Technical Report

zabal zazu

eman ta

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

UNIVERSITY OF THE BASQUE COUNTRY
Department of Computer Science and Artificial Intelligence

Efficient learning of decomposable models
with bounded clique size

Aritz Pérez, Ifiaki Inza, Jose A. Lozano

May, 2014

San Sebastian, Spain
www.ehu.es/ccia-kzaa

hdl.handle.net/10810/4562

Efficient learning of decomposable models with a
bounded clique size

Aritz Pérez aritz.perez@echu.es
Ifiaki Inza inaki.inza@ehu.es
Jose A. Lozano ja.lozano@ehu.es
Department of Computer Science and Artificial Intelligence
University of the Basque Country
San Sebastidn, Spain

May 2, 2014

Abstract

The learning of probability distributions from data is a ubiquitous prob-
lem in the fields of Statistics and Artificial Intelligence. During the last
decades several learning algorithms have been proposed to learn probabil-
ity distributions based on decomposable models due to their advantageous
theoretical properties. Some of these algorithms can be used to search for
a maximum likelihood decomposable model with a given maximum clique
size, k, which controls the complexity of the model. Unfortunately, the prob-
lem of learning a maximum likelihood decomposable model given a maxi-
mum clique size is NP-hard for £ > 2. In this work, we propose a family of
algorithms which approximates this problem with a computational complex-
ity of O(k - n?logn) in the worst case, where n is the number of implied
random variables.

The structures of the decomposable models that solve the maximum like-
lihood problem are called maximal k-order decomposable graphs. Our pro-
posals, called fractal trees, construct a sequence of maximal i-order decom-
posable graphs, for i = 2,..., k, in k — 1 steps. At each step, the algorithms
follow a divide-and-conquer strategy based on the particular features of this
type of structures. Additionally, we propose a prune-and-graft procedure
which transforms a maximal k-order decomposable graph into another one,
increasing its likelihood. We have implemented two particular fractal tree
algorithms called parallel fractal tree and sequential fractal tree. These algo-
rithms can be considered a natural extension of Chow and Liu’s algorithm,
from k = 2 to arbitrary values of k. Both algorithms have been compared
against other efficient approaches in artificial and real domains, and they have

shown a competitive behavior to deal with the maximum likelihood problem.
Due to their low computational complexity they are especially recommended
to deal with high dimensional domains.

1 Introduction

In order to deal with some Statistical and Artificial Intelligence problems a prob-
ability distribution is required. In many of these problems the probability distri-
bution is not explicitly given and only a set of independent samples, distributed
according to it, is available. When a sufficiently large set of samples is accessible,
we can approach the probability distribution using the empirical joint distribution.
However, the number of samples required to obtain a reliable estimation of the
joint distribution grows exponentially with the number of the implied random vari-
ables. In order to learn robust probabilistic models from the available data, the joint
distribution is approximated using a product of functions with a smaller number
of parameters, e.g., marginal probability distributions. These models are usually
learned from data by means of a learning algorithm. From a practical point of view,
it is desirable to develop learning algorithms with a low computational complex-
ity in order to deal with high dimensional domains. In addition, the algorithms
should learn robust probabilistic models with a low computational complexity in
order to efficiently perform probabilistic inference tasks. During the last decades,
probabilistic graphical models have provided one of the most effective tools for the
automatic learning of probabilistic models [15], being the family of decomposable
models one of the most attractive due to their advantageous theoretical properties
[10]. In this work, we propose a set of efficient algorithms for learning decompos-
able models.

The approaches for learning factorized models of the joint distribution from
data can be divided into qualitative and quantitative algorithms. The qualitative ap-
proaches guide the search of the structure of the factorization using (conditional)
independence testing procedures, while the quantitative approaches try to maxi-
mize a score related to the goodness of the approximation. Quantitative approaches
are usually based on decomposable scores such as log likelihood, Bayesian Dirich-
let equivalent metric, minimum description length or Bayesian information criteria
[9], among others. Our contributions consist of quantitative algorithms based on
the maximization of the likelihood score.

Likelihood score quantifies the chance of observing a set of samples under
the hypothesis that they are distributed according to a given probability model.
It can be also interpreted as the degree of fitness of the model to the available
data. Likelihood is directly related with the Kullback-Leibler divergence between

the factorization and the empirical distribution, i.e., the higher the likelihood, the
lower the Kullback-Leibler divergence. It is known that the likelihood of a model
tends to be higher as its complexity increases, because the fitting capability tends
to increase with the number of free parameters. However, the risk of overfitting
increases with the complexity of the model, which can lead to models with a poor
generalization capability. Other scores, such as minimum description length, can
be seen as a penalized version of the likelihood. The penalized scores can be
interpreted as a trade-off between the goodness of fitness to the available data and
the complexity of the model. Since the likelihood does not penalize the complexity
of the model, an explicit control of the complexity of the model is required to
avoid the overfitting phenomena. In the proposed algorithms, the complexity of
the learned models is controlled by means of a single regularization parameter, k,
which determines the maximum clique size and, hence, the number of parameters
of the learned model.

One of the most popular quantitative approaches based on the likelihood score
for learning probability distributions with a low number of parameters is Chow
and Liu’s algorithm (CL, [3]). The algorithm can be implemented using Kruskal’s
algorithm for maximization, where the edge weights correspond to the empirical
mutual information between the implied random variables. CL finds a maximum
likelihood probability model among the (possible) huge space of n"~2 candidate
models with a tree structure. Additionally, it has been proved that the algorithm
is asymptotically consistent ([4]). Finally, the algorithm has a computational com-
plexity of only O(n?logn), where n is the number of implied random variables.
Thus, due to its low computational complexity, the huge number of candidate mod-
els and its optimality, the algorithm is an excellent building block for designing
novel search strategies focused on the maximization of the likelihood.

As we noted before, decomposable models are a popular class of probabilistic
models due to their theoretical properties. Among these properties, we highlight
the closed form of the maximum likelihood parameters, the interpretation of the
model in terms of conditional independences using a graphical criteria, and that
they are the basis of the most popular inference algorithms over probability dis-
tributions [10]. During the last decades many quantitative approaches have been
proposed in order to learn decomposable models. We would like to emphasize the
seminal work of [13], which establishes the basis for learning decomposable mod-
els by means of greedy procedures. This work provides much of the theoretical
background presented in Section 2 and demonstrated that the structure that maxi-
mizes the likelihood, given a maximum clique size, is a maximum k-order decom-
posable graph (MkDG, see Definition 4). It proposes two greedy structural learn-
ing procedures of decomposable models, based on forward and backward searches,
which consider single edge modifications. In [5] the authors present, based on the

results provided by [10], a formal characterization of the set of edges that can be
added to a decomposable graph maintaining its decomposability, and design an al-
gorithm for its identification with a computational complexity of O(n?). The work
of [16, 17] demonstrates that the learning of maximum likelihood decomposable
models, with &k greater than 2 and lower than n — 1, is NP-hard. Thus, unless
P = NP, there is not a polynomial time algorithm for solving the problem and it
has to be approached. Unfortunately, most of the algorithms proposed for learn-
ing decomposable models with a maximum clique size & [8, 1, 2] are exponential
in k and, thus, they are unpractical for approaching high dimensional probability
distributions, even for moderate values of k.

In this work, we propose a family of efficient algorithms, called fractal tree,
for learning MkEDGs (see Section 5). Our family of algorithms follow a divide-
and-conquer strategy based on the particular structural features of MkDGs. The
algorithms construct a sequence of maximal ¢-order decomposable graphs, for
i =2,..,k,in k — 1 steps. At each step, the input maximal i-order decomposable
graph is divided into subgraphs related to the neighborhood of its separators. Then,
the neighborhood of each separator is solved using a novel extension of CL, called
generalized Chou and Liu (see Section 4). The partial solutions to each neighbor-
hood are added to the input structure for generating the next maximal (i + 1)-order
decomposable graph. Additionally, we have developed a prune-and-graft opera-
tor for MkDGs that favors the mobility of the vertices across the structure. This
procedure transforms an MkADG into another MkDG with a likelihood equal or
higher. The prune-and-graft procedure can be directly plugged in the fractal tree
algorithms and tends to improve the likelihood of the final resulting MkDG.

In this work, two variants of fractal tree are proposed, the parallel fractal tree
and the sequential fractal tree. Parallel fractal tree solves all the neighborhoods of
the separators in parallel, without considering the interactions among them, while
sequential fractal tree solves them sequentially, taking into consideration their in-
teractions. The implementation of sequential fractal tree includes the aforemen-
tioned prune-and-graft procedure. Both algorithms have a computational complex-
ity of O(k - n?logn), in the worst case, which is k times the computational com-
plexity of the CL algorithm (O(n? log n)). In the performed experimental compar-
ison, the fractal tree algorithms have shown a competitive performance compared
to other state of the art algorithms. The efficiency of the proposed algorithms and
the good results achieved make them recommendable to deal with the maximum
likelihood problem, especially for approaching high dimensional probability dis-
tributions.

The rest of this work is organized as follows. Section 2 introduces the main
theoretical background. We present the decomposable graphs, the decomposable
models and the maximum likelihood problem that we face in this work. In Sec-

4

tion 3 we present the intuitions and the justification behind the fractal tree algo-
rithms. Section 4 formally defines, what we call, the separator problem. Besides,
we present a natural extension of the CL algorithm to solve the separator problem.
This algorithm inherits the theoretical properties of the CL algorithm. In Sec-
tion 5 we present a family of algorithms called fractal tree which are constructed
using the extension of CL as the building block, following a divide-and-conquer
strategy. Two particular implementations of the family of fractal tree algorithms
are proposed: parallel fractal tree and sequential fractal tree. Section 6 presents a
prune-and-graft procedure which transforms an MkDGs into another with equal or
higher likelihood score. This procedure can be applied to any fractal tree algorithm
for improving its behavior to deal with the maximum likelihood problem. Section
7 summarizes the experimental results obtained by the proposed algorithms in 33
real and 900 artificial domains. Finally, in Section 8 we present the conclusion of
this work highlighting the major contributions. Besides, we indicate the principal
future work lines regarding the fractal tree algorithms and their applications.

2 Background

We denote by X = (X7, ..., X,,) a n-dimensional random variable which is dis-
tributed according to the probability distribution p(x), where X; is a univariate
discrete random variable for ¢ = 1,...,n. The random variable X; takes values
in the finite space {2; and the n-dimensional random variable X takes values in
the space 2 = Q1 x ... X ,. We denote an instantiation (a sample) of X by
x = (x1,...,x,), where z; is an instantiation of X; fori = 1,....n. Let C' be a
subset of the indexes {1,...,n} of size |C|. The random variable X ¢ represents
the |C|-dimensional random variable (X;);cc.

A dataset D = {x!,..., 2"V} is a collection of N instances independent and
identically distributed according to p(x). Given a data set D, the associated em-
pirical probability distribution over X is given by p(x) = N /N, where Ny, is
the number of occurrences of « in D. Empirical distributions are given in terms of
the observed frequency estimates of the data in a closed form. It should be noted
that the empirical distribution is the maximum likelihood distribution given D, i.e.

p = arg, max 1Y, q(xh).

2.1 Decomposable graphs and models

This section formally defines the decomposable graphs, the candidate edges and the
maximal k-order decomposable graphs. We are especially interested in maximal
k-order decomposable graphs because they form the structures of the maximum

likelihood decomposable models with a bounded clique size.

Let G = (V, E) be an undirected graph, where V' = {1,...,n} is a set of
indexes called the vertices of the graph and E is a set of pairs of vertices {u, v}
called edges. A graph is said to be complete if it contains any possible edge, i.e.
E = {{u,v} : {u,v} C V}. Anempty graph is a graph without edges, i.e. E = ().
The subgraph induced by V' C V, G(V') = (V', E(V')), is a graph with the
vertex set V', where the set of edges is given by E(V') = {{u,v} : {u,v} C
V' AN{u,v} € E}. The examples introduced in this section are based on the graphs
G, G3 and G presented in Figure 1.

Definition 1. Let G = (V,E) and G = (V*, E*1) be two undirected graphs.
G is coarser than G (or equivalently, G is thinner than G*) if V. = V' and
E C EY, and it is denoted as G < G™.

For example, we say that G’ is coarser than G~ and thinner than G™.

The neighborhood of u in G is the set of vertices connected by an edge
tou, {v € V : {u,v} € E}. Itis denoted by N(u|G) or simply by N(u),
when the graph is clear from the context. We define the neighborhood of a set
of vertices S in G as the set of vertices connected by edges to all the vertices
in S, (,cs N(u). Note that this definition of neighborhood is the intersection of
the neighborhood of all the vertices instead of the union. The neighborhood of
S is denoted by N(S|G) or simply by N(.S), when the graph is clear from the
context. For example, N({2,5}|G™) = {3,6}, N({2,5}|G3) = {1,3,6} and
N({2,5}|GT) = {1, 3,4,6} (see Figure 1).

LI, INX

(a) Non-decomposable graph, (b) Maximal 3-order decom- (c¢) 4-order decomposable
G™. posable graph, G's. graph, GT.

Figure 1: Examples of undirected graphs

A sequence of vertices of V', uy, ..., uy, is a path of length [— 1 when {w;, u; 41}
isincludedin F fort = 1,...,l—1. Acycleis apath uy, ..., u; for whichu; = u;. A
chord of a cycle is an edge among two vertices which are not adjacent in the cycle.
For example, the cycle 1,2,5,4, 1 in G'3 has the chord {1,5}. Two vertices u and
v are said to be connected if there is a path from v to v. A connected component of

a graph is a subgraph induced by V’ C V' in which any two vertices are connected
to each other, and are not connected to vertices in V' \ V" in the original graph.

A tree is a graph with n — 1 edges without cycles. For n vertices there are
n"~2 different trees. A forest is a graph where each of its connected components
is a tree.

Given two non-adjacent indexes u and v, a subset S C V'\ {u, v} is a separator
for u and v, when the graph induced by V' \ S separates u and v into two different
connected components. If no proper subset of .S is a separator for v and v, then
S is a minimal separator for v and v. From here on we will call the minimal
separators, separators, for the sake of brevity. For example, the set {2,4} is the
(minimal) separator for 1 and 5 in G~ but it does not separate them in G'3.

Any C C V is called a clique for G if the subgraph induced by C, G(C),
is a complete graph and there is no proper superset of C' which induces a com-
plete subgraph. The set of cliques associated to an undirected graph G is denoted
as C(G@). For example, C(G™) = {{1,2},{1,4},{4,5}, {2,3,5},{2,5,6}},
C(Gs) = {{1,2,5},{1,4,5},{2,3,5},{2,5,6}} and C(G") = {{1,2,4,5},
{2,3,5},{2,5,6}}. A subset of C(G) is denoted as C. For sake of brevity | ¢ C
and (e C will be denoted as | JC and () C, respectively.

We say that an undirected graph is a decomposable graph (DG) if for any
cycle of length greater than 3 there exists a chord. For example, G~ is not a DG
because the cycle 1,2,5,4,1 does not contain any chord. On the contrary, the
cycle 1,2, 5,4, 1 in G5 contains the chord {1,5}. DGs are the graphical structures
of decomposable models.

Let C1, ..., Cy, be a numbered sequence of the set of cliques C(G). Let S; =
C; N U;;ll Cj for i = 2,...,m. The sequence (1, ...,C), is said to be a chain
of cliques for G if S; is contained in some clique C' € {C1,...,C;_1} for any
i = 2,...,m. It can be proved that a graph G is a DG if and only if it has a
chain of cliques. For example, for G35 there exists the chain of cliques C =
{1,2,5},Cy = {1,4,5},C3 = {2,3,5},Cy = {2,6,5} where Sy = {1,5} C C},
Ss = {2,5} € Cyand Sy = {2,5} C C3 or Cy. For G~ there is not a chain of
cliques because the separator {2,4} (or {1,5}) is not contained in any clique.

In DGs, the sets S; for i = 2, ..., m are the (minimal) separators. In this type of
graphs any separator induces a complete subgraph and it is contained in at least two
cliques. We denote the set of separators associated to the DG G as S(G), which
consists of all the separators of the sequence So, ..., S, without repetition. The set
of separators is unique for a DG.

Definition 2. Let G = (V, E) be a DG, and let S C V be a subset of vertices. The
subgraph induced by the neighborhood of S, G(N(S)), is called the mantle of S
for G.

The concept of mantle plays an important role in the divide-and-conquer strat-
egy used by the fractal tree family of algorithms. Figure 2 illustrates the concept
of mantle by means of four examples.

O NIOEN O ENONEINIONNO

® O, ® O ©

(@) () G3(N({2,5})). (© (d) G*(N({2,5})).
Gs(N({1,5})). G*(N({1,5})).

Figure 2: The mantles of {1,5} and {2, 5} in the graphs G3 (Figure 1b) and G
(Figure 1c).

Next, we introduce a theoretical characterization, adapted from [5], of the set
of the edges that can be added to a DG maintaining its decomposability. These
edges are called candidate edges.

Theorem 1. [5] Given a decomposable graph G = (V, E), an edge {u,v} ¢ E
is a candidate edge if and only if there exists a minimal separator S for u and v,
such that {u,v} C N(S).

The set of candidate edges for G which does not create cliques of size greater
than k is denoted as Ex(G).

Observation 1. In order to determine E,(G), we require to inspect the neighbor-
hood of the separators of size lower than k — 1.

This observation we can used in order to design efficient procedures for deter-
mining E;(G) (see Section 3).

Next, we introduce two types of decomposable graphs which control explicitly
their maximum clique size.

Definition 3. A k-order decomposable graph (kDG) is a decomposable graph for
which the maximum clique size is k.

For example, G'3 is a 3DGs, and G is a 4DG.

Definition 4. A maximal k-order decomposable graph (MkDG) is a kDG for
which all the cliques are of size k and the addition of a candidate edge creates a
clique of size k + 1.

M£kDGs are also known in the literature as (k — 1)-hypertrees [17]. The empty
graph is an M1DG and a tree is an M2DG. We are interested in MkDGs because
the solutions to Problem 1 are based on this family of structures (see Theorem 2
in Section 2.2). An MkDG G/, has the following interesting structural properties,
among others [13]:

o C(Gy)isasetof m =n — k+ 1 cliques of size k, and
e the size of all the minimal separators in S(Gy,) is k — 1.

We can observe these properties in G's which is an M3DG: C(G3) = {{1,2,5},
{1,4,5},{2,3,5}, {2,5,6}} and S(G3) = {{1,5},{2,5}}, where |C(G3)| =
6-3+1=4

M£KDGs are maximal in the sense that no more cliques of size k can be con-
structed by adding candidate edges and they can also be characterized in terms of
this property:

Corollary 1. Let G = (V, E) be a DG. G is an MkDG if and only if Et(G) = ()

Proof. Clearly, if Ex(G) # () we can add any edge from E;(G) without creating
a clique of size greater than k& which contradicts Definition 4. O

Next, we present the decomposable models, probabilistic models based on de-
composable graphs. Let G be a DG with the set of cliques C(G) and the set of
separators S(G). We associate each clique C' in the set of cliques C(G) to the
|C'|-dimensional random variable X ¢ and each separator S in the set of separators
S(G) to the |S|-dimensional random variable X g.

A Decomposable model [11] is given by M = (G, Pgq), where G is a de-
composable graph, and Pg is a set of probabilities associated to the cliques and
the separators, Pg = {p(X¢) : C € C(G)} U {p(Xg) : S € S(G)}. The proba-
bilities satisfy that they are compatible under marginalization, i.e. ch\s p(xc) =
ZxC,\S p(xcr) = p(xg) for any C,C" € C(G) where C N C" = S. The decom-
posable model M represents the following factorization of the joint probability
distribution p(x): pm(2) = [[cec(e) P(@c)/ [ses(a) p(xg)?s, where dg is the
number of cliques that contain S minus one. We call the decomposable models
with kDG and MkDG structures, k-order decomposable models and maximum k-
order decomposable models, respectively.

The set of probabilities associated to a maximum likelihood decomposable
model is known to be the set of maximum likelihood probabilities [10]. Be-
sides, the set of maximum likelihood probability distributions can be computed
in a closed form for decomposable models [10], avoiding computational intensive

iterative approaches such as iterative proportional fitting. The maximum likeli-
hood probability distributions are the empirical marginal probability distributions.
Henceforth, we will concentrate on the structural learning of the decomposable
models. With a slight abuse in notation, from here on, we refer the model given by
G and the set of maximum likelihood probabilities as the structure G. Thus, the
structure represents the following factorized probability distribution:

_ Hcec(c) p(xc)
[Lses(q) blms)®s
The use of the structure instead of the model in the notation will emphasize that
once the use of the empirical probability distributions is decided upon, the like-
lihood is a function of the network structure, G, only. For example, pg,(x) =
15(33{1,2,5})23(33{1,4,5})25(33{2,3,5})ﬁ(m{zs,ﬁ})/ﬁ(w{m}) 15(33{2,5})2 and pg+(z) =
15(50{1,2,4,5})ﬁ(${2,3,5})ﬁ(${2,5,6})/15(${2,5})2

(1

pc(z)

2.2 Learning maximum likelihood k-order decomposable models prob-
lem

This section formally defines the problem of learning maximum likelihood k-order
decomposable models, and introduces a set of previous theoretical results which
motivate the fractal tree algorithms presented in Section 5.

Problem 1. Let D = {x',...,x"N} be a i.i.d. data set according to an unknown
distribution p(x). This problem consists of finding a k-order decomposable graph
G which maximizes the likelihood of the data:

G* = arggeg, max | [pa(e) 2)
xeD
where Gy, denotes the set of k-order decomposable graphs.
Let G and G be two kDGs, where G < G It can be proved that G™ has
a likelihood equal or higher than G [13]. Following this intuition, it is easy to

prove that the solution to the problem of learning a maximum likelihood kDG is
an MkDGs.

Theorem 2. [13] The solution to Problem 1 is a maximal k-order decomposable
model.

Consequently, our approaches restrict the search of maximum likelihood kDG
to the class of MkDGs.

The learning of a maximum likelihood MkDG for k£ = 2 can be solved poly-
nomially using the CL algorithm [3]. However, this is not true for any value of k
unless P = NP.

10

Theorem 3. [16, 17] Problem I is NP-hard for k > 2.

In this work we propose tractable suboptimal algorithms in order to deal with
Problem 1, where their computational complexity is O(k - n?logn), in the worst
case.

The next theoretical result indicates the equivalence between Problem 1 and
finding a minimum entropy MkDG.

Theorem 4. [13] Problem 1 is equivalent to finding the k-order decomposable
graph which minimizes the entropy:

arggeg, Max H pa(x) = arggeg, Min He(X) 3)
xeD

where Hg (X)) represents the entropy of X distributed according to pg.

From here on we will deal with Problem 1 through the minimum entropy for-
mulation. Next, we define a problem related to Problem 1.

Problem 2. Given an MkDG, G}, and a data set D, find a maximum likelihood
M(k + 1)DG coarser than Gy,

If an algorithm can solve this problem, its recursive application would produce
a sequence of MiDGs fori = 2,....k, Go < G3 < ... < G}, (see Corollary 3),
where G, could be a good approximation to Problem 1. Unfortunately, Problem 2
still remains an NP-hard for & > 2.

Corollary 2. Problem 2 is NP hard for k > 2.

Proof. The proof is equivalent to the proofs provided in [16], Theorem 4.1, and
[17], Corollary 3, for Problem 1. Clearly, we can reduce 3SAT to Problem 2, by
constructing an MkDG coarser than the core structure given in Theorem 4.1 of
[16]. O

The fractal tree algorithms (see Section 5) approach Problem 2 using a divide-
and-conquer strategy for learning an M(i + 1)DG coarser than a given MiDG. The
M:DG is divided into separators of size k— 1. Then, the problem associated to each
of these separators is solved by means of the generalized Chow and Liu’s algorithm
(see Section 4). Finally, the partial solutions associated to each separator are joined
together to form an M(i + 1)DG. The procedure has a computational complexity
of O(n?logn), in the worst case. The divide-and-conquer strategy is repeated
recursively £ — 1 times starting from the empty graph until an MkDG structure is
reached.

11

3 A divide-and-conquer strategy

This section formally presents the intuitions behind the fractal tree algorithms. As
we noted in the previous section, these algorithms are based on a two-fold divide-
and-conquer strategy:

e To approach Problem 1 dividing it into (k — 1) Problems 2. This approach
produces a sequence of MiDGs, for ¢ = 2, .., k, each one coarser than the
previous.

e To approach Problem 2 decomposing the input MADG in terms of its sepa-
rators and solving each separator (see Problem 3 and Algorithm 1).

The section starts by justifying that the strategy of constructing a sequence of
coarser MiDGs, for ¢ = 2, ..., k, can solve Problem 1. Then, we present the intu-
itions for obtaining an M(k+1)DG, given a thinner MkDG, based on the separators
of the MkDG.

Proposition 1. (Lemma 2.21, [10]) Let G be a decomposable graph and let G~ be
a thinner decomposable graph with exactly m edges less. Then, there is a sequence
of coarser structures G~ = G* < G < ... < G™ = G of decomposable graphs
that differs exactly in one edge.

According to this result, any DG can be obtained starting from a thinner DG
following a sequence of DGs which differ exactly in one (candidate) edge. There-
fore, we can construct a sequence of coarser M:DGs, for ¢ = 2, ..., k, to attain any
target MEDG.

Corollary 3. Let Gy, be an MkDG. It is possible to construct a sequence of MiDG
structures, Gy, fori =2, ..., k, where Go < G3 < ... < G_1 < G}

Proof. 1t is a direct consequence of Definition 4 and Proposition 1. O

This sequence of coarser structures is the basis for the algorithms proposed in
Section 5. Since all the intermediate structures are DGs, the maximum likelihood
parameters can be obtained in a closed form and, as we noted in Section 2.2, we
can focus on the structural learning only.

Next, we present the intuitions for obtaining an M(k + 1)DG from a thinner
MEDG following a divide-and-conquer strategy.

In order to obtain any M(k + 1)DG, G 1, from a thinner MkDG, Gy, we
are interested in creating cliques of size k + 1 maintaining the decomposability of
the graph. By Theorem 1, in order to create a clique of size k 4+ 1 maintaining
the decomposability, we require to add a (candidate) edge {u, v}, where u and v

12

are minimally separated by a separator S of size k — 1 and {u,v} C N(S) (see
Observation 1). Thus, we have to identify all the separators of size k — 1 for Gy,
and for any (k 4 1)DG coarser than G, The following results show that the set of
separators of all these structures is a subset of the set of separators of G.

Proposition 2. Let Gy, be an MkDG and let G be a coarser (k + 1)DG. Let
G~ be a DG coarser than (or equal to) Gy, and thinner than G, where G~ has
one edge less than G™. The set of the minimal separators of size k — 1 of G is
contained in the set of minimal separators of size k — 1 of G™.

Proof. By definition of MkDG, G~ has cliques of size k or k£ + 1, only. Since
G™ is a (k + 1)DG coarser than an MkDG, it must be obtained from G~ by
adding a candidate edge {u,v} € Eg1(G™). Thus, there exists a chain of cliques
Ci,...,C4, Ciqq, ..., Cyp, for G~ with the sequence of separators Sa, ..., Sit1, s S
where |S; 11| =k —1,u e C;\ Sit1andv € Ciqq \ Sit1-

There are three possible situations depending on the sizes of C; and C41. First,
if |C;| = |Ciy1| = k then, the addition of {u, v} replaces the cliques C; and C;;
by a new clique S;;+1 U {u, v} and removes S, from the sequence of separators.
Secondly, if |C;| = k and |C;y1| = k + 1 then, the clique C; is replaced by
Si+1U{u, v} and the separator S; by S;U{v}. And thirdly, if |C;| = |Cj41| = k+1
then, the addition of {u, v} generates the new clique S;+1 U {u, v} and replaces the
separator S;41 by the separators S;+1 U {u} and S;+1 U {v}.

In the three cases the separator .S; is removed or replaced by separators of size
greater than k — 1. Therefore, the set {S € S(G) : |S| = k—1} C {S € S(G}) :
|S| =k —1}. O

Thus, the addition of a candidate edge to an MkDG or a (k + 1)DG coarser
than an MkDG reduces or at least maintains its set of minimal separators of size
k — 1. In other words, a new separator of size k — 1 can not be created by the
addition of a candidate edge. For example, the addition of {2,4} to G5 to create
G, removes the separator {1,5}.

Corollary 4. Let G}, be an MkDG and let G be a coarser DG. The subset of
minimal separators of G of size k — 1 is contained in the set of separators of Gy,

Proof. 1t is a direct consequence of Proposition 2. O

Consequently, given the MkDG, Gy, the set of separators S(G,) contains all
the relevant separators for identifying the edges required to learn a coarser M(k +
1)DG.

The following results strengthen the idea of using a divide-and-conquer strat-
egy, focused on the mantles of separators of size k£ — 1, for learning an M(k+1)DG

13

from a thinner MEDG. We start by characterizing the mantles of the separators of
size k — 1.

Corollary 5. Let Gy, be an MkDG and let G be a (k + 1)DG coarser than G,
1. The mantle of any S € S(Gy,) in Gy, Gi(N(S)), is the empty graph.
2. The mantle of any S € S(Gy,) in Gt, GT(N(S)), is a forest.

Proof. All the cliques in G, are of size k and the separators of size k — 1. If
the mantle of a separator S € S(Gy) has an edge {u, v}, then G}, has the clique
{u,v} U S of size k + 1. Since G, is an MkDG, the mantle is an empty graph.

If the mantle of any set S € S(G},) in G™ has a clique C greater than 2, then
G, has the clique C'U S of size greater than k + 1. Since G is an (k + 1)DG, the
mantle is a forest. O

For example, the mantles of {1,5} and {2,5} in G35 are the empty graphs
({2,4},0) and ({1,3,6},0), while in G they are the forests ({2,4}, {{2,4}})
and ({1,3,4,6}, {{1,4}}), respectively (See Figure 2).

Next, we provide an appropriate characterization of the set of candidate edges
associated to a set of vertices of size k — 1. It should be noted that this set consists
of the candidate edges that create cliques of size k£ + 1, only.

Definition 5. Let S be a subset of vertices that induces a complete graph in the
DG G. The set of candidate edges associated to S in G is defined as

E(S|G) = E2(G(N(5)))

= {{u,v} : uwand v are at distinct connected components in G(N(S5))}

Thus, the set of candidate edges associated to a separator is defined as the set
of candidate edges which creates cliques of size 2 in its mantle. In other words, the
set of candidate edges associated to a separator are given by pair of vertices which
belong to different connected components of the mantle, without considering the
particular edges included in the mantle. For example, the set of candidate edges
for {2,5} in G3 is E({2,5}|G3) = {{1,3},{1,6},{3,6}}, while in G™ it is
E({2,5}|Gs) = {{1,3},{1,6},{3,6},{3,4},{4,6}}.

Based on the previous definition, we characterize the set of vertices that create
cliques of size k£ + 1.

Proposition 3. Let G = (V, E) be an MkDG or a (k + 1)DG coarser than an
MEDG. Then,

1. Ex1(G) = USES(G):\S\:k—lE(S|G)r and

14

2. forany S and S" in S(G), where S # S’, E(S|G) NE(S'|G) = .

Proof. The first point is a direct consequence of Theorem 1 and the fact that
E+1(G) consists of the candidate edges that create cliques of size smaller or equal
to k + 1. The second point is proved by the contradiction method. Let us suppose
a candidate edge {u,v} € E(S|G) NE(S’|G). Then, u and v must be separated
by two distinct minimal separators. Therefore, by Theorem 1, {u, v} can not be a
candidate edge, which contradicts the starting assumption. O

In summary, the set of candidate edges which create cliques of size k + 1,
can be obtained by a local inspection of the separators of size £k — 1. Addi-
tionally, the set of candidate edges associated to different separators are disjoint.
For example the set of candidate edges for G's which creates cliques of size 4 is
E4(G3) = {{2’ 4}7 {1’ 3}’ {17 6}7 {3’ 6}} where E({la 5}|G3) = {{27 4}} and
E({2,5}|G3) = {{1,3},{1,6},{3,6}}. And the set of candidate edges for G*
is E(GT) = {{1,3},{1,6},{3,6},{3,4},{4,6}} where E({1,5}|G™") = (0 and
E({2,5}|GT) =E(G™).

Proposition 4. Let G, = (V, E) be an MkDG and let G be a (k+1)DG coarser
than Gy. Then, G is an M(k + 1)DG if and only if for any S € S(G},) we have
that Gt (N(S)) is a tree.

Proof. By Corollary 1, Ei;1(G™) must be the empty set. By Corollary 4 and
Proposition 3, E;1(G™) is empty if and only if for any S € S(G}) we have
that E(S|G™) is empty. Thus, for any S € S(G), G (N(S)) must have a single
connected component and by Corollary 5 is a tree. O

This proposition states that Problem 2, learning a maximum likelihood M(k +
1)DG from a thinner MkDG, G, seems to be solved by learning maximum like-
lihood trees for the mantles of each separator of G, independently. We call the
learning of a maximum likelihood tree for the mantle of a separator the separator
problem (see Problem 3) and it is efficiently solved by the Generalized Chow and
Liu’s algorithm proposed in Section 4. Unfortunately, Problem 2 is an NP-hard
problem. It should be noted that the addition of a candidate edge {u, v} associated
to a separator can increase the neighborhood of other separators and, at the same
time, it can increase their set of candidate edges. Thus, the order in which the
edges are added can considerably change the structures that can be constructed due
to the interaction among the mantles of adjacent separators, i.e., two separators of
size k — 1 are adjacent when they share k — 1 vertices. Next, we show how the
addition of an edge to the mantle of a separator can affect the mantles of adjacent
separators.

15

Proposition 5. Let Gy, be an MkDG and let G = (V, E) be a DG coarser than
or equal to Gy, and thinner than an M(k + 1)DG. Let S and S’ be two distinct
separators in S(G) and let u,v be a candidate edge associated to S. Let us denote
(V,EU{u,v}) by G, and G(N(S")) by (Vs:, Es/).

IfS"\ S ={u}and S\ S" = {w} then

1. GT(N(S")) = (Vo U {v}, Es: U {v,w}), and

2. E(Y"|GT) = E(S'|G) U {{v,y} : y and w are at distinct components in
(Vsr, Esr)}-

Proof. GV is obtained by adding {u, v} to G, which creates the clique C = S U
{u,v} = S"U{v, w}. This clique belongs to the neighborhood of S’ since S’ C C.
Thus, v belongs to the vertices of GT(N(S")) and {v,w} to its set of edges.
Besides, v is in the same connected component of w in G (N(S")) and, by
Proposition 3 the set of edges {{v,y} : y and w are at distinct components in
(Vsr, Egr)} is added to the set of candidate edges of S'. O

For example, the addition of the candidate edge {2,4} to G to create G+
increases the set of candidate edges, E4(G™) \ E4(G3) = {{3,4},{4,6}}. There-
fore, the addition of a candidate edge can cause the set of candidate edges associ-
ated to an adjacent separator to increase. This fact clearly indicates the importance
of the order in which the edges are added and it states the difficulty of solving Prob-
lem 2. For example, the addition of {2, 4} to G'3 creates the candidate edges {3,4}
and {4,6} which can be added to the mantle of {2,5} to create the MADG G4,
with the cliques {{1,2,4,5},{1,2,3,4},{2,4,5,6}}. Instead of adding {2,4},
if we first consider the addition of the candidate edge {3,6} then, G4 can not be
attained.

At this point, we want to present a result which can be used to efficiently iden-
tify the separators of G';11 given a thinner G, by a local inspection of the mantles
of separators S(GYy;). It is based on the degree of the nodes in the mantle of a sep-
arator.

Proposition 6. Let Gy, be an MkDG and let Gy1 an M(k + 1)DG coarser than
G The separators of Gy,+1 can be obtained from a local inspection of the mantles
of S(Gg) in G411 as follows:

S(Gii1) = {S U {u} : S € S(Gy), where [N(u| Gy (N(S|Gsn))] > 1}

Proof. Let v and w be separated by S in G, and let {u,v} and {u,w} be two
edges of the mantle of S in G1. By Proposition 4, we know that the mantle
G111 (N(S)) is a tree and thus, v and w are separated by u in the mantle. Therefore,
S U {u} separates v and w in G1. O

16

This result can be used by the fractal tree algorithms in order to efficiently
obtain the set of separators required at each growing step. The same result can
be used in order to provide an efficient implementation of the greedy procedures
proposed by [13] for approaching Problem 1.

4 The separator problem and Generalized Chow and Liu’s
algorithm

In this section we formally define the separator problem. Next, we provide a natural
extension of the Chow and Liu’s algorithm (CL) called generalized Chow and Liu
(GCL), which solves the separator problem with a computational complexity of
O(n?logn). The GCL algorithm is the building block of the fractal tree algorithms
presented in Section 5. For a review of other extensions of the CL algorithm we
refer the reader to ([7]).

Problem 3. [The separator problem] Let G be an MkDG or a (k+ 1)DG coarser
than an MkDG, where G has a single separator, S, of size k — 1. Let D be a data
set. Find an MkDG coarser than G which maximizes the likelihood.

Note that for the particular case of an MkDG with a single separator, Problem
3 and Problem 2 become equivalent.

As we noted before, the maximization of the likelihood function is equivalent
to the minimization of the entropy. The next proposition establishes the decrease
in the entropy when a candidate edge is added to a DG:

Proposition 7. Let G = (V, E) be a decomposable graph, let e = {u,v} be a
candidate edge associated to a separator S and let D be a data set. The entropy of
(V, E U {e}) given D decreases in 1(X,,, X,| X s) with respect to G.

The GCL algorithm creates a maximum weighted tree in the neighborhood
of S, where the weight of each candidate edge {u,v} € E(S|G) is given by
I(X,,X,|Xs). This procedure is equivalent to the CL algorithm with the ap-
propriate weights for dealing with Problem 3. The pseudo-code of the GCL pro-
cedure is given in Algorithm 1. The computational complexity of CGL is O((n —

k)2 log(n — k)), in the worst case due to the sorting of the (";k) candidate edges.

Corollary 6. GCL solves Problem 3.

Proof. By Corollary 4 and Proposition 4, the solution is the structure obtained by
constructing a minimum entropy tree in the mantle of the unique separator of G,
S. Algorithm 1 learns a maximum likelihood tree for the mantle of S using the
Kruskal algorithm for maximization, where, by Proposition 7, 1(X,, X,| X g) is
the weight for the edge {u, v} € E(S|G). O

17

Algorithm 1. (Generalized Chow and Liu’s algorithm)

Input: An MkDG or a (k + 1)DG coarser than an MkDG, G, with a single sepa-
rator, S, of size k — 1, where G(N(S)) = (Vs, E). A data set D.

Output: A set of edges when added to G solves Problem 3.

Pseudocode:
1. E:=0
2. For any {u,v} € E(S|G) compute I(X,;X,|Xs) (see Definition 5)
3. Sort E(S|G) in descending order of I(Xu;X.|Xs)
4. while (Vg,EsUFE) is not a tree:
5. Take the next edge {u,v} € E(S|G),

where u and v are at different connected components of (Vs,EsU
E)
6. E :=EU{u,v}

7. return FE

The next result quantifies the (possibly huge) number of M(k + 1)DGs that can
be attained by the GCL algorithm.

Corollary 7. Let G be an MkDG or a (k + 1)DG coarser than an MkDG, which
has a single minimal separator S of size k — 1. Let the mantle of S be a forest with

t connected components, each of them with n; vertices fori = 1, ...,t. The number
of M(k 4+ 1)DGs coarser than G is given by:

t
Hni o tm2=3 i (i) (4)

i=1

Proof. By Proposition 4, the number of M(k + 1)DGs coarser than G is the num-
ber of trees coarser than G(N(.S)). And by Lemma 6 in [12] this corresponds to
Equation 4. O

The number of structures that can be obtained for the mantles shown in Figures
2b,2d,4band 7aare 3372 = 3,2.447271 = 8,442 = 16 and 2-2-6°727% = 144,
respectively.

Finally, we show that the GCL algorithm finds one of the closest trees to a
given structure when a sufficiently large data set is available.

Corollary 8. Generalized Chow and Liu’s algorithm is asymptotically consistent
[4], i.e. imn_o0 P(Dgr(p;pg+) = Drr(p;pg+)) = 1, where pg+ represents
the model obtained by the GCL procedure, pg+ is a maximum likelihood kDG
coarser than G, and Dy represents the Kullback-Leibler divergence between
two distributions.

18

Proof. The proof is analogous to the proof of asymptotic consistency of the CL
algorithm [4]. OJ

In summary, GCL inherits the theoretical properties of the CL algorithm:
e By Proposition 6, it solves Problem 3.
e GCL has a computational complexity in the worst case of O(n? logn).

e By Corollary 8, GCL is asymptotically consistent.

5 Fractal tree algorithms

In essence, the proposed fractal tree algorithms approach Problem 1 in k& — 1 it-
erative growing steps. These steps create a sequence of MiDGs for ¢ = 2,....k
each coarser than the previous one. Step ¢ starts with an M¢DG, G, and learns
an M(i + 1)DG, G;+1 using a divide-and-conquer strategy based on the set of
separators of G;.

The fractal tree algorithms make use of the structural features of MkDG struc-
tures which allow to approach Problem 2 efficiently:

o A maximum of n — ¢ separators have to be considered. In unconstrained
kDGs the number of separators can be O(k - n).

e The mantle associated to each separator, at the start of each growing step, is
an empty subgraph. At the end of the growing step the mantles become trees.
The problem of learning this tree (see Problem 3) is efficiently solved using
the GCL algorithm (see Algorithm 1). The application of the GCL algorithm
to each separator can be understood as a global operator in the sense of [6].

o All the separators are of size k — 1 and, thus, the addition of candidate edges
from E(S|Gy) only generates cliques of size k + 1. In consequence, every
growing step effectively controls the size of all the created cliques.

o Efficient prune-and-graft procedures can be used (see Section 6). These pro-
cedures tend to improve the likelihood of the model by favoring the mobility
of the (leaf) vertices.

In summary, due to the structural features of the MkDGs, the fractal tree algorithms
have a computational complexity of O(k - n?logn) and can approach Problem 1
with efficacy. It should be highlighted that fractal tree algorithms learn a sequence
of MkDGs and the user can choose the most appropriate value of k after the entire
sequence is constructed, e.g. by means of the likelihood ratio statistical test.

19

Next, we propose two particular fractal tree algorithms: parallel fractal tree and
sequential fractal tree. On the one hand, parallel fractal tree represents the most
efficient algorithm and, on the other hand, sequential fractal tree obtains better
results for dealing with Problem 1.

(a) Undirected graph representation of Ga. (b) Juntion tree representation of G'a.

Figure 3: This figure shows the M2DG, G2, obtained after the first growing step
of both PFT and SFT. Two alternative representations are shown: undirected graph
and junction tree representation. In the junction tree representation, the cliques
are represented by circles and the separators by squares. The lines connecting the
cliques and separators represent the different separator problems. The junction tree
representation highlights the relations among cliques and separators, removing the
unnecessarily fine grain detail given by the undirected graph representation. The
separators {2}, {5} and {8} shown in Figure 3b correspond to the vertices 2, 5 and
8 of G5 with a degree higher than 1.

5.1 Parallel fractal tree

In this section we propose a tractable approximation to Problem 1 called parallel
fractal tree (PFT). The pseudo-code of PFT is given in Algorithm 2. At each par-
allel growing step (lines 3-5), this algorithm solves the separator problems ignoring
the interactions among the mantles of different separators (see Proposition 5). The
interactions are taken into account once all the separator problems are solved (see
line 5). It should be noted that, at the i-th growing step, given an MiDG, G;, PFT
achieves one of the maximum likelihood M (7 + 1)DGs that can be constructed by
adding a subset of the set of candidate edges E;11(G;) to G;.

Algorithm 2. (Parallel fractal tree)

Input: A data set D = {x', ..., N}, a positive integer k < n.
Output: An MkDG.

Pseudocode:

1. Initialize the empty graph Gi.

20

2. For i=1,...,k—1 :

For each separator S € S(G;) do (parallel growing step) :

4. Apply the GCL algorithm to the mantle of S for obtaining ES
(Algorithm 1).

5. Add E° to Gi+1 for every S € S(G;).

6. Git1:=G;.

7. Obtain the separators of Giy1 (Proposition 6).

8. Return Gy.

In PFT, the growing step (Algorithm 2, lines 3-4) can be performed in parallel
for each separator because the set of candidate edges considered for each separator
S is static. That is, its set of candidate edges E(.S) is not updated by the addition of
edges to the mantles of other separators. The GCL algorithm can be also (partially)
parallelized: the computation of the empirical conditional mutual information can
be performed in parallel and the sorting of the edges can be partially parallelized.
It should be noted that, for mantles with only two vertices, the computation of the
empirical conditional mutual information can be avoided because it has a single
candidate edge.

® ®
@@g
® O,

(@) G2(N({2}). (b) G2(N({5}). (©) G2 (N({8}).

Figure 4: This figure shows the mantles of the separators of the M2DG, Go,
shown in Figure 3. The mantles shown correspond to the separators S(G2) =
{{2}, {5}, {8}}. Note that all the mantles are empty subgraphs.

Figures 3, 4, 5 and 6 illustrate an execution in a domain with n = 8 random
variables for a maximum clique size of £ = 3. The first parallel growing step is
equivalent to CL algorithm because the empty graph is the M1DG, which has the
empty set as the unique separator. The second parallel growing step divides the
obtained M2DG, shown in Figure 3, into the mantles associated to the separators,
{2}, {5} and {8}. The corresponding mantles are shown in Figures 4a, 4b and 4c,
respectively. Once the mantles are determined, the GCL algorithm is applied to

21

solve each separator problem without taking into account the interactions among
them. The obtained results are illustrated in Figures 5a, 5b and Sc, respectively.
Finally, the solutions to each separator problem are gathered together to form the
attained M3DG, shown in Figure 6.

Ay
\
G

(a) The solution (b) The solution (c¢) The solution
to G2(N({2}), to G2(N({5}), to G2(N({8}),
GETT(N({2})). GETT(N({5})). GETT(N({8})).

Figure 5: This figure shows the solutions, given by the PFT algorithm, to the sep-
arator problems represented in Figure 4. Note that all the solutions correspond to
trees. The solid lines represent the edges added during the parallel growing step to
each mantle by the GCL algorithm while the dashed lines represents the edges that
appear in the mantles due to their interactions.

At step ¢, the PFT algorithm can explore a (possibly) huge space of candidate
M(i + 1)DGs. The search space of PFT at step i is given by the number of vertices
in the mantle of each separator. Note that, by Corollary 5, all the mantles of an
M:DG are empty subgraphs. As a consequence of Corollary 7, the number of
candidate M(i+1)DGs attainable from a given MiDG is _ gcg(qz,) IN(5) IN(S)=2,
For example, the number of candidates for the graph represented in Figure 3 is
31.4%2.20 =144

The computational complexity of PFT in the worst case is O(Hi-:ll (n—1i+
1)2log(n — i + 1)). Roughly speaking, when n >> k, the computational com-
plexity is O(k - n2logn), that is, linear with respect to the order of the obtained
decomposable model and quadratic with respect to the number of variables. It
should be noted that the worst case corresponds to a sequence of MiDGs G; for
i =1,...k — 1, where S(G;) is composed by a single separator, which is over-
whelmingly improbable.

In the performed experimentation we have observed a tendency to achieve
chain structures (see Figure 6). A chain structure limits the set of attainable struc-
tures by a parallel growing step (lines 3-4, Algorithm 2) to one, because all the
mantles have only two vertices. Besides, once a chain structure is reached, the

22

PFT

(a) Undirected representation of Gz PFT

(b) Junction tree representation of G5

Figure 6: This figure shows the solution obtained by PFT, G?{D FT which has been

created by adding the partial solutions to the mantles of each separator of G2 (see
Figure 5). The solid lines in Figure 6a represent the edges added in the last growing
step while the dashed lines represent the edges added in the previous step.

next parallel growing steps will produce chain structures. We call this phenomena
the chain caveat. The convergence to chain structures is a direct consequence of
the expected degree of the vertex of a tree, which is 2. Fortunately, the expected
number of vertices with degree d in a tree seems to be proportional to 2~ [19].

PFT can not attain decomposable graphs with cliques containing more than two
separators. This is due to the fact that each parallel growing step adds a forest (see
Figure 6a). The generated cliques and separators are related to the edges and sepa-
rators of the added forest, respectively. Since each edge of the forest connects two
vertices and the separators are a subset of the vertices, each clique can not contain
more than two separators. An example of unattainable structure is shown in Fig-
ure 8, where the clique {2, 4,5} contains the separators {2,4}, {2,5}, and {4, 5}.
We call this phenomena the unattainable structure caveat. In the performed ex-
perimentation with artificial domains we have randomly sampled MkDGs using
Algorithm 5, and almost all of the generated structures are unattainable. However,
PFT has shown a competitive behavior even in these domains.

The next section introduces the sequential fractal tree algorithm which avoids
the chain and the unattainable structure caveats.

5.2 Sequential fractal tree algorithm

This section proposes the sequential fractal tree (SFT) algorithm. SFT increases
the number of candidate edges considered at each growing step with respect to
PFT and performs a prune-and-graft procedure to the leaf vertices, i.e. vertices
that belong to a single separator. Assuming that the i-th step of PFT and SFT starts
from the same MiDG structure, the growing step of SFT obtains an M(i + 1)DG

23

structure with a likelihood equal or higher to that obtained by PFT. The pseudo-
code of SFT is shown in Algorithm 3.

Algorithm 3. (Sequential fractal tree)

Input: A data set D = {x', ..., xN}, a positive integer k.
Output: An MkDG.

Pseudocode:

=

. Construct S(G:1) for the empty graph Gi.
2. For 1=1,...,k—1:
Sort the separators in S(G;) for G;, e.g. by the number of connected
components of their associated subgraph.
4. Git1:=G;.
5. For S €S(G;) in order do (sequential growing step) :
Apply the GCL algorithm to the mantle of S in Git1 for obtaining
FE (Algorithm 1).
Add E to Gi4+1 (Proposition 5).
8. Obtain the separators of Giy1 (Proposition 6).
9. Return S(Gk) for Gj.

In SFT, the separators are solved sequentially using the GCL algorithm (Al-
gorithm 3, lines 4-6). After the application of GCL to a separator, the man-
tles of the adjacent separators are modified (Proposition 5) and, therefore, the
set of candidate edges of the adjacent separators can increase. The increase of
the size of the mantles can produce an exponential increase in the possible solu-
tions (trees) that can be obtained (see Corollary 7). For example, the mantle of
separator {5} considered by SFT in its 2nd growing step, compared to the man-
tle considered by PFT, takes into account the set of additional candidate edges
{{3,4},{3,7},{4,6},{4,7},{4,8},{6,7}} (see Figures 7a and 4b). The number
of possible solutions for the mantle of {5} in SFT (Figure 7a) is 2-2657272 = 144;
in PFT (Figure 4b) the number is 42 = 16. Moreover, all the structures that can be
attained by the parallel growing procedure of PFT can be attained by the sequen-
tial growing procedure of SFT. It should be noted that, while the parallel growing
step adds forests to the input MkDG, the sequential growing can add more general
structures, which avoids the unattainable structure caveat. For example, Figure 8
shows a structure where the clique {2, 4, 5} contains three separators, {2, 4}, {2,5}
and {4,5}.

The sequential growing step requires to define an order among the separators
for the application of the GCL algorithm. Different criteria can be used to sort the
separators. In the performed experimentation we have observed that sorting the
separators by the number of components of their mantles in ascending order. This

24

heuristic tends to maximize the number of MkDG structures that can be attained by
the growing step. Moreover, in the performed experimentation we have observed
that this criteria tends to obtain the best results for approaching Problem 1.

ohlic
@@

(@) GT(N({5}). (b) The solution to
G*(N({5}).

Figure 7: This figure shows the mantle of 5 in the graph G obtained from Go
after the addition of the edges {2,4} and {7, 8}.

Figures 3, 4, 5, 7 and 8 illustrate an execution of SFT in a domain with n = 8
random variables for a maximum clique size of k = 3. The first (¢ = 1) sequential
growing step (lines 4-6, Algorithm 3) is equivalent to PFT and the obtained struc-
ture is shown in Figure 3. The second (¢ = 2) sequential growing step divides the
M2DG obtained in the previous step into the mantles associated to the separators
{2}, {5} and {8}. The obtained mantles are shown in Figures 4a, 4b and 4c. At
this point, the behavior of SFT starts to be different to PFT. First, the order in which
the separator problems are solved is decided. In this work, we sort the separators
according to the number of connected components of their mantles in ascending
order. The number of components of the mantles of {2}, {5} and {8} are 3, 4 and
2, respectively. First, SFT solves the separator {8}, which has the same solution
as in PFT (see Figure 5c). However, the addition of the edge {5, 7} interacts with
the mantle of separator {5}, as {5} C {8} U {5, 7} (see Proposition 5). Then, the
separator {2} is solved. Since the addition of the edges to the mantle of {8} does
not produce changes in the mantle of {2}, the same solution as PFT is obtained
for {2} (see Figure 5a). In this case, the addition of the edge {4,5} modifies the
mantle of separator {5}, as {5} C {8} U {4, 5}. Finally, the mantle of the separa-
tor {5} is solved. Its mantle has changed due to the addition of edges in previous
mantles (see Figure 7a). The solution is shown in Figure 7b. The edge {4, 7} is
added instead of {6, 8}, which is added by PFT. At the end of the execution, SFT
obtains the structure shown in Figure 8.

SFT has the same computational complexity as PFT. The growing step ¢ is

25

SFT SFT
3 . 3 .

(a) Undirected representation of G (b) Junction tree representation of G

Figure 8: This figure shows the solution obtained by PFT, Gg FT which has been

created by adding the partial solutions to the mantles of each separator of G (see
Figures 4a, 7a and 4c¢). The solid lines represent the edges added in the last growing
step while the dashed lines represent the edges added in the previous step.

O((n — i)%log(n — 7)), in its worst case. In summary, SFT has a computational
complexity of O(Zfz_ll(n —i)%log(n —4)). When n and k are not related being
n >> k, the computational complexity is O(k - n?logn). At this point we want
to indicate that the sequential growing step can be partially parallelized taking into

account the order of the separators.

6 A prune-and-graft operator for MiDGs

In this section we present a prune-and-graft operator (P&G) for MkDG struc-
tures, by extending the concept of a leaf vertex from trees to MkDGs. This pro-
cedure is used in order to improve the likelihood of the structures obtained by the
fractal tree algorithms at the end of each growing step. P&G exploits the struc-
tural constraints of MkDGs. The procedure consists of pruning each leaf vertex
from its separator for grafting in the separator which maximizes the likelihood. In
summary, P&G transforms the input MkDG into another MkDG with an equal or
higher likelihood by moving the leaf vertices. The computational complexity of
this procedure is O(n?), in the worst case.

Next, we define the terms leaf (vertex) and stem (separator) in order to simplify
the description of the P&G procedure.

Definition 6. Let Gy, be an MkDG. A vertex u is called a leaf for a Gy, when it
is not included in any of the separators of Gy, uw € V' \ |JS(G}). A separator is
called stem for G, when the number of leaf vertices in its separator is the size of

its mantle minus one, |[N(S) \ US(Gy)| = |IN(S)| — 1.

In other words, a leaf of an MEDG belongs to a single clique C, which contains

26

a single separator S € S(Gy,). A leaf can be removed from a MkDG maintaining
the decomposability. A stem is a separator with a single non-leaf vertex. It is used
to designate a separator that can lose the condition of being separator by effect of
the P&G procedure and, thus, it can be removed from S(GYy,).

Algorithm 4. (Prune and graft procedure)
Input: The MkDG Gy, = (V, E) and a data set D.
Output: An MEDG.

Pseudocode:

1. L:=0, treated:=10

2. For S€S(Gk) (find the stems)

3. If IN(S)\US(GE)| = IN(S)| -1

4. L:=LU{S}

5. sort S€L in ascending order of |N(5)|
6. For S€ L (P&G the stems)

7. For u € (N(S)\ US(Gk)) \ treated

8. treated := treated U {u}

9. S* 1= arggreg(q,) max I (Xu; Xsr)
10. E:=(FE\{{y,v}:veSHU{{u,w}:we S*}
11. If IN(S)|=1 then (remove a stem)
12. remove S from S(Gk)
13. For S'€S8 (find a new stem)
14. 1 IN(S)\ US(Gi)| = IN(S")| - 1
15. append S’ to L
16. S§:=8\{S'}; Go to (6)

17. §:=S(Gp)\ L

18. For S€ S (P&G the rest of separators)
19. For u € (N(S)\ US(Gk)) \ treated

20. S* 1= arg g eg(q,) max [(Xu; Xsr)

21. E:=(E\{{u,v}:veSHU{{u,w} :we S}
22. return (V,E)

The pseudo-code of P&G is given in Algorithm 4. The P&G procedure is di-
vided in two parts. In the first part (lines 1-17), the stems are pruned and grafted.
This part starts by identifying the stems (lines 2-4). The stems are treated in a
different way because, as we noted before, they can be removed by the P&G pro-
cedure. If all the leaves belonging to a stem are pruned and grafted into other
separators, the stem only has a single vertex in its mantle. Therefore, it loses its

27

condition of being a separator in the structure and it is removed (lines 11-12). The
removal of a stem can cause the creation of a new one (see lines 13-16). In the
second part (lines 17-22), the rest of the separators are considered. In this case, the
mantles of the separators have at least two vertices that are not leaves. Thus, the
separators can not be removed because the size of their mantles can not be smaller
than 2.

The pruning of the leaf u from S consists of removing the k£ — 1 edges {{u, v} :
v € S}. The pruned leaf can be grafted in any separator S”. The grafting of u in a
separator S’ is the addition of the k — 1 edges {{u,w} : w € S"}. In other words,
the whole process replaces the clique {v} U .S by the clique {v} U S’ and produces
an MkDG (lines 10,21).

The pruning of u from the separator S, increases the entropy of the structure
in I(Xy; Xg). To graft u in S’ reduces the entropy of the graph in I(X,; X g/).
Thus, the optimal pruning and grafting of leaf vertex w consists of pruning from
its separator .5 and grafting into the separator S* = argg g,) max I (Xu; Xgr)
(line 9,20). Note that, when S = S* the prune-and-graft process has no effect over
the MkDG.

P&G has the following interesting properties:

e It transforms an MkDG into another MkDG with an equal or higher likeli-
hood.

e The prune-and-graft favors the mobility of leaves across the entire MkDG
structure.

Figures 8 and 9 illustrate the effect of the P&G procedure (Algorithm 4). P&G
takes the M3DG Gg FT shown in Figure 8 as input and identifies the stems {2,4},
{2,5} and {4, 5}. Then, considers the pruning and grafting of their leaves {1, 3, 8}.
In this case, P&G only prunes the leaf vertex 8 from the neighborhood of {5, 7}
and grafts it in the separator {2,4}. Since the neighborhood of {5, 7} has 4 as its
only vertex, the separator is removed and the separator {4, 5} becomes a new stem
with the leaves {6, 7} (see Figure 9).

At the end of the first step the prune-and-graft operator is not applied because
the obtained M2DG is optimal from the likelihood point of view (line 8, Algorithm
3).

In the worst case, there are O(n) leaf vertices and O(n) separators. Each
leaf vertex is considered once. The leaf separators are sorted by the size of the
mantle, which requires O(nlogn) computations. Therefore, the computational
complexity in the worst case of the P&G procedure is O(n?). The P&G procedure
is applied k — 2 times in fractal tree algorithms. It should be noted that the M2DG
obtained at the end of the first growing step of the fractal tree algorithms is optimal

28

(a) Undirected graph representation (b) Junction tree representation

Figure 9: This figure shows the structure obtained after the prune-and-graft op-
erator is applied to G§F T (see Figure 8). The stems of G§F T are the sep-
arators {2,4},{2,5} and {5,7}. The leaves corresponding to the separators
{2,4},{2,5},{4,5} and {5, 7} are 1, 3, 6 and 8, respectively. The solid lines rep-
resent the edges added by the P&G procedure, the dotted lines the removed edges
and the dashed lines the edges from Gg FT that are preserved. Note that, at the
end of the procedure the stem {5, 7} has been removed from the structure and the
separator {4, 5} is a new stem.

(CL algorithm) and the P&G procedure has no effect in that structure. Thus, the
computational complexity of the fractal tree algorithms using the P&G procedure
remains O(k - n?logn).

7 Experimentation

This section presents a set of experiments which provide evidence about the ef-
fectiveness of the proposed algorithms for approaching Problem 1. The results
obtained in the experimentation are summarized using the following measures:

o Power of fitness: Measures the capability of the learned models to fit (ex-
plain or comprise) the available data. It is the likelihood of the training set
(given the model), divided by the product of the number of random variables
n and the number of training samples [N. Thus, it is a scaled version of the
likelihood of the training set, which allows to compare results obtained for a
different number of random variables and number of samples. The score is
negative and a higher value represents a better result. The goal of our pro-
posals consists of the maximization of this score because it is directly related
with Problem 1.

e Power of generalization: Measures the capability of the learned models to
explain unseen data. The score is computed as the likelihood of a test set

29

(given the model), divided by the product of the number of random variables
n and the number of test samples. This is a scaled version of the likelihood
in the test data, which is comparable to the power of fitness. Even if this
score is not directly related with Problem 1, a high power of generalization
is a desirable feature of any probabilistic model. As the number of training
and test samples grow, the power of generalization and the power of fitness
tend to the same value: This property inspires the next score.

e Degree of overfitting: Quantifies the overfitting phenomena of the model.
It is calculated as the difference of the power of fitness minus the power of
generalization, divided by the power of fitness. It can be interpreted as the
percentage in which the power of fitness overestimates the power of gener-
alization. A lower value of the score represents a better result. A negative or
zero degree of overfitting indicates absence of overfitting.

e Execution time: We have measured the CPU time required by the learning
algorithms. In order to perform a fair comparison, the execution time has
been measured for the non-parallelized versions of PFT and SFT. The exper-
iments have been carried out in a cluster composed of Intel-Xeon X5650 at
2.67GHz.

It should be noted that these scores allow to perform an intuitive scalability study
with respect to the number of random variables and the number of training samples.

PFT and SFT are compared against the forward greedy algorithm (FG) pro-
posed by [13]. In order to deal with domains of high dimensionality, we have
implemented an efficient procedure based on a list of mantles of the separators of
size lower than k, following the intuitions provided in Section 3. The efficient im-
plementation of FG shares many similarities with the fast implementation proposed
in [5].

Additional experiments were carried out with the bounded treewidth Bayesian
network algorithm (BTBN) proposed in [6]. The treewidth is closely related to the
maximum clique size of decomposable models and by limiting its value we can
effectively control the number of computations required to perform probabilistic
inference tasks. As far as we know, BTBN is one of the most efficient algorithms
proposed in the literature capable of dealing with Problem 1. Even if BTBN has a
computational complexity polynomial in the number of random variables, the com-
putational complexity is still too high compared to the fractal tree algorithms. As a
consequence, the time required to obtain results in most of the domains of the ex-
perimentation is prohibitive due to their high dimensionality. In practice, the high
computational requirements of BTBN is mainly due to the InducedNodes proce-
dure (Algorithm 4, [6]). This procedure is called many times by BTBN in order to

30

find an optimal chain of edges. Besides, InducedTime performs a (possibly) high
number of maximum cardinality searches each time it is called. In the performed
additional experiments BTBN with n = 20, 25, 30, 25,40 and k£ = 3,4, 5 has ob-
tained worse results than SFT and similar results to PFT. As k increases, BTBN
obtained worse results than SFT. The execution time of BTBN grows very fast as
n increases. Figure 11 in Section 7.2 includes the results of BTBN for artificial
domains with n = 40.

We have included the CL algorithm in the comparison as a reference for the
following reasons:

e The tree learned by CL is included in the structures obtained by PFT, SFT
and FG. Thus, CL is a good reference to measure how much is gained by the
three algorithms when the maximum clique size is increased.

e We can compare the execution time of the proposed methods with respect to
CL, which is the lower bound for the three algorithms.

Next, we present the obtained results grouped by the type domains used: real-
world domains and artificial domains.

7.1 Real domains

This section presents a set of results obtained in 33 real domains from the UCI
repository. The main features of these domains (n and N) are summarized in
Table 1. The continuous random variables have been discretized in two intervals by
means of the equal frequency strategy. Next, the missing values have been inputted
using the most frequent value of the discrete random variable. Finally, random
variables with more than 10 states have been removed from the data in order to
avoid variables that represent identifiers of the samples. In the experimentation
we have only included data sets with a minimum of 20 random variables. The
experiments have been performed for k& € {3,4,5}.

Tables 2 and 3 show the obtained results. For each data set, the table includes
the power of fitness and the overfitting degree of CL, FG, PFT and SFT. The power
of fitness and the overfitting degree are represented by bigger and smaller fonts,
respectively. The results have been obtained using a 10-fold cross-validation esti-
mator. Table 3 includes the average power of fitness (line Avg.) and the average
rank (line Rank) across all the domains. The average ranks have been calculated
independently for each k£ value. The best average powers of fitting and average
ranks for each k value are shown in bold.

Next, we present the main conclusions that can be obtained from the experi-
mentation in the UCI data sets:

31

Id Name N n ID. Name N n

1 arrhythmia 452 278 18 KDD: IPUMS la 97 7019 37
2 audiology 226 68 19 KDD: IPUMS la 98 7485 37
3 autos 205 25 20 KDD: IPUMS la 99 8844 36
4 Cylinder bands 540 36 21 KDD: control chart time series 600 61
5 dermatology 366 35 22 kr vs kp 3196 37
6 Digit: Fourier coefficients 2000 77 23 Large soybean 683 35
7 Digit: Karhunen-Love coefficients 2000 65 24 lung cancer 32 57
8 Digit: pixel averages 2000 241 25 Marine Sponges 76 45
9 Digit: profile correlations 2000 217 26 mushroom 8124 22
10 Digit: Zernike moments 2000 48 27 Optical recognition of handwritten digits | 5620 65
11 E. coli: promoter gene sequences 106 58 28 Primate splice junction gene sequences 3190 61
12 Flags 194 27 29 Sonar: mines VS rocks 208 61
13 Hepatitis 155 20 30 Soybean 683 35
14 Image segmentation 2310 20 31 SPAM e-mail 4601 58
15 Ionosphere 351 35 32 SPECT heart 267 23
16 IRAS Low resolution spectrometer 531 102 33 Waveform 5000 41
17 KDD: internet usage 10108 66

Table 1: The names of the data sets used in the experimentation, with the number
of available samples, /V, and the number of implied random variables, n. The data
sets will be referred by the identification number (column ID).

o SFT has obtained the best average power of fitness values and PFT the worst,
for the different values of k (see the average ranking values in Table 3). On
average, SFT and FG obtain similar power of fitting values (see average
power of fitting in Table 3).

e PFT shows the lowest overfitting values (see the average ranking values 3).
This result suggests that PFT learns models with lower variance because
its search is more constrained than FG and SFT. PFT could be the most
appropriate approach when the size of the available samples is small.

e CL has obtained competitive results in many domains and in some of
these domains FG, PFT and SFT obtained high overfitting degrees (Id =
2,3,4,5,8,11,12,13, 24), especially with £ = 5. This explains why FG,
PFT and SPT obtained similar results in most of the domains.

7.2 Artificial domains with MkDG structure

This section presents a set of results obtained in domains with MkDG structure.
These structures have been randomly obtained using the procedure described in Al-
gorithm 5. We have generated structures for k € {3,4,5} andn € {40, 80, 160, 320, 640, 1280}.
Note that for these parameters, the probability of obtaining an unattainable struc-

32

1d k=3 k=4 k=5
CL FG PFT SFT FG PFT SFT FG PFT SFT
1 -0,368 | -0,349 -0,358 -0,349 | -0,335 -0,346 -0,336 | -0,32 -0,333 -0,321
0,005 0,063 0,059 0,066 0,101 0,087 0,104 0,169 0,138 0,174
) -0,248 | -0,218 -0,226 -0,218 | -0,186 -0,202 -0,191 | -0,159 -0,179 -0,165
0,056 0,495 0,385 0,454 1,038 0,777 0,995 1,761 1,369 1,818
3 -0,706 | -0,582 -0,614 -0,584 | -0,484 -0,527 -0478 | -0,409 -0,459 -04
0,040 0,337 0,261 0,312 0,667 0,499 0,674 1,071 0,771 1,088
4 -0,692 | -0,632 -0,64 -0,63 -0,58 -0,594 -0,579 | -0,531 -0,548 -0,53
0,017 0,141 0,133 0,149 0,279 0,258 0,292 0,458 0,434 0,472
5 -0,797 | -0,712 -0,716 -0,711 | -0,613 -0,63 -0,611 | -0,49 -0,521 -0,481
0,038 0,284 0,275 0,287 0,728 0,652 0,738 1,553 1,338 1,630
6 -0,888 | -0,834 -0,837 -0,832 | -0,799 -0,809 -0,798 | -0,763 -0,777 -0,762
0,000 0,024 0,024 0,024 0,045 0,044 0,045 0,084 0,077 0,083
7 -0,9 -0,864 -0,864 -0,864 | -0,838 -0,842 -0,839 | -0,809 -0,815 -0,808
0,000 0,027 0,028 0,028 0,050 0,046 0,049 0,084 0,080 0,087
3 -1,078 | -0,893 -0,938 -0,912 | -0,718 -0,841 -0,786 | -0,535 -0,744 -0,654
0,006 0,185 0,149 0,155 0,621 0,354 0,429 1,632 0,651 0,933
9 -0,521 | -0,441 -0,468 -0,443 | -0,394 -0,434 -0,398 | -0,364 -0,407 -0,364
0,000 0,029 0,021 0,029 0,066 0,044 0,063 0,124 0,081 0,121
10 -0,606 | -0,539 -0,561 -0,538 | -0,509 -0,531 -0,507 | -0,486 -0,506 -0,485
0,000 0,030 0,021 0,026 0,063 0,047 0,059 0,113 0,093 0,111
11 -1,752 | -1,411 -1,447 -1,393 | -0,824 -0,929 -0,762 | -0,379 -0,502 -0,291
0,005 0,457 0,413 0,487 1,442 1,155 1,633 4,198 2,930 5,797
12 -0,886 | -0,657 -0,69 -0,657 | -0,459 -0,515 -0,459 | -0,355 -0,393 -0,352
0,068 0,679 0,603 0,706 1,721 1,386 1,802 2,868 2,415 2,955
13 -0,721 | -0,69 -0,698 -0,691 | -0,665 -0,678 -0,666 | -0,636 -0,651 -0,628
0,003 0,119 0,120 0,126 0,159 0,147 0,167 0,233 0,207 0,242
14 -0,553 | -0,495 -0,51 -0,493 | -0471 -0481 -0,469 | -0,46 -0,467 -0,46
0,002 0,016 0,014 0,018 0,028 0,027 0,030 0,050 0,047 0,046
15 -0,709 | -0,664 -0,672 -0,663 | -0,635 -0,648 -0,632 | -0,597 -0,619 -0,596
0,000 0,051 0,046 0,057 0,080 0,066 0,090 0,141 0,110 0,138
16 -0,436 | -0,385 -0,394 -0,386 | -0,361 -0,371 -0,363 | -0,334 -0,35 -0,339
0,000 0,073 0,056 0,070 0,114 0,084 0,107 0,195 0,140 0,177
17 -0,748 | -0,723 -0,724 -0,723 | -0,691 -0,699 -0,694 | -0,629 -0,654 -0,622
0,000 0,015 0,014 0,015 0,074 0,056 0,072 0,254 0,173 0,325

Table 2: The power of fitness (bigger font) and degrees of overfitting (smaller font)

obtained in the first 17 data sets.

33

1d k=3 k=4 k=5

CL FG PFT SFT FG PFT SFT FG PFT SFT

13 -0,632 | -0,566 -0,593 -0,568 | -0,531 -0,565 -0,531 | -0,489 -0,527 -0,486
0,003 0,042 0,029 0,035 0,139 0,092 0,168 0,401 0214 0442

19 -0,635 | -0,579 -0,598 -0,58 | -0,544 -0,56 -0,543 | -0,508 -0,532 -0,511
0,003 0,031 0,022 0,036 0,097 0,062 0,125 0,295 0,128 0,290

20 -0,677 | 0,616 -0,635 -0,614 | -0,592 -0,61 -0,586 | -0,559 -0,58 -0,554
0,001 0,023 0,017 0,023 0,064 0,043 0,072 0,168 0,000 0,206

71 -0,6 -0,528 -0,528 -0,528 | -0,508 -0,513 -0,508 | -0,483 -0,492 -0,483
0,008 0,074 0,074 0,074 0,114 0,105 0,122 0,190 0,167 0,195

2 -0,489 | -0,452 -0,466 -0,455 | -0,44 -0,451 -0,445 | -0,429 -0,442 -0,437
0,002 0,007 0,009 0,009 0,011 0,009 0,011 0,021 0,016 0,016

23 -0,673 | -0,599 -0,61 -0,57 | -0,516 -0,563 -0,503 | -0,468 -0,525 -0,443
0,007 0,063 0,061 0,077 0,167 0,115 0,197 0,385 0,198 0,481

o -0,701 -0,5 -0,555 -0,485 | -0,341 -0,449 -0,302 | -0,222 -0,352 -0,18
0,141 1,286 1,114 1,491 2,604 1,686 3,252 4,874 2,577 6,544

25 -0,511 | -0,333 -0,376 -0,333 | -0,22 -0,286 -0,22 | -0,169 -0,224 -0,17
0,276 1,832 1,351 1,697 3,955 2,570 3,932 6,178 4,085 6,329

26 -0,873 | -0,663 -0,697 -0,655 | -0,572 -0,612 -0,568 | -0,533 -0,556 -0,533
0,003 0,029 0,022 0,024 0,063 0,047 0,060 0,083 0,088 0,105

7 -0,574 | -0,502 -0,511 -0,501 | -0,469 -0,487 -0,474 | -0,453 -0,468 -0,457
0,000 0,012 0,010 0,012 0,023 0,018 0,021 0,038 0,034 0,037

3 -1,885 | -1,852 -1,855 -1,852 | -1,797 -1,802 -1,798 | -1,626 -1,639 -1,63
0,001 0,016 0,015 0,016 0,058 0,054 0,058 0,209 0,195 0,205

29 -0,733 | -0,708 -0,72 -0,711 | -0,679 -0,698 -0,683 | -0,635 -0,663 -0,64
0,001 0,064 0,051 0,063 0,119 0,089 0,117 0,209 0,157 0,194

30 -0,673 | -0,599 -0,61 -0,57 | -0,516 -0,563 -0,503 | -0,468 -0,525 -0,443
0,007 0,063 0,061 0,077 0,167 0,115 0,197 0,385 0,198 0,481

3] -0,492 | -0,467 -047 -0,467 | -0,455 -0,46 -0,455 | -0,445 -0,452 -0,446
0,000 0,006 0,004 0,006 0,011 0,009 0,011 0,016 0,013 0,013

3 -0,664 | -0,626 -0,63 -0,627 | -0,606 -0,614 -0,608 | -0,582 -0,592 -0,584
0,000 0,062 0,048 0,056 0,101 0,080 0,097 0,160 0,127 0,149

33 -0,922 | -0,894 -0,894 -0,894 | -0,882 -0,883 -0,882 | -0,875 -0,876 -0,875
0,000 0,003 0,003 0,004 0,008 0,006 0,008 0,011 0,009 0,013

Avg. | -0,738 | -0,654 -0,670 -0,651 | -0,583 -0,612 -0,581 | -0,521 -0,557 -0,519
Rank 1,394 2,818 1,303 | 1,424 3,000 1,394 | 1,485 3,000 1,364
2,182 1,091 2,485 2,424 1,000 2,515 2,394 1,061 2,545

Table 3: The power of fitness (bigger font) and degrees of overfitting (smaller font)
obtained in the last 16 data sets.

34

ture for PFT using Algorithm is 5 almost one. The parameters of the model as-
sociated to each structure have been randomly sampled from a Dirichlet distri-
bution with « = 1. For each type of domain, we have generated at random 50
different models (structure and parameters). In order to study the influence of
the amount of available data, we have sampled training sets with different sizes,
N € {30,100, 300, 1000, 3000, 10000, 30000}. The generated test sets for com-
puting the power of generalization and degree of overfitting are of size M = 10000.

Algorithm 5. (MkDG random generator)
Input: n and k.
Output: An MkDG.

Pseudocode:
1. ¢C={{1,..,k}}
2. Fori=k+1,..,n
3. Take a clique C at random from C
4. Take a subset S of size k—1 from C at random.
5. C=CuU{Su{i}}
6. return (V,E) where V ={1,...,n} and E={{u,v}:3C €C, where {u,v}

C}

In order to perform a correct interpretation of the obtained results, we discuss
the effect of fixing Dirichlet’s o = 1 value to sample the parameters of the artificial
domains:

e Let C' be a clique of the generated MkDG. The value of & = 1 indicates
that all the parameters associated to the marginal distribution p(X) have
the same probabilities of being randomly sampled from the Dirichlet distri-
bution. In order words, it has no preference towards any type of marginal
distribution p(X ¢).

o A fixed value for « allows to obtain, on average, probability distributions
with similar power of fitting (and generalization) for the different values of
k and n. Thus, the scale of the obtained power of fitting (and generalization)
are comparable for different settings.

e A fixed value has consequences in the difficulty of the problem. Let .S be
a subset of C'. By the aggregation property of the Dirichlet distribution, the
marginal distribution p(X g) can be interpreted as been generated using a
Dirichlet distribution with parameter o« = 2/°\S|, This parameter favors,
as k increases, the sampling of more uniform low order distributions which
tends to produce smaller mutual information quantities. In other words, as

35

k increases, the low order marginal distributions tend to be less informative.
Thus, the problem of learning the MkDG becomes more difficult as k in-
creases: more edges must be learned using less informative marginal low
dimensional distributions.

The obtained results are summarized in Figure 10. The figure shows a subset
of the obtained results (n € {80,320, 1280}), for the sake of brevity. The pre-
sented results highlight the main trends observed in the whole experimentation.
The following conclusions can be drawn from the results:

SFT obtains the best power of fitness results for all configurations of n, NV
and k. The average second best results are obtained by FG and the worst
results by PFT.

SFT obtains the best power of generalization results in most configurations
of n, N and k. For small values of N (30 or 100), PFT has shown the best
power of generalization values, especially with £ = 3. The main reason is
that, in the case of £ = 3, the chain caveat has a lower effect over PFT.

As k increases, the differences among the models increase, while the ranking
among them is maintained. Besides, the results of CL becomes worse, and
the benefits of considering the use of SFT, FG or PFT approaches becomes
higher.

As n increases, SFT, FG and PFT approaches tend to obtain worse results.
As k increases, the worsening is higher. This is a direct consequence of the
choice of the parameters for the Dirichlet distributions, which creates harder
problems as k increases.

The overfitting degrees obtained for different settings of N, n and k are
summarized in Table 4. PFT obtains the lowest overfitting degrees for any
configuration of IV, n and k. The difference is especially remarkable for k =
5and N = 100. SFT and FG obtain similar results. As n and & increase, the
size of the training set required to obtain a low overfitting degree increases.
However, it must be highlighted that FG, PFT and SFT obtain overfitting
degrees of the same order of magnitude as CL.

Execution times for different settings of k£, n and N are summarized in Table
5. These values have been obtained with a non-parallel implementation of
PFT and SFT. PFT is the most efficient algorithm, requiring execution times
very close to the CL algorithm. As k increases, the execution time slightly
increases for PFT. SFT is slower than FG in most of the configurations of

36

k=3 k=4 k=5

CL Greedy PFT SFT Greedy PFT SFT Greedy PFT SFT
80 100 0,113 0,181 0,162 0,184 0,261 0,220 0,276 0,394 0,320 0439
80 1000 0,008 0,014 0,014 0,011 0,021 0,020 0,020 0,037 0,033 0,035
80 10000 || 0,001 0,001 0,001 0,001 0,002 0,002 0,002 0,003 0,003 0,003
320 100 0,166 0,238 0,215 0,249 0,320 0,272 0,349 0,462 0,381 0,523
320 1000 0,011 0,020 0,016 0,019 0,028 0,025 0,025 0,043 0,039 0,043
320 10000 || 0,001 0,002 0,002 0,001 0,002 0,002 0,002 0,004 0,004 0,004
1280 100 0,222 0,294 0,267 0311 0,374 0,324 0416 0,516 0,430 0,594
1280 1000 0,014 0,024 0,024 0,021 0,032 0,030 0,030 0,048 0,043 0,048
1280 10000 || 0,001 0,002 0,002 0,002 0,003 0,003 0,003 0,004 0,004 0,004

Table 4: Summary of the overfitting degrees.

n, N and k. We have observed that, for SFT, most of the execution time is
consumed by the prune-and-graft procedure.

e In additional experimentation (not included in this work), SFT without the
P&G operator compared to PFT obtains similar execution times, better power
of fitting and similar overfitting degrees.

8 Conclusions and future work

Learning maximum likelihood decomposable models with a maximum clique size
of k (Problem 1) is known to be an NP-hard problem for k£ > 2. This problem
can be solved by learning a maximal k-order decomposable graph (MkDG, see
Definition 4 and Theorem 2).

In this work we have presented the family of the fractal tree algorithms. These
algorithms are focused on learning MkDGs for dealing with Problem 1 and they
have a computational complexity of O(k - n?logn). They are based on a divide-
and-conquer strategy. Our approaches divide Problem 1 into £ — 1 subproblems
(see Problem 2), which produces a sequence of M:DGs for i = 2, .., k, each coarser
than the previous one. Additionally, Problem 2 is decomposed in terms of the sep-
arators of the input MiDG (see Problem 3). The subproblems associated to the
separators are efficiently solved using the novel Generalized Chow and Liu’s algo-
rithm (see Algorithm 1). We have proposed two particular fractal tree algorithms:
parallel fractal tree (PFT) and sequential fractal tree (SFT). PFT solves the separa-
tors at each growing step in parallel, while SFT solves them sequentially taking into
account their interactions. In addition, a prune-and-graft procedure specifically de-
signed for MkDGs has been proposed. This operator increases the mobility of the
leaf vertices and can be directly inserted after each growing step of the fractal tree

37

k=2 k=3 k=4 k=5
n N CL FG PFT SFT FG PFT SFT FG PFT SFT
80 100 0,08 020 0,12 026 | 027 0,14 043 038 0,16 0,67
320 100 2,07 7,07 275 636 | 748 288 12,3 8,81 3,19 20.26
1280 100 71,6 859 83,3 244 829 84,5 486 814 89,2 832
80 1000 0,41 1,11 0,80 1,35 1,58 083 225 1,97 087 3,12
320 1000 8,91 23,0 15,8 303 26,0 144 46,1 27,5 14,1 70,8
1280 1000 190 1251 319 592 1109 273 930 1165 262 1591
80 10000 8,88 20,6 16,0 166 | 272 164 264 | 32,6 16,6 37,9
320 10000 182 336 287 413 364 256 575 362 244 859
1280 | 10000 3280 | 6109 4864 6377 | 6118 4764 8559 | 5909 4047 15025

Table 5: Summary of the execution times (in seconds) obtained. PFT is the most
efficient approach in all the configurations. FG expends more computational re-
sources in the management of the separators than both PFT and SFT. However,
SFT computes more mutual information quantities than FG and PFT. FG is more
efficient than SFT in most of configurations of n, N and k mainly due to the P&G
procedure. In additional experimentation, SFT without the P&G procedure is more
efficient than FG and obtains execution times very close to PFT.

algorithms. In the experimental section we have measured the power of fitness and
the overfitting degree in artificial and real domains. Sequential fractal tree with
the prune-and-graft procedure has shown the best behavior in terms of the power
of fitting, while PFT has obtained the smallest overfitting degrees (see Section 7).
The fractal tree family of algorithms has shown a competitive behavior for dealing
with Problem 1 and due to their efficiency are especially recommendable to deal
with high dimensional domains.

In the future, we will develop massive prune-and-graft procedures for the frac-
tal tree family of algorithms based on the features of MkDGs. The intuition con-
sists of cutting the decomposable structures into different parts and gluing them
together, increasing the likelihood of the original structure. Additionally, novel ef-
ficient learning strategies based on the separators of decomposable graphs will be
developed.

The structural learning guided by the likelihood score tends to include some
spurious edges which increase the probability of suffering the overfitting phenom-
ena. We will study two strategies to alleviate this problem. First, we will adapt the
presented algorithms using penalized decomposable scores in order to avoid the
addition of the spurious edges. Besides, qualitative approaches based on the detec-
tion of conditional independences by means of hypothesis testing procedures will
be developed. Secondly, we will study our learning algorithms in combination with
methods that remove unnecessary edges such as the approach recently proposed in
[18].

38

Finally, due to the efficiency of the proposed approaches, we will search for
techniques and methods which require the use of fast algorithms for learning de-
composable models. For example we will extend the work by [14] for learning
mixtures of MkDGs.

References

[1] F. R. Bach and M. L. Jordan. Thin junction trees. In Advances in Neural
Information Processing Systems (NIPS), pages 569-576. MIT press, 2001.

[2] A. Chechetka and C. Guestrin. Efficient principled learning of thin junction
trees. In Advances in Neural Information Processing Systems (NIPS). Mit
press, 2008.

[3] C.K. Chow and C. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14:462-467,
1968.

[4] C.K. Chow and T. Wagner. Consistency of an estimate of tree-dependent
probability distribution. IEEE Transactions on Information Theory,
19(3):369-371, 1971.

[5] A. Desphande, M. Garofalakis, and M. I. Jordan. Efficient stepwise selection
in decomposable models. In Uncertainty and Artificial Intelligence, pages
128-135, 2001.

[6] G. Elidan and S. Gould. Learning bounded treewidth bayesian networks.
Journal of Machine Learning Research, 9:2699-2731, 2008.

[7] S. Hgjsgaard, D. Edwards, and S. Lauritzen. Graphical Models with R.
Springer, 2012.

[8] D. Karger and N. Srebro. Learning markov networks: Maximum bounded
tree-width graphs. In Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 392—401. Society for Industrial and
Applied Mathematics, 2001.

[9] D. Koller and N. Friedman. Probabilistic Graphical Models. Principles and
Techniques. The MIT Press, Cambridge, Massachusetts, 2009.

[10] S. L. Lauritzen. Graphical Models. Oxford University Press, New York,
1996.

39

[11] S. L. Lauritzen, T. P. Spped, and K. Vijayan. Decomposable graphs and
hypergraphs. Journal of Australian Mathematical Society A, 36:12-29, 1984.

[12] L. Lu, A. Mohr, and L. Székely. Quest for negative dependency graphs. In
Recent Advances in Harmonic Analysis and Applications. In Honor of Kon-
stantin Oskolkov., pages 243-258. Springer, 2013.

[13] F. M. Malvestuto. Approximating discrete probability distributions with de-
composable models. IEEE Transactions on Systems, Man and Cybernetics,
21(5):1287-1294, 1991.

[14] M. Meila and M. L. Jordan. Learning with mixtures of trees. Journal of
Machine Learning Research, 1:1-48, 2001.

[15] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausi-
ble Inference. Morgan Kaufmann, San Mateo, California, 1988.

[16] N. Srebro. Maximum likelihood markov networks: An algorithmic approach.
Master thesis, Massachuset Institute of Technology, 2000.

[17] N. Srebro. Maximum likelihood bounded tree-width markov networks. Arti-
ficial Intelligence, 143:123-138, 2003.

[18] D. Vats and R. N. Robert. A junction tree framework for undirected graphical
model selection. Journal of Machine Learning Research, 15:147-191, 2014.

[19] T.R. Willemain and V.B. Mihoko. The distribution of node degree in max-
imum spanning trees. Journal of Statistical Computation and Simulation,
72(2):101-106, 2002.

40

Te) [Te} n

S o =

| [|

© © ©

S b= =

| [|

~ ~ ~

S = =

| [|

oo} e} [oe]

S S S

| [|

(2] [} [}

50 200 1000 5000 50 200 1000 5000 50 200 1000 5000
(@n=80and k =3 b)yn=320and k =3 (c)n=1280and k = 3

n n

=g = 0

| [o

© © !

(=] S ©

| 1 O‘.’

~ ~

S S ~

| [O"

[ee] ©

> > | ®

? S 3

o o)

i e e Yy - S I
50 200 1000 5000 50 200 1000 5000 " 50 200 1000 5000
(dn=80and k =4 (e)n=320and k =4 f)mn=1260and k = 4

0 0 0

o o 1 o 1

| [|

© © ©

S S =

| [|

~ ~ ~

o o 1 o 1

| [|

o @ o

o o 1 (=l

| [|

[} [} [}

F F ?

50 200 '1000 5000 50 200 1000 5000 50 200 1000 5000

(@n=280andk =5 (hyn=320and k =5 (i)n=1260and k = 5

Figure 10: The evolution of the power of fitting (solid lines) and power of gener-
alization (dashed lines) with respect to the number of samples in the training set.
The horizontal vertical dotted line represents the power of generalization of the
true model. The results obtained by the different algorithms are represented by the
plus symbol for CL (+), the cross symbol for FG (), the white circle for PFT (o)
and the black circle for SFT (e).

41

ox.e

-09 -08 -0.7 -06 -05
-09 -08 -0.7 -06 -05
-09 -08 -0.7 -06 -05

50 200 1000 5000 50 200 1000 5000 50 200 1000 5000

(@n=40and k =3 b)yn=40and k =4 (c)n=40and k=5

Figure 11: The evolution of the power of fitting (solid lines) and power of gener-
alization (dashed lines) with respect to the number of samples in the training set.
The experiments with BTBN have been limited to n = 40 due to its high compu-
tational requirements. The horizontal vertical dotted line represents the power of
generalization of the true model. The results obtained by the different algorithms
are represented by the plus symbol for CL (+), the cross symbol for BTBN (x),
the white circle for PFT (o) and the black circle for SFT (o). BTBN has obtained
worse results than SFT and slightly better power of fitness than PFT, at the expense
of very high execution times, e.g. for N = 100 and £ = 3,4 and 5 it requires
193, 987 and 8187 seconds, respectively. When the number of training samples is
small, PFT obtained better power of generalization values than BTBN.

42

