
THE OMEGA FAILURE DETECTOR

IN THE CRASH-RECOVERY MODEL

Dissertation for the degree of
Doctor of Philosophy presented by

Cristian Mart ı́n

Advisor

Mikel Larrea

Computer Architecture and Technology department
Computer Science Faculty

UNIVERSITY OF THE BASQUECOUNTRY

November, 2010

ISBN:  978-84-694-1126-1

”The aim of science is not to open the door to infinite wisdom,
but to set a limit to infinite error.”

Bertolt Brecht

”A theory is something nobody believes, except the person who made it. An
experiment is something everybody believes, except the person who made it.”

Albert Einstein

Acknowledgements

I am grateful to many people for help, both direct and indirect, in writing this thesis.

First, I would like to thank Dr. Mikel Larrea, my advisor and friend. Not only he

alwaystrustedme, but he is a greatmodelin the area of distributed systems. I would

like to express my gratitude to the members of the Distributed Systems Group at the

University of the Basque Country, and especially to RobertoCortiñas, for helping me in

many ways. Also, I would like to thank IKERLAN its support in the later stages of this

thesis.

En un plano más personal, me gustarı́a agradecer a mis padres su cariño y apoyo,

y en particular sus esfuerzos en todo lo referente a mi educación. Los cuentos, las

multiplicaciones, las figuras de papel, el ordenador MSX, elpiso de estudiantes... ¡Os

agradezco tantas cosas!

Y cómo no, me gustarı́a agradecer a Pakene, mi flor, toda la comprensión y la pa-

ciencia que me demuestra cada dı́a en las cosas importantes.

iv

Abstract

The design and verification of fault-tolerant distributed algorithms and applications are

complex tasks. In order to study them, several standard problems have been identified.

One of the most important isConsensus, the problem of a number of processes trying

to agree on a common decision. The Consensus problem can not be solved determinis-

tically in asynchronous systems where processes can crash.In order to circumvent this

impossibility Chandra and Toueg proposed theunreliable failure detectors.

In this dissertation we study, for the first time, theOmega, Ω, (unreliable) failure

detector in theCrash-Recovery System Model. More specifically we focus on the de-

sign of algorithms that implement this failure detector in models of partial synchrony

where processes can crash and later recover, in which Consensus has been proven to be

solvable.

We first redefine the Omega failure detector for the crash-recovery model. We de-

fine theOmegacr1 andOmegacr2 failure detectors for systems without and with stable

storage respectively. Then, we propose a set of eight distributed algorithms that work

in (slightly) different crash-recovery system models. With regard to efficiency, we have

implemented two communication-efficient algorithms, one for Omegacr1 and another

one forOmegacr2.

Additionally, we propose two algorithms implementing adaptations of the Eventu-

ally Perfect,3P, failure detector. In the crash-recovery model, it is not possible to

implement a failure detector of the class3P. For this reason, we have defined and

vi

implemented the3Pcr and3Pk−cr failure detectors, which satisfy weaker properties.

The algorithms rely heavily on the use of the leader electionservice provided by the

Omegacr2 failure detector. Finally, we propose three aggregator election and data ag-

gregation algorithms for wireless sensor networks built ontop of our implementations

of theOmegacr2 failure detector.

Resumen

El diseño y la verificación de algoritmos y aplicaciones distribuidas tolerantes a fallos

son tareas complejas. Para estudiarlas, se han identificadovarios problemas estándar.

Uno de los más importantes es elConsenso, el problema de varios procesos intentando

acordar una decisión común. El problema del Consenso no puede ser resuelto deter-

minı́sticamente en sistemas ası́ncronos donde los procesos pueden fallar. Para salvar

esta imposibilidad, Chandra y Toueg propusieron losdetectores no fiables de fallos.

En esta tesis estudiamos, por primera vez, el detector no fiable de fallosOmega, Ω,

en elmodelo de sistema de fallo-y-recuperación (Crash-Recovery). Más concretamente

nos centramos en el diseño de algoritmos que implementan dicho detector de fallos en

modelos de sincronı́a parcial donde los procesos pueden caer y luego recuperarse, para

los que se ha demostrado que el Consenso se puede resolver.

En primer lugar redefinimos el detector de fallos Omega para el modelo de fallo-

y-recuperación. Definimos los detectores de fallosOmegacr1 y Omegacr2 para sis-

temas sin y con memoria estable respectivamente. Seguidamente, proponemos un con-

junto de ocho algoritmos distribuidos que funcionan en modelos de sistema de fallo-

y-recuperación (ligeramente) diferentes. Respecto a la eficiencia, se han implementado

dos algoritmos eficientes en cuanto a comunicación (communication-efficient), uno para

Omegacr1 y el otro paraOmegacr2.

Además, proponemos dos algoritmos que implementan detectores de fallosEventu-

ally Perfect, 3P. En el modelo de fallo-y-recuperación, no es posible implementar un

viii

detector de fallos de la clase3P. Por ello, se han definido e implementado los detec-

tores de fallos3Pcr y 3Pk−cr, que satisfacen propiedades más débiles. Los algoritmos

están basados en el uso de un servicio de elección de lı́der, que es proporcionado por

el detector de fallosOmegacr2. Finalmente, proponemos tres algoritmos de elección de

agregadory agregacíon de datospara redes de sensores inalámbricas, construidos sobre

nuestras implementaciones del detector de fallosOmegacr2.

Contents

1 Introduction 1

1.1 Background . 2

1.1.1 Consensus . 5

1.1.2 Failure Detectors . 9

1.2 Motivation . 15

1.3 Summary of Contributions . 16

1.4 Thesis Outline . 17

2 Related Work 21

2.1 Introduction . 22

2.2 Failure Detectors in the Crash Model 22

2.2.1 The Eventually Timely Approach 23

2.2.2 The Message Pattern Approach 30

2.3 Failure Detectors in the Crash-Recovery Model 34

2.4 More about Failure Detectors .42

2.5 Solving Consensus . 43

3 General System Model 45

3.1 Definition of the General System Model 46

3.2 Omega in the Crash-Recovery Model52

ix

x CONTENTS

4 Omega in Crash-Recovery without Stable Storage 55

4.1 Introduction . 56

4.2 An Algorithm for SystemS1 . 57

4.2.1 Specific System Assumptions inS1 57

4.2.2 The Algorithm . 57

4.2.3 Correctness Proof . 60

4.3 On the Eventual Timeliness of Fair Lossy Links 66

5 Omega in Crash-Recovery with Stable Storage 69

5.1 Introduction . 70

5.2 An Algorithm for SystemS2 . 72

5.2.1 Specific System Assumptions inS2 72

5.2.2 The Algorithm . 73

5.2.3 Correctness Proof . 76

5.3 An Algorithm for SystemS3 . 80

5.3.1 Specific System Assumptions inS3 80

5.3.2 The Algorithm . 80

5.3.3 Correctness Proof . 83

5.4 An Algorithm for SystemS4 . 90

5.4.1 Specific System Assumptions inS4 90

5.4.2 The Algorithm . 91

5.4.3 Correctness Proof . 93

6 Communication-Efficient Omega Algorithms 95

6.1 Introduction . 96

6.2 Communication Efficiency Definitions 97

6.3 An Algorithm for SystemS5 . 98

6.3.1 Specific System Assumptions inS5 98

CONTENTS xi

6.3.2 The Algorithm . 99

6.3.3 Correctness Proof . 102

6.4 An Algorithm for SystemS6 . 105

6.4.1 Specific System Assumptions inS6 106

6.4.2 The Algorithm . 106

6.4.3 Correctness Proof . 107

6.4.4 Providing Instability Awareness112

6.5 An Algorithm for SystemS7 . 115

6.5.1 Specific System Assumptions inS7 115

6.5.2 The Algorithm . 116

6.5.3 Correctness Proof . 119

6.6 Relaxing Communication Reliability and Synchrony 122

7 From Omega to a3P Failure Detector 125

7.1 Introduction . 126

7.2 The3P Failure Detector in the Crash-Recovery Model 126

7.3 An Algorithm Implementing3Pcr in SystemS8 127

7.3.1 Specific System Assumptions inS8 127

7.3.2 The Algorithm . 130

7.3.3 Correctness Proof . 132

7.4 The3Pk−cr Failure Detector Class . 134

7.4.1 Defining3Pk−cr . 134

7.4.2 An Algorithm Implementing3Pk−cr in SystemS8 135

8 Aggregator Election and Data Aggregation in WSNs 141

8.1 Introduction . 142

8.2 Related Work . 143

8.3 System Model . 145

xii CONTENTS

8.3.1 Redefining the Omega Failure Detector 147

8.4 Local (Intra-Region) Level .147

8.4.1 A First Algorithm . 148

8.4.2 A Second Algorithm . 154

8.4.3 A Third Algorithm . 160

8.5 Global (Inter-Region) Level .163

8.6 Energy-Aware Aggregator Election and Data Aggregation. 167

9 Conclusions and Future Work 171

9.1 Research Assessment . 172

9.2 Future Work . 173

List of Figures

3.1 Example of paths. 51

4.1 An algorithm implementingOmegacr1 in systemS1. 59

4.2 Scenario 1: three eventually up, one eventually down, one unstable. . . 61

4.3 Scenario 2: three eventually up, one eventually down, one unstable. . . 61

4.4 Scenario 3: three eventually up, two unstable. 61

4.5 Scenario 4: three eventually up, two unstable. 68

4.6 Scenario 5: three eventually up, two unstable. 68

4.7 Scenario 6: three eventually up, two unstable. 68

4.8 Scenario 7: three eventually up, two unstable. 68

5.1 An algorithm implementingOmegacr2 in S2. 74

5.2 An algorithm implementingOmegacr2 in S3. 82

5.3 An algorithm implementingOmegacr2 in S4. 92

6.1 Scenario 8: three eventually up, one eventually down, one unstable. . . 99

6.2 A communication-efficientOmegacr2 algorithm inS5. 100

6.3 Scenario 9: three eventually up, one eventually down, one unstable. . . 106

6.4 A near-communication-efficientOmegaalgorithm inS6. 108

6.5 An algorithm implementingOmegacr1 in extendedS6. 114

6.6 A communication-efficientOmegacr1 algorithm inS7. 117

xiii

xiv LIST OF FIGURES

7.1 UsingOmegacr2 to build3Pcr. 128

7.2 TransformingOmegacr2 into3Pcr in S8. 129

7.3 TransformingOmegacr2 into3Pk−cr in S8 (Part I). 136

7.4 TransformingOmegacr2 into3Pk−cr in S8 (Part II). 137

7.5 UsingOmegacr2 and the knowledge ofk to build3Pk−cr. 138

8.1 System operation time-line (Algorithm I). 148

8.2 Intra-region aggregator election and data aggregation(Alg. I). 149

8.3 Sensor distribution in a region. .. . 154

8.4 Intra-region aggregator election and data aggregation(Alg. II). 155

8.5 Intra-region aggregator election and data aggregation(Alg. III). 161

8.6 Large WSN divided in regions (only aggregators are shown). 163

8.7 Inter-region algorithm (Part I). 164

8.8 Inter-region algorithm (Part II). 165

8.9 Battery life comparison for a sensor. 168

8.10 Using a battery depletion threshold. 168

List of Tables

1.1 Classes of unreliable failure detectors. 13

1.2 System models and algorithms. .18

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Contents

1.1 Background . 2

1.2 Motivation . 15

1.3 Summary of Contributions . 16

1.4 Thesis Outline . 17

1

2 Chapter 1. Introduction

1.1 Background

This dissertation is contextualized in the field of distributed systems and hence we will

start with a set of common definitions of this domain.

First of all we should know what a distributed system is. According to the free

on-line dictionary of computing [1] a distributed system is“A collection of (probably

heterogeneous) automata whose distribution is transparent to the user so that the system

appears as one local machine. This is in contrast to a network, where the user is aware

that there are several machines, and their location, storage replication, load balancing

and functionality is not transparent”.

The termautomataused in this formal definition refers to very diverse types of

devices such as computers, mobile phones, sensors... A typical example of a distributed

system is an automated banking system. A user can access an automated teller machine

(ATM) where transactions can be made, and every transactionmust be replicated on

several servers in different locations. Furthermore, different users could access the same

bank account at the same time from different ATMs. However, auser only deals with a

local ATM and she or he will probably never be aware of the distributed system beyond

the ATM.

In this dissertation we will repeatedly use the termprocess. We will call process to

a processor which is able to execute an algorithm. We do not care about the hardware

and software behind the process.

In relation to distributed systems we have the field of distributed computing. This

deals with distributed hardware and software systems that,emphasize the transparency

of the distribution, so that the user of an application at a given automaton (e.g. a com-

puter) is unable to distinguish between the local and the remote parts of the distributed

system. For this purpose, the software required for the distributed hardware deliberately

hides the distributed nature of the system.

In a distributed system, the logic of the algorithm that solves a particular problem

1.1. Background 3

must often be distributed among the components of the system. We will call an algo-

rithm designed to run on a distributed system adistributed algorithm. This dissertation

focuses on the design of distributed algorithms in the field of unreliable failure detectors,

which will be introduced later.

Nancy Lynch, one of the gurus in the area of distributed algorithms, wrote in her

seminal book [94]:

“A distributed algorithm is an algorithm designed to run on computer hardware

constructed from interconnected processors. Distributedalgorithms are used in vari-

ous application areas of distributed computing, such as telecommunications, scientific

computing, distributed information processing, and real-time process control. Stan-

dard problems solved by distributed algorithms include leader election, consensus, dis-

tributed search, spanning tree generation, mutual exclusion, and resource allocation.

Distributed algorithms are typically executed concurrently, with separate parts of

the algorithm being run simultaneously on independent processors, and having limited

information about what the other parts of the algorithm are doing. One of the major

challenges in developing and implementing distributed algorithms is successfully coor-

dinating the behaviour of the independent parts of the algorithm in the face of processor

failures and unreliable communications links. The choice of an appropriate distributed

algorithm to solve a given problem depends on both the characteristics of the problem,

and characteristics of the system the algorithm will run on such as the type and proba-

bility of processor or link failures, the kind of inter-process communication that can be

performed, and the level of timing synchronization betweenseparate processes.”

Although nowadays we should speak about intelligent or processing devices rather

than computer hardware, this definition, given in 1996, captures the essence.

Distributed systems can be modelled or defined making different assumptions about

system behaviour and/or features. We will call a distributed system with its particular

assumptions adistributed system model, system modelor justsystem. For instance, in

4 Chapter 1. Introduction

[45] Dolev et al. considered a distributed system composed of interconnected processors

with five key assumptions or parameters, each of which may or not be satisfied, making

a total of 25 = 32 system models.

One of the most important assumptions in which distributed system models can dif-

fer is related to timing aspects. In fact, most models focus on two timing attributes: the

time needed for a message sent by one process to reach its destination and be delivered

by another process; and the time taken by a process to executea part of the algorithm.

We can classify these attributes as synchronous, asynchronous or partially syn-

chronous, depending on the timing assumptions made. A timing attribute is synchronous

if there is aknownfixed upperboundon it; it is asynchronous if there isno boundon

it; and if it is neither synchronous nor asynchronous it is referred to as partially syn-

chronous.

With respect to the system models defined in terms of these attributes: a distributed

system model is considered asynchronous if at least one of the previous timing attributes

is asynchronous and is considered synchronous if both attributes are synchronous. Fi-

nally, if it is neither synchronous nor asynchronous then the distributed system model is

partially synchronous.

Another important assumption for a distributed system model concerns thefailure

typesthat can happen in it. Some well known process failure types are:

• Crash. Also known ashalting failureandcrash-stop. The process simply stops

forever. There is no way to detect the failure except by time out; it either stops

sending messages or fails to respond to requests.

• Crash-recovery. The process stops and later recovers.

• Fail-stop. A crash failure with some kind of notification to other processes.

• Omission. Failure to send and/or receive messages. They can be permanent or

transient.

1.1. Background 5

• Byzantine. This failure type encompasses several types of faulty behaviours in-

cluding data corruption or loss, failures caused by malicious programs, etc.

1.1.1 Consensus

In distributed systems, the design and verification of fault-tolerant (distributed) algo-

rithms and applications are considered complex tasks. In order to study the aforemen-

tioned tasks, several standard problems have been identified. One of the most important

is theConsensusproblem [57, 110]. Basically, Consensus algorithms solve the prob-

lem of a number of processes trying to agree on a common decision. More precisely, a

Consensus protocol must satisfy the four formal propertiesbelow:

(1) Termination: Every correct process decides some value.

(2) Uniform Integrity: Every process decides at most once.

(3) Agreement: No two correct processes decide differently.

(4) Validity: If a process decidesv, thenv was proposed by some process.

The Consensus problem has been studied extensively in different distributed system

models. The importance of Consensus relies on the fact that other agreement problems

such as atomic commitment [16, 19, 30, 49, 67, 68], group membership [11, 22, 27,

64, 72, 97, 100, 111, 118], and totally ordered broadcast (also known asatomicbroad-

cast) [22, 28, 29, 40, 41, 51, 52, 71, 119] can be reduced to some form of Consensus,

and hence solutions to these problems can be built on top of a Consensus algorithm.

It is well known that Consensus can be easily solved in a synchronous distributed

system [53, 127] because it is generally easy to reliably detect the process crashes using

time-outs. In an asynchronous distributed system, Fischeret at. showed in [59] that

Consensus cannot be solved deterministically if at least one process can fail, even by

crashing. This is known as theFLP impossibilityresult. Consequently, many problems

6 Chapter 1. Introduction

that require all processes to participate actively in the resolution are not deterministically

solvable in an asynchronous system [27, 59, 65, 115, 120].

Basically, the FLP impossibility is due to the fact that in asynchronous systems it is

not possible to distinguish a faulty process from a very slowone. This implies that in

such systems reliable failure detection is not possible.

Observe that although the asynchronous model is attractive, the impossibility of

deterministic solutions to the Consensus problem is a majordrawback when designing

fault-tolerant algorithms.

With regard to Consensus solvability [58], we can find several works about lower

bounds on what Consensus algorithms can achieve. In [86] Lamport reviews previous

works [31, 81] and presents new results. In summary, Lamportpresents two results:

a majority of processes is required to be correct to ensure progress; and if more than

one process is allowed to propose, it is required that more than two-thirds of the pro-

cesses are correct to reach a decision in two communication steps. These bounds show

a trade-off between resilience and the number of communication steps needed to solve

Consensus.

In order to circumvent the FLP impossibility result while solving Consensus, several

lines of research emerged, including the following:

• the definition of weaker problems than Consensus and their solution, as in [14,

20, 21, 47];

• the use ofrandomizationtechniques, as in [8, 13, 18, 37, 113, 121]; and

• the study of partially synchronous models, as in [15, 45, 50].

When using randomization techniques, the randomness can beintroduced to the

model in two ways. On the one hand, the model itself can be randomized. This means

that in a given state concrete operations only occur with some probability [12, 23]. This

approach is not very popular due to its limited practical applicability.

1.1. Background 7

On the other hand, there is a more realistic approach based onrandomized algo-

rithms that employ a degree of randomness as a part of their logic. Processes have

access to operations that return random values according tospecified probability distri-

butions that are used as additional inputs for different purposes. These operations, often

calledcoin-flips, are enough to overcome some impossibility results with an average

probability of 1, and can also be used to achieve good performance in the average case.

Deterministic algorithms, unlike randomized algorithms,always behave predictably:

i.e. given a particular input, they always produce the same output. However, this be-

haviour can cause a worse performance or the need to augment the system in order to

solve a particular problem.

The strategy followed in the study of partially synchronoussystems is to enhance

the asynchronous system to some extent in order to make Consensus, or any other dis-

tributed problem, solvable. In this way, some works have focused on the identification

of the minimum amount of synchrony required to solve Consensus in a distributed sys-

tem where processes can crash. The works discussed below consider distributed system

models composed of a finite set of processes that communicateby exchanging mes-

sages.

Dolev et al. in [45] delineate the boundary between solvability and unsolvability

of Consensus in a specific area of system models. They defined 32 different models

and identified fourminimalmodels in which Consensus is solvable. Roughly speaking,

they considered five critical parameters, that can be set to either favourable”F” or un-

favourable”U”. The 32 models correspond to particular settings of the five parameters,

i.e. 25 = 32. The critical parameters are:

(1) processors are synchronous ”F” or asynchronous ”U”,

(2) communication is synchronous ”F” or asynchronous ”U”,

(3) message order is synchronous ”F” or asynchronous ”U”,

8 Chapter 1. Introduction

(4) broadcast transmission ”F” or point-to-point transmission ”U”, and

(5) atomic receive/send ”F” or separate receive and send ”U”.

For example, one minimal instance that allows solving Consensus is a system model

where parameters (1) and (2) are favourable; i.e. there are synchronous processors and

synchronous communication. It is irrelevant whether the rest of the parameters are

unfavourable or favourable, because the solvability of theConsensus problem in the

distributed system model is guaranteed by the first two favourable parameters.

Dwork et al. [50] considered two models of partial synchrony. Basically, the first

model, referred to asM1 in some works, stipulates that in every execution there are

bounds on message transmission times and on relative process speeds, but these bounds

are not known a priori. The second model,M2, considers that these bounds are known

but they hold only after some unknown, but finite, time. In their work they showed that

Consensus can be solved in both models, assuming a majority of correct processes.

In [28] Chandra and Toueg presented the partially synchronous system modelM3,

composed of a set of processes that communicate by sending messages through commu-

nication links. The partially synchronous system modelM3 defines a new kind of partial

synchrony in which the timing attributes are bounded but thebounds are unknown and

only hold after an unknown but finite global stabilization time. In other words,M3

combines the characteristics ofM1 andM2.

More recently, Widder et al. presented the Theta-Model [125], which is a partially

synchronous model that allows synchrony to be achieved without clocks. In brief, the

asynchronous system is enhanced with a boundΘ on the ratio of the longest and shortest

end-to-end delays of messages that are in transit simultaneously. The boundΘ can be

unknown and can hold only after an unknown time that, as in other works, is called

the global stabilization time. They also prove that in this model it is possible to solve

Consensus and other distributed problems, even with Byzantine failures.

1.1. Background 9

In [32] a new and disruptive model is proposed: theHeard-of model, denoted by

HO. According to the authors, theHO model is inspired by [50, 62, 116]. Charron-Bost

and Schiper question three general assumptions in fault-tolerant distributed systems.

They consider that:

• The degree of synchrony and the failure model for processes and links should not

be independent parameters.

• Distinguishing between process failures and link failuresshould be avoided.

• The definition of Consensus should not refer to the process fault model.

Therefore, theHO model encapsulates the degree of synchrony and the fault model

in the same structure, and the distinction between process and link failures disappears.

The computation consists of asynchronous communication-closed rounds. In every

round each process sends a message to the rest of the processes and receives messages

from the other processes. If a message is not received in a round it is lost. At a process

p in a roundr the set of processes from whichp has received a message is called the

heard-of set, denoted byHO(p, r). Finally, they analyze previous results and Consensus

algorithms in their model.

1.1.2 Failure Detectors

As already mentioned, the solvability of some distributed problems, such as the Con-

sensus problem, depends largely on the possibility of detecting process failures. For

instance, in a synchronous system, a process can reliably detect if another process has

failed by the use of time-outs: a process can set one local timer to a known time-out

value, the upper bound on message delivery plus the maximum processing time. If

the timer expires, i.e. the time ends before the reception ofthe message, it means that

the other process has failed (assuming that communication is reliable). Hence, a reli-

able detection of failures is possible and the Consensus problem can be solved. In an

10 Chapter 1. Introduction

asynchronous system such a detection is not possible, making Consensus unsolvable.

However, as stated in the previous section a fully synchronous system is not mandatory

for solving Consensus and different solutions are given in order to circumvent the FLP

impossibility result.

Chandra and Toueg in [28] proposed an apparently alternative approach to over-

coming the FLP impossibility result by augmenting the asynchronous system with an

unreliable failure detector. Roughly speaking, an unreliable failure detector is a ser-

vice, often called anoracle, that provides information about the (crash) failures of the

processes that compose a system and it is implemented by a distributed algorithm. This

information can be erroneous at a given time, but the behaviour of the algorithm must

satisfy two properties. Depending on the properties that anunreliable failure detector

satisfies, it belongs to one or another of the eight differentclassesof unreliable failure

detectors they defined. They showed that Consensus can be solved in an asynchronous

system provided with any of the failure detectors they proposed.

Although at first sight unreliable failure detectors can seem a different line of re-

search from the study of partially synchronous systems, we consider they are not. The

failure detectors are defined in terms of two abstract properties calledcompletenessand

accuracy, but these properties cannot be implemented in an asynchronous system, as

the FLP impossibility states it is not possible to carry out any kind of reliable (crash)

failure detection in a pure asynchronous system. Hence, thesynchrony assumptions are

encapsulated inside the unreliable failure detector, possibly eliminating any reference to

timewhile solving Consensus. This line of research can be viewedas an abstract way

of incorporating partial synchrony assumptions in the system.

When dealing with the problem of implementing any class of unreliable failure de-

tector, we will have to make some synchrony assumptions. Therefore, although theo-

retically we can solve Consensus in an asynchronous system with an unreliable failure

detector, the system needs to be partially synchronous in order to implement the failure

1.1. Background 11

detector. Note that if we could solve Consensus deterministically in an asynchronous

system with the help of an unreliable failure detector that can also be implemented in an

asynchronous system, we would be contradicting the FLP impossibility result. On the

other hand, in a fully synchronous system we can easily buildreliableor unreliable fail-

ure detectors or even solve Consensus directly, without thehelp of an unreliable failure

detector.

In any case the use of unreliable failure detectors not only allows the Consensus

problem to be solved by providing implemented failure detectors to the Consensus al-

gorithm, but allows the study of the Consensus problem in pure asynchronous systems

by avoiding the references to time while solving it.

We will now present the unreliable failure detectors proposed by Chandra and Toueg

more formally. For the exact definition of the unreliable failure detectors please read the

seminal work [28]. They considered distributed failure detectors where each process

has access to a local failure detector module. Basically, the module maintains a local

list of processes that it currently suspects to have crashed. This list can change through

time and the failure detector module can even suspect processes that have not crashed

and include them in the list. When the module realizes that a process was erroneously

suspected, it just removes the process from the list. Thus, aprocess can be repeatedly

included and removed from a list. Different processes can suspect differently at a given

time and hence maintain distinct lists of suspected processes. In fact, a process that has

crashed may never be suspected, or a process that never crashes may be repeatedly sus-

pected. These erroneous suspicions correspond to a normal behaviour of an unreliable

failure detector.

Unreliable failure detectors are defined in terms of two abstract properties. Chan-

dra and Toueg present the implementation of an unreliable failure detector in a partially

synchronous system in [28], but just to demonstrate that implementing such an abstrac-

tion is possible. The properties that characterize an unreliable failure detectorclassare

12 Chapter 1. Introduction

completenessandaccuracy. Basically, completeness specifies the capacity of a failure

detector to suspect crashed processes and accuracy limits the mistakes of the failure de-

tector while suspecting. They present eight classes of failure detectors combining two

completeness and four accuracy properties.

The two completeness properties are:

(C.1) Strong completeness. Eventually every process that crashes is permanently sus-

pected by every correct process.

(C.2) Weak completeness. Eventually every process that crashes is permanently sus-

pected by some correct process.

As the completeness properties are easily implementable bypermanently suspecting

the other processes in the system, the accuracy property restricts the mistakes while

suspecting.

The four accuracy properties are:

(A.1) Strong accuracy. No process is suspected before it crashes.

(A.2) Weak accuracy. Some correct process is never suspected.

(A.3) Eventual strong accuracy. There is a time after which correct processes are not

suspected by any correct process.

(A.4) Eventual weak accuracy. There is a time after which some correct process is

never suspected by any correct process.

In a real distributed system it is very difficult to implementstrong accuracy and

weak accuracy properties, calledperpetual accuracyproperties, due to the mandatory

absence of mistakes from the beginning of the algorithm execution (at least on some

correct process in the case of the weak accuracy property). In fact, Larrea et al. in [89]

showed that it is not possible to implement them in the classical partially synchronous

1.1. Background 13

systemsM1, M2 or M3 where processes can crash. The implementation of theeventual

accuracyproperties is more natural, although failure detectors of the eight classes have

been studied.

Chandra and Toueg establish a hierarchy of failure detectorclasses. Roughly speak-

ing, a class includes the set of failure detectors that capture the same information about

process failures. In the hierarchy, if the information about process failures provided by

a failure detector of the classA includes the information provided by a failure detector

of the classB, we say that classA is stronger than classB. If we focus on the eventual

weak accuracy property, we can see from the definition that there is a time after which

at leastone correct process is never suspected by any correct process, while in the even-

tual strong accuracy propertyall the correct processes must eventually not be suspected.

Clearly, a failure detector that satisfies eventual strong accuracy also satisfies eventual

weak accuracy.

In Table 1.1 we can find the eight classes resulting from the combination of the

completeness and accuracy properties proposed by Chandra and Toueg in [28].

Completeness Accuracy
Strong Weak Eventual Strong Eventual Weak

Strong Perfect Strong Eventually Perfect Eventually Strong
P S 3P 3S

Weak Q W 3Q 3W

Table 1.1: Classes of unreliable failure detectors.

In their work, Chandra and Toueg stated that any unreliable failure detector that sat-

isfies weak completeness can be transformed into a failure detector that satisfies strong

completeness with the same accuracy property. Thus, the study of the failure detec-

tors was able to focus on those that satisfy the strong completeness property, which are

shown in the first row of Table 1.1.

However, they also demonstrated that the Consensus problemcan be solved with

a failure detector from any of the eight classes in a system with a majority of correct

14 Chapter 1. Introduction

processes. Hence the weakest failure detector that allows solving Consensus is the even-

tually weak3W satisfying that (1) eventually every process that crashes is permanently

suspected by some correct process, and (2) there is a time after which some correct pro-

cess is never suspected by any correct process.

With regard to this, in [26] Chandra et al. study the3W failure detector in-depth,

showing that it is the weakest failure detector for solving Consensus in an asynchronous

system with a majority of correct processes. In other words,any failure detector that

allows solving Consensus is at least as strong as the3W failure detector. In order

to prove this, they defined a new failure detector,Omega, also denoted asΩ in the

literature, which is equivalent to3W. The output of an Omega module at a processp

is the identity of a single processq that p considers to be correct. We can also say that

the processq is trustedby p. More formally, the Omega failure detector satisfies the

following property [26]:

There is a time after which all the correct processes always trust the same correct

process.

The property can be seen as aleader electionbecause, in brief, it states that the

correct processes eventually agree on the correctness of one process, the trusted process,

which can be considered an electedleader.

When Omega was defined for the first time it was referred to as the failure detector

Omega(Ω), and it has been referred to in this way in most of the works about it. We

have maintained this expression in this dissertation, although we consider it would be

more accurate to refer to it as thefailure detector class Omega. In any case, we will

usefailure detector (class) Omegato refer to the set of failure detectors that satisfy the

property indicated above. For easy of reading, we will oftenusealgorithm implementing

Omega, or Omega algorithmto refer to an algorithm that implements a failure detector

satisfying the property defined for Omega; i.e. an implementation of a failure detector

in the Omega class. For the same reason, we will sometimes useOmega in the wider

1.2. Motivation 15

sense of the term; i.e. to refer to the set of failure detectors that satisfy the properties

defined forOmega, Omegacr1 andOmegacr2, which will be presented later.

In order to prove the equivalence between Omega and3W we can describe the

transformation from Omega to3W and vice versa. The transformation of Omega

into3W is intuitive. A process that has access to an Omega module only has to suspect

all the processes except the process trusted by the Omega module in order to obtain

the list of suspected processes that satisfies the weak completeness and eventual weak

accuracy properties of3W. The transformation in the other direction, i.e. from3W to

Omega, is more complicated and can be found in [26, 38].

1.2 Motivation

At this point it would be appropriate to recall that the titleof this dissertation isThe

Omega Failure Detector in the Crash-Recovery Model. The type of failure considered

when Omega was defined was the crash failure. In this dissertation we study, for the

first time, the Omega failure detector in thecrash-recoveryfailure model.

Although the crash failure model is of great theoretical interest, the crash-recovery

failure model allows us to model more practical scenarios. For example, a real scenario

in which a process crashes and after a reboot of the computer the process continues from

a recovery point.

The study of Omega itself is significant because:

(1) Omega provides aleader electionservice; and

(2) it can be used for solving Consensus.

In this regard, the interest in Omega is shown by the number ofclassical and recent

works that can be found about algorithms implementing Omegaand algorithms using

Omega to solve Consensus and other problems. Some of these will be reviewed in

Chapter 2.

16 Chapter 1. Introduction

Furthermore, although not studied in this dissertation, algorithms proposed for the

crash-recovery model can be adapted to dynamic distributedsystems where processes

can intermittently join and leave the system.

1.3 Summary of Contributions

The main goal of this dissertation is to study the Omega failure detector in a crash-

recovery system model. More specifically, we focus on the design of algorithms that

implement this failure detector in models of partial synchrony subject to crash-recovery

failures. As a result, this research provides four major contributions.

• The redefinition of the Omega failure detector for the crash-recovery model.

The definition of Omega is well suited to the crash model, but it can be improved

in the crash-recovery model. The definition of Omega does nottake into account

unstable processes, i.e. processes that crash and recover infinitely often, and hence

they are allowed to permanently disagree with correct processes, which can be a

serious drawback. For this reason we have defined theOmegacr1 andOmegacr2

failure detectors. Basically, theOmegacr2 failure detector establishes that correct

processes and unstable processes, when up, will permanently agree on the same

correct leader. With theOmegacr1 failure detector, unstable processes do not trust

any process upon recovery, and if they trust a process it willbe the correct leader.

As we will see, theOmegacr2 failure detector requires a system where processes

have access to stable storage (or some equivalent mechanism) while Omegacr1

does not.

• A collection of algorithms that implement Omega, Omegacr1 or Omegacr2.

Our main contribution is a set of eight distributed algorithms that work in (slightly)

different system models where processes are subject to crash-recovery failures. In

1.4. Thesis Outline 17

this context, we have reflected on the limits of the synchronyrequired to imple-

mentOmegacr1 andOmegacr2. With regard to efficiency, we have implemented

two communication-efficient algorithms: one forOmegacr1 in a system without

stable storage, based on nondecreasing local clocks; and another forOmegacr2,

where processes have access to stable storage.

• Two algorithms implementing eventually perfect failure detectors. In the pro-

posed distributed systems, subject to crash-recovery failures, it is not possible to

implement a failure detector of the class3P. Basically, in such a system we can-

not distinguish an unstable process from an eventually up (correct) process that

has not yet stabilized. For this reason, we have defined the3Pcr and3Pk−cr

failure detectors which satisfy weaker properties but which are achievable in the

crash-recovery model. In addition, we have presented two algorithms implement-

ing 3Pcr and3Pk−cr. The algorithms rely strongly on the use of the leader

election service provided by theOmegacr2 failure detector.

• Three aggregator election and data aggregation algorithmsfor wireless sen-

sor networks. A wireless sensor network, WSN, can be seen as a distributed

system subject to crash-recovery failures. On this basis, we have built three hier-

archical aggregator election and data aggregation algorithms for large WSNs on

top of our implementations of theOmegacr2 failure detector.

Table 1.2 shows the system models and the algorithms proposed in this dissertation

implementing theOmega, Omegacr1 or Omegacr2 failure detectors.

1.4 Thesis Outline

In this chapter we have given an introduction to the topic of this dissertation.

In Chapter 2 we review the state of the art regarding the Omegafailure detector and

18 Chapter 1. Introduction

System Communication Stable Omega Known
Model Efficient Storage Property Membership

S1 No No Omegacr1 Yes
S2 No Yes Omegacr2 No
S3 No Yes Omegacr2 Yes
S4 No Yes Omegacr2 No
S5 Yes Yes Omegacr2 Yes

S6(1) Near No Omega Yes
S6(2) No No Omegacr1 Yes
S7 Yes No Omegacr1 Yes

Table 1.2: System models and algorithms.

related topics. Chapter 3 presents the general system modelon which our work is based

and the redefinitions of Omega for the crash-recovery model (Omegacr1 andOmegacr2).

In Chapter 4, a first algorithm implementingOmegacr1 in the crash-recovery model

is given, where processes do not have access to stable storage. Chapter 5 presents three

algorithms implementingOmegacr2 in three different crash-recovery systems where pro-

cesses have access to stable storage.

In Chapter 6 we present four new algorithms, which are very efficient from the

point of view of communication. The first algorithm, which uses stable storage, imple-

mentsOmegacr2. The second algorithm, which does not use stable storage, implements

Omega. An adaptation of this second algorithm, which avoids the disagreement of un-

stable processes by providing instability awareness, is also presented. This algorithm

is slightly less efficient, but implementsOmegacr1 without stable storage. Finally, we

present a communication-efficient algorithm that implements Omegacr1 without stable

storage, using nondecreasing local clocks.

In Chapters 7 and 8 we study the use of Omega in the crash-recovery model. Chap-

ter 7 presents two algorithms implementing two eventually perfect failure detectors,

3Pcr and3Pk−cr, based onOmegacr2. These algorithms use the leader election ser-

vice provided by the Omega failure detector. In Chapter 8 we propose three aggregator

1.4. Thesis Outline 19

election and data aggregation algorithms for wireless sensor networks. These algorithms

are built on top of our implementations of theOmegacr2 failure detector.

Finally, in Chapter 9 we conclude the dissertation and outline our future work.

20 Chapter 1. Introduction

Chapter 2

Related Work

Contents

2.1 Introduction . 22

2.2 Failure Detectors in the Crash Model 22

2.3 Failure Detectors in the Crash-Recovery Model 34

2.4 More about Failure Detectors . 42

2.5 Solving Consensus . 43

21

22 Chapter 2. Related Work

2.1 Introduction

In this chapter we review the state of the art in relation to the Omega failure detector.

There are hundreds of works that we deem interesting in one way or another but we try

not to lose sight of the topic of this thesis: deterministic models and implementations

of the Omega failure detector in message passing distributed systems subject to crash-

recovery failures. In this regard our work is the first that studies Omega in the crash-

recovery model. Nevertheless, Omega has been studied intensively in crash models and

hence these studies will form the core of this chapter, together with studies on other

unreliable failure detectors.

2.2 Failure Detectors in the Crash Model

Consensus is a canonical problem in which given an initial value at several processes,

they agree upon a common value. As we saw in the previous chapter the FLP impossi-

bility result led to the emergence of several lines of research, including the research on

unreliable failure detectors.

In the previous chapter we saw the unreliable failure detectors proposed by Chandra

and Toueg in [26, 28]. Other works have proposed failure detectors that satisfy different

properties to the ones in these papers. In fact, the number ofworks that implement

unreliable failure detectors in a message passing distributed system with crash failures

is so great that it is not feasible to review the majority of them here.

This variety of failure detectors is due to the search for weaker and weaker system

models in which Consensus or some kind of weaker agreement problem are solvable.

In this respect, there are many works that solve Consensus inan asynchronous system

with the help of an unreliable failure detector.

The importance of the Omega failure detector derives from the fact that it provides

a leader election service that allows circumvention of the FLP result in asynchronous

2.2. Failure Detectors in the Crash Model 23

distributed systems with a minimum amount of synchrony.

As the topic is closely related, we would like to point out several works on solving

Consensus with the help of an Omega failure detector or a leader election service [25,

48, 63, 70, 84, 85, 90, 103].

We can find several works in the literature focused on the implementation of Omega

in distributed system models subject to crash failures; i.e. where processes fail and

do not recover. Most of these are focused on the design of efficient algorithms and

the reduction of the level of reliability and synchrony required in the system. A good

introductory paper on Omega is [114].

In order to achieve this reduction, two different approaches have been followed.

Both approaches consist of enhancements to the system that allow implementing Omega.

The first, which is usually called thetimer-basedor eventually timely link approachas-

sumes that some communication links in the system are timelyand reliable in some

way; i.e. they satisfy some time-related properties. The other, called themessage pat-

tern approach, is a very different approach that does not rely on timing assumptions.

The communication requirements of the system are stated in aproperty of the message

exchange pattern, which allows the implementation of Omega.

In the following two subsections we start with algorithms that implement unreliable

failure detectors of the classes proposed by Chandra and Toueg [28], which can be trans-

formed into Omega, and then we continue with increasingly evolved implementations

of Omega; i.e. implementations that are more efficient and/or require a smaller amount

of synchrony.

2.2.1 The Eventually Timely Approach

There are several algorithms implementing Omega using an eventually timely link ap-

proach. Among them, we can include most of the algorithms that implement the even-

tually perfect class of failure detectors,3P, since Omega can be easily obtained from

24 Chapter 2. Related Work

it. Roughly speaking,3P satisfies that there is a time after which every correct pro-

cess maintains the same list of suspected processes. If every correct process chooses

as its leader the un-suspected process with the lowest identifier, we have that every cor-

rect process trusts the same correct process, theleader, thus satisfying Omega. The

algorithms implementing3P in [28, 89, 91] assume that every pair of processes (p,

q) is connected by two unidirectional communication linksp→ q andq→ p, with all

the links beingeventually timely, i.e. eventually all messages are delivered within an

unknown time bound.

The first3P algorithm, proposed in [28], periodically sends a quadratic number of

messages. In [89] Larrea et al. showed that the four perpetual failure detector classes,

W, S,Q, andP, cannot be implemented in the partially synchronous systemsubject to

crash failures considered in their work and in [28], where Consensus is implementable.

The conclusion is that it is harder to solve the perpetual failure detector problem than

Consensus, at least in the type of partially synchronous systems studied widely. In their

paper, Larrea et al. propose a family of algorithms that implements the four classes

of failure detectors proposed by Chandra and Toueg that satisfy eventual accuracy in a

partially synchronous system; i.e.3W, 3S, 3Q and3P. The algorithms are based on

a strategic arrangement of the processes of the system in a logical ring where, basically,

each process only monitors another process by exchanging messages with it. Although

the synchrony required is high, they reduce the number of links that periodically carry

messages to 2n in the worst case, beingn the number of processes in the system.

In [91], Larrea et al. presented an optimization of their previous algorithms for the

classes3Q and3P, achieving communication-efficiency, i.e. eventually only n links

carry messages periodically. Basically, every process in the algorithm has a predecessor

and a successor. A processp sends a message to its successor and expects to periodically

receive aheartbeatmessage from its predecessorq. If the processp does not receive

the expected message, it informs the predecessor ofq, the processr, that it must send

2.2. Failure Detectors in the Crash Model 25

the heartbeat messages top, instead of to the processq. Later, if p receives a message

from q, this means that processq is alive and hencep sends a message to informr that

it must send messages toq again.

To the best of our knowledge, the first algorithm implementing Omega in a par-

tially synchronous system was proposed in [88]. The authorspresented an algorithm

implementing Omega and through a simple transformation3S, which also requires all

links to be eventually timely. Basically, with this algorithm eventually only the correct

processp with the lowest identifier sends messages, because the rest of the correct pro-

cesses will not send messages while receiving periodic messages fromp. If the process

p fails, after an instability period, the next correct process with the lowest identifier will

be elected as the leader, sending periodic messages to the rest of the processes. The

number of links that carry messages periodically from the leader process to the rest of

the correct processes isn−1, which is optimal in this case, i.e. it is communication-

efficient.

Aguilera et al. proposed in [5] a communication-efficient Omega algorithm for dis-

tributed systems where some unknown correct process must have all its (incoming and

outgoing) links eventually timely, while all the other links can belossy asynchronous.

Messages sent through a lossy asynchronous link can be lost or arbitrarily delayed.

This algorithm is based on rounds. Basically, every processexecutes rounds (where

r = 1,2,3...) and in every round only one process is candidate to be the leader. In a

roundk, the candidate will be the process whose identifier isk mod n. Eventually, if

the candidate process of a roundk communicates in a timely way with the rest of the

processes it will remain as leader, and if it does not the round k+ 1 will be initiated

with a different process as candidate. In order to synchronize the rounds, the processes

exchange a succession of messages, but these messages are not periodic.

In [4], an extended version of [6], Aguilera et al. proposed three algorithms im-

plementing Omega. The first algorithm implements Omega in a partially synchronous

26 Chapter 2. Related Work

system with at least oneeventually timely source, which is a correct process whose

output links are eventually timely. The rest of the links in the system can be lossy asyn-

chronous. They also show that it is not possible to implementa communication-efficient

algorithm in such a system. The second algorithm implementsa communication-efficient

Omega in a system with at least one eventually timely source and at least onefair hub.

A fair hub is a correct process such that the links to and from that process arefair lossy.

These links may lose messages but they satisfy that if we partition messages into types

and messages of some type are sent infinitely often, then infinite messages of that type

are received.

The third algorithm is communication-efficient and it is implemented in a system

with at least one eventually timely source and where the restof the links arefair lossy.

We are not going to give the details of the algorithms, but in essence they are based on

punish counters. A processp with lossy asynchronous and/or fair lossy outgoing links

will be punished, i.e. anACCUSATIONmessage will be sent top when another process

detects a missing message fromp, incrementingp’s punish counter. Processes which

have eventually timely outgoing links to the rest of the correct process, e.g. eventually

timely sources, will not be punished because their messageswill be received timely.

With such a mechanism the processes eventually will agree onthe correct process with

the lowest associated punish counter.

In [7], Aguilera et al. proposed two algorithms for systems in which at mostf pro-

cesses can crash and there is at least one3 f -source, which is a correct process that has

at leastf eventually timely outgoing links. The first algorithm requires the rest of the

links to be fair lossy. Based on the information provided through the fair lossy links and

the knowledge ofn and f , the algorithm requires onlyf eventually timely links send-

ing messages periodically. As every process sends messagesperiodically, the number

of links that carry messages forever isO(n2) in the worst case. The second algorithm

requires all the links to be eventually timely andn> 2 f . Under these conditions, this

2.2. Failure Detectors in the Crash Model 27

algorithm achieves that eventually only one3 f -sourcesends messages throughf even-

tually timely links. The rest of the processes eventually stop sending messages.

In [95] Malkhi et al. implemented an Omega algorithm that requires a majority of

correct processes and the existence of at least one3 f -accessibleprocess, instead of

classic eventually timely links. Basically, a correct processp is 3 f -accessibleif there

is a knownδ and a timet, such that at any timet ′ > t there is a setQ(t ′) of f correct

processes,f being the maximum number of processes that can crash, such that any

message broadcast byp at timet ′ will receive a response message from each process in

Q(t ′) by timet ′+δ . The key point is the fact that the set of processesQ(t ′) can change

through time. The cost of this algorithm in terms of links used periodically isO(n2).

From this main algorithm, they go on to make an important improvement, presented in

a technical report with the same title [96], reducing the number of links that periodically

carry messages to 2n in the worst case, which isO(n).

The system models proposed by Aguilera et al. in [7] and by Malkhi et al. in [95]

are not comparable, and hence we can not establish that one requirement is stronger

than the other. The algorithm in [7] requires at least one3 f -sourceprocess, i.e. a

correct process that has at leastf eventually timely outgoing links and no correctness of

the f receivers, while the algorithm in [95] requires at least one3 f -accessibleprocess,

i.e. a correct process withf possibly changing bidirectional timely links, leading tof

possibly changing correct processes. It should be noted that a 3 f -accessibleprocess

allows for thef processes andf links to change over time, whereas with the3 f -source

the set off links is fixed.

Malkhi et al. justify the relevance of their system model from a practical point of

view. The Paxos protocol [84] which is the Consensus protocol, or algorithm, in which

its Omega algorithm is based, requires a single leader process to be able to receivef

response messages fromf different processes in order toterminatethe Consensus and,

similarly, their Omega algorithm requires that a single process, the leader, periodically

28 Chapter 2. Related Work

receivesf response messages fromf processes, which could change, to work properly.

Hutle et al. in [78] go a step further in the search for the minimum communica-

tion reliability and synchrony required to implement Omega. To this end they combine

the concept of3 f -source [7] with the concept of3 f -accessibility[95]. They imple-

ment Omega in a system model where all the links between processes are fair lossy,

except for the links from at least one process that will be a3moving-f-source. Basi-

cally, a3moving-f-sourceis a correct process for which eventually, every time it sends

a message to the rest of the processes, at leastf messages reach their destination pro-

cess timely; i.e. in a timely manner. The difference with respect to a3 f -sourcelies

in the set of links that carry timely messages; this is fixed ina 3 f -source, while in a

3moving-f-sourceit can change over time, as occurs with3 f -accessibility.

To the best of our knowledge, up to now the system model proposed in [78] is the

weakest of the models proposed that allow solving Omega following the eventually

timely approach. For that reason we will define the3moving-f-sourcemore formally.

A process is a3moving-f-sourceif it is correct and if there is a known boundδ and

a timet, such that at any timet ′ > t there is a setQ(t ′) of f correct processes, withf

being the maximum number of processes that can crash in a given execution, such that

any message sent or broadcast byp at timet ′ will reach each process inQ(t ′) by time

t ′+δ . The key point is the fact that the set of processesQ(t ′) can change through time.

Among the system models that allow the implementation of Omega based on an

eventually timely approach, we can distinguish those in which the initial knowledge of

processes is weak. More precisely, the system models presented in [55, 79, 80] assume

that the initial knowledge of each process about the system is limited to its identity and

the fact that identities are totally ordered. Initially, processes do not know about the

identity of the other processes of the system, the number of processes of the systemn,

or the maximum number of failures during the executionf . In some works, this lack of

knowledge of the processes in the system is calledunknown membership. In the works

2.2. Failure Detectors in the Crash Model 29

reviewed below, the communication between processes is made through an unreliable

broadcast primitive. When a process broadcasts a message, it sends the same message

through each of its outgoing links to all the processes reachable directly through these

links.

In [79], Jiménez et al. proposed an algorithm implementingOmega withunknown

membershipwhich requires that eventually all correct processes are reachable timely

from the correct process with the smallest identifier. The mechanism they use is in-

teresting although the connectivity assumptions are strong. In the worst case with this

algorithmO(n2) links carry messages periodically.

In [80], Jiménez et al. studied in greater depth the unreliable failure detectors in

systems with unknown membership. Interestingly, the unknown membership prevents

the implementation of a failure detector of any of the eight classes proposed by Chandra

and Toueg in [28]. As the authors reveal, it is not possible toimplement weak or strong

completeness because the processes, (or, more concretely,the modules of the failure

detectors at any process) cannot include in their list of suspected processes a process

that never sends a message. Such a process will remain unknown until the end of the

run and, hence, it will not be suspected by any other process.They also propose an

algorithm implementing Omega with unknown membership which requires that even-

tually all correct processes are reachable timely from somecorrect process. The rest of

the links are considered lossy asynchronous. The algorithmis based on punish coun-

ters. Basically, every process periodically sends a list ofthe processes it considers to be

alive, in the beginning only itself, and an associated punish counter that reflects approx-

imately the number of times the known process has been suspected. When a process

receives a message it re-sends the message and it includes all the processes that it does

not yet know in its membership list, setting a correspondingtimer. Then it updates its

punish counter, and it punishes itself by incrementingits punish counter in its own list

if it is not included in the received list. The key to the algorithm is thisself-punishment.

30 Chapter 2. Related Work

When a processp receives a punish list and it is not included in it, this meansthat the

sending process cannot receive the messagesp sends; hencep must not be the leader,

because the leader should reach every correct process in thesystem. With regard to the

cost, as every process re-sends the messages it receives once, in the worst case with this

algorithmO(n2) links carry messages periodically.

Fernández et al. proposed in [55] a system withunknown membershipwhere ev-

ery pair of processes is connected by two unidirectional fair lossy links, except for at

least one correct process whose outputs links to the rest of the correct processes must

be eventually timely. The algorithm they propose for implementing Omega in such a

system is communication-efficient, i.e. the number of linksthat carry messages forever

in the system isO(n).

2.2.2 The Message Pattern Approach

All the approaches previously considered assume partiallysynchronous system models,

where the implementations of Omega use time-outs, and consequently are timer-based.

The work in [101] proposes a different approach, called themessage pattern approach,

to implement the failure detector3S, which is easily transformable into Omega. This

does not rely on timing assumptions and time-outs but involves a knowledge of the

number of the processes in the system (n), the maximum number of processes that can

crash (f) and a property(PR).

They define a propertyPR for the message exchange pattern, which makes possible

the implementation of Omega in asynchronous distributed systems. We now study the

model proposed in greater depth. All the communication links are asynchronous but

reliable; i.e they do not alter, create or lose messages. Thesystem’s processes broadcast

query messages. Once a query has been broadcast the process waits and accepts the first

n− f corresponding message responses while discarding the restof the corresponding

messages, if any. A process can only broadcast new queries when the previous ones

2.2. Failure Detectors in the Crash Model 31

have beenterminated; i.e. when the sender receivesn− f response messages. Besides

the query-response pattern, Mostéfaoui et al. also definedthe following property in the

message exchange pattern that we will callPR:

There is a correct process pi and a set Q of f processes such that∀p j ∈Q, there is a

time after which pj crashes or every query of pj always gets responses from the process

pi , i.e. eventually the response messages of pi will be among the first n− f responses

received by every pj .

The algorithm works for any value off , with 1≤ f < n. Intuitively, every process

p j periodically sends a query. Once the query is terminated andp j has received the

correspondingn− f responses, wheref is the number of processes that did not respond

or which had their responses discarded. Thenp j will suspect thesef processes in order

to achieve completeness. By propertyPR, there will eventually be at least one process

pi for which its responses will be always received among the first n− f messages and

will therefore never be suspected. Thus,pi will eventually never be suspected, the lists

of suspected processes will not contain at least one common correct process, satisfying

eventual weak accuracy, and hence3S and indirectly Omega, are implemented. In

their work, Mostéfaoui et al. also make a probabilistic analysis in order to show that the

behavioural requirements in the message exchange pattern are met with high probability

when f = 1 with some assumptions. With regard to the cost of the algorithm, in the

worst case, the number of links that carry messages forever isO(n2).

The work of Mostéfaoui et al. in [102] continues the line of research on the Omega

failure detector by the definition of behavioural properties for the message exchange

patterns. Mostéfaoui et al. implement an explicit Omega algorithm in the model pre-

sented in [101], and they rewrite the behavioural property assumed in the system, to the

following:

There are a correct process p and a set Q of f processes such that p /∈ Q and

eventually the response of p to each query issued by any q∈ Q is always a winning

32 Chapter 2. Related Work

response (until -possibly- the crash of q).

As in the work in [101], processes broadcast queries and waituntil the receipt of

the corresponding responses. The firstn− f responses received are calledwinning

responseswhile the rest of the responses,f , are said to belosing responses. More pre-

cisely, the response messages that reach the receiver afterthen− f previous messages,

the messages that are lost, and even the responses that are not sent are said to belosing

responses. The algorithm is based on the previous work, and hence the cost associated

in terms of links that carry messages forever isO(n2).

The work in [104] combines the assumptions proposed in [101,102], with the

assumption in [7] in order to define a weaker system model where Omega is imple-

mentable. Subsequently, this hybrid system model combinesthe time-free assumptions

on the behaviour of the message exchange pattern with the synchrony assumptions on

the processing speed and message delay. More precisely, thesystem model requires the

following communication assumptions:

There is a correct process p (center of the star) and a set Q of fprocesses q, p/∈Q,

such that, eventually, either 1) each time it broadcasts a query, q receives a response

from p among the n− f first responses to that query, or 2) the channel from p to q is

timely. (The processes in the set Q can crash).

Similarly to the work in [102], the links in the system are reliable although a priori

asynchronous, the value off is such that 1≤ f < n, and the number of links that period-

ically carry messages isO(n2). The paper also includes an improved algorithm where

the communication properties are satisfied by directedpathsconnectingp andq instead

of direct links. Paths will be explained in more detail in Section 3.1, but basically a path

is composed of connected correct processes.

To the best of our knowledge, up to now the work in [56] presents the weakest system

that allows the implementation of Omega following the message pattern approach. The

authors present two algorithms that implement Omega in an asynchronous system that

2.2. Failure Detectors in the Crash Model 33

satisfy the properties (assumptions)A+, in the first algorithm, andA in the second. In

the system the links do not have any timing assumptions and are reliable; however, it is

said in this work that the algorithms are also correct considering fair lossy links.

The model with theA property, the weakest model proposed so far, is characterized

by the notion ofintermittent rotating f-start. An f-star is a set off +1 processes where

a processp is the center of a star and the rest of processes are the pointsof the star. The

property that satisfies thef-star, denoted byA in the paper, is described in two steps.

In the first step, the propertyA+ is defined; this is stronger thanA and satisfies the

following:

There is a correct process p and a round number RN0 such that, for each rn≥ RN0,

there is a set Q(rn) of f processes such that p/∈Q(rn) and for each process q∈Q(rn)

either (1) q has crashed, or (2) the message ALIVE(rn) sent by p is received by q at

mostδ time units after it has been sent (the corresponding boundδ can be unknown a

priori), or (3) the message ALIVE(rn) sent by p is received by q among the first n− f

ALIVE(rn) messages received by q (i.e. it is a winning message among ALIVE(rn)

messages received by q).

It is noteworthy that the setQ can change from one roundrn to another. As we can

see, the definition is a combination of assumptions presented in previous works, in both

timer-based and message pattern approaches. If we take intoaccount (1) and (2), the

property satisfied is a3moving-f-source[78]. However, taking into account (1) and (3)

the property satisfied is a moving version of the message exchange pattern assumption

presented in [104]. Thef-star is formed by thef processes inQ(rn), and the centerp.

The setQ(rn) can change at each round number, whilep can not, so we say thatp is the

center of a3rotating-f-star.

As has previously commented, they proved that in order to implement Omega the

propertyA, which is weaker thanA+, is sufficient. The propertyA assumes thatp only

will be the center of the3rotating-f-staran infinite subset of rounds that is not known

34 Chapter 2. Related Work

a priori. They called this configuration a3intermittent-rotating-f-star.

2.3 Failure Detectors in the Crash-Recovery Model

The related works commented on so far consider distributed systems subject to crash

failures, also called crash-stop failures; i.e. system models in which once a process

crashes it does not recover again. As we mentioned in the previous chapter, there are

more types of failures such as crash-recovery, omission andByzantine. One of the most

interesting is the crash-recovery model, where processes can crash and later recover by

rejoining the computation from a recovery point. This behaviour is especially common

for long-lived applications such as distributed operatingsystems, grid computing, or

web services and has been formalized as a failure model called crash-recovery. Hence,

in the crash-recovery model, processes can crash multiple times. After crashing (and

before crashing the next time), a process recovers from a predefined state.

The crash-recovery failure model is a strict generalization of the crash failure model;

i.e. every faulty behaviour allowed in the latter is also possible in the former. This means

that any impossibility result for the crash model also holdsin the crash-recovery model.

As a result, an algorithm designed for the crash-recovery model will work correctly in

a similar system model where processes are subject to crash failures, as this kind of

behaviour is also permitted in a system subject to crash-recovery failures. However, this

is not true in the other direction, due to the additional faulty behaviour considered in the

crash-recovery model.

When implementing unreliable failure detectors in a distributed system subject to

crash-recovery failures we must deal with new difficulties.The first is related to the

behaviour of the processes. In the crash-recovery model theprocesses are classified into

correctprocesses andincorrectprocesses. Correct processes, which some authors call

goodprocesses [3], are the processes that (eventually) do not crash:

2.3. Failure Detectors in the Crash-Recovery Model 35

• Always up. The subset of processes that never crash.

• Eventually up. The subset of processes that, after crashingand recovering a finite

number of times, remain up forever.

Incorrect processes, which some authors callbad processes, are the ones that either

crash and recover infinitely often or do not recover after a crash:

• Eventually down. The subset of processes that, after crashing and recovering

a finite number of times, remain down forever. Processes thatnever start their

execution are included in this subset.

• Unstable. The subset of processes that crash and recover an infinite number of

times.

As we can foresee unstable processes require change in perspective when designing

a new unreliable failure detector, due to the infinitely repeated crashes. In this regard,

we have two options in the crash-recovery model. We could include the process in the

list of suspected processes every time we detect its failureand remove it from the list

every time the process recovers. However, this option has animportant drawback. It

could happen that repeatedly:

(1) an application considers an unstable process as operational (correct);

(2) the application delegates a procedure or function to theunstable process; and

(3) the unstable process crashes before finalizing the task.

This behaviour will slow down the application and can even block the application if it

does not deal with the problem properly.

On the other hand, we would like the failure detector to suspect unstable processes

permanently, because we know they are incorrect. However, we have to take into ac-

count the existence of the eventually up processes, which after crashing and recovering

36 Chapter 2. Related Work

a finite number of times will remain up forever, with a correctbehaviour. Then, the

question is how can we distinguish an unstable process from an eventually up one? The

answer is simply that we cannot. This is because we cannot predict the future behaviour

of a process. Thus, at any time we do not know if a process is eventually up and has

definitely recovered or it is an unstable process that will crash and recover again and

again.

Another interesting issue is that every time a process crashes it loses its entire local

volatile state, i.e. the values of its variables, unless they are recorded in stable storage;

which is considered slow and expensive, especially if everyprocess saves its local state

to stable storage periodically. In this regard, Aguilera etal. in [3] proved that it is pos-

sible to implement failure detectors in the crash-recoverymodelwithout, and obviously

with, using stable storage.

Basically, by the use of stable storage we can weaken the synchrony, failure and

communication requirements of the system in which the failure detector is implemented

at the cost ofsomereading and writing operations in stable storage. However,the read-

ing and writing operations are expensive and they are not always available in real sys-

tems.

With regard to communication, we also have a new issue. How reliable is the link

to a process that can crash and recover? A common assumption is the one made in

this thesis: a message sent to a process that has crashed is lost. If a processp sends

a message to a processq that is up, butq crashes before completing its reception, the

message is also lost. Reliable links, such as the eventuallytimely links explained in

the next chapter, guarantee that a sent message is only received if the receiver does not

crash.

Another option is the use ofstubborn communication channels[69]. These chan-

nels, or links, allow reliable communication by resending amessage until the message is

received or the sender crashes. In order to avoid buffer overflow the definition assumes

2.3. Failure Detectors in the Crash-Recovery Model 37

that it is not possible to send a messagem′ through the stubborn channel if the reception

of a previous messagem is not assured. This work [69] presents an interesting review

about communication links [17, 94] and their properties.

Surprisingly, the number of works that consider a crash-recovery failure model is

small compared to other less realistic failure models such as the omission or the crash

failure models. We can find several works that provide Consensus algorithms for the

crash-recovery model by relying on the existence of an unreliable failure detector. A

good introductory work on Consensus in the crash and crash-recovery failure model is

[66].

In the works [46, 76, 107], the authors define adaptations of the3W and/or3S un-

reliable failure detector classes for the crash-recovery model and implement Consensus

protocols based on these new classes. However, no algorithmimplementing the failure

detectors is provided.

Dolev et al. in [46] consider crash-recovery as a special case of omission failures.

The Consensus algorithm they provide is not designed to handle unstable processes that

may intermittently communicate with correct processes. Inorder to prevent the data loss

inherent to the process crashes, they consider that at everystate transition the whole state

of the algorithm is saved to stable storage.

In [107], Oliveira et al. propose a Consensus algorithm thatrequires a failure de-

tector that eventually suspects unstable processes forever. It has been shown in [3] that

such a failure detector implies a loss of performance in manyscenarios. As in [46]

there is an intensive use of stable storage due to the storageof the whole state at every

transition.

Hurfin et al. in [76] also define a failure detector that eventually suspects unstable

processes forever. The writing to stable storage is done once at most for each round and

only a small part of the state is saved.

The drawback caused by the unreliable failure detectors in [76, 107] can be over-

38 Chapter 2. Related Work

come by modifying them. In his thesis [106] Oliveira defined anew unreliable failure

detector class, denoted by3Sr , which satisfies eventual weak accuracy andrecurrent

strong completeness. It has been proved that the aforementioned algorithms are correct

with this failure detector. The property is defined as follows:

• Recurrent strong completeness. Every incorrect process is infinitely often sus-

pected by every correct process.

Freiling et al. in [61] focus on the reuse of existing algorithms from the crash fail-

ure model. The Consensus algorithms proposed use unreliable failure detectors of the

classesP and3P, adapted to crash-recovery model. The adaptedP failure detector

class satisfies the following properties:

• Strong completeness: Every incorrect process is suspectedinfinitely often by ev-

ery correct process.

• Eventually up completeness: Eventually, every correct process is not suspected

any longer by every correct process.

• Strong accuracy: No process is suspected before it crashes.

The adapted3P unreliable failure detector class satisfies:

• Strong completeness.

• Eventually up completeness.

• Eventually strong accuracy: Correct processes are only finitely often suspected.

The approach they follow consists of partly emulating a crash system on top of the

crash-recovery system in order to execute a Consensus algorithm designed for the crash

failure model. In the paper, they first provide a set of minimality and impossibility re-

sults for the solvability of Consensus in the crash-recovery model and then they propose

2.3. Failure Detectors in the Crash-Recovery Model 39

three modular algorithms that allow Consensus to be solved in the crash-recovery model

for the selected failure detectors with weak system assumptions. The first algorithm al-

lows Consensus to be solved in a system with unavailability of stable storage, at least

one always up process and the help of aP failure detector. The second algorithm, also

without stable storage, requires a majority of always up processes and a3P failure de-

tector. Finally, the third algorithm requires a3P failure detector, a majority of always

up or eventually up processes, and the recording of some information used by the crash

Consensus algorithm to stable storage.

In their seminal work [3], Aguilera et al. studied the problem of Consensus and

failure detection in the crash-recovery model. With regardto the use of stable storage,

they stated that it is possible to solve Consensus in the crash-recovery model ifna > nb

with the help of an adapted3S failure detector,3Se, wherena is the number of always

up processes andnb is the number of incorrect processes, even ifna <
n
2. An algorithm

that solves Consensus under the aforementioned conditionsis given. Curiously, this

necessary condition remains if only the proposal and decision values can be saved to

stable storage. For systems where it is possible to save moreinformation to stable

storage, they provide an implementation of a Consensus algorithm that works with a

majority of correct processes, relying on a failure detector of the class3Su, adapted

from3S. In the algorithm, every process accesses stable storage twice each round. The

information stored is a round number, an estimate and its corresponding timestamp.

As far as we know, the work in [3] is the only one that deals withthe implemen-

tation of deterministic unreliable failure detectors in message passing asynchronous or

partially synchronous system models subject to crash-recovery failures. The system

model assumed is an extension of theM3 system model [28] presented in the previous

chapter. In this extendedM3 model, processes can crash and recover, and messages sent

to incorrect processes can be lost. The links considered areeventually timely. In this

work Aguilera et al. first showed that strong completeness, which is satisfied by3S,

40 Chapter 2. Related Work

involves a loss of efficiency when running an algorithm that solves Consensus as those

in [28, 46, 76, 107]. Subsequently, they proposed two new classes of unreliable failure

detectors that deal with unstable processes in a different way. Innovatively, the output

of a failure detector module at every processp is made up of two lists instead of one.

The first list, as usually, is the list of trusted processes atthe current timet. The second

list provides an estimate of the number of times that each process in the list of trusted

processes has crashed and recovered so far. This estimate iscalled the epoch number.

They provide an algorithm implementing a failure detector of the class3Se that,

without going into too much detail, satisfies the following properties:

• Monotonicity: At every correct process, eventually the epoch numbers are non-

decreasing.

• Completeness: For every incorrect processp and for every correct processq,

either eventuallyqpermanently suspectsp or p’s epoch number atq is unbounded.

• Accuracy: For some correct processp and for every correct processq, eventually

q permanently trustsp andp’s epoch number atq stops changing.

With regard to the implementation of3Se, basically, every process maintains a list

of trusted processes and also maintains a list of the epoch numbers of the rest of the

processes by counting theRECOVEREDmessages it receives. During initialization and

upon recovery, a processp sends aRECOVEREDmessage to the rest of the processes.

When a process receives theRECOVEREDmessage fromp, it increments the local

epoch number associated withp. Similarly to the algorithm in [28], every processp

periodically sends anALIVE message. Thenp checks the reception of messages. Ifp

does not receive anALIVE message from a processq by the time it expects to receive it,

p removesq from the list of trusted processes. Ifp receives a message from a process

that is not trusted,p increments its associated counter and includes it in the list.

2.3. Failure Detectors in the Crash-Recovery Model 41

In terms of periodically sent messages, in the worst case there will be n processes

sendingn−1 messages, making a total ofO(n2) messages sent periodically. From the

point of view of links, in the worst caseO(n2) links carry messages forever.

The properties satisfied by the3Se failure detector class only refer to correct pro-

cesses, and hence the output of unstable processes is not restricted in any way. However,

it would be desirable for the erroneous suspicions of unstable processes to be limited by

satisfying some degree of accuracy. For this reason, they define a new failure detector

class3Su that satisfies the following properties:

• Monotonicity.

• Completeness.

• Strong Accuracy: For some correct processp: (a) for every correct processq,

eventuallyq permanently trustsp andp’s epoch number atq stops changing; and

(b) for every unstable processu, eventually wheneveru is up u trustsp and p’s

epoch number atu stops changing.

As in the previous class, the output at a failure detector module consists of a list of

trusted processes and a list of their respective epoch numbers. With respect to imple-

mentation, a transformation from3Se to3Su is provided. The transformation does not

use stable storage and requires a majority of correct processes.

The algorithm works roughly as follows: During initialization every process in-

cludes all the processes in its trusted list. Every processp has access to a failure de-

tector of the class3Se and periodically sends the two lists it provides to the rest of the

processes. Therefore, every process will periodically receive the trusted list and epoch

number list from at leastdn
2e processes because, by definition, there is a majority of

correct processes. When processp realizes that a processq is not included in a majority

of the trusted lists provided by the3Se failure detectors,p removesq from its trusted

list.

42 Chapter 2. Related Work

With regard to the epoch numbers, every processp increases the epoch number

associated with a processq whenp detects, through the lists provided by the3Se failure

detectors, thatq is suspected or it is trusted but its epoch number has been increased by

a majority of processes.

In terms of periodically sent messages, we must add the messages required for the

transformation to the messages required by the algorithm that implements3Se. Hence,

although the cost in periodically sent messages is higher, it is still O(n2) in the worst

case. From the point of view of links, in the worst caseO(n2) links carry messages

forever.

2.4 More about Failure Detectors

In this section we will review some works about failure detectors that, although inter-

esting, are less directly related to the topic of this thesis.

The use of failure detectors to allow the implementation of quiescent algorithms for

reliable communication in a distributed system with crash failures and lossy links is

studied in [2]. Briefly, an algorithm is quiescent if eventually it stops sending messages.

As a result, they propose a new failure detector (heartbeat, denoted byHB) that does

not rely on time-outs. The output at a processp of a HB module consists of a vector of

counters, one for each neighbourq of p. If q crashes this counter is bounded, otherwise

it is not bounded. The implementation of the failure detector is intuitive. Processes

send periodic messages and when a processp receives a message from a processq, p

increments the counter associated withq in its output vector.

Delporte-Gallet et al. in [42] propose a set of distributed algorithms that implement

a leader election service in systems where processes are subject to crash failures. The

communication assumptions for each distributed system varies from a system with all

its links eventually timely to a system with at least oneeventually timely source[4].

2.5. Solving Consensus 43

The paper focuses onself-stabilizing[43] andpseudo-stabilizing[24] algorithms, and

provides communication-efficient implementations when possible.

Stabilization is a general technique that allows algorithms to toleratetransientfail-

ures. Informally, an algorithm that is self-stabilizing will remainin a correct state at a

finite time independently of its initial state. An algorithmthat is pseudo-stabilizing will

end upin a correct state at a finite time independently of its initial state. It should be

noted that in many cases stabilizing algorithms support dynamic topological changes.

TheQuality of Service, denoted by QoS, has been addressed in some works. Chen et

al. in [34] specify the QoS of a crash failure detector in terms of three primary metrics

and four derived metrics. We explicate the primary metrics very briefly as follows:

• Detection time. The time that elapses from the crash of a processp to the time

when another processq starts suspectingp permanently.

• Mistake recurrence time. This measures the time between two consecutive mis-

takes.

• Mistake duration. This measures the time it takes the failure detector to correct a

mistake.

They also provide a new implementation of a failure detectorand justify its optimality

in terms of the proposed metrics.

2.5 Solving Consensus

The Consensus problem has been studied intensively in a variety of system models with

different techniques. In this section we will mention some relevant works that have not

been reviewed previously.

In [87] we find theByzantine Generals Problemdefined as follows:

44 Chapter 2. Related Work

A commanding general must send an order to hisn−1 lieutenant generals such

that:

• All loyal lieutenants obey the same order.

• If the commanding general is loyal, then every loyal lieutenant obeys the order he

sends.

This definition expresses the Consensus problem in a system model where incorrect

processes behave maliciously, i.e. processes are subject to Byzantine failures. Although

it is not very orthodox, due to its originality, we will let the authors summarize their

paper by citing their abstract:

”Reliable computer systems must handle malfunctioning components that give con-

flicting information to different parts of the system. This situation can be expressed

abstractly in terms of a group of generals of the Byzantine army camped with their

troops around an enemy city. Communicating only by messenger, the generals must

agree upon a common battle plan. However, one of more of them may be traitors who

will try to confuse the others. The problem is to find an algorithm to ensure that the

loyal generals will reach agreement. It is shown that, usingonly oral messages, this

problem is solvable if and only if more than two-thirds of thegenerals are loyal; so a

single traitor can confound two loyal generals. With unforgeable written messages, the

problem is solvable for any number of generals and possible traitors. Applications of

the solutions to reliable computer systems are then discussed.”

More interesting results about the Byzantine generals problem can be found in [44].

Schiper in [117] defined the notion oflatency degree, the minimal number of com-

munication steps needed to solve Consensus, and provided a Consensus algorithm with

a latency degree of 2, relying on a failure detector of the class3S. Hurfin and Raynal

in [77] presented another Consensus protocol based on3S which is very efficient when

the underlying failure detector makes no mistake (a common case in practice).

Chapter 3

General System Model

Contents

3.1 Definition of the General System Model 46

3.2 Omega in the Crash-Recovery Model 52

45

46 Chapter 3. General System Model

3.1 Definition of the General System Model

In this section we present the general crash-recovery system modelS, where we study

the Omega failure detector. Starting from this system modelwe either add or slightly

modify some system assumptions, leading us to different specific systems in which we

propose distributed algorithms implementing the Omega failure detector. More pre-

cisely, in the following chapters we will define the specific systemsS1 to S8, relating

them to the general system modelSof this chapter.

We also redefine Omega for the crash-recovery model. Depending on whether or

not stable storage is used, the level of agreement of unstable processes with respect to

correct processes varies. In a system where processes have access to stable storage we

can implement a stronger property, that we denote byOmegacr2, otherwise we only can

implement a weaker property, that we denote byOmegacr1.

System composition

We consider a partially synchronous distributed systemScomposed of a finite and to-

tally ordered setΠ = {p1, p2, . . . , pn} of n > 1 processes that communicate only by

sending and receiving messages. The process identifiers do not need to be consecutive.

Usually, we will usep, q, r, ... to denote processes. By default, every process knows

a priori the identity of the rest of the processes. We will call this featureknown mem-

bership. However, in some systems this will not be the case and hence we will have

unknown membership. In these cases it will be adequately pointed out.

Clocks

We assume the existence of a virtual discrete global clock, although processes do not

have access to it. We take the rangeT of the clock’s ticks to be the set of natural

numbers. In our partially synchronous systemS, in every execution there are bounds

3.1. Definition of the General System Model 47

on relative process speeds and on message transmission times; however, these bounds

are not known and they hold only after some unknown time, the system-wide Global

Stabilization TimeGST, whereGST∈ T .

Every process has a discrete local clock that can accuratelymeasure intervals of

time. These clocks are not necessarily synchronized and therange of these clocks’ ticks

is also the set of natural numbers.

Timers

Processes have access to local timers that can be implemented easily with the local

clock. A process can set a local timer to a natural number, called thetime-out, and

start it. This will usually be done in the algorithms with theinstruction:reset Timerx to

Timeouty. Once a timer has been started, it decreases by one for every time unit until it

reaches 0. At this moment it is said that the timer has expired.

Crashes and recoveries

Processes can crash and may later recover. In order to formalize failures we define a

failure pattern Fas a function fromT to 2Π, whereF(t) denotes the set of processes

that are not functioning at timet. A processp is upat timet if p /∈ F(t). A processp is

downat timet if p∈ F(t). We say that a processp crashesat timet if p is up at time

t−1; i.e. p /∈ F(t−1) andp is down at timet; i.e. p∈ F(t). On the other hand, ifp is

down at timet−1 and up at timet, we say thatp recoversat timet.

When a process crashes, it stops functioning and loses the contents of all its variables

that are not stored in stable storage, the timers are stoppedand their previous values are

lost. When a process recovers, it starts the execution of thealgorithm.

48 Chapter 3. General System Model

Stable storage

In the definition ofS we do not specify whether or not processes are able to write to

stable (persistent) storage. Some of the systems based onS, e.g. the system in Chap-

ter 4, do not consider stable storage while other systems, such as the ones proposed in

Chapter 5, consider that processes can write to stable storage. In every specific system

we indicate whether processes have access to stable storageor not. The use of stable

storage is discussed in greater depth in Chapter 5.

Types of processes

In every run ofSwe can distinguish three disjoint subsets of processes according to the

failure patternF :

(1) Eventually up. This is the subset of processes that, after crashing and recovering

a finite number of times, remain up forever; i.e. they do not crash any more.

Processes that never crash are included in this subset. Formally:

∃t ∈ T : ∀t ′ > t : p /∈ F(t ′).

(2) Eventually down. This is the subset of processes that, after crashing and recover-

ing a finite number of times, remain down forever; i.e. they donot recover any

more. Processes that never start their execution are included in this subset. For-

mally:

∃t ∈ T : ∀t ′ > t : p∈ F(t ′).

(3) Unstable. This is the subset of processes that crash and recover an infinite number

of times; i.e. there is not a time after which either they remain up forever or they

remain down forever. Formally:

(@t1 ∈ T : ∀t ′ > t1 : p /∈ F(t ′)) ∧ (@t2 ∈ T : ∀t ′′ > t2 : p∈ F(t ′′)).

3.1. Definition of the General System Model 49

By definition, processes in (1) arecorrect, and processes in (2) and (3) areincorrect.

We assume that the number of correct processes in the system in any run is at least one.

Processing speed

Processes execute by taking atomic steps. We assume the existence of a lower boundσ

on the number of steps per unit of time taken by any process. This bound does not need

to hold from the beginning but fromGST, the Global Stabilization Time. Moreover, the

boundσ may vary for every run. For simplicity, we will assume that each instruction of

the algorithms represents one step. We will also assume thatthe local processing time,

related toσ , is negligible with respect to message communication delays.

Finally, we will assume that all the system’s processes start the algorithm at approx-

imately the same time. Although actually this is not necessary, the explanations and

correctness proofs of the algorithms will be more intuitive.

Communication links

Processes communicate with each other by sending messages through direct links. The

network is fully connected: for every pair of processesp 6= q there is a direct link from

p to q and another direct link fromq to p. A link from a processp to any other process

is anoutputlink of p and a link from any process top is aninput link of p.

We assume that messages are unique in the sense that processes can determine

whether a received message is a duplicate of a previously received message. This can be

achieved, for example, by including the sender process identifier and a timestamp, pro-

vided by its local clock, in each message. With regard to the timeliness and reliability

properties, we consider the following three types of links [4, 6]:

(a) Eventually timely link, where there is an unknown boundδ on message delays

and an unknown Global Stabilization Time,GST∈ T , such that if a messagem

50 Chapter 3. General System Model

is sent through the link at a timet ≥GST, then the messagem is received by time

t +δ if the receiver process is up.

(b) Lossy link, where the link can lose or delay an arbitrary number of messages.

(c) (Typed) Fair lossy link, where, assuming that each message has a type, if for every

type infinitely many messages are sent then infinitely many messages of each type

are received if the receiver process is correct.

Note that the timeGSTand the boundδ can vary for each run. Furthermore, if we

knew these valuesa priori, we could easily implement a failure detector that satisfies

perpetual accuracy, i.e. that does not make erroneous suspicions, in the crash model

assuming that all links are eventually timely. Basically, we can construct a failure de-

tector where every processp in the system waits until the timeGST arrives and then

sets timers with respect to the rest of the processesq 6= p to δ . If the timer for a process

q expires it means thatq has crashed because otherwise any message sent must have

arrived.

We consider that no link inSmodifies its messages or generates spontaneous mes-

sages. However, it may deliver them out of order. More precisely, links of any type inS

satisfy the following integrity property:

Property 1 (Integrity) A message m is delivered to q from p only if p sent m to q.

Communication primitives

To send messages, processes have atomic sending primitivesthat allow them to send the

same messagem through the required outgoing link. For example, ifp executessend m

to q, thenm will be sent through the outgoing link fromp to q in one step. Similarly,

if p executessend m to allor broadcast m, p will send the messagem through all its

outgoing links in one step.

3.1. Definition of the General System Model 51

p1 p2

5

p4

p3

Eventually timely Fair lossy

Eventually up

Unstable

Figure 3.1: Example of paths.

Connectivity requirements

The general system modelSdoes not specify the particular connectivity considered in

the systems proposed in this thesis. Each specific system in which we implement Omega

has its own connectivity requirements. A common communication requirement in this

dissertation is the existence of apath of linksof a specific type, e.g. eventually timely,

from one or more processes to other processes. For example, the systemS1 presented in

Chapter 4 has the following connectivity requirement:

There is a correct process p such that there is an eventually timely path from p to

every correct and every unstable process.

The above mentioned eventually timely paths are formed by correct processes con-

nected through eventually timely links. As eventually timely paths depend on eventu-

ally timely links, the communication assumptions that relyon eventually timely paths

are achieved after an unknown but finite time.

Now, we define the concept ofpath of linksmore formally. A path fromp to q,

p=⇒ q, is a directed graph composed of processes as vertexes and links as connectors,

denoted by→, of the form p =⇒ q ≡ p→ q1, q1→ q2, ..., qn→ q, such that the

intermediary processes{q1, q2, ..., qn} are correct and all the links are of the required

type or stronger; e.g. eventually timely. A direct link fromp to q is also considered a

path: p→ q≡ p=⇒ q.

Observe that processesp and/orq could be unstable. In this case, the connectiv-

52 Chapter 3. General System Model

ity requirements that affect unstable processes, e.g. a path that starts or finishes at an

unstable process, only hold when the unstable process is up.

In the example in Figure 3.1 processesp1, p2 and p4 are correct, i.e. eventually

up, and processesp3 andp5 are unstable. There is an eventually timely path from the

processesp1 andp2 to all correct and unstable processes. Besides, there is a fair lossy

path from every unstable process to every correct process.

3.2 Omega in the Crash-Recovery Model

During their study of the Consensus problem and the use of unreliable failure detectors

to solve it, Chandra et al. defined in [26] a failure detector called Omega for the crash

model. Informally, the output of the Omega failure detectormodule at a processp

is a single processq that p currently considers to be correct (we say thatp trusts q).

Eventually, this output must be the same at every correct process and must correspond

to a correct process. More formally, Omega satisfies the following property:

Property 2 (Omega) There is a time after which every correct process always trusts the

same correct process.

Note that the output of the failure detector module of Omega at a processp may

change over time; i.e.p may trust different processes at different times. Furthermore,

at any given timet two processesp andq may trust different processes.

Typically in our algorithms the trusted process at a processp, which is the output of

the Omega module, is held in the local variableleaderp. In order to export this variable,

every algorithm includes a functionleader(), which for simplicity has been omitted

from the pseudocode of the algorithms. This function returns the identity of the process

trusted byp’s Omega module at a given time: the value of the variableleaderp, if and

only if the variable has been set to any value by the algorithm. When an application

3.2. Omega in the Crash-Recovery Model 53

calls the functionleader(), if leaderp has not been set (i.e.p does not trust any process),

the special value⊥ is returned.

The definition of Omega was proposed for the crash model, and hence it does not

consider unstable processes. In the crash-recovery model,it is not possible for a process

to determine whether it is: a correct process; an eventuallydown, but still up, process;

or even an unstable, but up, process. Note that if we keep Omega as is for the crash-

recovery model then unstable processes are allowed to disagree with correct processes,

which can be a serious drawback. For instance, when solving Consensus, termination

of Consensus cannot usually be guaranteed if correct processes select a leader that is

different from the one selected by unstable processes. Hence, it would be desirable in

a crash-recovery system that all processes which are up eventually agree on a common

correct leader process. In order to express this we first redefine the property that Omega

must satisfy, adapted to the crash-recovery model without stable storage:

Property 3 (Omegacr1) There is a time after which (1) every correct process always

trusts the same correct process l, and (2) every unstable process, when up, always trusts

either⊥ or l. More precisely, upon recovery an unstable process willfirst trust⊥ (i.e. it

does not trust any process), and –if it remains up for sufficiently long– it will then trust

l until it crashes.

If we consider the use of stable storage by processes, then new possibilities arise. In

this regard, the quality of the agreement of unstable processes with the correct ones will

depend on whether or not of stable storage is used. Intuitively, the use of stable storage

allows unstable processes to eventually agree from the beginning of their execution by

reading the identity of the leader from stable storage, while the absence of stable storage

forces unstable processes to communicate with some correctprocess(es) in order to

learn the identity of the leader.

We redefine Omega for crash-recovery models where processeshave access to stable

storage as follows:

54 Chapter 3. General System Model

Property 4 (Omegacr2) There is a time after which every process that is up, either cor-

rect or unstable, always trusts the same correct process.

Note thatOmegacr2 is stronger thanOmegacr1.

Chapter 4

Omega in Crash-Recovery without

Stable Storage

Contents

4.1 Introduction . 56

4.2 An Algorithm for System S1 . 57

4.3 On the Eventual Timeliness of Fair Lossy Links 66

55

56 Chapter 4. Omega in Crash-Recovery without Stable Storage

4.1 Introduction

In this chapter we propose an algorithm implementingOmegacr1 for the crash-recovery

model in a distributed system where processes do not have access to stable storage. We

consider this aspect interesting for a number of reasons. First of all, the use of stable

storage is expensive in time. When designing an algorithm, we must take into account

that the time required to execute an instruction that accesses stable storage, i.e. an

external device, can be several orders of magnitude higher than for the execution of an

instruction that does not access it; in this regard, the algorithms presented in Chapter 5

use stable storage, but each process only accesses stable storage a small number of times

upon recovery. Secondly, we cannot assume that all the real devices that may execute

an Omega algorithm will have access to stable storage. Finally, from a more theoretical

point of view, in our search of weaker distributed system models for implementing

efficient Omega algorithms, we must consider systems in which processes do not have

access to stable storage because this assumption is weaker than the opposite. As we will

see, the algorithm presented in this chapter assumes a majority of correct processes in

order to implementOmegacr1 (Property 3).

In Chapters 4, 5 and 6 we address the implementation of the Omega failure detector

in crash-recovery systems. The outline followed will be similar for each algorithm.

First, we present the specific system assumptions, then the pseudocode of the algorithm

executed at every processp with the required explanations, and finally a proof or proof

sketch of the correctness of the algorithm.

Some of the algorithms share some names of constants and variables. To avoid re-

dundancy, when explaining an algorithm, the explanations of these ones can be omitted

if they have been defined previously. If a constant or variable has been defined in two

or more places with different meanings the corresponding definition is the latest one,

unless otherwise stated.

The rest of this chapter is organized as follows: firstly, in Section 4.2 we present the

4.2. An Algorithm for SystemS1 57

systemS1 and an algorithm implementingOmegacr1 in it. Secondly, in Section 4.3, we

discuss the eventual timeliness of fair lossy links.

4.2 An Algorithm for System S1

4.2.1 Specific System Assumptions inS1

The systemS1 corresponds to the general system modelS, defined in Chapter 3, with

some additional assumptions.

With regard to connectivity, inS1 we make the following assumptions:

(1) There is a correct processp such that there is an eventually timely path fromp to

every correct and every unstable process.

(2) For every correct processq 6= p, there is a fair lossy path fromq to p.

(3) For every unstable processu, there is a fair lossy link fromu to some correct

process.

We also assume that a majority of processes are correct.

4.2.2 The Algorithm

In this section we propose a distributed algorithm implementing Omegacr1 in system

S1. Figure 4.1 presents the pseudocode executed by each process when it is up. The

algorithm is the collection ofn instances of this pseudocode, one for each process in the

system.

With respect to the variables, every processp has aleaderp variable containing its

trusted process, initialized to⊥, and aCandidatesp set containing the processes from

which p will chooseleaderp, initialized toΠ. In addition,p has a time-out with respect

to every other process, the arrayTimeoutp which is initialized toη, and a counter of the

58 Chapter 4. Omega in Crash-Recovery without Stable Storage

approximate number of times that each process has recoveredor has been suspected, the

arrayPunishp.

The time constantη is used in all the algorithms and indicates the rate at which

periodic messages will be sent by processes. Its specific value is very important if we

want to run the algorithms in a real environment according toreal system requirements.

If η is too small we will have a flood of messages, and hence the messages would

possibly be queued or lost and the timers would expire. This should be avoided at all

costs. On the other hand, a higher value ofη implies a slower convergence of the

algorithm.

Below, we elaborate on the functioning of the algorithm. During the execution of the

Initialization, and upon recovery, the processpsends aRECOVEREDmessage to all the

processes, setstimersactiveto FALSE, and starts the four tasks of the algorithm. Note

that all the timers ofp are inactive. Ifp does not crash, the reception of enoughALIVE

messages is guaranteed by the assumption that a majority of processes are correct inS1.

In Task 1,p periodically sends anALIVE message containingPunishp to all processes.

In Task 2, whenp receives aRECOVEREDmessage fromq, p incrementsPunishp[q].

In Task 3, whenp receives anALIVE message fromq 6= p that was not received

previously,p resends the message to all the processes and updatesPunishp with Punishq

by taking the highest value for each component of the vector.Then,p also updates all

its time-outs, taking the highest value of the current time-outs andPunishp[p].

Finally, if p has so far receivedALIVE messages from a majority of processesdn+1
2 e,

if the timers are not yet active,p resets all its timers for the first time after the recov-

ery, and setstimersactive to TRUE. In addition,p includesq in Candidatesp, if re-

quired, and incrementsTimeoutp[q]. Then it resetsTimerp(q) and calls the procedure

updateleader() in order to updateleaderp to the process inCandidatesp with the min-

imum associated punish counter inPunishp. In Task 4, whenTimerp(q) expires,p

increments the associated punish counter,Punishp[q], removesq fromCandidatesp and

4.2. An Algorithm for SystemS1 59

Every processp executes the following:

procedureupdateleader()
(1) leaderp← l such thatPunishp[l] = min{Punishp[q]}, ∀q∈Candidatesp,

using identifiers to break ties
Initialization:
(2) leaderp←⊥
(3) Candidatesp←Π
(4) ∀q 6= p : Timeoutp[q]← η
(5) ∀q : Punishp[q]← 0
(6) send (RECOVERED, p) to all processes
(7) timersactive← FALSE
(8) start tasks1, 2, 3 and 4

Task 1:
(9) loop forever
(10) send (ALIVE, p, Punishp) to all processes
(11) wait(η)

Task 2:
(12) upon reception ofmessage (RECOVERED, q) do
(13) Punishp[q]← Punishp[q]+1

Task 3:
(14) upon reception ofmessage (ALIVE, q, Punishq)

with q 6= p for the first timedo
(15) send (ALIVE, q, Punishq) to all processes
(16) ∀r : Punishp[r]← max{Punishp[r],Punishq[r]}
(17) ∀r : Timeoutp[r]← max{Timeoutp[r],Punishp[p]}
(18) if p has received so farALIVE from a majority of processesthen
(19) if timersactive= FALSEthen
(20) ∀q 6= p : resetTimerp(q) to Timeoutp[q]
(21) timersactive← TRUE
(22) end if
(23) if q /∈Candidatesp then
(24) Candidatesp←Candidatesp∪{q}
(25) Timeoutp[q]← Timeoutp[q]+1
(26) end if
(27) resetTimerp(q) to Timeoutp[q]
(28) updateleader()
(29) end if

Task 4:
(30) upon expiration of Timerp(q) do
(31) Punishp[q]← Punishp[q]+1
(32) Candidatesp←Candidatesp−{q}
(33) updateleader()

Figure 4.1: An algorithm implementingOmegacr1 in systemS1.

60 Chapter 4. Omega in Crash-Recovery without Stable Storage

callsupdateleader().

With this algorithm, eventually all the processes that are up will have in leaderp

either⊥, which indicates that they have not yet receivedALIVE from a majority of

processes, or the common correct leaderl . An important detail is that at a given process

p no timer is activated and, hence, no timer expires untilp has received anALIVE

message from a majority of processes, preventing erroneoussuspicions from unstable

processes. After the reception ofALIVE messages from a majority of processes at an

unstable processu, it is guaranteed that at least one message has been sent froma correct

process, sou will have (1)Punishu such thatl is chosen as leader, and (2)Timeoutu[l]

such thatTimeru(l) will not expire any more.

In this algorithm the eventually timely paths guarantee agreement in the same leader

process. For this reason each process resends every messageit receives and this allows

the rest of the processes to receive it. In the worst case, dueto the periodic sending of

messages in Task 1, there will ben processes sending and resending messages period-

ically. In terms of periodically sent messages we will haven processes sendingn−1

messages that will be resent by the receivingn−1 processes, making a total ofO(n3)

messages sent periodically. From the point of view of links,in the worst caseO(n2)

links carry messages forever.

Figures 4.2 to 4.4 present three scenarios of a system composed of five processes

that satisfy the assumptions required by our algorithm. Observe that, since nothing can

be said about the timeliness of fair lossy links, in the presented scenarios processp2 will

eventually become the leader unlessp1 or p5 communicate timely withp2 through the

fair lossy paths.

4.2.3 Correctness Proof

We now show the correctness of the algorithm in Figure 4.1. Let R be the set of correct

processes that eventually can reach by eventually timely paths every alive process inS1.

4.2. An Algorithm for SystemS1 61

p1 p2

Figure 4.2: Scenario 1: three eventually
up, one eventually down, one unstable.

p1 p2

Figure 4.3: Scenario 2: three eventually
up, one eventually down, one unstable.

p1 p2

4

p5

p3

Eventually timely Fair lossy

Eventually up

Unstable

Figure 4.4: Scenario 3: three eventually up, two unstable.

By definition, there exists a constant∆ and a timeGSTafter which every message sent

by a processs, s∈ R, takes at most∆ time to be received by every alive process. LetB

be the set of correct processesp with boundedPunishp[p]. As it is shown by Lemma 2,

setB is not empty.

For the rest of the section we will assume that any time instant t is larger than a

time t1, wheret1 is a time instant that occurs after the stabilization timeGST, and after

every eventually down process has definitely crashed, and every eventually up process

has definitely recovered. We will denotevarpt the value of the local variablevar of p at

time t.

Lemma 1 ∀q∈ correct,∀u∈ unstable,Punishq[u] is unbounded.

Proof: Consider any unstable processu. By definition, u will crash and recover an

infinite number of times. Every timeu recovers, it sends a (RECOVERED, u) mes-

sage to all the processes, and henceu will send an infinite number of (RECOVERED,

62 Chapter 4. Omega in Crash-Recovery without Stable Storage

u) messages. An infinite subset of those messages will reach some correct processq,

because by definition every unstable process has at least a fair lossy link to some cor-

rect process, which will incrementPunishq[u] accordingly (Line 13). Since after time

t1 correct processes will not crash,Punishq[u] will be monotonically nondecreasing and

unbounded.

At any timet > t1, if processq∈ R every message it sends will reach every correct

processp in at most∆ time, settingPunishp[u]≥ Punishqt [u]. If processq /∈ R, by defi-

nition q will have at least one fair lossy path to a correct processp∈ R, and eventually

p will receive an (ALIVE, q, Punishq) message, settingPunishp[u]≥ Punishqt [u]. After

that the rest of the alive processes will receivePunishp in at mostη +∆ time. Once a

correct processs receives a message fromp, it will set Punishs[u]≥Punishqt [u], and the

lemma holds.

From now on, we will assume that any time instantt is larger than timet2> t1, where

t2 is a time instant that occurs after every correct processs∈ R hasPunishs[u] such that

Punishs[u]> η +∆.

Lemma 2 ∀s∈ R, Punishs[s] is bounded.

Proof: Consider any correct processq 6= s. Processs sends a message (ALIVE, s,

Punishs) everyη time to every process. By definition, after timeGST every message

that s sends is received byq within η +∆ time from the timeq received the previous

message froms. Sinceq increases its timerTimeoutq[s] every time it expires, eventually

Timerq(s) will cease expiring. Thenceforth,q will never punishs (Line 31) any more,

andswill not increasePunishs[s] due to a message from anyq∈ correct.

On the other hand, every unstable processu will not reset its timers until the re-

ception of anALIVE message from a majority of processes. Since there is a major-

ity of correct processes, we can assure that the processu will receive a message from

4.2. An Algorithm for SystemS1 63

at least one correct process, andu will have Punishu[u] ≥ Punishs[u] before resetting

its timers. Since after timet2, at processs, Punishs[u] > η +∆, processu will have

Timeoutu[s]≥ Punishu[u] (Line 17), andTimeru(s) will never expire.

Thenceforth, there is a timet > t2 after which neither unstable nor correct processes

will expire ons, swill not be punished (Line 31),Punishs[s] is bounded, and the lemma

holds.

From the previous, note thatR⊆ B.

Lemma 3 For every correct process p∈ B there exists a time after which every q∈

correct receives messages from p infinitely often.

Proof: Consider a correct processq 6= p. We prove the contrapositive of the lemma.

Supposeq does not receive messages fromp infinitely often. Each timeq does not re-

ceive a message frompandTimerq(p) expires, processp is punished byq in Punishq[p].

Later, an infinite subset of theALIVE messages sent byq could be received byp, in-

creasingPunishp[p], or at least by some processs, s∈ R. The process will increase

Punishs[p], and the next timep receives a message froms, it will increasePunishp[p]

accordingly. If this happens infinitely often,Punishp[p] is not bounded, leading us to a

contradiction.

For the rest of the section we will assume that any time instant t is larger than

time t3 > t2, wheret3 is a time instant that occurs afterPunishp[u] > Punishp[p], ∀u∈

unstable, ∀p ∈ B, and for every eventually down processq, q /∈ Candidatesp. This

will eventually happen becausePunishp[u] is unbounded and timers on every eventually

down processq will expire. After that (Line 32)q will be removed fromCandidatesp.

Lemma 4 For every pair of correct processes p and q, p∈B, there is a time after which

for every time t, Punishq[p]≥ Punishpt [p].

64 Chapter 4. Omega in Crash-Recovery without Stable Storage

Proof: For q= p, the lemma is trivial. Now assumeq 6= p. Sincep∈ B, by Lemma 3

there exists a time after which everyq∈ correct receives messages fromp infinitely of-

ten. Lett > t3 be any time. There is a timet ′ > t whenq receives (ALIVE, p, Punishp),

with Punishp[p] = c, originally sent byp after timet, soc≥ Punishpt [p]. Then at time

t ′, q sets itsPunishq[p] to c, and so we have:Punishq[p]≥ Punishpt [p]. The lemma now

follows sincePunishq[p] is monotonically nondecreasing.

Lemma 5 For every correct process p:

(1) If Punishp[p] is bounded, then there exists a value Vp and a time after which for

every correct process q, Punishq[p] =Vp.

(2) If Punishp[p] is not bounded, then for every correct process q, Punishq[p] is not

bounded.

Proof: Let p be a correct process.

(1) SupposePunishp[p] is bounded. Thus, by Lemma 4, for all correct processes

q, there is a timet > t3 after whichPunishq[p] ≥ Punishpt [p]. SincePunishp[p]

is bounded and monotonically nondecreasing, there exists avalueVp and a time

after whichPunishp[p] = Vp. Therefore, there exists a time after which, for all

correct processesq, Punishq[p] =Vp.

(2) SupposePunishp[p] is not bounded. Lemma 4 implies thatPunishq[p] is also not

bounded.

Lemma 6 If process k is not correct then for every correct process q there is a time

after which k will not be leaderq.

4.2. An Algorithm for SystemS1 65

Proof: If processk is unstable, after timet > t3, Punishp[k] > Punishp[p], for ev-

ery p ∈ B. As q is correct every message broadcast (Line 15) by every process p

reaches timely every correct processq, Punishq[k] ≥ Punishp[k], and processk will

not be elected as leader any more. If processk is eventually down, after timet3,

k /∈Candidatesp. In both cases,leaderq 6= k and the lemma holds.

Lemma 7 There exists a correct process l and a time after which, for every correct

process q, leaderq = l.

Proof: Note thatB is not empty. By Lemma 5(1), for every processp∈B, there is a cor-

responding integerVp, and a time after which for every correct processq, Punishq[p] =

Vp (forever). Letl denote the processp in B with the smallest corresponding tuple

(Vp, p). We now show that eventually every correct processq selectsl as its leader (for-

ever). For any other processp 6= l : (*) there is a time after which(Punishq[p], p) >

(Punishq[l], l). This implies that eventuallyq selectsl as its leader, forever. To show

that (*) holds, consider the following 3 possible cases. Ifp is not correct then, by

Lemma 6, eventuallyp will never be elected as leader (forever). Now suppose thatp is

correct. IfPunishp[p] is bounded, thenp is in B; so, by our selection ofl in B, even-

tually (Punishq[p] = Vp, p) > (Punishq[l] = Vl , l) forever. Finally, ifPunishp[p] is not

bounded, then, by Lemma 5(2), there is a time after whichPunishq[p]> Punishq[l] =Vl

(becausePunishq[p] is unbounded and monotonically nondecreasing). In all cases (*)

holds. It is interesting to point out that if there are two processesp andq in B with

the same smallestVp, every process will choose deterministically as its leaderthe same

process, that will be the process with the smallest identifier betweenp andq. This issue

is addressed by the procedureupdateleader() which includes the expression“using

identifiers to break ties”.

66 Chapter 4. Omega in Crash-Recovery without Stable Storage

For the rest of the section we will assume that any time instant t is larger than time

t4 > t3, wheret4 is a time instant that occurs after Lemma 7 holds.

Lemma 8 There is a time after which, for every unstable process u, when up, leaderu =

⊥ or leaderu = l, being l the same process as in Lemma 7.

Proof: Every time an unstable processu recovers from a crash, it will setleaderu to⊥.

Then,u will wait until the reception of anALIVE message from a majority of processes,

in order to activate its timers and callupdateleader(). After the waiting period,u has

received a message from at least one correct processq. Onceu executes Line 16,∀p∈S,

Punishu[p] ≥ Punishq[p], and after Line 28leaderu = l . Sincel ∈ B, the timers of the

unstable processes will not expire onl , and the lemma holds.

Theorem 1 There is a time after which (1) every correct process always trusts the same

correct process l, and (2) every unstable process, when up, always trusts either⊥ or

l. Hence, the algorithm in Figure 4.1 implements Omegacr1 (satisfies Property 3) in

system S1.

Proof: Follows directly from Lemma 7 and Lemma 8.

4.3 On the Eventual Timeliness of Fair Lossy Links

In this section we discuss an interesting behaviour associated with fair lossy links; the

(eventual) timeliness. Let us consider a process that sends messages periodically, ev-

ery η time units, through a fair lossy link. Every message sent by the process has an

identifier n in the set of positive numbers. The first message has an identifier n = 1

and it is increased monotonically by 1 for each sending; i.e.the fourth message sent

4.3. On the Eventual Timeliness of Fair Lossy Links 67

hasn = 4. Let us suppose that the fair lossy link delivers timely themessages whose

sending identifier is even, i.e.n mod 2 = 0, and drops systematically the other messages.

From the definition given in Chapter 3 we know that this link isnot a link of the

eventually timely type because it drops messages infinitelyoften, but on the other hand

the fair lossy link delivers messages periodically within abounded period; i.e. it presents

(eventual)timeliness.

Observe that due to this behaviour a correct process could become the leader even

if it does not have an eventually timely path with the rest of the correct and unstable

processes, provided that it can communicate timely with those processes (through fair

lossy paths). If this is the case, the paths from such a process to the rest of the correct

and unstable processes can be defined aslossy but eventually timely. Clearly, this is a

behavioural definition, sincea priori nothing can be said about the timeliness of fair

lossy links. That is why we require the existence of a correctprocess having an eventu-

ally timely path to the rest of the correct and unstable processes, since this ensures that

the algorithm stabilizes on a common and correct leader, independently of the behaviour

of fair lossy links.

Figures 4.5 to 4.8 present several scenarios satisfying theassumptions required by

the algorithm proposed in this chapter. We consider systemswhere processesp1, p2

andp5 are eventually up, and processesp3 andp4 are unstable. In Figure 4.5,p1 or p2

will eventually become the leader, unlessp5 communicates timely withp1 through the

fair lossy link. In Figures 4.6 and 4.7, any of the processesp1, p2 or p5 will eventually

become the leader. Figure 4.8 differs from Figure 4.5 in the direct fair lossy link from

p5 to p2. In this scenario, besidesp1 andp2, processp5 could also become the leader,

if it can communicate timely with eitherp1 or p2.

68 Chapter 4. Omega in Crash-Recovery without Stable Storage

p1 p2

4

p5

p3

Eventually timely Fair lossy

Eventually up

Unstable

Figure 4.5: Scenario 4: three eventually up,
two unstable.

p1 p2

4

p5

p3

Eventually timely Fair lossy

Eventually up

Unstable

Figure 4.6: Scenario 5: three eventually up,
two unstable.

p1 p2

4

p5

p3

Eventually timely Fair lossy

Eventually up

Unstable

Figure 4.7: Scenario 6: three eventually up,
two unstable.

p1 p2

4

p5

p3

Eventually timely Fair lossy

Eventually up

Unstable

Figure 4.8: Scenario 7: three eventually up,
two unstable.

Chapter 5

Omega in Crash-Recovery with Stable

Storage

Contents

5.1 Introduction . 70

5.2 An Algorithm for System S2 . 72

5.3 An Algorithm for System S3 . 80

5.4 An Algorithm for System S4 . 90

69

70 Chapter 5. Omega in Crash-Recovery with Stable Storage

5.1 Introduction

In the general system modelS, defined in Chapter 3, when a process crashes it loses the

contents of all its variables. To avoid this, processes may use, if able, persistent storage,

which we will call stable storage, whose content is preserved during crash periods. In

systems where processes have access to stable storage we canimplement more efficient

algorithms from the point of view of communication, although there will be a cost for

accessing stable storage. Access to stable storage is typically regarded as very expensive

and should be minimized: i.e. the number of accesses as well as the amount of stored

data should be as small as possible.

In this chapter we assume that every process has access to stable storage to keep

the value of some local variables. The access to stable storage is a very important

assumption because of the existence of many devices that lack of stable storage and

due to the high cost associated with the writing and reading.Regarding the cost, in

the algorithms that use stable storage proposed in this dissertation the access to stable

storage is small, as a process only accesses stable storage afew times every time it

recovers. Note that the access to stable storage is not periodical; i.e. processes access

stable storage during the initialization and/or after a time, and never access it again if

they do not crash and recover. In the case of the eventually upprocesses, after accessing

stable storage in the early moments they remain up forever sothey will never access it

again. From this point of view, the use of stable storage in our algorithms is efficient.

The specific systems presented in this chapter also assume that every unstable pro-

cess will be able to write to stable storage infinitely often.This means that unstable

processes will execute the writing instructions of the algorithm infinitely often; i.e.

sometimes unstable processes will crash before the writing, but other times they will

not. If we suppose that unstable processes do not write to stable storage infinitely often,

which is an assumption that we do not make, the algorithms will work properly and the

correct processes will agree on a common leader, implementing Omega(Property 2).

5.1. Introduction 71

However, unstable processes that do not satisfy the writingrequirement may not agree

with the rest of the unstable and correct processes, and hence the algorithm does not im-

plementOmegacr2. Basically, in order to agree, unstable processes must write definitely

to stable storage the identity of the correct leaderl .

In fact, instead of infinitely often writing it would be enough if unstable processes

wrote in stable storage only one time,after the algorithm stabilizes and the correct

processes agree on the correct leaderl , but we consider that this assumption is not

sufficiently general. Clearly, if an unstable process does not write the identity of the

correct leader in stable storage, it cannot read the correctleaderl during initialization.

Besides the use of stable storage, all the systems in this chapter share the fact that

they do not require fair lossy links. For simplicity and without loss of generality, we

assume that systemsS2, S3 andS4 are composed only of eventually timely and lossy

asynchronous links. We give a brief description of these systems:

• SystemS2 assumes that eventually all processes are reachable timely, i.e. through

eventually timely paths, from a correct process that crashes and recovers a mini-

mum number of times. The system also assumes unknown membership.

• SystemS3 assumes that eventually all processes are reachable timelyfrom some

correct process. This system assumes known membership.

• SystemS4 assumes that eventually all processes are reachable timelyfrom some

correct process, as inS3, and that the membership is unknown, as inS2.

In [54] Fernández et al. presented the minimal reachability conditions required to

implement Omega in the crash model. The reachability conditions assumed for systems

S3 andS4 constitute an adapted version of these. As we will see, basically, the corre-

sponding algorithms will choose as leader the correct process that is “least suspected”

among those that reach timely all processes.

72 Chapter 5. Omega in Crash-Recovery with Stable Storage

The rest of the chapter is organized as follows. In Section 5.2 we present the system

S2 and give an algorithm implementingOmegacr2 in it. In Sections 5.3 and 5.4 we

present the systemsS3 andS4, in which we weaken the synchrony assumptions and give

algorithms that implementOmegacr2 as well.

5.2 An Algorithm for System S2

In this section we present an algorithm, adapted from [79], that implementsOmegacr2

in systemS2.

5.2.1 Specific System Assumptions inS2

The systemS2 corresponds to the general system modelS, defined in Chapter 3, with

some additional assumptions. Recall that in this chapter processes have access to stable

storage. In systemS2 the membership of the system – processes’ identifiers – is not

known a priori by processes. The process identifiers are totally ordered but need not

be consecutive. Furthermore, processes have no knowledge about the total number of

processesn in the system.

There are additional communication assumptions:

• There is an eventually timely path from one correct processcmin, that crashes

and recovers the minimum number of times, to every correct and every unstable

process.

In the case that two processes crash and recover the same number of times, the

property must be satisfied by the process with the smallest identifier. Basically, this

communication assumption implies that there will be a time after which the process

cmin will have an eventually timely path, formed by correct processes that communicate

through eventually timely links, to every other process. These eventually timely paths

5.2. An Algorithm for SystemS2 73

must also reach every unstable process, although an unstable process cannot be part of

the intermediate path, it can only be a final process.

5.2.2 The Algorithm

In this section we propose a distributed algorithm implementing Omegacr2 in system

S2. Figure 5.1 presents the pseudocode executed by each process when it is up. The

algorithm is the collection ofn instances of this pseudocode, one for each process in the

system.

The process chosen as leader by any processp, i.e. trusted byp, is held in a vari-

able leaderp. We will show that with this algorithm there is a time after which every

up process permanently hasleaderp = cmin and thus implementsOmegacr2 (satisfies

Property 4).

The variableINCARNATIONp contains in stable storage the number of times that

the process has recovered, which we also call theincarnation number. Its value is 0

by default. The variableincarnationp will contain the same incarnation number, but

in volatile memory. We use it to reduce the number of accessesto stable storage, by

cachingINCARNATIONp. The incarnation number ofleaderp is held in the variable

incarnationleader. The value ofleaderp is saved to stable storage inLEADERp. As we

will see below, theINCARNATIONp andLEADERp values in stable storage constitute

the foundations of the algorithm.

The basic idea of the algorithm is that eventually only processcmin broadcasts new

ALIVE messages everyη time units, and that these messages reach the rest of the up

processes, either directly or indirectly, by rebroadcast.

In the algorithm, when a process sends anALIVE message (Lines 14 or 19), it has

necessarily incremented its incarnation number by 1 in stable storage during initializa-

tion (Line 1). Besidesincarnationp every processp holds in stable storage the value of

leaderp (initially set to p) which is read during the execution of the initialization.

74 Chapter 5. Omega in Crash-Recovery with Stable Storage

Every process p executes the following:

Initialization:
(1) incrementINCARNATIONp by 1 in stable storage
(2) incarnationp← readINCARNATIONp from stable storage
(3) leaderp← readLEADERp from stable storage
(4) incarnationleader← incarnationp

(5) Timeoutp← η + incarnationp

(6) if [leaderp 6= p] then
(7) resetTimerp to Timeoutp
(8) end if
(9) start tasks1, 2 and 3

Task 1:
(10) wait (η + incarnationp)
(11) write leaderp to stable storage
(12) loop forever
(13) if [leaderp = p] then
(14) broadcast (ALIVE, p, incarnationp)
(15) end if
(16) wait (η)

Task 2:
(17) upon reception ofmessage (ALIVE, q, incarnationq) with q 6= p

for the first timedo
(18) if [incarnationq < incarnationleader] or

[(incarnationq = incarnationleader) and (q≤ leaderp)] then
(19) broadcast (ALIVE, q, incarnationq)
(20) leaderp← q
(21) incarnationleader← incarnationq

(22) resetTimerp to Timeoutp
(23) end if

Task 3:
(24) upon expiration of Timerp do
(25) Timeoutp← Timeoutp+1
(26) leaderp← p
(27) incarnationleader← incarnationp

Figure 5.1: An algorithm implementingOmegacr2 in S2.

5.2. An Algorithm for SystemS2 75

Unstable processes only have to be reachable if they remain up for a sufficiently

long time. In fact, an unstable processu may crash before the reception of a message

from cmin. This issue was taken into account when designing the algorithm.

By the assumption that every unstable process executes a write infinitely often, in

Line 11 of the algorithm in Figure 5.1, we know that thewait in Line 10 is also executed

infinitely often. The length of thewait is increased with every recovery since it is based

on the incarnation number. Therefore, there is a time after which thewait will be long

enough to ensure the reception of a message fromcmin through an eventually timely

path during the waiting period. This prevents every unstable processu from disagree-

ing because eventually and permanentlyincarnationu> incarnationmin (the incarnation

number of the processcmin). After thewait, p writes the value ofleaderp to stable stor-

age (Line 11). By the assumption that every unstable processis able to execute Line 11

infinitely often, eventually every unstable process will always write the correct leader to

stable storage. From this point, whenever an unstable process recovers it will initially

set its leader to the correct value (Line 3), implementingOmegacr2.

Note that each process writesleaderp to stable storage only once each time it starts

executing the algorithm. Hence, from the point of view of thenumber of stable storage

writing operations the algorithm is efficient. A variant of this algorithm could write this

value to stable storage more frequently; e.g. periodically, or even every time it changes.

This could help in speeding up the convergence at the price ofa higher number of stable

storage writing operations.

Removing the rebroadcast ofALIVE messages (Line 19) we get a simplified ver-

sion of the algorithm that works in afully (eventually) timely connectedsystemSF ;

i.e. a system in which every process has a direct communication link with every other

process, and all the links are eventually timely. This ensures that eventually every new

ALIVE message that processcmin broadcasts will be received timely by the rest of the up

processes directly fromcmin, and finally only processcmin would broadcastALIVE mes-

76 Chapter 5. Omega in Crash-Recovery with Stable Storage

sages. Note that ifSF is weakened by either removing some links or considering some

links as lossy asynchronous, then messages must be rebroadcast in order to guarantee

their reception by all the up processes.

With regard to the cost of the algorithm in Figure 5.1: albeiteventually onlycmin

sends new messages forever, the remaining up processes willresend the message and,

in the worst case, this meansn−1 processes periodically resending messages to each

of the othern− 1 processes, makingO(n2) messages sent periodically. In the worst

case this implies thatO(n2) links carry messages forever. If we suppose the system

to be fully (eventually) timely connected we will have only one process,cmin, sending

messages periodically and hence the cost in messages sent periodically would beO(n),

which is efficient.

5.2.3 Correctness Proof

This section presents the correctness proof of the algorithm in Figure 5.1.

Lemma 9 Any message(ALIVE, p, incarnationp), p∈Π, eventually disappears from

the system.

Proof: Note first that a message cannot remain forever in a link, since it remains at

mostGST+δ time in an eventually timely link, and is lost or eventually delivered in a

lossy asynchronous link. Note as well that a message cannot remain forever in a pro-

cess, since by assumption processes take at least one step (execute at least one line of

the algorithm) per unit of time. Then, a process will eventually crash, drop the message

(Lines 17 and 18), or (re-)broadcast it (Lines 14 and 19). Finally, note that a process

never rebroadcasts twice the same message and never rebroadcasts its own messages

(Line 17). Hence a message can be (re-)broadcast at mostn times, and will eventually

disappear from the system.

5.2. An Algorithm for SystemS2 77

For the rest of the proof we will assume that any time instantt is larger than a time

t1 > t0, where:

(1) t0 is a time instant that occurs after the stabilization timeGST (i.e. t0 > GST),

and after every eventually down process has definitely crashed, every eventually

up process has definitely recovered, and every unstable process has an incarnation

number bigger thanincarnationmin,

(2) andt1 is a time instant such that all messages broadcast for the first time before

t0 have disappeared from the system (this eventually happens from Lemma 9). In

particular, this includes (a) all messages broadcast by eventually down processes,

(b) all messages broadcast by eventually up processes before recovering definitely,

and (c) all messages broadcast by unstable processes with incarnation number less

or equal toincarnationmin.

Lemma 10 There is a time after which process cmin permanently has

leadercmin = cmin and broadcasts a new(ALIVE, cmin, incarnationmin) message everyη

time.

Proof: Note that after timet1 processcmin will never receive an (ALIVE, q, incarnationq)

message withincarnationq < incarnationmin, or with incarnationq = incarnationmin

from a processq such thatq< cmin. Therefore, after timet1 processcmin will never ex-

ecute Lines 19-22 of the algorithm. Hence onceleadercmin = cmin it will remain so for-

ever. To show that this eventually happens, note that ifleadercmin 6= cmin at timet > t1,

thenTimercmin must be active at that time (actually,Timercmin was reset the last time

Line 7 or 22 was executed). Since after timet1 Lines 7 and 22 will never be executed,

Timercmin will not be reset any more. ThenTimercmin will eventually expire (Line 24),

andcmin will set leadercmin = cmin andincarnationleader= incarnationmin (Lines 26-27).

Finally, from Task 1, onceleadercmin = cmin, processcmin will permanently broadcast a

78 Chapter 5. Omega in Crash-Recovery with Stable Storage

new (ALIVE, cmin, incarnationmin) message everyη time.

Lemma 11 There is a time after which every process p∈ correct, p 6= cmin, perma-

nently has either (1) incarnationleader > incarnationmin, or (2) incarnationleader =

incarnationmin and leaderp ≥ cmin. Hence, p rebroadcasts each new(ALIVE, cmin,

incarnationmin) message it receives (Line 19), since Line 18 of the algorithmwill be

satisfied.

Proof: Note that aftert1, once the condition [incarnationleader > incarnationmin] or

[(incarnationleader= incarnationmin) and (leaderp≥ cmin)] is satisfied, it will remain so

forever, since no (ALIVE, q, incarnationq) message withincarnationq< incarnationmin,

or with incarnationq = incarnationmin from a processq such thatq < cmin will be

received. After that, ifincarnationleader < incarnationmin, or if incarnationleader =

incarnationmin andleaderp< cmin at timet > t1 with (1) incarnationp> incarnationmin,

or (2) incarnationp = incarnationmin andp> cmin, thenTimerp must be active at that

time. ThenTimerp will eventually expire (Line 24), setting either (1)incarnationleader=

incarnationp> incarnationmin, or (2)incarnationleader= incarnationp= incarnationmin

andleaderp = p> cmin.

Lemma 12 There is a time after which every process p∈ correct, p 6= cmin, perma-

nently receives new(ALIVE, cmin, incarnationmin) messages with intervals of at most

η +∆ time between consecutive messages, where∆ is the maximum delay introduced by

an eventually timely path.

Proof: From Lemma 10, there is a time after whichcmin sends new messages everyη

time. It takes at most∆ time to a message crossing an eventually timely path fromcmin

to p. From Lemma 11 every correct process will rebroadcast everymessage it receives

5.2. An Algorithm for SystemS2 79

from cmin. Therefore we can assure that every message sent bycmin will be rebroadcast

by the correct process processes until the message reaches every process in the system.

As cmin broadcasts a message everyη time and the message takes at most∆ time to

reach every process in the system, the lemma holds.

Theorem 2 There is a time after which every up process p permanently hasleaderp =

cmin, i.e. p trusts cmin. Hence, the algorithm in Figure 5.1 implements Omegacr2 (satis-

fies Property 4) in system S2.

Proof: Lemma 10 shows the claim forp = cmin. For everyp ∈ correct, such that

p 6= cmin, from Lemma 11 there is a time after whichp permanently has either (1)

incarnationleader> incarnationmin, or (2) incarnationleader= incarnationmin and the

variable leaderp ≥ cmin. From Lemma 12, wheneverleaderp 6= cmin after this time,

leaderp changes back tocmin in at mostη +∆ time. Furthermore, onceleaderp = cmin,

it only changes (top) by executing Lines 24-27, since the conditions in Lines 17 and 18

preventleaderp from changing in Line 20. Finally,leaderp changes fromcmin to p

a finite number of times, since each time this happensTimeoutp is incremented by 1.

By contradiction, assuming this happens an infinite number of times,Timeoutp even-

tually grows to the point in whichTimerp never expires, because new (ALIVE, cmin,

incarnationmin) messages are received timely andTimerp is reset before expiration.

Hence, eventuallyleaderp = cmin forever. Finally, every unstable processp will even-

tually receive a (ALIVE, cmin, incarnationmin) message during the waiting instruction

of Line 10, settingleaderp = cmin (Line 20). Then,p will write cmin to stable storage

(Line 11). The infinitely often writing in stable storage is one of the assumptions of

the system. After that,p will have leaderp = cmin permanently, even upon initialization

(Line 6). Hence, Hence, the algorithm in Figure 5.1 implements Omegacr2 in system

S2.

80 Chapter 5. Omega in Crash-Recovery with Stable Storage

5.3 An Algorithm for System S3

In this section, we propose an algorithm with a weaker synchrony assumption than the

one in Section 5.2. The new systemS3 assumes that eventually all processes are reach-

able timely fromsomecorrect process, independently of its identifier and incarnation

number.

The strategy followed by the algorithm is to choose as leaderthe correct process

that is the least suspected among those that reach timely allprocesses. Besides this, the

algorithm of this section requires the membership of the system to be knowna priori by

processes.

5.3.1 Specific System Assumptions inS3

The systemS3 corresponds to the general system modelS with some additional as-

sumptions. Contrary to systemS2, in S3 the membership is known. With respect to the

communication assumptions, the systemS3 assumes that:

• There is an eventually timely path from some correct processto every correct and

every unstable process.

Recall that in this chapter it is assumed that every process has access to stable stor-

age, and that unstable processes are able to write to stable storage infinitely often. Fi-

nally, only eventually timely and lossy asynchronous linksare considered.

5.3.2 The Algorithm

We present in this section a second algorithm, that has been adapted from [6], which im-

plementsOmegacr2 in systemS3. Figure 5.2 presents the pseudocode executed by each

process when it is up. The algorithm is the collection ofn instances of this pseudocode,

one for each process in the system.

5.3. An Algorithm for SystemS3 81

With this algorithm there is a time after which every up process permanently has

leaderp = l , beingl the least suspected process among those that eventually communi-

cate timely with the rest of processes.

The algorithm works as follows. Every processp has aPunishp[q] counter for every

processq, which is p’s estimation of the number of timesq has been suspected. Pro-

cessp selects as its leader the processl with the smallestPunishp[l] value. In order to

keep thePunishp variable up to date, every processp broadcasts everyη time units an

(ALIVE, p, Punishp) message. If a processp receives a message (ALIVE, q, Punishq)

with q 6= p for the first time,p rebroadcasts the message, updates itsPunishp vector ac-

cordingly, resetsTimerp(q) for when it expects to receive the next (ALIVE, q, Punishq)

message, and calls the procedureupdateleader().

If Timerp(q) expires before receiving a new (ALIVE, q, Punishq) message, thenp

increments the suspicion counterPunishp[q], increments the valueTimeoutp[q], resets

Timerp(q), and callsupdateleader().

Unstable processes may crash before receiving (directly o indirectly) some mes-

sages fromp, but they will receive messages fromp infinitely often when they are

up. The algorithm includes a mechanism to eventually avoid unstable processes from

disturbing the leader election. This mechanism is based on the incarnation number of

processes. Observe that, during initialization, every processp sets its time-outs with

respect to the rest of the processes toη + incarnationp (Line 5). Also,p setsPunishp[p]

to incarnationp (Line 8). The values set during the initialization ensure that eventu-

ally (1) every unstable processp will never suspect a correct processq that reaches

timely every other process (sincep’s time-out with respectq keeps increasing forever,

and hence eventuallyTimerp(q) will never expire), and consequentlyp will not incre-

mentPunishp[q] any more, and (2) every unstable processp will never be elected as

the leader in theupdateleader() procedure (sinceincarnationp, and hencePunishp[p],

keeps increasing forever).

82 Chapter 5. Omega in Crash-Recovery with Stable Storage

Every process p executes the following:

procedureupdateleader()
(1) leaderp← l such thatPunishp[l] = min{Punishp[q]},

using identifiers to break ties

Initialization:
(2) incrementINCARNATIONp by 1 in stable storage
(3) incarnationp← readINCARNATIONp from stable storage
(4) leaderp← readLEADERp from stable storage
(5) ∀q 6= p : Timeoutp[q]← η + incarnationp

(6) ∀q 6= p : resetTimerp(q) to Timeoutp[q]
(7) ∀q 6= p : Punishp[q]← 0
(8) Punishp[p]← incarnationp

(9) start tasks1, 2 and 3

Task 1:
(10) wait (η + incarnationp)
(11) write leaderp to stable storage
(12) loop forever
(13) broadcast (ALIVE, p, Punishp)
(14) wait (η)

Task 2:
(15) upon reception ofmessage (ALIVE, q, Punishq) with q 6= p

for the first timedo
(16) broadcast (ALIVE, q, Punishq)
(17) ∀r : Punishp[r]← max{(Punishp[r],Punishq[r])}
(18) resetTimerp(q) to Timeoutp[q]
(19) updateLeader()

Task 3:
(20) upon expiration of Timerp(q) do
(21) Punishp[q]← Punishp[q]+1
(22) Timeoutp[q]← Timeoutp[q]+1
(23) resetTimerp(q) to Timeoutp[q]
(24) updateleader()

Figure 5.2: An algorithm implementingOmegacr2 in S3.

5.3. An Algorithm for SystemS3 83

Also, the algorithm includes a waiting instruction (Line 10) followed by the writing

of the leader in stable storage in order to force unstable processes to eventually agree

with correct processes on the leader upon recovery.

The number of processes that send messages periodically (every η time) in this

algorithm is bounded byn, the number of processes. As every process rebroadcasts

the messages that receives for the first time, in the worst case we haven−1 processes

resendingn−1 messages to the rest of then−1 processes, that make a total ofO(n3)

messages sent periodically. From the point of view of links that carry periodic messages,

the cost isO(n2).

In the algorithm for the crash model in [6], processes (re-)broadcast explicitAC-

CUSATIONmessages to notify suspicions. By including the whole vector of suspi-

cion counters intoALIVE messages, the algorithm in Figure 5.2 avoids the broadcast

of ACCUSATIONmessages at the expense of increasing the length of the messages.

Observe that the systemS3 allows scenarios in which many pairs of processes cannot

communicate timely (either directly or indirectly). In [6]these processes would suspect

each other and hence broadcastACCUSATIONmessages permanently. Thus, avoiding

those messages reduces notably the number of messages exchanged during the execu-

tion of the algorithm.

5.3.3 Correctness Proof

Let R be the set of correct processes that eventually reach timelyall the correct and un-

stable processes inS3. Let B be the set of correct processesp with boundedPunishp[p].

By definition, there is a constant∆ and a time after which every message sent bys, s∈R,

takes at most∆ = (n−1)(δ +2σ) time to be received by every correct and unstable (if

up) process.

Lemma 13 Any message(ALIVE, p, Punishp), p∈ Π, eventually disappears from the

system.

84 Chapter 5. Omega in Crash-Recovery with Stable Storage

Proof: Note first that a message cannot remain forever in a link, since it remains at

mostGST+δ time in an eventually timely link, and is lost or eventually delivered in a

lossy asynchronous link. Note as well that a message cannot remain forever in a pro-

cess, since by assumption processes take at least one step (execute at least one line of

the algorithm) per unit of time. Then, a process will eventually crash, drop the message

(Line 15), or (re-)broadcast it (Lines 13 or 16). Finally, note that a process never re-

broadcasts twice the same message and never rebroadcasts its own messages (Line 15).

Hence a message can be (re-)broadcast at mostn times, and will eventually disappear

from the system.

For the rest of the proof we will assume that any time instantt is larger than a time

t1 > t0, where:

(1) t0 is a time instant that occurs after the stabilization timeGST(i.e. t0 > GST), and

after every eventually down process has definitely crashed,every eventually up

process has definitely recovered, and every unstable process u has an incarnation

number such thatincarnationu > ∆+4σ . Note that by definitionu will crash and

recover an infinite number of times, and hence eventuallyincarnationu> ∆+4σ ,

(2) andt1 is a time instant such that all messages broadcast for the first time beforet0

have disappeared from the system (this eventually happens from Lemma 13).

Lemma 14 ∀s∈ R, Punishs[s] is bounded.

Proof: Consider any correct processq 6= s. Processs sends a message (ALIVE, s,

Punishs) every η time. Eventually, every (ALIVE, s, Punishs) message thats sends

is received directly or indirectly byq within η +∆ time from the timeq received the

previous message froms. Sinceq increasesTimeoutq[s] every timeTimerq(s) expires,

eventuallyTimerq(s) will not expire any more. After this,q will not punishs (Line 21)

again, andswill not increasePunishs[s] due to a message from anyq∈ correct.

5.3. An Algorithm for SystemS3 85

On the other hand, every unstable processu will eventually and permanently set

Timeru(s) > η +∆+ 4σ during the initialization. Every timeu resetsTimeru(s), we

know thatTimeru(s) will expire after timeη +∆+4σ time. As messages froms are

sent everyη time, in the worst case processswill send a message at timet+η, and the

message will be received at processu at timet +η +∆, andTimeru(s) will be reset at

t +η +∆+4σ . Hence,Timeru(s) will never expire on anys∈ R. After this,u will not

punishs (Line 21) again, ands will not increasePunishs[s] due to a message from any

u∈ unstable.

The following observation derives from Lemma 14:

Observation 1 R⊆ B.

Lemma 15 For every process p∈ B, every process s∈ R receives messages from p

infinitely often.

Proof: The proof is by contradiction. Assume thats does not receive messages from

p infinitely often. Each timeTimers[p] expires, processp is punished bys (Line 21).

Eventually, a newALIVE message sent bys will be received byp andp will increase

Punishp[p] (Line 17). Since this happens infinitely often,Punishp[p] is not bounded,

which is a contradiction with the fact thatp∈ B.

The following observation derives from Lemma 15:

Observation 2 There is a constant∆′ and a time t2 > t1 after which every message

sent by p∈ B takes at most∆′ time to be received by every correct and unstable (if up)

process.

For the rest of the proof we will assume that any time instantt is larger than time

t2 > t1, wheret2 is a time instant that occurs afterPunishp[q]>Punishp[p], ∀q /∈ correct

86 Chapter 5. Omega in Crash-Recovery with Stable Storage

and∀p∈B, andincarnationu>Punishp[p], ∀u∈ unstable. This will eventually happen

becausePunishp[q] and incarnationu grow infinitely, and by definitionPunishp[p] is

bounded. Note that during the initialization (Line 8)Punishu[u] is set toincarnationu,

soPunishu[u]> Punishp[p].

Henceforth,varpt denotes the value of the local variablevar of p at timet.

Lemma 16 For every pair of correct processes p and q, p∈ B, there is a time after

which for every time t, Punishq[p]≥ Punishpt [p].

Proof: For p = q, the lemma is trivial. Now assumep 6= q. As p ∈ B, by Lemma 15

every processs∈R receives messages fromp infinitely often, and hence by rebroadcast

q will receive messages of type (ALIVE, p, Punishp) infinitely often. Lett > t2 be any

time. There is a timet ′ > t whenq receives (ALIVE, p, Punishp) with Punishp[p] =

c, originally sent byp after time t, so c ≥ Punishpt [p]. Then at timet ′, q sets its

Punishq[p] to c, and so we have:Punishq[p] ≥ Punishpt [p]. The lemma now follows

sincePunishq[p] is monotonically nondecreasing.

Lemma 17 For every correct process p:

(1) If Punishp[p] is bounded, then there exists a value Vp and a time after which for

every correct process q, Punishq[p] =Vp.

(2) If Punishp[p] is not bounded, then for every correct process q, Punishq[p] is not

bounded.

Proof: Let p be a correct process.

(1) SupposePunishp[p] is bounded. Thus, by Lemma 16, for every correct process

q, there is a timet > t2 after whichPunishq[p] ≥ Punishpt [p]. SincePunishp[p]

is bounded and monotonically nondecreasing, there exists avalueVp and a time

after whichPunishp[p] =Vp. Therefore, there exists a time after which, for every

correct processq, Punishq[p] =Vp.

5.3. An Algorithm for SystemS3 87

(2) SupposePunishp[p] is not bounded. Lemma 16 implies thatPunishq[p] is also

not bounded.

Lemma 18 For every correct process p:

(1) If Punishp[p] is bounded, then there is a time after which for every unstable process

u, Punishu[p] =Vp in at most∆′+η +3σ time after its initialization.

(2) If Punishp[p] is not bounded, then for every unstable process u, Punishu[p] is not

bounded.

Proof: Let p be a correct process.

(1) SupposePunishp[p] is bounded. Thus, by Lemma 17 there is a time after which

Punishp[p] = Vp. From Observation 2, every unstable processu will receive (if

up) an alive message from every processp∈ B in at most∆′+η time. Hence, at

most∆′+η +3σ time after the initialization,Punishu[p] =Vp.

(2) SupposePunishp[p] is not bounded. By definition every unstable processu will

receive (if up) an alive message infinitely often from every processq∈B, and will

updatePunishu[p] (Line 17). By Lemma 17, ifPunishp[p] is not bounded, then

Punishq[p] is not bounded. Hence,Punishu[p] is also unbounded.

The following observation derives from Lemma 17 and Lemma 18:

Observation 3 There is a time t′ > t2 after which every message sent by every process

q will contain Punishq[p] =Vp, ∀p∈ B.

88 Chapter 5. Omega in Crash-Recovery with Stable Storage

For the rest of the proof we will assume that any time instantt is larger thant ′ of

Observation 3.

Lemma 19 If process k is not correct then for every process q there is a time after which

k will not be leaderq.

Proof: As processk is not correct, there is a timet > t2 after whichPunishk[k] >

Punishp[p], andPunishp[k] > Punishp[p], for everyp∈ B. If q is correct, since even-

tually every message broadcast by every processp reaches timely every correct process

q, Punishq[k]≥ Punishp[k], and processk will not be elected as leader any more. Ifq is

unstable, by definitionq will execute Line 11 infinitely often. By Lemma 18 there is a

time after whichPunishq[p] = Vp andPunishq[k] > Punishq[p] in at most∆′+η +3σ

time after the initialization. Hence, eventually,leaderq 6= k will be permanently saved

in stable storage, and processk will not be elected as leader any more.

Lemma 20 There exists a correct process l and a time after which, for every correct

process q, leaderq = l.

Proof: Note thatB is not empty. By Lemma 17(1), for every processp∈ B, there is a

corresponding integerVp and a time after which for every correct processq, Punishq[p] =

Vp (forever). Letl denote the processp∈ B with the smallest corresponding tuple (Vp,

p). We now show that eventually every correct processq selectsl as its leader (for-

ever). For any other processp 6= l : (*) there is a time after which(Punishq[p], p) >

(Punishq[l], l). This implies that eventuallyq selectsl as its leader, forever. To show (*)

holds, consider the following 3 possible cases. Ifp is not correct then, by Lemma 19,

eventuallyp will never be elected as leader (forever). Now suppose thatp is cor-

rect. If Punishp[p] is bounded, thenp ∈ B; so, by our selection ofl in B, eventu-

ally (Punishq[p] = Vp, p) > (Punishq[l] = Vl , l) forever. Finally, ifPunishp[p] is not

5.3. An Algorithm for SystemS3 89

bounded, then, by Lemma 17(2), there is a time after whichPunishq[p]>Punishq[l] =Vl

(becausePunishq[p] is unbounded and monotonically nondecreasing). In all cases (*)

holds.

Lemma 21 There exists a correct process l and a time after which, for every unstable

process u, leaderu = l.

Proof: By Lemma 18(1), for every processp∈ B, there is a corresponding integerVp

and a time after which for every unstable processu, Punishu[p] = Vp in ∆′+η +3σ

time after the initialization. By definition,u executes Line 11 infinitely often, sav-

ing leaderu in stable storage. Letl denote the processp ∈ B with the smallest corre-

sponding tuple(Vp, p). We now show that eventually every unstable processu selects

l as its leader (forever). For any other processp 6= l : (*) there is a time after which

(Punishu[p], p) > (Punishu[l], l). This implies that eventuallyu selectsl as its leader,

writes leaderu = l to stable storage (forever), and readsleaderu = l from stable storage

during the initialization. To show (*) holds, consider the following 3 possible cases.

If p is not correct then, by Lemma 19, eventuallyp will never be elected as leader

(forever). Now suppose thatp is correct. IfPunishp[p] is bounded, thenp ∈ B; so,

eventually every (ALIVE, z, Punishz) message thatu receives after the initialization

will contain always(Punishz[p] =Vp, p)> (Punishz[l] =Vl , l) forever. Since during the

initialization every counter is set to 0 exceptPunishu[u] that is unbounded,Punishu[p]

will be set toPunishz[p] andPunishu[l] to Punishz[l] respectively (Line 17). By our

selection ofl in B, l will be chosen as leader and written in stable store at Line 11.

Finally, if Punishp[p] is not bounded, then, by Lemma 18(2), there is a time after which

Punishu[p]>Punishu[l] =Vl (becausePunishu[p] is unbounded and monotonically non-

decreasing). In all cases (*) holds.

90 Chapter 5. Omega in Crash-Recovery with Stable Storage

Theorem 3 There is a time after which every process that is up, either correct or un-

stable, always trusts the same correct process. Hence, the algorithm in Figure 5.2

implements Omegacr2 in system S3.

Proof: Follows directly from Lemma 20 and Lemma 21, and the common definition of

processl made in both lemmas.

5.4 An Algorithm for System S4

In this section, we propose an algorithm that implementsOmegacr2 in systemS4. In this

system, we weaken the assumptions in Section 5.2 by assumingunknown membership.

As in S3, we assume that eventually all processes are reachable timely from some correct

process.

5.4.1 Specific System Assumptions inS4

The systemS4 is similar toS3 but instead of known membership, inS4 the membership

is unknown, i.e. contrary to the algorithm in Figure 5.2, thealgorithm of this section

does not require the membership of the system to be knowna priori by processes. Recall

that process identifiers are totally ordered, but need not beconsecutive. Furthermore,

processes have no knowledge about the total number of processesn. Also, every un-

stable process will be able to write to stable storage infinitely often. As in the previous

section we have the following communication assumption:

(1) There is an eventually timely path from some correct process to every correct and

every unstable process.

5.4. An Algorithm for SystemS4 91

5.4.2 The Algorithm

We present in this section a third algorithm, adapted from [80], that implementsOmegacr2,

in systemS4. Figure 5.3 presents the pseudocode executed by each process when it is

up. The algorithm is the collection ofn instances of this pseudocode, one for each

process in the system.

With this algorithm there is a time after which every up process permanently has

leaderp = l , beingl the least suspected process among those that eventually communi-

cate timely with the rest of the processes.

The algorithm works as follows. Processes send messages periodically to show they

are alive. These messages are rebroadcast to attempt reaching all processes. Each pro-

cessp maintains a setMembershipp of pairs(q,v) (initially (p, incarnationp)), where

q is a process thatp knows, andv≥ 0 is roughly the number of times thatq has been

“punished”. Every message sent byp contains this setMembershipp.

When a processp receives a message fromq 6= p for the first time, after rebroad-

casting it, for every pair (r, −) ∈ Membershipq, p checks if (r, −) /∈ Membershipp,

in which casep includes (r, v) in Membershipp (beingv the value associated withr in

Membershipq), createsTimerp(r) andTimeoutp[r], setsTimeoutp[r] to η+ incarnationp,

and resetsTimerp(r). Otherwise, if (r, −) ∈Membershipp, p updates the value asso-

ciated withr in Membershipp. After that,p resetsTimerp(q) to Timeoutp[q]. Then, if

(p, −) /∈ Membershipq, then p punishes itself by incrementing its associated counter

in Membershipp. Finally, theupdateleader() procedure is called to changeleaderp

if required. A processp will hold in leaderp its current leader, which is the processq

whose pair (q, v) in Membershipp has the smallest valuev, using the process identifier

to break ties.

If Timerp(q) expires before receiving a new (ALIVE, q, Membershipq) message,

then p increments the value associated withq in Membershipp, increments the value

Timeoutp[q], resetsTimerp(q) to Timeoutp[q], and callsupdateleader().

92 Chapter 5. Omega in Crash-Recovery with Stable Storage

Every process p executes the following:

procedureupdateleader()
(1) leaderp← l such thatv∈ (l ,v) = min{v′} ∈ (q,v′), ∀(q,v′) ∈Membershipp

using identifiers to break ties

Initialization:
(2) incrementINCARNATIONp by 1 in stable storage
(3) incarnationp← readINCARNATIONp from stable storage
(4) leaderp← readLEADERp from stable storage
(5) Membershipp←{(p, incarnationp)}
(6) start tasks1, 2 and 3

Task 1:
(7) wait (η + incarnationp)
(8) write leaderp to stable storage
(9) loop forever
(10) broadcast (ALIVE, p, Membershipp)
(11) wait (η)

Task 2:
(12) upon reception ofmessage (ALIVE, q, Membershipq) with q 6= p

for the first timedo
(13) broadcast (ALIVE, q, Membershipq)
(14) ∀(r,−) ∈Membershipq:
(15) if (r,−) /∈Membershipp then
(16) Membershipp←Membershipp∪{(r,v)} : (r,v) ∈Membershipq
(17) createTimerp(r) andTimeoutp[r]
(18) Timeoutp[r]← η + incarnationp

(19) resetTimerp(r) to Timeoutp[r]
(20) else
(21) replace inMembershipp

(r,v) by (r, max{v,v′}) : (r,v′) ∈Membershipq
(22) end if
(23) resetTimerp(q) to Timeoutp[q]
(24) if (p,−) /∈Membershipq then
(25) replace inMembershipp (p,v) by (p,v+1)
(26) end if
(27) updateleader()

Task 3:
(28) upon expiration of Timerp(q) do
(29) replace inMembershipp (q,v) by (q,v+1)
(30) Timeoutp[q]← Timeoutp[q]+1
(31) resetTimerp(q) to Timeoutp[q]
(32) updateleader()

Figure 5.3: An algorithm implementingOmegacr2 in S4.

5.4. An Algorithm for SystemS4 93

To avoid unstable processes from disturbing the leader election, during the initializa-

tion every processp setsMembershipp with the pair (p, incarnationp) (Line 5). Also,

in Task 1p waitsη + incarnationp units of time (Line 7) before start sending messages

(that includeMembershipp) periodically. This waiting ensures that eventually every

unstable processp will only send messages withMembershipp containing a pair (l , v)

such thatl is a correct process andv is smaller than the value associated with any other

(correct or unstable) process in the system.

As the algorithm in the previous section, we haven processes sending messages

periodically, and the number of messages sent periodically(every η time) is O(n3).

From the point of view of links that carry messages periodically, the cost isO(n2).

In the algorithm for the crash model in [80], an additional set candidatesp, con-

taining the processes considered alive, is maintained by every processp, andALIVE

messages include the setCandidatesp instead ofMembershipp. Upon a suspicion on a

processq, p removesq from Candidatesp and broadcasts an explicitALIVE message

to notify the suspicion. Again, our algorithm for the crash-recovery model avoids the

explicit broadcast of messages to notify suspicions, reducing the message complexity

of the algorithm.

5.4.3 Correctness Proof

Regarding the correctness proof of this algorithm, it is close to that of algorithm in

Figure 5.2 that is provided in Section 5.3.3. The main differences are the unknown

membership, which is addressed with a non-decreasing membership, Membershipp,

dynamically created timers, and the punishment mechanism.By the mechanism a pro-

cessp punishes itself (Lines 24-26) if it receives a message from aprocessr that has

not received a message fromp and hence, it does not containp in Membershipr . This

is needed because otherwise a process whose messages are always lost and hence will

never be known by the rest of the processes could consider itself the leader if it is not

94 Chapter 5. Omega in Crash-Recovery with Stable Storage

”punished”.

Theorem 4 There is a time after which every process that is up, either correct or un-

stable, always trusts the same correct process. Hence, the algorithm in Figure 5.3

implements Omegacr2 in system S4.

Chapter 6

Communication-Efficient Omega

Algorithms

Contents

6.1 Introduction . 96

6.2 Communication Efficiency Definitions97

6.3 An Algorithm for System S5 . 98

6.4 An Algorithm for System S6 . 105

6.5 An Algorithm for System S7 . 115

6.6 Relaxing Communication Reliability and Synchrony 122

95

96 Chapter 6. Communication-Efficient Omega Algorithms

6.1 Introduction

In the algorithms presented in Chapters 4 and 5 every alive process resends messages

to the rest of the processes. This is due to the fact that the connectivity assumptions are

very weak (they rely on eventually timely and fair lossy paths) and hence the resending

of messages is mandatory. Consequently, the cost of these algorithms is high in terms

of the number of messages exchanged.

It would be desirable to have algorithms for Omega in which eventually only one

process, the leader, sends messages periodically to the rest of the processes. In the

system models in this dissertation, this is the minimal requirement in the number of

processes that send messages periodically. Roughly speaking, the only proof we have

that a process is not down permanently is the fact that at least one other process receives

periodic messages from it. This thought is very significant in the crash model because

processes that communicate permanently and periodically with other process are cor-

rect. In the crash-recovery model, we will need additional mechanisms to distinguish

between correct and unstable processes.

In this chapter, we first define the concepts of communicationefficiency and near-

efficiency in the crash-recovery model in relation to the Omega failure detector. These

are respectively related to the fact that eventually eitheronly one process or correct pro-

cess sends messages forever. Then we propose three algorithms that implement Omega

efficiently. Specifically:

(1) A communication-efficient Omega algorithm in systemS5, where processes have

access to stable storage.

(2) A near-communication-efficient Omega algorithm in a system S6, where pro-

cesses do not have access to stable storage.

(3) A communication-efficient Omega algorithm in systemS7, where there is no ac-

cess to stable storage, and which relies on nondecreasing local clocks.

Recall that depending on whether or not stable storage is used, the properties that the

6.2. Communication Efficiency Definitions 97

algorithms can satisfy varies. When stable storage is used,unstable processes can agree

with correct processes by reading the identity of the leaderfrom stable storage upon

recovery. However, when stable storage is not used unstableprocesses must “learn” the

identity of the leader from other process(es) upon recovery. It is desirable for a process

to be aware of being in this learning period; e.g. to be able toinform an application

querying the identity of the leader about this fact. In this regard, for systemS6 we also

propose an adaptation of the near-communication-efficientalgorithm that provides this

capability of instability awareness and hence allows the implementation ofOmegacr1.

The rest of the chapter is organized as follows. In Section 6.2, we give the defi-

nitions of communication efficiency and near-efficiency forthe Omega failure detec-

tor in crash-recovery systems. Section 6.3 presents systemS5 and a communication-

efficient algorithm implementingOmegacr2 which uses stable storage. Sections 6.4

and 6.5 present systemsS6 andS7 in which we implement, without using stable stor-

age, a near-communication-efficient algorithm implementing Omega(Property 2) and

a communication-efficient algorithm implementingOmegacr1, respectively. Finally, in

Section 6.6 we discuss the relaxation of the communication reliability and synchrony

assumptions.

6.2 Communication Efficiency Definitions

The system considered in this section is the general system modelSpresented in Chap-

ter 3. We now define the concepts of communication-efficient and near-communication-

efficient implementations of the Omega failure detector in crash-recovery models.

Definition 1 An algorithm implementing the Omega failure detector in thecrash-recove-

ry failure model is communication-efficient if there is a time after which only one process

sends messages forever.

98 Chapter 6. Communication-Efficient Omega Algorithms

Definition 2 An algorithm implementing the Omega failure detector in thecrash-recove-

ry failure model is near-communication-efficient if there is a time after which, among

correct processes, only one sends messages forever.

Intuitively, since the (correct) leader process in an Omegaalgorithm must send mes-

sages forever in order to continue being trusted by the rest of the processes, we can

derive that a communication-efficient Omega algorithm is also near-communication-

efficient. The difference between both definitions is that ina near-communication-

efficient Omega algorithm unstable processes can send messages forever, as well as

the leader.

In the following sections, we propose two communication-efficient Omega algo-

rithms and a near-communication-efficient Omega algorithm.

6.3 An Algorithm for System S5

In this section, we present a communication-efficient algorithm implementingOmegacr2

in systemS5.

6.3.1 Specific System Assumptions inS5

The systemS5 corresponds to the general system modelS, defined in Chapter 3, with

some additional assumptions.

In systemS5 we have the following communication assumption:

1) For every correct processp there is an eventually timely link fromp to every

correct and every unstable process.

Note that the rest of the links inS5, i.e. the links from/to eventually down processes

and the links from unstable processes, can be lossy asynchronous.

6.3. An Algorithm for SystemS5 99

As in Chapter 5, every process has access to stable storage. Also unstable processes

will write to stable storage infinitely often. Figure 6.1 presents a scenario of a system

composed of five processes that meet the assumptions made inS5.

p1 p2

Figure 6.1: Scenario 8: three eventually up, one eventuallydown, one unstable.

6.3.2 The Algorithm

In this section we present a distributed algorithm that implementsOmegacr2 in system

S5. Figure 6.2 presents the pseudocode executed by each process when it is up. The

algorithm is the collection ofn instances of this pseudocode, one for each process in the

system.

The process chosen as leader by a processp, i.e. trusted byp, is held in the variable

leaderp. Every processp uses stable storage to keep the value of two local variables:

leaderp, initially set to p; and an incarnation numberincarnationp, initially set to 0,

which is incremented during initialization and every timep recovers from a crash. Both

incarnationp andleaderp are read from stable storage byp during initialization. Every

processp also has aCandidatesp set containing the processes from whichp will choose

leaderp (initialized to {p, leaderp}). In addition, p has a time-outTimeoutp[q] with

respect to every other processq (initially set toη + incarnationp, whereη is a constant

value), and aRecoveredp vector to count the number of times that each process has

recovered (initially set to 0 for every other process and toincarnationp for p itself).

100 Chapter 6. Communication-Efficient Omega Algorithms

Every process p executes the following:

procedureupdateleader()
(1) leaderp← process inCandidatesp with smallest associated counter inRecoveredp,

using identifiers to break ties

Initialization:
(2) incrementINCARNATIONp by 1 in stable storage
(3) incarnationp← readINCARNATIONp from stable storage
(4) leaderp← readLEADERp from stable storage
(5) Candidatesp← {p, leaderp}
(6) for all q∈Π exceptp:
(7) Timeoutp[q]← η + incarnationp

(8) Recoveredp[q]← 0
(9) Recoveredp[p]← incarnationp

(10) if leaderp 6= p then
(11) resetTimerp(leaderp) to Timeoutp[leaderp]
(12) end if
(13) start tasks1, 2 and 3

Task 1:
(14) wait (η + incarnationp) time units
(15) write leaderp to stable storage
(16) repeat forever everyη time units
(17) if leaderp = p then
(18) send (LEADER, p, Recoveredp) to all processes exceptp
(19) end if

Task 2:
(20) upon reception ofmessage (LEADER, q, Recoveredq) do
(21) for all r ∈Π:
(22) Recoveredp[r]← max{Recoveredp[r], Recoveredq[r]}
(23) if q /∈Candidatesp then
(24) Candidatesp←Candidatesp∪{q}
(25) end if
(26) updateleader()
(27) resetTimerp(q) to Timeoutp[q]

Task 3:
(28) upon expiration of Timerp(q) do
(29) Timeoutp[q]← Timeoutp[q]+1
(30) Candidatesp←Candidatesp−{q}
(31) updateleader()

Figure 6.2: A communication-efficientOmegacr2 algorithm inS5.

6.3. An Algorithm for SystemS5 101

The algorithm works as follows. After the initialization, if processp does not trust

itself, it resets a timer with respect toleaderp. After that,p starts the three tasks of the

algorithm. In Task 1,p first waits forη + incarnationp time units, after which it writes

leaderp to stable storage. Then, everyη time unitsp checks if it trusts itself, in which

casep sends aLEADERmessage containingRecoveredp to the rest of the processes.

Task 2 is activated wheneverp receives aLEADERmessage from another processq

(note that this task is active duringp’s waiting in Task 1):p updatesRecoveredp with

Recoveredq, taking the highest value for each component of the vector. After that, p

includesq in Candidatesp, calls the procedureupdateleader() and resetsTimerp(q).

In the procedureupdateleader(), leaderp is set to the process inCandidatesp with the

smallest associated counter inRecoveredp using the processes’ identifiers to brake ties.

In Task 3, which is activated wheneverTimerp(q) expires,p incrementsTimeoutp[q],

removesq from Candidatesp and callsupdateleader().

As we will show, with this algorithm eventually every correct process always trusts

the same correct process`. Consequently, by Task 1 eventually only one correct pro-

cess sends messages forever; i.e. the algorithm is at least near-communication-efficient.

With regard to the behaviour of unstable processes, the waitinstruction followed by the

writing of leaderp to stable storage at the beginning of Task 1 ensure that eventually

p will definitely write ` to stable storage. Recall that, as in Chapter 5, the algorithm

relies on the assumption that every unstable process is ableto write leaderp to sta-

ble storage infinitely often. From this point on, wheneverp recovers it will initialize

leaderp to `. Moreover, the initializations ofTimeoutp[`] to η + incarnationp and of

Recoveredp[p] to incarnationp prevent unstable processes from disturbing the leader

election, because they ensure that eventually: (1) every unstable processp will never

suspect the leader̀(sincep’s time-out with respect tò keeps increasing forever and

hence eventuallyTimerp(`) will never expire); and (2) every unstable processp will

never be elected as the leader in theupdateleader() procedure, sinceincarnationp,

102 Chapter 6. Communication-Efficient Omega Algorithms

and henceRecoveredp[p], keeps increasing forever).

Finally, observe that every process only writesleaderp to stable storage once every

time it starts executing the algorithm; hence, the number ofwritings in stable storage is

very low.

With regard to the cost of the algorithm in Figure 6.2, the algorithm is communication-

efficient. Eventually only the leader sends messages periodically to the rest of the pro-

cesses, which impliesO(n) messages. Furthermore, in the worst case onlyO(n) links

carry messages forever.

6.3.3 Correctness Proof

We show now that the algorithm in Figure 6.2 implementsOmegacr2 in systemS5, and

that it is communication-efficient.

Lemma 22 Any message (LEADER, p, Recoveredp), p ∈ Π, eventually disappears

from the system.

Proof: A messagem cannot remain forever in a link, since it remains at mostGST+δ

time in an eventually timely link, and is lost or eventually received in a lossy asyn-

chronous link. Also,mcannot remain forever in the destination process, since processes

are assumed to be synchronous. Hence,mwill eventually disappear from the system.

For the rest of the proof we will assume that any time instantt is larger thant1 > t0,

where:

(1) t0 is a time instant that occurs after the global stabilizationtime GST (i.e. t0 >

GST), and after every eventually down process has definitely crashed, every cor-

rect (i.e. eventually up) process has definitely recovered,and every unstable pro-

cess has an incarnation value bigger than any correct process, i.e.∀u∈ unstable,

∀p∈ correct: incarnationu > incarnationp,

6.3. An Algorithm for SystemS5 103

(2) andt1 is a time instant such that all messages sent beforet0 have disappeared

from the system (this eventually happens from Lemma 22). In particular, this

includes (a) all messages sent by eventually down processes, (b) all messages

sent by correct processes before recovering definitely, and(c) all messages sent

by every unstable processu with Recoveredu[u] = incarnationu≤ incarnationp,

for every correct processp. This eventually happens, since by definition unstable

processes crash and recover an infinite number of times, while correct processes

crash and recover a finite number of times.

Let be` the correct process with the smallest value for itsincarnatioǹ variable,

i.e. the correct process that crashes and recovers the leasttimes. If two or more correct

processes have the same final value for theirincarnationvariables, then let̀ be the

process with the smallest identifier among them. We will showthat eventually and

permanently, for every correct and every unstable processp, leaderp = `.

Lemma 23 Eventually and permanently, leader` = `.

Proof: By the algorithm, the only way for process` to have as leader another pro-

cessq is by receiving a message (LEADER, q, Recoveredq) such thatRecoveredq[q]<

Recovered̀[`]. However, it is simple to see that such a scenario cannot happen, since

for all messages sent byq to ` after t, either (1)Recoveredq[q] = incarnationq >

incarnatioǹ = Recovered̀[`], or (2) Recoveredq[q] = incarnationq = incarnatioǹ =

Recovered̀[`] andq> `. Henceleader̀ is permanently set tò in theupdateleader()

procedure. As a result, eventually and permanently process` considers itself the leader,

i.e. leader̀ = `.

Lemma 24 Eventually and permanently, process` will periodically send a (LEADER,

`, Recovered̀) message to the rest of the processes.

104 Chapter 6. Communication-Efficient Omega Algorithms

Proof: Follows directly from Lemma 23 and Task 1 of the algorithm.

Lemma 25 Eventually and permanently, for every correct process p,

leaderp = `.

Proof: Follows from Lemma 23 for process̀. Let be any other correct processp.

By Lemma 23 and Task 1 of the algorithm,` will periodically send a (LEADER, `,

Recovered̀) message to the rest of the processes, includingp. By the fact that the

communication link betweeǹandp is eventually timely, by Task 2p will receive the

message in at mostδ time units, settingleaderp to ` in theupdateleader() procedure,

and resettingTimerp(`) to Timeoutp[`]. Observe thatTimerp(`) can expire a finite num-

ber of times, since by Task 3 every time it expiresp incrementsTimeoutp[`]. Hence,

eventually by Task 2p will receive a (LEADER, `, Recovered̀) message from̀ period-

ically and timely, i.e, beforeTimerp(`) expires. After this happens,p will not change

leaderp to a value different from̀ any more.

Lemma 26 Eventually and permanently, every correct process p6= ` will not send mes-

sages any more.

Proof: Follows directly from Lemma 25 and the algorithm.

Lemma 27 Eventually, every unstable process u will not send messagesany more, and

leaderu will be ` forever.

Proof: By Lemma 23 and Task 1 of the algorithm,` will periodically send a (LEADER,

`, Recovered̀) message to the rest of the processes, includingu. By the facts that

(1) the communication link betweeǹandu is eventually timely, and (2)u waits η +

6.4. An Algorithm for SystemS6 105

incarnationu time units at the beginning of Task 1, eventually by Task 2u will always re-

ceive a (LEADER, `, Recovered̀) message from̀ before the end of the waiting instruc-

tion of Task 1. Upon reception of that message, and since necessarilyRecovered̀[`]<

Recoveredu[u] at processu at that instant,u adopts̀ as its leader. Additionally, by the

fact thatu initializesTimeoutu[`] to η + incarnationu, eventuallyTimeru(`) will not ex-

pire any more. Also, at the end of the wait of Task 1,u will write ` to stable storage.

After this happens,u will not send messages any more, and the value ofleaderu will be

` forever, since upon recoveryu will read ` as its leader from stable storage.

Theorem 5 There is a time after which every process that is up, either correct or un-

stable, always trusts the same correct process. The algorithm in Figure 6.2 implements

Omegacr2 in system S5.

Proof: Follows directly from Lemmas 23, 25 and 27.

Theorem 6 The algorithm in Figure 6.2 is communication-efficient.

Proof: Follows directly from Lemmas 24, 26 and 27.

6.4 An Algorithm for System S6

In this section we present a near-communication-efficient implementation ofOmega

(satisfying Property 2) in systemS6, which assumes that processes do not have access

to any form of stable storage. Remember that when a process crashes all its variables

lose their values.

106 Chapter 6. Communication-Efficient Omega Algorithms

6.4.1 Specific System Assumptions inS6

The systemS6 corresponds to the general system modelS, defined in Chapter 3, with

some additional assumptions.

The systemS6 makes the following communication assumptions:

1) For every correct processp there is an eventually timely link fromp to every

correct and every unstable process.

2) For every unstable processu there is a fair lossy link fromu to every correct

process.

The rest of the links inS6, i.e. the links from/to eventually down processes and

the links between unstable processes, can be lossy asynchronous. Figure 6.3 presents a

scenario which satisfies the assumptions made inS6.

p1 p2

Figure 6.3: Scenario 9: three eventually up, one eventuallydown, one unstable.

6.4.2 The Algorithm

In this section we present an algorithm that implements Omega in systemS6. Figure 6.4

presents the pseudocode executed by each process when it is up. The algorithm is the

collection ofn instances of this pseudocode, one for each process in the system.

6.4. An Algorithm for SystemS6 107

Contrary to the previous algorithm, where the variableleaderp was initialized from

stable storage,leaderp is now initialized top, as well as the setCandidatesp. In addi-

tion, since processes do not have an incarnation counter in stable storage,Timeoutp[q]

is initialized toη for every other processq, andRecoveredp[p] is initialized to 1.

The algorithm works as follows. During initialization and upon recoveryp sends a

RECOVEREDmessage to the rest of the processes in order to inform them that it has

recovered. After that,p starts the three tasks of the algorithm. In Task 1, which is peri-

odically activated everyη time units, ifp trusts itself then it sends aLEADERmessage

containingRecoveredp to the rest of the processes. Task 2 is activated wheneverp re-

ceives either aRECOVEREDmessage or aLEADERmessage from another processq.

If p receives aRECOVEREDmessage fromq, p incrementsRecoveredp[q]. However,

if p receives aLEADERmessage fromq, p updatesRecoveredp with Recoveredq as in

the previous algorithm (i.e. taking the highest value for each component of the vector),

as well as updating its time-out with respect toq (Timeoutp[q]), taking the higher value

between its current value and that ofRecoveredp[p]. Thenp includesq in Candidatesp,

calls the procedureupdateleader() and resetsTimerp(q). Task 3 remains identical to

that of the previous algorithm: wheneverTimerp(q) expires,p incrementsTimeoutp[q],

removesq from Candidatesp and callsupdateleader().

With regard to the cost of the algorithm, eventually only onecorrect process, the

leader, sends messages periodically to the rest of the processes. However, in the worst

case the rest of the processes in the system can be unstable and they could send infinitely

often RECOVEREDmessages, which implies that the cost of the algorithm isO(n2)

messages. Also, in the worst caseO(n2) links carry messages forever.

6.4.3 Correctness Proof

We show now that the algorithm in Figure 6.4 implementsOmega(Property 2) in system

S6 and that it is near-communication-efficient.

108 Chapter 6. Communication-Efficient Omega Algorithms

Every process p executes the following:

procedureupdateleader()
(1) leaderp← process inCandidatesp with smallest associated counter inRecoveredp,

using identifiers to break ties

Initialization:
(2) leaderp← p
(3) Candidatesp← {p}
(4) for all q∈Π exceptp:
(5) Timeoutp[q]← η
(6) Recoveredp[q]← 0
(7) Recoveredp[p]← 1
(8) send (RECOVERED, p) to all processes exceptp
(9) start tasks1, 2 and 3

Task 1:
(10) repeat forever everyη time units
(11) if leaderp = p then
(12) send (LEADER, p, Recoveredp) to all processes exceptp
(13) end if

Task 2:
(14) upon reception ofmessage (RECOVERED, q)

or message (LEADER, q, Recoveredq) do
(15) if message is of typeRECOVEREDthen
(16) Recoveredp[q]← Recoveredp[q]+1
(17) else
(18) for all r ∈Π:
(19) Recoveredp[r]← max{Recoveredp[r], Recoveredq[r]}
(20) Timeoutp[q]← max{Timeoutp[q], Recoveredp[p]}
(21) end if
(22) if q /∈Candidatesp then
(23) Candidatesp←Candidatesp∪{q}
(24) end if
(25) updateleader()
(26) resetTimerp(q) to Timeoutp[q]

Task 3:
(27) upon expiration of Timerp(q) do
(28) Timeoutp[q]← Timeoutp[q]+1
(29) Candidatesp←Candidatesp−{q}
(30) updateleader()

Figure 6.4: A near-communication-efficientOmegaalgorithm inS6.

6.4. An Algorithm for SystemS6 109

Lemma 28 Any message m eventually disappears from the system.

Proof: A messagem cannot remain forever in a link, since it remains at mostGST+δ

time in an eventually timely link, and is lost or eventually received in a fair lossy link

or a lossy asynchronous link. Also,m cannot remain forever in the destination process,

since processes are assumed to be synchronous. Hence,m will eventually disappear

from the system.

For the rest of the proof we will assume that any time instantt occurs after the

global stabilization timeGST (i.e. t > GST), and after every eventually down process

has definitely crashed and disappeared forever from the setCandidatesof every correct

and every unstable process, and every correct (i.e. eventually up) process has definitely

recovered, and allRECOVEREDmessages sent by correct processes have disappeared

from the system. This eventually happens, since by definition every correct process

completes the initialization of the algorithm a finite number of times, andRECOVERED

messages are only send during initialization.

Observation 4 ∀p,q∈ correct : Recoveredp[q] is bounded by the number of RECOV-

ERED messages q has sent to p.

Lemma 29 Eventually, no correct process will choose an unstable process as its leader.

Proof: Let p andu be any correct process and any unstable process, respectively. There

are two cases to consider:

a) Processu sends an infinite number ofRECOVEREDmessages top. Since the

communication link fromu to p is fair lossy,p will receive an infinite number of

RECOVEREDmessages fromu. So, eventuallyRecoveredp[u] > Recoveredp[p]

permanently, since by the algorithmRecoveredp[p] is finite. After that,p will

not chooseu as its leader in theupdateleader() procedure any more, because

110 Chapter 6. Communication-Efficient Omega Algorithms

p ∈Candidatesp permanently, andp is a better candidate thanu to become the

leader.

b) Processu sends a finite number ofRECOVEREDmessages top. Since the com-

munication link fromu to p is fair lossy, this means that eventuallyu does not

reach any more the instruction that sends theRECOVEREDmessage top. Con-

sequently,u will eventually disappear forever from the setCandidatesp. After

that,p will not chooseu as its leader in theupdateleader() procedure any more,

becauseu /∈Candidatesp permanently.

Henceforth, we will consider that any time instantt ′ > t occurs after Lemma 29

holds.

Lemma 30 Eventually, at least one correct process p permanently has

leaderp = p.

Proof: By time t ′, eventually down processes are not in the setCandidatesof any

alive process in the system. And by Lemma 29, no correct process chooses an unsta-

ble process as its leader. Hence at every correct processp, either leaderp = p and

the lemma holds, orleaderp = q, with q ∈ correct. If p receivesLEADER mes-

sages periodically from any processq such thatRecoveredp[q] < Recoveredp[p] or

Recoveredp[q] = Recoveredp[p] andq< p, p will maintain leaderp set to the processq

with the minimumRecoveredp[q] and the lemma holds, because this impliesleaderq= q

at q. On the other hand, if processp does not receive such messages periodically or re-

ceives no messages at all, thenp will be the processr in Candidatesp with the minimum

Recoveredp[r], and by the algorithm eventuallyleaderp = p and the lemma holds.

6.4. An Algorithm for SystemS6 111

From the previous, we have that eventually at least one correct processp such that

leaderp = p, will send periodically aLEADERmessage to the rest of the processes by

Task 1 of the algorithm. LetK be the set of correct processes which have sentLEADER

messages to the rest of the processes after timet. Henceforth, we will consider that

any time instantt ′′ > t ′ occurs after Lemma 30 holds, and after the timer on any correct

process not inK (if any) has expired at every correct process.

Let Recoveredpt be the value ofRecoveredp at timet.

Lemma 31 Eventually,∀p, r ∈ correct,∀q∈ K,

Recoveredp[r]←max{Recoveredpt [r], Recoveredqt [r]}.

Proof: The only messages that processp receives from correct processes after timet

are theLEADERmessages from the processes inK. The lemma holds directly from the

way Recoveredp is updated in Task 2 of the algorithm.

Lemma 32 Eventually,∀p,q, r ∈ correct,∃` ∈ K,

Recoveredq[p] = Recoveredr [p], and hence leaderq = leaderr = leader̀ = `.

Proof: By Lemma 31 we know that∀q∈ correct some correct process̀∈ K will be

the process inCandidatesq with the smallest associated counter inRecoveredq. Every

time Timerq(`) expires, by Task 3Timeoutq[`] is incremented. Since the link from̀to

q is eventually timely, eventuallyTimerq(`) will not expire any more, and̀will remain

as the leader.

Theorem 7 There is a time after which every correct process always trusts the same

correct process. Hence, the algorithm in Figure 6.4 implements Omega (satisfies Prop-

erty 2) in system S6.

112 Chapter 6. Communication-Efficient Omega Algorithms

Proof: Follows directly from Lemma 32.

Theorem 8 The algorithm in Figure 6.4 is near-communication-efficient: there is a

time after which, among correct processes, only` sends messages forever.

Proof: Follows directly from Lemma 32 and Task 1 of the algorithm.

6.4.4 Providing Instability Awareness

Observe that in the algorithm in Figure 6.4, eventually every unstable process initially

trusts itself and it could trust other (necessarily unstable) processes before trusting the

leader`. Hence, unstable processes could disagree with correct processes and also

with each other at any time. Since this is undesirable, e.g. it could make a round fail

when solving Consensus, we propose an adaptation of the algorithm that avoids this by

ensuring that unstable processes do not trust any process until they trust the leader̀

(implementingOmegacr1).

Figure 6.5 presents in detail the adaptation, which works insystemS6 with the ad-

ditional assumption that a majority of processes in the system are correct. It consists

of three additional tasks, which are started byp concurrently with the rest of the tasks

shown in Figure 6.4. In addition, the variableleaderp is now initialized to the⊥ value,

indicating that no process is trusted byp just after recovery.

The adaptation works as follows. In Task A, processp periodically checks if it

does not trust any process, in which casep sends aPING message to the rest of the

processes, asking for their collaboration in order to setleaderp properly. Task B is

activated wheneverp receives aPING message from another processq: p replies to

q with a PONG message that includesRecoveredp and leaderp. Finally, Task C is

activated wheneverp receives aPONG message from another processq: if p does

6.4. An Algorithm for SystemS6 113

not trust any process yet, thenp updatesRecoveredp with Recoveredq as usual, and

includesq and leaderq in Candidatesp. After that, if p has received so far aPONG

message frombn
2c different processes, then it calls theupdateleader() procedure and

resets a properly initialized timer on every processr ∈Candidatesp. The check of the

reception of aPONG message frombn
2c different processes is also made inside the

updateleader() procedure in order to keep Tasks 2 and 3 of the adapted algorithm

identical to those in Figure 6.4.

Observe that the proposed adaptation does not disturb the convergence of correct

processes on a common correct leader`, which is carried out almost exactly as in the

basic algorithm in Figure 6.4. The only difference is the initial delay until every correct

process receives aPONGmessage frombn
2c different processes, which is ensured by the

existence of a majority of correct processes in the system. Eventually every correct pro-

cessp stops sendingPING messages and, consequently,p also stops receivingPONG

messages. On the other hand, every unstable process will continue sendingPING mes-

sages after recovery. These messages can be received by correct and unstable processes,

which will reply with the correspondingPONGmessages.

With this adapted algorithm, eventually every unstable processuwill have in leaderu

either⊥, which indicates thatu has not receivedPONGmessages frombn
2c different

processes yet, or the common correct leader`. Intuitively, after the reception ofPONG

messages frombn
2c different processes,u will have (1) Recoveredu andCandidatesu

such that̀ is chosen as leader, and (2)Timeoutu[`] such thatTimeru(`)will never expire.

After that, processu will keep ` as its leader untilu crashes.

From the previous reasoning, we have the following theorem:

Theorem 9 There is a time after which (1) every correct process always trusts the same

correct process̀ , and (2) every unstable process, when up, always trusts either ⊥ or

`. Hence, the algorithm in Figure 6.5 implements Omegacr1 in system S6, assuming a

majority of correct processes.

114 Chapter 6. Communication-Efficient Omega Algorithms

Every process p executes the following:

procedureupdateleader()
(1) if p has received so farPONGfrom bn

2c different processesthen
(2) leaderp← process inCandidatesp with smallest associated counter

in Recoveredp, using identifiers to break ties
(3) end if

Initialization:
(4) leaderp←⊥
(5) Candidatesp← {p}
(6) for all q∈Π exceptp:
(7) Timeoutp[q]← η
(8) Recoveredp[q]← 0
(9) Recoveredp[p]← 1
(10) send (RECOVERED, p) to all processes exceptp
(11) start tasksA, B, C, 1, 2 and 3

Task A:
(12) repeat forever everyη time units
(13) if leaderp =⊥ then
(14) send (PING, p) to all processes exceptp
(15) end if

Task B:
(16) upon reception ofmessage (PING, q) do
(17) send (PONG, p, Recoveredp, leaderp) to q

Task C:
(18) upon reception ofmessage (PONG, q, Recoveredq, leaderq) do
(19) if leaderp =⊥ then
(20) for all r ∈Π:
(21) Recoveredp[r]← max{Recoveredp[r], Recoveredq[r]}
(22) if q /∈Candidatesp then
(23) Candidatesp←Candidatesp∪{q}
(24) end if
(25) if leaderq 6=⊥ and leaderq /∈Candidatesp then
(26) Candidatesp←Candidatesp∪{leaderq}
(27) end if
(28) if p has received so farPONGfrom bn

2c different processesthen
(29) updateleader()
(30) for all r ∈Candidatesp exceptp:
(31) Timeoutp[r]← max{Timeoutp[r], Recoveredp[p]}
(32) resetTimerp(r) to Timeoutp[r]
(33) end if
(34) end if

Task 1, Task 2 and Task 3:
(35) // same as Task 1, Task 2 and Task 3 in Figure 6.4

Figure 6.5: An algorithm implementingOmegacr1 in extendedS6.

6.5. An Algorithm for SystemS7 115

Finally, note that the algorithm in Figure 6.5 is not near-communication-efficient,

since correct processes different from the leader sendPONGmessages forever. In the

worst case, almost half of the processes in the system are unstable, and they crash and

recover very often. Therefore, the cost of the algorithm from the point of view of mes-

sages exchanged periodically isO(n2). Also, in the worst caseO(n2) links carry mes-

sages forever.

6.5 An Algorithm for System S7

In this section we present the systemS7, in which we give a communication-efficient

implementation ofOmegacr1 that does not rely on the use of stable storage but on a

nondecreasing local clock associated with each process. With this algorithm, correct

processes, i.e. those that eventually remain up forever, will eventually and permanently

agree on the same correct processl . Moreover, eventuallyl will be the only process that

keeps sending messages to the rest of the processes.

With regard to unstable processes, since stable storage is not used they must “learn”

from other process(es) – actually froml – the identity of the leader upon recovery. In

this regard, we make unstable processes do not trust any process upon recovery, i.e. they

hold a special value⊥, until either they trust the leader or crash. In other words,the

algorithm implementsOmegacr1.

6.5.1 Specific System Assumptions inS7

The systemS7 corresponds to the general system modelS, defined in Chapter 3, with

some additional assumptions. First of all we recall that each process has access to a

nondecreasing local clock that can measure time intervals with an unknown bounded

drift. We assume that clocks continue running despite process crashes.

116 Chapter 6. Communication-Efficient Omega Algorithms

Regarding communication requirements, systemS7 makes the following assump-

tion:

1) For every correct processp, there is an eventually timely link fromp to every

correct and every unstable process.

The rest of the links inS7, i.e. the links from/to eventually down processes and the

links from unstable processes, can be lossy asynchronous.

6.5.2 The Algorithm

In this section we present a communication-efficient algorithm implementingOmegacr1

in systemS7, where processes do not have access to stable storage. Figure 6.6 presents

the pseudocode executed by each process when it is up. The algorithm is the collection

of n instances of this pseudocode, one for each process in the system.

The process chosen as leader by a processp, i.e. trusted byp, is held in the variable

leaderp, which is initialized to the special value⊥, indicating that no process is trusted

by p yet. Every processp also has aTimeoutp variable used to set a timer with respect

to its current leader, initialized to the value of the local clock, returned by the function

clock(), as well as two timestamps, denoted bytsp andtsmin, initialized toclock() and

tsp respectively.

The algorithm, which is composed of three concurrent tasks that are started at the

end of the initialization, works as follows. In Task 1,p first waitsTimeoutp time units,

after which ifp still has no leader, i.e.leaderp=⊥, thenp setsleaderp to p. Otherwise,

p resetsTimerp to Timeoutp in order to monitor its current leader. Then,p enters a

permanent loop in which everyη time units it checks if it is the leader, i.e.leaderp = p,

in which casep sends a (LEADER, p, tsp) message to the rest of the processes.

Task 2 is activated wheneverp receives a (LEADER, q, tsq) message from another

processq. Observe that this task is active duringp’s waiting instruction of Task 1. The

6.5. An Algorithm for SystemS7 117

Every process p executes the following:

Initialization:
(1) leaderp←⊥
(2) Timeoutp← clock()
(3) tsp← clock()
(4) tsmin← tsp

(5) start tasks1, 2 and 3

Task 1:
(6) wait (Timeoutp) time units
(7) if leaderp =⊥ then
(8) leaderp← p
(9) else
(10) resetTimerp to Timeoutp
(11) end if
(12) repeat forever everyη time units
(13) if leaderp = p then
(14) send (LEADER, p, tsp) to all processes exceptp
(15) end if

Task 2:
(16) upon reception of(LEADER, q, tsq) do
(17) if (tsq < tsmin)

or [(tsq = tsmin) and (leaderp =⊥) and (q< p)]
or [(tsq = tsmin) and (leaderp 6=⊥) and (q≤ leaderp)] then

(18) leaderp← q
(19) tsmin← tsq

(20) resetTimerp to Timeoutp
(21) end if

Task 3:
(22) upon expiration of Timerp do
(23) Timeoutp← Timeoutp+1
(24) leaderp← p
(25) tsmin← tsp

Figure 6.6: A communication-efficientOmegacr1 algorithm inS7.

118 Chapter 6. Communication-Efficient Omega Algorithms

received message is taken into account if either (1)tsq < tsmin, i.e. q has recovered

earlier thanp’s current leader, (2) (tsq = tsmin) and(leaderp = ⊥) and (q < p), i.e. p

has no leader yet andq is a good candidate, or (3) (tsq = tsmin) and (leaderp 6= ⊥) and

(q≤ leaderp), i.e. q is a better candidate thanleaderp (or q = leaderp). In all these

casesp adoptsq as its current leader, settingleaderp to q andtsmin to tsq, and resets

Timerp to Timeoutp.

In Task 3, which is activated wheneverTimerp expires,p “suspects” its current

leader: it incrementsTimeoutp in order to avoid premature erroneous suspicions in the

future, and considers itself as the new leader, settingleaderp to p andtsmin to tsp.

With this algorithm, the elected leaderl will be the “oldest” correct process, i.e.

the process that first recovers definitely (using the processidentifiers to break ties).

Hence, eventually every correct process will permanently trust l . Consequently, by

Task 1 eventually only one correct process will keep sendingmessages.

Concerning the behaviour of unstable processes, the waiting instruction at the begin-

ning of Task 1 guarantees that, eventually and permanently,unstable processes always

receive a first (LEADER, l , tsl) message froml before the end of the waiting, changing

their leader from⊥ to l by Task 2. Moreover, the initialization ofTimeoutp to clock()

prevents unstable processes from disturbing the leader election, because it ensures that

eventually every unstable processu will never suspect the leaderl (sinceu’s time-out

with respectl keeps increasing forever, and hence eventuallyTimeru will never expire).

By the previous, the algorithm is communication-efficient,i.e. eventually only one pro-

cess (the elected leaderl) keeps sending messages forever.

With regard to the cost of the algorithm we have that eventually only the leader sends

messages periodically to the rest of the processes, which impliesO(n) messages. Also,

in the worst case onlyO(n) links carry messages forever.

6.5. An Algorithm for SystemS7 119

6.5.3 Correctness Proof

We show now that the algorithm in Figure 6.6 implementsOmegacr1 in systemS7 and

that it is communication-efficient.

Lemma 33 Any message (LEADER, p, tsp), p ∈ Π, eventually disappears from the

system.

Proof: A messagem cannot remain forever in a link, since it remains at mostGST+δ

time in an eventually timely link, and is lost or eventually received in a lossy asyn-

chronous link. Also,mcannot remain forever in the destination process, since processes

are assumed to be synchronous. Then, the destination process will eventually by Task 2

either takem into account or drop it. Hence,m will eventually disappear from the sys-

tem.

For the rest of the proof we will assume that any time instantt is larger thant1 > t0,

where:

(1) t0 is a time instant that occurs after the stabilization timeGST (i.e. t0 > GST),

and after every eventually down process has definitely crashed, every correct (i.e.

eventually up) process has definitely recovered, and every unstable process has

a clock value bigger thantsp for every correct processp, i.e. ∀u ∈ unstable,

∀p∈ correct: tsu > tsp,

(2) andt1 is a time instant such that all messages sent beforet0 have disappeared

from the system (this eventually happens from Lemma 33). In particular, this

includes (a) all messages sent by eventually down processes, (b) all messages

sent by correct processes before recovering definitely, and(c) all messages sent

by every unstable processu with tsu≤ tsp, for every correct processp.

120 Chapter 6. Communication-Efficient Omega Algorithms

Let bel the correct process with the smallest value for itstsvariable, i.e. the correct

process that first recovers definitely. If two or more correctprocesses have the same final

value for theirts variables, then letl be the process with the smallest identifier among

them. We will show that eventually and permanently (1) for every correct processp,

leaderp = l , and (2) for every unstable processu, eitherleaderu =⊥ or leaderu = l .

Lemma 34 Eventually and permanently, leaderl = l.

Proof: By the algorithm, the only way for processl to have as leader another process

q is by receiving an “acceptable” message from it in Task 2. However, it is simple to

see that such a scenario cannot happen, since any (LEADER, q, tsq) message thatl can

receive necessarily has either (1)tsq > tsmin= tsl at l , or (2) tsq = tsmin at l andq> l ,

and hence is discarded in Task 2. As a result, eventually and permanently processl

considers itself the leader, i.e.leaderl = l .

Lemma 35 Eventually and permanently, process l will periodically send a (LEADER,

l, tsl) message to the rest of the processes.

Proof: Follows directly from Lemma 34 and the algorithm.

Lemma 36 Eventually and permanently, for every correct process p,

leaderp = l.

Proof: Follows from Lemma 34 for processl . Let be any other correct processp. By

Lemma 35 processl will periodically send a (LEADER, l , tsl) message to the rest of

the processes, includingp. By the fact that the communication link betweenl andp is

eventually timely, by Task 2p will receive the message in at mostδ time units, and take

it into account, settingleaderp to l andtsmin to tsl , and resettingTimerp to Timeoutp.

6.5. An Algorithm for SystemS7 121

Observe thatTimerp can expire a finite number of times, since by Task 3 every time it

expiresp incrementsTimeoutp. Hence, eventually by Task 2p will receive a (LEADER,

l , tsl) message froml periodically and timely, i.e, beforeTimerp expires. After this hap-

pens,p will not changeleaderp to a value different froml any more.

Lemma 37 Eventually and permanently, every correct process p6= l will not send mes-

sages any more.

Proof: Follows directly from Lemma 36 and the algorithm.

Lemma 38 Eventually, every unstable process u will not send messagesany more, and

leaderu will be either⊥ or l forever.

Proof: By Lemma 34 and Task 1 of the algorithm,l will periodically send a (LEADER,

l , tsl) message to the rest of the processes, includingu. By the facts that (1) the com-

munication link betweenl andu is eventually timely, and (2)u waitsclock() time units

at the beginning of Task 1, eventually by Task 2u will always receive a (LEADER, l ,

tsl) message froml before the end of the waiting instruction of Task 1. Upon reception

of that message, and since necessarilytsl < tsmin at processu at that instant,u adoptsl

as its leader, changing the value ofleaderu from⊥ to l . In addition, by the fact thatu

initializesTimeoutu to clock(), eventuallyTimeru will not expire any more. After this

happens,u will not send messages any more. Also, the value ofleaderu will be either

⊥ or l forever.

Theorem 10 There is a time after which (1) every correct process always trusts the

same correct process l, and (2) every unstable process, whenup, always trusts either⊥

or l. More precisely, upon recovery an unstable process willfirst trust⊥ (i.e. it does not

122 Chapter 6. Communication-Efficient Omega Algorithms

trust any process), and –if it remains up for sufficiently long– it will then trust l until it

crashes. Hence, the algorithm in Figure 6.6 implements Omegacr1 in system S7.

Proof: Follows directly from Lemmas 34, 36 and 38.

Theorem 11 The algorithm in Figure 6.6 is communication-efficient.

Proof: Follows directly from Lemmas 35, 37 and 38.

6.6 Relaxing Communication Reliability and Synchrony

In the algorithms presented in this chapter it is possible torelax the assumptions on

communication reliability and synchrony by means of message relaying; i.e. the first

time a message is received, before delivering it the receiver process resends it to the

rest of the processes, excluding the original sender of the message and the process from

which the message has been received. This requires messagesto be uniquely identified

to detect duplicates. A usual way to do this in a system subject to crash failures is to add

a pair (senderid, sequencenumber) to every message. In the crash-recovery failure

model, uniqueness of the sequence number could be achieved using stable storage. An

alternative consists of adding a timestamp provided by the sender’s clock, assuming that

the clocks are monotonically nondecreasing.

According to the previous, the alternative algorithms to the ones in Figure 6.2 and

Figure 6.6 would work under the following weaker assumption:

1) For every correct processp, there is an eventually timelypath from p to every

correct and every unstable process.

Similarly, the alternative algorithms to the ones in Figure6.4 and Figure 6.5 would

work under the following weaker assumptions:

6.6. Relaxing Communication Reliability and Synchrony 123

1) For every correct processp, there is an eventually timelypath from p to every

correct and every unstable process.

2) For every unstable processu, there is a fair lossy link fromu to somecorrect

process.

A consequence of the use of message relaying is that the algorithms will no longer be

(near-)communication-efficientsensu stricto, i.e. they remain (near-)communication-

efficient only regarding the number of (correct) processes that send “new” messages

forever.

124 Chapter 6. Communication-Efficient Omega Algorithms

Chapter 7

From Omega to a3P Failure Detector

Contents

7.1 Introduction . 126

7.2 The3P Failure Detector in the Crash-Recovery Model 126

7.3 An Algorithm Implementing 3Pcr in SystemS8 127

7.4 The3Pk−cr Failure Detector Class 134

125

126 Chapter 7. From Omega to a3P Failure Detector

7.1 Introduction

In this section, we address the implementation of the eventually perfect failure detector

class [28], denoted by3P, in the crash-recovery model.

Our approach consists of transforming the existing implementations of the Omega

failure detector, which provides eventual leader electionfunctionality, into3P. In fact,

the algorithms in Chapters 5 and 6 that implementOmegacr2 can be used for this pur-

pose.

The rest of the section is organized as follows. In Section 7.2 we redefine the prop-

erty that3P must satisfy in the crash-recovery model. In Section 7.3 we give the spe-

cific system assumptions. Since3P is strictly stronger than Omega, we strengthen the

system model from the previous chapters in order to make3P implementable. Also,

in Section 7.3, we propose an algorithm transforming Omega into3P, which does not

require the membership of the system to be knowna priori by processes. Finally, we

propose an enhanced algorithm which provides a common set ofk correct processes in

Section 7.4.

7.2 The3P Failure Detector in the Crash-Recovery Model

In this section we redefine the3P failure detector for the general system modelS. This

definition is also valid for the systemS8 presented in Section 7.3.1. The eventually per-

fect failure detector3P is the strongesteventualfailure detector proposed by Chandra

and Toueg in [28] and satisfiesstrong completenessandeventual strong accuracy. This

basically means that there is a time after which every correct process suspects all the

incorrect processes and does not suspect any correct process.

One serious drawback when implementing3P in the crash-recovery model is that

it is not possible for any process to distinguish between correct processes and unstable

processes because correct processes are allowed to behave like unstable ones temporar-

7.3. An Algorithm Implementing3Pcr in SystemS8 127

ily, and it is not possible to know the instant of time after which all the correct processes

remain up forever, and only the unstable processes crash andrecover. Because of the

existence of unstable processes in the crash-recovery model we redefine the property

that3P must satisfy:

Property 5 There is a time after which every up process suspects every eventually down

process and does not suspect any correct process.

In order to make the algorithm and correctness proof more intelligible, we change

the definition to the following:

Property 6 (3Pcr) There is a time after which every up process always trusts allcor-

rect processes and does not trust any eventually down process.

We denote by3Pcr the set of failure detectors that satisfy the last property defined.

There are some differences from the original definition of3P for the crash model.

First of all, the property must be satisfied by theup processes, which include correct

processes and unstable processes, when they are up after a recovery. With regard to the

trusted processes, the definition does not refer to unstableprocesses and thus they could

be included in the trusted list infinitely often. We deal withthis issue in Section 7.4.

7.3 An Algorithm Implementing 3Pcr in SystemS8

7.3.1 Specific System Assumptions inS8

In order to implement the transformation from Omega into3Pcr in the crash-recovery

model, we define the systemS8, which corresponds to the general system modelSwith

some additional assumptions.

The membership of the system is not known, neither the total number of processes

n. Processes can use stable storage and, as in Chapter 5, the algorithm relies on the

128 Chapter 7. From Omega to a3P Failure Detector

assumption that every unstable process is able to write to stable storageinfinitely often

(Line 23).

Also, we have the following communication assumptions inS8:

1) There is an eventually timely path from some correct process p to every correct

and every unstable process.

2) For every correctq 6= p, there is an eventually timely path fromq to p.

Recall that unstable processes only must be reachable when they are up. These

reachability conditions are equivalent to the minimal condition for implementing3P

in the crash model [54]. Also, these conditions together with the assumption of unique

messages make lossy asynchronous links not relevant in practice, since there exists an

eventually timely path between every pair of correct processes.

Finally, we assume that every process has access to a localOmegacr2 failure detector

module that satisfies Property 4. More precisely, every processp has access to a function

provided by the failure detector module ofOmegacr2 (Ωp), denoted byΩp.leader().

This function returns the identity of the leader process trusted by theOmegacr2 module

at p at a given time (see Figure 7.1).

Figure 7.1: UsingOmegacr2 to build3Pcr.

7.3. An Algorithm Implementing3Pcr in SystemS8 129

Every process p executes the following:

Input:
Ωp: failure detector module ofOmegacr2 at p

Output:
Trustedp: set of trusted processes

Initialization:
(1) Membershipp←{p}
(2) Trustedp← readTRUSTEDp from stable storage
(3) wasLeaderp← FALSE
(4) trustedWrittenp← FALSE
(5) start tasks 1, 2, 3 and 4

Task 1:
(6) loop forever
(7) if [Ωp.leader() = p] then
(8) if [wasLeaderp = FALSE] then
(9) Trustedp←{p}
(10) end if
(11) wasLeaderp← TRUE
(12) broadcast (LEADER, p, Trustedp)
(13) else
(14) wasLeaderp← FALSE
(15) broadcast (ALIVE, p)
(16) end if
(17) wait (η)

Task 2:
(18) upon reception ofmessage (LEADER, q, Trustedq) with q 6= p for the first timedo
(19) broadcast (LEADER, q, Trustedq)
(20) if [Ωp.leader() = q] then
(21) Trustedp← Trustedq
(22) if [trustedW rittenp = FALSE] then
(23) writeTrustedp to stable storage
(24) trustedW rittenp← TRUE
(25) end if
(26) end if

Task 3:
(27) upon reception ofmessage (ALIVE, q) with q 6= p for the first timedo
(28) broadcast (ALIVE, q)
(29) if [Ωp.leader() = p] then
(30) if [q /∈Membershipp] then
(31) Membershipp←Membershipp∪{q}
(32) createTimerp(q) andTimeoutp[q]
(33) Timeoutp[q]← η
(34) else if [q /∈ Trustedp] then
(35) Timeoutp[q]← Timeoutp[q]+1
(36) end if
(37) Trustedp← Trustedp∪{q}
(38) resetTimerp(q) to Timeoutp[q]
(39) end if

Task 4:
(40) upon expiration of Timerp(q) do
(41) if [q∈ Trustedp] then
(42) Trustedp← Trustedp−{q}
(43) end if

Figure 7.2: TransformingOmegacr2 into3Pcr in S8.

130 Chapter 7. From Omega to a3P Failure Detector

7.3.2 The Algorithm

In this section we propose a distributed algorithm that transformsOmegacr2 into 3Pcr

in systemS8. Figure 7.2 presents the pseudocode executed by each process when it

is up. The algorithm is the collection ofn instances of this pseudocode, one for each

process in the system.

Every processp has two sets: aMembershipp set containing all the processesp

knows, initially onlyp, and aTrustedp set containing the processes thatp trusts. When

a process writesTrustedp to stable storage, it is saved to the variableTRUSTEDP.

Every time a processp recovers during the execution of the initialization, the content of

TRUSTEDP is passed toTrustedp.

The use of the underlyingOmegacr2 failure detector is illustrated by the calls that

every processp makes to its local functionΩp.leader() (Lines 7, 20, and 29 of the

algorithm).

The approximate idea of the algorithm is the following. Every processp periodi-

cally queries its underlyingOmegacr2 module in order to know if it is the leader or not

(Task 1). In casep becomes the leader (Line 8), it initializes theTrustedp set. Also, ifp

is the leader (either because it has become the leader, or it was the leader already), then

it broadcasts a (LEADER, p, Trustedp) message. Otherwise, i.e. ifp is not the leader,

it broadcasts a (ALIVE, p) message. These messages are rebroadcast (Lines 19 and 28)

in order to allow (1) theLEADERmessage to reach all the up processes, and (2) the

ALIVE messages to reach the leader. Upon reception of a (LEADER, q, Trustedq) mes-

sage, ifq is the leader thenp adoptsTrustedq as its set of trusted processes. Also, in

casep had not received previously such a message, it writesTrustedp to stable storage

(Task 2). Upon reception of a (ALIVE, q) message, the leader knows the existence of

q, increments its time-out with respect toq if required, includesq in its set of trusted

processes and resets its timer with respect toq (Task 3). Finally, upon expiration of a

timer, the leader removes the process whose timer has expired from its set of trusted

7.3. An Algorithm Implementing3Pcr in SystemS8 131

processes (Task 4).

With this algorithm, eventually all the up processes permanently adopt the set of

trusted processes, that we will callgood set, periodically broadcast by the leader. And

this set will eventually and permanently contain all the correct processes, and it will not

contain any eventually down process.

Recall that the algorithm relies on the assumption that every unstable process is able

to write to stable storageinfinitely often(Line 23). This assumption is also required for

the underlying implementation ofOmegacr2. Observe that every process writes at most

once to stable storage each time it recovers when it receivesthe first message from the

leader.

As in Chapter 5, actually, in order to agree with correct processes, it would be suffi-

cient that every unstable processp writes at least once itsTrustedp set to stable storage,

provided the writing occurs after the reception of the setgood set from the leader.

Removing the rebroadcast of messages (Lines 19 and 28) we geta simplified version

of the algorithm that works in a fully connected system; i.e.a system in which all the

links are eventually timely.

Observe that the transformation algorithm in Figure 7.2 uses Omegacr2 as a black

box. If in the algorithm implementingOmegacr2 the leader periodically broadcasts a

message, e.g. to remain as leader, we could piggyback the setof trusted processes to

this message, and reduce the total number of messages.

The number of processes that send messages periodically (every η time) in this

algorithm is bounded byn, the number of processes. As every process rebroadcasts

the messages that receives for the first time, in the worst case we haven−1 processes

resendingO(n) messages to the rest of then−1 processes, that make a total ofO(n3)

messages sent periodically. From the point of view of links that carry periodic messages,

the cost isO(n2).

132 Chapter 7. From Omega to a3P Failure Detector

7.3.3 Correctness Proof

We now show the correctness of the algorithm in Figure 7.2.

Lemma 39 Any message eventually disappears from the system.

Proof: By definition, a message cannot remain forever in a link, since it remains at

mostGST+δ in an eventually timely link, and is lost or eventually delivered in a lossy

asynchronous link. Note as well that a message cannot remainforever in a process,

since by assumption processes take at least one step (execute at least one line of the

algorithm) per unit of time. Then, a process will eventuallycrash, drop the message

(Lines 18 and 27), or (re-)broadcast it (Lines 19 and 28). Finally, note that a process

never rebroadcasts twice the same message, and never rebroadcasts its own messages

(Lines 18 and 27). Hence a message can be (re-)broadcast at most n times, and will

eventually disappear from the system.

For the rest of the proof we will assume that any time instantt is larger than a time

t ′0 > t0, where:

(1) t0 is a time instant that occurs after the stabilization timeGST(i.e. t0 > GST), and

after every eventually down process has definitely crashed,and every eventually

up process has definitely recovered. Also, all messages broadcast by eventually

down (up) processes for the first time before crashing (recovering) definitely have

disappeared from the system (this eventually happens from Lemma 39),

(2) andt ′0 is a time instant such that the underlyingOmegacr2 algorithm has already

stabilized; i.e. all the up processes always trust the same correct processleader.

Lemma 40 There is a time after which process leader always trusts all correct pro-

cesses, and does not trust any eventually down process.

7.3. An Algorithm Implementing3Pcr in SystemS8 133

Proof: By definition, everyALIVE message broadcast by a correct processp will reach

leaderin at most∆ = δ ∗ (n−1) time. Every timeTimerleader(p) expires,p is removed

from Trustedleader (Line 42). Sincep will periodically broadcast anALIVE message

forever, the next timeleaderreceives anALIVE message fromp, leaderwill include

p in Trustedleader (Line 37), and will incrementTimeoutleader[p] (Line 35). Eventually

Timerleader(p) will cease expiring (note that∆ is a bound forTimeoutleader[p]). After

this, p will be permanently included inTrustedleader. On the other hand, after timet0

there are noALIVE messages from any eventually down processq. Hence, ifleader

hasq in Trustedleader, this implies thatleaderhas an active timerTimerleader(q). Since

no newALIVE message fromq will reach leader, eventuallyTimerleader(q) will expire

andq will be removed definitely fromTrustedleader.

Lemma 41 There is a time after which every up process p always trusts all correct

processes, and does not trust any eventually down process.

Proof: To prove the lemma, we will show that eventuallyp agrees permanently with

processleader. By definition, there is an eventually timely path fromleader to p.

By Lemma 40, eventuallyleader will broadcast a (LEADER, leader, Trustedleader)

message periodically containing all correct processes, and not containing any eventu-

ally down process (Line 12). Letp be a correct process. Eventually,p will receive

these messages and will setTrustedp to Trustedleader forever (Line 21). On the other

hand, letp be an unstable process. By the assumption thatp is able to write to stable

storage infinitely often (Line 23),p also setsTrustedp to Trustedleader infinitely often

(Line 21). Hence, there is a time after which only aTrustedleader set containing all

correct processes and not containing any eventually down process is adopted byp and

written in stable storage. This set is read upon recovery byp during the execution of the

initialization (Line 2).

134 Chapter 7. From Omega to a3P Failure Detector

Theorem 12 The algorithm in Figure 7.2 implements3Pcr (satisfies Property 6) in

system S8.

Proof: Follows directly from Lemma 41.

7.4 The3Pk−cr Failure Detector Class

The algorithm in Figure 7.2 allows scenarios where unstableprocesses are included

and removed fromTrustedleader infinitely often. In fact,3Pcr, which satisfies Prop-

erty 6, only requires (1) all the eventually up processes to be permanently included in

Trustedleader, and (2) all the eventually down processes to be permanentlyexcluded

from Trustedleader, i.e. it does not restrict the inclusion and removal of unstable pro-

cesses. Therefore, if an eventually down process is included in Trustedleader it must

eventually be removed forever. Since unstable processes are also incorrect, if they are

included inTrustedleader we would also like to remove them permanently. However, it

is easy to see that this is not possible, since at any given time no process can distinguish

a stabilized eventually up process from an unstable but up process that will crash in the

future.

Therefore, in this section we give a new definition of3P and an algorithm that

implements it. Basically, the new failure detector3Pk−cr requires a parameterk, pro-

vided by the application or protocol that uses the failure detector, which is the minimum

number of correct processes in the system. Note that in the worst case there is at least

one correct process in the system and thenk≥ 1.

7.4.1 Defining3Pk−cr

We define3Pk−cr for the general system modelS. This definition is also valid in

systemS8. In order to implement3Pk−cr we must strengthenS8 with the additional

7.4. The3Pk−cr Failure Detector Class 135

requirement that we assume the existence of a parameterk, the minimum number of

correct processes in the system, that is provided to the algorithm. This number can be

seen as a requirement for the application or protocol using the failure detector. Observe

that in the previous sectionk = 1, but typically a higher number is usually considered,

e.g., a majority. Note also that although it is not required by our algorithm, usually the

application or protocol using the failure detector (e.g. Consensus), which will provide

k, will also know the total number of processesn.

Assuming a known minimum numberk of correct processes in the system,3Pk−cr

satisfies the following property:

Property 7 (3Pk−cr) There is a time after which every up process always trusts the

same set of k correct processes.

The following observation derives from Property 7:

Observation 5

3P1−cr ≡ Omegacr2.

7.4.2 An Algorithm Implementing 3Pk−cr in SystemS8

In this section we propose a distributed algorithm that transformsOmegacr2 into3Pk−cr

in systemS8. Figures 7.3 and 7.4 present the pseudocode executed by eachprocess when

it is up. The algorithm is the collection ofn instances of this pseudocode, one for each

process in the system.

The algorithm is built on top of the one in Figure 7.2. Besidesthe Trustedp set,

now every processp has acorrp set wherep inserts thek processes that it considers

correct. Basically, the leader process calculatescorrleader using its set of trusted pro-

cesses on the basis of theincarnation numberof the processes, which is included in

theALIVE messages (Line 15). In the algorithms implementingOmegacr2 presented in

136 Chapter 7. From Omega to a3P Failure Detector

Every process p executes the following:

Input:
Ωp: failure detector module ofOmegacr2 at p
k: minimum number of correct processes in the system

Output:
corrp: set of (up tok) correct, i.e. eventually up, processes

Initialization:
(1) Membershipp←{p}
(2) readTrustedp from stable storage

(a1) readcorrp from stable storage

(3) wasLeaderp← FALSE
(4) trustedWrittenp← FALSE
(5) start tasks1, 2, 3 and 4

Task 1:
(6) loop forever
(7) if [Ωp.leader() = p] then
(8) if [wasLeaderp = FALSE] then
(9) Trustedp←{p}
(10) end if
(a2) corrp← {p}∪ up tok−1 processes∈ (Trustedp−{p}) with lowest incarnation

(11) wasLeaderp← TRUE
(12) broadcast (LEADER, p, Trustedp, corrp)
(13) else
(14) wasLeaderp← FALSE
(15) broadcast (ALIVE, p, Ωp.incarnation())
(16) end if
(17) wait (η)

Task 2:
(18) upon reception ofmessage (LEADER, q, Trustedq, corrq) with q 6= p for the first timedo
(19) broadcast (LEADER, q, Trustedq, corrq)
(20) if [Ωp.leader() = q] then
(21) Trustedp← Trustedq
(a3) corrp← corrq

(22) if [trustedWrittenp = FALSE] then
(23) writeTrustedp to stable storage

(a4) writecorrp to stable storage

(24) trustedWrittenp← TRUE
(25) end if
(26) end if

Figure 7.3: TransformingOmegacr2 into3Pk−cr in S8 (Part I).

7.4. The3Pk−cr Failure Detector Class 137

Task 3:
(27) upon reception ofmessage (ALIVE, q, incarnationq) with q 6= p for the first timedo
(28) broadcast (ALIVE, q, incarnationq)
(29) if [Ωp.leader() = p] then
(30) if [q /∈Membershipp] then
(31) Membershipp←Membershipp∪{q}
(32) createTimerp(q) andTimeoutp[q]
(33) Timeoutp[q]← η
(a5) createIncarnationp[q]

(34) else if[q /∈ Trustedp] then
(35) Timeoutp[q]← Timeoutp[q]+1
(36) end if
(37) Trustedp← Trustedp∪{q}
(38) resetTimerp(q) to Timeoutp[q]

(a6) Incarnationp[q]← incarnationq

(39) end if

Task 4:
(40) upon expiration of Timerp(q) do
(41) if [q∈ Trustedp] then
(42) Trustedp← Trustedp−{q}
(43) end if

Figure 7.4: TransformingOmegacr2 into3Pk−cr in S8 (Part II).

138 Chapter 7. From Omega to a3P Failure Detector

this dissertation, every process has in stable storage a local incarnation number, whose

initial value is 0, which is incremented during the execution of the initialization when

it recovers from a crash. Additionally, we assume that everyprocessp has access to a

function provided by the failure detector module ofOmegacr2 at processp, denoted by

Ωp.incarnation(). This function returnsp’s incarnation number (see Figure 7.5). Intu-

itively, the incarnation number of correct processes eventually stops growing, while the

incarnation number of unstable processes keeps growing forever.

Figure 7.5: UsingOmegacr2 and the knowledge ofk to build3Pk−cr.

Lines a1-a6 correspond to the main modifications made to the algorithm in Fig-

ure 7.2. The leader process builds thecorrleader set by including itself and up tok−1

other processes inTrustedleader with the lowest incarnation (Line a2). This set is in-

cluded in theLEADERmessage periodically broadcast. Upon reception of theLEADER

message, the rest of the processes adopt this set and write itto stable storage if required

(Lines a3-a4), as they do with theTrustedleader set. Also, processes read thecorrp set

from stable storage upon the initialization (Line a1). Finally, Lines a5-a6 correspond to

the management of the processes’ incarnation number by the leader.

Observe that with this algorithm, ifk= 1, then eventuallycorrp will always contain

just the leader process.

We use the incarnation number of the underlying algorithm implementingOmegacr2

as an easy way to distinguish eventually up processes from unstable processes. How-

7.4. The3Pk−cr Failure Detector Class 139

ever, we can implement3Pk−cr on the base of anOmegacr1 algorithm with a function

similar to the functionincarnation() that provides a criteria to distinguish eventually up

processes from unstable processes. For example, if we focuson the algorithm in Fig-

ure 6.4 that implementsOmegacr1 in a system where processes do not have access to sta-

ble storage, there is an array of counters with the number of times that each process has

recovered,Recoveredp. If this implementation ofOmegacr1 would provide a function re-

turning the value ofRecoveredp[p], which we can callincarnation() although we know

that refers toRecoveredp[p], our algorithm for3Pk−cr will work properly, because the

valueRecoveredp[p] of the eventually up processes is bounded whileRecoveredp[p] is

growing periodically in the unstable processes.

Observe that the algorithm, without stable storage, presented in Chapter 4 is not

adequate in order to implement3Pk−cr because the value of the arrayRecoveredp[p] in

all the correct processes, except for the leader, is not bounded.

We give now a proof sketch of the algorithm in Figures 7.3 and 7.4. Basically, the

correctness follows from the proof of the algorithm in Figure 7.2 (upon which it is built),

and the fact that the incarnation number of each process is incremented every time it re-

covers from a crash. This way, the incarnation number of correct processes eventually

stops growing, while the incarnation number of unstable processes keeps growing for-

ever. Eventually the correct leader process will have incorrleader thek processes with

the lowest incarnation inTrustedleader. Then, periodically the leader will sendcorrleader

to the rest of the processesp that will setcorrp to corrleader. Finally,unstableprocesses

will write this goodsetcorrp to stable storage infinitely often, reading it upon recovery,

and eventually up processes will maintain thisgoodsetcorrp permanently.

Theorem 13 The algorithm in Figures 7.3 and 7.4 implements3Pk−cr (satisfies Prop-

erty 7) in system S8.

140 Chapter 7. From Omega to a3P Failure Detector

Chapter 8

Aggregator Election and Data

Aggregation in WSNs

Contents

8.1 Introduction . 142

8.2 Related Work . 143

8.3 System Model . 145

8.4 Local (Intra-Region) Level . 147

8.5 Global (Inter-Region) Level . 163

8.6 Energy-Aware Aggregator Election and Data Aggregation 167

141

142 Chapter 8. Aggregator Election and Data Aggregation in WSNs

8.1 Introduction

In the previous chapters we have addressed the implementation of Omega in the crash-

recovery model. These algorithms, satisfying some of the properties defined in Chap-

ter 3, provide aleader electionservice. In Chapter 7 we used this service to implement

3Pcr and3Pk−cr. An implementation (pseudocode) of Omega can also be used asthe

starting point for designing a distributed algorithm, especially if part of the algorithm

consists of choosing a leader.

In this chapter we propose three hierarchical aggregator election and data aggrega-

tion algorithms, based on the Omega failure detector, for large wireless sensor networks

(WSNs). More precisely, the algorithms are based on those inChapter 5. Basically, an

aggregatoris a sensor or node that collects and aggregates the sensor data generated in

the WSN [112]. As the communication range of the sensors is limited, we divide the

network into regions. Due to changes in the set of reachable sensors, the aggregator

sensor in each region can change over time.

The algorithms in this chapter ensure that all the sensors ina region agree on a

common aggregator and that all the aggregators agree on a commonsuper-aggregator.

Thus, the super-aggregator will collect the sensor data of the whole system regardless

of the WSN size and the communication range of the sensors.

Each algorithm is implemented in a system with different connectivity assumptions.

The first algorithm assumes that every pair of sensors in a region can communicate

directly. The second algorithm relaxes this assumption, only requiring some correct

sensor(s) to communicate directly with the rest of the sensors. Finally, the third algo-

rithm goes a step further, by not requiring any sensor to communicate directly with the

rest, but only that there is a multi-hop bidirectional path from some correct sensor(s) to

the rest of the sensors.

With respect to sensor communication itself, some collision avoidance mechanisms

that can be considered are TDMA, CDMA and CSMA. The main drawbacks of TDMA

8.2. Related Work 143

and CDMA techniques are related to the requirements of sensor synchronization and a

central authority to assign the time slots, and the complex modulation hardware (which

is difficult to implement due to the reduced size and performance of sensors) respec-

tively. The use of CSMA protocols such as IEEE 802.11 (WiFi),allows to minimize the

energy consumption due to collisions in WSNs without requiring special capabilities

and complexities of the sensors.

The rest of the chapter is organized as follows. Section 8.2 presents the related work.

In Section 8.3, we describe the system model considered. Section 8.4 presents the three

aggregator election algorithms for the local (intra-region) level. Section 8.5 presents

the algorithm for the global (inter-region) level. Finally, in Section 8.6, we introduce

a battery depletion threshold in order to enhance the quality of service (QoS) of the

wireless sensor network.

8.2 Related Work

Wireless sensor networks can provide reliable data collection by applications reducing

at maximum the human intervention (self-organizing and self-maintaining). Applica-

tions can act autonomously over the sensor network configuring sensors remotely, and

recovering the information collected by sensors periodically or on demand. WSNs can

be exposed to several sources of problems such as measuring,communication, crash

and/or power supply errors. Device redundancy allows to obtain information redun-

dancy, and then to ensure a certain level of fault tolerance.We consider a WSN with

a certain clustering degree where each cluster focuses on specific areas and collects

information following a distributed sensing scheme.

Wireless networked sensing applications must ensure reliable sensor data collection

and aggregation, while satisfying the low-cost and low-energy operating constraints of

such applications. The attempt to minimize the energy consumption leads to minimize

144 Chapter 8. Aggregator Election and Data Aggregation in WSNs

the amount of data transmitted by using data aggregation. Some works in the literature

focus on the implementation of efficient aggregation timingcontrol protocols as in [75].

In [123], three different data aggregation schemes —in-network, grid-based and hybrid

data aggregation— are considered in order to increase the throughput, to decrease con-

gestion and to save energy. Other works manage data aggregation with the aid of a

Consensus algorithm as [83] does. The selection of the aggregator nodes is analyzed

in [35], where a hierarchical energy-efficient aggregator selection protocol is presented.

The protocol is probabilistic, and does not consider the failure of sensors.

Any effort aimed at extending network lifetime requires both the sensor itself and

the collaborative strategy which coordinates nodes in the sensing task to be made as

energy efficient as possible. Some works consider that sensor nodes can communicate

directly with a base station (all proposals consider that each node can be a cluster head,

which is only possible if each node can communicate with the base station) and each

sensor can communicate with its neighbours present in a range of radiusr [10, 74,

82, 92, 93, 109]. The number of messages transmitted to the base station should be

minimized because they have a greater cost than transmission between sensor nodes.

In other works, networking connectivity is powered by hopping data from sensor to

sensor in search of its destination (the base station) [105]. Multihop communication

in sensor networks is expected to consume less power than thetraditional single hop

communication [9].

Intermittent connectivity is another defining characteristic of sensor networks. Con-

nectivity can vary continuously, as sensors can hibernate to save power, and environ-

mental conditions can change. Intermittent connectivity causes the network to become

partitioned and communication becomes unreliable. The challenge is to provide sensor

reliable failure detection with the minimum number of messages.

The selection of an aggregator can be considered as a leader election, which has

been extensively studied in the literature. In Chapter 2 we have commented relevant

8.3. System Model 145

works related to this topic.

We can find also several works focused on the hierarchizationand clustering of

wireless ad hoc networks, which can be easily adapted to the leader election problem as

[74, 122]. In [36], a communication-efficient probabilistic quorum system is presented,

which can be used for leader election. Frequent network connectivity changes are con-

sidered, possibly resulting in network partitions, and sensor crash and recovery is also

considered.

Recently, MANETs have introduced a new parameter in the leader election problem:

the mobility. In [73] the authors presented single-hop leader election protocols. Mal-

pani et al. in [98] proposed two multi-hop leader election algorithms, based on [108],

where any component, whose topology is static for a sufficiently long time, will even-

tually have exactly one leader. In [99] and [124] the algorithms overcome the previous

drawbacks relying on a process majority and diffusing computations respectively.

8.3 System Model

The system model considered in this chapter is very similar to the one presented in

Chapter 3. However, instead ofabstractprocesses with unidirectional communication

links, we consider sensors with broadcasting capabilities.

Basically, our system is a wireless sensor network where we try to collect sensor

data minimizing the energy consumption. There needs to be a WSN divided into differ-

ent regions where each sensor knowsa priori its operation region and acts to transmit

its sensed data to a sensor aggregator in charge of collecting all the sensed data from a

specific region. Each sensor has an identifier of its operation region that is radiated in

its messages. This identifier allows sensors to reject incoming messages from other re-

gions. The operation region of a sensor, as well as the regiondefinition, can be changed

on demand. Sensor communication follows the 802.11 (WiFi) protocol.

146 Chapter 8. Aggregator Election and Data Aggregation in WSNs

We propose the use of an Omega algorithm to choose a common aggregator inside

each region according to the reliability and battery availability of sensors. A sensor is

a candidate to be elected as aggregator if it is a reliable sensor without errors during

each operation period. The Omega property ensures that a unique sensor among all

the candidates is elected as aggregator. The aggregator of each region is in charge of

collecting all the data sensed on its region.

More formally, we consider a systemSw composed of a finite set of sensors that

communicate by broadcasting messages on the wireless network. Sensors can only fail

by crashing. Crashes are not permanent, i.e. crashed sensors can recover.

According to the previous, in every run and during the lifetime of its battery, we

have three types of sensors:

(1) Eventually up. This is the subset of sensors that, after crashing and recovering a

finite number of times, remain up forever, i.e. they do not crash any more. Sensors

that never crash are included in this subset.

(2) Eventually down. This is the subset of sensors that, after crashing and recovering

a finite number of times, remain down forever, i.e. they do notrecover any more.

Sensors that never start their execution are included in this subset.

(3) Unstable. This is the subset of sensors that crash and recover an infinite number

of times, i.e. there is not a time after which either they remain up forever, or they

remain down forever.

Once the battery of a sensor runs out, it is not considered of any particular type.

Upon the hypothetical replacement of the battery, the sensor will be again a member of

one of the three kinds of sensors, depending on its behaviour.

By definition, sensors in (1) arecorrect, and sensors in (2) and (3) areincorrect.

We assume that the number of correct sensors in the system is at least one. As we will

8.4. Local (Intra-Region) Level 147

see, correct sensors will be the candidates to become the leader, i.e. the aggregator. We

also assume that every sensor has access to stable storage tokeep the value of some

variables.

8.3.1 Redefining the Omega Failure Detector

In Chapter 3 we have redefined the property satisfied by the Omega failure detector for

the crash-recovery model. Now, we redefine the property satisfied by Omega forSw,

Property 8, considering that eventually the common leader holds until the end of its

battery.

Property 8 There is a time after which every correct sensor trusts the same correct

sensor aggregator until the end of its battery.

Accordingly, the correct sensors will trust the correct sensor aggregator until the

depletion of their batteries.

8.4 Local (Intra-Region) Level

In this section, we present three aggregator election algorithms for the intra-region level:

• A first algorithm which assumes that every pair of sensors of the region can com-

municate directly.

• A second algorithm which assumes that some correct sensor can communicate

directly with the rest of the sensors of the region.

• A third algorithm which assumes the existence of a multi-hopbidirectional path

from some correct sensor to the rest of the sensors of the region.

148 Chapter 8. Aggregator Election and Data Aggregation in WSNs

8.4.1 A First Algorithm

We present here a first aggregator election and data aggregation algorithm for the local

level, in which we assume that sensors wake up periodically to provide their sensed data,

and hibernate the rest of the time. Sensor hibernation is notconsidered a failure, since

it is a scheduled task. This assumption implies a programmedswitch on/off of sensors

with the aid of a clock, e.g., every∆ACTIVATIONtime units. We assume that hibernation

periods are larger than active ones (see Figure 8.1). We assume a maximum clock skew

ε between any pair of sensors.

Figure 8.1: System operation time-line (Algorithm I).

The algorithm requires sensor identifiers to be totally ordered, but not necessarily

consecutive. Moreover, sensors do not need to know the identifiers of the rest of the

sensors in advance. We assume that all the sensors of a regioncan communicate directly,

existing an unknown boundδ on message delay. We also assume that the execution of

each line of the algorithm requires at mostσ time units.

Figure 8.2 presents the pseudocode executed by each sensor when it is up. The

algorithm is the collection ofn instances of this pseudocode, one for each sensor in the

system.

The algorithm uses both stable and volatile storage. The sensor chosen as aggrega-

tor by a sensorp, i.e. trusted byp, is held in the variableleaderp. Variables include a

local incarnation number, initialized to 0, which is incremented during the execution of

the initialization when a sensor recovers from a crash. Variablesincarnationp, leaderp,

incarnationleaderandTimeoutp are persistently stored while variablescheduledwakeupp

8.4. Local (Intra-Region) Level 149

Every sensor p executes the following:

procedureGoToHibernation()
(1) write (incarnationp, leaderp, incarnationleader, Timeoutp) to stable storage
(2) scheduledwakeupp← TRUE
(3) hibernate()
end procedure

Initialization:
(4) read (incarnationp) from stable storage
(5) if [scheduledwakeupp = FALSE] then
(6) incarnationp← incarnationp+1
(7) write incarnationp to stable storage
(8) end if
(9) scheduledwakeupp← FALSE
(10) read (leaderp, incarnationleader, Timeoutp) from stable storage
(11) if [leaderp = p] then
(12) start tasks1 and 2
(13) else
(14) resetTimerp to Timeoutp+2ε
(15) start tasks2 and 3
(16) end if

Task 1:
(17) waitε time units
(18) broadcast (I-AM -ALIVE , p, incarnationp)
(19) receivedatafrom sensors during∆DATA ACQUISIT ION time
(20) GoToHibernation()

Task 2:
(21) upon reception ofmessage (I-AM -ALIVE , q, incarnationq) such that

[incarnationq < incarnationleader] or
[(incarnationq = incarnationleader) and (q≤ leaderp)] do

(22) leaderp← q
(23) incarnationleader← incarnationq

(24) datap← acquire sensed data
(25) send (datap) to leaderp
(26) GoToHibernation()

Task 3:
(27) upon expiration of Timerp do
(28) leaderp← p
(29) incarnationleader← incarnationp

(30) Timeoutp← Timeoutp+∆TIMEOUT

(31) GoToHibernation()

Figure 8.2: Intra-region aggregator election and data aggregation (Alg. I).

150 Chapter 8. Aggregator Election and Data Aggregation in WSNs

remains in volatile storage. Besides this, every sensor hasa local timer used to detect

the potential crash of the aggregator sensor. The variablescheduledwakeupp keeps its

value during hibernation periods, while sensor failure or battery depletion causes the

lost of its value (scheduledwakeupp = FALSE). Constant∆TIMEOUT determines the

growth of the time-out in order to reach agreement. The higher this value is, the faster

agreement on a common aggregator occurs. However, an excessively high value of

∆TIMEOUT can induce sensors to waste their batteries, and would also delay the detection

of the failure of the aggregator. Constant∆DATA ACQUISITION represents the maximum

time passed by the aggregator during the collection of the data provided by sensors.

The algorithm starts withInitializationwhere all the values of the variables are prop-

erly recovered. After that, if the sensor considers itself as the current aggregator, the

algorithm starts Tasks 1 and 2. On the other hand, if the sensor does not consider itself

as the current aggregator, the algorithm resets the local timer and starts Tasks 2 and 3.

Task 1 is devoted to announce the aggregator to the rest of thesensors and to collect all

sensor data. Task 2, which applies to all sensors, is devotedto both send the sensor data

to the aggregator, and to update the aggregator if required.Finally, Task 3 is devoted to

propose the sensor itself as aggregator when the current aggregator announcement is not

received before the expiration of the timer, and also increments the time-out∆TIMEOUT

time units. All the tasks finish calling theGoToHibernation()procedure, which starts

the hibernation period. Each sensor will remain in this state until the next scheduled

wake-up.

Let us denote bycmin the correct sensor inSw with the smallest identifier among

those that have the minimum incarnation numberincarnationmin. With this algorithm

there is a time after which every sensorp∈ correct hasleaderp = cmin until the end of

its battery. Eventually only sensorcmin broadcasts a new message (I-AM -ALIVE , cmin,

incarnationmin) per operation period, that reaches the rest of the correct sensors.

The cost of the algorithm, measured as the number of messagessent in stability

8.4. Local (Intra-Region) Level 151

during a data acquisition period, is linear in the number of sensors in the regionO(n),

since the aggregator sensor broadcasts one message by Task 1, and the rest of the sensors

send a message to the aggregator by Task 2.

Correctness Proof

For the rest of the section, we will assume that any time instant occurs after a timet

where every eventually down sensor has definitely crashed, every eventually up sensor

has definitely recovered and initialized, and every unstable sensor has an incarnation

number bigger thanincarnationmin. Also, all messages sent beforet have already been

delivered.

In order to prove the correctness of the algorithm, we formulate and prove the fol-

lowing lemmas and theorem. Lemma 42 proves that sensorcmin becomes an aggregator

and notifies this fact to the rest of the sensors. Lemma 43 proves that the rest of the

sensors do not declare themselves as aggregators. Lemma 44 proves that there is a time

after which every correct sensor receives new(I-AM -ALIVE , cmin, incarnationmin) mes-

sages fromcmin. Finally, Theorem 14 proves that the algorithm in Figure 8.2satisfies

Property 8 in systemSw.

Lemma 42 There is a time after which sensor cmin permanently verifies that leadercmin =

cmin and broadcasts a(I-AM -ALIVE , cmin, incarnationmin) message during its operation

period.

Proof: Note that after timet, sensorcmin will never receive a message (I-AM -ALIVE , q,

incarnationq) with incarnationq< incarnationmin, or with incarnationq= incarnationmin

from a sensor with identifierq< cmin. Therefore, after timet sensorcmin will never ex-

ecute Lines 22-26 of the algorithm. Hence onceleadercmin = cmin it will remain so

until the depletion of its battery. To show that this eventually happens, note that if

leadercmin 6= cmin at time t ′ > t, thencmin hasTimercmin active. Eventually,Timercmin

152 Chapter 8. Aggregator Election and Data Aggregation in WSNs

will expire (Line 27), settingleadercmin = cmin (Line 28). After that, Lines 14-15 will

never be executed, sinceleadercmin = cmin holds permanently. Finally, from Task 1,

once leadercmin = cmin, sensorcmin will permanently broadcast a (I-AM -ALIVE , cmin,

incarnationmin) message during its operation period (Line 18).

Lemma 43 There is a time after which, every sensor p∈ correct, p 6= cmin, perma-

nently has either (1) incarnationleader > incarnationmin, or (2) leaderp ≥ cmin and

incarnationleader= incarnationmin.

Proof: Note that, aftert, once [incarnationleader> incarnationmin] or

[(incarnationleader= incarnationmin) and (leaderp ≥ cmin)] is satisfied, it will remain

so until the depletion of the battery (either the sensor or the aggregator), since no

(I-AM -ALIVE , q, incarnationq) message withincarnationq < incarnationmin, or with

incarnationq = incarnationmin from a sensor with identifierq < cmin will be received.

Then, if incarnationleader< incarnationmin, or incarnationleader= incarnationmin and

leaderp< cmin at timet ′> t in both cases it is satisfied that (1)p> cmin andincarnationp

= incarnationmin, or (2) incarnationp > incarnationmin. Then, Timerp must be ac-

tive at that time, and will eventually expire (Line 27), setting (1) incarnationleader

= incarnationp > incarnationmin, or (2) settingincarnationleader = incarnationp =

incarnationmin andleaderp = p> cmin by Lines 28-29.

Lemma 44 There is a time after which every sensor p∈ correct, being p6= cmin, per-

manently receives new messages(I-AM -ALIVE , cmin, incarnationmin) with intervals of

at most(∆ACTIVATION+δ +2ε +7σ) time between consecutive messages.

Proof: From Lemma 42, there is a time after whichcmin broadcasts a(I-AM -ALIVE ,

cmin, incarnationmin) message every operation period. For simplicity, let us assume that

8.4. Local (Intra-Region) Level 153

p received the last message(I-AM -ALIVE , cmin, incarnationmin) from cmin at the begin-

ning of the previous operation period. In the worst case, anddue to clock drift,cmin will

wake-up after almost∆ACTIVATION+ε time. Whencmin wakes-up again, it takes 7σ +ε

time to broadcast the(I-AM -ALIVE , cmin, incarnationmin) message. This message takes

at mostδ time to reach sensorp. Henceforth, the maximum time between two consec-

utive messages is the addition of these values∆ACTIVATION+δ +2ε +7σ .

Theorem 14 There is a time after which every sensor p∈ correct has leaderp = cmin,

i.e. p trusts cmin, until the end of either p’s or cmin’s battery. Hence, the algorithm in

Figure 8.2 satisfies Property 8 in system Sw.

Proof: Lemma 42 shows the claim forp = cmin. For p 6= cmin, from Lemma 43

there is a time after whichp permanently (until the end of the battery) has either

(1) incarnationleader= incarnationmin and leaderp ≥ cmin, or (2) incarnationleader>

incarnationmin. From Lemma 44, wheneverleaderp 6= cmin after this time,leaderp

changes tocmin in at most(∆ACTIVATION+δ +2ε +7σ) time (+2σ for the assignation

of the new leader). Furthermore, onceleaderp = cmin, it only changes (top) by execut-

ing Lines 27-28, since the conditions in Line 21 preventleaderp from changing in Line

22. Finally,leaderp changes fromcmin to p a finite number of times, since each time this

happensTimeoutp is incremented by∆TIMEOUT time units. By contradiction, assum-

ing this happens an infinite number of times,Timeoutp eventually grows to the point in

which Timerp never expires, because a new(I-AM -ALIVE ,cmin, incarnationmin) mes-

sage is received before the expiration ofTimerp. Hence, eventuallyleaderp = cmin

permanently, and thus the algorithm in Figure 8.2 satisfies Property 8 in systemSw.

154 Chapter 8. Aggregator Election and Data Aggregation in WSNs

8.4.2 A Second Algorithm

We present here a second aggregator election algorithm for the local level. Contrary

to the algorithm of the previous section we assume that, in general, not every pair of

sensors of a region can communicate directly. However, there exist a subset of sensors

in the region that are able to reach directly the rest of the sensors of the region, and

are also able to receive the messages broadcast by every sensor of the region (see Fig-

ure 8.3). Cylinders represent well-communicated sensors,i.e. candidates to become the

aggregator, and circles represent sensors that cannot reach every other process in their

region.

As previously, we assume that there exists an unknown boundδ on message delay,

and that the execution of each line of the algorithm requiresat mostσ time units. In this

algorithm, sensors must know the identifiers of the rest of the sensors in advance.

Figure 8.3: Sensor distribution in a region.

Figure 8.4 presents the pseudocode executed by each sensor when it is up. The

algorithm is the collection ofn instances of this pseudocode, one for each sensor in

the system. With this algorithm eventually every sensorp ∈ correct permanently has

leaderp = l , beingl the least suspected sensor among those that can communicatedi-

rectly with the rest of the sensors in the region, using sensors’ identifiers to break ties.

8.4. Local (Intra-Region) Level 155

Every sensor p executes the following:

procedureupdateleader()
(1) leaderp← l such thatcounterp[l] = min{counterp},

using identifiers to break ties
end procedure

Initialization:
(2) incrementincarnationp by 1 in stable storage
(3) read (incarnationp) from stable storage
(4) ∀q 6= p : Timeoutp[q]← η + incarnationp

(5) ∀q 6= p : resetTimerp(q) to Timeoutp[q]
(6) ∀q 6= p : counterp[q]← 0
(7) counterp[p]← incarnationp

(8) leaderp← p
(9) start tasks1, 2 and 3

Task 1:
(10) loop forever
(11) datap← acquire sensed data
(12) broadcast (I-AM -ALIVE , p, counterp, datap)
(13) wait(η)

Task 2:
(14) upon reception ofmessage (I-AM -ALIVE , q, counterq, dataq) do
(15) resetTimerp(q) to Timeoutp[q]
(16) ∀r : counterp[r]← max{(counterp[r],counterq[r])}
(17) updateleader()
(18) if [leaderp = p] then
(19) collectdataq

(20) end if

Task 3:
(21) upon expiration of Timerp(q) do
(22) counterp[q]← counterp[q]+1
(23) Timeoutp[q]← Timeoutp[q]+1
(24) resetTimerp(q) to Timeoutp[q]
(25) updateleader()

Figure 8.4: Intra-region aggregator election and data aggregation (Alg. II).

156 Chapter 8. Aggregator Election and Data Aggregation in WSNs

The algorithm works as follows. Every sensorp has acounterp[q] for each sensorq,

which is p’s estimation of the number of timesq has been suspected. Sensorp selects

as its leader the sensorl with the smallestcounterp[l] value. In order to acquire sen-

sor data, and keep thecounterp variable up to date, every sensorp broadcasts everyη

time units an (I-AM -ALIVE , p, counterp, datap) message, beingη the interval between

sensor measurements. When a sensorp receives a message (I-AM -ALIVE , q, counterq,

dataq), it resetsTimerp(q) for when it expects to receive the next (I-AM -ALIVE , q,

counterq, dataq) message, updates itscounterp array accordingly and calls the proce-

dureupdateLeader(). If p is the leader, it collectsdataq.

If Timerp(q) expires before receiving a new (I-AM -ALIVE , q, counterq, dataq) mes-

sage, thenp incrementscounterp[q], incrementsTimeoutp[q], resetsTimerp(q), and also

callsupdateleader(). The following messages sent byp will include the increment of

counterp[q], and this way the rest of the sensors will know aboutp’s suspicion onq.

The algorithm includes a mechanism to eventually avoid unstable sensors from dis-

turbing the leader election. This mechanism is based on the incarnation number of sen-

sors. During the execution of the initialization, every sensor p initializes its time-outs

with respect to the rest of the sensors toη + incarnationp (Line 4). Also,p initializes

counterp[p] to incarnationp (Line 7). These values, set during the initialization, ensure

that eventually (1) every unstable sensorp will never suspect a correct sensorq that

can communicate directly with every other sensor (sincep’s time-out with respectq

keeps increasing forever, and hence eventuallyTimerp(q) will never expire), and con-

sequentlyp will not incrementcounterp[q] any more, and (2) every unstable sensorp

will never be elected as the leader in theupdateleader() procedure (due to the fact that

incarnationp, and hencecounterp[p], keep increasing forever).

With regard to the cost of the algorithm in Figure 8.4, the number of messages sent

during a data acquisition period (η) is linear in the number of sensors in the regionO(n),

since every sensor broadcasts one message by Task 1.

8.4. Local (Intra-Region) Level 157

Correctness Proof

We now show the correctness of the algorithm in Figure 8.4. For the rest of the sec-

tion we will assume that any time instant occurs after a timet where every eventually

down sensor has definitely crashed, every eventually up sensor has definitely recov-

ered and initialized, and every unstable sensoru has an incarnation number such that

incarnationu > δ +2σ . Also, all messages sent beforet have already been delivered.

Let R be the set of correct sensors that eventually can reach timely every correct

sensor inSw. Let B be the set of correct sensorsp with boundedcounterp[p].

Lemma 45 ∀s∈ R, counters[s] is bounded.

Proof: Consider any correct sensorq 6= s. Sensors sends a message (I-AM -ALIVE , s,

counters, datas) everyη time. By definition, every message thats sends is received

by q within δ +η time from the timeq received the previous message froms. Since

q increases its timerTimeoutq[s] every time it expires, eventuallyTimerq(s) will cease

expiring. Thenceforth,q will never punishs (Line 22) any more, andswill not increase

counters[s] due to a message from anyq∈ correct.

On the other hand, every unstable sensoru will set Timeru(s) > δ +η + 2σ dur-

ing the execution of the initialization. Every timeu resetsTimeru(s), we know that

Timeru(s) will expire afterδ +η +2σ time. As messages fromsare sent everyη time,

in the worst case sensorswill send a message at timet+η, will be received at sensoru

at timet+δ +η, andTimeru(s) is reset att+δ +η +2σ . Hence,Timeru(s) will never

expire on anys∈ R. Thenceforth,u will never punishs (Line 22) any more, ands will

not increasecounters[s] due to a message from anyu∈ unstable.

From the previous, note thatR⊆ B.

Lemma 46 For every correct sensor p∈ B there exists a time after which every sensor

q∈ correct receives messages from p periodically.

158 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Proof: Consider a correct sensorp 6= q. We prove the contrapositive of the lemma.

Supposeq does not receive messages fromp periodically. Each timeq does not re-

ceive a message fromp andTimerq(p) expires, sensorp is punished byq in counterq[p]

(Line 22). Later, the messages sent byq are received directly byp, increasing the

counterp[p], or by some sensors, s∈ R. The sensor will increasecounters[p], and

the next timep receives a message froms, it will increasecounterp[p] accordingly. If

this happens infinitely often,counterp[p] is not bounded, leading us to a contradiction.

For the rest of the section we will assume that any time instant t is larger than

time t2 > t1, wheret2 is a time instant that occurs aftercounterp[q] > counterp[p],

∀q /∈ correct and∀p ∈ B, and incarnationu > counterp[p], ∀u ∈ unstable. This will

eventually happen because clearlycounterp[q] andincarnationu grow infinitely, and by

Lemma 46,∀p∈ B, counterp[p] is bounded. Note that during the initialization (Line 7)

counteru[u] is set toincarnationu, socounteru[u]> counterp[p].

Henceforth,varpt denotes the value of the local variablevar of p at timet.

Lemma 47 For every pair of correct sensors p and q, p∈ B, there is a time after which

for every time t, counterq[p]≥ counterpt [p].

Proof: For p=q, the lemma is trivial. Now assumep 6= q. As p∈B, by Lemma 46 there

exists a time after which everyq ∈ correct receives messages fromp infinitely often.

Let t > t2 be any time. There is a timet ′> t whenq receives (I-AM -ALIVE , p, counterp,

datap), with counterp[p] = c, originally sent byp after timet, soc≥ counterpt [p]. Then

at timet ′, q sets itscounterq[p] to c, and so we have:counterq[p] ≥ counterpt [p]. The

lemma now follows sincecounterq[p] is monotonically nondecreasing.

Lemma 48 For every correct sensor p: 1. If counterp[p] is bounded, then there exists

a value Vp and a time after which for every correct sensor q, counterq[p] = Vp. 2. If

8.4. Local (Intra-Region) Level 159

counterp[p] is not bounded, then for every correct sensor q, counterq[p] is not bounded.

Proof: Let p be a correct sensor.

(1) Supposecounterp[p] is bounded. Thus, by Lemma 47, for every correct sensorq,

there is a timet > t2 after whichcounterq[p] ≥ counterpt [p]. Sincecounterp[p]

is bounded and monotonically nondecreasing, there exists avalueVp and a time

after whichcounterp[p] =Vp. Therefore, there exists a time after which, for every

correct sensorq, counterq[p] =Vp.

(2) Supposecounterp[p] is not bounded. Lemma 47 implies thatcounterq[p] is also

not bounded.

Lemma 49 If sensor k is not correct then for every correct sensor q there is a time after

which leaderq 6= k permanently.

Proof: As sensork is not correct, after timet > t2, counterp[k]> counterp[p], for every

p∈ B. As q is correct every message broadcast by every sensorp reaches every correct

sensorq, counterq[k]≥ counterp[k], and sensork will not be elected as leader any more.

Theorem 15 There exists a correct sensor l and a time after which, for every correct

sensor q, leaderq = l. Hence, the algorithm in Figure 8.4 satisfies Property 8 in system

Sw.

Proof: Note thatB is not empty. By Lemma 48(1), for every sensorp∈B, there is a cor-

responding integerVp and a time after which for every correct sensorq, counterq[p] =Vp

160 Chapter 8. Aggregator Election and Data Aggregation in WSNs

(forever). Letl denote the sensorp in B with the smallest corresponding tuple(Vp, p).

We now show that eventually every correct sensorq selectsl as its leader (forever). For

any other sensorp 6= l : (*) there is a time after which(counterq[p], p)> (counterq[l], l).

This implies that eventuallyq selectsl as its leader, forever. To show (*) holds, consider

the following 3 possible cases. Ifp is not correct then, by Lemma 49, eventuallyp

will never be elected as leader (forever). Now suppose thatp is correct. Ifcounterp[p]

is bounded, thenp is in B; so, by our selection ofl in B, eventually(counterq[p] =

Vp, p) > (counterq[l] = Vl , l) forever. Finally, if counterp[p] is not bounded, then,

by Lemma 48(2), there is a time after whichcounterq[p] > counterq[l] = Vl (because

counterq[p] is unbounded and monotonically nondecreasing). In all cases (*) holds.

Hence, the algorithm in Figure 8.4 satisfies Property 8 in systemSw.

8.4.3 A Third Algorithm

We present here a third aggregator election and data aggregation algorithm for the local

level. Contrary to the previous algorithm, it does not require any sensor to communicate

directly with the rest, but only the existence of a multi-hopbidirectional path from some

correct sensor to the rest of the sensors. Also, similarly tothe first algorithm, sensors do

not need to know the identifiers of the rest of the sensors in advance. We assume that

there exists an unknown boundδ on message delay, and that the execution of each line

of the algorithm requires at mostσ time units.

The sensor chosen as aggregator at sensorp is the sensor with the minimum associ-

ated value ofMembershipp, denoted bymin{Membershipp}, using the sensor identifier

to break ties. The algorithm uses the variableMembershipp to store the identifiers of

the different sensors seen so far containing a set of tuples(q,v), one for each known

sensor, whereq is the sensor identifier andv is roughly the number of times that sensors

have suspectedq.

8.4. Local (Intra-Region) Level 161

Every sensor p executes the following:

procedureupdateleader()
(1) leaderp← sensor inmin{Membershipp}, using identifiers to break ties

end procedure

Initialization:
(2) incrementincarnationp by 1 in stable storage
(3) read (incarnationp) from stable storage
(4) Membershipp← {(p, incarnationp)}
(5) leaderp← p
(6) start tasks1, 2 and 3

Task 1:
(7) loop forever
(8) datap← acquire sensed data
(9) broadcast (I-AM -ALIVE , p, Membershipp, datap)
(10) wait(κ)

Task 2:
(11) upon reception ofmessage (I-AM -ALIVE , q, Membershipq, dataq)

with q 6= p for the first timedo
(12) broadcast (I-AM -ALIVE , q, Membershipq, dataq)
(13) ∀(r,−) ∈Membershipq:
(14) if (r,−) /∈Membershipp then
(15) Membershipp←Membershipp∪{(r,v)} : (r,v) ∈Membershipq
(16) createTimerp(r) andTimeoutp[r]
(17) Timeoutp[r]← κ + incarnationp

(18) resetTimerp(r) to Timeoutp[r]
(19) else
(20) replace inMembershipp (r,v) by (r, max{v,v′}) : (r,v′) ∈Membershipq
(21) end if
(22) resetTimerp(q) to Timeoutp[q]
(23) updateleader()
(24) if [leaderp = p] then
(25) collectdataq

(26) end if

Task 3:
(27) upon expiration of Timerp(q) do
(28) replace inMembershipp (q,v) by (q,v+1)
(29) Timeoutp[q]← Timeoutp[q]+1
(30) resetTimerp(q) to Timeoutp[q]
(31) updateleader()

Figure 8.5: Intra-region aggregator election and data aggregation (Alg. III).

162 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Figure 8.5 presents the pseudocode executed by each sensor when it is up. The

algorithm is the collection ofn instances of this pseudocode, one for each sensor in

the system. In Task 1, sensors broadcast messages periodically to try to become the

aggregator, as well as to send their sensed data, with a periodicity of κ . Every message

sent by a sensorp contains the setMembershipp anddatap. In Task 2, if a sensorp

receives a message (I-AM -ALIVE , q, Membershipq, dataq) with q 6= p for the first time,

it re-broadcasts the message to attempt reaching all the sensors of the region, updates

Membershipp based onMembershipq (Lines 13-21), and resetsTimerp(q). Then, p

calls the procedureupdateleader(). Finally, if p is the aggregator, it collectsdataq.

In Task 3, if Timerp(q) expires before a new I-AM -ALIVE message fromq is re-

ceived, thenp “suspects”q. It replaces inMembershipp (q,v) by (q,v+1), increments

Timeoutp[q], resets the timer and callsupdateleader(). Observe that, ifq has not

crashed, upon reception of the next message fromp, q will increment its associated

counter inMembershipq.

The number of messages sent during a data acquisition period(κ) is quadratic in the

number of sensors in the regionO(n2), since every sensor broadcasts one message by

Task 1, and sensors re-broadcast received messages.

Correctness Proof

Regarding the correctness proof of this algorithm, observethat it is very similar to the

one in the previous section. The main differences are (1) theunknown membership

and, (2) contrary to the previous algorithm, now we only require the existence of a

multi-hop bidirectional path from some correct sensor(s) to the rest of the sensors. The

first question (1) is addressed with a non-decreasing membership (Membershipp) and

dynamically created timers, while the second (2) is overcome by re-broadcasting every

message that a sensor receives for the first time (Line 12).

8.5. Global (Inter-Region) Level 163

8.5 Global (Inter-Region) Level

As described in Figure 8.6, all the aggregators cannot usually communicate directly

among them in order to collect all the data sensed in the different regions of the wide-

area WSN. However, we assume that every pair of aggregators can communicate, either

directly or indirectly (by re-broadcast). Based on this assumption, we implement an

aggregator election and data aggregation algorithm for theglobal (inter-region) level.

Figures 8.7 and 8.8 present the pseudocode executed by each sensor when it is up. The

algorithm is the collection ofn instances of this pseudocode, one for each sensor in the

system.

The algorithm is an adaptation of the first algorithm for the local level, but executed

only among the aggregators of the different regions to select the super-aggregator and to

collect data of the whole sensor network. As in the first algorithm for the local level, we

assume that aggregators do not need to know the identifiers ofthe rest of the aggregators

in advance. With this algorithm, all the aggregators will select as super-aggregator the

aggregator with the minimum incarnation number, using the aggregator identifier to

break ties. Interestingly, the algorithm allows differentregions to execute any of the

three algorithms for the local (intra-region) level.

Figure 8.6: Large WSN divided in regions (only aggregators are shown).

The algorithm uses the variablessuper leaderp, incarnationsuper leader and also

164 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Every sensor p executes the following:

Initialization (for both intra- and inter-region):
(1) if [intra-region algorithm is I]then
(2) add the following instruction toGoToHibernation() (after Line 1):
(3) write (superleaderp, incarnationsuper leader, TimeoutSuperp) to stable storage
(4) execute the Initialization of Algorithm I (Lines 4-16 inFigure 8.2):
(5) read (superleaderp, incarnationsuper leader, TimeoutSuperp) from stable storage
(6) else
(7) if [intra-region algorithm is II]then
(8) execute the Initialization of Algorithm II (Lines 2-9 inFigure 8.4):
(9) else if [intra-region algorithm is III]then
(10) execute the Initialization of Algorithm III (Lines 2-6in Figure 8.5):
(11) end if
(12) super leaderp← p
(13) incarnationsuper leader← incarnationp

(14) TimeoutSuperp← ∆OPERATION+ incarnationp

(15) end if
(16) start tasks4, 5, 6 and 7

Task 4:
(17) loop forever
(18) if [leaderp = p] then
(19) received f rom super← FALSE
(20) if [superleaderp = p] then
(21) if [intra-region algorithm is I]then
(22) waitε time units
(23) end if
(24) broadcast (I-AM -THE-SUPER-LEADER, p, incarnationp)
(25) else
(26) resettimer superp to TimeoutSuperp
(27) end if
(28) end if
(29) wait∆OPERATIONtime units

Figure 8.7: Inter-region algorithm (Part I).

8.5. Global (Inter-Region) Level 165

Task 5:
(30) upon reception ofmessage (I-AM -THE-SUPER-LEADER, q, incarnationq)

with q 6= p for the first timedo
(31) if [leaderp = p] then
(32) if [incarnationq < incarnationsuper leader] or

[(incarnationq = incarnationsuper leader) and (q≤ super leaderp)] then
(33) super leaderp← q
(34) incarnationsuper leader← incarnationq

(35) broadcast (I-AM -THE-SUPER-LEADER, q, incarnationq)
(36) broadcast (DIGEST, p)
(37) received f rom super← TRUE
(38) end if
(39) end if

Task 6:
(40) upon reception ofmessage (DIGEST, q) with q 6= p for the first timedo
(41) if [leaderp = p] then
(42) if [super leaderp = p] then
(43) collectDIGEST

(44) else
(45) broadcast (DIGEST, q)
(46) end if
(47) end if

Task 7:
(48) upon expiration of timer superp do
(49) if [leaderp = p] then
(50) if [received f rom super= FALSE] then
(51) super leaderp← p
(52) incarnationsuper leader← incarnationp

(53) TimeoutSuperp← TimeoutSuperp+∆TIMEOUT

(54) end if
(55) end if

Figure 8.8: Inter-region algorithm (Part II).

166 Chapter 8. Aggregator Election and Data Aggregation in WSNs

TimeoutSuperp. When executed on top of the intra-region Algorithm I (Alg. I), these

variables are read from stable storage during the executionof the initialization, and writ-

ten in stable storage upon the execution of theGoToHibernation() procedure; other-

wise, they are initialized to the valuesp, incarnationp and∆OPERATION+ incarnationp,

respectively.

The proposed hierarchical algorithm works under the following assumptions:

• Eventually, there is a timely path (possibly with multiple hops) from the super-

aggregator to the rest of the aggregators, as well as from every aggregator to the

super-aggregator.

• The time∆OPERATIONis set to a value such that eventually (1) the message broad-

cast by the super-aggregator (I-AM -THE-SUPER-LEADER) reaches the rest of the

aggregators, and (2) theDIGEST message broadcast by every aggregator reaches

the super-aggregator.

• ∆DATA ACQUISITION≥ ∆OPERATION if this algorithm is executed combined with

the first local-level algorithm (Alg. I).

The cost of the algorithm, measured as the number of messagessent during an op-

eration period, is quadratic in the reduced number of aggregators (agg) to agree on a

unique super-aggregatorO(agg2) messages. This compares favourably to the case in

which the WSN is composed of a unique region, where the cost would be quadratic,

O(n2) messages, in the total number of sensors (n).

Observe that with this algorithm only aggregators agree on the common super-

aggregator. Regular sensors (either eventually up or unstable) would not agree on the

common super-aggregator. By one hand, since they are not aggregators within their re-

spective regions, they do not disturb the super-aggregatorelection. On the other hand,

due to the hierarchical structure of our implementation, itis sufficient that just the ag-

gregators agree on a common super-aggregator.

8.6. Energy-Aware Aggregator Election and Data Aggregation 167

Correctness Proof

The correctness proof of this algorithm is similar to the oneof the algorithm in Fig-

ure 8.2. The main difference is the absence of direct communication among all the

sensors in the network, and the existence of a path between every pair of aggregators.

Due to this, the messages received for the first time by every aggregator are re-broadcast

in order to reach the super-aggregator.

8.6 Energy-Aware Aggregator Election and Data Aggre-

gation

From the hierarchical approach we have followed, we consider two energy levels for

broadcasting messages, which correspond to the energy levels of the intra-region and

the inter-region messages respectively. Graphically speaking, the radius of the biggest

circles in Figure 8.3 and the small circles in Figure 8.6 are the same. Assuming that the

distance between adjacent aggregators is approximately twice the radius of a region, we

have that the energy level of inter-region messages must be approximately four times

that of intra-region messages. However, the number of inter-region messages is usually

small with respect to the total number of messages.

In the algorithms presented so far, eventually the aggregator sensor remains as ag-

gregator until the end of its battery. Taking into account that the battery of a sensor that

acts as aggregator decreases faster than the battery of a regular sensor (see Figure 8.9), in

order to prevent the full depletion of the aggregator’s battery, a battery depletion thresh-

old can be introduced. When the aggregator detects a batterylevel below the depletion

threshold, it induces the system to select another aggregator. This way the aggregator

preserves some energy to act as a regular sensor.

Figure 8.10 presents the proposed modification, consistingin a new task that pe-

168 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Figure 8.9: Battery life comparison for a sensor.

riodically checks if the sensor is the aggregator of its region and its battery level has

dropped below the threshold. If it is the case, then the sensor increases either its incar-

nation number (in the case of the first local-level algorithm) or its suspicion counter (in

the case of the second and third local-level algorithms).

Task 0:
(1) loop forever
(2) if [leaderp = p] and [getBatteryLevel() < THRESHOLD] then
(Alg. I) incarnationp← incarnationp +1
(Alg. II) counterp[p]← counterp[p]+1
(Alg. III) replace inMembershipp (p, v) by (p, v+1)
(4) wait(γ)

Figure 8.10: Using a battery depletion threshold.

The selection of a certain threshold determines the QoS of the WSN, measured as

the number of sensors that will remain active during a given period of time, provided

the existence of a common aggregator. For a desired number ofactive sensors during

a certain period, and according to sensors energy consumption, we can determine the

associated threshold. The potential risk of this strategy occurs when, due to a battery

level below the threshold, all the sensors start increasingtheir incarnation number or

suspicion counter. When this happens, sensors could set their threshold to 0%, and the

network can continue working properly, but without such QoSguarantee, until the end

of the battery of all the sensors.

8.6. Energy-Aware Aggregator Election and Data Aggregation 169

The use of a threshold provides an energy-aware aggregator election mechanism,

since it allows a balanced depletion of the batteries of the (well-communicated) correct

sensors of each region. As a consequence, the number of sensors that remain active

during a given period of time increases, which is a relevant QoS measure in sensor

networks.

170 Chapter 8. Aggregator Election and Data Aggregation in WSNs

Chapter 9

Conclusions and Future Work

Contents

9.1 Research Assessment . 172

9.2 Future Work . 173

171

172 Chapter 9. Conclusions and Future Work

9.1 Research Assessment

In this dissertation we have studied, for the first time, the Omega failure detector in the

crash-recovery model. More specifically, we have focused onthe design of algorithms

that implement this failure detector in models of partial synchrony subject to crash-

recovery failures. This research has led to four major contributions.

The redefinition of the Omega failure detector for the crash-recovery model.

The definition of Omega is well suited to the crash model, but it can be improved in

the crash-recovery model. The definition of Omega does not take into account unstable

processes and hence they are allowed to permanently disagree with correct processes,

which can be a serious drawback. For this reason we have defined theOmegacr1 and

Omegacr2 failure detectors. Basically, theOmegacr2 failure detector establishes that

correct processes and unstable processes, when up, will agree on the same correct leader.

With the Omegacr1 failure detector, unstable processes do not trust any process upon

recovery and if they trust a process it will be the correct leader. TheOmegacr2 failure

detector requires a system where processes have access to stable storage whileOmegacr1

does not.

A collection of algorithms that implement Omega, Omegacr1 or Omegacr2. Our

main contribution is a set of eight distributed algorithms that work in (slightly) different

systems where processes are subject to crash-recovery failures. In this context, we have

reflected on the limits of the synchrony required to implement Omegacr1 andOmegacr2.

With regard to efficiency, we have implemented two communication-efficient algo-

rithms: one forOmegacr1 in a system without stable storage, based on nondecreasing

local clocks; and another forOmegacr2 where processes have access to stable storage.

Two algorithms implementing eventually perfect failure detectors. In the pro-

posed distributed systems, subject to crash-recovery failures, it is not possible to im-

plement a failure detector of the class3P. Basically, in such a system we cannot

distinguish an unstable process from an eventually up (correct) process that has not yet

9.2. Future Work 173

stabilized. For this reason, we have defined the3Pcr and3Pk−cr failure detectors,

which satisfy weaker properties but which are achievable inthe crash-recovery model.

In addition, we have presented two algorithms implementing3Pcr and3Pk−cr. The al-

gorithms rely strongly on the use of the leader election service provided by theOmegacr2

failure detector.

Three aggregator election and data aggregation algorithmsfor wireless sensor

networks. A wireless sensor network, WSN, can be seen as a distributedsystem subject

to crash-recovery failures. On this basis, we have built three hierarchical aggregator

election and data aggregation algorithms for large WSNs, ontop of our implementations

of theOmegacr2 failure detector.

9.2 Future Work

The research carried out has led us to raise new questions on which we hope to work.

We comment below on the direction of our research in the near future.

New Consensus algorithms.Properties satisfied by theOmegacr1 andOmegacr2

failure detectors can be used to implement Consensus algorithms in the crash-recovery

failure model. It would be interesting to work on the design of efficient Consensus algo-

rithms based on our implementations of theOmegacr1 andOmegacr2 failure detectors.

New Omega for different system models.Our interest in Omega leads us to study

it in other distributed system models. With regard to the failure models, the most ap-

pealing are the Byzantine and the omission failure models.

The Byzantine failure model allows processes to behave arbitrarily. Processes can

crash, crash and recover, deviate from the algorithm, act selfishly, lie and can even

behave maliciously; i.e. as an adversary that tries to make the algorithm or protocol fail.

This means that applications that are tolerant to Byzantinefailures can be used in real

systems that are open to the general public, such as the Internet.

174 Chapter 9. Conclusions and Future Work

The omission failure model is more restrictive than the crash-recovery model be-

cause, basically, it does not consider that a process can crash and recover, thus losing its

status. There is increasing interest in this model because it is useful for studying secu-

rity related problems. If we consider a system composed of untrusted processes which

are equipped with trusted devices that allow the signing of messages, the failures that a

malicious adversary can introduce would be limited to dropping signed messages. With

this approach it would be possible to reduce some security problems usually studied

in the Byzantine failure model, such as secure multi-party computation [126] and fair

exchange [60], to canonical distributed problems, such as Consensus, in the omission

model [39].

Nowadays there is an increasing demand for applications that allow collaboration

and information sharing or acquiring in wide area systems. This involves a potentially

huge number of distributed users and nodes, and, therefore,an underlying large-scale

distributed system. In such a system, fault tolerance is essential and the study of Omega,

focusing on scalability and performance, is of great interest.

Finally, we should not forget that computing devices are becoming more and more

portable and that this portability must be supported by applications. This type of dis-

tributed system can be modelled as a system withdynamic membership; i.e. where

processes canjoin andleavethe system.

Application of failure detectors. As we have seen in this dissertation, failure de-

tectors in general and Omega in particular can be used as a basis to solve problems

other than Consensus. It would be interesting to study the applicability of Omegacr1

andOmegacr2 to existing agreement problems in the area of distributed systems, e.g.

k-set agreement [33] and atomic commit [68, 120].

Bibliography

[1] The free on-line dictionary of computing.http://foldoc.org/.

[2] M. Aguilera, W. Chen, and S. Toueg. Heartbeat: A Timeout-Free Failure Detector

for Quiescent Reliable Communication. InProceedings of the 11th International

Workshop on Distributed Algorithms (WDAG’97), pages 126–140, 1997.

[3] M. Aguilera, W. Chen, and S. Toueg. Failure Detection andConsensus in the

Crash-Recovery Model.Distributed Computing, 13(2):99–125, 2000.

[4] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S.Toueg. On implementing

omega in systems with weak reliability and synchrony assumptions. Distributed

Computing, 21(4):285–314, October 2008.

[5] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Stable Leader

Election. InProceedings of the 15th International Symposium on Distributed

Computing (DISC’01), pages 108–122, Lisbon, Portugal, October 2001. LNCS

2180, Springer-Verlag.

[6] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. On implement-

ing omega with weak reliability and synchrony assumptions.In Proceedings of

the 22nd ACM Symposium on Principles of Distributed Computing (PODC’03),

pages 306–314, Boston, Massachusetts, July 2003.

175

176 Bibliography

[7] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-

efficient leader election and consensus with limited link synchrony. InPro-

ceedings of the 23rd ACM Symposium on Principles of Distributed Computing

(PODC’04), pages 328–337, St. John’s, Newfoundland, Canada, July 2004.

[8] M. Aguilera and S. Toueg. Failure Detection and Randomization: A Hybrid

Approach to Solve Consensus.SIAM J. Comput., 28(3):890–903, 1998.

[9] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor

networks: A survey.Computer Networks, 38(4):393–422, March 2002.

[10] J. Al-Karaki, R. Ul-Mustafa, and A. Kamal. Data aggregation in wireless sensor

networks - Exact and approximate algorithms. InProceedings of IEEE Work-

shop on High Performance Switching and Routing (HPSR’04), pages 241–245,

Phoenix, Arizona (USA), April 2004.

[11] Y. Amir and J. Stanton. The Spread Wide Area Group Communication System.

Technical Report CNDS 98-4, Johns Hopkins University, 1998.

[12] J. Aspnes. Fast deterministic consensus in a noisy environment. InProceedings

of the 19th ACM Symposium on Principles of Distributed Computing (PODC’00),

pages 299–308, 2000.

[13] J. Aspnes. Randomized protocols for asynchronous consensus.Distributed Com-

puting, 16(2-3):165–175, 2003.

[14] H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D. Peleg, andR. Reischuk. Achiev-

able cases in an asynchronous environment. InProceedings of the 28th Sym-

posium on Foundations of Computer Science (FODC’87), pages 337–346. IEEE

Computer Society Press, October 1987.

Bibliography 177

[15] H. Attiya, C. Dwork, N. Lynch, and L. Stockmeyer. Boundson the Time to

Reach Agreement in the Presence of Timing Uncertainty.Journal of the ACM,

41(1):122–152, 1994.

[16] Ö. Babaoglu and S. Toueg. Non-Blocking Atomic Commitment.Distributed

Systems, pages 147–166, 1993.

[17] A. Basu, B. Charron-Bost, and S. Toueg. Simulating Reliable Links with Un-

reliable Links in the Presence of Process Crashes. InProceedings of the 10th

International Workshop on Distributed Algorithms (WDAG’96), pages 105–122,

1996.

[18] M. Ben-Or. Another Advantage of Free Choice: Completely Asynchronous

Agreement Protocols (Extended Abstract). InProceedings of the 2nd ACM Sym-

posium on Principles of Distributed Computing (PODC’83), pages 27–30, 1983.

[19] P. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and Recov-

ery in Database Systems. Addison-Wesley, 1987.

[20] O. Biran, S. Moran, and S. Zaks. A Combinatorial Characterization of the Dis-

tributed Tasks Which Are Solvable in the Presence of One Faulty Processor. In

Proceedings of the 7th ACM Symposium on Principles of Distributed Computing

(PODC’88), pages 263–275, 1988.

[21] O. Biran, S. Moran, and S. Zaks. Tight Bounds on the RoundComplexity of

Distributed 1-Solvable Tasks.Theor. Comput. Sci., 145(1-2):271–290, 1995.

[22] K. Birman and T. Joseph. Reliable communication in the presence of failures.

ACM Transactions on Computer Systems, 5(1):47–76, February 1987.

[23] G. Bracha and S. Toueg. Asynchronous Consensus and Broadcast Protocols.

Journal of the ACM, 32(4):824–840, 1985.

178 Bibliography

[24] J. Burns, M. Gouda, and R. Miller. Stabilization and Pseudo-Stabilization.Dis-

tributed Computing, 7(1):35–42, 1993.

[25] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive re-

covery.ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[26] T. Chandra, V. Hadzilacos, and S. Toueg. The Weakest Failure Detector for Solv-

ing Consensus.Journal of the ACM, 43(4):685–722, July 1996.

[27] T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the impossibility

of group membership. InProceedings of the 15th Annual ACM Symposium on

Principles of Distributed Computing (PODC’96), pages 322–330, New York,

NY, USA, 1996. ACM.

[28] T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed

Systems.Journal of the ACM, 43(2):225–267, 1996.

[29] J. Chang and N. Maxemchuk. Reliable Broadcast Protocols. ACM Trans. Com-

put. Syst., 2(3):251–273, 1984.

[30] B. Charron-Bost. Comparing the Atomic Commitment and Consensus Problems.

Future Directions in Distributed Computing, pages 29–34, 2003.

[31] B. Charron-Bost and A. Schiper. Uniform consensus is harder than consensus.J.

Algorithms, 51(1):15–37, 2004.

[32] B. Charron-Bost and A. Schiper. The Heard-Of model: computing in distributed

systems with benign faults.Distributed Computing, 22(1):49–71, 2009.

[33] S. Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in

Totally Asynchronous Systems.Inf. Comput., 105(1):132–158, 1993.

Bibliography 179

[34] W. Chen, S. Toueg, and M. Aguilera. On the quality of service of failure detec-

tors. IEEE Transactions on Computers, 51:13–32, 2002.

[35] Y. Chen, A. Liestman, and J. Liu. Energy-Efficient Data Aggregation Hierar-

chy for Wireless Sensor Networks. InProceedings of the 2nd International

Conference on Quality of Service in Heterogeneous Wired/Wireless Networks

(QSHINE’05), page 7, Lake Buena Vista, Florida (USA), August 2005. IEEE

Computer Society Press.

[36] G. Chockler, S. Gilbert, and B. Patt-Shamir. Communication-Efficient Prob-

abilistic Quorum Systems for Sensor Networks. InProceedings of the 4th

IEEE Conference on Pervasive Computing and CommunicationsWorkshops

(PerCom’06 Workshops), pages 111–117, Pisa, Italy, March 2006. IEEE Com-

puter Society.

[37] B. Chor and C. Dwork. Randomization in Byzantine agreement, Randomness

and Computation.Advances in Computer Research, 5:443–497, 1989.

[38] F. Chu. Reducing Omega to3W. Information Processing Letters, 67(6):289–

293, September 1998.

[39] R. Cortiñas, F. Freiling, M. Ghajar-Azadanlou, A. Lafuente, M. Larrea,

L. Draque, and I. Soraluze. Secure Failure Detection in TrustedPals. InProceed-

ings of the 9th International Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS’07), pages 173–188, 2007.

[40] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic Broadcast: From Sim-

ple Message Diffusion to Byzantine Agreement.Inf. Comput., 118(1):158–179,

1995.

[41] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algo-

rithms: Taxonomy and survey.ACM Comput. Surv., 36(4):372–421, 2004.

180 Bibliography

[42] C. Delporte-Gallet, S. Devismes, and H. Fauconnier. Robust Stabilizing Leader

Election. InProceedings of the 9th International Symposium on Stabilization,

Safety, and Security of Distributed Systems (SSS’07), pages 219–233, 2007.

[43] E. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control.Commun.

ACM, 17(11):643–644, 1974.

[44] D. Dolev. The Byzantine Generals Strike Again.J. Algorithms, 3(1):14–30, 1982.

[45] D. Dolev, C. Dwork, and L. Stockmeyer. On the Minimal Synchronism Needed

for Distributed Consensus.Journal of the ACM, 34(1):77–98, January 1987.

[46] D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. FailureDetectors in Omission

Failure Environments. InProceedings of the 16th ACM Symposium on Princi-

ples of Distributed Computing (PODC’97), page 286, Santa Barbara, California,

USA, August 1997.

[47] D. Dolev, N. Lynch, S. Pinter, E. Stark, and E. Weihl. Reaching approximate

agreement in the presence of faults.Journal of the ACM, (33):499–516, July

1986.

[48] P. Dutta and R. Guerraoui. Fast Indulgent Consensus with Zero Degrada-

tion. In Proceedings of the 4th European Dependable Computing Conference

(EDCC’02), pages 191–208. Springer-Verlag, 2002.

[49] P. Dutta, R. Guerraoui, and B. Pochon. Fast Non-Blocking Atomic Commit: An

Inherent Trade-off.Information Processing Letters, 91(4):195–200, 2004.

[50] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the Presence of Partial

Synchrony.Journal of the ACM, 35(2):288–323, April 1988.

Bibliography 181

[51] R. Ekwall, A. Schiper, and P. Urbán. Token-based Atomic Broadcast using Un-

reliable Failure Detectors. InProceedings of the 23th International Symposium

on Reliable Distributed Systems (SRDS’04), pages 52–65, 2004.

[52] P. Ezhilchelvan, D. Palmer, and M. Raynal. An Optimal Atomic Broad-

cast Protocol and an Implementation Framework. InProceedings of the 8th

IEEE International Workshop on Object-Oriented Real-TimeDependable Sys-

tems (WORDS’03), pages 32–39, 2003.

[53] P. Feldman and S. Micali. An Optimal Probabilistic Algorithm For Synchronous

Byzantine Agreement. InProceedings of the 16th International Colloquium on

Automata, Languages and Programming (ICALP’89), pages 341–378, 1989.

[54] A. Fernández, E. Jiménez, and S. Arévalo. Minimal System Conditions to Im-

plement Unreliable Failure Detectors. InProceedings of the 12th Pacific Rim

International Symposium on Dependable Computing (PRDC’06), pages 63–72,

2006.

[55] A. Fernández, E. Jiménez, and M. Raynal. Eventual Leader Election with Weak

Assumptions on Initial Knowledge, Communication Reliability, and Synchrony.

In Proceedings of the IEEE International Conference on Dependable Systems

and Networks (DSN’06), pages 166–178, Philadelphia, Pennsylvania, June 2006.

[56] A. Fernández and M. Raynal. From an Intermittent Rotating Star to a Leader.

In Proceedings of the 11th International Conference on Principles of Distributed

Systems (OPODIS’07), pages 189–203, Guadeloupe, French West Indies, De-

cember 2007. LNCS 4878, Springer-Verlag.

[57] M. Fischer. The consensus problem in unreliable distributed systems (a brief

survey).Foundations of Computation Theory, 158:127–140, 1983.

182 Bibliography

[58] M. Fischer, N. Lynch, and M. Merritt. Easy Impossibility Proofs for Distributed

Consensus Problems.Distributed Computing, 1(1):26–39, 1986.

[59] M. Fischer, N. Lynch, and M. Paterson. Impossibility ofDistributed Consensus

with One Faulty Process.Journal of the ACM, 32(2):374–382, 1985.

[60] F. Freiling, M. Herlihy, and L. Draque. Optimal Randomized Fair Exchange with

Secret Shared Coins. InProceedings of the 9th International Conference On

Principles Of Distributed Systems (OPODIS’05), pages 61–72, 2005.

[61] F. Freiling, C. Lambertz, and M. Majster-Cederbaum. Modular Consensus Algo-

rithms for the Crash-Recovery Model. InProceedings of the 10th International

Conference on Parallel and Distributed Computing, Applications and Technolo-

gies (PDCAT’09), pages 287–292, 2009.

[62] E. Gafni. Round-by-Round Fault Detectors: Unifying Synchrony and Asyn-

chrony (Extended Abstract). InProceedings of the 17th Annual ACM Symposium

on Principles of Distributed Computing (PODC’98), pages 143–152, 1998.

[63] E. Gafni and L. Lamport. Disk Paxos. InProceedings of the 14th International

Conference on Distributed Computing (DISC’00), pages 330–344, 2000.

[64] R. Golding and K. Taylor. Group membership in the epidemic style. Technical

Report UCSC-CRL-92-13, University of California at Santa Cruz, Santa Cruz,

CA, USA, 1992.

[65] R. Guerraoui. Revisiting the relationship between Non-Blocking Atomic Com-

mitment and Consensus. InProceedings of the 9th International Workshop

on Distributed Algorithms (WDAG’95), pages 87–100, Le Mont-Saint-Michel,

France, September 1995. LNCS 972, Springer-Verlag.

Bibliography 183

[66] R. Guerraoui, M. Hurfin, A. Mostéfaoui, R. Oliveira, M.Raynal, and A. Schiper.

Consensus in Asynchronous Distributed Systems: A Concise Guided Tour.Ad-

vances in Distributed Systems, pages 33–47, 1999.

[67] R. Guerraoui and P. Kouznetsov. On the Weakest Failure Detector for Non-

Blocking Atomic Commit. InProceedings of the 2nd International IFIP Con-

ference on Theoretical Computer Science (TCS’02), pages 461–473, 2002.

[68] R. Guerraoui, M. Larrea, and A. Schiper. Non-Blocking Atomic Commitment

with an Unreliable Failure Detector. InProceedings of the 14th Symposium on

Reliable Distributed Systems (SRDS’95), pages 41–51, Bad Neuenahr, Germany,

September 1995.

[69] R. Guerraoui, R. Olivera, and A. Schiper. Stubborn Communication Chan-

nels. Technical Report CNDS–98–4,École Polytechnique Fédérale de Lausanne,

Switzerland, 1996.

[70] R. Guerraoui and M. Raynal. The Information Structure of Indulgent Consensus.

IEEE Transactions on Computers, 53(4):453–466, April 2004.

[71] V. Hadzilacos and S. Toueg. Fault-tolerant broadcastsand related problems.Dis-

tributed Systems (2nd Ed.), pages 97–145, 1993. Expanded version appeared as

a Technical Report TR94-1425, Department of Computer Science, Cornell Uni-

versity, Ithaca, NY, 1994.

[72] J. Halpern and Y. Moses. Knowledge and Common Knowledgein a Distributed

Environment. InProceedings of the 3th Annual ACM Symposium on Principles

of Distributed Computing (PODC’84), pages 50–61, 1984.

[73] K. Hatzis, G. Pentaris, P. Spirakis, V. Tampakas, and R.Tan. Fundamental control

algorithms in mobile networks. InProceedings of the 11th ACM Annual ACM

184 Bibliography

Symposium on Parallel Algorithms and Architectures (SPAA’99), pages 251–260,

March 1999.

[74] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-Efficient Com-

munication Protocol for Wireless Microsensor Networks. InProceedings of the

Hawaiian International Conference on Systems Science (HICSS’00), pages 35–

42, January 2000.

[75] F. Hu, X. Cao, and C. May. Optimized Scheduling for Data Aggregation in

Wireless Sensor Networks. InProceedings of the International Conference on

Information Technology: Coding and Computing (ITCC’05), volume 2, pages

557–561, Las Vegas, Nevada (USA), April 2005. IEEE ComputerSociety.

[76] M. Hurfin, A. Mostéfaoui, and M. Raynal. Consensus in Asynchronous Sys-

tems Where Processes Can Crash and Recover. InSymposium on Reliable Dis-

tributed Systems (SRDS’98), pages 280–286, West Lafayette, Indiana, USA, Oc-

tober 1998.

[77] M. Hurfin and M. Raynal. A Simple and Fast Asynchronous Consensus Protocol

Based on a Weak Failure Detector.Distributed Computing, 12(4):209–223, 1999.

[78] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Chasing the Weakest System

Model for Implementing Omega and Consensus.IEEE Transactions on Depend-

able and Secure Computing, 6(4):269–281, 2009.

[79] E. Jiménez, S. Arévalo, and A. Fernández. Implementing theΩ Failure Detector

with Unknown Membership and Weak Synchrony. Technical Report RoSaC–

2005–2, Universidad Rey Juan Carlos, Spain, January 2005.

[80] E. Jiménez, S. Arévalo, and A. Fernández. Implementing unreliable failure detec-

tors with unknown membership.Information Processing Letters, 100(2):60–63,

2006.

Bibliography 185

[81] I. Keidar and S. Rajsbaum. On the Cost of Fault-TolerantConsensus When There

Are No Faults - A Tutorial. InProceedings of the 1st Latin-American Symposium

in Dependable Computing (LADC’03), pages 366–368, 2003.

[82] B. Krishnamachari, D. Estrin, and S. Wicker. The Impactof Data Aggregation

in Wireless Sensor Networks. InProceedings of the 22nd International Confer-

ence on Distributed Computing Systems, Workshop on Distributed Event-Based

Systems (DEBS’02), pages 575–578, Vienna, Austria, July 2002. IEEE Computer

Society.

[83] M. Kumar, L. Schwiebert, and M. Brockmeyer. Efficient Data Aggregation Mid-

dleware for Wireless Sensor Networks. InProceedings of the First International

Conference on Mobile, Ad-Hoc, and Sensor Systems (MASS’04), pages 579–581,

Ft. Lauderdale, Florida (USA), October 2004. IEEE ComputerSociety Press.

[84] L. Lamport. The part-time parliament.ACM Transactions on Computer Systems,

16(2):133–169, May 1998.

[85] L. Lamport. Paxos made simple.SIGACT News, 32(4):18–25, 2001.

[86] L. Lamport. Lower bounds for asynchronous consensus. Technical Report

MSRTR-2004-72, Microsoft Research, 2004.

[87] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.ACM

Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[88] M. Larrea, A. Fernández, and S. Arévalo. Optimal Implementation of the Weak-

est Failure Detector for Solving Consensus. InProceedings 19th IEEE Sym-

posium on Reliable Distributed Systems (SRDS’00), pages 52–59, Nurnberg ,

Germany, 2000.

186 Bibliography

[89] M. Larrea, A. Fernández, and S. Arévalo. On the implementation of unreliable

failure detectors in partially synchronous systems.IEEE Transactions on Com-

puters, 53(7):815–828, July 2004.

[90] M. Larrea, A. Fernández, and S. Arévalo. Eventually Consistent Failure De-

tectors. Journal of Parallel and Distributed Computing, 65(3):361–373, March

2005.

[91] M. Larrea and A. Lafuente. Brief announcement: Communication-efficient im-

plementation of failure detector classes3Q and3P. In Proceedings of the 19th

International Symposium on Distributed Computing (DISC’05), pages 495–496,

Krakow, Poland, September 2005. LNCS 3724, Springer-Verlag.

[92] S. Lindsey and C. Raghavendra. PEGASIS: Power-efficient gathering in sensor

information systems. InProceedings of the IEEE Aerospace Conference, pages

1125–1130, March 2002.

[93] S. Lindsey, C. Raghavendra, and K. Sivalingam. Data Gathering Algorithms

in Sensor Networks Using Energy Metrics.IEEE Transactions on Parallel and

Distributed Systems, 13(9):924–935, 2002.

[94] N. Lynch. Distributed Algorithms.Morgan Kaufmann, 1996.

[95] D. Malkhi, F. Oprea, and L. Zhou. Omega Meets Paxos: Leader Election

and Stability Without Eventual Timely Links. InProceedings of the 19th In-

ternational Symposium on Distributed Computing (DISC’05), pages 199–213,

Krakow, Poland, September 2005. LNCS 3724, Springer-Verlag.

[96] D. Malkhi, F. Oprea, and L. Zhou. Omega Meets Paxos: Leader Election and

Stability Without Eventual Timely Links. Technical ReportMSR-TR-2005-93,

Microsoft Research, 2005.

Bibliography 187

[97] C. Malloth. Conception and Implementation of a Toolkit for Building Fault-

Tolerant Distributed Applications in Large Scale Networks. PhD thesis,́Ecole

Polytechnique Fédérale de Lausanne, Switzerland, 1996.

[98] N. Malpani, J. Welch, and N. Vaidya. Leader Election Algorithms for Mobile Ad

Hoc Networks. InProceedings of the 4th International Workshop on Algorithms

and Methods for Mobile Computing and Communications, pages 96–103, August

2000.

[99] S. Masum, A. Ali, and M. Bhuiyan. Asynchronous Leader Election in Mobile Ad

Hoc Networks. InProceedings of the 20th International Conference on Advanced

Information Networking and Applications - Volume 2 (AINA’06), pages 827–831,

2006.

[100] L. Moser, P. Melliar-Smith, and V. Agrawala. Processor Membership in Asyn-

chronous Distributed Systems.IEEE Trans. Parallel Distrib. Syst., 5(5):459–473,

1994.

[101] A. Mostéfaoui, E. Mourgaya, and M. Raynal. Asynchronous Implementation

of Failure Detectors. InProceedings of the IEEE International Conference on

Dependable Systems and Networks (DSN’03), pages 351–360, San Francisco,

California, June 2003.

[102] A. Mostéfaoui, E. Mourgaya, M. Raynal, and C. Travers. A Time-free Assump-

tion to Implement Eventual Leadership.Parallel Processing Letters, 16(2):189–

208, 2006.

[103] A. Mostéfaoui and M. Raynal. Leader-Based Consensus. Parallel Processing

Letters, 11(1):95–107, 2001.

188 Bibliography

[104] A. Mostéfaoui, M. Raynal, and C. Travers. Time-Free and Timer-Based Assump-

tions Can Be Combined to Obtain Eventual Leadership.IEEE Transactions on

Parallel and Distributed Systems, 17(7):656–666, July 2006.

[105] J. Neander, E. Hansen, M. Nolin, and M. Björkman. Asymmetric Multihop Com-

munication in Large Sensor Networks. InProceedings of the International Sym-

posium on Wireless Pervasive Computing (ISWPC’06), Phuket, Thailand, Jan-

uary 2006.

[106] R. Oliveira. Solving consensus: from fair-lossy channels to crash-recovery of

processes. PhD thesis,́Ecole Polytechnique Fédérale de Lausanne, Switzerland,

2000.

[107] R. Oliveira, R. Guerraoui, and A. Schiper. Consensus in the crash-recover model.

Technical Report TR-97/239, Swiss Federal Institute of Technology, Lausanne,

1997.

[108] V. Park and M. Corson. A Highly Adaptative DistributedRouting Algorithm

for Mobile Wireless Networks. InProceedings of the 16th IEEE International

Conference on Computer Communications (INFOCOM’97), pages 1405–1413,

April 1997.

[109] S. Patil and S. Das. Serial data aggregation using space-filling curves in wireless

sensor networks. InProceedings of the 1st International Conference on Em-

bedded Networked Sensor Systems (SenSys’03), pages 326–327, Los Angeles,

California (USA), November 2003. ACM Press.

[110] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of

faults. Journal of the ACM, 27(2):228–234, April 1980.

Bibliography 189

[111] S. Pleisch, O. Rütti, and A. Schiper. On the Specification of Partitionable Group

Membership. InProceedings of the 7th European Dependable Computing Con-

ference (EDCC’08), pages 37–45, 2008.

[112] B. Przydatek, D. Xiaodong Song, and A. Perrig. SIA: secure information aggre-

gation in sensor networks. InProceedings of the 1st International Conference on

Embedded Networked Sensor Systems (SenSys’03), pages 255–265, Los Angeles,

California (USA), November 2003. ACM.

[113] M. Rabin. Randomized Byzantine Generals. InProceedings of the 24th Sympo-

sium on Foundations of Computer Science (FOCS’83), pages 403–409, 1983.

[114] M. Raynal. Eventual Leader Service in Unreliable Asynchronous Systems: Why?

How? In Proceedings of the 6th IEEE International Symposium on Network

Computing and Applications (NCA’07), pages 11–24, 2007.

[115] L. Sabel and K. Marzullo. Election Vs. Consensus in Asynchronous Systems.

Technical Report TR95-1488, Cornell University, Ithaca, 1995.

[116] N. Santoro and P. Widmayer. Time is Not a Healer. InProceedings of the 6th

Symposium on Theoretical Aspects of Computer Science (STACS’89), pages 304–

313, 1989.

[117] A. Schiper. Early Consensus in an Asynchronous Systemwith a Weak Failure

Detector.Distributed Computing, 10(3):149–157, 1997.

[118] A. Schiper and S. Toueg. From Set Membership to Group Membership: A Sepa-

ration of Concerns.IEEE Trans. Dependable Sec. Comput., 3(1):2–12, 2006.

[119] F. Schneider. Implementing Fault-Tolerant ServicesUsing the State Machine

Approach: A Tutorial.ACM Comput. Surv., 22(4):299–319, 1990.

190 Bibliography

[120] D. Skeen. Nonblocking Commit Protocols. InProceedings of the International

Conference on Management of Data (SIGMOD’81), pages 133–142, 1981.

[121] S. Toueg. Randomized Byzantine Agreements. InProceedings of the 3th Annual

ACM Symposium on Principles of Distributed Computing (PODC’84), pages

163–178, 1984.

[122] P. Tsuchiya. The Landmark Hierarchy: A new hierarchy for routing in very large

networks. InProceedings of the ACM Special Interest Group on Data Communi-

cation (SIGCOMM’88), pages 35–42, 1988.

[123] K. Vaidyanathan, S. Sur, S. Narravula, and P. Sinha. Data aggregation techniques

in sensor networks. Technical Report 11/04-TR60, The Ohio State University,

November 2004.

[124] S. Vasudevan, J. Kurose, and D. Towsley. Design and Analysis of a Leader Elec-

tion Algorithm for Mobile Ad Hoc Networks. InProceedings of the 12th Inter-

national Conference on Network Protocols (ICNP’04), pages 350–360, October

2004.

[125] J. Widder and U. Schmid. The Theta-Model: achieving synchrony without

clocks.Distributed Computing, 22(1):29–47, 2009.

[126] A. Yao. Protocols for Secure Computations (Extended Abstract). InProceedings

of the 23th Symposium on Foundations of Computer Science (FOCS’82), pages

160–164, 1982.

[127] A. Zamsky. A Randomized Byzantine Agreement Protocolwith Constant Ex-

pected Time and Guaranteed Termination in Optimal (Deterministic) Time. In

Proceedings of the 15th Annual ACM Symposium on Principles of Distributed

Computing (PODC’96), pages 201–208, 1996.

