eman ta zabal zazu

>

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

THE OMEGA FAILURE DETECTOR
IN THE CRASH-RECOVERY MODEL

Dissertation for the degree of
Doctor of Philosophy presented by

Cristian Mart in

Advisor

Mikel Larrea

Computer Architecture and Technology department
Computer Science Faculty
UNIVERSITY OF THE BASQUE COUNTRY

November, 2010

ISBN: 978-84-694-1126-1

"The aim of science is not to open the door to infinite wisdom,
but to set a limit to infinite error”
Bertolt Brecht

"A theory is something nobody believes, except the persanmadde it. An
experiment is something everybody believes, except tsempaho made it
Albert Einstein

Acknowledgements

| am grateful to many people for help, both direct and indirét writing this thesis.
First, 1 would like to thank Dr. Mikel Larrea, my advisor andeind. Not only he
alwaystrustedme, but he is a greahodelin the area of distributed systems. | would
like to express my gratitude to the members of the DistridhiBgstems Group at the
University of the Basque Country, and especially to Rob€ddifias, for helping me in
many ways. Also, | would like to thank IKERLAN its support ind later stages of this
thesis.

En un plano mas personal, me gustaria agradecer a misspau@riio y apoyo,
y en particular sus esfuerzos en todo lo referente a mi etucad.os cuentos, las
multiplicaciones, las figuras de papel, el ordenador MSXi®d de estudiantes... jOs
agradezco tantas cosas!

Y cdomo no, me gustaria agradecer a Pakene, mi flor, todani@m@msion y la pa-

ciencia que me demuestra cada dia en las cosas importantes.

Abstract

The design and verification of fault-tolerant distributéglgithms and applications are
complex tasks. In order to study them, several standardgarabhave been identified.
One of the most important Bonsensusthe problem of a number of processes trying
to agree on a common decision. The Consensus problem cae sotued determinis-
tically in asynchronous systems where processes can draskder to circumvent this
impossibility Chandra and Toueg proposed timeeliable failure detectors

In this dissertation we study, for the first time, t®enega Q, (unreliable) failure
detector in theCrash-Recovery System Modéllore specifically we focus on the de-
sign of algorithms that implement this failure detector induls of partial synchrony
where processes can crash and later recover, in which Csusbas been proven to be

solvable.

We first redefine the Omega failure detector for the crasbwexny model. We de-
fine theOmega;; andOmega,, failure detectors for systems without and with stable
storage respectively. Then, we propose a set of eight laisérd algorithms that work
in (slightly) different crash-recovery system models. Wigard to efficiency, we have
implemented two communication-efficient algorithms, oae ®mega;; and another
one forOmega».

Additionally, we propose two algorithms implementing aidaijons of the Eventu-
ally Perfect,OP, failure detector. In the crash-recovery model, it is nosgible to

implement a failure detector of the classP. For this reason, we have defined and

Vi

implemented the>P and O Py_c failure detectors, which satisfy weaker properties.
The algorithms rely heavily on the use of the leader electienvice provided by the
Omega,, failure detector. Finally, we propose three aggregatatiele and data ag-
gregation algorithms for wireless sensor networks builtamof our implementations

of the Omega,» failure detector.

Resumen

El disefio y la verificacion de algoritmos y aplicacionestritbuidas tolerantes a fallos
son tareas complejas. Para estudiarlas, se han identificaids problemas estandar.
Uno de los mas importantes es@nsenspel problema de varios procesos intentando
acordar una decision comun. El problema del Consenso adepser resuelto deter-
ministicamente en sistemas asincronos donde los peesulen fallar. Para salvar
esta imposibilidad, Chandra y Toueg propusierordietectores no fiables de fallos
En esta tesis estudiamos, por primera vez, el detector rie fiatfallosOmega Q,

en elmodelo de sistema de fallo-y-recupekat{Crash-Recovery). Mas concretamente
nos centramos en el disefio de algoritmos que implementao dietector de fallos en
modelos de sincronia parcial donde los procesos puedeny t#&go recuperarse, para

los que se ha demostrado que el Consenso se puede resolver.

En primer lugar redefinimos el detector de fallos Omega planaoeelo de fallo-
y-recuperacion. Definimos los detectores de fallimega;1 y Omega,» para sis-
temas sin y con memoria estable respectivamente. Seguaianpeoponemaos un con-
junto de ocho algoritmos distribuidos que funcionan en rtexlde sistema de fallo-
y-recuperacion (ligeramente) diferentes. Respecto fidi@ecia, se han implementado
dos algoritmos eficientes en cuanto a comunicacion (cornuation-efficient), uno para
Omegay1 Y el otro paradmega;».

Ademas, proponemos dos algoritmos que implementan de¢ésale fallo€ventu-

ally Perfect ©&P. En el modelo de fallo-y-recuperacion, no es posible immgletar un

viii

detector de fallos de la clasgP. Por ello, se han definido e implementado los detec-
tores de fallosoPer y OPy_cr, que satisfacen propiedades mas débiles. Los algoritmos
estan basados en el uso de un servicio de eleccion dedugeres proporcionado por

el detector de fallo®mega,,. Finalmente, proponemos tres algoritmos de eleccion de
agregadory agregacon de datogpara redes de sensores inalambricas, construidos sobre

nuestras implementaciones del detector de fa@llogega,,.

Contents

1 Introduction
1.1 Background
1.1.1 ConSensuS i
1.1.2 FailureDetectors
1.2 Motivation.
1.3 Summary of Contributions

1.4 ThesisOutline

2 Related Work
2.1 Introduction
2.2 Failure Detectorsinthe Crash Model
2.2.1 The Eventually Timely Approach
2.2.2 The Message Pattern Approach
2.3 Failure Detectors in the Crash-Recovery Model
2.4 More about Failure Detectors

25 SolvingConsensus e

3 General System Model
3.1 Definition of the General SystemModel
3.2 Omegainthe Crash-RecoveryModel

iX

CONTENTS

4 Omega in Crash-Recovery without Stable Storage

4.1 Introduction

4.2 AnAlgorithmforSysteng,
4.2.1 Specific System AssumptionsSp
4.2.2 TheAlgorithm
4.2.3 CorrectnessProof.

4.3 Onthe Eventual Timeliness of Fair Lossy Links

5 Omega in Crash-Recovery with Stable Storage

5.1 |Introduction
5.2 AnAlgorithmforSysten®
5.2.1 Specific System AssumptionsSn
5.2.2 TheAlgorithm
5.2.3 CorrectnessProof.
5.3 AnAlgorithmforSystengs
5.3.1 Specific System Assumptions3g
5.3.2 TheAlgorithm
5.3.3 CorrectnessProof.
5.4 AnAlgorithmforSysteng,
5.4.1 Specific System Assumptions3p
5.4.2 TheAlgorithm

5.4.3 CorrectnessProof.

6 Communication-Efficient Omega Algorithms

6.1 |Introduction
6.2 Communication Efficiency Definitions
6.3 AnAlgorithmforSysteng

6.3.1 Specific System Assumptions3gn

CONTENTS Xi
6.3.2 TheAlgorithm, 99
6.3.3 CorrectnessProof 102
6.4 AnAlgorithmforSysteng 105
6.4.1 Specific System AssumptionsSg 106
6.4.2 TheAlgorithm 106
6.4.3 CorrectnessProof. 107
6.4.4 Providing Instability Awareness 112
6.5 AnAlgorithmforSystens;, 115
6.5.1 Specific System AssumptionsSpn 115
6.5.2 TheAlgorithm 116
6.5.3 CorrectnessProof 119
6.6 Relaxing Communication Reliability and Synchrony 122
7 From Omega to a¢P Failure Detector 125
7.1 Introduction 126
7.2 ThedP Failure Detector in the Crash-Recovery Model 126
7.3 An Algorithm Implementing>P¢ in SystemS 127
7.3.1 Specific System AssumptionsSg 127
7.3.2 TheAlgorithm, 130
7.3.3 CorrectnessProof 132
7.4 TheOPy_ FailureDetectorClass 134
741 DEfiNiNGOProcr - « v o o e e e 134
7.4.2 An Algorithm ImplementingPy_r in SystemS 135
8 Aggregator Election and Data Aggregation in WSNs 141
8.1 Introduction 142
8.2 RelatedWork 143
8.3 SystemModel 145

Xii CONTENTS
8.3.1 Redefining the Omega Failure Detector 47 1
8.4 Local (Intra-Region) Level 147
8.4.1 AFirstAlgorithm. 148
8.4.2 ASecondAlgorithm 154
8.4.3 AThird Algorithm 160
8.5 Global (Inter-Region) Level 163
8.6 Energy-Aware Aggregator Election and Data Aggregation 167
9 Conclusions and Future Work 171
9.1 Research Assessment 172

9.2 Future Work 173

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

Exampleofpaths.

An algorithm implementin@mega,; in systemS;.
Scenario 1: three eventually up, one eventually dowe umstable.

Scenario 2: three eventually up, one eventually dowe umstable.

Scenario 3: three eventually up, two unstable.
Scenario 4: three eventually up, two unstable.
Scenario 5: three eventually up, two unstable.
Scenario 6: three eventually up, two unstable.

Scenario 7: three eventually up, two unstable.

An algorithm implementin@mega;» inS. L.
An algorithm implementin@mega;» inSz.

An algorithm implementin@mega,;2 in S,

Scenario 8: three eventually up, one eventually dowa,umstable.
A communication-efficie®mega,» algorithminSss.
Scenario 9: three eventually up, one eventually dowe umstable.
A near-communication-efficie@megaalgorithmins.
An algorithm implementin@mega,; in extendeds.

A communication-efficief®megg,1 algorithminS;.

Xiii

61

61
61
68
68
68
68

LIST OF FIGURES

Xiv
7.1 UsingOmegar2tobuilldOPer. . . o o o o 0 o o o o oo 128
7.2 Transformingdmega, intoOPrinSg. o . o L oL 129
7.3 Transformind®mega,, into OGPy ¢ in S (Partl). 136
7.4 Transformingdmega,2 into OPy_rin S (Partll). 137
7.5 UsingOmega;» and the knowledge dfto build>Py 138
8.1 System operation time-line (Algorithm). 148
8.2 Intra-region aggregator election and data aggregéitonl). 149
8.3 Sensordistributioninaregion. 154
8.4 Intra-region aggregator election and data aggreg@ilon1l). 155
8.5 Intra-region aggregator election and data aggregéalon IIl). 161
8.6 Large WSN divided in regions (only aggregators are shown 163
8.7 Inter-region algorithm (Partl). 164
8.8 Inter-region algorithm (Part1l). 165
8.9 Battery life comparisonforasensor. 168

8.10 Using a battery depletion threshold. 168

List of Tables

1.1 Classes of unreliable failure detectors.

1.2 System models and algorithms.

XV

XVi LIST OF TABLES

Chapter 1

Introduction
Contents
1.1 Background 2
1.2 Motivation 15
1.3 Summary of Contributions 16
17

1.4 Thesis Outline

2 Chapter 1. Introduction

1.1 Background

This dissertation is contextualized in the field of disttdmisystems and hence we will
start with a set of common definitions of this domain.

First of all we should know what a distributed system is. Adoag to the free
on-line dictionary of computing [1] a distributed systenifAscollection of (probably
heterogeneous) automata whose distribution is transpaeethe user so that the system
appears as one local machine. This is in contrast to a netywehlere the user is aware
that there are several machines, and their location, steragplication, load balancing
and functionality is not transparent”.

The termautomataused in this formal definition refers to very diverse types of
devices such as computers, mobile phones, sensors... datgxample of a distributed
system is an automated banking system. A user can accestoameded teller machine
(ATM) where transactions can be made, and every transantigst be replicated on
several servers in different locations. Furthermoregdéit users could access the same
bank account at the same time from different ATMs. Howeveiser only deals with a
local ATM and she or he will probably never be aware of therthigted system beyond
the ATM.

In this dissertation we will repeatedly use the tgsracess We will call process to
a processor which is able to execute an algorithm. We do nmetaiaout the hardware
and software behind the process.

In relation to distributed systems we have the field of distied computing. This
deals with distributed hardware and software systems ¢énaphasize the transparency
of the distribution, so that the user of an application atvgiautomaton (e.g. a com-
puter) is unable to distinguish between the local and theoterparts of the distributed
system. For this purpose, the software required for theibliged hardware deliberately
hides the distributed nature of the system.

In a distributed system, the logic of the algorithm that ssla particular problem

1.1. Background 3

must often be distributed among the components of the systéenwill call an algo-
rithm designed to run on a distributed systenfigtributed algorithm This dissertation
focuses on the design of distributed algorithms in the fiélthoeliable failure detectors,

which will be introduced later.

Nancy Lynch, one of the gurus in the area of distributed dllgans, wrote in her

seminal book [94]:

“A distributed algorithm is an algorithm designed to run onroputer hardware
constructed from interconnected processors. Distributiggrithms are used in vari-
ous application areas of distributed computing, such ascd@inmunications, scientific
computing, distributed information processing, and reale process control. Stan-
dard problems solved by distributed algorithms includelierselection, consensus, dis-

tributed search, spanning tree generation, mutual exolusand resource allocation.

Distributed algorithms are typically executed concurfgntvith separate parts of
the algorithm being run simultaneously on independentgssors, and having limited
information about what the other parts of the algorithm amnd). One of the major
challenges in developing and implementing distribute@atgms is successfully coor-
dinating the behaviour of the independent parts of the athorin the face of processor
failures and unreliable communications links. The choitaroappropriate distributed
algorithm to solve a given problem depends on both the cheristics of the problem,
and characteristics of the system the algorithm will run anfrsas the type and proba-
bility of processor or link failures, the kind of inter-press communication that can be
performed, and the level of timing synchronization betwssparate processes.”

Although nowadays we should speak about intelligent orggsing devices rather

than computer hardware, this definition, given in 1996, weg# the essence.

Distributed systems can be modelled or defined making éiffiesissumptions about
system behaviour and/or features. We will call a distriduggstem with its particular

assumptions distributed system modelystem modedr justsystem For instance, in

4 Chapter 1. Introduction

[45] Dolev et al. considered a distributed system compos$ederconnected processors
with five key assumptions or parameters, each of which maypoba satisfied, making
a total of 2 = 32 system models.

One of the most important assumptions in which distributestiesn models can dif-
fer is related to timing aspects. In fact, most models foeusam timing attributes: the
time needed for a message sent by one process to reach iteatlestand be delivered
by another process; and the time taken by a process to ex@paie of the algorithm.

We can classify these attributes as synchronous, asymmhsoor partially syn-
chronous, depending on the timing assumptions made. Agiatimbute is synchronous
if there is aknownfixed upperboundon it; it is asynchronous if there i boundon
it; and if it is neither synchronous nor asynchronous it femed to as partially syn-
chronous.

With respect to the system models defined in terms of thesbud#s: a distributed
system model is considered asynchronous if at least one girdvious timing attributes
is asynchronous and is considered synchronous if botlaits are synchronous. Fi-
nally, if it is neither synchronous nor asynchronous thendistributed system model is
partially synchronous.

Another important assumption for a distributed system rhodecerns thédailure

typesthat can happen in it. Some well known process failure types a

e Crash Also known ashalting failure andcrash-stop The process simply stops
forever. There is no way to detect the failure except by time o either stops

sending messages or fails to respond to requests.
e Crash-recoveryThe process stops and later recovers.
¢ Fail-stop. A crash failure with some kind of notification to other preses.

e Omission Failure to send and/or receive messages. They can be paminam

transient.

1.1. Background 5

e Byzantine This failure type encompasses several types of faulty\behis in-

cluding data corruption or loss, failures caused by malisiprograms, etc.

1.1.1 Consensus

In distributed systems, the design and verification of f&alkrant (distributed) algo-
rithms and applications are considered complex tasks.dardo study the aforemen-
tioned tasks, several standard problems have been iddntbige of the most important
is theConsensugroblem [57, 110]. Basically, Consensus algorithms sdieegrob-

lem of a number of processes trying to agree on a common daecislore precisely, a

Consensus protocol must satisfy the four formal propebesw:
(1) Termination Every correct process decides some value.
(2) Uniform Integrity Every process decides at most once.
(3) AgreementNo two correct processes decide differently.
(4) Validity: If a process decideg thenv was proposed by some process.

The Consensus problem has been studied extensively imatiffdistributed system
models. The importance of Consensus relies on the fact that agreement problems
such as atomic commitment [16, 19, 30, 49, 67, 68], group neeshlip [11, 22, 27,
64, 72,97, 100, 111, 118], and totally ordered broadcast (a@hown astomicbroad-
cast) [22, 28, 29, 40, 41, 51, 52, 71, 119] can be reduced t@ $orm of Consensus,
and hence solutions to these problems can be built on top ohadhsus algorithm.

It is well known that Consensus can be easily solved in a spmcius distributed
system [53, 127] because it is generally easy to reliablgae¢he process crashes using
time-outs. In an asynchronous distributed system, Fisehat. showed in [59] that
Consensus cannot be solved deterministically if at leastgncess can fail, even by

crashing. This is known as th&.P impossibilityresult. Consequently, many problems

6 Chapter 1. Introduction

that require all processes to participate actively in tseligion are not deterministically
solvable in an asynchronous system [27, 59, 65, 115, 120].

Basically, the FLP impossibility is due to the fact that iiyashronous systems it is
not possible to distinguish a faulty process from a very stow. This implies that in
such systems reliable failure detection is not possible.

Observe that although the asynchronous model is attradtieeimpossibility of
deterministic solutions to the Consensus problem is a ntapwback when designing
fault-tolerant algorithms.

With regard to Consensus solvability [58], we can find sdweraks about lower
bounds on what Consensus algorithms can achieve. In [86pbbameviews previous
works [31, 81] and presents new results. In summary, Lampadents two results:
a majority of processes is required to be correct to enswrgress; and if more than
one process is allowed to propose, it is required that mae tio-thirds of the pro-
cesses are correct to reach a decision in two communicdagps.sThese bounds show
a trade-off between resilience and the number of commuaitateps needed to solve
Consensus.

In order to circumvent the FLP impossibility result whild\sng Consensus, several

lines of research emerged, including the following:

¢ the definition of weaker problems than Consensus and thkitigo, as in [14,
20, 21, 47];

¢ the use ofandomizatiortechniques, asin [8, 13, 18, 37, 113, 121]; and
¢ the study of partially synchronous models, as in [15, 45, 50]

When using randomization techniques, the randomness camtrbeluced to the
model in two ways. On the one hand, the model itself can beomikd. This means
that in a given state concrete operations only occur withesprabability [12, 23]. This

approach is not very popular due to its limited practicallappility.

1.1. Background 7

On the other hand, there is a more realistic approach basednolomized algo-
rithms that employ a degree of randomness as a part of their logioceBses have
access to operations that return random values accordsetfied probability distri-
butions that are used as additional inputs for differenppses. These operations, often
called coin-flips are enough to overcome some impossibility results with\emame
probability of 1, and can also be used to achieve good pedoomin the average case.

Deterministic algorithms, unlike randomized algorith@syays behave predictably:
i.e. given a particular input, they always produce the santput. However, this be-
haviour can cause a worse performance or the need to augneesystem in order to
solve a particular problem.

The strategy followed in the study of partially synchrongystems is to enhance
the asynchronous system to some extent in order to make Ganseor any other dis-
tributed problem, solvable. In this way, some works haveisec on the identification
of the minimum amount of synchrony required to solve Congsinsa distributed sys-
tem where processes can crash. The works discussed belsweodistributed system
models composed of a finite set of processes that commurbga¢gchanging mes-
sages.

Dolev et al. in [45] delineate the boundary between solvgténd unsolvability
of Consensus in a specific area of system models. They defieliff8rent models
and identified fouminimalmodels in which Consensus is solvable. Roughly speaking,
they considered five critical parameters, that can be sethteréavourable”F” or un-
favourable’U”. The 32 models correspond to particular settings of thie farameters,

i.e. 2 =32. The critical parameters are:
(1) processors are synchronous "F” or asynchronous "U”,
(2) communication is synchronous "F” or asynchronous "U”,

(3) message order is synchronous "F” or asynchronous "U”,

8 Chapter 1. Introduction

(4) broadcast transmission "F” or point-to-point transsios "U”, and

(5) atomic receive/send "F” or separate receive and send "U”

For example, one minimal instance that allows solving Cogsss is a system model
where parameters (1) and (2) are favourable; i.e. thereyamhsonous processors and
synchronous communication. It is irrelevant whether thet o the parameters are
unfavourable or favourable, because the solvability of Glemsensus problem in the
distributed system model is guaranteed by the first two fealnle parameters.

Dwork et al. [50] considered two models of partial synchroBgsically, the first
model, referred to ab1 in some works, stipulates that in every execution there are
bounds on message transmission times and on relative gregesds, but these bounds
are not known a priori. The second moddl, considers that these bounds are known
but they hold only after some unknown, but finite, time. Initleork they showed that
Consensus can be solved in both models, assuming a majbdtyrect processes.

In [28] Chandra and Toueg presented the partially synchusisgstem modevi3,
composed of a set of processes that communicate by sendssgages through commu-
nication links. The partially synchronous system mddaldefines a new kind of partial
synchrony in which the timing attributes are bounded butitends are unknown and
only hold after an unknown but finite global stabilizatiomé&. In other wordsM3
combines the characteristics MdfL andM2.

More recently, Widder et al. presented the Theta-Model [1®&ich is a partially
synchronous model that allows synchrony to be achievedowitblocks. In brief, the
asynchronous system is enhanced with a bdod the ratio of the longest and shortest
end-to-end delays of messages that are in transit simolt@he The bound® can be
unknown and can hold only after an unknown time that, as ierottorks, is called
the global stabilization time. They also prove that in thisdal it is possible to solve

Consensus and other distributed problems, even with Bymafdilures.

1.1. Background 9

In [32] a new and disruptive model is proposed: theard-of model, denoted by
HO. According to the authors, th¢O model is inspired by [50, 62, 116]. Charron-Bost
and Schiper question three general assumptions in fdeltatat distributed systems.

They consider that:

e The degree of synchrony and the failure model for process#$irgks should not

be independent parameters.
¢ Distinguishing between process failures and link faillglesuld be avoided.

e The definition of Consensus should not refer to the processifeodel.

Therefore, thédO model encapsulates the degree of synchrony and the faukimod
in the same structure, and the distinction between procestirik failures disappears.
The computation consists of asynchronous communicalimsed rounds. In every
round each process sends a message to the rest of the psomedseceives messages
from the other processes. If a message is not received imalibis lost. At a process
p in a roundr the set of processes from whighhas received a message is called the
heard-of set, denoted BYO(p,r). Finally, they analyze previous results and Consensus

algorithms in their model.

1.1.2 Failure Detectors

As already mentioned, the solvability of some distributeabtems, such as the Con-
sensus problem, depends largely on the possibility of tdateprocess failures. For
instance, in a synchronous system, a process can reliatdgtdeanother process has
failed by the use of time-outs: a process can set one locakrtimma known time-out
value, the upper bound on message delivery plus the maxinrooegsing time. If
the timer expires, i.e. the time ends before the receptidghemessage, it means that
the other process has failed (assuming that communicaiogliable). Hence, a reli-

able detection of failures is possible and the Consensusigarocan be solved. In an

10 Chapter 1. Introduction

asynchronous system such a detection is not possible, m&ansensus unsolvable.
However, as stated in the previous section a fully synchusrsystem is not mandatory
for solving Consensus and different solutions are giverrdeto circumvent the FLP

impossibility result.

Chandra and Toueg in [28] proposed an apparently altemafdproach to over-
coming the FLP impossibility result by augmenting the asyonous system with an
unreliable failure detectar Roughly speaking, an unreliable failure detector is a ser-
vice, often called amracle that provides information about the (crash) failures @f th
processes that compose a system and it is implemented biributesd algorithm. This
information can be erroneous at a given time, but the bebawabthe algorithm must
satisfy two properties. Depending on the properties thatrarliable failure detector
satisfies, it belongs to one or another of the eight diffectagsesof unreliable failure
detectors they defined. They showed that Consensus canveel solan asynchronous

system provided with any of the failure detectors they psegob

Although at first sight unreliable failure detectors cannseedifferent line of re-
search from the study of partially synchronous systems,amsider they are not. The
failure detectors are defined in terms of two abstract ptagsecalledcompletenesand
accuracy but these properties cannot be implemented in an asynohsosystem, as
the FLP impossibility states it is not possible to carry ooy &ind of reliable (crash)
failure detection in a pure asynchronous system. Henceytighrony assumptions are
encapsulated inside the unreliable failure detector,iplyssliminating any reference to
time while solving Consensus. This line of research can be vieageain abstract way

of incorporating partial synchrony assumptions in theesyst

When dealing with the problem of implementing any class akliable failure de-
tector, we will have to make some synchrony assumptionsreftwe, although theo-
retically we can solve Consensus in an asynchronous systémamwunreliable failure

detector, the system needs to be partially synchronousler @0 implement the failure

1.1. Background 11

detector. Note that if we could solve Consensus deterngalbt in an asynchronous
system with the help of an unreliable failure detector tlaat also be implemented in an
asynchronous system, we would be contradicting the FLP &sipdity result. On the
other hand, in a fully synchronous system we can easily Ioeiiidble or unreliable fail-
ure detectors or even solve Consensus directly, withoutelgof an unreliable failure

detector.

In any case the use of unreliable failure detectors not olbyva the Consensus
problem to be solved by providing implemented failure ditecto the Consensus al-
gorithm, but allows the study of the Consensus problem i pgiynchronous systems

by avoiding the references to time while solving it.

We will now present the unreliable failure detectors praubisy Chandra and Toueg
more formally. For the exact definition of the unreliablddee detectors please read the
seminal work [28]. They considered distributed failureed¢drs where each process
has access to a local failure detector module. Basicakyntbdule maintains a local
list of processes that it currently suspects to have crashiad list can change through
time and the failure detector module can even suspect esdbat have not crashed
and include them in the list. When the module realizes thabagss was erroneously
suspected, it just removes the process from the list. Thpsp@ess can be repeatedly
included and removed from a list. Different processes capestt differently at a given
time and hence maintain distinct lists of suspected presedn fact, a process that has
crashed may never be suspected, or a process that nevexsraai be repeatedly sus-
pected. These erroneous suspicions correspond to a nogmalibur of an unreliable

failure detector.

Unreliable failure detectors are defined in terms of two ragstproperties. Chan-
dra and Toueg present the implementation of an unreliabledadetector in a partially
synchronous system in [28], but just to demonstrate thatdmpnting such an abstrac-

tion is possible. The properties that characterize an iaflel failure detectoclassare

12 Chapter 1. Introduction

completenesandaccuracy Basically, completeness specifies the capacity of a failur
detector to suspect crashed processes and accuracy hmitsstakes of the failure de-
tector while suspecting. They present eight classes afrtatletectors combining two
completeness and four accuracy properties.

The two completeness properties are:

(C.1) Strong completenes&ventually every process that crashes is permanently sus-

pected by every correct process.

(C.2) Weak completenes€ventually every process that crashes is permanently sus-

pected by some correct process.

As the completeness properties are easily implementalpetmganently suspecting
the other processes in the system, the accuracy propettict®she mistakes while
suspecting.

The four accuracy properties are:
(A.1) Strong accuracyNo process is suspected before it crashes.
(A.2) Weak accuracySome correct process is never suspected.

(A.3) Eventual strong accuracyThere is a time after which correct processes are not

suspected by any correct process.

(A.4) Eventual weak accuracyThere is a time after which some correct process is

never suspected by any correct process.

In a real distributed system it is very difficult to implemestitong accuracy and
weak accuracy properties, callpdrpetual accuracyroperties, due to the mandatory
absence of mistakes from the beginning of the algorithm @@t (at least on some
correct process in the case of the weak accuracy propentyact, Larrea et al. in [89]

showed that it is not possible to implement them in the atad$gartially synchronous

1.1. Background 13

systemdM1, M2 or M3 where processes can crash. The implementation ahtastual
accuracyproperties is more natural, although failure detectorhiefdight classes have
been studied.

Chandra and Toueg establish a hierarchy of failure detetdsses. Roughly speak-
ing, a class includes the set of failure detectors that caphe same information about
process failures. In the hierarchy, if the information ataacess failures provided by
a failure detector of the clagsincludes the information provided by a failure detector
of the clasB, we say that clasa is stronger than cla®8. If we focus on the eventual
weak accuracy property, we can see from the definition tleaktls a time after which
at leasbne correct process is never suspected by any correct prochss,imthe even-
tual strong accuracy proper#l the correct processes must eventually not be suspected.
Clearly, a failure detector that satisfies eventual straxmyigcy also satisfies eventual
weak accuracy.

In Table 1.1 we can find the eight classes resulting from thmbaoation of the

completeness and accuracy properties proposed by Chamdlfeoaeg in [28].

Completeness Accuracy
Strong| Weak | Eventual Strong| Eventual Weak
Strong Perfect| Strong| Eventually Perfect Eventually Strong
P S OP oS
Weak Q w o10) oW

Table 1.1: Classes of unreliable failure detectors.

In their work, Chandra and Toueg stated that any unreliableré detector that sat-
isfies weak completeness can be transformed into a failueetde that satisfies strong
completeness with the same accuracy property. Thus, tlly stuthe failure detec-
tors was able to focus on those that satisfy the strong cdens@es property, which are
shown in the first row of Table 1.1.

However, they also demonstrated that the Consensus praf@anbe solved with

a failure detector from any of the eight classes in a systetin &imajority of correct

14 Chapter 1. Introduction

processes. Hence the weakest failure detector that allwwisg Consensus is the even-
tually weak W satisfying that (1) eventually every process that crashpsiimanently
suspected by some correct process, and (2) there is a tierenddiich some correct pro-

cess is never suspected by any correct process.

With regard to this, in [26] Chandra et al. study theV failure detector in-depth,
showing that it is the weakest failure detector for solvimn€ensus in an asynchronous
system with a majority of correct processes. In other woaty, failure detector that
allows solving Consensus is at least as strong asCthe failure detector. In order
to prove this, they defined a new failure detectomega also denoted aQ in the
literature, which is equivalent t¢}V. The output of an Omega module at a procpss
is the identity of a single procesgthat p considers to be correct. We can also say that
the procesg is trustedby p. More formally, the Omega failure detector satisfies the

following property [26]:

There is a time after which all the correct processes alwaysttthe same correct

process.

The property can be seen aseader electionbecause, in brief, it states that the
correct processes eventually agree on the correctnesg @rocess, the trusted process,

which can be considered an electedder.

When Omega was defined for the first time it was referred toafathure detector
Omega(Q), and it has been referred to in this way in most of the worksuaid. We
have maintained this expression in this dissertationpalgh we consider it would be
more accurate to refer to it as tfalure detector class Omegdn any case, we will
usefailure detector (class) Omeda refer to the set of failure detectors that satisfy the
property indicated above. For easy of reading, we will oftsealgorithm implementing
Omega or Omega algorithmo refer to an algorithm that implements a failure detector
satisfying the property defined for Omega; i.e. an impleraigm of a failure detector

in the Omega class. For the same reason, we will sometime@msga in the wider

1.2. Motivation 15

sense of the term; i.e. to refer to the set of failure detsdioat satisfy the properties
defined forOmega Omega,1 andOmega,2, which will be presented later.

In order to prove the equivalence between Omega<@aid we can describe the
transformation from Omega t&»V and vice versa. The transformation of Omega
into GW is intuitive. A process that has access to an Omega modufehaslto suspect
all the processes except the process trusted by the Omegaeriadrder to obtain
the list of suspected processes that satisfies the weak etenpks and eventual weak
accuracy properties af)WV. The transformation in the other direction, i.e. fragm\ to

Omega, is more complicated and can be found in [26, 38].

1.2 Motivation

At this point it would be appropriate to recall that the tidethis dissertation ighe
Omega Failure Detector in the Crash-Recovery Modeie type of failure considered
when Omega was defined was the crash failure. In this disertae study, for the
first time, the Omega failure detector in tti@sh-recoveryailure model.

Although the crash failure model is of great theoreticatiast, the crash-recovery
failure model allows us to model more practical scenarias.example, a real scenario
in which a process crashes and after a reboot of the compaterocess continues from
a recovery point.

The study of Omega itself is significant because:

(1) Omega provides keader electiorservice; and

(2) it can be used for solving Consensus.

In this regard, the interest in Omega is shown by the numbefasisical and recent
works that can be found about algorithms implementing Onagghalgorithms using
Omega to solve Consensus and other problems. Some of thiédseweviewed in

Chapter 2.

16 Chapter 1. Introduction

Furthermore, although not studied in this dissertatiogp@dhms proposed for the
crash-recovery model can be adapted to dynamic distrilsytsi#ms where processes

can intermittently join and leave the system.

1.3 Summary of Contributions

The main goal of this dissertation is to study the Omega railletector in a crash-
recovery system model. More specifically, we focus on thegdesf algorithms that
implement this failure detector in models of partial symety subject to crash-recovery

failures. As a result, this research provides four majottrioutions.

e The redefinition of the Omega failure detector for the crashrecovery model
The definition of Omega is well suited to the crash model, bean be improved
in the crash-recovery model. The definition of Omega doesakatinto account
unstable processes, i.e. processes that crash and retavigzly often, and hence
they are allowed to permanently disagree with correct peeg, which can be a
serious drawback. For this reason we have definedinega;; and Omega,,
failure detectors. Basically, tfemega,, failure detector establishes that correct
processes and unstable processes, when up, will permpaagnde on the same
correct leader. With th©mega,; failure detector, unstable processes do not trust
any process upon recovery, and if they trust a process ib@ithe correct leader.
As we will see, thdOmega,, failure detector requires a system where processes
have access to stable storage (or some equivalent mechamrgla Omegar;

does not.

e A collection of algorithms that implement Omega, Omegac1 or Omegacy2.
Our main contribution is a set of eight distributed algamhthat work in (slightly)

different system models where processes are subject to-ceasvery failures. In

1.4. Thesis Outline 17

this context, we have reflected on the limits of the synchnagired to imple-
mentOmega,;1 andOmega,». With regard to efficiency, we have implemented
two communication-efficient algorithms: one f@mega;1 in a system without
stable storage, based on nondecreasing local clocks; ardesirfor Omega,o,

where processes have access to stable storage.

¢ Two algorithms implementing eventually perfect failure deectors. In the pro-
posed distributed systems, subject to crash-recovenyrés] it is not possible to
implement a failure detector of the clas$®. Basically, in such a system we can-
not distinguish an unstable process from an eventually apdct) process that
has not yet stabilized. For this reason, we have defined>tRg and CPy_cr
failure detectors which satisfy weaker properties but Wwiace achievable in the
crash-recovery model. In addition, we have presented tgarighms implement-
ing OP¢er and OPy_or. The algorithms rely strongly on the use of the leader

election service provided by tli@mega,, failure detector.

e Three aggregator election and data aggregation algorithmfor wireless sen-
sor networks. A wireless sensor network, WSN, can be seen as a distributed
system subject to crash-recovery failures. On this basdave built three hier-
archical aggregator election and data aggregation algositfor large WSNs on

top of our implementations of th@mega,, failure detector.

Table 1.2 shows the system models and the algorithms prdposthis dissertation

implementing th@®©mega Omega;; or Omega,» failure detectors.

1.4 Thesis Outline

In this chapter we have given an introduction to the topidhaf tissertation.

In Chapter 2 we review the state of the art regarding the Orfeelgme detector and

18 Chapter 1. Introduction

System|| Communication Stable | Omega Known
Model Efficient Storage| Property | Membership
S No No Omegar Yes
S No Yes | Omega 2 No
S No Yes | Omegar Yes
S No Yes | Omegar No
S Yes Yes | Omegar Yes
) Near No Omega Yes
32) No No Omegar1 Yes
S Yes No Omegar1 Yes

Table 1.2: System models and algorithms.

related topics. Chapter 3 presents the general system moaélich our work is based

and the redefinitions of Omega for the crash-recovery ma@dieldga,;; andOmega;»).

In Chapter 4, a first algorithm implementi@mega,1 in the crash-recovery model
is given, where processes do not have access to stableest@igpter 5 presents three
algorithms implementin@mega,, in three different crash-recovery systems where pro-

cesses have access to stable storage.

In Chapter 6 we present four new algorithms, which are vefigieht from the
point of view of communication. The first algorithm, whichegsstable storage, imple-
mentsOmegg,»>. The second algorithm, which does not use stable storagédements
Omega An adaptation of this second algorithm, which avoids tleadieement of un-
stable processes by providing instability awareness sis ptesented. This algorithm
is slightly less efficient, but implemen@mega,1 without stable storage. Finally, we
present a communication-efficient algorithm that impleta€@mega,1 without stable

storage, using nondecreasing local clocks.

In Chapters 7 and 8 we study the use of Omega in the crashegcmodel. Chap-
ter 7 presents two algorithms implementing two eventuadlyfgrt failure detectors,
OPer and OPy_cr, based orOmega 2. These algorithms use the leader election ser-

vice provided by the Omega failure detector. In Chapter 8 vop@se three aggregator

1.4. Thesis Outline 19

election and data aggregation algorithms for wirelessmaretworks. These algorithms
are built on top of our implementations of t@emega,» failure detector.

Finally, in Chapter 9 we conclude the dissertation and nettiur future work.

20

Chapter 1. Introduction

Chapter 2

Related Work

Contents
2.1 Introduction 22
2.2 Failure Detectors in the Crash Model 2
2.3 Failure Detectors in the Crash-Recovery Model 34
2.4 More about Failure Detectors 42
25 SolvingConsensus 43

21

22 Chapter 2. Related Work

2.1 Introduction

In this chapter we review the state of the art in relation #® @mega failure detector.
There are hundreds of works that we deem interesting in oyeowanother but we try

not to lose sight of the topic of this thesis: deterministicdels and implementations
of the Omega failure detector in message passing distdaytstems subject to crash-
recovery failures. In this regard our work is the first thatdéés Omega in the crash-
recovery model. Nevertheless, Omega has been studiedivegnin crash models and
hence these studies will form the core of this chapter, twgetvith studies on other

unreliable failure detectors.

2.2 Failure Detectors in the Crash Model

Consensus is a canonical problem in which given an initilesat several processes,
they agree upon a common value. As we saw in the previouseahidyet FLP impossi-
bility result led to the emergence of several lines of redgeancluding the research on
unreliable failure detectors.

In the previous chapter we saw the unreliable failure detegiroposed by Chandra
and Toueg in [26, 28]. Other works have proposed failureaiets that satisfy different
properties to the ones in these papers. In fact, the numbeoks that implement
unreliable failure detectors in a message passing dis&dbsystem with crash failures
is S0 great that it is not feasible to review the majority @rthhere.

This variety of failure detectors is due to the search forkeeand weaker system
models in which Consensus or some kind of weaker agreemehtepn are solvable.
In this respect, there are many works that solve Consensars asynchronous system
with the help of an unreliable failure detector.

The importance of the Omega failure detector derives froerfaiot that it provides

a leader election service that allows circumvention of the [Fesult in asynchronous

2.2. Failure Detectors in the Crash Model 23

distributed systems with a minimum amount of synchrony.

As the topic is closely related, we would like to point outes&l works on solving
Consensus with the help of an Omega failure detector or atezdction service [25,
48, 63, 70, 84, 85, 90, 103].

We can find several works in the literature focused on theemgintation of Omega
in distributed system models subject to crash failures; wiere processes fail and
do not recover. Most of these are focused on the design ofegftialgorithms and
the reduction of the level of reliability and synchrony re@qd in the system. A good
introductory paper on Omega is [114].

In order to achieve this reduction, two different approachave been followed.
Both approaches consist of enhancements to the systenithairaplementing Omega.
The first, which is usually called thener-basedr eventually timely link approachs-
sumes that some communication links in the system are timnadlyreliable in some
way; i.e. they satisfy some time-related properties. Tihemtcalled thanessage pat-
tern approachis a very different approach that does not rely on timinguag#ions.
The communication requirements of the system are stateg@iapserty of the message
exchange pattern, which allows the implementation of Omega

In the following two subsections we start with algorithmatthmplement unreliable
failure detectors of the classes proposed by Chandra aretyTa8], which can be trans-
formed into Omega, and then we continue with increasingbh&d implementations
of Omega; i.e. implementations that are more efficient anefguire a smaller amount

of synchrony.

2.2.1 The Eventually Timely Approach

There are several algorithms implementing Omega using enteally timely link ap-
proach. Among them, we can include most of the algorithmsithplement the even-

tually perfect class of failure detectorsP, since Omega can be easily obtained from

24 Chapter 2. Related Work

it. Roughly speaking®P satisfies that there is a time after which every correct pro-
cess maintains the same list of suspected processes. yf @eect process chooses
as its leader the un-suspected process with the lowestfidgrnwe have that every cor-
rect process trusts the same correct processletiger, thus satisfying Omega. The
algorithms implementingdP in [28, 89, 91] assume that every pair of processgs (
g) is connected by two unidirectional communication links» g andq — p, with all

the links beingeventually timelyi.e. eventually all messages are delivered within an

unknown time bound.

The first&P algorithm, proposed in [28], periodically sends a quadmatimber of
messages. In [89] Larrea et al. showed that the four perpktilire detector classes,
W, S, 9, andP, cannot be implemented in the partially synchronous systdnect to
crash failures considered in their work and in [28], wher@€amsus is implementable.
The conclusion is that it is harder to solve the perpetudifaidetector problem than
Consensus, at least in the type of partially synchronougssysstudied widely. In their
paper, Larrea et al. propose a family of algorithms that emnts the four classes
of failure detectors proposed by Chandra and Toueg thathga&ventual accuracy in a
partially synchronous system; i.eWV, ¢S, ¢Q and<P. The algorithms are based on
a strategic arrangement of the processes of the systemgicalloing where, basically,
each process only monitors another process by exchangisgages with it. Although
the synchrony required is high, they reduce the number &$lithat periodically carry

messages toréin the worst case, beingthe number of processes in the system.

In [91], Larrea et al. presented an optimization of theivpres algorithms for the
classes>Q and<P, achieving communication-efficiency, i.e. eventuallyyonllinks
carry messages periodically. Basically, every procedsdratgorithm has a predecessor
and a successor. A procgssends a message to its successor and expects to periodically
receive aheartbeatmessage from its predecessprlf the procesg does not receive

the expected message, it informs the predecessgrtbe process, that it must send

2.2. Failure Detectors in the Crash Model 25

the heartbeat messagesganstead of to the procesg Later, if p receives a message
from q, this means that procegss alive and hence sends a message to infomthat

it must send messagesd@gain.

To the best of our knowledge, the first algorithm implememtimega in a par-
tially synchronous system was proposed in [88]. The authogsented an algorithm
implementing Omega and through a simple transformatién which also requires all
links to be eventually timely. Basically, with this algdmih eventually only the correct
process with the lowest identifier sends messages, because thef thst @rrect pro-
cesses will not send messages while receiving periodicagesdromp. If the process
p fails, after an instability period, the next correct pracesth the lowest identifier will
be elected as the leader, sending periodic messages tosthef the processes. The
number of links that carry messages periodically from tlaelég process to the rest of
the correct processesiis— 1, which is optimal in this case, i.e. it is communication-

efficient.

Aguilera et al. proposed in [5] a communication-efficient €ya algorithm for dis-
tributed systems where some unknown correct process musidats (incoming and
outgoing) links eventually timely, while all the other ligkan bdossy asynchronous
Messages sent through a lossy asynchronous link can berl@sbitrarily delayed.
This algorithm is based on rounds. Basically, every proesesutes rounds (where
r =1,2,3...) and in every round only one process is candidate to be tlkeiedn a
roundk, the candidate will be the process whose identifide imod n Eventually, if
the candidate process of a roukdommunicates in a timely way with the rest of the
processes it will remain as leader, and if it does not the addui 1 will be initiated
with a different process as candidate. In order to syncheotie rounds, the processes

exchange a succession of messages, but these messageaansoaa.

In [4], an extended version of [6], Aguilera et al. proposkreé algorithms im-

plementing Omega. The first algorithm implements Omega iartiglly synchronous

26 Chapter 2. Related Work

system with at least oneventually timely sourgewhich is a correct process whose
output links are eventually timely. The rest of the linkshe system can be lossy asyn-
chronous. They also show that it is not possible to impleraeammunication-efficient
algorithmin such a system. The second algorithm implemseotenmunication-efficient
Omega in a system with at least one eventually timely soundeatileast onéair hub.

A fair hub is a correct process such that the links to and fitwath process ar&ir lossy.
These links may lose messages but they satisfy that if w@ipannessages into types
and messages of some type are sent infinitely often, thentenfiressages of that type

are received.

The third algorithm is communication-efficient and it is il@mented in a system
with at least one eventually timely source and where theafette links arefair lossy.
We are not going to give the details of the algorithms, butsisesice they are based on
punish countersA processp with lossy asynchronous and/or fair lossy outgoing links
will be punished, i.e. aACCU SAT IONmessage will be sent fpwhen another process
detects a missing message frgmnincrementingp’s punish counter. Processes which
have eventually timely outgoing links to the rest of the eotmprocess, e.g. eventually
timely sources, will not be punished because their messadleke received timely.
With such a mechanism the processes eventually will agrébeooorrect process with

the lowest associated punish counter.

In [7], Aguilera et al. proposed two algorithms for systemsvhich at mostf pro-
cesses can crash and there is at leasKbhaource which is a correct process that has
at leastf eventually timely outgoing links. The first algorithm rerps the rest of the
links to be fair lossy. Based on the information provideatlgh the fair lossy links and
the knowledge oh and f, the algorithm requires only eventually timely links send-
ing messages periodically. As every process sends messagedically, the number
of links that carry messages forever@$n?) in the worst case. The second algorithm

requires all the links to be eventually timely and> 2f. Under these conditions, this

2.2. Failure Detectors in the Crash Model 27

algorithm achieves that eventually only ofxé-sourcesends messages throufjkeven-

tually timely links. The rest of the processes eventualhpstending messages.

In [95] Malkhi et al. implemented an Omega algorithm thatuiegs a majority of
correct processes and the existence of at leasoh@ccessibleprocess, instead of
classic eventually timely links. Basically, a correct pesp is < f-accessiblef there
is a knownd and a timet, such that at any timg€ > t there is a seQ(t’) of f correct
processesf being the maximum number of processes that can crash, satlank
message broadcast pyat timet’ will receive a response message from each process in
Q(t") by timet’ + d. The key point is the fact that the set of proce<3és) can change
through time. The cost of this algorithm in terms of links digeriodically isO(n?).
From this main algorithm, they go on to make an important mapment, presented in
a technical report with the same title [96], reducing the banof links that periodically

carry messages ta2n the worst case, which iS(n).

The system models proposed by Aguilera et al. in [7] and bykkiat al. in [95]
are not comparable, and hence we can not establish that qneement is stronger
than the other. The algorithm in [7] requires at least énfesourceprocess, i.e. a
correct process that has at ledgtventually timely outgoing links and no correctness of
the f receivers, while the algorithm in [95] requires at least érfeaccessiblgrocess,
i.e. a correct process with possibly changing bidirectional timely links, leading to
possibly changing correct processes. It should be notddatiie -accessiblgrocess
allows for thef processes anfllinks to change over time, whereas with thé-source

the set off links is fixed.

Malkhi et al. justify the relevance of their system modelnfra practical point of
view. The Paxos protocol [84] which is the Consensus praét@calgorithm, in which
its Omega algorithm is based, requires a single leader psdcebe able to receive
response messages fradndifferent processes in order terminatethe Consensus and,

similarly, their Omega algorithm requires that a singlegess, the leader, periodically

28 Chapter 2. Related Work

receivesf response messages franprocesses, which could change, to work properly.

Hutle et al. in [78] go a step further in the search for the munm communica-
tion reliability and synchrony required to implement Omega this end they combine
the concept of> f-souree [7] with the concept of> f-accessibility]95]. They imple-
ment Omega in a system model where all the links between gseseare fair lossy,
except for the links from at least one process that will beraoving-f-source Basi-
cally, a®moving-f-sourcés a correct process for which eventually, every time it send
a message to the rest of the processes, at feastssages reach their destination pro-
cess timely; i.e. in a timely manner. The difference withpexg to a® f-sourcelies
in the set of links that carry timely messages; this is fixed ¥ f-source while in a

<&moving-f-sourcét can change over time, as occurs with -accessibility

To the best of our knowledge, up to now the system model pexpos[78] is the
weakest of the models proposed that allow solving Omegaviitlg the eventually
timely approach. For that reason we will define theoving-f-sourcanore formally.
A process is a&moving-f-sourcef it is correct and if there is a known boundland
a timet, such that at any timg > t there is a seQ(t) of f correct processes, with
being the maximum number of processes that can crash in a gikerution, such that
any message sent or broadcastgogt timet” will reach each process iQ(t’) by time

t'+ 0. The key point is the fact that the set of proces3és) can change through time.

Among the system models that allow the implementation of @angased on an
eventually timely approach, we can distinguish those incitine initial knowledge of
processes is weak. More precisely, the system models peesen55, 79, 80] assume
that the initial knowledge of each process about the syssdimited to its identity and
the fact that identities are totally ordered. Initiallyopesses do not know about the
identity of the other processes of the system, the numberaziegses of the system
or the maximum number of failures during the executioln some works, this lack of

knowledge of the processes in the system is calldchown membershipn the works

2.2. Failure Detectors in the Crash Model 29

reviewed below, the communication between processes ig tadugh an unreliable
broadcast primitive. When a process broadcasts a messagads the same message
through each of its outgoing links to all the processes raalehdirectly through these

links.

In [79], Jiménez et al. proposed an algorithm implemen@mgega withunknown
membershipvhich requires that eventually all correct processes aaehable timely
from the correct process with the smallest identifier. Thelmaism they use is in-
teresting although the connectivity assumptions are gtrémthe worst case with this

algorithmO(n?) links carry messages periodically.

In [80], Jiménez et al. studied in greater depth the urbididailure detectors in
systems with unknown membership. Interestingly, the umknmembership prevents
the implementation of a failure detector of any of the eidasses proposed by Chandra
and Toueg in [28]. As the authors reveal, it is not possibletglement weak or strong
completeness because the processes, (or, more concteéelpodules of the failure
detectors at any process) cannot include in their list opsci®d processes a process
that never sends a message. Such a process will remain unkmaiwthe end of the
run and, hence, it will not be suspected by any other proc€hgy also propose an
algorithm implementing Omega with unknown membership Whiggquires that even-
tually all correct processes are reachable timely from sconeect process. The rest of
the links are considered lossy asynchronous. The algoighmased on punish coun-
ters. Basically, every process periodically sends a ligheforocesses it considers to be
alive, in the beginning only itself, and an associated guo@unter that reflects approx-
imately the number of times the known process has been deshbed/hen a process
receives a message it re-sends the message and it inclluttes @locesses that it does
not yet know in its membership list, setting a correspondinger. Then it updates its
punish counter, and it punishes itself by incrementiagpunish counter in its own list

if it is not included in the received list. The key to the aligfom is thisself-punishment

30 Chapter 2. Related Work

When a procesp receives a punish list and it is not included in it, this metuat the
sending process cannot receive the messpgeEnds; hence must not be the leader,
because the leader should reach every correct processsggtean. With regard to the
Cost, as every process re-sends the messages it receigsotne worst case with this
algorithmO(n?) links carry messages periodically.

Fernandez et al. proposed in [55] a system wittknown membershiwhere ev-
ery pair of processes is connected by two unidirectionallfesy links, except for at
least one correct process whose outputs links to the reseatdrrect processes must
be eventually timely. The algorithm they propose for impégrting Omega in such a
system is communication-efficient, i.e. the number of lithket carry messages forever

in the system i©(n).

2.2.2 The Message Pattern Approach

All the approaches previously considered assume partgiighronous system models,
where the implementations of Omega use time-outs, and qoesdy are timer-based.
The work in [101] proposes a different approach, calledniessage pattern approach
to implement the failure detect&rS, which is easily transformable into Omega. This
does not rely on timing assumptions and time-outs but ire®la knowledge of the
number of the processes in the system the maximum number of processes that can
crash) and a propertyPR).

They define a propertiyRfor the message exchange pattern, which makes possible
the implementation of Omega in asynchronous distributetesys. We now study the
model proposed in greater depth. All the communicationdiake asynchronous but
reliable; i.e they do not alter, create or lose messagessyi$tem’s processes broadcast
query messages. Once a query has been broadcast the pradsssw accepts the first
n— f corresponding message responses while discarding thefrigst corresponding

messages, if any. A process can only broadcast new queries thie previous ones

2.2. Failure Detectors in the Crash Model 31

have beenerminatedi.e. when the sender receives- f response messages. Besides
the query-response pattern, Mostéfaoui et al. also defmetbllowing property in the

message exchange pattern that we will &4l

There is a correct process and a set Q of f processes such thiaj € Q, there is a
time after which pcrashes or every query of; plways gets responses from the process
pi, i.e. eventually the response messages; a¥ilbbe among the first - f responses

received by every p

The algorithm works for any value df, with 1 < f < n. Intuitively, every process
p;j periodically sends a query. Once the query is terminatedpriths received the
correspondingy — f responses, wherkis the number of processes that did not respond
or which had their responses discarded. Thewill suspect thesé processes in order
to achieve completeness. By properiR there will eventually be at least one process
p; for which its responses will be always received among theriirs f messages and
will therefore never be suspected. Thpswill eventually never be suspected, the lists
of suspected processes will not contain at least one comproaat process, satisfying
eventual weak accuracy, and heneé& and indirectly Omega, are implemented. In
their work, Mostéfaoui et al. also make a probabilisticlgsia in order to show that the
behavioural requirements in the message exchange patéammeawith high probability
when f = 1 with some assumptions. With regard to the cost of the algoriin the

worst case, the number of links that carry messages fore@in?).

The work of Mostéfaoui et al. in [102] continues the line eéearch on the Omega
failure detector by the definition of behavioural propestier the message exchange
patterns. Mostéfaoui et al. implement an explicit Omeggiadhm in the model pre-
sented in [101], and they rewrite the behavioural propessueed in the system, to the

following:

There are a correct process p and a set Q of f processes sutipteQ and

eventually the response of p to each query issued by anQds always a winning

32 Chapter 2. Related Work

response (until -possibly- the crash of q).

As in the work in [101], processes broadcast queries and wwdilk the receipt of
the corresponding responses. The first f responses received are callethning
responsesvhile the rest of the responsefs,are said to béosing responsesMore pre-
cisely, the response messages that reach the receivethafter f previous messages,
the messages that are lost, and even the responses that seatare said to besing
responsesThe algorithm is based on the previous work, and hence tsieassociated

in terms of links that carry messages foreveD{s?).

The work in [104] combines the assumptions proposed in [10@2], with the
assumption in [7] in order to define a weaker system model e/klmega is imple-
mentable. Subsequently, this hybrid system model combireesme-free assumptions
on the behaviour of the message exchange pattern with tlolsymy assumptions on
the processing speed and message delay. More precisetydteen model requires the

following communication assumptions:

There is a correct process p (center of the star) and a set Qmbdesses g, g Q,
such that, eventually, either 1) each time it broadcasts ergjug receives a response
from p among the r f first responses to that query, or 2) the channel from p to g is

timely. (The processes in the set Q can crash).

Similarly to the work in [102], the links in the system areiable although a priori
asynchronous, the value bfs such that K f < n, and the number of links that period-
ically carry messages 3(n?). The paper also includes an improved algorithm where
the communication properties are satisfied by direpttisconnectingp andq instead
of direct links. Paths will be explained in more detail in &&c 3.1, but basically a path
is composed of connected correct processes.

To the best of our knowledge, up to now the work in [56] presém: weakest system

that allows the implementation of Omega following the mgsgaattern approach. The

authors present two algorithms that implement Omega in ynchsonous system that

2.2. Failure Detectors in the Crash Model 33

satisfy the properties (assumptiors), in the first algorithm, and in the second. In
the system the links do not have any timing assumptions ancefiable; however, it is

said in this work that the algorithms are also correct carag) fair lossy links.

The model with theA property, the weakest model proposed so far, is charaeteriz
by the notion ofintermittent rotating f-startAn f-staris a set off + 1 processes where
a proces9 is the center of a star and the rest of processes are the pbthesstar. The
property that satisfies thiestar, denoted byA in the paper, is described in two steps.
In the first step, the property+ is defined; this is stronger thak and satisfies the

following:

There is a correct process p and a round numbep RNt that, for each rir RN,
there is a set Qn) of f processes such thatgpQ(rn) and for each process g Q(rn)
either (1) q has crashed, or (2) the message AL(KMEE sent by p is received by q at
mostd time units after it has been sent (the corresponding bakiedn be unknown a
priori), or (3) the message ALIV(En) sent by p is received by q among the first f
ALIV E(rn) messages received by g (i.e. it is a winning message amongetn)

messages received by q)

It is noteworthy that the s& can change from one roumd to another. As we can
see, the definition is a combination of assumptions predentgrevious works, in both
timer-based and message pattern approaches. If we takadotoint (1) and (2), the
property satisfied is @moving-f-sourc¢78]. However, taking into account (1) and (3)
the property satisfied is a moving version of the messageasgehpattern assumption
presented in [104]. Thestar is formed by thef processes iQ(rn), and the centep.
The sefQ(rn) can change at each round number, wipilean not, so we say thatis the

center of aCrotating-f-star.

As has previously commented, they proved that in order tdeampnt Omega the
propertyA, which is weaker thal+, is sufficient. The properth assumes that only

will be the center of the>rotating-f-staran infinite subset of rounds that is not known

34 Chapter 2. Related Work

a priori. They called this configurationintermittent-rotating-f-star

2.3 Failure Detectors in the Crash-Recovery Model

The related works commented on so far consider distribugetéms subject to crash
failures, also called crash-stop failures; i.e. system et®d which once a process
crashes it does not recover again. As we mentioned in thequ®chapter, there are
more types of failures such as crash-recovery, omissioBgrdntine. One of the most
interesting is the crash-recovery model, where processesrash and later recover by
rejoining the computation from a recovery point. This bebaris especially common

for long-lived applications such as distributed operatéygtems, grid computing, or
web services and has been formalized as a failure modeticaiesh-recovery. Hence,
in the crash-recovery model, processes can crash mulipést After crashing (and

before crashing the next time), a process recovers fromdefined state.

The crash-recovery failure model is a strict generaliratifthe crash failure model,
I.e. every faulty behaviour allowed in the latter is alsogbke in the former. This means
that any impossibility result for the crash model also hatd$e crash-recovery model.
As a result, an algorithm designed for the crash-recovergiahwill work correctly in
a similar system model where processes are subject to cadsle$, as this kind of
behaviour is also permitted in a system subject to crasbvezy failures. However, this
is not true in the other direction, due to the additionaltfig@behaviour considered in the
crash-recovery model.

When implementing unreliable failure detectors in a distied system subject to
crash-recovery failures we must deal with new difficulti@$e first is related to the
behaviour of the processes. In the crash-recovery modeltoesses are classified into
correct processes aniticorrect processes. Correct processes, which some authors call

goodprocesses [3], are the processes that (eventually) do ast:cr

2.3. Failure Detectors in the Crash-Recovery Model 35

e Always up. The subset of processes that never crash.

e Eventually up. The subset of processes that, after crastmdgecovering a finite

number of times, remain up forever.

Incorrect processes, which some authorslzatl processesre the ones that either

crash and recover infinitely often or do not recover afterasior

e Eventually down. The subset of processes that, after ergsdmd recovering
a finite number of times, remain down forever. Processesnéagr start their

execution are included in this subset.

e Unstable. The subset of processes that crash and recovefirdteinumber of

times.

As we can foresee unstable processes require change irepvepvhen designing
a new unreliable failure detector, due to the infinitely ispd crashes. In this regard,
we have two options in the crash-recovery model. We coulllidecthe process in the
list of suspected processes every time we detect its falnderemove it from the list
every time the process recovers. However, this option hampartant drawback. It

could happen that repeatedly:
(1) an application considers an unstable process as opegib{correct);
(2) the application delegates a procedure or function tattstable process; and

(3) the unstable process crashes before finalizing the task.

This behaviour will slow down the application and can eveschklthe application if it
does not deal with the problem properly.

On the other hand, we would like the failure detector to saspastable processes
permanently, because we know they are incorrect. Howewehave to take into ac-

count the existence of the eventually up processes, whieh@tashing and recovering

36 Chapter 2. Related Work

a finite number of times will remain up forever, with a corréethaviour. Then, the
question is how can we distinguish an unstable process froeventually up one? The
answer is simply that we cannot. This is because we canndigptbe future behaviour
of a process. Thus, at any time we do not know if a process istealy up and has
definitely recovered or it is an unstable process that widkhbrand recover again and
again.

Another interesting issue is that every time a process esgHoses its entire local
volatile state, i.e. the values of its variables, unlesyg #ire recorded in stable storage;
which is considered slow and expensive, especially if epeogess saves its local state
to stable storage periodically. In this regard, Aguileraletn [3] proved that it is pos-
sible to implement failure detectors in the crash-recoweoglelwithout and obviously

with, using stable storage.

Basically, by the use of stable storage we can weaken thehsymy, failure and
communication requirements of the system in which the faitietector is implemented
at the cost oBomereading and writing operations in stable storage. Howekierread-
ing and writing operations are expensive and they are naya\vavailable in real sys-

tems.

With regard to communication, we also have a new issue. Héabie is the link
to a process that can crash and recover? A common assumgtiba bne made in
this thesis: a message sent to a process that has crashetl iff l@ procesp sends
a message to a procegshat is up, buig crashes before completing its reception, the
message is also lost. Reliable links, such as the eventtiadgly links explained in
the next chapter, guarantee that a sent message is onlyaedkihe receiver does not

crash.

Another option is the use aftubborn communication channgB9]. These chan-
nels, or links, allow reliable communication by resendimgessage until the message is

received or the sender crashes. In order to avoid bufferflowethe definition assumes

2.3. Failure Detectors in the Crash-Recovery Model 37

that it is not possible to send a messag¢hrough the stubborn channel if the reception
of a previous messagu is not assured. This work [69] presents an interesting vevie

about communication links [17, 94] and their properties.

Surprisingly, the number of works that consider a craslovery failure model is
small compared to other less realistic failure models sgcth@ omission or the crash
failure models. We can find several works that provide Cossemlgorithms for the
crash-recovery model by relying on the existence of an iabie failure detector. A
good introductory work on Consensus in the crash and cresbwery failure model is
[66].

In the works [46, 76, 107], the authors define adaptationsef8V and/oroS un-
reliable failure detector classes for the crash-recovargighand implement Consensus
protocols based on these new classes. However, no algdritpfementing the failure

detectors is provided.

Dolev et al. in [46] consider crash-recovery as a specia cd®mission failures.
The Consensus algorithm they provide is not designed toleamgtable processes that
may intermittently communicate with correct processesrtter to prevent the data loss
inherent to the process crashes, they consider that at eadeytransition the whole state

of the algorithm is saved to stable storage.

In [107], Oliveira et al. propose a Consensus algorithm tequires a failure de-
tector that eventually suspects unstable processes fotehas been shown in [3] that
such a failure detector implies a loss of performance in nsugnarios. As in [46]
there is an intensive use of stable storage due to the stofdgge whole state at every

transition.

Hurfin et al. in [76] also define a failure detector that evailjususpects unstable
processes forever. The writing to stable storage is done ahmost for each round and

only a small part of the state is saved.

The drawback caused by the unreliable failure detectorgén 107] can be over-

38 Chapter 2. Related Work

come by modifying them. In his thesis [106] Oliveira definedeav unreliable failure
detector class, denoted kyS,, which satisfies eventual weak accuracy asclrrent
strong completeness. It has been proved that the aforesnedtalgorithms are correct

with this failure detector. The property is defined as fokow

e Recurrent strong completenesEvery incorrect process is infinitely often sus-

pected by every correct process.

Freiling et al. in [61] focus on the reuse of existing algamis from the crash fail-
ure model. The Consensus algorithms proposed use uneefahlre detectors of the
classesP and &P, adapted to crash-recovery model. The adafedilure detector

class satisfies the following properties:

e Strong completeness: Every incorrect process is suspetieiely often by ev-

ery correct process.

e Eventually up completeness: Eventually, every correctgse is not suspected

any longer by every correct process.
e Strong accuracy: No process is suspected before it crashes.
The adapted>P unreliable failure detector class satisfies:
e Strong completeness.
e Eventually up completeness.
e Eventually strong accuracy: Correct processes are ontgliroften suspected.

The approach they follow consists of partly emulating altistem on top of the
crash-recovery system in order to execute a Consensusthigatesigned for the crash
failure model. In the paper, they first provide a set of miditpand impossibility re-

sults for the solvability of Consensus in the crash-recpwsodel and then they propose

2.3. Failure Detectors in the Crash-Recovery Model 39

three modular algorithms that allow Consensus to be sotvéteicrash-recovery model
for the selected failure detectors with weak system assongtThe first algorithm al-
lows Consensus to be solved in a system with unavailabifistable storage, at least
one always up process and the help @ &ilure detector. The second algorithm, also
without stable storage, requires a majority of always ug@sses and &P failure de-
tector. Finally, the third algorithm requiresCgP failure detector, a majority of always
up or eventually up processes, and the recording of somemiafiton used by the crash

Consensus algorithm to stable storage.

In their seminal work [3], Aguilera et al. studied the prabl®f Consensus and
failure detection in the crash-recovery model. With regarthe use of stable storage,
they stated that it is possible to solve Consensus in thé-geovery model ihy > ny
with the help of an adaptedsS failure detector{Se, whereng is the number of always
up processes amy, is the number of incorrect processes, evamik 5. An algorithm
that solves Consensus under the aforementioned condisagisen. Curiously, this
necessary condition remains if only the proposal and datigalues can be saved to
stable storage. For systems where it is possible to save mfmenation to stable
storage, they provide an implementation of a Consensusitigothat works with a
majority of correct processes, relying on a failure deteofathe class®S,,, adapted
from ©S. In the algorithm, every process accesses stable storaggedach round. The

information stored is a round number, an estimate and itesponding timestamp.

As far as we know, the work in [3] is the only one that deals with implemen-
tation of deterministic unreliable failure detectors ings&ge passing asynchronous or
partially synchronous system models subject to crashvezgdfailures. The system
model assumed is an extension of M8 system model [28] presented in the previous
chapter. In this extended3 model, processes can crash and recover, and messages sent
to incorrect processes can be lost. The links consideredvamatually timely. In this

work Aguilera et al. first showed that strong completenesschwis satisfied byCS,

40 Chapter 2. Related Work

involves a loss of efficiency when running an algorithm tleves Consensus as those
in [28, 46, 76, 107]. Subsequently, they proposed two nessels of unreliable failure
detectors that deal with unstable processes in a differagt Wnovatively, the output
of a failure detector module at every procgss made up of two lists instead of one.
The first list, as usually, is the list of trusted processdbhaturrent time. The second
list provides an estimate of the number of times that eachga®in the list of trusted
processes has crashed and recovered so far. This estimatiedthe epoch number.
They provide an algorithm implementing a failure detectbthe class®Se that,

without going into too much detail, satisfies the followingperties:

e Monotonicity: At every correct process, eventually the @paumbers are non-

decreasing.

e Completeness: For every incorrect procgsand for every correct procesg

either eventually permanently suspecpsor p's epoch number afis unbounded.

e Accuracy: For some correct procgsand for every correct procegseventually

g permanently trustp andp’s epoch number a stops changing.

With regard to the implementation 6fSe, basically, every process maintains a list
of trusted processes and also maintains a list of the epoctbers of the rest of the
processes by counting tiRECOVEREDmMessages it receives. During initialization and
upon recovery, a procegssends RECOVEREDmMessage to the rest of the processes.
When a process receives tRECOVEREDmMessage fronp, it increments the local
epoch number associated with Similarly to the algorithm in [28], every procegs
periodically sends aALIVE message. Thep checks the reception of messagesp If
does not receive afiLIVE message from a proceg®y the time it expects to receive it,

p removegy from the list of trusted processes. gfreceives a message from a process

that is not trustedp increments its associated counter and includes it in the lis

2.3. Failure Detectors in the Crash-Recovery Model 41

In terms of periodically sent messages, in the worst cage th#l be n processes
sendingn — 1 messages, making a total©fn?) messages sent periodically. From the
point of view of links, in the worst cag®(n?) links carry messages forever.

The properties satisfied by tkeSe failure detector class only refer to correct pro-
cesses, and hence the output of unstable processes istriotedsn any way. However,
it would be desirable for the erroneous suspicions of utsiaocesses to be limited by
satisfying some degree of accuracy. For this reason, thiayeda new failure detector

classOS, that satisfies the following properties:
e Monotonicity.
e Completeness.

e Strong Accuracy: For some correct procgss(a) for every correct process
eventuallyg permanently trustp andp’s epoch number & stops changing; and
(b) for every unstable process eventually wheneveu is up u trustsp and p’s

epoch number ai stops changing.

As in the previous class, the output at a failure detectoruteodonsists of a list of
trusted processes and a list of their respective epoch msmigéith respect to imple-
mentation, a transformation fromSe to ©Sy is provided. The transformation does not
use stable storage and requires a majority of correct pseses

The algorithm works roughly as follows: During initializah every process in-
cludes all the processes in its trusted list. Every progelas access to a failure de-
tector of the clas$>Se and periodically sends the two lists it provides to the réshe
processes. Therefore, every process will periodicallgivecthe trusted list and epoch
number list from at leasf5| processes because, by definition, there is a majority of
correct processes. When procesgalizes that a procesgs not included in a majority
of the trusted lists provided by theSe failure detectorsp removeg from its trusted

list.

42 Chapter 2. Related Work

With regard to the epoch numbers, every procesacreases the epoch number
associated with a procegsvhenp detects, through the lists provided by thé failure
detectors, thaf is suspected or it is trusted but its epoch number has beesased by
a majority of processes.

In terms of periodically sent messages, we must add the gessaquired for the
transformation to the messages required by the algoritliniplements>Se. Hence,
although the cost in periodically sent messages is highi still O(n?) in the worst
case. From the point of view of links, in the worst ca@@?) links carry messages

forever.

2.4 More about Failure Detectors

In this section we will review some works about failure débes that, although inter-
esting, are less directly related to the topic of this thesis

The use of failure detectors to allow the implementationwégcent algorithms for
reliable communication in a distributed system with craaifufes and lossy links is
studied in [2]. Briefly, an algorithm is quiescent if everity# stops sending messages.
As a result, they propose a new failure detectwaftbeat denoted byHB) that does
not rely on time-outs. The output at a proc@ssf a HB module consists of a vector of
counters, one for each neighbapof p. If g crashes this counter is bounded, otherwise
it is not bounded. The implementation of the failure dete@tantuitive. Processes
send periodic messages and when a propaggseives a message from a procgspg
increments the counter associated vgtin its output vector.

Delporte-Gallet et al. in [42] propose a set of distributlgbathms that implement
a leader election service in systems where processes geetstibcrash failures. The
communication assumptions for each distributed systemes@om a system with all

its links eventually timely to a system with at least aaeentually timely sourcgd].

2.5. Solving Consensus 43

The paper focuses elf-stabilizing[43] andpseudo-stabilizing24] algorithms, and
provides communication-efficient implementations whessilale.
Stabilization is a general technique that allows algorghmtoleratdransientfail-
ures. Informally, an algorithm that is self-stabilizingl\iemainin a correct state at a
finite time independently of its initial state. An algoriththmat is pseudo-stabilizing will
end upin a correct state at a finite time independently of its ihgtate. It should be
noted that in many cases stabilizing algorithms supporadyio topological changes.
TheQuality of Servicedenoted by QoS, has been addressed in some works. Chen et
al. in [34] specify the QoS of a crash failure detector in tewhthree primary metrics

and four derived metrics. We explicate the primary metriy\briefly as follows:

e Detection time The time that elapses from the crash of a progess the time

when another procespstarts suspecting permanently.

o Mistake recurrence timeThis measures the time between two consecutive mis-

takes.

e Mistake duration This measures the time it takes the failure detector teecoa

mistake.

They also provide a new implementation of a failure deteatat justify its optimality

in terms of the proposed metrics.

2.5 Solving Consensus

The Consensus problem has been studied intensively inetyafisystem models with
different techniques. In this section we will mention sorakevant works that have not
been reviewed previously.

In [87] we find theByzantine Generals Probledefined as follows:

44 Chapter 2. Related Work

A commanding general must send an order torhisl lieutenant generals such

that:
¢ All loyal lieutenants obey the same order.

¢ If the commanding general is loyal, then every loyal lieatetobeys the order he

sends.

This definition expresses the Consensus problem in a systatalwhere incorrect
processes behave maliciously, i.e. processes are subgrantine failures. Although
it is not very orthodox, due to its originality, we will let ¢hauthors summarize their
paper by citing their abstract:

"Reliable computer systems must handle malfunctioningpmorants that give con-
flicting information to different parts of the system. Thisi@ion can be expressed
abstractly in terms of a group of generals of the Byzantinmyacamped with their
troops around an enemy city. Communicating only by messetigegenerals must
agree upon a common battle plan. However, one of more of theyrbm traitors who
will try to confuse the others. The problem is to find an altjori to ensure that the
loyal generals will reach agreement. It is shown that, usomly oral messages, this
problem is solvable if and only if more than two-thirds of thenerals are loyal; so a
single traitor can confound two loyal generals. With unfale written messages, the
problem is solvable for any number of generals and possraieots. Applications of
the solutions to reliable computer systems are then digcliss

More interesting results about the Byzantine generalslpnolsan be found in [44].

Schiper in [117] defined the notion Gftency degreethe minimal number of com-
munication steps needed to solve Consensus, and providedse@sus algorithm with
a latency degree of 2, relying on a failure detector of thesxlaS. Hurfin and Raynal
in [77] presented another Consensus protocol base&d®which is very efficient when

the underlying failure detector makes no mistake (a comnase i practice).

Chapter 3

General System Model

Contents

3.1 Definition of the General System Model

3.2 Omega in the Crash-Recovery Model

45

46 Chapter 3. General System Model

3.1 Definition of the General System Model

In this section we present the general crash-recoverymystedelS, where we study
the Omega failure detector. Starting from this system muaaeéither add or slightly
modify some system assumptions, leading us to differertipsystems in which we
propose distributed algorithms implementing the Omegaraidetector. More pre-
cisely, in the following chapters we will define the specifistemsS; to Sg, relating
them to the general system mo&af this chapter.

We also redefine Omega for the crash-recovery model. Depgradi whether or
not stable storage is used, the level of agreement of uespabtesses with respect to
correct processes varies. In a system where processesduwass @0 stable storage we
can implement a stronger property, that we denot®mega,», otherwise we only can

implement a weaker property, that we denotebyiega,1.

System composition

We consider a partially synchronous distributed sys&romposed of a finite and to-
tally ordered sefl = {p1, p2,...,Pn} Of n > 1 processes that communicate only by
sending and receiving messages. The process identifierstah@ad to be consecutive.
Usually, we will usep, g, r, ... to denote processes. By default, every process knows
a priori the identity of the rest of the processes. We will call thistfeeknown mem-
bership However, in some systems this will not be the case and heecwillvhave

unknown membershipn these cases it will be adequately pointed out.

Clocks

We assume the existence of a virtual discrete global cldgkoagh processes do not
have access to it. We take the rarifjeof the clock’s ticks to be the set of natural

numbers. In our partially synchronous syst§min every execution there are bounds

3.1. Definition of the General System Model 47

on relative process speeds and on message transmissia) biaveever, these bounds
are not known and they hold only after some unknown time, ys¢esn-wide Global

Stabilization TimeGST, whereGSTe 7.

Every process has a discrete local clock that can accuratebsure intervals of
time. These clocks are not necessarily synchronized anautige of these clocks’ ticks

is also the set of natural numbers.

Timers

Processes have access to local timers that can be implemestdy with the local
clock. A process can set a local timer to a natural numbeleadhetime-out and
start it. This will usually be done in the algorithms with tinstruction:reset Timef to
Timeou. Once a timer has been started, it decreases by one for @veryinit until it

reaches 0. At this moment it is said that the timer has expired

Crashes and recoveries

Processes can crash and may later recover. In order to fiaenfallures we define a
failure pattern Fas a function fron7 to 2", whereF (t) denotes the set of processes
that are not functioning at timte A processp is upat timet if p ¢ F(t). A process is
downat timet if p € F(t). We say that a procegscrashest timet if pis up at time
t—1;ie.p¢ F(t—1)andpis down at timég; i.e. p € F(t). On the other hand, if is
down at timet — 1 and up at time, we say thap recoversat timet.

When a process crashes, it stops functioning and loses tiberts of all its variables

that are not stored in stable storage, the timers are stappktheir previous values are

lost. When a process recovers, it starts the execution algogithm.

48 Chapter 3. General System Model

Stable storage

In the definition ofS we do not specify whether or not processes are able to write to
stable (persistent) storage. Some of the systems bas&deng. the system in Chap-
ter 4, do not consider stable storage while other systenah, a&sithe ones proposed in
Chapter 5, consider that processes can write to stablegstoha every specific system
we indicate whether processes have access to stable storagé The use of stable

storage is discussed in greater depth in Chapter 5.

Types of processes

In every run ofSwe can distinguish three disjoint subsets of processesdiogao the

failure patterr:

(1) Eventually up This is the subset of processes that, after crashing aondeegng
a finite number of times, remain up forever; i.e. they do nashrany more.
Processes that never crash are included in this subsetabgrm
SteT: vt/ >t:pgF({).

(2) Eventually downThis is the subset of processes that, after crashing angieec
ing a finite number of times, remain down forever; i.e. theyndb recover any
more. Processes that never start their execution are edludthis subset. For-
mally:
dteT: vt >t:peF({).

(3) Unstable This is the subset of processes that crash and recover mitamumber
of times; i.e. there is not a time after which either they remago forever or they
remain down forever. Formally:

PreT W >t pd FU)DA@BeT W >t2: peF(t").

3.1. Definition of the General System Model 49

By definition, processes in (1) acerrect and processes in (2) and (3) aneorrect

We assume that the number of correct processes in the syst@my run is at least one.

Processing speed

Processes execute by taking atomic steps. We assume ttenegisf a lower bound
on the number of steps per unit of time taken by any process.bidund does not need
to hold from the beginning but froi®ST, the Global Stabilization Time. Moreover, the
boundo may vary for every run. For simplicity, we will assume thatleastruction of
the algorithms represents one step. We will also assuméhtbdbcal processing time,
related too, is negligible with respect to message communication delay

Finally, we will assume that all the system'’s processes gtaralgorithm at approx-
imately the same time. Although actually this is not necgsdhe explanations and

correctness proofs of the algorithms will be more intuitive

Communication links

Processes communicate with each other by sending messageglt direct links. The
network is fully connected: for every pair of procesges g there is a direct link from

p to g and another direct link fromg to p. A link from a proces to any other process
is anoutputlink of p and a link from any process fis aninputlink of p.

We assume that messages are unique in the sense that psocassdetermine
whether a received message is a duplicate of a previoushweztmessage. This can be
achieved, for example, by including the sender procesgifaerand a timestamp, pro-
vided by its local clock, in each message. With regard toitheliness and reliability

properties, we consider the following three types of linksd]:

(a) Eventually timely linkwhere there is an unknown bouddon message delays

and an unknown Global Stabilization TIm8ST € 7T, such that if a message

50 Chapter 3. General System Model

is sent through the link at a time> GST, then the messageis received by time

t+ o if the receiver process is up.
(b) Lossy linkwhere the link can lose or delay an arbitrary number of ngessa

(c) (Typed) Fair lossy linkwhere, assuming that each message has a type, if for every
type infinitely many messages are sent then infinitely marssages of each type

are received if the receiver process is correct.

Note that the timé&ST and the bound can vary for each run. Furthermore, if we
knew these valuea priori, we could easily implement a failure detector that satisfies
perpetual accuracy, i.e. that does not make erroneouscgusfi in the crash model
assuming that all links are eventually timely. Basicallg @an construct a failure de-
tector where every procegsin the system waits until the tim@ST arrives and then
sets timers with respect to the rest of the procegsé® to d. If the timer for a process
g expires it means thaj has crashed because otherwise any message sent must have
arrived.

We consider that no link i modifies its messages or generates spontaneous mes-
sages. However, it may deliver them out of order. More pedgidinks of any type irS

satisfy the following integrity property:

Property 1 (Integrity) A message m is delivered to g from p only if p sent m to g.

Communication primitives

To send messages, processes have atomic sending prirthtit@dow them to send the
same messagua through the required outgoing link. For examplep i€xecutesend m
to g, thenm will be sent through the outgoing link fropto g in one step. Similarly,
if p executessend m to allor broadcast mp will send the message through all its

outgoing links in one step.

3.1. Definition of the General System Model 51

-
O Eventually up —>
O Unstable i , \

Eventually timely Fair lossy

Figure 3.1: Example of paths.

Connectivity requirements

The general system mod8ldoes not specify the particular connectivity considered in
the systems proposed in this thesis. Each specific systemamnwe implement Omega
has its own connectivity requirements. A common commuitoatquirement in this
dissertation is the existence opath of linksof a specific type, e.g. eventually timely,
from one or more processes to other processes. For exampkeystens; presented in
Chapter 4 has the following connectivity requirement:

There is a correct process p such that there is an eventualigly path from p to
every correct and every unstable process.

The above mentioned eventually timely paths are formed byecbprocesses con-
nected through eventually timely links. As eventually tiynpaths depend on eventu-
ally timely links, the communication assumptions that retyeventually timely paths
are achieved after an unknown but finite time.

Now, we define the concept @iath of linksmore formally. A path fromp to g,

p = q, is a directed graph composed of processes as vertexes)@ac$ connectors,
denoted by—, of the formp=—q=p — 1, 1 — 92, .., Gn — @, Such that the
intermediary process€s);, 0z, ..., Gn} are correct and all the links are of the required
type or stronger; e.g. eventually timely. A direct link frgorto g is also considered a
path.p—qg=p=—1q.

Observe that processg@sand/orq could be unstable. In this case, the connectiv-

52 Chapter 3. General System Model

ity requirements that affect unstable processes, e.g. hatpat starts or finishes at an
unstable process, only hold when the unstable process is up.

In the example in Figure 3.1 procesg®s p and ps are correct, i.e. eventually
up, and processgs and ps are unstable. There is an eventually timely path from the
processeP; andp; to all correct and unstable processes. Besides, there isladay

path from every unstable process to every correct process.

3.2 Omega in the Crash-Recovery Model

During their study of the Consensus problem and the use efiabte failure detectors
to solve it, Chandra et al. defined in [26] a failure detectdledd Omega for the crash
model. Informally, the output of the Omega failure deteatoydule at a procesp

is a single procesg that p currently considers to be correct (we say tpatrusts Q.
Eventually, this output must be the same at every correatga®and must correspond

to a correct process. More formally, Omega satisfies thevatig property:

Property 2 (Omega There is a time after which every correct process alwaydsrie

same correct process.

Note that the output of the failure detector module of Omega jproces may
change over time; i.ep may trust different processes at different times. Furtlogenm
at any given time: two processep andg may trust different processes.

Typically in our algorithms the trusted process at a progesghich is the output of
the Omega module, is held in the local varialadader,. In order to export this variable,
every algorithm includes a functideader() which for simplicity has been omitted
from the pseudocode of the algorithms. This function retdine identity of the process
trusted byp's Omega module at a given time: the value of the variéddeler,, if and

only if the variable has been set to any value by the algorithfhen an application

3.2. Omega in the Crash-Recovery Model 53

calls the functiorleader() if leader, has not been set (i.@.does not trust any process),
the special valuéd._ is returned.

The definition of Omega was proposed for the crash model, andehit does not
consider unstable processes. In the crash-recovery moidelpt possible for a process
to determine whether it is: a correct process; an eventdallyn, but still up, process;
or even an unstable, but up, process. Note that if we keep @meds for the crash-
recovery model then unstable processes are allowed tordesagth correct processes,
which can be a serious drawback. For instance, when solvimgé€hsus, termination
of Consensus cannot usually be guaranteed if correct geseselect a leader that is
different from the one selected by unstable processes. dd@&nwould be desirable in
a crash-recovery system that all processes which are upualigmagree on a common
correct leader process. In order to express this we firsfiredie property that Omega

must satisfy, adapted to the crash-recovery model withablte storage:

Property 3 (Omega;1) There is a time after which (1) every correct process always
trusts the same correct process |, and (2) every unstablegss) when up, always trusts
either_L or |. More precisely, upon recovery an unstable processfirdt trust L (i.e. it
does not trust any process), and —if it remains up for sufittydong— it will then trust

| until it crashes.

If we consider the use of stable storage by processes, thepassibilities arise. In
this regard, the quality of the agreement of unstable psssewith the correct ones will
depend on whether or not of stable storage is used. Intlyitibes use of stable storage
allows unstable processes to eventually agree from thebiegj of their execution by
reading the identity of the leader from stable storage,evthié absence of stable storage
forces unstable processes to communicate with some cqrecess(es) in order to
learn the identity of the leader.

We redefine Omega for crash-recovery models where prockeagesccess to stable

storage as follows:

54 Chapter 3. General System Model

Property 4 (Omega;2) There is a time after which every process that is up, either co

rect or unstable, always trusts the same correct process.

Note thatOmega,» is stronger tha®mega,1.

Chapter 4

Omega in Crash-Recovery without

Stable Storage

Contents

4.1 Introduction
4.2 AnAlgorithm forSystem Sy

4.3 Onthe Eventual Timeliness of Fair Lossy Links

55

56 Chapter 4. Omega in Crash-Recovery without Stable Storage

4.1 Introduction

In this chapter we propose an algorithm implementrgega,; for the crash-recovery
model in a distributed system where processes do not haesate stable storage. We
consider this aspect interesting for a number of reasorrst & all, the use of stable
storage is expensive in time. When designing an algorithenqnust take into account
that the time required to execute an instruction that aesestable storage, i.e. an
external device, can be several orders of magnitude higlaerfor the execution of an
instruction that does not access it; in this regard, therélguos presented in Chapter 5
use stable storage, but each process only accesses sbadigest small number of times
upon recovery. Secondly, we cannot assume that all the evatas that may execute
an Omega algorithm will have access to stable storage.|¥ifra@im a more theoretical
point of view, in our search of weaker distributed system ei®dor implementing
efficient Omega algorithms, we must consider systems intwprocesses do not have
access to stable storage because this assumption is wieakehé opposite. As we will
see, the algorithm presented in this chapter assumes aitpajbcorrect processes in
order to implemen®©mega,; (Property 3).

In Chapters 4, 5 and 6 we address the implementation of theg@fadure detector
in crash-recovery systems. The outline followed will be iamfor each algorithm.
First, we present the specific system assumptions, thersthedpcode of the algorithm
executed at every procepswith the required explanations, and finally a proof or proof
sketch of the correctness of the algorithm.

Some of the algorithms share some names of constants amtbiesti To avoid re-
dundancy, when explaining an algorithm, the explanatidiisese ones can be omitted
if they have been defined previously. If a constant or vagiddals been defined in two
or more places with different meanings the correspondirigpitien is the latest one,
unless otherwise stated.

The rest of this chapter is organized as follows: firstly, @ctn 4.2 we present the

4.2. An Algorithm for Systeng; 57

systemS; and an algorithm implementin@mega,; in it. Secondly, in Section 4.3, we

discuss the eventual timeliness of fair lossy links.

4.2 An Algorithm for System $;

4.2.1 Specific System Assumptions i;

The systents; corresponds to the general system md§jalefined in Chapter 3, with
some additional assumptions.

With regard to connectivity, i, we make the following assumptions:

(1) There is a correct procepsuch that there is an eventually timely path frpro

every correct and every unstable process.
(2) For every correct process# p, there is a fair lossy path frompto p.

(3) For every unstable process there is a fair lossy link fronu to some correct

process.

We also assume that a majority of processes are correct.

4.2.2 The Algorithm

In this section we propose a distributed algorithm impletimgnOmega,1 in system
Si. Figure 4.1 presents the pseudocode executed by each probes it is up. The
algorithm is the collection afi instances of this pseudocode, one for each process in the
system.

With respect to the variables, every procedsas aleader, variable containing its
trusted process, initialized to, and aCandidateg set containing the processes from
which p will chooseleadet, initialized tol1. In addition,p has a time-out with respect

to every other process, the arfaymeoup which is initialized tor), and a counter of the

58 Chapter 4. Omega in Crash-Recovery without Stable Storage

approximate number of times that each process has recovened been suspected, the

arrayPunish,.

The time constant) is used in all the algorithms and indicates the rate at which
periodic messages will be sent by processes. Its specifie valvery important if we
want to run the algorithms in a real environment accordingéd system requirements.

If n is too small we will have a flood of messages, and hence theagessvould
possibly be queued or lost and the timers would expire. Tkl be avoided at all
costs. On the other hand, a higher valuenofmplies a slower convergence of the

algorithm.

Below, we elaborate on the functioning of the algorithm. iDgthe execution of the
Initialization, and upon recovery, the procgssends &ECOV EREDnessage to all the
processes, setBnersactiveto FALSE, and starts the four tasks of the algorithm. Note
that all the timers op are inactive. Ifp does not crash, the reception of enoddhV E
messages is guaranteed by the assumption that a majoritgedgses are correct $.

In Task 1,p periodically sends aALIV E message containirfgunisty to all processes.

In Task 2, wherp receives RECOV EREDnessage from, p incrementdunisty[q].

In Task 3, whenp receives arALIV E message frong £ p that was not received
previously,p resends the message to all the processes and upiatiss), with Punish,
by taking the highest value for each component of the vedtoen, p also updates all

its time-outs, taking the highest value of the current timugs andPunisty[p).

Finally, if p has so far receivedlLIV E messages from a majority of proces$§§11 :
if the timers are not yet activeg resets all its timers for the first time after the recov-
ery, and setsimersactiveto TRUE In addition, p includesq in Candidatesg, if re-
quired, and incrementBimeoup[q]. Then it resetd imery(q) and calls the procedure
updateleader() in order to updatéeader, to the process i@andidateg with the min-
imum associated punish counter Bunish,. In Task 4, whenTimery(q) expires,p

increments the associated punish courRanisty[q], removes) from Candidateg and

4.2. An Algorithm for Systeng;

Every procesp executes the following:

procedure updateleader()

(1) leader, < | such thaPunishp[l] = min{Punishy[q]}, ¥q € Candidateg,
using identifiers to break ties

Initialization:

(2) leadep+ L

(3) Candidateg<T1

(4) Vq#p:Timeoup[q] < n

(5) Vq:Punishpg] <0

(6) send RECOVEREDp) to all processes

(7) timersactive« FALSE

(8) starttasks1,2,3and4

Task 1:

(9) loop forever

(10) send ALIVE, p, Punish) to all processes
(112) wait()

Task 2:

(12) upon reception ofmessageRECOV ERED(Q) do
(13) Punishyp|q] < Punishp[g] + 1

Task 3:
(14) upon reception ofmessageALIVE, g, Punishy)
with g # p for the first timedo
(15) send ALIVE, g, Punisly) to all processes
(16) Vr : Punishp[r] <— max{Punishp[r],Punishy[r]}
a7 Vr : Timeoup[r] <— max{Timeoup[r], Punish,[p]}

(18) if p has received so faLIV E from a majority of processdhken
(19) if timersactive= FALSEthen

(20) Va # p: resetTimery(q) to Timeoup[q]
(21) timersactive<— TRUE

(22) end if

(23) if g ¢ Candidateg then

(24) Candidateg < CandidategU {q}
(25) Timeoup[q] + Timeoup[q] + 1

(26) end if

(27) reseflimery(q) to Timeoup|q]

(28) updateleader()

(29) end if

Task 4:

(30) upon expiration of Timer,(q) do
(31) Punishp[q] < Punistp[g] + 1

(32) Candidateg « Candidateg— {q}
(33) updateleader()

Figure 4.1: An algorithm implementin@mega,1 in systemS;.

60 Chapter 4. Omega in Crash-Recovery without Stable Storage

callsupdateleader().

With this algorithm, eventually all the processes that grenill have inleader,
either L, which indicates that they have not yet receiMedV E from a majority of
processes, or the common correct leddém important detail is that at a given process
p no timer is activated and, hence, no timer expires umtilas received aiLIVE
message from a majority of processes, preventing erroragscions from unstable
processes. After the reception ALV E messages from a majority of processes at an
unstable process it is guaranteed that at least one message has been seft ¢amnect
process, sal will have (1) Punish, such that is chosen as leader, and (R)meoug]l]
such thafTimer,(I) will not expire any more.

In this algorithm the eventually timely paths guaranteeagrent in the same leader
process. For this reason each process resends every missaga/es and this allows
the rest of the processes to receive it. In the worst casetodile periodic sending of
messages in Task 1, there will hgrocesses sending and resending messages period-
ically. In terms of periodically sent messages we will haygrocesses sending— 1
messages that will be resent by the receiving1 processes, making a total ©fn®)
messages sent periodically. From the point of view of lirksthe worst cas@©(n?)
links carry messages forever.

Figures 4.2 to 4.4 present three scenarios of a system cetpdgive processes
that satisfy the assumptions required by our algorithm.e@lesthat, since nothing can
be said about the timeliness of fair lossy links, in the pnése scenarios proceps will
eventually become the leader unlggsor ps communicate timely withp, through the

fair lossy paths.

4.2.3 Correctness Proof

We now show the correctness of the algorithm in Figure 4.1 Rlge the set of correct

processes that eventually can reach by eventually timehsgavery alive process & .

4.2. An Algorithm for Systeng; 61

O Eventually up

O Unstable

Eventually down

O Eventually up

O Unstable

Eventually down

Eventually timely Fair lossy Eventually timely Fair lossy

Figure 4.2: Scenario 1: three eventually Figure 4.3: Scenario 2: three eventually
up, one eventually down, one unstable. up, one eventually down, one unstable.

()
------ >
O Eventually up ”

O Unstable ‘

Eventually timely Fair lossy

Figure 4.4: Scenario 3: three eventually up, two unstable.

By definition, there exists a constaltand a timeGST after which every message sent
by a process, s< R, takes at mosA time to be received by every alive process. Bet
be the set of correct processewith boundedPunishy[p]. As it is shown by Lemma 2,
setB is not empty.

For the rest of the section we will assume that any time indtés larger than a
timety, wheret; is a time instant that occurs after the stabilization tiG%&T, and after
every eventually down process has definitely crashed, agiy @ventually up process
has definitely recovered. We will denotary, the value of the local variablear of p at

timet.
Lemma 1 Vq € correct, Vu € unstablePunishy[u] is unbounded.

Proof. Consider any unstable process By definition, u will crash and recover an
infinite number of times. Every tima recovers, it sends RECOV EREDuU) mes-

sage to all the processes, and heaedll send an infinite number oRECOV ERED

62 Chapter 4. Omega in Crash-Recovery without Stable Storage

u) messages. An infinite subset of those messages will reanb sorrect process,
because by definition every unstable process has at leastlasfsy link to some cor-
rect process, which will incremefunishy[u] accordingly (Line 13). Since after time
t; correct processes will not cragPynisky[u] will be monotonically nondecreasing and
unbounded.

At any timet > t1, if processg € R every message it sends will reach every correct
processp in at mostA time, settingPunisty[u] > Punishy, [u]. If processy ¢ R, by defi-
nition g will have at least one fair lossy path to a correct progessR, and eventually
p will receive an ALIVE, g, Punishy) message, settirgunish,[u] > Punishy [u]. After
that the rest of the alive processes will recefumnish, in at mostn + A time. Once a
correct processreceives a message framit will set Punishju] > Punishy,[u], and the

lemma holds. n

From now on, we will assume that any time instaistlarger than timé& > t1, where
t is a time instant that occurs after every correct proses® hasPunishu] such that

Punishkfu] > n +A.

Lemma 2 Vs e R, Punisk[s] is bounded.

Proof. Consider any correct procesgs# s. Processs sends a messag@Ll(IVE, s,
Punish) everyn time to every process. By definition, after tif&ST every message
thats sends is received by within n + A time from the timeq received the previous
message frors. Sinceq increases its timefimeoug[s| every time it expires, eventually
Timery(s) will cease expiring. Thencefortla, will never punishs (Line 31) any more,
andswill not increasePunish|s| due to a message from agy correct

On the other hand, every unstable processill not reset its timers until the re-
ception of anALIV E message from a majority of processes. Since there is a major-

ity of correct processes, we can assure that the pracest receive a message from

4.2. An Algorithm for Systeng; 63

at least one correct process, amvill have Punishj[u] > Punishju] before resetting
its timers. Since after timg, at process, Punishju] > n + A, processu will have
Timeoug[s| > Punish[u] (Line 17), andTimer,(s) will never expire.

Thenceforth, there is a tinte> t, after which neither unstable nor correct processes
will expire ons, swill not be punished (Line 31Runish|g] is bounded, and the lemma
holds. |

From the previous, note thRC B.

Lemma 3 For every correct process @ B there exists a time after which everyq

correct receives messages from p infinitely often.

Proof: Consider a correct process# p. We prove the contrapositive of the lemma.
Suppose) does not receive messages fragnnfinitely often. Each timey does not re-
ceive a message fromandTimery(p) expires, procesgis punished by in Punisky[p].
Later, an infinite subset of theLIV E messages sent lgycould be received by, in-
creasingPunistp[p|, or at least by some processs € R. The process will increase
Punishyp|, and the next timg receives a message frognit will increasePunisty|p]
accordingly. If this happens infinitely ofteRunishy[p] is not bounded, leading us to a

contradiction. m

For the rest of the section we will assume that any time indtas larger than
time t3 > tp, wherets is a time instant that occurs aftBunishy[u] > Punishy[p], Yu €
unstable Vp € B, and for every eventually down procegsq ¢ Candidateg. This
will eventually happen becauseinishy[u] is unbounded and timers on every eventually

down process| will expire. After that (Line 32)g will be removed fronCandidates.

Lemma 4 For every pair of correct processes p and g5 B, there is a time after which

for every time t, Punisfip] > Punishy,[p].

64 Chapter 4. Omega in Crash-Recovery without Stable Storage

Proof:. Forq= p, the lemma is trivial. Now assuntg# p. Sincep € B, by Lemma 3
there exists a time after which eveagye correctreceives messages fropinfinitely of-
ten. Lett > t3 be any time. There is a timié> t whenq receives ALIVE, p, Punisty),
with Punishp[p] = ¢, originally sent byp after timet, soc > Punish, [p]. Then at time
t’, g sets itsPunishy[p] to ¢, and so we havePunishy[p] > Punish, [p]. The lemma now

follows sincePunishy|p] is monotonically nondecreasing. [|

Lemma 5 For every correct process p:

(1) If Punishy[p] is bounded, then there exists a valugand a time after which for
every correct process g, Punigh| = V.

(2) If Punishy[p] is not bounded, then for every correct process ¢, Pyhghs not
bounded.

Proof: Let p be a correct process.

(1) SupposePunishy[p| is bounded. Thus, by Lemma 4, for all correct processes
g, there is a time > t3 after whichPunishy[p] > Punishy, [p]. SincePunishy|p]
is bounded and monotonically nondecreasing, there exisatuaVy, and a time
after whichPunishy[p] = V,. Therefore, there exists a time after which, for all

correct processeg Punishy[p] = Vp.

(2) Supposéunistp|p| is not bounded. Lemma 4 implies tHatinisky[p| is also not
bounded.

Lemma 6 If process k is not correct then for every correct processagehs a time

after which k will not be leadgr

4.2. An Algorithm for Systeng; 65

Proof: If processk is unstable, after timeé > t3, Punishpk] > Punishy[p], for ev-
ery p € B. As q is correct every message broadcast (Line 15) by every pqees
reaches timely every correct procagsPunishyk] > Punishy[k], and proces& will
not be elected as leader any more. If prockds eventually down, after timé;,

k ¢ Candidateg. In both casedeadeg, # k and the lemma holds. m

Lemma 7 There exists a correct process | and a time after which, fargworrect

process ¢, leadgr= .

Proof: Note thatB is not empty. By Lemma 5(1), for every procgss B, there is a cor-
responding integevy, and a time after which for every correct procgsBunishy[p| =
Vp (forever). Letl denote the process in B with the smallest corresponding tuple
(Vp, p). We now show that eventually every correct proagsslectd as its leader (for-
ever). For any other procegs# |: (*) there is a time after whictiPunishy[p|, p) >
(Punishy[l],1). This implies that eventuallg selectd as its leader, forever. To show
that (*) holds, consider the following 3 possible cases.p lifs not correct then, by
Lemma 6, eventuallp will never be elected as leader (forever). Now supposephst
correct. IfPunishy[p] is bounded, them is in B; so, by our selection dfin B, even-
tually (Punishy[p] = Vp, p) > (Punishy[l] =V,) forever. Finally, ifPunishy[p] is not
bounded, then, by Lemma 5(2), there is a time after wRighishy[p] > Punishy[l] =V
(becauséPunishy[p] is unbounded and monotonically nondecreasing). In allége
holds. It is interesting to point out that if there are two ggsses andq in B with
the same smalle$t,, every process will choose deterministically as its leddersame
process, that will be the process with the smallest idenbitweenp andq. This issue
is addressed by the procedurpdateleader) which includes the expressidosing

identifiers to break ties” n

66 Chapter 4. Omega in Crash-Recovery without Stable Storage

For the rest of the section we will assume that any time ingtanlarger than time

t4 > t3, wheret, is a time instant that occurs after Lemma 7 holds.

Lemma 8 There is a time after which, for every unstable process upwipe leadeg =

1 orleadeg, =1, being | the same process as in Lemma 7.

Proof: Every time an unstable processecovers from a crash, it will sétadeg, to L.
Then,u will wait until the reception of alALIV E message from a majority of processes,
in order to activate its timers and calpdateleader). After the waiting periodu has
received a message from at least one correct pracédsceu executes Line 16/p€ S,
Punish[p] > Punishy[p], and after Line 28eadey, =1. Sincel € B, the timers of the

unstable processes will not expire grand the lemma holds. [|

Theorem 1 There is a time after which (1) every correct process alwaysts the same
correct process |, and (2) every unstable process, when lwaya trusts eitherl or
|. Hence, the algorithm in Figure 4.1 implements Omegésatisfies Property 3) in

system §

Proof: Follows directly from Lemma 7 and Lemma 8. [|

4.3 Onthe Eventual Timeliness of Fair Lossy Links

In this section we discuss an interesting behaviour astsatigith fair lossy links; the
(eventual) timeliness Let us consider a process that sends messages periodésally
ery n time units, through a fair lossy link. Every message senthgydrocess has an
identifier n in the set of positive numbers. The first message has an fidéemti= 1

and it is increased monotonically by 1 for each sending; the. fourth message sent

4.3. On the Eventual Timeliness of Fair Lossy Links 67

hasn = 4. Let us suppose that the fair lossy link delivers timely tiressages whose
sending identifier is even, i.e.mod 2 = Q and drops systematically the other messages.

From the definition given in Chapter 3 we know that this linkna a link of the
eventually timely type because it drops messages infinitiégn, but on the other hand
the fair lossy link delivers messages periodically withboainded period; i.e. it presents
(eventualtimeliness

Observe that due to this behaviour a correct process coglohte the leader even
if it does not have an eventually timely path with the resthd torrect and unstable
processes, provided that it can communicate timely witls¢harocesses (through fair
lossy paths). If this is the case, the paths from such a psdoehe rest of the correct
and unstable processes can be definddssy but eventually timelyClearly, this is a
behavioural definition, sinca priori nothing can be said about the timeliness of fair
lossy links. That is why we require the existence of a conpeatess having an eventu-
ally timely path to the rest of the correct and unstable pses, since this ensures that
the algorithm stabilizes on a common and correct leadeggaddently of the behaviour
of fair lossy links.

Figures 4.5 to 4.8 present several scenarios satisfyinggtemptions required by
the algorithm proposed in this chapter. We consider systghese processeg:, p»
and ps are eventually up, and procesgesand p4 are unstable. In Figure 4.9; or p
will eventually become the leader, unlggscommunicates timely witlp; through the
fair lossy link. In Figures 4.6 and 4.7, any of the procegse$, or ps will eventually
become the leader. Figure 4.8 differs from Figure 4.5 in ihectifair lossy link from
ps to p2. In this scenario, besidgs and p,, procesgs could also become the leader,

if it can communicate timely with eithgw;, or p».

68 Chapter 4. Omega in Crash-Recovery without Stable Storage

O Eventually up

-~
—
O Eventually up P

O Unstable O Unstable 4
“/
Eventually timely Fair lossy Eventually timely Fair lossy

Figure 4.5: Scenario 4: three eventually up,Figure 4.6: Scenario 5: three eventually up,
two unstable. two unstable.

O Eventually up

O Unstable

O Eventually up

O Unstable

Eventually timely Fair lossy Eventually timely Fair lossy

Figure 4.7: Scenario 6: three eventually up,Figure 4.8: Scenario 7: three eventually up,
two unstable. two unstable.

Chapter 5

Omega in Crash-Recovery with Stable

Storage

Contents
5.1 Introduction 70
5.2 AnAlgorithmforSystemS. oL 72
5.3 AnAlgorithmforSystemSy. 80
5.4 AnAlgorithmforSystem&. 90

69

70 Chapter 5. Omega in Crash-Recovery with Stable Storage

5.1 Introduction

In the general system modgJ|defined in Chapter 3, when a process crashes it loses the
contents of all its variables. To avoid this, processes nsay ifiable, persistent storage,
which we will call stable storagewhose content is preserved during crash periods. In
systems where processes have access to stable storage iwglsanent more efficient
algorithms from the point of view of communication, althdwtdpere will be a cost for
accessing stable storage. Access to stable storage ialtypegarded as very expensive
and should be minimized: i.e. the number of accesses as svétesamount of stored
data should be as small as possible.

In this chapter we assume that every process has accesdli® stiarage to keep
the value of some local variables. The access to stableggtdsaa very important
assumption because of the existence of many devices tHabfagtable storage and
due to the high cost associated with the writing and readiRggarding the cost, in
the algorithms that use stable storage proposed in thisrtbé®n the access to stable
storage is small, as a process only accesses stable stofagetimes every time it
recovers. Note that the access to stable storage is nodpetipi.e. processes access
stable storage during the initialization and/or after aetimand never access it again if
they do not crash and recover. In the case of the eventuallyagesses, after accessing
stable storage in the early moments they remain up foreviresowill never access it
again. From this point of view, the use of stable storage imatgorithms is efficient.

The specific systems presented in this chapter also assatnevigry unstable pro-
cess will be able to write to stable storage infinitely oftérhis means that unstable
processes will execute the writing instructions of the atgm infinitely often; i.e.
sometimes unstable processes will crash before the wyritimgother times they will
not. If we suppose that unstable processes do not writelestorage infinitely often,
which is an assumption that we do not make, the algorithmsweitk properly and the

correct processes will agree on a common leader, implenge@imega(Property 2).

5.1. Introduction 71

However, unstable processes that do not satisfy the wnigggirement may not agree
with the rest of the unstable and correct processes, ane tle@algorithm does not im-
plementOmega,,. Basically, in order to agree, unstable processes mug deitinitely
to stable storage the identity of the correct ledder
In fact, instead of infinitely often writing it would be endugf unstable processes
wrote in stable storage only one timafter the algorithm stabilizes and the correct
processes agree on the correct ledddsut we consider that this assumption is not
sufficiently general. Clearly, if an unstable process damswrite the identity of the
correct leader in stable storage, it cannot read the cdeaderd during initialization.
Besides the use of stable storage, all the systems in tharthshare the fact that
they do not require fair lossy links. For simplicity and watlht loss of generality, we
assume that systen$s, S3 andS, are composed only of eventually timely and lossy

asynchronous links. We give a brief description of thes¢esys:

e SystemS, assumes that eventually all processes are reachable tirmeiprough
eventually timely paths, from a correct process that cragingl recovers a mini-

mum number of times. The system also assumes unknown memybers

e SystemS; assumes that eventually all processes are reachable tiraelysome

correct process. This system assumes known membership.

e SystemS, assumes that eventually all processes are reachable tiraplysome

correct process, as B, and that the membership is unknown, a§in

In [54] Fernandez et al. presented the minimal reachghibinditions required to
implement Omega in the crash model. The reachability canmditassumed for systems
S3 and S, constitute an adapted version of these. As we will see, alhgithe corre-
sponding algorithms will choose as leader the correct p®odeat is “least suspected”

among those that reach timely all processes.

72 Chapter 5. Omega in Crash-Recovery with Stable Storage

The rest of the chapter is organized as follows. In Sectidm® present the system
S, and give an algorithm implementingmega,, in it. In Sections 5.3 and 5.4 we
present the systen$ andS,, in which we weaken the synchrony assumptions and give

algorithms that implemer®@mega,» as well.

5.2 An Algorithm for System S,

In this section we present an algorithm, adapted from [H{ implement©©mega,»
in systemS,.

5.2.1 Specific System Assumptions i

The systent, corresponds to the general system mdfjedefined in Chapter 3, with
some additional assumptions. Recall that in this chaptergases have access to stable
storage. In systerfs, the membership of the system — processes’ identifiers — is not
known a priori by processes. The process identifiers are totally ordereddad not

be consecutive. Furthermore, processes have no knowlddge the total number of
processes in the system.

There are additional communication assumptions:

e There is an eventually timely path from one correct proaggs that crashes
and recovers the minimum number of times, to every corredtexery unstable

process.

In the case that two processes crash and recover the samesnoimtimes, the
property must be satisfied by the process with the smallesttifter. Basically, this
communication assumption implies that there will be a tirfteravhich the process
Cmin Will have an eventually timely path, formed by correct preszs that communicate

through eventually timely links, to every other processeddeventually timely paths

5.2. An Algorithm for Systens, 73

must also reach every unstable process, although an uagtaddless cannot be part of

the intermediate path, it can only be a final process.

5.2.2 The Algorithm

In this section we propose a distributed algorithm impletimgnOmega,» in system

S,. Figure 5.1 presents the pseudocode executed by each prwhes it is up. The
algorithm is the collection afi instances of this pseudocode, one for each process in the
system.

The process chosen as leader by any propess. trusted byp, is held in a vari-
ableleader,. We will show that with this algorithm there is a time afteriathevery
up process permanently hisader, = cmin and thus implement®mega;, (satisfies
Property 4).

The variabledeNCARNAT ION contains in stable storage the number of times that
the process has recovered, which we also callitkbarnation number Its value is 0
by default. The variabléncarnatior, will contain the same incarnation number, but
in volatile memory. We use it to reduce the number of accesstable storage, by
cachingINCARNATION. The incarnation number ¢éader, is held in the variable
incarnationeager The value ofeader, is saved to stable storageliE ADER,. As we
will see below, theNCARNAT ION andLEADER, values in stable storage constitute
the foundations of the algorithm.

The basic idea of the algorithm is that eventually only pssog,i, broadcasts new
ALIVE messages eveny time units, and that these messages reach the rest of the up
processes, either directly or indirectly, by rebroadcast.

In the algorithm, when a process sendsfanV E message (Lines 14 or 19), it has
necessarily incremented its incarnation number by 1 inetstorage during initializa-
tion (Line 1). Besidesncarnatiory, every procesg holds in stable storage the value of

leader, (initially set to p) which is read during the execution of the initialization.

74 Chapter 5. Omega in Crash-Recovery with Stable Storage

Every process p executes the following

Initialization:

(1) incrementNCARNATION by 1 in stable storage

(2) incarnatiory < readINCARNAT ION from stable storage
(3) leader, + readLEADER, from stable storage

(4) incarnationeager < incarnatiorn

(5) Timeoup < n +incarnation

(6) if [leader, # p] then

(7 resefTimer, to Timeoup

(8) endif

(9) starttasks1,2and3

Task 1:

(10) wait (7 +incarnatiory)

(11) writeleader, to stable storage
(12) loop forever

(13) if [leadet, = p] then
(14) broadcastALIVE, p, incarnatiory)
(15) end if
(16) wait (7)
Task 2:
(17) upon reception ofmessageALIVE, g, incarnation;) with g # p
for the first timedo
(18) if [incarnation, < incarnationgage] or
[(incarnationy = incarnationeadey) and (q < leader,)] then
(19) broadcastALIVE, g, incarnationy)
(20) leader, < q
(22) incarnationgager +— incarnation
(22) resefl imer, to Timeoup,
(23) end if
Task 3:
(24) upon expiration of Timer, do
(25) Timeoup < Timeoup + 1
(26) leader < p
27) incarnationeager ¢ incarnatiory

Figure 5.1: An algorithm implementingmega;2 in S.

5.2. An Algorithm for Systens, 75

Unstable processes only have to be reachable if they renpaforua sufficiently
long time. In fact, an unstable procassnay crash before the reception of a message

from cmin. This issue was taken into account when designing the &hgori

By the assumption that every unstable process executegdainfrnitely often, in
Line 11 of the algorithm in Figure 5.1, we know that thaitin Line 10 is also executed
infinitely often. The length of thevait is increased with every recovery since it is based
on the incarnation number. Therefore, there is a time aftechwthewait will be long
enough to ensure the reception of a message frgimthrough an eventually timely
path during the waiting period. This prevents every unst@bbcessl from disagree-
ing because eventually and permanemtbarnation, > incarnation (the incarnation
number of the processnin). After thewait, p writes the value ofeader, to stable stor-
age (Line 11). By the assumption that every unstable prasedse to execute Line 11
infinitely often, eventually every unstable process willays write the correct leader to
stable storage. From this point, whenever an unstable gsaeeovers it will initially

set its leader to the correct value (Line 3), implementrgega,..

Note that each process writesader, to stable storage only once each time it starts
executing the algorithm. Hence, from the point of view of thienber of stable storage
writing operations the algorithm is efficient. A variant bfg algorithm could write this
value to stable storage more frequently; e.g. periodicatlgven every time it changes.
This could help in speeding up the convergence at the priaéha@her number of stable

storage writing operations.

Removing the rebroadcast 8LIVE messages (Line 19) we get a simplified ver-
sion of the algorithm that works in fully (eventually) timely connectesystemS:;
l.e. a system in which every process has a direct commuaichtik with every other
process, and all the links are eventually timely. This eestinat eventually every new
ALIV E message that procesgin broadcasts will be received timely by the rest of the up

processes directly fromn, and finally only processyin would broadcasALIV E mes-

76 Chapter 5. Omega in Crash-Recovery with Stable Storage

sages. Note that & is weakened by either removing some links or consideringesom
links as lossy asynchronous, then messages must be reaspadorder to guarantee
their reception by all the up processes.

With regard to the cost of the algorithm in Figure 5.1: allesiéntually onlycmin
sends new messages forever, the remaining up processesseitid the message and,
in the worst case, this means- 1 processes periodically resending messages to each
of the othem — 1 processes, makin@(n®) messages sent periodically. In the worst
case this implies thaD(n?) links carry messages forever. If we suppose the system
to be fully (eventually) timely connected we will have onlgeoprocessgmin, sending
messages periodically and hence the cost in messages serigadly would beO(n),

which is efficient.

5.2.3 Correctness Proof

This section presents the correctness proof of the algorihFigure 5.1.

Lemma 9 Any messag@ALIVE, p, incarnation), p € N, eventually disappears from

the system.

Proof. Note first that a message cannot remain forever in a link,esincemains at
mostGST+ d time in an eventually timely link, and is lost or eventualbiigered in a
lossy asynchronous link. Note as well that a message caanwin forever in a pro-
cess, since by assumption processes take at least oneaeptéeat least one line of
the algorithm) per unit of time. Then, a process will evetiyuerash, drop the message
(Lines 17 and 18), or (re-)broadcast it (Lines 14 and 19).alyinnote that a process
never rebroadcasts twice the same message and never i@stzails own messages
(Line 17). Hence a message can be (re-)broadcast atmiwses, and will eventually

disappear from the system. [|

5.2. An Algorithm for Systens, 77

For the rest of the proof we will assume that any time instastarger than a time

t1 > to, where:

(1) to is a time instant that occurs after the stabilization tiG®T (i.e. top > GST),
and after every eventually down process has definitely edhstévery eventually
up process has definitely recovered, and every unstablegst@s an incarnation

number bigger thamcarnationyip,

(2) andty is a time instant such that all messages broadcast for théirfirs before
to have disappeared from the system (this eventually happemslfemma 9). In
particular, this includes (a) all messages broadcast bytealy down processes,
(b) all messages broadcast by eventually up processe&letamvering definitely,
and (c) all messages broadcast by unstable processes @dathation number less

or equal tancarnationmip.

Lemma 10 There is a time after which processg permanently has
leadek,,,, = Cmin and broadcasts a nepALIV E, Gnin, incarnationyin) message everny

time.

Proof: Note that after timé, proces€min Will never receive anALIV E, g, incarnatiory)
message witlncarnatiory < incarnationmin, or with incarnationy = incarnationmin
from a process such thag < cmin. Therefore, after timé procesmin will never ex-
ecute Lines 19-22 of the algorithm. Hence oheadeg,,,, = Cmin it Will remain so for-

ever. To show that this eventually happens, note thiagifleg_ . # cmin at timet > tq,

min
thenTimer,,,, must be active at that time (actuallyimer;,, was reset the last time
Line 7 or 22 was executed). Since after tilpdines 7 and 22 will never be executed,
Timer,,., will not be reset any more. Thehimer,,,, will eventually expire (Line 24),
andcmin Will setleadet,,,, = Cmin @ndincarnationeager= incarnatiormin (Lines 26-27).

Finally, from Task 1, oncéeadeg,_. . = Cmin, Procesmin Will permanently broadcast a

min

78 Chapter 5. Omega in Crash-Recovery with Stable Storage

new (ALIV E, cnmin, incarnationyin) message every time. [

Lemma 11 There is a time after which every process gorrect, p# Cnin, perma-
nently has either (1) incarnatiggyqer > incarnationyin, or (2) incarnatiofeager =
incarnationin and leadep > cmin. Hence, p rebroadcasts each n@ALIVE, Gnin,
incarnationyin) message it receives (Line 19), since Line 18 of the algorithiinbe

satisfied.

Proof: Note that aftert;, once the conditionificarnationeager > incarnationyin] or
[(incarnationeader = iNcarnationyin) and (eader, > cyin)] is satisfied, it will remain so
forever, since noALIVE, g, incarnation;) message witincarnation, < incarnationyin,
or with incarnationy = incarnationi, from a processy such thatq < cmin Will be
received. After that, ifincarnationeager < incarnationyin, or if incarnationeager =
incarnationyin andleader, < cmin at timet > t; with (1) incarnatiory, > incarnationmin,
or (2) incarnation, = incarnationmin and p > cmin, thenTimer, must be active at that
time. TherTimer, will eventually expire (Line 24), setting either (fhcarnationeager=
incarnation, > incarnationyin, Or (2)incarnationeader= incarnatior, = incarnationin

andleader, = p > Cmin.]

Lemma 12 There is a time after which every process gorrect, p# Cnin, perma-
nently receives neWALIV E, Gin, incarnationyin) messages with intervals of at most
n + A time between consecutive messages, Whé&ehe maximum delay introduced by

an eventually timely path.

Proof: From Lemma 10, there is a time after whighi, sends new messages every
time. It takes at mogh time to a message crossing an eventually timely path frigim

to p. From Lemma 11 every correct process will rebroadcast avegsage it receives

5.2. An Algorithm for Systens, 79

from cmin. Therefore we can assure that every message semtibwill be rebroadcast
by the correct process processes until the message reamgpeocess in the system.
As Cmin broadcasts a message everyime and the message takes at mbgtme to

reach every process in the system, the lemma holds. [|

Theorem 2 There is a time after which every up process p permanentlydaamier, =
Cmin, I.€. p trusts gin. Hence, the algorithm in Figure 5.1 implements Omeggésatis-

fies Property 4) in systemS

Proof: Lemma 10 shows the claim fgv = cmin. For everyp € correct, such that
P # Cmin, from Lemma 11 there is a time after whighpermanently has either (1)
incarnationeader > iNCarnationyin, or (2) incarnationeager = incarnationyin and the
variableleadef, > cymin. From Lemma 12, whenevéeader, # Cmin after this time,
leader, changes back tanin in at mostn + A time. Furthermore, ondeader, = Cnin,

it only changes (t@) by executing Lines 24-27, since the conditions in Linesdd &3
preventleader, from changing in Line 20. Finallyleader, changes frontmi, to p

a finite number of times, since each time this happeinseoup, is incremented by 1.
By contradiction, assuming this happens an infinite numbéines, Timeoup, even-
tually grows to the point in whicfTimer, never expires, because ne(V E, Cnin,
incarnationnin) messages are received timely ahuiner, is reset before expiration.
Hence, eventualljeader, = cmin forever. Finally, every unstable processvill even-
tually receive aALIVE, cmin, iIncarnationyin) message during the waiting instruction
of Line 10, settindeader, = cmin (Line 20). Then,p will write cmin to stable storage
(Line 11). The infinitely often writing in stable storage irenof the assumptions of
the system. After thap will have leader, = cmin permanently, even upon initialization

(Line 6). Hence, Hence, the algorithm in Figure 5.1 impleta€@mega,»> in system
S. n

80 Chapter 5. Omega in Crash-Recovery with Stable Storage

5.3 An Algorithm for System S

In this section, we propose an algorithm with a weaker syorohassumption than the
one in Section 5.2. The new syst&nassumes that eventually all processes are reach-
able timely fromsomecorrect process, independently of its identifier and inatom
number.

The strategy followed by the algorithm is to choose as le#loercorrect process
that is the least suspected among those that reach timgdyoaksses. Besides this, the
algorithm of this section requires the membership of théesypdo be knowra priori by

processes.

5.3.1 Specific System Assumptions ifs

The systemS; corresponds to the general system mad8elith some additional as-
sumptions. Contrary to systef, in S3 the membership is known. With respect to the

communication assumptions, the syst&passumes that:

e There is an eventually timely path from some correct protessery correct and

every unstable process.

Recall that in this chapter it is assumed that every procassabcess to stable stor-
age, and that unstable processes are able to write to stabdga infinitely often. Fi-

nally, only eventually timely and lossy asynchronous liaks considered.

5.3.2 The Algorithm

We present in this section a second algorithm, that has tosgted from [6], which im-
plementOmega,» in systemSs. Figure 5.2 presents the pseudocode executed by each
process when it is up. The algorithm is the collectiom@istances of this pseudocode,

one for each process in the system.

5.3. An Algorithm for Systengs 81

With this algorithm there is a time after which every up psg@ermanently has
leader, =1, beingl the least suspected process among those that eventualiguoom

cate timely with the rest of processes.

The algorithm works as follows. Every procgshas aPunisty[q] counter for every
procesyy, which is p’s estimation of the number of timeshas been suspected. Pro-
cessp selects as its leader the procésgith the smallesPunishy[l] value. In order to
keep thePunish, variable up to date, every procgsdroadcasts every time units an
(ALIVE, p, Punistp) message. If a procegsreceives a messagal(lV E, g, Punishy)
with q # p for the first time,p rebroadcasts the message, updateutsisty, vector ac-
cordingly, reset3 imery(q) for when it expects to receive the neAl(VE, g, Punishy)

message, and calls the procedupelateleader).

If Timery(q) expires before receiving a newl(IVE, g, Punish;) message, thep
increments the suspicion counteunisty[g], increments the valu&imeoup[q], resets

Timery(q), and callsupdateleader().

Unstable processes may crash before receiving (directhdweictly) some mes-
sages fromp, but they will receive messages frominfinitely often when they are
up. The algorithm includes a mechanism to eventually avostable processes from
disturbing the leader election. This mechanism is basedhernicarnation number of
processes. Observe that, during initialization, evercessp sets its time-outs with
respect to the rest of the processeg tpincarnatiory, (Line 5). Also,p setsPunishp[p]
to incarnation, (Line 8). The values set during the initialization ensurat teventu-
ally (1) every unstable procegswill never suspect a correct procegghat reaches
timely every other process (singés time-out with respect) keeps increasing forever,
and hence eventuallyimery(q) will never expire), and consequentbywill not incre-
mentPunishy[g] any more, and (2) every unstable procesaill never be elected as
the leader in thepdateleader) procedure (sinciecarnatior,, and henc@unishy[p],

keeps increasing forever).

82 Chapter 5. Omega in Crash-Recovery with Stable Storage

Every process p executes the following

procedure updateleader()
(1) leader, < | such thaPunishp[l] = min{Punishy[q]},
using identifiers to break ties

Initialization:

(2) incrementNCARNATION by 1 in stable storage

(3) incarnatiory < readINCARNAT ION from stable storage
(4) leader, + readLEADER, from stable storage

(5) Vq# p:Timeoup[q] < n +incarnatiory

(6) Vq# p:resetTimery(q) to Timeoup|q]

(7) Vq# p:Punishg] + 0

(8) Punishp[p] « incarnation,

(9) starttasks1,2and3

Task 1:

(10) wait (7 +incarnatiory)

(11) writeleader, to stable storage
(12) loop forever

(13) broadcastALIVE, p, Punistp)
(14) wait (7)

Task 2:

(15) upon reception ofmessageALIVE, g, Punishy) with g # p
for the first timedo

(16) broadcastALIVE, g, Punisly)

7) Vr : Punisthp[r] < max{(Punishp[r],Punishy[r])}

(18) reseflTimery(q) to Timeoup[q]

(29) updatelLeadd))

Task 3:

(20) upon expiration of Timer,(q) do
(21) Punistp[q] < Punistp[g] + 1
(22) Timeoup[g] < Timeoup[q] + 1
(23) resefTimery(q) to Timeoup[q]
(24) updateleader)

Figure 5.2: An algorithm implementin@mega;» in Ss.

5.3. An Algorithm for Systengs 83

Also, the algorithm includes a waiting instruction (Line) I6llowed by the writing
of the leader in stable storage in order to force unstablegases to eventually agree
with correct processes on the leader upon recovery.

The number of processes that send messages periodicadlgy (@vtime) in this
algorithm is bounded by, the number of processes. As every process rebroadcasts
the messages that receives for the first time, in the worst washaven — 1 processes
resendingn — 1 messages to the rest of the- 1 processes, that make a total@fn®)
messages sent periodically. From the point of view of lileg tarry periodic messages,
the cost igO(n?).

In the algorithm for the crash model in [6], processes (regbdcast expliciAC-
CUSATIONmessages to notify suspicions. By including the whole weofasuspi-
cion counters intdALIV E messages, the algorithm in Figure 5.2 avoids the broadcast
of ACCUSATIONmessages at the expense of increasing the length of the gaesssa
Observe that the systeBs allows scenarios in which many pairs of processes cannot
communicate timely (either directly or indirectly). In [B]ese processes would suspect
each other and hence broadc&SCU SAT IONmessages permanently. Thus, avoiding
those messages reduces notably the number of messageagediaring the execu-

tion of the algorithm.

5.3.3 Correctness Proof

Let R be the set of correct processes that eventually reach tiatidlye correct and un-
stable processes . Let B be the set of correct procesgewith boundedPunishy[p].

By definition, there is a constafttand a time after which every message serd, Isy R,
takes at mosh = (n—1)(J8 + 20) time to be received by every correct and unstable (if

up) process.

Lemma 13 Any messag@ALIVE, p, Punish), p € N, eventually disappears from the

system.

84 Chapter 5. Omega in Crash-Recovery with Stable Storage

Proof:. Note first that a message cannot remain forever in a link,esincemains at
mostGST+ 4 time in an eventually timely link, and is lost or eventualbiigered in a
lossy asynchronous link. Note as well that a message caanwin forever in a pro-
cess, since by assumption processes take at least oneaeptéeat least one line of
the algorithm) per unit of time. Then, a process will evetiyuerash, drop the message
(Line 15), or (re-)broadcast it (Lines 13 or 16). Finallyteahat a process never re-
broadcasts twice the same message and never rebroadsasts imessages (Line 15).
Hence a message can be (re-)broadcast at miistes, and will eventually disappear

from the system. [|

For the rest of the proof we will assume that any time instasiarger than a time

t1 > to, where:

(1) tois atime instant that occurs after the stabilization ti&&T (i.e. to > GST), and
after every eventually down process has definitely craséeery eventually up
process has definitely recovered, and every unstable madess an incarnation
number such thahcarnation, > A+ 40. Note that by definitioru will crash and

recover an infinite number of times, and hence eventuadigrnation, > A+ 40,

(2) andt; is a time instant such that all messages broadcast for théries beforety

have disappeared from the system (this eventually happemslfemma 13).
Lemma 14 Vs e R, Punisk[s] is bounded.

Proof. Consider any correct procesgs# s. Processs sends a messag@Ll(IVE, s,
Punish) everyn time. Eventually, everyALIVE, s, Punish) message that sends
is received directly or indirectly by within n + A time from the timeq received the
previous message from Sinceq increased imeoug[s| every timeTimer(s) expires,
eventuallyTimery(s) will not expire any more. After thigy will not punishs (Line 21)

again, and will not increasePunishjs| due to a message from agye correct

5.3. An Algorithm for Systengs 85

On the other hand, every unstable processill eventually and permanently set
Timer(s) > n + A+ 4o during the initialization. Every time resetsTimer,(s), we
know thatTimer,(s) will expire after timen + A+ 40 time. As messages fromare
sent every) time, in the worst case proceswill send a message at time- 7, and the
message will be received at procesat timet + n + A, andTimer,(s) will be reset at
t+n +A+40. Hence Timer,(s) will never expire on ang € R. After this,u will not
punishs (Line 21) again, and will not increasePunishys| due to a message from any

U € unstable n

The following observation derives from Lemma 14:
Observation 1 RC B.

Lemma 15 For every process g B, every process s R receives messages from p

infinitely often.

Proof: The proof is by contradiction. Assume tratloes not receive messages from
p infinitely often. Each timeTimer|p| expires, procesp is punished bys (Line 21).
Eventually, a newALIV E message sent kgwill be received byp and p will increase
Punishy[p] (Line 17). Since this happens infinitely ofte®unish,[p] is not bounded,

which is a contradiction with the fact thate B. [|

The following observation derives from Lemma 15:

Observation 2 There is a constand’ and a time 4 > t; after which every message
sent by pc B takes at most’ time to be received by every correct and unstable (if up)

process.

For the rest of the proof we will assume that any time instastlarger than time

to > tg, wheret; is a time instant that occurs afteunishy|q] > Punishy[p], Vq ¢ correct

86 Chapter 5. Omega in Crash-Recovery with Stable Storage

andvp € B, andincarnation, > Punishp[p], Yu € unstable This will eventually happen
becausePunishy[q] andincarnation, grow infinitely, and by definitiorPunishy[p] is
bounded. Note that during the initialization (Line Byinish,[u] is set toincarnation,,
soPunish[u] > Punishy|p].

Henceforthyarp, denotes the value of the local variabtar of p at timet.

Lemma 16 For every pair of correct processes p and q&B, there is a time after

which for every time t, Punigfp| > Punish,[p].

Proof: For p= q, the lemma is trivial. Now assumg# g. As p € B, by Lemma 15
every process € Rreceives messages fraoinfinitely often, and hence by rebroadcast
q will receive messages of typAI(IV E, p, Punish,) infinitely often. Lett > t, be any
time. There is a tim¢’ >t whenq receives ALIVE, p, Punislp) with Punishy[p] =

c, originally sent byp after timet, soc > Punisty [p]. Then at timet’, g sets its
Punishy[p] to ¢, and so we havePunishy[p] > Punish, [p]. The lemma now follows

sincePunishy[p] is monotonically nondecreasing. n

Lemma 17 For every correct process p:

(1) If Punishy[p] is bounded, then there exists a valugand a time after which for
every correct process g, Punigh| = V,.

(2) If Punishp[p] is not bounded, then for every correct process ¢, Pyhghs not
bounded.

Proof: Let p be a correct process.

(1) SupposeéPunishy[p] is bounded. Thus, by Lemma 16, for every correct process
q, there is a time& > t, after whichPunisky[p] > Punish, [p]. SincePunish,|[p]
is bounded and monotonically nondecreasing, there exisatuaVy, and a time
after whichPunishy[p] = V. Therefore, there exists a time after which, for every

correct procesg, Punishy[p] = Vp.

5.3. An Algorithm for Systengs 87

(2) SupposePunishp[p| is not bounded. Lemma 16 implies thatinishy[p] is also

not bounded.

Lemma 18 For every correct process p:

(1) If Punishy[p] is bounded, then there is a time after which for every unstpbbcess
u, Punish[p] =V, in at mostA’ 4+ n + 30 time after its initialization.

(2) If Punishy[p] is not bounded, then for every unstable process u, Pyipsis not
bounded.

Proof: Let p be a correct process.

(1) Supposéunishy[p] is bounded. Thus, by Lemma 17 there is a time after which
Punishy[p] = Vp. From Observation 2, every unstable processill receive (if
up) an alive message from every procpss B in at mostA’ + n time. Hence, at

mostA’ + n + 3o time after the initializationPunish[p] = V.

(2) SupposéPunishy[p] is not bounded. By definition every unstable processill
receive (if up) an alive message infinitely often from evenygessy € B, and will
updatePunishj[p] (Line 17). By Lemma 17, iPunisty[p] is not bounded, then

Punishy[p] is not bounded. Henc®unish,[p] is also unbounded.

The following observation derives from Lemma 17 and Lemma 18

Observation 3 There is a time't> t, after which every message sent by every process

q will contain Punis[p] =V, Vp € B.

88 Chapter 5. Omega in Crash-Recovery with Stable Storage

For the rest of the proof we will assume that any time instastlarger thart’ of

Observation 3.

Lemma 19 If process k is not correct then for every process (thereima after which

k will not be leadey.

Proof: As processk is not correct, there is a time> t, after which Punish[k] >
Punishy[p], andPunish,[k] > Punishy[p], for everyp € B. If g is correct, since even-
tually every message broadcast by every propaesmches timely every correct process
q, Punishy[k] > Punishy[k], and procesk will not be elected as leader any moreqlis
unstable, by definition will execute Line 11 infinitely often. By Lemma 18 there is a
time after whichPunishy[p] =V, andPunishyk] > Punishy[p] in at mostA’ + n + 30
time after the initialization. Hence, eventuallgadeg, # k will be permanently saved

in stable storage, and procdswill not be elected as leader any more. [|

Lemma 20 There exists a correct process | and a time after which, fergeorrect

process ¢, leadgr= .

Proof: Note thatB is not empty. By Lemma 17(1), for every procgss B, there is a
corresponding integ&f, and a time after which for every correct procgsBunishy[p| =
Vp, (forever). Letl denote the procegs< B with the smallest corresponding tuph,(
p). We now show that eventually every correct procgslectd as its leader (for-
ever). For any other procegs# |: (*) there is a time after whicliPunisky[p], p) >
(Punishy[l],1). This implies that eventually selectd as its leader, forever. To show (*)
holds, consider the following 3 possible casesp I§ not correct then, by Lemma 19,
eventuallyp will never be elected as leader (forever). Now suppose phit cor-
rect. If Punishy[p] is bounded, therp € B; so, by our selection of in B, eventu-

ally (Punishy[p] = Vp, p) > (Punishy[l] =W,I) forever. Finally, ifPunishy[p] is not

5.3. An Algorithm for Systengs 89

bounded, then, by Lemma 17(2), there is a time after wRishisky[p] > Punishy[l] =V
(becauséPunishy[p] is unbounded and monotonically nondecreasing). In allcé9e

holds. n

Lemma 21 There exists a correct process | and a time after which, fergunstable

process u, leadgr= 1.

Proof: By Lemma 18(1), for every procegsc B, there is a corresponding integéy
and a time after which for every unstable procas®unish[p] =Vp in &'+ 1 + 30
time after the initialization. By definitiony executes Line 11 infinitely often, sav-
ing leadey, in stable storage. Ldtdenote the process € B with the smallest corre-
sponding tuplgVp, p). We now show that eventually every unstable proeesslects

| as its leader (forever). For any other procesg I: (*) there is a time after which
(Punish[p], p) > (Punishy[l],1). This implies that eventually selectd as its leader,
writesleadeg, = | to stable storage (forever), and redeladeg, = | from stable storage
during the initialization. To show (*) holds, consider thaléwing 3 possible cases.
If pis not correct then, by Lemma 19, eventuaiywill never be elected as leader
(forever). Now suppose that is correct. IfPunishy[p] is bounded, themp € B; so,
eventually every ALIVE, z, Punish) message that receives after the initialization
will contain always(Punish[p] = Vp, p) > (Punishl] =V, I) forever. Since during the
initialization every counter is set to 0 excdpunishy[u] that is unbounded?unish[p]
will be set toPunish[p] and Punishj[l] to Punish|l] respectively (Line 17). By our
selection ofl in B, | will be chosen as leader and written in stable store at Line 11
Finally, if Punishy[p] is not bounded, then, by Lemma 18(2), there is a time afteclwhi
Punish[p] > Punishj[l] =V, (becaus®unish[p] is unbounded and monotonically non-

decreasing). In all cases (*) holds. [|

90 Chapter 5. Omega in Crash-Recovery with Stable Storage

Theorem 3 There is a time after which every process that is up, eithereco or un-
stable, always trusts the same correct process. Hence, lweitam in Figure 5.2

implements Omegga in system &

Proof: Follows directly from Lemma 20 and Lemma 21, and the commdimidien of

process made in both lemmas. [

5.4 An Algorithm for System &,

In this section, we propose an algorithm that impleméntsega,, in systemS,. In this
system, we weaken the assumptions in Section 5.2 by assumkmpwn membership.
As in S3, we assume that eventually all processes are reachablg fiova some correct

process.

5.4.1 Specific System Assumptions i,

The systeng; is similar toS; but instead of known membership,8) the membership
Is unknown, i.e. contrary to the algorithm in Figure 5.2, #igorithm of this section
does not require the membership of the system to be kragwviori by processes. Recall
that process identifiers are totally ordered, but need naobsecutive. Furthermore,
processes have no knowledge about the total number of mesesAlso, every un-
stable process will be able to write to stable storage igfipibften. As in the previous

section we have the following communication assumption:

(1) There is an eventually timely path from some correct ssdo every correct and

every unstable process.

5.4. An Algorithm for Systeng, 91

5.4.2 The Algorithm

We present in this section a third algorithm, adapted frobj, fBat implement®mega,»,
in system&;. Figure 5.3 presents the pseudocode executed by each prwhes it is
up. The algorithm is the collection of instances of this pseudocode, one for each
process in the system.

With this algorithm there is a time after which every up psx@ermanently has
leader, = I, beingl the least suspected process among those that eventualfguom
cate timely with the rest of the processes.

The algorithm works as follows. Processes send messagesdipally to show they
are alive. These messages are rebroadcast to attemptngadiprocesses. Each pro-
cessp maintains a seembership of pairs(q,v) (initially (p, incarnatiory)), where
g is a process thgh knows, andv > 0 is roughly the number of times thgthas been
“punished”. Every message sent pyontains this sevlembership.

When a procesgp receives a message frogq£ p for the first time, after rebroad-
casting it, for every pairr(—) € Membershig, p checks if ¢, —) ¢ Membershipg,
in which casep includes ¢, v) in Membership (beingv the value associated within
Membershig), created imery(r) andTimeoup[r], setsTimeoup|[r] to n +incarnatiory,
and resetJ imery(r). Otherwise, if {, —) € Membership, p updates the value asso-
ciated withr in Membership. After that, p resetsTimery(q) to Timeoup[q]. Then, if
(p, —) ¢ Membership, thenp punishes itself by incrementing its associated counter
in Membership. Finally, theupdateleader() procedure is called to chandeader,
if required. A proces® will hold in leader, its current leader, which is the process
whose pair ¢, v) in Membershig has the smallest valug using the process identifier
to break ties.

If Timery(q) expires before receiving a newl(IVE, g, Membershig) message,
then p increments the value associated witin Membership, increments the value

Timeoup[q], resetsTimery(q) to Timeoup[q], and callsupdateleader().

92 Chapter 5. Omega in Crash-Recovery with Stable Storage

Every process p executes the following

procedure updateleader()
(1) leader <« I suchthave (I,v) =min{V} € (q,V), V(q,V) € Membership
using identifiers to break ties

Initialization:

(2) incrementNCARNATION by 1 in stable storage

(3) incarnatiory + readINCARNAT ION from stable storage
(4) leader, + readLEADER, from stable storage

(5) Membership < {(p,incarnatiory)}

(6) starttasks1,2and3

Task 1:

(7) wait (n+incarnatior)

(8) writeleader, to stable storage

(9) loop forever

(20) broadcastALIVE, p, Membership)
(112) wait (7)

Task 2:

(12) upon reception ofmessageALIVE, g, Membershig) with g # p
for the first timedo

(13) broadcastALIVE, g, Membershig)

(14) V(r,—) € Membershig:

(15) if (r,—) ¢ Membership then

(16) Membershig <— Membershigu {(r,v)} : (r,v) € Membershig

(17) createl imery(r) andTimeoup|r]

(18) Timeoup[r] < n +incarnatiory

(29) reseflTimery(r) to Timeoup[r]

(20) else

(21) replace irMembership
(r,v) by (r, max{v,v'}) : (r,vV) € Membership

(22) end if

(23) resefTimery(q) to Timeoup[q]

(24) if (p,—) ¢ Membershigthen

(25) replace irMembership (p,v) by (p,v+1)

(26) end if

(27) updateleader()

Task 3:

(28) upon expiration of Timer,(q) do

(29) replace irMembership (q,v) by (,v+ 1)

(30) Timeoup[q] < Timeoup[q] + 1

(31) reseflTimery(q) to Timeoup[q]

(32) updateleader()

Figure 5.3: An algorithm implementin@mega;» in $.

5.4. An Algorithm for Systeng, 93

To avoid unstable processes from disturbing the leadeti@tecluring the initializa-
tion every procesp setsMembershig with the pair @, incarnatiory) (Line 5). Also,
in Task 1p waitsn +incarnatiory, units of time (Line 7) before start sending messages
(that includeMembership) periodically. This waiting ensures that eventually every
unstable procesg will only send messages witllembershig containing a pairl(v)
such that is a correct process amds smaller than the value associated with any other
(correct or unstable) process in the system.

As the algorithm in the previous section, we haverocesses sending messages
periodically, and the number of messages sent periodi¢aligry time) is O(n3).
From the point of view of links that carry messages periddictne cost isO(n?).

In the algorithm for the crash model in [80], an additional s@ndidateg, con-
taining the processes considered alive, is maintained byygwocess, andALIVE
messages include the €&andidateg instead oMembershig. Upon a suspicion on a
procesgy, p removesy from Candidateg and broadcasts an explieM_IV E message
to notify the suspicion. Again, our algorithm for the cragitovery model avoids the
explicit broadcast of messages to notify suspicions, reduthe message complexity

of the algorithm.

5.4.3 Correctness Proof

Regarding the correctness proof of this algorithm, it isseldo that of algorithm in
Figure 5.2 that is provided in Section 5.3.3. The main ddfees are the unknown
membership, which is addressed with a non-decreasing mehipeMembership,
dynamically created timers, and the punishment mecharisgnthe mechanism a pro-
cessp punishes itself (Lines 24-26) if it receives a message frgonogess that has
not received a message frgopand hence, it does not contginn Membership. This
is needed because otherwise a process whose messagesagelaktyand hence will

never be known by the rest of the processes could consi@dfrtite leader if it is not

94 Chapter 5. Omega in Crash-Recovery with Stable Storage

"punished”.

Theorem 4 There is a time after which every process that is up, eithereco or un-
stable, always trusts the same correct process. Hence, Iweitam in Figure 5.3

implements Omegg in system &

Chapter 6

Communication-Efficient Omega

Algorithms

Contents
6.1 Introduction 96
6.2 Communication Efficiency Definitions 97
6.3 AnAlgorithmforSystemS., 98
6.4 AnAlgorithmforSystemS. 105
6.5 AnAlgorithmforSystemS;. 115
6.6 Relaxing Communication Reliability and Synchrony 122

95

96 Chapter 6. Communication-Efficient Omega Algorithms

6.1 Introduction

In the algorithms presented in Chapters 4 and 5 every alivegss resends messages
to the rest of the processes. This is due to the fact that thesmbivity assumptions are
very weak (they rely on eventually timely and fair lossy gthnd hence the resending
of messages is mandatory. Consequently, the cost of thgegthains is high in terms
of the number of messages exchanged.

It would be desirable to have algorithms for Omega in whicanguvally only one
process, the leader, sends messages periodically to thefrdse processes. In the
system models in this dissertation, this is the minimal m@goent in the number of
processes that send messages periodically. Roughly sigedke only proof we have
that a process is not down permanently is the fact that atdessother process receives
periodic messages from it. This thought is very significarthie crash model because
processes that communicate permanently and periodic#ltyother process are cor-
rect. In the crash-recovery model, we will need additionathanisms to distinguish
between correct and unstable processes.

In this chapter, we first define the concepts of communicafticiency and near-
efficiency in the crash-recovery model in relation to the Qenfailure detector. These
are respectively related to the fact that eventually eitimdy one process or correct pro-
cess sends messages forever. Then we propose three aiggttiidt implement Omega
efficiently. Specifically:

(1) A communication-efficient Omega algorithm in syst8&mwhere processes have
access to stable storage.

(2) A near-communication-efficient Omega algorithm in atsygsSs;, where pro-
cesses do not have access to stable storage.

(3) A communication-efficient Omega algorithm in syst&mwhere there is no ac-
cess to stable storage, and which relies on nondecreasialgclocks.

Recall that depending on whether or not stable storage @ tiseproperties that the

6.2. Communication Efficiency Definitions 97

algorithms can satisfy varies. When stable storage is usetiable processes can agree
with correct processes by reading the identity of the ledien stable storage upon
recovery. However, when stable storage is not used ungtadidesses must “learn” the
identity of the leader from other process(es) upon recovery desirable for a process
to be aware of being in this learning period; e.g. to be ableftarm an application
querying the identity of the leader about this fact. In tlegard, for systeng we also
propose an adaptation of the near-communication-effiakgyarithm that provides this
capability of instability awareness and hence allows thglé@mentation oDmega,1.

The rest of the chapter is organized as follows. In Secti@n we give the defi-
nitions of communication efficiency and near-efficiency fioe Omega failure detec-
tor in crash-recovery systems. Section 6.3 presents sySjeand a communication-
efficient algorithm implementin@mega;> which uses stable storage. Sections 6.4
and 6.5 present systerfs andS; in which we implement, without using stable stor-
age, a near-communication-efficient algorithm implenren@®@mega(Property 2) and
a communication-efficient algorithm implementi@ynega,1, respectively. Finally, in
Section 6.6 we discuss the relaxation of the communicagtiability and synchrony

assumptions.

6.2 Communication Efficiency Definitions

The system considered in this section is the general systetels presented in Chap-
ter 3. We now define the concepts of communication-efficiedtreear-communication-

efficient implementations of the Omega failure detectorash-recovery models.

Definition 1 An algorithm implementing the Omega failure detector indteesh-recove-
ry failure model is communication-efficient if there is agiafter which only one process

sends messages forever.

98 Chapter 6. Communication-Efficient Omega Algorithms

Definition 2 An algorithm implementing the Omega failure detector indteesh-recove-
ry failure model is near-communication-efficient if theseai time after which, among

correct processes, onIy one sends messages forever.

Intuitively, since the (correct) leader process in an Onagarithm must send mes-
sages forever in order to continue being trusted by the redteoprocesses, we can
derive that a communication-efficient Omega algorithm salear-communication-
efficient. The difference between both definitions is thakimear-communication-
efficient Omega algorithm unstable processes can send gess&arever, as well as
the leader.

In the following sections, we propose two communicatiofieefnt Omega algo-

rithms and a near-communication-efficient Omega algorithm

6.3 An Algorithm for System S

In this section, we present a communication-efficient algorimplementindomega;»

in systemSs.

6.3.1 Specific System Assumptions ifs

The systentss corresponds to the general system mdgjedefined in Chapter 3, with
some additional assumptions.

In systemS; we have the following communication assumption:

1) For every correct procegsthere is an eventually timely link fronp to every

correct and every unstable process.

Note that the rest of the links i%;, i.e. the links from/to eventually down processes

and the links from unstable processes, can be lossy asyraiso

6.3. An Algorithm for Systengs 99

As in Chapter 5, every process has access to stable storkgeustable processes
will write to stable storage infinitely often. Figure 6.1 pedits a scenario of a system

composed of five processes that meet the assumptions m&gle in

O Eventually up Q @

O Unstable

P4
Eventually down /

—_—
Eventually timely

Figure 6.1: Scenario 8: three eventually up, one eventdalyn, one unstable.

6.3.2 The Algorithm

In this section we present a distributed algorithm that ementsOmega;» in system

S. Figure 6.2 presents the pseudocode executed by each pwhes it is up. The
algorithm is the collection afi instances of this pseudocode, one for each process in the
system.

The process chosen as leader by a propess. trusted byp, is held in the variable
leader,. Every proces$ uses stable storage to keep the value of two local variables:
leader,, initially set to p; and an incarnation numbércarnatiory, initially set to O,
which is incremented during initialization and every timeecovers from a crash. Both
incarnation, andleader, are read from stable storage pyluring initialization. Every
proces also has £andidateg set containing the processes from whjzwill choose
leader, (initialized to {p,leader}). In addition, p has a time-ouT imeoup[q] with
respect to every other procesgéinitially set ton +incarnatiory,, wheren is a constant
value), and eRecovereg vector to count the number of times that each process has

recovered (initially set to O for every other process anmhoarnatior, for p itself).

100 Chapter 6. Communication-Efficient Omega Algorithms

Every process p executes the following

procedure updateleadel)
eader, <+ process irCandidateg with smallest associated counterRecovere
1) leader, rCandidateg with llest ted teRe
using identifiers to break ties

Initialization:

(2) incrementNCARNATION by 1 in stable storage
(3) incarnatiory + readINCARNAT ION from stable storage
(4) leader, + readLEADER, from stable storage

(5) Candidateg+« {p,leadep}

(6) for all ge N exceptp:

(7 Timeoup[qg] < n +incarnation,

(8 Recovereglq] < 0

(9) Recoveregdp| + incarnatiory

(10) if leaden, # p then

(11) reseflimery(leaden,) to Timeoup[leaden)
(12) endif

(13) starttasks1,2and 3

Task 1:

(14) wait (7 + incarnatiory) time units
(15) writeleader, to stable storage
(16) repeat forever everyn time units

a7 if leader, = pthen

(18) send (EADER p, Recovereg) to all processes except
(29) end if

Task 2:

(20) upon reception ofmessagel(EADER g, Recovereg) do
(21) for allr e M:

(22) Recovereglr] <— max{Recoveregr|, Recovereglr]}
(23) if g ¢ Candidateg then

(24) Candidateg < CandidategU {q}

(25) end if

(26) updateleadel()

(27) reseflTimery(q) to Timeoup[q]

Task 3:

(28) upon expiration of Timery(q) do
(29) Timeoup[q] + Timeoup[q] + 1
(30) Candidateg « Candidateg— {q}
(31) updateleadel()

Figure 6.2: A communication-efficie@mega,» algorithm inSs.

6.3. An Algorithm for Systengs 101

The algorithm works as follows. After the initializatiori,grocessp does not trust
itself, it resets a timer with respect teader,. After that, p starts the three tasks of the
algorithm. In Task 1p first waits forn + incarnation, time units, after which it writes
leader, to stable storage. Then, evepytime unitsp checks if it trusts itself, in which
casep sends d EADERmessage containingecovereg to the rest of the processes.
Task 2 is activated wheneverreceives d EADERmMessage from another process
(note that this task is active durings waiting in Task 1):p updatesRecovereg with
Recoveregl taking the highest value for each component of the vectdterAhat, p
includesq in Candidateg, calls the procedurapdateleader() and reset3 imery(q).

In the procedurepdateleader), leader, is set to the process (Dandidateg with the
smallest associated counterR@covereg using the processes’ identifiers to brake ties.
In Task 3, which is activated whenevéimer,(q) expires,p incrementsTimeoup|q],

removeg) from Candidateg and callsupdateleader).

As we will show, with this algorithm eventually every cortgrocess always trusts
the same correct proceés Consequently, by Task 1 eventually only one correct pro-
cess sends messages forever; i.e. the algorithm is at legstammunication-efficient.
With regard to the behaviour of unstable processes, theimngitction followed by the
writing of leader, to stable storage at the beginning of Task 1 ensure that uaignt
p will definitely write ¢ to stable storage. Recall that, as in Chapter 5, the algorith
relies on the assumption that every unstable process istabigite leader, to sta-
ble storage infinitely often. From this point on, wheneparecovers it will initialize
leader, to . Moreover, the initializations of imeoup[¢] to n + incarnatiory, and of
Recovereg|p| to incarnatiory prevent unstable processes from disturbing the leader
election, because they ensure that eventually: (1) evestable procesg will never
suspect the leadér(sincep’s time-out with respect td keeps increasing forever and
hence eventuallifrimery(¢) will never expire); and (2) every unstable procgswill

never be elected as the leader in thedateleader() procedure, sincéncarnation,

102 Chapter 6. Communication-Efficient Omega Algorithms

and hencérecovereg p|, keeps increasing forever).

Finally, observe that every process only writeader, to stable storage once every
time it starts executing the algorithm; hence, the numbevraings in stable storage is
very low.

With regard to the cost of the algorithm in Figure 6.2, thevallym is communication-
efficient. Eventually only the leader sends messages peailbdto the rest of the pro-
cesses, which implie®(n) messages. Furthermore, in the worst case @gly) links

carry messages forever.

6.3.3 Correctness Proof

We show now that the algorithm in Figure 6.2 implemedtaegg,» in systemSs, and

that it is communication-efficient.

Lemma 22 Any message (LEADER, p, Recovgjed < I, eventually disappears

from the system.

Proof: A messagen cannot remain forever in a link, since it remains at n@S{r+ o
time in an eventually timely link, and is lost or eventualgceived in a lossy asyn-
chronous link. Alsomcannot remain forever in the destination process, sinceesses

are assumed to be synchronous. Hentwjjll eventually disappear from the system.

For the rest of the proof we will assume that any time instégtarger thart; > t,

where:

(1) to is a time instant that occurs after the global stabilizatiore GST (i.e. tg >
GST), and after every eventually down process has definitelshad, every cor-
rect (i.e. eventually up) process has definitely recoveanad,every unstable pro-
cess has an incarnation value bigger than any correct maoes/u € unstable

Vp € correct incarnation, > incarnatiory,

6.3. An Algorithm for Systengs 103

(2) andt; is a time instant such that all messages sent bdfohave disappeared
from the system (this eventually happens from Lemma 22). aigular, this
includes (a) all messages sent by eventually down proce@®eall messages
sent by correct processes before recovering definitely(@ndll messages sent
by every unstable processwith Recovereglu] = incarnation, < incarnatiory,
for every correct procegs This eventually happens, since by definition unstable
processes crash and recover an infinite number of timesg wbitect processes

crash and recover a finite number of times.

Let be/ the correct process with the smallest value forinisarnatiory variable,
I.e. the correct process that crashes and recovers thdifeast If two or more correct
processes have the same final value for thregarnationvariables, then let be the
process with the smallest identifier among them. We will shbat eventually and

permanently, for every correct and every unstable propegesader, = /.
Lemma 23 Eventually and permanently, leadet /.

Proof: By the algorithm, the only way for procegsto have as leader another pro-
cessq is by receiving a messageEADER ¢, Recovereg) such thaRecovereglq] <
Recovereg/]. However, it is simple to see that such a scenario cannoteémygince
for all messages sent by to ¢ aftert, either (1) Recovereglq] = incarnatiory >
incarnationy = Recovereg/], or (2) Recovereglq] = incarnatiory = incarnatiory =
Recoveregd/(] andqg > ¢. Henceleadey, is permanently set téin theupdateleader()
procedure. As a result, eventually and permanently pratesssiders itself the leader,

i.e.leader = /.]

Lemma 24 Eventually and permanently, proceswill periodically send a (LEADER,

¢, Recovereg message to the rest of the processes.

104 Chapter 6. Communication-Efficient Omega Algorithms

Proof: Follows directly from Lemma 23 and Task 1 of the algorithm. |

Lemma 25 Eventually and permanently, for every correct process p,

leader, = /.

Proof: Follows from Lemma 23 for process Let be any other correct proceps
By Lemma 23 and Task 1 of the algorithrwill periodically send a (EADER /¢,
Recovereg message to the rest of the processes, inclugindBy the fact that the
communication link betweehand p is eventually timely, by Task p will receive the
message in at mosttime units, settinjeader, to £ in theupdateleader() procedure,
and resetting imery(¢) to Timeoup[¢]. Observe thal imer,(¢) can expire a finite num-
ber of times, since by Task 3 every time it expifgscrementsTimeoup[¢]. Hence,
eventually by Task 2 will receive a LEADER ¢, Recovereg message from period-
ically and timely, i.e, beford imer,(¢) expires. After this happeng, will not change

leader, to a value different frond any more. m

Lemma 26 Eventually and permanently, every correct process4will not send mes-

sages any more.

Proof: Follows directly from Lemma 25 and the algorithm. [|

Lemma 27 Eventually, every unstable process u will not send messagesiore, and

leaderg, will be ¢ forever.

Proof: By Lemma 23 and Task 1 of the algorithfwill periodically send allEADER
¢, Recoveregd message to the rest of the processes, includindBy the facts that

(1) the communication link betweeghandu is eventually timely, and (2 waits n +

6.4. An Algorithm for Systengs 105

incarnation, time units at the beginning of Task 1, eventually by Tasknll always re-
ceive a LEADER /, Recovereg message from before the end of the waiting instruc-
tion of Task 1. Upon reception of that message, and sinceseatl/Recoveregd/(| <
Recovereglu] at process at that instanty adopts? as its leader. Additionally, by the
fact thatu initializes Timeoug[¢] to n + incarnation,, eventuallyT imer,(¢) will not ex-
pire any more. Also, at the end of the wait of Taskulwill write ¢ to stable storage.
After this happensy will not send messages any more, and the valleadeg, will be

¢ forever, since upon recovewywill read ¢ as its leader from stable storage. [|

Theorem 5 There is a time after which every process that is up, eitherecb or un-
stable, always trusts the same correct process. The alguorih Figure 6.2 implements

Omega,; in system §

Proof: Follows directly from Lemmas 23, 25 and 27. []

Theorem 6 The algorithm in Figure 6.2 is communication-efficient.

Proof: Follows directly from Lemmas 24, 26 and 27. [|

6.4 An Algorithm for System &

In this section we present a near-communication-efficiemglémentation ofOmega
(satisfying Property 2) in systef®, which assumes that processes do not have access
to any form of stable storage. Remember that when a procaskes all its variables

lose their values.

106 Chapter 6. Communication-Efficient Omega Algorithms

6.4.1 Specific System Assumptions i§;

The systentsy; corresponds to the general system md§jadefined in Chapter 3, with
some additional assumptions.

The systeng; makes the following communication assumptions:

1) For every correct procegsthere is an eventually timely link fromp to every

correct and every unstable process.

2) For every unstable processthere is a fair lossy link frormu to every correct

process.

The rest of the links ir5;, i.e. the links from/to eventually down processes and
the links between unstable processes, can be lossy asyoctsioFigure 6.3 presents a

scenario which satisfies the assumptions mad.in

O Eventually up

O Unstable

Eventually down

Eventually timely Fair lossy

Figure 6.3: Scenario 9: three eventually up, one eventdalyn, one unstable.

6.4.2 The Algorithm

In this section we present an algorithm that implements Gniregystents. Figure 6.4
presents the pseudocode executed by each process whep.itTe algorithm is the

collection ofninstances of this pseudocode, one for each process in ttearsys

6.4. An Algorithm for Systengs 107

Contrary to the previous algorithm, where the varidblder, was initialized from
stable storagdeader, is now initialized top, as well as the s&andidateg. In addi-
tion, since processes do not have an incarnation countéaltesstorageT imeoup|q]
is initialized ton for every other procesg andRecovereglp| is initialized to 1.

The algorithm works as follows. During initialization angan recoveryp sends a
RECOV EREDmessage to the rest of the processes in order to inform thainit thas
recovered. After thatp starts the three tasks of the algorithm. In Task 1, which i pe
odically activated every) time units, if p trusts itself then it sendsl&E ADERmessage
containingRecovereg to the rest of the processes. Task 2 is activated whenexer
ceives either RECOV EREDnessage or READERmessage from another procegs
If preceives RECOV EREDmessage frong, p incrementRecovereg(q]. However,
if p receives 4 EADERmessage frong, p updateRecovereg with Recovereglas in
the previous algorithm (i.e. taking the highest value farreeomponent of the vector),
as well as updating its time-out with respectitfT imeoup[d]), taking the higher value
between its current value and thatRécovereg[p]. Thenp includesq in Candidates,
calls the procedurapdateleader() and reset3 imery(q). Task 3 remains identical to
that of the previous algorithm: wheneveimer,(q) expires,p incrementsT imeoup[q],
removeg) from Candidateg and callsupdateleader().

With regard to the cost of the algorithm, eventually only @oerect process, the
leader, sends messages periodically to the rest of the ggeseHowever, in the worst
case the rest of the processes in the system can be unstdibeegircould send infinitely
often RECOV ERE Dmessages, which implies that the cost of the algorith@(is?)

messages. Also, in the worst caB@?) links carry messages forever.

6.4.3 Correctness Proof

We show now that the algorithm in Figure 6.4 implemedisega Property 2) in system

S and that it is near-communication-efficient.

108 Chapter 6. Communication-Efficient Omega Algorithms

Every process p executes the following

procedure updateleadel)
(1) leader, + processirCandidateg with smallest associated counterRecovereg,
using identifiers to break ties

Initialization:

(2) leadep+p

(3) Candidateg+«+ {p}

(4) for all g€ exceptp:

(5) Timeoup[g] < n

(6) Recovereglq] < 0

(7) Recovereglp] + 1

(8) send RECOVEREDp)to all processes except
(9) starttasks1,2and3

Task 1:

(10) repeat forever everyn time units

(12) if leader, = pthen

(12) send (EADER p, Recovereg) to all processes except
(13) end if

Task 2:

(14) upon reception ofmessageRECOV EREDQ)
or messagel(EADER g, Recovereg) do

(15) if message is of typRECOV EREDhen

(16) Recovereglq] < Recovereglq] + 1

a7 else

(18) forallr e M:

(19) Recovereglr] <— max{Recoveregr|, Recovereglr]}
(20) Timeoup[q] <— max{ Timeoup[q], Recoveregp|}
(21) end if

(22) if g ¢ Candidateg then

(23) Candidateg < CandidategU {q}

(24) end if

(25) updateleadel()

(26) reseflTimery(q) to Timeoup[q]

Task 3:

(27) upon expiration of Timery(q) do
(28) Timeoup[q] + Timeoup[q] + 1
(29) Candidateg « Candidateg— {q}
(30) updateleadel()

Figure 6.4: A near-communication-efficiebimegaalgorithm inSs.

6.4. An Algorithm for Systengs 109

Lemma 28 Any message m eventually disappears from the system.

Proof: A messagen cannot remain forever in a link, since it remains at m@Sfr+ o
time in an eventually timely link, and is lost or eventualgceived in a fair lossy link
or a lossy asynchronous link. Alsm cannot remain forever in the destination process,
since processes are assumed to be synchronous. Han#, eventually disappear

from the system. [|

For the rest of the proof we will assume that any time instaotcurs after the
global stabilization time&sST (i.e. t > GST), and after every eventually down process
has definitely crashed and disappeared forever from tHeassetidateof every correct
and every unstable process, and every correct (i.e. eubnigpa process has definitely
recovered, and aRECOV EREDmessages sent by correct processes have disappeared
from the system. This eventually happens, since by definigéieery correct process
completes the initialization of the algorithm a finite numbgtimes, anRECOVERED

messages are only send during initialization.

Observation 4 Vp,q € correct: Recoveregq] is bounded by the number of RECOV-

ERED messages g has sent to p.
Lemma 29 Eventually, no correct process will choose an unstable@ssa@s its leader.

Proof: Let pandu be any correct process and any unstable process, respecIivere

are two cases to consider:

a) Processl sends an infinite number ®ECOV EREDmessages tp. Since the
communication link fronu to pis fair lossy,p will receive an infinite number of
RECOV EREDnessages frora. So, eventuallfRecovereg{u] > Recovereglp]
permanently, since by the algorithRecovereg|p| is finite. After that,p will

not chooseu as its leader in thepdateleader) procedure any more, because

110 Chapter 6. Communication-Efficient Omega Algorithms

p € Candidateg permanently, angb is a better candidate thanto become the

leader.

b) Processi sends a finite number ®ECOV ERE Dnessages tp. Since the com-
munication link fromu to p is fair lossy, this means that eventuallydoes not
reach any more the instruction that sendsRiEeECOV ERE Dnessage t@. Con-
sequentlyu will eventually disappear forever from the seandidateg. After
that, p will not chooseu as its leader in thepdateleader() procedure any more,

becausel ¢ Candidateg permanently.

Henceforth, we will consider that any time instaht> t occurs after Lemma 29

holds.

Lemma 30 Eventually, at least one correct process p permanently has

leader, = p.

Proof: By timet’, eventually down processes are not in the@endidatesof any
alive process in the system. And by Lemma 29, no correct pgocbooses an unsta-
ble process as its leader. Hence at every correct prquesgherleader, = p and

the lemma holds, oleader, = g, with g € correct If p receivesLEADER mes-
sages periodically from any procegssuch thatRecovereglq] < Recovereg[p] or
Recovereglq] = Recovereg[p] andqg < p, p will maintainleader, set to the process
with the minimumRecoveregqg] and the lemma holds, because this implessieg = g

atg. On the other hand, if procegsdoes not receive such messages periodically or re-
ceives no messages at all, thewill be the process in Candidateg with the minimum

Recovereglr], and by the algorithm eventuallgader, = p and the lemma holds. =

6.4. An Algorithm for Systengs 111

From the previous, we have that eventually at least one cioprecess such that
leader, = p, will send periodically & EADERmessage to the rest of the processes by
Task 1 of the algorithm. Lef be the set of correct processes which have sSEADER
messages to the rest of the processes after ttim#enceforth, we will consider that
any time instant” > t’ occurs after Lemma 30 holds, and after the timer on any correc
process not ik (if any) has expired at every correct process.

Let Recovereg be the value oRecoveregat timet.

Lemma 31 Eventually,vp,r € correct,vq € K,

Recovereg|r] «+— max Recovereg [r|, Recovereg[r]}.

Proof: The only messages that procgsseceives from correct processes after time
are theLEADERmessages from the processeKinrhe lemma holds directly from the

way Recovereglis updated in Task 2 of the algorithm. [|

Lemma 32 EventuallyvYp,q,r € correct,3¢ € K,

Recoveregl p] = Recoveregdp|, and hence leadgr= leadef = leadey = /.

Proof: By Lemma 31 we know thatq € correct some correct procegsc K will be
the process ilCandidateg with the smallest associated counteiRacoveregl Every
time Timery(¢) expires, by Task Jimeoug[¢] is incremented. Since the link frofito
qis eventually timely, eventualljimerg(¢) will not expire any more, andwill remain

as the leader. n

Theorem 7 There is a time after which every correct process alwayst$rtlee same
correct process. Hence, the algorithm in Figure 6.4 implete®©mega (satisfies Prop-

erty 2) in system&§

112 Chapter 6. Communication-Efficient Omega Algorithms

Proof: Follows directly from Lemma 32. |

Theorem 8 The algorithm in Figure 6.4 is near-communication-effitietnere is a

time after which, among correct processes, diggnds messages forever.

Proof: Follows directly from Lemma 32 and Task 1 of the algorithm. |

6.4.4 Providing Instability Awareness

Observe that in the algorithm in Figure 6.4, eventually gwerstable process initially
trusts itself and it could trust other (necessarily unsgtpplocesses before trusting the
leader/. Hence, unstable processes could disagree with correcegges and also
with each other at any time. Since this is undesirable, &.gould make a round fail
when solving Consensus, we propose an adaptation of thatalgdhat avoids this by
ensuring that unstable processes do not trust any procéisshey trust the leadef
(implementingOmega;1).

Figure 6.5 presents in detail the adaptation, which worksystemS with the ad-
ditional assumption that a majority of processes in theesysire correct. It consists
of three additional tasks, which are startedggoncurrently with the rest of the tasks
shown in Figure 6.4. In addition, the varialbéader, is now initialized to thel value,
indicating that no process is trusted pyust after recovery.

The adaptation works as follows. In Task A, procgsperiodically checks if it
does not trust any process, in which cgseends a&PING message to the rest of the
processes, asking for their collaboration in order tolsatler, properly. Task B is
activated whenevep receives @PING message from another processp replies to
q with a PONG message that includd3ecovereg and leader,. Finally, Task C is

activated whenevep receives 8PONG message from another procegsif p does

6.4. An Algorithm for Systengs 113

not trust any process yet, thgnupdatesRecovereg with Recoveregl as usual, and
includesq andleadeg in Candidateg. After that, if p has received so far BONG
message from3 | different processes, then it calls thpdateleader() procedure and
resets a properly initialized timer on every processCandidateg. The check of the
reception of aPONG message fronj 5| different processes is also made inside the
updateleader) procedure in order to keep Tasks 2 and 3 of the adapted digorit
identical to those in Figure 6.4.

Observe that the proposed adaptation does not disturb theigence of correct
processes on a common correct leadewxhich is carried out almost exactly as in the
basic algorithm in Figure 6.4. The only difference is théiatidelay until every correct
process receivesRONGmessage from5 | different processes, which is ensured by the
existence of a majority of correct processes in the systeranttally every correct pro-
cessp stops sending?ING messages and, consequenpiglso stops receivinfONG
messages. On the other hand, every unstable process withgesendind®ING mes-
sages after recovery. These messages can be receiveddst em unstable processes,
which will reply with the correspondinBONGmessages.

With this adapted algorithm, eventually every unstablepsau will have inleadeg;,
either L, which indicates thati has not receive@ ONG messages from3 | different
processes yet, or the common correct leddéntuitively, after the reception ®ONG
messages from3] different processes) will have (1) RecovereglandCandidateg
such that is chosen as leader, and @)meoug[¢] such thall imer,(¢) will never expire.
After that, process will keep ¢ as its leader until crashes.

From the previous reasoning, we have the following theorem:

Theorem 9 There is a time after which (1) every correct process alwaysts the same
correct proces¥, and (2) every unstable process, when up, always trustsreithor
£. Hence, the algorithm in Figure 6.5 implements Omegan system § assuming a

majority of correct processes.

114 Chapter 6. Communication-Efficient Omega Algorithms

Every process p executes the following

procedure updateleadel)

(1) if phasreceived so fa&# ONGfrom | 3| different processethen

(2) leader, < process irCandidateg with smallest associated counter
in Recovereg, using identifiers to break ties

(3) endif

Initialization:

(4) leadep<+ L

(5) Candidateg+« {p}

(6) for all ge N exceptp:

(7 Timeoup[g] < n

(8 Recovereglq] < 0

(9) Recovereglp] + 1

(10) sendRECOVEREDp) to all processes except
(11) starttasksA,B,C,1,2and3

Task A:

(12) repeat forever everyn time units

(13) if leader, = L then

(14) send PING, p) to all processes except

(15) end if

Task B:

(16) upon reception ofmessageRING, q) do

a7 send PONG p, Recovereg leader,) toq

Task C:

(18) upon reception ofmessageRONG g, Recoveregl leadeg) do
(29) if leader, = L then

(20) forallr € M:

(21) Recovereglr] <— max{Recovereglr|, Recovereglr|}
(22) if g ¢ Candidateg then

(23) Candidateg < CandidategU {q}

(24) end if

(25) if leadeg # L and leadeg ¢ Candidateg then

(26) Candidateg < CandidategU {leadeg}

27) end if

(28) if p has received so fdfONGfrom | | different processethen
(29) updateleadex)

(30) for all r € Candidateg exceptp:

(31) Timeoup[r] «— max{Timeoup[r], Recovereg[p|}
(32) resefTimery(r) to Timeoup[r]

(33) end if

(34) end if

Task 1, Task 2 and Task 3:
(35) /I same as Task 1, Task 2 and Task 3 in Figure 6.4

Figure 6.5: An algorithm implementin@mega,1 in extendedss.

6.5. An Algorithm for Systens; 115

Finally, note that the algorithm in Figure 6.5 is not neamoounication-efficient,
since correct processes different from the leader $8DN Gmessages forever. In the
worst case, almost half of the processes in the system atehlesand they crash and
recover very often. Therefore, the cost of the algorithnmftbe point of view of mes-
sages exchanged periodically@$n?). Also, in the worst cas®(n?) links carry mes-

sages forever.

6.5 An Algorithm for System &

In this section we present the syst&n in which we give a communication-efficient
implementation 0fOmega,; that does not rely on the use of stable storage but on a
nondecreasing local clock associated with each procesth tis algorithm, correct
processes, i.e. those that eventually remain up forevérewvéntually and permanently
agree on the same correct prockeddgoreover, eventuallly/will be the only process that
keeps sending messages to the rest of the processes.

With regard to unstable processes, since stable storagéused they must “learn”
from other process(es) — actually frdm the identity of the leader upon recovery. In
this regard, we make unstable processes do not trust anggzrapon recovery, i.e. they
hold a special value_, until either they trust the leader or crash. In other wotts,

algorithm implement®mega;;.

6.5.1 Specific System Assumptions i§;

The systents; corresponds to the general system mdgjedefined in Chapter 3, with
some additional assumptions. First of all we recall thahgarcess has access to a
nondecreasing local clock that can measure time intervidlsam unknown bounded

drift. We assume that clocks continue running despite m®ceashes.

116 Chapter 6. Communication-Efficient Omega Algorithms

Regarding communication requirements, systénmakes the following assump-

tion:

1) For every correct procegs there is an eventually timely link frorp to every

correct and every unstable process.

The rest of the links irg;, i.e. the links from/to eventually down processes and the

links from unstable processes, can be lossy asynchronous.

6.5.2 The Algorithm

In this section we present a communication-efficient atbariimplementinddmega;1
in systemS;, where processes do not have access to stable storagee Bigupresents
the pseudocode executed by each process when it is up. Toréttadgis the collection
of ninstances of this pseudocode, one for each process in ttasys

The process chosen as leader by a propess. trusted byp, is held in the variable
leader, which is initialized to the special value, indicating that no process is trusted
by p yet. Every procesp also has & imeoup, variable used to set a timer with respect
to its current leader, initialized to the value of the lodalok, returned by the function
clock(), as well as two timestamps, denotedtby andtsmin, initialized toclock() and
tsp respectively.

The algorithm, which is composed of three concurrent talsasdre started at the
end of the initialization, works as follows. In Task A first waitsTimeoup time units,
after which ifp still has no leader, i.deader, = L, thenp setdeader, to p. Otherwise,

p resetsTimer, to Timeoup, in order to monitor its current leader. Thep.enters a

permanent loop in which everytime units it checks if it is the leader, i.eeadef, = p,

in which casep sends al(EADER p, tsy) message to the rest of the processes.
Task 2 is activated wheneverreceives al(EADER g, tsy) message from another

process). Observe that this task is active duripg waiting instruction of Task 1. The

6.5. An Algorithm for Systeng;

117

Every process p executes the following

Initialization:

(1) leadep+ L

(2) Timeoup < clock()
(3) tsp<clock()

(4) tsmin<tsp

(5) starttasks1,2and3

Task 1:
(6) wait (Timeoup) time units
(7) ifleader = L then

(8 leadep < p

(9) else

(10) resefl imer, to Timeoup,

(11) endif

(12) repeat forever everyn time units

(13) if leadef, = pthen

(14) send (EADER p, tsp) to all processes except
(15) end if

Task 2:

(16) upon reception of(LEADER g, ts;) do
A7) i (tsg < tsmin)

or [(tsg = tsmin) and (eader, = L) and @ < p)]
or [(tsq = tsmin) and (eader, # L) and @ < leadep,)] then

(18) leader, +—q

(19) tSmin < tSq

(20) resefl imer, to Timeoup,
(21) end if

Task 3:

(22) upon expiration of Timer, do
(23) Timeoup < Timeoup + 1
(24) leadep < p

(25) tSmin < tSp

Figure 6.6: A communication-efficie@megg,; algorithm inS;.

118 Chapter 6. Communication-Efficient Omega Algorithms

received message is taken into account if eithert¢d < tsmin, i.€. g has recovered
earlier thanp’s current leader, (2)t§q = tsmin) and(leader, = L) and @ < p), i.e. p
has no leader yet arglis a good candidate, or (3)s§ = tsmin) and (eader, # 1) and
(g < leadep), i.e. g is a better candidate thdeader, (or q = leader). In all these
casesp adoptsq as its current leader, settingader, to g andtsmin to tsy, and resets

Timer, to Timeoup.

In Task 3, which is activated whenevéimer, expires, p “suspects” its current
leader: it increment$imeoup, in order to avoid premature erroneous suspicions in the

future, and considers itself as the new leader, setéader, to p andtsmin to tsp.

With this algorithm, the elected leademill be the “oldest” correct process, i.e.
the process that first recovers definitely (using the proabsstifiers to break ties).
Hence, eventually every correct process will permanemtigti. Consequently, by

Task 1 eventually only one correct process will keep sendiegsages.

Concerning the behaviour of unstable processes, the waitstruction at the begin-
ning of Task 1 guarantees that, eventually and permanemtstable processes always
receive a firstlEADER I, tg) message frorh before the end of the waiting, changing
their leader fromL to | by Task 2. Moreover, the initialization dfimeoup, to clock()
prevents unstable processes from disturbing the leadeti@iebecause it ensures that
eventually every unstable proceassvill never suspect the leadér(sinceu’s time-out
with respect keeps increasing forever, and hence eventualiyer, will never expire).
By the previous, the algorithm is communication-efficiem, eventually only one pro-

cess (the elected leadgrkeeps sending messages forever.

With regard to the cost of the algorithm we have that evefyoally the leader sends
messages periodically to the rest of the processes, whigleis©(n) messages. Also,

in the worst case onl@(n) links carry messages forever.

6.5. An Algorithm for Systens; 119

6.5.3 Correctness Proof

We show now that the algorithm in Figure 6.6 impleme@taega,; in systemS; and

that it is communication-efficient.

Lemma 33 Any message (LEADER, p,pJsp € I, eventually disappears from the

system.

Proof: A messagen cannot remain forever in a link, since it remains at m@Sfr+ o
time in an eventually timely link, and is lost or eventualgceived in a lossy asyn-
chronous link. Alsomcannot remain forever in the destination process, SinCeegEes
are assumed to be synchronous. Then, the destination predesventually by Task 2
either takeminto account or drop it. Hencey will eventually disappear from the sys-

tem. -

For the rest of the proof we will assume that any time instastarger thart; > to,

where:

(1) to is a time instant that occurs after the stabilization tiG®T (i.e. to > GST),
and after every eventually down process has definitely exhstvery correct (i.e.
eventually up) process has definitely recovered, and evestable process has
a clock value bigger thatsy for every correct procesp, i.e. Vu € unstable

Vp € correct tsy > tsp,

(2) andty is a time instant such that all messages sent bdfohave disappeared
from the system (this eventually happens from Lemma 33). aiqular, this
includes (a) all messages sent by eventually down proce@®eall messages
sent by correct processes before recovering definitely(@ndll messages sent

by every unstable processwith ts, <tsy, for every correct process

120 Chapter 6. Communication-Efficient Omega Algorithms

Let bel the correct process with the smallest value fotstgariable, i.e. the correct
process that first recovers definitely. If two or more corpgotesses have the same final
value for theirts variables, then lelt be the process with the smallest identifier among
them. We will show that eventually and permanently (1) foergvcorrect process,

leader, =1, and (2) for every unstable procassitherleadeg, = L orleadeg, = 1.
Lemma 34 Eventually and permanently, leagest |.

Proof. By the algorithm, the only way for procetso have as leader another process
g is by receiving an “acceptable” message from it in Task 2. el@w, it is simple to
see that such a scenario cannot happen, sincel&#¥MER g, ts;) message thdtcan
receive necessarily has either (&) > tsmin =tg atl, or (2)tsy = tsmin atl andq > |,
and hence is discarded in Task 2. As a result, eventually antignently procesk

considers itself the leader, i.eadef = 1. [|

Lemma 35 Eventually and permanently, process | will periodicallipder (LEADER,

[, ts)) message to the rest of the processes.

Proof: Follows directly from Lemma 34 and the algorithm. |

Lemma 36 Eventually and permanently, for every correct process p,

leader, = 1.

Proof: Follows from Lemma 34 for process Let be any other correct proceps By
Lemma 35 proceskwill periodically send al(EADER I, ts) message to the rest of
the processes, including By the fact that the communication link betwedeand p is
eventually timely, by Task p will receive the message in at mastime units, and take

it into account, settingeader, to | andtsyin to ts;, and resetting imer, to Timeoup.

6.5. An Algorithm for Systens; 121

Observe thaT imer, can expire a finite number of times, since by Task 3 every time i
expiresp increments imeoup. Hence, eventually by Task@will receive a LEADER
|, ts) message frorhperiodically and timely, i.e, beforéimer, expires. After this hap-

pens,p will not changeleader, to a value different fronh any more. [|

Lemma 37 Eventually and permanently, every correct processlvill not send mes-

sages any more.

Proof: Follows directly from Lemma 36 and the algorithm. [|

Lemma 38 Eventually, every unstable process u will not send messagesiore, and

leader, will be either_L or | forever.

Proof: By Lemma 34 and Task 1 of the algorithhwill periodically send allEADER

I, t5) message to the rest of the processes, includinBy the facts that (1) the com-
munication link betweehandu is eventually timely, and (2) waitsclock() time units
at the beginning of Task 1, eventually by Task @ill always receive al(EADER I,
ts) message frorh before the end of the waiting instruction of Task 1. Upon ptios
of that message, and since necessasly tsyin at processl at that instantu adoptd
as its leader, changing the valuelefdey, from L tol. In addition, by the fact that
initializes Timeouy to clock(), eventuallyTimer, will not expire any more. After this
happensu will not send messages any more. Also, the valukeatie, will be either

1 orl forever. m

Theorem 10 There is a time after which (1) every correct process alwaysts the
same correct process |, and (2) every unstable process, uhemways trusts eithet

or |. More precisely, upon recovery an unstable processfust trust L (i.e. it does not

122 Chapter 6. Communication-Efficient Omega Algorithms

trust any process), and —if it remains up for sufficientlygent will then trust | until it

crashes. Hence, the algorithm in Figure 6.6 implements Gged system &

Proof: Follows directly from Lemmas 34, 36 and 38. |

Theorem 11 The algorithm in Figure 6.6 is communication-efficient.

Proof: Follows directly from Lemmas 35, 37 and 38. |

6.6 Relaxing Communication Reliability and Synchrony

In the algorithms presented in this chapter it is possiblestax the assumptions on
communication reliability and synchrony by means of messagnying; i.e. the first
time a message is received, before delivering it the recgik@cess resends it to the
rest of the processes, excluding the original sender of #ssage and the process from
which the message has been received. This requires messdmgeaniquely identified
to detect duplicates. A usual way to do this in a system stiljewrash failures is to add
a pair 6enderid, sequencenumbej to every message. In the crash-recovery failure
model, uniqueness of the sequence number could be achisiregistable storage. An
alternative consists of adding a timestamp provided byehésr’s clock, assuming that
the clocks are monotonically nondecreasing.

According to the previous, the alternative algorithms t® ¢imes in Figure 6.2 and

Figure 6.6 would work under the following weaker assumption

1) For every correct procegs there is an eventually timelgath from p to every

correct and every unstable process.

Similarly, the alternative algorithms to the ones in Figéré and Figure 6.5 would

work under the following weaker assumptions:

6.6. Relaxing Communication Reliability and Synchrony 123

1) For every correct procegs there is an eventually timelgath from p to every

correct and every unstable process.

2) For every unstable process there is a fair lossy link fronu to somecorrect

process.

A consequence of the use of message relaying is that thetalgsiwill no longer be
(near-)communication-efficiersensu strictpi.e. they remain (near-)communication-
efficient only regarding the number of (correct) procestas send “new” messages

forever.

124 Chapter 6. Communication-Efficient Omega Algorithms

Chapter 7

From Omega to a<>’P Failure Detector

Contents
7.1 Introduction 126
7.2 ThedP Failure Detector in the Crash-Recovery Model 126
7.3 An Algorithm Implementing ¢Pg in SystemS 127
7.4 TheOPy_ Failure DetectorClass 134

125

126 Chapter 7. From Omega to<aP Failure Detector

7.1 Introduction

In this section, we address the implementation of the eadigtperfect failure detector
class [28], denoted b® P, in the crash-recovery model.

Our approach consists of transforming the existing implaiat@ns of the Omega
failure detector, which provides eventual leader eledmetionality, intoOP. In fact,
the algorithms in Chapters 5 and 6 that implem@ntega,» can be used for this pur-
pose.

The rest of the section is organized as follows. In Secti@weé redefine the prop-
erty thatOP must satisfy in the crash-recovery model. In Section 7.3 e thhe spe-
cific system assumptions. Sin¢eP is strictly stronger than Omega, we strengthen the
system model from the previous chapters in order to mMaReimplementable. Also,
in Section 7.3, we propose an algorithm transforming Omege<}P, which does not
require the membership of the system to be knawpriori by processes. Finally, we
propose an enhanced algorithm which provides a common atmfect processes in

Section 7.4.

7.2 ThedP Failure Detector in the Crash-Recovery Model

In this section we redefine theP failure detector for the general system mo8eThis
definition is also valid for the systeS presented in Section 7.3.1. The eventually per-
fect failure detecto©>P is the strongestventualfailure detector proposed by Chandra
and Toueg in [28] and satisfisrong completenessdeventual strong accuracyrhis
basically means that there is a time after which every copeacess suspects all the
incorrect processes and does not suspect any correct proces

One serious drawback when implementid@ in the crash-recovery model is that
it is not possible for any process to distinguish betweeneobiprocesses and unstable

processes because correct processes are allowed to bigleavestable ones temporar-

7.3. An Algorithm Implementing>P¢, in SystemSs 127

ily, and it is not possible to know the instant of time afterigéhall the correct processes
remain up forever, and only the unstable processes crasheander. Because of the
existence of unstable processes in the crash-recoverylmededefine the property

that &P must satisfy:

Property 5 There is a time after which every up process suspects evempueally down

process and does not suspect any correct process.

In order to make the algorithm and correctness proof mosdligible, we change

the definition to the following:

Property 6 (OPcr) There is a time after which every up process always trustsaa

rect processes and does not trust any eventually down pgoces

We denote byCP¢, the set of failure detectors that satisfy the last propeefingd.
There are some differences from the original definitionCg® for the crash model.
First of all, the property must be satisfied by tine processes, which include correct
processes and unstable processes, when they are up attevarye With regard to the
trusted processes, the definition does not refer to ungpabbesses and thus they could

be included in the trusted list infinitely often. We deal wiitlis issue in Section 7.4.

7.3 An Algorithm Implementing $Pg, in SystemSg

7.3.1 Specific System Assumptions ifg

In order to implement the transformation from Omega kB, in the crash-recovery
model, we define the systef, which corresponds to the general system m&eith
some additional assumptions.

The membership of the system is not known, neither the tataller of processes

n. Processes can use stable storage and, as in Chapter 5gdhi¢hai relies on the

128 Chapter 7. From Omega to<aP Failure Detector

assumption that every unstable process is able to writeatdesstoragénfinitely often
(Line 23).

Also, we have the following communication assumptionSgn

1) There is an eventually timely path from some correct gepeto every correct

and every unstable process.

2) For every correa] # p, there is an eventually timely path frogto p.

Recall that unstable processes only must be reachable \wegnate up. These
reachability conditions are equivalent to the minimal dtod for implementing>P
in the crash model [54]. Also, these conditions togethehwit assumption of unique
messages make lossy asynchronous links not relevant itigaasince there exists an
eventually timely path between every pair of correct preess

Finally, we assume that every process has access to &aveda,, failure detector
module that satisfies Property 4. More precisely, everygsgighas access to a function
provided by the failure detector module Gimegar. (Qp), denoted byQp.leader().
This function returns the identity of the leader processted by theDmega;» module

at p at a given time (see Figure 7.1).

4

|
trusted,
or !
|
_ leader()
0,

Figure 7.1: Usinddmegar, to build OGPy .

7.3. An Algorithm Implementing>P¢, in SystemSg

129

Every process p executes the following

Input:

Qp: failure detector module ddmega,> at p
Output:

Trusted: set of trusted processes

Initialization:

(1) Membership + {p}

(2) Trusteg < readTRUSTED from stable storage
(3) waslLeadey < FALSE

(4) trustedWrittep <— FALSE

(5) starttasks1,2,3and4

Task 1:

(6) loop forever

(7 if [Qp.leader() = p] then

(8) if [wasLeadeg = FALSH then
(9 Trusted < {p}

(10) end if

(11) waslLeadey < TRUE

(12) broadcastl(EADER p, Trusteg)
(13) else

(14) waslLeadey < FALSE

(15) broadcastALIVE, p)

(16) end if

7) wait (7)

Task 2:

(18) upon reception ofmessagel(EADER ¢, Trusted) with g # p for the first timedo
(29) broadcastl(EADER q, Trusted)

(20) if [Qp.leader) = q] then

(21) Trusteg, < Trusteg,

(22) if [trustedW ritte = FALSH then
(23) write Trusteg to stable storage
(24) trustedWritten <~ TRUE
(25) end if

(26) end if

Task 3:

(27) upon reception ofmessageALIV E, g) with g = p for the first timedo
(28) broadcastALIVE, q)

(29) if [Qp.leader) = p] then

(30) if [q ¢ Membershipg] then

(32) Membership < Membershig U {q}
(32) createT imer,(q) andTimeoup[q]
(33) Timeoup[q] < N

(34) else if[q ¢ Trusteg)] then

(35) Timeoup[q] < Timeoup[q] + 1
(36) end if

(37) Trusted, < TrustegU{q}

(38) resefl imer,(q) to Timeoup]

(39) end if

Task 4:

(40) upon expiration of Timery(q) do

(41) if [q € Trusteg)] then

(42) Trusted, < Trusteg, — {q}

(43) end if

Figure 7.2: Transformin@mega,» into OGPy in Sg.

130 Chapter 7. From Omega to<aP Failure Detector

7.3.2 The Algorithm

In this section we propose a distributed algorithm thatdfammsOmega,, into CPg;

in systemSs. Figure 7.2 presents the pseudocode executed by each pwbes it

is up. The algorithm is the collection ofinstances of this pseudocode, one for each
process in the system.

Every proces® has two sets: &embershipg set containing all the processps
knows, initially only p, and aT rusteg, set containing the processes tpatusts. When
a process writeJrusted, to stable storage, it is saved to the variablBUSTEIp.
Every time a procesgrecovers during the execution of the initialization, thetemt of
TRUSTEI is passed td rusteg,.

The use of the underlyin@mega,» failure detector is illustrated by the calls that
every proces® makes to its local functioi2,.leader() (Lines 7, 20, and 29 of the
algorithm).

The approximate idea of the algorithm is the following. Byvprocessp periodi-
cally queries its underlyin@mega,» module in order to know if it is the leader or not
(Task 1). In cas@ becomes the leader (Line 8), it initializes fheusted, set. Also, ifp
is the leader (either because it has become the leader, asithe leader already), then
it broadcasts alLEADER p, Trusted) message. Otherwise, i.e. pfis not the leader,
it broadcasts aALIV E, p) message. These messages are rebroadcast (Lines 19 and 28)
in order to allow (1) thd.LEADERmMessage to reach all the up processes, and (2) the
ALIV E messages to reach the leader. Upon receptionldEADER ¢, Trusted) mes-
sage, ifq is the leader thep adoptsTrusted, as its set of trusted processes. Also, in
casep had not received previously such a message, it wiitested, to stable storage
(Task 2). Upon reception of ALIV E, g) message, the leader knows the existence of
g, increments its time-out with respect ¢qaf required, includeg in its set of trusted
processes and resets its timer with respecf fdask 3). Finally, upon expiration of a

timer, the leader removes the process whose timer has dxjpoe its set of trusted

7.3. An Algorithm Implementing>P¢, in SystemSs 131

processes (Task 4).

With this algorithm, eventually all the up processes peremdly adopt the set of
trusted processes, that we will cgthod set, periodically broadcast by the leader. And
this set will eventually and permanently contain all thereot processes, and it will not

contain any eventually down process.

Recall that the algorithm relies on the assumption thatyewestable process is able
to write to stable storagefinitely often(Line 23). This assumption is also required for
the underlying implementation @mega>. Observe that every process writes at most
once to stable storage each time it recovers when it rectheslirst message from the

leader.

As in Chapter 5, actually, in order to agree with correct peses, it would be suffi-
cient that every unstable procgsarites at least once ifbrusteg, set to stable storage,

provided the writing occurs after the reception of theggeid setfrom the leader.

Removing the rebroadcast of messages (Lines 19 and 28) wesgeplified version
of the algorithm that works in a fully connected system; aesystem in which all the

links are eventually timely.

Observe that the transformation algorithm in Figure 7.5@mega,» as a black
box. If in the algorithm implementin@mega,» the leader periodically broadcasts a
message, e.g. to remain as leader, we could piggyback tlod sessted processes to

this message, and reduce the total number of messages.

The number of processes that send messages periodicadigy (gvtime) in this
algorithm is bounded by, the number of processes. As every process rebroadcasts
the messages that receives for the first time, in the worst washaven — 1 processes
resendingd(n) messages to the rest of the- 1 processes, that make a total@fn?)
messages sent periodically. From the point of view of liieg tarry periodic messages,

the cost isO(n?).

132 Chapter 7. From Omega tc<aP Failure Detector

7.3.3 Correctness Proof

We now show the correctness of the algorithm in Figure 7.2.
Lemma 39 Any message eventually disappears from the system.

Proof. By definition, a message cannot remain forever in a link, esihcemains at
mostGST+ d in an eventually timely link, and is lost or eventually delied in a lossy
asynchronous link. Note as well that a message cannot refm@wer in a process,
since by assumption processes take at least one step (@weddetast one line of the
algorithm) per unit of time. Then, a process will eventuagsh, drop the message
(Lines 18 and 27), or (re-)broadcast it (Lines 19 and 28).alyinnote that a process
never rebroadcasts twice the same message, and neverdedstsaits own messages
(Lines 18 and 27). Hence a message can be (re-)broadcastsahmmes, and will

eventually disappear from the system. [|

For the rest of the proof we will assume that any time instasiarger than a time

ty > to, where:

(1) tois atime instant that occurs after the stabilization ti&&T (i.e. to > GST), and
after every eventually down process has definitely crastwed every eventually
up process has definitely recovered. Also, all messagesitaetby eventually
down (up) processes for the first time before crashing (rexdoyg) definitely have

disappeared from the system (this eventually happens fremnha 39),

(2) andt} is a time instant such that the underlyi@gnega, algorithm has already

stabilized; i.e. all the up processes always trust the sameat proceskeader.

Lemma 40 There is a time after which process leader always trusts @iltect pro-

cesses, and does not trust any eventually down process.

7.3. An Algorithm Implementing>P¢, in SystemSs 133

Proof: By definition, everyALIV E message broadcast by a correct progess| reach
leaderin at mostA = & (n— 1) time. Every timeTimelieaded P) €Xpires,p is removed
from Trustegeager (Line 42). Sincep will periodically broadcast alLIV E message
forever, the next timéeaderreceives arALIV E message fronp, leaderwill include
p in Trustegeager (Line 37), and will incremenTimeoufeaged p] (Line 35). Eventually
Timelieaded P) Will cease expiring (note thak is a bound forTimeoufeaged p]). After
this, p will be permanently included iffrustegaqer On the other hand, after tintg
there are nAALIV E messages from any eventually down proogss$ience, ifleader
hasqin Trustegeager this implies thateaderhas an active timeFimeligagedd). Since
no newALIV E message from will reachleader, eventuallyTimefigagedq) Will expire

andq will be removed definitely fronT rustegkager [|

Lemma 41 There is a time after which every up process p always trustsaatect

processes, and does not trust any eventually down process.

Proof. To prove the lemma, we will show that eventuafiyagrees permanently with
processleader. By definition, there is an eventually timely path frdeaderto p.
By Lemma 40, eventuallyeader will broadcast a (EADER leader, Trustegeager)
message periodically containing all correct processes,nah containing any eventu-
ally down process (Line 12). Lgt be a correct process. Eventualfywill receive
these messages and will Satusted, to Trustegeaqger forever (Line 21). On the other
hand, letp be an unstable process. By the assumption phiatable to write to stable
storage infinitely often (Line 23)p also setsTrusted, to Trustegkager infinitely often
(Line 21). Hence, there is a time after which onlyl austegkaqer S€t CONtaining all
correct processes and not containing any eventually doaeegs is adopted by and
written in stable storage. This set is read upon recoverny dhyring the execution of the

initialization (Line 2). [|

134 Chapter 7. From Omega to<aP Failure Detector

Theorem 12 The algorithm in Figure 7.2 implementsP., (satisfies Property 6) in

system &

Proof: Follows directly from Lemma 41. |

7.4 Thed P, Failure Detector Class

The algorithm in Figure 7.2 allows scenarios where unstpbbeesses are included
and removed fronT rustegkaqer infinitely often. In fact,OPgr, which satisfies Prop-
erty 6, only requires (1) all the eventually up processesetpdrmanently included in
Trustegeager, and (2) all the eventually down processes to be permanertiuded
from Trustegkager, i-€. it does not restrict the inclusion and removal of ubk&tgoro-
cesses. Therefore, if an eventually down process is indludd rustegkager it must
eventually be removed forever. Since unstable processesso incorrect, if they are
included inTrustegkager Wwe would also like to remove them permanently. However, it
is easy to see that this is not possible, since at any givenrimrprocess can distinguish
a stabilized eventually up process from an unstable but opess that will crash in the
future.

Therefore, in this section we give a new definition®@P and an algorithm that
implements it. Basically, the new failure detectoP_,; requires a parameté pro-
vided by the application or protocol that uses the failured®r, which is the minimum
number of correct processes in the system. Note that in thstwase there is at least

one correct process in the system and tkenl.

7.4.1 DefiningOPy_er

We defineCPy_r for the general system mod8&8l This definition is also valid in

systemSg. In order to implement>Py_o we must strengtheBg with the additional

7.4. TheOPy_cr Failure Detector Class 135

requirement that we assume the existence of a pararketee minimum number of
correct processes in the system, that is provided to theitign This number can be
seen as a requirement for the application or protocol usieddilure detector. Observe
that in the previous sectidh= 1, but typically a higher number is usually considered,
e.g., a majority. Note also that although it is not requirgabr algorithm, usually the
application or protocol using the failure detector (e.gn€ensus), which will provide
k, will also know the total number of processes

Assuming a known minimum numbkrof correct processes in the syste®riPy_

satisfies the following property:

Property 7 (CPk_cr) There is a time after which every up process always trusts the

same set of k correct processes.
The following observation derives from Property 7:

Observation 5

OP1-cr = OMegarz.

7.4.2 An Algorithm Implementing &Py_¢r in SystemSg

In this section we propose a distributed algorithm thattfamsOmega;2 into GPy_¢r

in systenSg. Figures 7.3 and 7.4 present the pseudocode executed byreaelss when

it is up. The algorithm is the collection ofinstances of this pseudocode, one for each
process in the system.

The algorithm is built on top of the one in Figure 7.2. BesitiesTrusteg, set,
now every procesp has acorrp set wherep inserts thek processes that it considers
correct. Basically, the leader process calcul@@seager USiNg its set of trusted pro-
cesses on the basis of ticarnation numbeof the processes, which is included in

the ALIV E messages (Line 15). In the algorithms implemen@mgega,, presented in

136 Chapter 7. From Omega to<aP Failure Detector

Every process p executes the following

Input:

Qp: failure detector module ddmega,» at p

k: minimum number of correct processes in the system
Output:

corrp: set of (up tok) correct, i.e. eventually up, processes

Initialization:
(1) Membershig«+ {p}
(2) readTrusteg, from stable storage

‘ (al) reactorrp from stable storage

(3) waslLeadeg < FALSE
(4) trustedWritte < FALSE
(5) starttasks1,2,3and4

Task 1:

(6) loop forever

(7 if [Qp.leader) = p] then

(8) if [wasLeadeg = FALSH then

(9 Trusteg < {p}

(10) end if

‘ (a2) corrp < {p}U up tok— 1 processes (Trusteg, — { p}) with lowest incarnation
(11) wasleadeg < TRUE

(12) broadcast(EADER p, Trusteg, corrp)
(13) else

(14) wasleadeg < FALSE

(15) broadcastALIVE, p, Qp.incarnation))
(16) end if

a7 wait (7)

Task 2:

(18) upon reception ofmessagel(EADER g, Trusted, corrg) with q # p for the first timedo
(29) broadcast(EADER g, Trusted, corrg)
(20) if [Qp.leader) = q] then

(21) Trusteg, < Trusteg

‘ (a3) COITp <— COIry

(22) if [trustedWritten = FALSH then

(23) write Trusteg, to stable storage

‘ (a4) writecorrp, to stable storage

(24) trustedWritten < TRUE

(25) end if

(26) end if

Figure 7.3: Transformin@mega,» into OGPy, in Sg (Part |).

7.4. TheOPy_cr Failure Detector Class

137

Task 3:

(27) upon reception ofmessageALIVE, g, incarnatior) with g # p for the first timedo
(28) broadcastALIVE, g, incarnationy)

(29) if [Qp.leader) = p] then

(30) if [¢ Membership] then

(31) Membership <— Membershigu {q}
(32) createTimery(q) andTimeoup[q]
(33) Timeouplq] < n

‘ (ab) creaténcarnationy[q]

(34) else if[q ¢ Trustegy] then

(35) Timeoup[q] < Timeoup[q] + 1
(36) end if

(37) Trusted, < Trusteg,U{q}

(38) reseflTimery(q) to Timeoup|q]

‘ (ab) Incarnationp[q] < incarnationy
(39) end if

Task 4:

(40) upon expiration of Timery(q) do

(42) if [q € Trusteg)] then

(42) Trusted, <— Trusted) — {q}

(43) end if

Figure 7.4: Transformin@mega,» into &Py in Sg (Part 11).

138 Chapter 7. From Omega to<aP Failure Detector

this dissertation, every process has in stable storageahitamarnation number, whose
initial value is 0, which is incremented during the execatad the initialization when

it recovers from a crash. Additionally, we assume that epeogessp has access to a
function provided by the failure detector module@iega,, at proces$, denoted by
Qp.incarnation(). This function returng’s incarnation number (see Figure 7.5). Intu-
itively, the incarnation number of correct processes aadht stops growing, while the

incarnation number of unstable processes keeps growiegdor

1

corr 'p

t

leader()

g 2 D incarnation()

k- 0P,

Figure 7.5: Using@dmega,> and the knowledge dfto build GPy_.

Lines al-a6 correspond to the main modifications made to Itf@ithm in Fig-
ure 7.2. The leader process builds tter|eaqger S€t by including itself and up th— 1
other processes ifrustegeaqer With the lowest incarnation (Line a2). This set is in-
cluded in thd.LE ADE Rmessage periodically broadcast. Upon reception ocf E@DER
message, the rest of the processes adopt this set and voitddile storage if required
(Lines a3-a4), as they do with tAgustegkager Set. Also, processes read therr, set
from stable storage upon the initialization (Line al). Hynd.ines a5-a6 correspond to
the management of the processes’ incarnation number bgaldet.

Observe that with this algorithm, if= 1, then eventuallgorr, will always contain
just the leader process.

We use the incarnation number of the underlying algorithplé@mentingODmega;»

as an easy way to distinguish eventually up processes fr@table processes. How-

7.4. TheOPy_cr Failure Detector Class 139

ever, we can implementPy_c on the base of a®@mega,1 algorithm with a function
similar to the functionncarnation) that provides a criteria to distinguish eventually up
processes from unstable processes. For example, if we @octlse algorithm in Fig-
ure 6.4 thatimplement®mega,1 in a system where processes do not have access to sta-
ble storage, there is an array of counters with the numbemeistthat each process has
recoveredRecoveregl If this implementation o©mega;; would provide a function re-
turning the value oRecovereg p|, which we can calincarnation() although we know
that refers tdRecovereg| p|, our algorithm forOPy_¢r will work properly, because the
valueRecovereg|p] of the eventually up processes is bounded wRigeovereglp] is
growing periodically in the unstable processes.

Observe that the algorithm, without stable storage, pteseim Chapter 4 is not
adequate in order to implemePy_, because the value of the arfggcovereg[p] in
all the correct processes, except for the leader, is notdexin

We give now a proof sketch of the algorithm in Figures 7.3 ardd Basically, the
correctness follows from the proof of the algorithm in Figidr2 (upon which it is built),
and the fact that the incarnation number of each processrisritented every time it re-
covers from a crash. This way, the incarnation number ofecbrocesses eventually
stops growing, while the incarnation number of unstablegsses keeps growing for-
ever. Eventually the correct leader process will havedr|eager the k processes with
the lowest incarnation imrustegeager Then, periodically the leader will se@rrigager
to the rest of the processpshat will setcorrp to corrieager. Finally, unstableprocesses
will write this goodsetcorry, to stable storage infinitely often, reading it upon recoyery

and eventually up processes will maintain thdsetcorr, permanently.

Theorem 13 The algorithm in Figures 7.3 and 7.4 implemeit®,_., (satisfies Prop-
erty 7) in systemg>

140 Chapter 7. From Omega to<aP Failure Detector

Chapter 8

Aggregator Election and Data

Aggregation in WSNs

Contents

8.1 Introduction
82 RelatedWork
8.3 SystemModel
8.4 Local (Intra-Region) Level
8.5 Global (Inter-Region) Level

8.6 Energy-Aware Aggregator Election and Data Aggregation

141

142 Chapter 8. Aggregator Election and Data Aggregation in WSNs

8.1 Introduction

In the previous chapters we have addressed the implenm@antdtOmega in the crash-
recovery model. These algorithms, satisfying some of tlopgnties defined in Chap-
ter 3, provide deader electiorservice. In Chapter 7 we used this service to implement
OPer andOPy_or. Animplementation (pseudocode) of Omega can also be usibe as
starting point for designing a distributed algorithm, esaky if part of the algorithm
consists of choosing a leader.

In this chapter we propose three hierarchical aggrega¢atieh and data aggrega-
tion algorithms, based on the Omega failure detector, fgelavireless sensor networks
(WSNs). More precisely, the algorithms are based on tho§hapter 5. Basically, an
aggregatoris a sensor or node that collects and aggregates the seta@eserated in
the WSN [112]. As the communication range of the sensorsngdd, we divide the
network into regions. Due to changes in the set of reachalsieass, the aggregator
sensor in each region can change over time.

The algorithms in this chapter ensure that all the sensoesregion agree on a
common aggregator and that all the aggregators agree onm@osuper-aggregatar
Thus, the super-aggregator will collect the sensor datheirthole system regardless
of the WSN size and the communication range of the sensors.

Each algorithm is implemented in a system with differentrativity assumptions.
The first algorithm assumes that every pair of sensors in @megan communicate
directly. The second algorithm relaxes this assumptioty cequiring some correct
sensor(s) to communicate directly with the rest of the sendeinally, the third algo-
rithm goes a step further, by not requiring any sensor to comaate directly with the
rest, but only that there is a multi-hop bidirectional patini some correct sensor(s) to
the rest of the sensors.

With respect to sensor communication itself, some colisieoidance mechanisms
that can be considered are TDMA, CDMA and CSMA. The main deakb of TDMA

8.2. Related Work 143

and CDMA techniques are related to the requirements of saysehronization and a
central authority to assign the time slots, and the compledutation hardware (which
is difficult to implement due to the reduced size and perforoeaof sensors) respec-
tively. The use of CSMA protocols such as IEEE 802.11 (Wi&lipws to minimize the
energy consumption due to collisions in WSNs without reqgirspecial capabilities
and complexities of the sensors.

The rest of the chapter is organized as follows. Sectioni@&2gnts the related work.
In Section 8.3, we describe the system model consideredo8eét4 presents the three
aggregator election algorithms for the local (intra-regitevel. Section 8.5 presents
the algorithm for the global (inter-region) level. Finallp Section 8.6, we introduce
a battery depletion threshold in order to enhance the gqualiservice (QoS) of the

wireless sensor network.

8.2 Related Work

Wireless sensor networks can provide reliable data cadledty applications reducing
at maximum the human intervention (self-organizing anétealintaining). Applica-
tions can act autonomously over the sensor network configwensors remotely, and
recovering the information collected by sensors peridiica on demand. WSNs can
be exposed to several sources of problems such as meastomgjunication, crash
and/or power supply errors. Device redundancy allows taiabhformation redun-
dancy, and then to ensure a certain level of fault toleraiée.consider a WSN with
a certain clustering degree where each cluster focuses aemifispareas and collects
information following a distributed sensing scheme.

Wireless networked sensing applications must ensurebtelg@nsor data collection
and aggregation, while satisfying the low-cost and lowrgn@perating constraints of

such applications. The attempt to minimize the energy copsion leads to minimize

144 Chapter 8. Aggregator Election and Data Aggregation in WSNs

the amount of data transmitted by using data aggregatiomeSworks in the literature
focus on the implementation of efficient aggregation timgogtrol protocols as in [75].
In [123], three different data aggregation schemes —imvaeX, grid-based and hybrid
data aggregation— are considered in order to increase tbieghput, to decrease con-
gestion and to save energy. Other works manage data aggregath the aid of a
Consensus algorithm as [83] does. The selection of the ggtgnenodes is analyzed
in [35], where a hierarchical energy-efficient aggregasbection protocol is presented.

The protocol is probabilistic, and does not consider therfaiof sensors.

Any effort aimed at extending network lifetime requiresibtte sensor itself and
the collaborative strategy which coordinates nodes in #@msiag task to be made as
energy efficient as possible. Some works consider that s@sies can communicate
directly with a base station (all proposals consider thaheede can be a cluster head,
which is only possible if each node can communicate with theelstation) and each
sensor can communicate with its neighbours present in aerahgadiusr [10, 74,
82, 92, 93, 109]. The number of messages transmitted to the station should be
minimized because they have a greater cost than transmisstaveen sensor nodes.
In other works, networking connectivity is powered by hompdata from sensor to
sensor in search of its destination (the base station) [10&]ltihop communication
in sensor networks is expected to consume less power thamaiidonal single hop

communication [9].

Intermittent connectivity is another defining charactarisf sensor networks. Con-
nectivity can vary continuously, as sensors can hiberrmatave power, and environ-
mental conditions can change. Intermittent connectivétyses the network to become
partitioned and communication becomes unreliable. Th#éerige is to provide sensor

reliable failure detection with the minimum number of megsa

The selection of an aggregator can be considered as a leladéo®, which has

been extensively studied in the literature. In Chapter 2 eselcommented relevant

8.3. System Model 145

works related to this topic.

We can find also several works focused on the hierarchizatiah clustering of
wireless ad hoc networks, which can be easily adapted te#uel election problem as
[74, 122]. In [36], a communication-efficient probabiltstjuorum system is presented,
which can be used for leader election. Frequent networkextivity changes are con-
sidered, possibly resulting in network partitions, andssercrash and recovery is also
considered.

Recently, MANETSs have introduced a new parameter in thesleal@ction problem:
the mobility. In [73] the authors presented single-hop é&aglection protocols. Mal-
pani et al. in [98] proposed two multi-hop leader electiogoaithms, based on [108],
where any component, whose topology is static for a suffilyidang time, will even-
tually have exactly one leader. In [99] and [124] the aldoris overcome the previous

drawbacks relying on a process majority and diffusing cotapans respectively.

8.3 System Model

The system model considered in this chapter is very simdahé one presented in
Chapter 3. However, instead abstractprocesses with unidirectional communication
links, we consider sensors with broadcasting capabilities

Basically, our system is a wireless sensor network whererytcollect sensor
data minimizing the energy consumption. There needs to b&H Wivided into differ-
ent regions where each sensor knawgriori its operation region and acts to transmit
its sensed data to a sensor aggregator in charge of cofjeadtithe sensed data from a
specific region. Each sensor has an identifier of its opera&gion that is radiated in
its messages. This identifier allows sensors to reject immgpmessages from other re-
gions. The operation region of a sensor, as well as the refgbnition, can be changed

on demand. Sensor communication follows the 802.11 (Wifeijqzol.

146 Chapter 8. Aggregator Election and Data Aggregation in WSNs

We propose the use of an Omega algorithm to choose a commoegador inside
each region according to the reliability and battery avility of sensors. A sensor is
a candidate to be elected as aggregator if it is a reliablsasemithout errors during
each operation period. The Omega property ensures thatgaeisensor among all
the candidates is elected as aggregator. The aggregataclofregion is in charge of
collecting all the data sensed on its region.

More formally, we consider a systef), composed of a finite set of sensors that
communicate by broadcasting messages on the wirelessnket8ensors can only fail
by crashing. Crashes are not permanent, i.e. crashed sem@sorecover.

According to the previous, in every run and during the lifedi of its battery, we

have three types of sensors:

(1) Eventually up This is the subset of sensors that, after crashing and eecgva
finite number of times, remain up forever, i.e. they do noskrany more. Sensors

that never crash are included in this subset.

(2) Eventually downThis is the subset of sensors that, after crashing and eeicgv
a finite number of times, remain down forever, i.e. they doreobver any more.

Sensors that never start their execution are included srstithset.

(3) Unstable This is the subset of sensors that crash and recover arteénfimmber
of times, i.e. there is not a time after which either they rignugo forever, or they

remain down forever.

Once the battery of a sensor runs out, it is not considerechyfparticular type.
Upon the hypothetical replacement of the battery, the semdidoe again a member of
one of the three kinds of sensors, depending on its behaviour

By definition, sensors in (1) areorrect and sensors in (2) and (3) airecorrect

We assume that the number of correct sensors in the systdrteasaone. As we will

8.4. Local (Intra-Region) Level 147

see, correct sensors will be the candidates to become tther]ez. the aggregator. We
also assume that every sensor has access to stable stofdeggptthe value of some

variables.

8.3.1 Redefining the Omega Failure Detector

In Chapter 3 we have redefined the property satisfied by theg@iadure detector for
the crash-recovery model. Now, we redefine the propertgftadi by Omega fo,,
Property 8, considering that eventually the common leadétshuntil the end of its

battery.

Property 8 There is a time after which every correct sensor trusts thaesaorrect

sensor aggregator until the end of its battery.

Accordingly, the correct sensors will trust the correctssgraggregator until the

depletion of their batteries.

8.4 Local (Intra-Region) Level

In this section, we present three aggregator election idtgos for the intra-region level:

e A first algorithm which assumes that every pair of sensorb®fégion can com-

municate directly.

e A second algorithm which assumes that some correct senaocaramunicate

directly with the rest of the sensors of the region.

e A third algorithm which assumes the existence of a multi-bmjrectional path

from some correct sensor to the rest of the sensors of therregi

148 Chapter 8. Aggregator Election and Data Aggregation in WSNs

8.4.1 A First Algorithm

We present here a first aggregator election and data aggnegdgorithm for the local
level, in which we assume that sensors wake up periodiaapydvide their sensed data,
and hibernate the rest of the time. Sensor hibernation isandidered a failure, since
it is a scheduled task. This assumption implies a progranswéidh on/off of sensors
with the aid of a clock, e.g., eveyactivaTiontime units. We assume that hibernation
periods are larger than active ones (see Figure 8.1). Wengsaumaximum clock skew

€ between any pair of sensors.

Operation Operation Operation
period Hibernation period period Hibernation period period
—_——

— —— —
time

{ ¢ +data acquisition time ‘
|

Q) operation time |

Figure 8.1: System operation time-line (Algorithm I).

The algorithm requires sensor identifiers to be totally cedebut not necessarily
consecutive. Moreover, sensors do not need to know theifdesitof the rest of the
sensors in advance. We assume that all the sensors of a cagicommunicate directly,
existing an unknown bound on message delay. We also assume that the execution of
each line of the algorithm requires at mastime units.

Figure 8.2 presents the pseudocode executed by each semsoritws up. The
algorithm is the collection af instances of this pseudocode, one for each sensor in the
system.

The algorithm uses both stable and volatile storage. Theos@mosen as aggrega-
tor by a sensop, i.e. trusted byp, is held in the variabléeader,. Variables include a
local incarnation number, initialized to 0, which is incrembed during the execution of
the initialization when a sensor recovers from a crash.a\esincarnatiory, leader,

incarnationeagerandTimeoup are persistently stored while varialsieheduledvakeup,

8.4. Local (Intra-Region) Level

149

Every sensor p executes the following

procedure GoToHibernatiolt)

(1) write (ncarnatiory, leader, incarnationeader, Timeoup) to stable storage
(2) scheduledvakeup <+~ TRUE

(3) hibernatg)

end procedure

Initialization:
(4) read {ncarnatiory) from stable storage
(5) if [scheduledvakeup = FALSH then

(6) incarnatior, < incarnatior,+ 1
(7 write incarnation, to stable storage
(8) endif

(9) scheduledvakeup < FALSE
(10) readleadern, incarnationeader Timeoup) from stable storage
(11) if [leader = p] then

(12) start tasks1 and 2

(13) else

(14) resefl imer, to Timeoup + 2¢
(15) start tasks2 and 3

(16) endif

Task 1:

(17) waite time units

(18) broadcast (xM-ALIVE, p, incarnatiory)

(19) receivadatafrom sensors durinfpata acouisiTiontime
(20) GoToHibernation)

Task 2:

(21) upon reception ofmessage (xM-ALIVE, g, incarnation;) such that
[incarnation, < incarnationeaded Of
[(incarnationy = incarnationeade) and @ < leader)] do

(22) leader, < q

(23) incarnationgager +— incarnation
(24) datap, +— acquire sensed data
(25) send atay) to leader,

(26) GoToHibernatiott)

Task 3:

(27) upon expiration of Timer, do

(28) leadef, < p

(29) incarnationeager +— iNncarnatiory
(30) Timeoub eTimeou§+AT|MEOUT

(31) GoToHibernatior)

Figure 8.2: Intra-region aggregator election and dataexggion (Alg. 1).

150 Chapter 8. Aggregator Election and Data Aggregation in WSNs

remains in volatile storage. Besides this, every sensoaHhasal timer used to detect
the potential crash of the aggregator sensor. The varsableduledwakeup keeps its
value during hibernation periods, while sensor failure attdry depletion causes the
lost of its value ¢écheduledvakeup = FALSE). ConstantAtveouT determines the
growth of the time-out in order to reach agreement. The higfie value is, the faster
agreement on a common aggregator occurs. However, an aagdsgh value of
At\meouT can induce sensors to waste their batteries, and would elag the detection
of the failure of the aggregator. Consta#\iaTa aAcouisiTionrepresents the maximum

time passed by the aggregator during the collection of the gl@vided by sensors.

The algorithm starts wititializationwhere all the values of the variables are prop-
erly recovered. After that, if the sensor considers itselfre current aggregator, the
algorithm starts Tasks 1 and 2. On the other hand, if the selt@s not consider itself
as the current aggregator, the algorithm resets the looaktand starts Tasks 2 and 3.
Task 1 is devoted to announce the aggregator to the rest eétisors and to collect all
sensor data. Task 2, which applies to all sensors, is detoteath send the sensor data
to the aggregator, and to update the aggregator if requtiedlly, Task 3 is devoted to
propose the sensor itself as aggregator when the currerggajgr announcement is not
received before the expiration of the timer, and also ine@sthe time-oul\tmeouT
time units. All the tasks finish calling théoToHibernation(Jprocedure, which starts
the hibernation period. Each sensor will remain in thisestattil the next scheduled

wake-up.

Let us denote bymin the correct sensor i, with the smallest identifier among
those that have the minimum incarnation numinearnation,,. With this algorithm
there is a time after which every sengoe correct hasleader, = Cyin until the end of
its battery. Eventually only sensow, broadcasts a new messages(i—-ALIVE , Cmin,

incarnationnmin) per operation period, that reaches the rest of the coreasicss.

The cost of the algorithm, measured as the number of messagésn stability

8.4. Local (Intra-Region) Level 151

during a data acquisition period, is linear in the numberesfsers in the regio®(n),
since the aggregator sensor broadcasts one message by dadkle rest of the sensors

send a message to the aggregator by Task 2.

Correctness Proof

For the rest of the section, we will assume that any time mstacurs after a time
where every eventually down sensor has definitely crashedy eventually up sensor
has definitely recovered and initialized, and every unstakhsor has an incarnation
number bigger thamcarnationyin. Also, all messages sent befdreave already been
delivered.

In order to prove the correctness of the algorithm, we foateuand prove the fol-
lowing lemmas and theorem. Lemma 42 proves that sepggbecomes an aggregator
and notifies this fact to the rest of the sensors. Lemma 43egrthvat the rest of the
sensors do not declare themselves as aggregators. Lemmawé4 fhat there is a time
after which every correct sensor receives &M -ALIVE , Cmin, INCarnatioryin) mes-
sages frontyin. Finally, Theorem 14 proves that the algorithm in Figure $aflsfies

Property 8 in systery,.

Lemma 42 There is atime after which sensagkig permanently verifies that leadgef, =
Cmin @nd broadcasts él-AM-ALIVE , Cmin, iINCarnationyin) message during its operation

period.

Proof. Note that after timeé, sensocyin will never receive a message AM-ALIVE , q,
incarnatiory) with incarnation, < incarnationyin, or withincarnation, = incarnationmin
from a sensor with identifieq < cmin. Therefore, after time sensorcyi, will never ex-

ecute Lines 22-26 of the algorithm. Hence oneadeg_ . = Cmin it will remain so

until the depletion of its battery. To show that this evelijuhappens, note that if

leadeg,,,, # Cmin at timet’ > t, thencmin hasTimer,,, active. EventuallyTimer,..

152 Chapter 8. Aggregator Election and Data Aggregation in WSNs

will expire (Line 27), settindeadeg,,,, = Cmin (Line 28). After that, Lines 14-15 will
never be executed, sinteadet, ., = Cmin holds permanently. Finally, from Task 1,
onceleadeg,,, = Cmin, SENSOICMin Will permanently broadcast a @M-ALIVE, Cmin,

incarnationyin) message during its operation period (Line 18). [|

Lemma 43 There is a time after which, every sensoe gorrect, p# Cmin, perma-
nently has either (1) incarnatiggyger > incarnationyin, or (2) leadep > cmin and

incarnationeader = iNcarnationyin.

Proof: Note that, aftet, once [ncarnationeager> incarnationyin] or
[(incarnationeader = iNcarnationmin) and (eader, > cmin)] is satisfied, it will remain
so until the depletion of the battery (either the sensor erdggregator), since no
(I-AM-ALIVE, ¢, incarnation;) message witlincarnatiory < incarnationyin, or with
incarnatiorny = incarnationyin from a sensor with identifie < cmin Will be received.
Then, ifincarnationeager < iNcarnationyin, Or iNncarnationeager = iNcarnationmin and
leadef, < cminattimet’ >t in both cases itis satisfied that ({1.)> cmin andincarnatiory

= incarnationyin, Or (2) incarnatiory, > incarnatiomi,. Then, Timer, must be ac-
tive at that time, and will eventually expire (Line 27), sadt (1) incarnationeader
= incarnatiorn, > incarnatiornmin, or (2) settingincarnationeader = incarnatiorn, =

incarnationyin andleadef, = p > Cmin by Lines 28-29.]

Lemma 44 There is a time after which every senso€ gorrect, being p# Cmin, per-
manently receives new messa@geaM-ALIVE , Cnin, iNCarnationyin) with intervals of

at most(AacTtivaTion+ O + 26 + 70) time between consecutive messages.

Proof: From Lemma 42, there is a time after whicki, broadcasts &l-AM-ALIVE,

Cmin, INCarnationyin) message every operation period. For simplicity, let usragshat

8.4. Local (Intra-Region) Level 153

p received the last messafjeAM-ALIVE , Cyin, iNnCarnationyn) from cmin at the begin-
ning of the previous operation period. In the worst case,durdto clock drift,Cpin will
wake-up after almogiactivationt € time. Whencnin wakes-up again, it takeso#- €
time to broadcast th@-AM-ALIVE , Cyin, iINCarnationyin) message. This message takes
at mostd time to reach sensq@. Henceforth, the maximum time between two consec-

utive messages is the addition of these valNgsr vation+ 0 +2€ + 70.]

Theorem 14 There is a time after which every senso€ jgorrect has leadgf = cmin,
i.e. p trusts gin, until the end of either p’s orgn’'s battery. Hence, the algorithm in

Figure 8.2 satisfies Property 8 in system S

Proof: Lemma 42 shows the claim fgp = Cyin. FOr p # Cmin, from Lemma 43
there is a time after whiclp permanently (until the end of the battery) has either
(1) incarnationeager = incarnationyin andleader, > Cmin, Or (2) incarnationgader >
incarnationyin. From Lemma 44, whenevéeader, # Cmin after this time,leader,
changes t@mn in at most(AacTivation+ 0 + 26 + 70) time (+20 for the assignation
of the new leader). Furthermore, orleader, = cmin, it only changes (t@) by execut-
ing Lines 27-28, since the conditions in Line 21 prevesaider, from changing in Line
22. Finally,leadef, changes fronemin to p a finite number of times, since each time this
happensTimeoup is incremented bYAtmeouT time units. By contradiction, assum-
ing this happens an infinite number of tim&smeoup, eventually grows to the pointin
which Timer, never expires, because a NéWAM-ALIVE , Cmin, INCarnationyin) mes-
sage is received before the expirationTamer,. Hence, eventuallyeader, = Cnmin

permanently, and thus the algorithm in Figure 8.2 satisfiepétty 8 in systens,. =

154 Chapter 8. Aggregator Election and Data Aggregation in WSNs

8.4.2 A Second Algorithm

We present here a second aggregator election algorithninéolotal level. Contrary
to the algorithm of the previous section we assume that, nega, not every pair of
sensors of a region can communicate directly. Howeveretbgist a subset of sensors
in the region that are able to reach directly the rest of tmes@es of the region, and
are also able to receive the messages broadcast by eveoy sétise region (see Fig-
ure 8.3). Cylinders represent well-communicated senserg;andidates to become the
aggregator, and circles represent sensors that canndt egacy other process in their
region.

As previously, we assume that there exists an unknown béuwmmessage delay,
and that the execution of each line of the algorithm requatesosto time units. In this

algorithm, sensors must know the identifiers of the rest efs#nsors in advance.

Figure 8.3: Sensor distribution in a region.

Figure 8.4 presents the pseudocode executed by each semsoritws up. The
algorithm is the collection oh instances of this pseudocode, one for each sensor in
the system. With this algorithm eventually every sengar correct permanently has
leader, = |, beingl the least suspected sensor among those that can commutiicate

rectly with the rest of the sensors in the region, using sengtentifiers to break ties.

8.4. Local (Intra-Region) Level

155

Every sensor p executes the following

procedure updateleader()

(1) leader, < | such thatounteg[l] = min{countep},
using identifiers to break ties

end procedure

Initialization:

(2) incrementncarnatior, by 1 in stable storage
(3) read {ncarnatiory) from stable storage

(4) Vq# p:Timeoup[q] < n +incarnatiory

(5) Vq# p:resetTimery(q) to Timeoup[q]

(6) Vq# p:countep[q] + 0

(7) countep[p] < incarnation,

(8) leadep«+p

(9) starttasksl,2and3

Task 1:

(10) loop forever

(11) datay, < acquire sensed data

(12) broadcast (kM-ALIVE, p, counte, datap)

(13) wait(n)

Task 2:

(14) upon reception ofmessage (lxM-ALIVE, g, countey, data,) do
(15) reseflimery(q) to Timeoup|q]

(16) Vr : countep[r] «— max{(counteg[r],counteg|r])}
a7 updateleader()

(18) if [leader, = p] then

(29) collectdatay

(20) end if

Task 3:

(21) upon expiration of Timer,(q) do

(22) countep|q] < countep[q] + 1

(23) Timeoup[q] < Timeoup[q] + 1

(24) reseflimery(q) to Timeoup|q]

(25) updateleader()

Figure 8.4: Intra-region aggregator election and dataexggion (Alg. 11).

156 Chapter 8. Aggregator Election and Data Aggregation in WSNs

The algorithm works as follows. Every sengoinas acounter|q] for each sensan,
which is p's estimation of the number of timeghas been suspected. Senpaelects
as its leader the sensbwith the smallestounteg]l] value. In order to acquire sen-
sor data, and keep tlmuntey, variable up to date, every sengobroadcasts every
time units an (IAM-ALIVE , p, counter, datay) message, being the interval between
sensor measurements. When a seips@ceives a message AM-ALIVE , ¢, counteg,
datay), it resetsTimery(q) for when it expects to receive the nextAM-ALIVE, q,
counteg, data;) message, updates itsunteg, array accordingly and calls the proce-

dureupdateLeadsd]). If pis the leader, it collectdata,.

If Timery(q) expires before receiving a newAM-ALIVE , g, counteg, data;) mes-
sage, the incrementgounteg|q], increments imeoup[q), resetsT imer,(q), and also
callsupdateleader). The following messages sent pywill include the increment of

countep|q], and this way the rest of the sensors will know abgatsuspicion org.

The algorithm includes a mechanism to eventually avoidabistsensors from dis-
turbing the leader election. This mechanism is based omttemation number of sen-
sors. During the execution of the initialization, every sarp initializes its time-outs
with respect to the rest of the sensorgjte-incarnation, (Line 4). Also, p initializes
countep|[p] to incarnation, (Line 7). These values, set during the initialization, easu
that eventually (1) every unstable sengowill never suspect a correct senspthat
can communicate directly with every other sensor (sipsetime-out with respect]
keeps increasing forever, and hence eventugiliger,(q) will never expire), and con-
sequentlyp will not incrementcounteg[q] any more, and (2) every unstable senpor
will never be elected as the leader in thgdateleader() procedure (due to the fact that

incarnatiory, and henceounteg|p|, keep increasing forever).

With regard to the cost of the algorithm in Figure 8.4, the benof messages sent
during a data acquisition periogis linear in the number of sensors in the regi@m),

since every sensor broadcasts one message by Task 1.

8.4. Local (Intra-Region) Level 157

Correctness Proof

We now show the correctness of the algorithm in Figure 8.4. th® rest of the sec-
tion we will assume that any time instant occurs after a timénere every eventually
down sensor has definitely crashed, every eventually uposdras definitely recov-
ered and initialized, and every unstable sensbas an incarnation number such that
incarnation, > 0 + 20. Also, all messages sent befdreave already been delivered.
Let R be the set of correct sensors that eventually can reachytievelry correct

sensor irS,. LetB be the set of correct sensgrsvith boundedcounteg|p|.
Lemma 45 Vs e R, countegs] is bounded.

Proof. Consider any correct sensgk£ S. Sensors sends a message AM-ALIVE , S,
counteg, data) everyn time. By definition, every message ttasends is received
by g within é + n time from the timeq received the previous message fremSince
g increases its timefimeoug(s| every time it expires, eventuallyimery(s) will cease
expiring. Thenceforthg will never punishs (Line 22) any more, andwill not increase
counteg(s| due to a message from agye correct

On the other hand, every unstable senswvill set Timer,(s) > é +n + 2o dur-
ing the execution of the initialization. Every timeresetsTimer,(s), we know that
Timer,(s) will expire afterd + n + 2o time. As messages frosare sent every time,
in the worst case sensswill send a message at tinhg- n, will be received at sensar
attimet + 0+ n, andTimer,(s) is reset at + 0 + 1 + 20. Hence,Timer,(s) will never
expire on anys € R. Thenceforthy will never punishs (Line 22) any more, and will

not increaseountek(s| due to a message from any unstable u

From the previous, note thRXC B.

Lemma 46 For every correct sensor g B there exists a time after which every sensor

g € correct receives messages from p periodically.

158 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Proof: Consider a correct senspr# q. We prove the contrapositive of the lemma.
Supposey does not receive messages frgnperiodically. Each timey does not re-
ceive a message fromandTimery(p) expires, sensgp is punished by in counteg|p]
(Line 22). Later, the messages sentdare received directly by, increasing the
countep[p|, or by some sensa, s < R The sensor will increaseounteg[p|, and
the next timep receives a message fragnit will increasecountep|p| accordingly. If

this happens infinitely oftetounteg|p| is not bounded, leading us to a contradictimn.

For the rest of the section we will assume that any time ingtas larger than
time tp > t;, wheret, is a time instant that occurs aftepunteg[q] > counteg[p],
Vq ¢ correct andVp € B, andincarnation, > counteg|p|, Yu € unstable This will
eventually happen because cleartyunteg[q] andincarnation, grow infinitely, and by
Lemma 46,7p € B, countep|p| is bounded. Note that during the initialization (Line 7)
counteg[u] is set toincarnation,, socounteg[u] > counteg|p).

Henceforthyary, denotes the value of the local variabiar of p at timet.

Lemma 47 For every pair of correct sensors p and qeB, there is a time after which

for every time t, countgfp| > counte,[p|.

Proof: Forp=q, the lemmais trivial. Now assunge# g. As p € B, by Lemma 46 there
exists a time after which every € correct receives messages frominfinitely often.
Lett >t be any time. There is a tinté> t wheng receives (IAM-ALIVE , p, counter,
datay), with countep|p] = ¢, originally sent byp after timet, soc > counteg, [p]. Then
at timet’, g sets itscounteg[p] to ¢, and so we havecounteg[p] > counteg, [p]. The

lemma now follows sinceountegp] is monotonically nondecreasing. [|

Lemma 48 For every correct sensor p: 1. If countgp] is bounded, then there exists

a value \j and a time after which for every correct sensor q, cougitgr= V,. 2. If

8.4. Local (Intra-Region) Level 159

countep[p] is not bounded, then for every correct sensor g, coyfipes not bounded.

Proof: Let p be a correct sensor.

(1) Supposeountep|p| is bounded. Thus, by Lemma 47, for every correct segsor
there is a time > t, after whichcounteg[p] > counteg, [p]. Sincecounteg|p]
is bounded and monotonically nondecreasing, there exisadu@Vy, and a time
after whichcounteg[p| = Vp. Therefore, there exists a time after which, for every

correct sensaq, counteg[p| = Vp.

(2) Suppose&ountep[p] is not bounded. Lemma 47 implies thadunteg[p] is also

not bounded.

Lemma 49 If sensor k is not correct then for every correct sensor geher time after

which leadeg # k permanently.

Proof: As sensok is not correct, after time> ty, counteg[k] > counteg|p|, for every
p € B. Asqis correct every message broadcast by every sgnezaches every correct
sensou, countegk] > countep k], and sensdk will not be elected as leader any more.

Theorem 15 There exists a correct sensor | and a time after which, foryeeerrect
sensor ¢, leadgr=|. Hence, the algorithm in Figure 8.4 satisfies Property 8yatem

Sw-

Proof: Note thatB is not empty. By Lemma 48(1), for every sengat B, there is a cor-

responding integey, and a time after which for every correct sengarounteg[p| =Vp

160 Chapter 8. Aggregator Election and Data Aggregation in WSNs

(forever). Letl denote the sensqrin B with the smallest corresponding tugé,, p).
We now show that eventually every correct sergselectd as its leader (forever). For
any other sensqu # | : (*) there is a time after whiclicounteg[p], p) > (countegl],!).
This implies that eventuallg selectd as its leader, forever. To show (*) holds, consider
the following 3 possible cases. [fis not correct then, by Lemma 49, eventuatly
will never be elected as leader (forever). Now supposeghsicorrect. Ifcounteg|p]

is bounded, therp is in B; so, by our selection of in B, eventually(countegp] =
Vp, p) > (counteg(l] = V;,1) forever. Finally, if counteg[p] is not bounded, then,
by Lemma 48(2), there is a time after whicbunteg[p] > counteg|l] = V| (because
counteg(p|] is unbounded and monotonically nondecreasing). In all&9eholds.

Hence, the algorithm in Figure 8.4 satisfies Property 8 itesyS,y. |

8.4.3 A Third Algorithm

We present here a third aggregator election and data aggmegégorithm for the local
level. Contrary to the previous algorithm, it does not regiany sensor to communicate
directly with the rest, but only the existence of a multi-Hogirectional path from some
correct sensor to the rest of the sensors. Also, similarigedirst algorithm, sensors do
not need to know the identifiers of the rest of the sensors wvarack. We assume that
there exists an unknown bouddon message delay, and that the execution of each line
of the algorithm requires at mogttime units.

The sensor chosen as aggregator at sepgothe sensor with the minimum associ-
ated value oMembership, denoted bynin{Membership}, using the sensor identifier
to break ties. The algorithm uses the varialdlembership to store the identifiers of
the different sensors seen so far containing a set of tuyples, one for each known
sensor, wherg is the sensor identifier ands roughly the number of times that sensors

have suspecteql

8.4. Local (Intra-Region) Level

161

Every sensor p executes the following

procedureupdateleader()

(1)

leader, < sensor imin{Membership}, using identifiers to break ties

end procedure

Initialization:

(2) incrementncarnation, by 1 in stable storage

(3) read {ncarnatiory) from stable storage

(4) Membership « {(p,incarnatior)}

(5) leadep«+p

(6) starttasks1,2and3

Task 1:

(7) loop forever

(8) datay, < acquire sensed data

(9 broadcast (lam-ALIVE, p, Membership, datay)

(20) wait(k)

Task 2:

(11) upon reception ofmessage (lxM-ALIVE, g, Membership, data,)
with q # p for the first timedo

(12) broadcast (aM-ALIVE, g, Membershig, data,)

(13) V(r,—) € Membershig:

(14) if (r,—) ¢ Membership then

(15) Membershig <— MembershiguU {(r,v)} : (r,v) € Membershig

(16) createTimery(r) andTimeoup|r]

(17) Timeoup[r] < k +incarnatior,

(18) reseflimery(r) to Timeoup|r]

(19) else

(20) replace ilfMembershipg (r,v) by (r, max{v,V'}) : (r,v) € Membershig

(21) end if

(22) reseflimery(q) to Timeoup|q]

(23) updateleader()

(24) if [leader, = p] then

(25) collectdatay

(26) end if

Task 3:

(27) upon expiration of Timer,(q) do

(28) replace irMembership (q,v) by (,v+ 1)

(29) Timeoup[q] < Timeoup[q] + 1

(30) reseflimery(q) to Timeoup|q]

(31) updateleader()

Figure 8.5: Intra-region aggregator election and dataegggion (Alg. III).

162 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Figure 8.5 presents the pseudocode executed by each semsoritws up. The
algorithm is the collection of instances of this pseudocode, one for each sensor in
the system. In Task 1, sensors broadcast messages pdhothciy to become the
aggregator, as well as to send their sensed data, with adp@tyoof k. Every message
sent by a sensap contains the setlembershig anddata,. In Task 2, if a sensop
receives a messageAM-ALIVE , g, Membershig, datay) with g # p for the first time,
it re-broadcasts the message to attempt reaching all tte@iseaf the region, updates
Membership based orMembershig (Lines 13-21), and resefBimery(q). Then,p
calls the procedurapdateleader(). Finally, if p is the aggregator, it collectiata,.

In Task 3, if Timery(q) expires before a new AM-ALIVE message frong is re-
ceived, therp “suspects’g. It replaces irMembership (q,v) by (q,v+ 1), increments
Timeoup[q], resets the timer and calispdateleader(). Observe that, ifg has not
crashed, upon reception of the next message fppm will increment its associated

counter inMembershipg.

The number of messages sent during a data acquisition gafaslquadratic in the
number of sensors in the regi@(n?), since every sensor broadcasts one message by

Task 1, and sensors re-broadcast received messages.

Correctness Proof

Regarding the correctness proof of this algorithm, obs#raeit is very similar to the
one in the previous section. The main differences are (1uthke@own membership
and, (2) contrary to the previous algorithm, now we only isgthe existence of a
multi-hop bidirectional path from some correct sensoi§ghe rest of the sensors. The
first question (1) is addressed with a non-decreasing meshipefiembershipg) and
dynamically created timers, while the second (2) is overebmre-broadcasting every

message that a sensor receives for the first time (Line 12).

8.5. Global (Inter-Region) Level 163

8.5 Global (Inter-Region) Level

As described in Figure 8.6, all the aggregators cannot lysaammunicate directly
among them in order to collect all the data sensed in therdifteregions of the wide-
area WSN. However, we assume that every pair of aggreganrsammmunicate, either
directly or indirectly (by re-broadcast). Based on thisuasgtion, we implement an
aggregator election and data aggregation algorithm fogtbleal (inter-region) level.
Figures 8.7 and 8.8 present the pseudocode executed byeyedr svhen it is up. The
algorithm is the collection of instances of this pseudocode, one for each sensor in the
system.

The algorithm is an adaptation of the first algorithm for tbedl level, but executed
only among the aggregators of the different regions to sétecsuper-aggregator and to
collect data of the whole sensor network. As in the first atgor for the local level, we
assume that aggregators do not need to know the identifiéne oést of the aggregators
in advance. With this algorithm, all the aggregators wileseas super-aggregator the
aggregator with the minimum incarnation number, using thgregator identifier to
break ties. Interestingly, the algorithm allows differeagions to execute any of the

three algorithms for the local (intra-region) level.

Figure 8.6: Large WSN divided in regions (only aggregatoesstiown).

The algorithm uses the variablesiperleader,, incarnatiorsyperieader and also

164 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Every sensor p executes the following

Initialization (for both intra- and inter-region):
(1) if [intra-region algorithm is Ithen

(2 add the following instruction t&oToHibernation) (after Line 1):
(3) write (supetleader, incarnationyperieader TimeoutSupep) to stable storage
(4) execute the Initialization of Algorithm | (Lines 4-16 kigure 8.2):
(5) read guperleader, incarnationyperieader TimeoutSupep) from stable storage
(6) else

(7 if [intra-region algorithm is IIthen

(8) execute the Initialization of Algorithm Il (Lines 2-9 igure 8.4):
(9 else if[intra-region algorithm is llllthen

(20) execute the Initialization of Algorithm Il (Lines 2i6 Figure 8.5):
(112) end if

(12) supetleader < p

(13) incarnationyperjeader < incarnation

(14) TimeoutSupep <— AoperaTion incarnation,

(15) endif

(16) starttasks4,5,6and 7

Task 4:

(17) loop forever

(18) if [leadet, = p] then

(29) received from_super< FALSE

(20) if [supetleader, = p] then

(21) if [intra-region algorithm is Ithen

(22) waite time units

(23) end if

(24) broadcasti{AM-THE-SUPERLEADER, P, incarnatiory)

(25) else

(26) resetimer_supeg, to TimeoutSupep

(27) end if

(28) end if

(29) waitApperaTiontime units

Figure 8.7: Inter-region algorithm (Part I).

8.5. Global (Inter-Region) Level 165

Task 5:
(30) upon reception ofmessagel{AM-THE-SUPERLEADER, g, incarnatior)
with g # p for the first timedo

(31) if [leader, = p] then

(32) if [incarnationy < incarnationyyperleaded Or
[(incarnationy = incarnationsyperleader) and @ < supetleaden)] then

(33) supetleaden +— q

(34) incarnationyperjeader <— iNcarnationy

(35) broadcast{AM-THE-SUPERLEADER, ¢, incarnatior)

(36) broadcast{IGEST, p)

(37) received from_super+ TRUE

(38) end if

(39) end if

Task 6:

(40) upon reception ofmessage{IGEST, g) with q # p for the first timedo

(412) if [leader, = p] then

(42) if [supetleader, = p] then

(43) collectDIGEST

(44) else

(45) broadcast{IGEST, q)

(46) end if

47 end if

Task 7:

(48) upon expiration of timer_supey, do

(49) if [leader, = p] then

(50) if [received from_super= FALSH then

(51) supetleader, p

(52) incarnationyperleader <— iNcarnationy

(53) TimeoutSupep < TimeoutSupep+ ArimeouT

(54) end if

(55) end if

Figure 8.8: Inter-region algorithm (Part I1).

166 Chapter 8. Aggregator Election and Data Aggregation in WSNs

TimeoutSupep. When executed on top of the intra-region Algorithm | (Aly.these
variables are read from stable storage during the execotithe initialization, and writ-
ten in stable storage upon the execution of @@l oHibernatior) procedure; other-
wise, they are initialized to the valug@sincarnatior, andAoperaTiont incarnatior,
respectively.

The proposed hierarchical algorithm works under the foll@assumptions:

e Eventually, there is a timely path (possibly with multipleds) from the super-
aggregator to the rest of the aggregators, as well as frony eggregator to the

super-aggregator.

e The timeAoperaTIONIS S€t to a value such that eventually (1) the message broad-
cast by the super-aggregatorAM-THE-SUPERLEADER) reaches the rest of the
aggregators, and (2) tmGEST message broadcast by every aggregator reaches

the super-aggregator.

e ApaTaAcquisiTion=> AoperaTionif this algorithm is executed combined with

the first local-level algorithm (Alg. 1).

The cost of the algorithm, measured as the number of messageduring an op-
eration period, is quadratic in the reduced number of agdoeg @gg) to agree on a
unique super-aggregat@(agg’) messages. This compares favourably to the case in
which the WSN is composed of a unique region, where the costduvoe quadratic,
O(n?) messages, in the total number of sensnys (

Observe that with this algorithm only aggregators agreehencdommon super-
aggregator. Regular sensors (either eventually up or biedtavould not agree on the
common super-aggregator. By one hand, since they are noggaggrs within their re-
spective regions, they do not disturb the super-aggregétotion. On the other hand,
due to the hierarchical structure of our implementatiors gufficient that just the ag-

gregators agree on a common super-aggregator.

8.6. Energy-Aware Aggregator Election and Data Aggregatio 167

Correctness Proof

The correctness proof of this algorithm is similar to the ohéhe algorithm in Fig-
ure 8.2. The main difference is the absence of direct comeation among all the
sensors in the network, and the existence of a path betwesy pair of aggregators.
Due to this, the messages received for the first time by evggsegator are re-broadcast

in order to reach the super-aggregator.

8.6 Energy-Aware Aggregator Election and Data Aggre-

gation

From the hierarchical approach we have followed, we comgidle energy levels for
broadcasting messages, which correspond to the enerdg @dvihe intra-region and
the inter-region messages respectively. Graphicallylspgathe radius of the biggest
circles in Figure 8.3 and the small circles in Figure 8.6 heedame. Assuming that the
distance between adjacent aggregators is approximatelg thhe radius of a region, we
have that the energy level of inter-region messages muspp®@mately four times
that of intra-region messages. However, the number of-neigion messages is usually
small with respect to the total number of messages.

In the algorithms presented so far, eventually the aggoeg&nsor remains as ag-
gregator until the end of its battery. Taking into accouat the battery of a sensor that
acts as aggregator decreases faster than the battery oflarregnsor (see Figure 8.9), in
order to prevent the full depletion of the aggregator'sdrgita battery depletion thresh-
old can be introduced. When the aggregator detects a béterlybelow the depletion
threshold, it induces the system to select another aggneghis way the aggregator
preserves some energy to act as a regular sensor.

Figure 8.10 presents the proposed modification, consigtirgnew task that pe-

168 Chapter 8. Aggregator Election and Data Aggregation in WSNs

300000

250000 4

200000 - Regular sensor

150000 -

ttery energy

Adg. /Reg. sensor (threshold =40%)
Aggregator

L B e L e e e e L s A s e s e B e
1 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Number of operation periods

Figure 8.9: Battery life comparison for a sensor.

riodically checks if the sensor is the aggregator of itsagrgand its battery level has
dropped below the threshold. If it is the case, then the sansmeases either its incar-
nation number (in the case of the first local-level algoritfumits suspicion counter (in

the case of the second and third local-level algorithms).

Task O:

(1) loop forever

) if [leader, = p] and[getBatteryLevé)) < THRESHOLDthen
(Alg. 1) incarnatiory, <— incarnatiory + 1

(Alg. 1N countep[p] +— countep[p]+1

(Alg. 1) replace inMembershig (p, v) by (p, v+1)

4 wait(y)

Figure 8.10: Using a battery depletion threshold.

The selection of a certain threshold determines the QoSeofMBN, measured as
the number of sensors that will remain active during a givenog of time, provided
the existence of a common aggregator. For a desired numlaatioé sensors during
a certain period, and according to sensors energy consomptie can determine the
associated threshold. The potential risk of this strategyus when, due to a battery
level below the threshold, all the sensors start increagiag incarnation number or
suspicion counter. When this happens, sensors could sethtteshold to 0%, and the
network can continue working properly, but without such Qupf@rantee, until the end

of the battery of all the sensors.

8.6. Energy-Aware Aggregator Election and Data Aggregatio 169

The use of a threshold provides an energy-aware aggredatioa mechanism,
since it allows a balanced depletion of the batteries ofwedl{communicated) correct
sensors of each region. As a consequence, the number ofrs¢habremain active
during a given period of time increases, which is a relevan® @heasure in sensor

networks.

170 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Chapter 9

Conclusions and Future Work

Contents
9.1 Research Assessment o v e 172
9.2 FutureWork 173

171

172 Chapter 9. Conclusions and Future Work

9.1 Research Assessment

In this dissertation we have studied, for the first time, tieeQa failure detector in the
crash-recovery model. More specifically, we have focusetherdesign of algorithms
that implement this failure detector in models of partiahdyrony subject to crash-
recovery failures. This research has led to four major dountions.

The redefinition of the Omega failure detector for the crashrecovery model
The definition of Omega is well suited to the crash model, beah be improved in
the crash-recovery model. The definition of Omega does hketitdo account unstable
processes and hence they are allowed to permanently désaqfiecorrect processes,
which can be a serious drawback. For this reason we have ddfie®mega,1 and
Omega,, failure detectors. Basically, th®@mega,, failure detector establishes that
correct processes and unstable processes, when up, el agthe same correct leader.
With the Omega,1 failure detector, unstable processes do not trust any gsageon
recovery and if they trust a process it will be the correctié&ga TheOmega,» failure
detector requires a system where processes have acceddéssbrage whil®megar;
does not.

A collection of algorithms that implement Omega, Omegacr; or Omegacr. Our
main contribution is a set of eight distributed algorithimattwork in (slightly) different
systems where processes are subject to crash-recovemgfailn this context, we have
reflected on the limits of the synchrony required to impleh@mega;; andOmega,».
With regard to efficiency, we have implemented two commuiocaefficient algo-
rithms: one forOmegg,1 in a system without stable storage, based on nondecreasing
local clocks; and another f@mega;2 where processes have access to stable storage.

Two algorithms implementing eventually perfect failure ddectors. In the pro-
posed distributed systems, subject to crash-recovemyrés] it is not possible to im-
plement a failure detector of the classP. Basically, in such a system we cannot

distinguish an unstable process from an eventually upéctrprocess that has not yet

9.2. Future Work 173

stabilized. For this reason, we have defined €té.; and CPy_, failure detectors,
which satisfy weaker properties but which are achievabtééncrash-recovery model.
In addition, we have presented two algorithms implementifity, andOPy_qr. The al-
gorithms rely strongly on the use of the leader electioniseprovided by th®©mega,»
failure detector.

Three aggregator election and data aggregation algorithmgor wireless sensor
networks. A wireless sensor network, WSN, can be seen as a distribystem subject
to crash-recovery failures. On this basis, we have buikedhrierarchical aggregator
election and data aggregation algorithms for large WSN#ypof our implementations

of the Omega, failure detector.

9.2 Future Work

The research carried out has led us to raise new questionsich we hope to work.
We comment below on the direction of our research in the neard.

New Consensus algorithms.Properties satisfied by thHemega,; and Omega»
failure detectors can be used to implement Consensus thigin the crash-recovery
failure model. 1t would be interesting to work on the desigiefficient Consensus algo-
rithms based on our implementations of Dmega,1 andOmega,» failure detectors.

New Omega for different system modelsOur interest in Omega leads us to study
it in other distributed system models. With regard to thé&ufai models, the most ap-
pealing are the Byzantine and the omission failure models.

The Byzantine failure model allows processes to behavérarity. Processes can
crash, crash and recover, deviate from the algorithm, dfisidg, lie and can even
behave maliciously; i.e. as an adversary that tries to nfakalgorithm or protocol fail.
This means that applications that are tolerant to Byzaritiheres can be used in real

systems that are open to the general public, such as thaétter

174 Chapter 9. Conclusions and Future Work

The omission failure model is more restrictive than the lenaesovery model be-
cause, basically, it does not consider that a process cah aral recover, thus losing its
status. There is increasing interest in this model becauseiseful for studying secu-
rity related problems. If we consider a system composed ttigted processes which
are equipped with trusted devices that allow the signing essages, the failures that a
malicious adversary can introduce would be limited to diogsigned messages. With
this approach it would be possible to reduce some securitgl@ms usually studied
in the Byzantine failure model, such as secure multi-pastygutation [126] and fair
exchange [60], to canonical distributed problems, such@ssénsus, in the omission
model [39].

Nowadays there is an increasing demand for applicatiortsatlwv collaboration
and information sharing or acquiring in wide area systentss nvolves a potentially
huge number of distributed users and nodes, and, thereforenderlying large-scale
distributed system. In such a system, fault tolerance sndiss and the study of Omega,
focusing on scalability and performance, is of great irgere

Finally, we should not forget that computing devices areob@ng more and more
portable and that this portability must be supported by iappbns. This type of dis-
tributed system can be modelled as a system wijthamic membership.e. where
processes cgoin andleavethe system.

Application of failure detectors. As we have seen in this dissertation, failure de-
tectors in general and Omega in particular can be used asiatbasolve problems
other than Consensus. It would be interesting to study tipiicability of Omega, 1
and Omegar» to existing agreement problems in the area of distributestiesys, e.g.

k-set agreement [33] and atomic commit [68, 120].

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

The free on-line dictionary of computingttp: //foldoc.org/.

M. Aguilera, W. Chen, and S. Toueg. Heartbeat: A TimeBrge Failure Detector
for Quiescent Reliable Communication.Pnoceedings of the 11th International

Workshop on Distributed Algorithms (WDAG'9prages 126-140, 1997.

M. Aguilera, W. Chen, and S. Toueg. Failure Detection &whsensus in the
Crash-Recovery ModeDistributed Computingl13(2):99-125, 2000.

M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and @&€g. On implementing
omega in systems with weak reliability and synchrony asgiomsg. Distributed
Computing21(4):285-314, October 2008.

M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and Su&g. Stable Leader
Election. InProceedings of the 15th International Symposium on Distat
Computing (DISC’01)pages 108-122, Lisbon, Portugal, October 2001. LNCS
2180, Springer-Verlag.

M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and $u&g. On implement-
ing omega with weak reliability and synchrony assumptidnsProceedings of
the 22nd ACM Symposium on Principles of Distributed ComguiirODC’03)
pages 306—314, Boston, Massachusetts, July 2003.

175

176

Bibliography

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and $u&g. Communication-
efficient leader election and consensus with limited linkdyony. InPro-
ceedings of the 23rd ACM Symposium on Principles of Distethl@Computing
(PODC’04), pages 328—-337, St. John’s, Newfoundland, Canada, Jul. 200

M. Aguilera and S. Toueg. Failure Detection and Randatan: A Hybrid
Approach to Solve ConsensuSIAM J. Comput.28(3):890-903, 1998.

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. CayirdVireless sensor

networks: A surveyComputer Networks38(4):393—422, March 2002.

J. Al-Karaki, R. Ul-Mustafa, and A. Kamal. Data aggréga in wireless sensor
networks - Exact and approximate algorithms. Aroceedings of IEEE Work-
shop on High Performance Switching and Routing (HPSR’pdyjes 241-245,
Phoenix, Arizona (USA), April 2004.

Y. Amir and J. Stanton. The Spread Wide Area Group Compation System.
Technical Report CNDS 98-4, Johns Hopkins University, 1998

J. Aspnes. Fast deterministic consensus in a noisy@mwient. InProceedings
of the 19th ACM Symposium on Principles of Distributed CamgyPODC’00)
pages 299-308, 2000.

J. Aspnes. Randomized protocols for asynchronousssmus Distributed Com-
puting, 16(2-3):165-175, 2003.

H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, arid. Reischuk. Achiev-
able cases in an asynchronous environmentPrioceedings of the 28th Sym-
posium on Foundations of Computer Science (FODG'g@pes 337-346. IEEE
Computer Society Press, October 1987.

Bibliography 177

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Bounds the Time to
Reach Agreement in the Presence of Timing Uncertaidournal of the ACM
41(1):122-152, 1994.

O. Babaoglu and S. Toueg. Non-Blocking Atomic CommitmeBlistributed
Systemspages 147-166, 1993.

A. Basu, B. Charron-Bost, and S. Toueg. Simulating &#é Links with Un-
reliable Links in the Presence of Process CrashesPratceedings of the 10th
International Workshop on Distributed Algorithms (WDAG)9pages 105-122,
1996.

M. Ben-Or. Another Advantage of Free Choice: CompletAkynchronous
Agreement Protocols (Extended Abstract) Pimceedings of the 2nd ACM Sym-
posium on Principles of Distributed Computing (PODC’88ages 27-30, 1983.

P. Bernstein, V. Hadzilacos, and N. Goodm&uncurrency Control and Recov-
ery in Database SystemAaddison-Wesley, 1987.

O. Biran, S. Moran, and S. Zaks. A Combinatorial Chageeation of the Dis-
tributed Tasks Which Are Solvable in the Presence of OnetyF&ubcessor. In
Proceedings of the 7th ACM Symposium on Principles of igteid Computing
(PODC'88), pages 263-275, 1988.

O. Biran, S. Moran, and S. Zaks. Tight Bounds on the RoGodplexity of
Distributed 1-Solvable Task3.heor. Comput. Sgi145(1-2):271-290, 1995.

K. Birman and T. Joseph. Reliable communication in thespnce of failures.
ACM Transactions on Computer Syste®(d):47-76, February 1987.

G. Bracha and S. Toueg. Asynchronous Consensus andi@si@aProtocols.

Journal of the ACM32(4):824-840, 1985.

178 Bibliography

[24] J. Burns, M. Gouda, and R. Miller. Stabilization and ir$& Stabilization Dis-
tributed Computing7(1):35—-42, 1993.

[25] M. Castro and B. Liskov. Practical Byzantine fault t@lece and proactive re-
covery.ACM Trans. Comput. SysR0(4):398-461, 2002.

[26] T. Chandra, V. Hadzilacos, and S. Toueg. The Weakesiredbetector for Solv-
ing Consensuslournal of the ACM43(4):685-722, July 1996.

[27] T. Chandra, V. Hadzilacos, S. Toueg, and B. CharrontBOs the impossibility
of group membership. IRroceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing (PODC’96pages 322—-330, New York,
NY, USA, 1996. ACM.

[28] T. Chandra and S. Toueg. Unreliable Failure DetectorsReeliable Distributed
SystemsJournal of the ACM43(2):225-267, 1996.

[29] J. Chang and N. Maxemchuk. Reliable Broadcast Proto@CM Trans. Com-
put. Syst.2(3):251-273, 1984.

[30] B. Charron-Bost. Comparing the Atomic Commitment arwh€e2nsus Problems.

Future Directions in Distributed Computingages 29-34, 2003.

[31] B. Charron-Bost and A. Schiper. Uniform consensus reléathan consensug.
Algorithms 51(1):15-37, 2004.

[32] B. Charron-Bost and A. Schiper. The Heard-Of model: patimg in distributed
systems with benign fault®istributed Computing22(1):49-71, 2009.

[33] S. Chaudhuri. More Choices Allow More Faults: Set Carsses Problems in

Totally Asynchronous Systemif. Comput, 105(1):132—-158, 1993.

Bibliography 179

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

W. Chen, S. Toueg, and M. Aguilera. On the quality of sswof failure detec-
tors. IEEE Transactions on Computefsl:13—-32, 2002.

Y. Chen, A. Liestman, and J. Liu. Energy-Efficient Datggkegation Hierar-
chy for Wireless Sensor Networks. Rroceedings of the 2nd International
Conference on Quality of Service in Heterogeneous Wiradl®gis Networks
(QSHINE’'05) page 7, Lake Buena Vista, Florida (USA), August 2005. IEEE

Computer Society Press.

G. Chockler, S. Gilbert, and B. Patt-Shamir. CommutiacaEfficient Prob-
abilistic Quorum Systems for Sensor Networks. Rroceedings of the 4th
IEEE Conference on Pervasive Computing and Communicatioskshops
(PerCom’06 Workshopspages 111-117, Pisa, Italy, March 2006. IEEE Com-
puter Society.

B. Chor and C. Dwork. Randomization in Byzantine agreatm Randomness
and ComputationAdvances in Computer Researéi43—-497, 19809.

F. Chu. Reducing Omega t0)V. Information Processing Letter§7(6):289—
293, September 1998.

R. Cortiflas, F. Freiling, M. Ghajar-Azadanlou, A. uahte, M. Larrea,
L. Draque, and |. Soraluze. Secure Failure Detection intédRals. IrProceed-

ings of the 9th International Symposium on Stabilizatiafefy, and Security of
Distributed Systems (SSS’Qpages 173-188, 2007.

F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomia&@dcast: From Sim-
ple Message Diffusion to Byzantine Agreemehtf. Comput, 118(1):158-179,
1995.

X. Défago, A. Schiper, and P. Urban. Total order bicast and multicast algo-
rithms: Taxonomy and surveACM Comput. Sury36(4):372-421, 2004.

180 Bibliography

[42] C. Delporte-Gallet, S. Devismes, and H. FauconnierblBb Stabilizing Leader
Election. InProceedings of the 9th International Symposium on Stalbidin,
Safety, and Security of Distributed Systems (SSS¥iges 219-233, 2007.

[43] E. Dijkstra. Self-stabilizing Systems in Spite of Dibuted Control. Commun.
ACM, 17(11):643-644, 1974.

[44] D. Dolev. The Byzantine Generals Strike AgainAlgorithms 3(1):14-30, 1982.

[45] D. Dolev, C. Dwork, and L. Stockmeyer. On the Minimal $jnonism Needed
for Distributed Consensudournal of the ACM34(1):77-98, January 1987.

[46] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failubetectors in Omission
Failure Environments. IfProceedings of the 16th ACM Symposium on Princi-
ples of Distributed Computing (PODC’9f)age 286, Santa Barbara, California,
USA, August 1997.

[47] D. Dolev, N. Lynch, S. Pinter, E. Stark, and E. Weihl. Bleiag approximate
agreement in the presence of fault3ournal of the ACM (33):499-516, July
1986.

[48] P. Dutta and R. Guerraoui. Fast Indulgent Consensul ¥#ro Degrada-
tion. In Proceedings of the 4th European Dependable Computing @Gorde
(EDCC’02), pages 191-208. Springer-Verlag, 2002.

[49] P. Dutta, R. Guerraoui, and B. Pochon. Fast Non-Blogldtomic Commit: An
Inherent Trade-offiInformation Processing Letter81(4):195-200, 2004.

[50] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in thesence of Partial
Synchrony.Journal of the ACM35(2):288-323, April 1988.

Bibliography 181

[51]

[52]

[53]

[54]

[55]

[56]

[57]

R. Ekwall, A. Schiper, and P. Urban. Token-based AmBiioadcast using Un-
reliable Failure Detectors. IRroceedings of the 23th International Symposium
on Reliable Distributed Systems (SRDS,@8ges 52—65, 2004.

P. Ezhilchelvan, D. Palmer, and M. Raynal. An Optimaloic Broad-
cast Protocol and an Implementation Framework. Pmceedings of the 8th
IEEE International Workshop on Object-Oriented Real-Tibependable Sys-
tems (WORDS’03pages 32-39, 2003.

P. Feldman and S. Micali. An Optimal Probabilistic Alghm For Synchronous
Byzantine Agreement. IRroceedings of the 16th International Colloquium on
Automata, Languages and Programming (ICALP;88ges 341-378, 1989.

A. Fernandez, E. Jiménez, and S. Arévalo. Minimat8yn Conditions to Im-
plement Unreliable Failure Detectors. Rroceedings of the 12th Pacific Rim
International Symposium on Dependable Computing (PRDC'B&ges 63—72,
2006.

A. Fernandez, E. Jiménez, and M. Raynal. Eventuatee&lection with Weak
Assumptions on Initial Knowledge, Communication Relidghjland Synchrony.
In Proceedings of the IEEE International Conference on Depblel Systems
and Networks (DSN’O6pages 166—178, Philadelphia, Pennsylvania, June 2006.

A. Fernandez and M. Raynal. From an Intermittent RotaStar to a Leader.

In Proceedings of the 11th International Conference on Pples of Distributed
Systems (OPODIS’0/pages 189-203, Guadeloupe, French West Indies, De-
cember 2007. LNCS 4878, Springer-Verlag.

M. Fischer. The consensus problem in unreliable disted systems (a brief

survey).Foundations of Computation Thegrd58:127-140, 1983.

182

Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

M. Fischer, N. Lynch, and M. Merritt. Easy Impossihyl®roofs for Distributed
Consensus ProblemBistributed Computingl(1):26—39, 1986.

M. Fischer, N. Lynch, and M. Paterson. Impossibilityl@ittributed Consensus
with One Faulty Processournal of the ACM32(2):374-382, 1985.

F. Freiling, M. Herlihy, and L. Draque. Optimal Randa®ad Fair Exchange with
Secret Shared Coins. IAroceedings of the 9th International Conference On

Principles Of Distributed Systems (OPODIS’0pages 6172, 2005.

F. Freiling, C. Lambertz, and M. Majster-Cederbaum.ddlar Consensus Algo-
rithms for the Crash-Recovery Model. Rroceedings of the 10th International
Conference on Parallel and Distributed Computing, Appgiieas and Technolo-

gies (PDCAT’09)pages 287—-292, 20009.

E. Gafni. Round-by-Round Fault Detectors: UnifyingnSiirony and Asyn-
chrony (Extended Abstract). Proceedings of the 17th Annual ACM Symposium
on Principles of Distributed Computing (PODC’98)ages 143-152, 1998.

E. Gafni and L. Lamport. Disk Paxos. Rroceedings of the 14th International

Conference on Distributed Computing (DISC’0pages 330—344, 2000.

R. Golding and K. Taylor. Group membership in the epidestyle. Technical
Report UCSC-CRL-92-13, University of California at Santauf; Santa Cruz,
CA, USA, 1992.

R. Guerraoui. Reuvisiting the relationship between NBacking Atomic Com-
mitment and Consensus. Iroceedings of the 9th International Workshop
on Distributed Algorithms (WDAG’'95pages 87-100, Le Mont-Saint-Michel,
France, September 1995. LNCS 972, Springer-Verlag.

Bibliography 183

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

R. Guerraoui, M. Hurfin, A. Mostéfaoui, R. Oliveira, aynal, and A. Schiper.
Consensus in Asynchronous Distributed Systems: A Concisded Tour. Ad-

vances in Distributed Systepmages 33-47, 1999.

R. Guerraoui and P. Kouznetsov. On the Weakest Failged@or for Non-
Blocking Atomic Commit. InProceedings of the 2nd International IFIP Con-
ference on Theoretical Computer Science (TCS’payes 461-473, 2002.

R. Guerraoui, M. Larrea, and A. Schiper. Non-Blockingpiic Commitment
with an Unreliable Failure Detector. Rroceedings of the 14th Symposium on
Reliable Distributed Systems (SRDS'9igges 41-51, Bad Neuenahr, Germany,
September 1995.

R. Guerraoui, R. Olivera, and A. Schiper. Stubborn Camioation Chan-
nels. Technical Report CNDS-98-2cole Polytechnique Fédérale de Lausanne,
Switzerland, 1996.

R. Guerraoui and M. Raynal. The Information Structuréndulgent Consensus.
IEEE Transactions on Computes3(4):453—-466, April 2004.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcastsrelated problem®is-
tributed Systems (2nd Edpages 97-145, 1993. Expanded version appeared as
a Technical Report TR94-1425, Department of Computer $eieGornell Uni-
versity, Ithaca, NY, 1994.

J. Halpern and Y. Moses. Knowledge and Common KnowledgeDistributed
Environment. InProceedings of the 3th Annual ACM Symposium on Principles
of Distributed Computing (PODC’84pages 5061, 1984.

K. Hatzis, G. Pentaris, P. Spirakis, V. Tampakas, antaR. Fundamental control

algorithms in mobile networks. IRroceedings of the 11th ACM Annual ACM

184

Bibliography

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Symposium on Parallel Algorithms and Architectures (SBAApages 251-260,
March 1999.

W. Heinzelman, A. Chandrakasan, and H. Balakrishnarer@y-Efficient Com-
munication Protocol for Wireless Microsensor Networks Phoceedings of the
Hawaiian International Conference on Systems Science $3/00) pages 35—
42, January 2000.

F. Hu, X. Cao, and C. May. Optimized Scheduling for Datggfegation in
Wireless Sensor Networks. Froceedings of the International Conference on
Information Technology: Coding and Computing (ITCC'08plume 2, pages
557-561, Las Vegas, Nevada (USA), April 2005. IEEE Comp8tariety.

M. Hurfin, A. Mostéfaoui, and M. Raynal. Consensus inyAshronous Sys-
tems Where Processes Can Crash and Recove&yriiposium on Reliable Dis-
tributed Systems (SRDS'9®pnges 280-286, West Lafayette, Indiana, USA, Oc-
tober 1998.

M. Hurfin and M. Raynal. A Simple and Fast Asynchronousi§€ansus Protocol

Based on a Weak Failure Detectbistributed Computingl2(4):209-223, 1999.

M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Chasing theesltest System
Model for Implementing Omega and Consend&€E Transactions on Depend-
able and Secure Computing(4):269-281, 2009.

E. Jiménez, S. Arévalo, and A. Fernandez. ImpleimngrtheQ Failure Detector
with Unknown Membership and Weak Synchrony. Technical ReRoSaC—
2005-2, Universidad Rey Juan Carlos, Spain, January 2005.

E. Jiménez, S. Arévalo, and A. Fernandez. Implemegninreliable failure detec-
tors with unknown membershignformation Processing Letter400(2):60-63,
2006.

Bibliography 185

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

|. Keidar and S. Rajsbaum. On the Cost of Fault-Tole@orisensus When There
Are No Faults - A Tutorial. IfProceedings of the 1st Latin-American Symposium

in Dependable Computing (LADC’03)ages 366—368, 2003.

B. Krishnamachari, D. Estrin, and S. Wicker. The ImpattData Aggregation

in Wireless Sensor Networks. FProceedings of the 22nd International Confer-
ence on Distributed Computing Systems, Workshop on DiséibEvent-Based
Systems (DEBS’02)ages 575-578, Vienna, Austria, July 2002. IEEE Computer
Society.

M. Kumar, L. Schwiebert, and M. Brockmeyer. Efficientt®aggregation Mid-
dleware for Wireless Sensor Networks.Rroceedings of the First International
Conference on Mobile, Ad-Hoc, and Sensor Systems (MAS$digps 579-581,
Ft. Lauderdale, Florida (USA), October 2004. IEEE Comp®&ieciety Press.

L. Lamport. The part-time parliamem\CM Transactions on Computer Systems
16(2):133-169, May 1998.

L. Lamport. Paxos made simpI8IGACT News32(4):18-25, 2001.

L. Lamport. Lower bounds for asynchronous consensugchiiical Report
MSRTR-2004-72, Microsoft Research, 2004.

L. Lamport, R. Shostak, and M. Pease. The Byzantine @Géneroblem ACM
Trans. Program. Lang. Sys#(3):382-401, 1982.

M. Larrea, A. Fernandez, and S. Arévalo. Optimal lerpentation of the Weak-
est Failure Detector for Solving Consensus. Pimceedings 19th IEEE Sym-
posium on Reliable Distributed Systems (SRDS'@pages 52-59, Nurnberg ,
Germany, 2000.

186

Bibliography

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

M. Larrea, A. Fernandez, and S. Arévalo. On the impatation of unreliable
failure detectors in partially synchronous systentSEE Transactions on Com-
puters 53(7):815—-828, July 2004.

M. Larrea, A. Fernandez, and S. Arévalo. Eventualbn€istent Failure De-
tectors. Journal of Parallel and Distributed Computing5(3):361-373, March
2005.

M. Larrea and A. Lafuente. Brief announcement: Commation-efficient im-
plementation of failure detector classe® and< P. In Proceedings of the 19th
International Symposium on Distributed Computing (DI}, (pages 495496,
Krakow, Poland, September 2005. LNCS 3724, Springer-yerla

S. Lindsey and C. Raghavendra. PEGASIS: Power-effigathering in sensor
information systems. IRProceedings of the IEEE Aerospace Conferemages
1125-1130, March 2002.

S. Lindsey, C. Raghavendra, and K. Sivalingam. Dateh&atg Algorithms
in Sensor Networks Using Energy MetriclEEE Transactions on Parallel and
Distributed Systemd4.3(9):924-935, 2002.

N. Lynch. Distributed AlgorithmsMorgan Kaufmannl1996.

D. Malkhi, F. Oprea, and L. Zhou. Omega Meets Paxos: kedtlection
and Stability Without Eventual Timely Links. IRroceedings of the 19th In-
ternational Symposium on Distributed Computing (DISC/Q&gges 199-213,
Krakow, Poland, September 2005. LNCS 3724, Springer-gerla

D. Malkhi, F. Oprea, and L. Zhou. Omega Meets Paxos: ked&lection and
Stability Without Eventual Timely Links. Technical Rep®&iSR-TR-2005-93,
Microsoft Research, 2005.

Bibliography 187

[97]

[98]

[99]

[100]

[101]

[102]

[103]

C. Malloth. Conception and Implementation of a Toolkit for Building Fau
Tolerant Distributed Applications in Large Scale NetworkhD thesisEcole

Polytechnique Fédérale de Lausanne, Switzerland, 1996.

N. Malpani, J. Welch, and N. Vaidya. Leader Election édighms for Mobile Ad
Hoc Networks. InProceedings of the 4th International Workshop on Algorghm
and Methods for Mobile Computing and Communicatjqagyes 96—103, August
2000.

S. Masum, A. Ali, and M. Bhuiyan. Asynchronous Leadegdion in Mobile Ad
Hoc Networks. IrProceedings of the 20th International Conference on Adgdnc
Information Networking and Applications - Volume 2 (AIN&)Qpages 827-831,
2006.

L. Moser, P. Melliar-Smith, and V. Agrawala. Procesbtembership in Asyn-
chronous Distributed System&EE Trans. Parallel Distrib. Syst5(5):459-473,
1994.

A. Mostéfaoui, E. Mourgaya, and M. Raynal. Asynctoas Implementation
of Failure Detectors. IProceedings of the IEEE International Conference on
Dependable Systems and Networks (DSN'@2yges 351-360, San Francisco,
California, June 2003.

A. Mostéfaoui, E. Mourgaya, M. Raynal, and C. TraveksTime-free Assump-
tion to Implement Eventual Leadershiparallel Processing Letterd 6(2):189—
208, 2006.

A. Mostéfaoui and M. Raynal. Leader-Based Consen®fgallel Processing
Letters 11(1):95-107, 2001.

188

Bibliography

[104]

[105]

[106]

[107]

[108]

[109]

[110]

A. Mostéfaoui, M. Raynal, and C. Travers. Time-Frad aimer-Based Assump-
tions Can Be Combined to Obtain Eventual LeadershifEE Transactions on

Parallel and Distributed System$7(7):656—-666, July 2006.

J. Neander, E. Hansen, M. Nolin, and M. Bjorkman. Asyatric Multihop Com-
munication in Large Sensor Networks. Pnoceedings of the International Sym-
posium on Wireless Pervasive Computing (ISWPG'®juket, Thailand, Jan-
uary 2006.

R. Oliveira. Solving consensus: from fair-lossy channels to crashwegoof
processesPhD thesisEcole Polytechnique Fédérale de Lausanne, Switzerland,
2000.

R. Oliveira, R. Guerraoui, and A. Schiper. Consenauke crash-recover model.
Technical Report TR-97/239, Swiss Federal Institute ohhetogy, Lausanne,
1997.

V. Park and M. Corson. A Highly Adaptative Distribut&buting Algorithm
for Mobile Wireless Networks. IfProceedings of the 16th IEEE International
Conference on Computer Communications (INFOCOM'®&ges 1405-1413,
April 1997.

S. Patil and S. Das. Serial data aggregation usingesfiiing curves in wireless
sensor networks. IfProceedings of the 1st International Conference on Em-
bedded Networked Sensor Systems (SenSy$@8es 326—327, Los Angeles,
California (USA), November 2003. ACM Press.

M. Pease, R. Shostak, and L. Lamport. Reaching agnmeim¢he presence of
faults. Journal of the ACM27(2):228-234, April 1980.

Bibliography 189

[111] S. Pleisch, O. Ritti, and A. Schiper. On the Specifcabf Partitionable Group
Membership. InProceedings of the 7th European Dependable Computing Con-
ference (EDCC’08)pages 37-45, 2008.

[112] B. Przydatek, D. Xiaodong Song, and A. Perrig. SIA:.sednformation aggre-
gation in sensor networks. Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems (SenSysa@f#s 255—-265, Los Angeles,
California (USA), November 2003. ACM.

[113] M. Rabin. Randomized Byzantine GeneralsPhoceedings of the 24th Sympo-
sium on Foundations of Computer Science (FOCS’'Ba8yes 403—-409, 1983.

[114] M. Raynal. Eventual Leader Service in Unreliable Adyronous Systems: Why?
How? In Proceedings of the 6th IEEE International Symposium on biétw

Computing and Applications (NCA'QHages 11-24, 2007.

[115] L. Sabel and K. Marzullo. Election Vs. Consensus in #dyonous Systems.

Technical Report TR95-1488, Cornell University, Ilthaca93.

[116] N. Santoro and P. Widmayer. Time is Not a Healer.Plceedings of the 6th
Symposium on Theoretical Aspects of Computer Science B88®)Jages 304—
313, 1989.

[117] A. Schiper. Early Consensus in an Asynchronous Systéma Weak Failure
Detector.Distributed Computing10(3):149-157, 1997.

[118] A. Schiper and S. Toueg. From Set Membership to Groumbtship: A Sepa-
ration of ConcernslEEE Trans. Dependable Sec. Comp8{1):2—-12, 2006.

[119] F. Schneider. Implementing Fault-Tolerant Servitksing the State Machine
Approach: A Tutoria ACM Comput. Sury22(4):299-319, 1990.

190

Bibliography

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

D. Skeen. Nonblocking Commit Protocols. Pnoceedings of the International
Conference on Management of Data (SIGMOD;8§#9ges 133-142, 1981.

S. Toueg. Randomized Byzantine Agreement$risceedings of the 3th Annual
ACM Symposium on Principles of Distributed Computing (PCH3f; pages
163-178, 1984.

P. Tsuchiya. The Landmark Hierarchy: A new hierarabwyrbuting in very large
networks. InProceedings of the ACM Special Interest Group on Data Contmun
cation (SIGCOMM’88) pages 35—-42, 1988.

K. Vaidyanathan, S. Sur, S. Narravula, and P. Sinh&a Bggregation techniques
in sensor networks. Technical Report 11/04-TR60, The OkabveSJniversity,
November 2004.

S. Vasudevan, J. Kurose, and D. Towsley. Design andyAisof a Leader Elec-
tion Algorithm for Mobile Ad Hoc Networks. IrfProceedings of the 12th Inter-
national Conference on Network Protocols (ICNP’Ogages 350-360, October
2004.

J. Widder and U. Schmid. The Theta-Model: achievingcsyony without
clocks. Distributed Computing22(1):29-47, 2009.

A. Yao. Protocols for Secure Computations (Extendedtract). InProceedings
of the 23th Symposium on Foundations of Computer SciencEHR2) pages
160-164, 1982.

A. Zamsky. A Randomized Byzantine Agreement Protagith Constant Ex-
pected Time and Guaranteed Termination in Optimal (Detastic) Time. In
Proceedings of the 15th Annual ACM Symposium on Principid3isiributed
Computing (PODC’96)pages 201-208, 1996.

