l t _ v a l u e s . merge ($EXO__Naviga t ion_paramete r s) #

17 VIEW_PERMISSION = $EXO__Naviga t ion_paramete r s [: v i e w _ p e r m i s s i o n]
18 EDIT_PERMISSION = $EXO__Naviga t ion_paramete r s [: e d i t _ p e r m i s s i o n]

21 phase ’sop2navigation’ do

23 t o p _ r u l e ’Rule4NodeNavigation’ do #
24 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
25 to EXO : : N a v i g a t i o n : : NodeNav iga t ion

27 mapping do | s t a t e _ m a c h i n e , n o d e _ n a v i g a t i o n |
28 n o d e _ n a v i g a t i o n . nodes = s t a t e _ m a c h i n e # f i r e s Rule4MainNode #
29 end
30 end

32 # T h i s r u l e g e n e r a t e s t h e o n l y Node o b j e c t
33 # c o n t a i n e d d i r e c t l y i n t h e NodeNav iga t ion
34 #
35 r u l e ’Rule4MainNode’ do #
36 from SOP : : O r c h e s t r a t i o n : : S t a t e M a c h i n e
37 to EXO : : N a v i g a t i o n : : Node

39 mapping do | s t a t e _ m a c h i n e , node_home |
40 node_home . t i t l e = ’home’

41 node_home . v i e w P e r m i s s i o n = VIEW_PERMISSION
42 node_home . e d i t P e r m i s s i o n = EDIT_PERMISSION
43 node_home . l a b e l = ’home’

44 node_home . u r i = "/"

45 node_home . name = "home"

46 node_home . p a g e R e f e r e n c e = "home"

47 node_home . nodes = #
48 # f i r e s Node4Con f igurac ion once f o r e v e r y c o n f i g u r a t i o n ,
49 # e x c e p t f o r t h e i n i t i a l one
50 s t a t e _ m a c h i n e . a l l _ c o n f i g u r a t i o n s . r e j e c t { | c | c . i s _ i n i t i a l ?}
51 end
52 end

54 #One Node o b j t e c t i s g e n e r a t e d f o r e v e r y c o n f i g u r a t i o n ,
55 # e x c e p t f o r t h e i n i t i a l one
56 #
57 r u l e ’Node4Configuracion’ do #
58 from SOP : : O r c h e s t r a t i o n : : C o n f i g u r a t i o n

154 Appendix A. SOP-to-EXO Transformations

59 to EXO : : N a v i g a t i o n : : Node
60 f i l t e r do | c o n f i g u r a t i o n | ! c o n f i g u r a t i o n . i s _ i n i t i a l ? end

62 mapping do | c o n f i g u r a t i o n , node |
63 node . t i t l e = c o n f i g u r a t i o n . page_name
64 node . v i e w P e r m i s s i o n = VIEW_PERMISSION
65 node . e d i t P e r m i s s i o n = EDIT_PERMISSION
66 node . l a b e l = c o n f i g u r a t i o n . page_name
67 node . u r i = c o n f i g u r a t i o n . page_name
68 node . name = c o n f i g u r a t i o n . page_name
69 node . p a g e R e f e r e n c e = c o n f i g u r a t i o n . page_name
70 end
71 end
72 end

Bibliography

[1] S. Agarwal, S. Handschuh, and S. Staab. Surfing the Service Web. In Interna-

tional Semantic Web Conference, volume 2870 of Lecture Notes in Computer

Science (LNCS), pages 211–226. Springer, October 2003. 91, 100, 112

[2] C. Ames, S. Burleigh, and S. Mitchell. WWWorkflow: World Wide Web

based Workflow. In Hawaii International Conference on System Sciences,
January 1997. 81

[3] androMDA Team. androMDA. Available from http://www.andromda.org/
(December 2007). 31

[4] B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H.H. Ngu. Declarative Com-

position and Peer-to-Peer Provisioning of Dynamic Web Services. In 18th

International Conference on Data Engineering (ICDE’02). IEEE, 2002. 110

[5] D. Berardi, D. Calvanese, G. de Giacomo, M. Lenzerini, and M. Mecella.
Automatic Composition of E-services that Export their Behavior. In 1st Inter-

national Conference on Service Oriented Computing (ICSOC 2003), volume
2910 of Lecture Notes in Computer Science (LNCS), pages 43–58. Springer,

2003. 53

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American Magazine, 284(5):34–43, May 2001. 90

[7] J. Blattman, N. Krishnan, D. Polla, and M. Sum. Open-Source
Portal Initiative at Sun: Portlet Repository, 2006. Available

from http://developers.sun.com/portalserver/reference/techart/portlet-
repository.html (May 2008). 18

[8] J. Blom. Personalization - A Taxonomy. In Conference on Human Factors in

Computing Systems CHI’00, pages 313–314. ACM, April 2000. 62

155

156 BIBLIOGRAPHY

[9] J. Boye. Portals: from idea to reality - the dangers of the current state of portals

in the marketplace. In Online Information Conference, pages 103–106, 2005.
11

[10] M. Brambilla, S. Ceri, S. Comai, and P. Fraternali. Specification and Design

of Workflow-driven Hypertexts. Journal of Web Engineering, 1(1), 2002. 108

[11] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. Process Modeling in

Web Applications. ACM Transactions on Software Engineering and Method-

ology (TOSEM), 15(4):360–409, October 2006. 81, 115

[12] J. Bézivin. In Search of a Basic Principle for Model Driven Engineering.
UPGRADE, Novótica, 2, April 2004. 68

[13] J. Bézivin. On the Unification Power of Models. Software and System Model-

ing (SoSym), 4(2):171–188, May 2005. 26, 29, 30, 31

[14] L. Cabral and J. Domingue. Mediation of Semantic Web Services in IRS-III.

In Workshop on Mediation in Semantic Web Services (MEDIATE) at Interna-

tional Conference on Service Oriented Computing (ICSOC), Amsterdam, The

Netherlands, 2005. 111

[15] F. Casati and M. C. Shan. Dynamic and adaptive composition of e-services.
Information Systems, 26(3):143–163, May 2001. 53

[16] B. Castle. Introduction to Web Services for Remote Portlets. use WSRP
in Service-Oriented Architecture, 2005. Available from http://www-

128.ibm.com/developerworks/webservices/library/ws-wsrp/ (May 2008). 18

[17] S. Ceri, P. Fraternali, and A. Bongio. Conceptual Modeling of Data-Intensive

Web Applications. IEEE Internet Computing, 6(4):20–30, July 2002. 80

[18] Compuware. OptimalJ. Available from
http://www.compuware.com/products/optimalj/ (December 2007). 31

[19] K. Czarnecki and S. Helsen. Classification of Model Transformation Ap-
proaches. In Workshop on Generative Techniques in the Context of Model-

Driven Architecture (OOPSLA03), October 2003. 35, 36

[20] P. Desfray. UML Profiles versus Metamodeling extensions: An ongo-
ing debate. In OMG Workshop, UML in the .com Enterprise: Modeling

BIBLIOGRAPHY 157

CORBA, Components, XML/XMI and Metadata, November 2000. Available

from http://www.omg.org/news/meetings/workshops/uml_presentations.htm
(November 2007). 84

[21] O. Díaz, J. Iturrioz, and A. Irastorza. Improving Portlet Interoperability

through Deep Annotation. In WWW ’05: Proceedings of the 14th interna-

tional conference on World Wide Web, pages 372–381, New York, NY, USA,

2005. ACM Press. 48

[22] Oscar Díaz and Iñaki Paz. Turning web applications into portlets: Raising the
issues. In Wojciech Cellary and Hiroshi Esaki, editors, Symposium on Appli-

cations and the Internet (SAINT2005), pages 31–37. IEEE Computer Society,
2005. 49

[23] J. Domingue, L. Cabral, F. Hakimpour, D. Sell, and E. Motta. IRS-III: A Plat-
form and Infrastructure for Creating WSMO-based Semantic Web Services.

In Workshop on WSMO Implementations (WIW), volume 113, Frankfurt, Ger-
many, 2004. 111

[24] DSM. Domain-Specific Modelling Forum. Available from

http://www.dsmforum.org/ (December 2007). 33

[25] ESWC 4th European Semantic Web Conference. OWL-S Experi-
ences and Future Developments workshop, June 2007. Available from

http://www.eswc2007.org/workshops.cfm (April 2008). 7

[26] E. Evans. Domain-Driven Design. Tackling Complexity in the Heart of Soft-

ware. Addison-Wesley, 2004. 115

[27] Exo. Exo Community. Available from http://www.exoplatform.org (November
2007). 5, 56

[28] eXo. Exo Platform version1. Available from http://docs.exoplatform.org/exo-

documents/exo.site/index.html (October 2007). 65

[29] M.C. Ferreira de Oliveira, M.A. Santos Turine, and P.C. Masiero. A Statechart-
Based Model for Hypermedia Applications. ACM Transactions on Information

Systems, 19(1):28–52, January 2001. 44, 53

[30] J.M. Firestone. Enterprise Information Portals and Knowledge Management.
KMCI Press, 2002. 10

158 BIBLIOGRAPHY

[31] P. Fraternali and P. Paolini. Model-driven development of Web applications:

the AutoWeb system. ACM Transactions on Information Systems (TOIS),
18(4):323–382, October 2000. 80

[32] I. Garrigós, J. Gómez, P. Barna, and G-J. Houben. A Reusable Personaliza-

tion Model in Web Application Design. In International Workshop on Web

Information Systems Modelling (at ICWE2005), July 2005. 64

[33] R. Gitzel, A. Korthaus, and M. Schader. Using established Web Engineering

knowledge in model-driven approaches. Science of Computer Programming,
66(2):105–124, April 2007. 58, 77

[34] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools. Wiley, 2004. 34

[35] S. Handschuh and S. Staab (eds.). Annotation for the Semantic Web. IOS

Press, 2003. 6, 88, 91

[36] S. Handschuh, S. Staab, and R. Volz. On Deep Annotation. In 12th Interna-

tional Conference on the World Wide Web (WWW2003). ACM, May 2003. 6,

91, 100, 106

[37] S. Handschuh, R. Volz, and S. Staab. Annotation for the Deep Web. IEEE

Intelligent Systems, 18(5):42–48, September/October 2003. 91, 94

[38] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM

Transactions on Software Engineering and Methodology, 5(4):293–333, Oc-
tober 1996. 53

[39] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the Formal Semantics
of Statecharts. In 2nd IEEE Symposium on Logic in Computer Science, pages

54–64. IEEE Computer Society, 1987. 4, 53, 54, 144

[40] R. Hennicker and N. Koch. Modeling the User Interface of Web Applica-
tions with UML. In Practical UML-Based Rigorous Development Methods -

Countering or Integrating the eXtremists. Workshop of the pUML-Group at the

UML 2001, pages 158–172, 2001. 80

[41] Hewlett-Packard. Jena: a Java framework for writing Semantic Web applica-

tions, 2003. Available from http://www.hpl.hp.com/semweb/jena.htm (March
2008). 104

BIBLIOGRAPHY 159

[42] Honeywell Inc. DOME (the DOmain Modeling Environment). Available from

http://www.htc.honeywell.com/dome/index.htm (September 2007). 34

[43] IBM. WebSphere, May 2006. Available from http://www.ibm.com/websphere.
56

[44] ISIS Institute for Software Integrated Systems (Vandervilt Univer-

sity). GME (The Generic Modeling Environment). Available from
http://www.isis.vanderbilt.edu/projects/gme/index.html (September 2007). 34

[45] Interactive Objects. ArcStyler. Available from http://www.interactive-

objects.com/products/arcstyler (December 2007). 31

[46] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process

and Oranization for Business success. Addison-Wesley, 1997. 116

[47] A. Jafari and M. Sheehan. Designing Portals: Opportunities and Challenges.
IRM Press, 2003. 1, 2

[48] R. Jasper and M. Uschold. A Framework for Understanding and Classifying

Ontology Applications. In IJCAI99 Workshop on Ontologies and Problem

Solving Methods KRR5, August 1999. 7, 93

[49] Java Community Process. JSR 286: Portlet Specification 2.0. Available from

http://www.jcp.org/en/jsr/detail?id=286 (March 2008). 2, 7, 84, 89, 110, 117

[50] Java Community Process. JSR 168: Portlet specification, October 2003. Avail-

able from http://www.jcp.org/en/jsr/detail?id=168 (March 2008). 7, 12, 93

[51] S. Kelly. Domain-specific languages versus generic modeling languages, May
2007. Available from http://www.ddj.com/architect/199500627 (December

2007). 33, 34

[52] S. Kent. Model Driven Engineering. In 3th International Conference on Inte-

grated Formal Methods, volume 2335 of Lecture Notes in Computer Science

(LNCS), pages 286 – 298. Springer-Verlag, 2002. 26, 27

[53] A. Kleppe, J. Warmer, and W. Bast. MDA Explained. The Model Driven Ar-

chitecture: Practice and Promise. Addison-Wesley, 2003. 28, 29, 30

160 BIBLIOGRAPHY

[54] N. Koch. Software Engineering for Adaptive Hypermedia Systems. Reference

Model, Modeling Techniques and Development Process, December 2000. PhD
Thesis. 64

[55] N. Koch. Transformation Techniques in the Model-Driven Development Pro-
cess of UWE. In 6th International Conference on Web Engineering. 2nd Inter-

national Workshop on Model Driven Web Engineering (MDWE’06), volume
155. ACM, July 2006. 35, 46

[56] N. Koch and A. Kraus. Towards a Common Metamodel for the Development

of Web Applications. In 3rd International Conference on Web Engineering

(ICWE 2003), volume 2722 of Lecture Notes in Computer Science (LNCS),

pages 497–506. Springer Verlag, 2003. 84

[57] N. Koch, A. Kraus, C. Cachero, and S. Meliá. Integration on Business Pro-

cesses in Web Application Models. Journal of Web Engineering, 3(1):22–49,
May 2004. 115

[58] N. Koch, A. Kraus, and R. Hennicker. The Authoring Process of the UML-
based Web Engineering Approach. In 1st International Workshop on Web-

Oriented Software Technology, June 2001. 80

[59] C.W. Krueger. Software Reuse. ACM Computing Surveys, 24(2), June 1992.
77

[60] G.P. Marquis. Application of traditional system design techniques to web site
design. Information and Software Technology, 44(9):507–512, 2002. 13

[61] S. Meliá, A. Kraus, and N. Koch. MDA Transformations Applied to Web Ap-
plication Development. In 5th International Conference on Web Engineering

(ICWE 2005), Sidney, Australia, volume 3579 of Lecture Notes in Computer

Science (LNCS), pages 465–471. Springer-Verlag, July 2005. 82

[62] MetaCase. MetaEdit+. Available from http://www.metacase.com/ (September

2007). 34

[63] J. Miller and J. Mukerji. Model Driven Architecture (MDA), July 2001. Tech-

nical Report ormsc/2001-07-01, Object Management Group (OMG), Archi-
tecture Board ORMSC. 35

BIBLIOGRAPHY 161

[64] N. Moreno and A. Vallecillo. A Model-Based Approach for Integrating Third

Party Systems with Web Applications. In 5th International Conference on

Web Engineering (ICWE 2005), Sydney, Australia, volume 3579 of Lecture

Notes in Computer Science (LNCS), pages 441–452, Berlin, 2005. Springer.
46, 84

[65] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar. A Context Model for
Semantic Mediation in Web Services Composition. In Conceptual Modeling -

ER 2006, volume 4215 of Lecture Notes in Computer Science (LNCS), pages
12–25. Springer, Berlin, October 2006. 112

[66] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg, and S. Dust-
dar. A Context-Based Mediation Approach to Compose Semantic Web Ser-

vices. ACM Transactions on Internet Technology, 8(1), November 2007. 112

[67] P. Muller, P. Studer, F. Fondement, and J. Bèzivin. Platform independent

Web application modeling and development with Netsilon. Software & System

Modeling, 4(4):424–442, November 2005. 82

[68] J. Nielsen. Personalization is Over-Rated, 1998. Alertbox. Jakob’s column

on Web Usability. Available from http://www.useit.com/alertbox/981004.html
(June 2008). 61

[69] D. A. Nunes and D. Schwabe. Rapid Prototyping of Web Applications Com-
bining Domain Specific Languages and Model Driven Design. In 6th Inter-

national Conference on Web Engineering (ICWE 2006), volume 263 of ACM

International Conference Proceeding Series, pages 153–160, New York, USA,

July 2006. ACM. 83

[70] OASIS. Electronic Business using eXtensible Markup Language (ebXML),

2003. Available from http://www.ebxml.org/ (July 2007). 48

[71] OASIS. Web Service for Remote Portlets Specification

(WSRP) Version 1.0, 2003. Available from http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrp (March 2008). 7,

15, 18, 48, 93

[72] OASIS. WSRP-ebXML Registry Technical Note. Using ebXML Registry

to Publish, Manage and Discover WSRP Artifacts, 2005. Available from
http://www.ebxml.org/ (June 2008). 48

162 BIBLIOGRAPHY

[73] OASIS. Web Services Business Process Execution Language

(WSBPEL) Version 2.0, 2007. Available from http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel (May 2008). 4

[74] OASIS. Web Service for Remote Portlets Specification (WSRP) Version 2.0,

2008. Available from http://docs.oasis-open.org/wsrp/v2/wsrp-2.0-spec.html
(April 2008). 2, 6, 7, 84

[75] Object Management Group (OMG). The Common Warehouse Model 1.1.
(CWM), 2003. Available from http://www.omg.org/cgi-bin/doc?formal/03-

03-02 (June 2008). 36

[76] Object Management Group (OMG). MDA Guide Version 1.0.1, june 2003.

Available from http://www.omg.org/docs/omg/03-06-01.pdf (April 2007). 4,
28, 35, 44, 45, 46, 68

[77] Object Management Group (OMG). MOF QVT Final Adopted Specification,

November 2005. Available from http://www.omg.org/docs/ptc/05-11-01.pdf
(April 2008). 8, 36, 37, 70

[78] Object Management Group (OMG). Unified Modeling Language (UML):
Superstructure, August 2005. Available from http://www.omg.org/cgi-

bin/doc?formal/05-07-04 (April 2007). 7, 53

[79] Object Management Group (OMG). Meta Object Facility
(MOF) Core Specification ver2.0, January 2006. Available from

http://www.omg.org/docs/formal/06-01-01.pdf (July 2007). 84

[80] Object Management Group (OMG). Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, July 2007. Available from
http://www.omg.org/docs/ptc/07-07-07.pdf (April 2008). 7

[81] Object Management Group (OMG). Software Process Engineering
Metamodel (SPEM), version 1.1, January 2007. Available from

http://www.omg.org/technology/documents/formal/spem.htm. 47

[82] A. Olivé. Conceptual Modeling of Information Systems. Springer, October
2007. 53

BIBLIOGRAPHY 163

[83] Oracle. Oracle Portal. Available from

http://www.oracle.com/appserver/portal_home.html (November 2007).
56

[84] F. Pan and J. R. Hobbs. Time in OWL-S. In 1st International Semantic Web

Services Symposium, March 2004. 99

[85] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic Matching

of Web Services Capabilities. In 1st International Semantic Web Conference,
pages 333–347, Berlin, June 2002. Springer-Verlag. 51, 111

[86] QVT Partners. Revised submission for MOF 2.0 Query/
Views/ Transformations RFP, 2003. Available from

http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf (November 2007). 82

[87] C. Peltz. Web Service Orchestration and Choreography: A look at WSCI and
BPEL4WS. Web Services Journal, 03(7), July 2003. 97

[88] E. Reshef. Building Interactive Web Services with WSIA & WSRP.
Web Services Journal, pages 2–6, December 2002. Available from

http://webservices.sys-con.com/read/39627.htm (May 2008). 13

[89] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fensel. Web Service Modeling On-

tology. Applied Ontology, 1(1):77 – 106, 2005. 90, 111

[90] G. Rossi, H. Schmid, and F. Lyardet. Engineering Business Processes in

Web Applications: Modeling and Navigation issues. In Third International

Workshop on Web-Oriented Software Technologies (IWWOST03), pages 81–

89, Oviedo (Spain), 2003. 115

[91] A. Roy-Chowdhury, S. Ramaswamy, and X. Xu. Using Click-to-Action to Pro-

vide User-Controlled Integration of Portlets, December 2002. Available from
http://www.ibm.com/developerworks/websphere/library/techarticles/0212_roy/roy.html

(March 2008). 109

[92] J. Sametinger. Software Engineering with Reusable Components. Springer,
1997. 116

164 BIBLIOGRAPHY

[93] D.C. Schmidt. Why Software Reuse has Failed and How to Make It Work

for You. Available from http://www.cs.wustl.edu/ schmidt/reuse-lessons.html
(September 2007). 25

[94] D.C. Schmidt. Model Driven Engineering. IEEE Computer, 39(2):41–47,
February 2006. 25

[95] D. Schwabe, R.M. Guimaraes, and G. Rossi. Cohesive Design of Personalized

Web Applications. IEEE Internet Computing, 6(2):34–43, March 2002. 62

[96] B. Selic. The pragmatics of model-driven development. IEEE Software,

20(5):19–25, 2003. 77

[97] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic Composition of Web Ser-

vices using Semantic Descriptions. In 1st Workshop on Web Services: Mod-

eling, Architecture and Infrastructure. In conjunction with ICEIS 2003, pages

17–24. ICEIS Press, April 2003. 51, 111

[98] J. Sánchez Cuadrado and J. García Molina. A Phasing Mechanism for Model
Transformation Languages. In ACM Symposium on Applied Computing. Seoul,

Korea, pages 1020–1024. ACM, March 2007. 41, 126

[99] J. Sánchez Cuadrado, J. García Molina, and M. Menárguez Tortosa. RubyTL:

A Practical, Extensible Transformation Language. In Model Driven Archi-

tecture - Foundations and Applications. 2nd European Conference, ECMDA-

FA2006. Bilbao, Spain, pages 158–172. Springer-Verlag, July 2006. 7, 37, 38,
39, 41, 70, 121

[100] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen. Model Driven Software

Development: Technology, Engineering, Management. Wiley, June 2006. 31

[101] H. Strauss. All About Web Portals: A Home Page Doth Not a Portal Make. In

Web Portal and Higher Education. Technologies to Make IT Personal, pages
33–40. Jossey-Bass, A Wiley Company, 2000. 10

[102] P. Tetlow, J. Pan, D. Oberle, E. Wallace, M. Uschold, and E. Kendall.
Ontology Driven Architectures and Potential Uses of the Semantic

Web in Systems and Software Engineering, 2006. Available from
http://www.w3.org/2001/sw/BestPractices/SE/ODA/ (March 2008). 89

BIBLIOGRAPHY 165

[103] The Delphi Group. Portal Lifecycle Management: Address-

ing the Hidden Cost of Portal Ownership, 2001. Available from
http://www.mongoosetech.com/downloads/ portal_ownership.pdf. 3, 43

[104] D. Thomas. Programming Ruby. The Pragmatic Programmers’ Guide, 2004.

Available from http://www.rubycentral.com/book/ (April 2007). 37

[105] J-P. Tolvanen. Domain-Specific Modeling: How to Start Defin-

ing Your Own Language, February 2006. Available from
http://www.devx.com/enterprise/Article/30550 (December 2007). 32,

34

[106] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An An-

notated Bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000. 32

[107] A. van Deursen, E. Visser, and J. Warmer. Model-Driven Software Evolution.
a Research Agenda. In CSMR Workshop on Model-Driven Software Evolution

(MoDSE 2007), pages 41–49, Amsterdam, The Netherlands, March 2007. 25

[108] W3C Consortium. Cascading Style Sheet (CSS), 1998. Available from

http://www.w3.org/TR/REC-CSS2/ (March 2007). 16, 56

[109] W3C Consortium. XSL Transformations (XSLT), 1999. Available from
http://www.w3.org/TR/xslt (May 2008). 36

[110] W3C Consortium. OWL-S: Semantic Markup for Web Services, 2004. Avail-
able from http://www.w3.org/Submission/OWL-S/ (June 2008). 7, 95

[111] W3C Consortium. Platform For Privacy Preferences (P3P), 2006. Available

from http://www.w3.org/TR/P3P11/ (June 2008). 62

[112] W3C Consortium. Web Services Description Language WSDL 2.0, 2007.

Available from http://www.w3.org/TR/wsdl20/ (June 2008). 48

[113] C. Walker. Types of portal: a definition, 2006. Available from

http://www.steptwo.com.au/papers/cmb_portaldefinitions/index.html (May
2008). 10

[114] S. Wong. Web Services: The Next Evolution of Application Integration, 2001.

Available from http://www.ebizq.net/topics/web_services/features/1526.html
(May 2008). 13

166 BIBLIOGRAPHY

[115] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera. A

Framework for Rapid Integration of Presentation Components. In 16th Inter-

national Conference on the World Wide Web (WWW2007), pages 923–932,

May 2007. 81, 82, 110

Acknowledgements

So much time wishing to come this day and so many things I would like to say... and

now perhaps I will not find the suitable words.
First and foremost, I would like to thank my supervisor Oscar Díaz for investing

a great deal of time in this work and for encouraging me those times when I saw all
black. He has taught me the value of being persevering in our research works and

keeping open eyes to coming innovations.
I would also like specially thank Luis M. Alonso for his great support and push

with the implementation in RubyTL and his help in the creation of the annexe of this

dissertation.
The help of Arturo Jaime and Maider Azanza has been also invaluable through

long couch sessions, they helped me to realize that I was not alone and I was not the
only one in the desert.

They are all members of Onekin research group at the University of the Basque
Country, like they are those, currents and formers, whom I would also like to express

my gratitude to: Cristóbal Arellano, Iker Azpeitia, Sergio Fernández, Felipe Ibañez,
Jon Iturrioz, Felipe Martín, Iñaki Paz, Sandy Pérez, Gorka Puente, Juan J. Rodríguez,

and Salvador Trujillo. They have always been very friendly and helpful. I only wish
to be able to pay them back in their own coin.

Despite the demand of this work, there was still life out there. I would like to
thank my family and friends in Ordizia for suffering my melancholy and silences.

They have always helped me to see more opportunities work aside. From now on, I
will turn Ordizia into something more than the town where I sleep, and I will be able

to spend more time with them. I promise.
And, in general, I would like to thank everybody, in the lunch time and in the

faculty, who has understood me when sometimes I did not want to speak about my
thesis and has cheered me up with a conversation or just a pat on the back.

Thanks, in all sincerity, to all of you.

.

Bukatu da, bukatu da....

Bukatu da, akabo!!

...

ala ez?

ai ama!!!

