eman ta zabal

GRADO EN INGENIERÍA MECÁNICA

Trabajo Fin de Grado 2013 / 2014

Suspensión Trasera Regulable de una Moto de Competición: Alternativa Full Floater

ANEXO CÁLCULOS

DATOS DEL ALUMNO	DATOS DEL DIRECTOR		
Nombre: Andoni	Nombre: Mikel		
Apellidos: Jurado Pinto	Apellidos: Abasolo Bilbao		
	Departamento: Ingeniería Mecánica		
Fdo.:	FDO.:		
Fecha: 2 de julio de 2014	Fecha: 2 de julio de 2014		

Anexo II

INDICE

1. INTRODUCCIÓN	6
2. SISTEMA CLÁSICO	7
2.1. Cálculo de la curva de rigidez para el sistema clásico	7
2.1.1.Paso 1: Definir piezas	8
2.1.2. Paso2: Definir el mecanismo	9
2.1.3. Paso 3: Definir análisis de mecanismos	11
2.1.4. Paso 4: Estudio en Ansys	15
2.1.5. Paso 5: Excel	18
2.1.5.1. Rigidez reducida con velocidades	18
2.1.5.2. Rigidez reducida con fórmula	22
2.1.5.3. Rigidez reducida con fuerzas en Creo	26
2.1.5.4. Rigidez reducida con fuerzas en Ansys	28
2.1.5.5. Rigidez reducida con fórmula completa	30
3. SISTEMA FULL FLOATER	32
3.1. Cálculo de la curva de rigidez para el sistema Full Floater	32
3.1.1.Paso 1: Definir piezas	33
3.1.2. Paso 2: Definir el mecanismo	34
3.1.3. Paso 3: Definir análisis de mecanismos	36
3.1.4. Paso 4: Variaciones en las piezas	39
3.1.4.1. Variando el basculante (Swing arm)	40
3.1.4.2. Variando el triángulo de suspensión (Rocker arm)	50
3.1.4.3. Variando la bieleta (Connecting rod)	58
3.1.5. Paso 5: Resultado de las alternativas y del modelo escogido	61

3.1.5.1.	Primer	resultado	61
3.1.5.1	.1.	Estudio con velocidades	61
3.1.5.1	.2.	Estudio con fórmula	62
3.1.5.1	.3.	Estudio con fuerzas	62
3.1.5.1	.4.	Otros estudios	63
3.1.5.2.	Segund	do resultado	65
3.1.5.2	2.1.	Estudio con velocidades	66
3.1.5.2	2.2.	Estudio con fórmula	66
3.1.5.2	2.3.	Estudio con fuerzas	67
3.1.5.2	2.4.	Otros estudios	68
3.1.5.3.	Tercer	resultado	70
3.1.5.3	8.1.	Estudio con velocidades	70
3.1.5.3	8.2.	Estudio con fórmula	71
3.1.5.3	3.3.	Estudio con fuerzas	71
3.1.5.3	8.4.	Otros estudios	72
3.1.5.4.	Cuarto	resultado	74
3.1.5.4	.1.	Estudio con velocidades	74
3.1.5.4	.2.	Estudio con fórmula	75
3.1.5.4	.3.	Estudio con fuerzas	76
3.1.5.4	.4.	Otros estudios	76
3.1.5.5.	Quinto	o resultado o resultado final	78
3.1.5.5	5.1.	Estudio con velocidades	79
3.1.5.5	5.2.	Estudio con fórmula	79
3.1.5.5	5.3.	Estudio con fuerzas	80

3.1.5.5.4.	Otros estudios	81		
3.1.5.5.5.	3.1.5.5.5. Excel del resultado final Full Floater			
3.2. Simulació	ón por EF de las piezas	86		
3.2.1. Triángulo	de suspensión	86		
3.2.1.1. Si	mulación del triángulo	86		
3.2.1.1.1.	Obtener las fuerzas	86		
3.2.1.1.2.	Material	87		
3.2.1.1.3.	Mallado	87		
3.2.1.1.4.	Restricciones y análisis (Inertia Relief)	88		
3.2.1.1.5.	Restricciones y análisis (estudio con restricciones)	89		
3.2.1.2. Va	ariaciones del triángulo	91		
3.2.1.3. Re	esultado final	94		
3.2.1.3.1.	Análisis del triángulo final con el método Inertia Relief	95		
3.2.1.3.2.	Análisis del triángulo final con restricciones en los apoyos	96		
3.2.2. Bieleta		97		
3.2.2.1. Si	mulación de la horquilla	97		
3.2.2.1.1.	Definir la geometría	97		
3.2.2.1.2.	Material	98		
3.2.2.1.3.	Mallado	98		
3.2.2.1.4.	Restricciones	98		
3.2.2.1.5.	Fuerza	99		
3.2.2.1.6.	Análisis estático lineal	99		
3.2.2.1.7.	Análisis de pandeo	100		
3.2.2.2. Va	ariaciones de la horquilla	101		

3.2.2.3.	Result	ado final de la horquilla	1	106
3.2.2.4.	Simula	ación del tensor	1	109
3.2.2.4	4.1.	Definir la geometría	1	109
3.2.2.4	4.2.	Material	1	109
3.2.2.4	4.3.	Mallado	1	109
3.2.2.4	4.4.	Restricciones	1	110
3.2.2.4	4.5.	Fuerza]	110
3.2.2.4	4.6.	Análisis	1	110
3.2.2.5.	Variac	ciones del tensor]	111
3.2.2.6.	Result	ado final del tensor]	113
3.2.3. Result	ado fina	al del triángulo, la bieleta y el muelle]	115
4. EL BASCU	U LAN '	TE	1	116
4.1. Diseño	o global	del basculante: rigidez	1	116
4.1.1.Simula	ación g	lobal del basculante	1	116
4.1.1.1.	Defini	r la geometría	1	116
4.1.1.2.	Mater	ial	1	116
4.1.1.3.	Mallac	lo	1	117
4.1.1.4.	Restrie	cciones	1	117
4.1.1.5.	Fuerza	ıs	1	117
4.1.1.6.	Rigid	link	1	119
4.1.1.7.	Anális	is estático lineal]	119
4.1.2. Variac	ciones d	el basculante	1	120
4.1.3. Result	ado fina	al	1	130
4.2. Diseño	o a deta	lle del basculante: resistencia]	132

	4.2.1. Simulación a detalle del basculante			
	4.2.1.1.	Definir la geometría	132	
	4.2.1.2.	Material	132	
	4.2.1.3.	Mallado	133	
	4.2.1.4.	Restricciones	133	
	4.2.1.5.	Fuerzas	133	
	4.2.1.6.	Análisis estático lineal	135	
	4.2.2. Variao	ciones de las orejas	135	
	4.2.3. Resultado final			
5.	ILUSTRA	CIÓN FINAL DE LA SUSPENSIÓN	149	

1. INTRODUCCIÓN

En el presente documento se detallan los cálculos necesarios para el diseño de la suspensión trasera clásica y para la suspensión trasera Full Floater.

- Se explica paso a paso el desarrollo realizado para llegar a obtener las piezas;
- Las curvas de rigidez de cada suspensión, junto con las variaciones o diferentes alternativas realizadas en las piezas con sus correspondientes curvas de rigidez;
- El estudio por elementos finitos de las piezas hasta llegar a obtener la suspensión totalmente diseñada;
- Un estudio (diseño preliminar) del basculante por elementos finitos.

Para el estudio de las diferentes piezas tanto por simulación de mecanismo o por elementos finitos, se utiliza el programa informático Creo Parametric.

2. SISTEMA CLÁSICO

2.1. Cálculo de la curva de rigidez para el sistema Clásico

Figura 1. Sistema clásico en Creo Parametric

Nuestro primer propósito es conseguir llegar a la figura que se representa encima de estas líneas y con ella obtener la curva de rigidez por varios métodos. Para ello, se van a llevar a cabo los siguientes pasos:

- Paso 1: definir las piezas del sistema de suspensión, el basculante y el chasis;
- Paso 2: definir el mecanismo. Se define el muelle, al cual se le da una constante y un diámetro cualquiera, ya que este estudio es a modo de ejemplo;
- Paso 3: definir análisis de mecanismos. Se definen el motor cinemático y los análisis de posición, cinemático y estático y se ejecutan, obteniendo los valores de la curva, etc.;
- Paso 4: análisis por ANSYS;
- Paso 5: resultados de las curvas de rigidez en Excel.

2.1.1. Paso 1: Definir piezas

Para el estudio del mecanismo se debe de comenzar con la creación de las <u>piezas</u> \square . Se crean una a una y una vez que están todas, se juntan formando un conjunto \square (mecanismo). Las piezas a diseñar son el chasis y el basculante, ya que el resorte es un elemento (elemento muelle) que se define en la ventana "mecanismo" en Creo.

1. Comenzamos definiendo el chasis. El chasis se define como una simple barra donde se conectan el muelle y el basculante

Se comienza definiendo un esbozo \bigcirc en el plano XY. Se acepta \checkmark .

2. Cuando la geometría en el plano sea la correcta, se extruye. En los puntos del chasis se definen dos puntos de referencia donde después irán las conexiones con el basculante y el muelle.

3. Definimos el basculante en una nueva pieza. Se define como una barra con tres puntos, uno a cada extremo y el tercero en el centro al que va conectado el muelle. Se comienza definiendo el esbozo

4. Con la geometría correcta, se acepta el esbozo ✓ y se extruye la pieza. Se definen nuevamente tres puntos de referencia ^{★★}.

Figura 5. Basculante.

2.1.2. Paso 2: definir el mecanismo

Una vez definidas las piezas, se juntan. Para ello, se crea un <u>conjunto</u>

1. En el conjunto, se define un esbozo S sobre el plano XY. En él se crean dos ejes de referencia , donde va sujeto el chasis. Con CTRL se escoge el punto y el plano perpendicular al eje y se crean los ejes.

2. Aceptado el esbozo, se montan 🌇 las piezas. Primero el chasis.

Se eligen el eje de referencia superior y a la vez uno de los puntos del chasis. Se indica que la restricción sea rígida u y coincidente . Lo mismo se hace con el eje inferior y con la cara lateral en el plano XY.

3. Aceptando el chasis \checkmark se monta el basculante \blacksquare . Se escogen el punto inferior del chasis y un punto extremo del basculante y se le da una restricción "Pin" \checkmark que permite el giro al aplicarse la fuerza F vertical en la rueda y coincidente \blacksquare . Se restringe también como Pin y coincidente el plano lateral del basculante sobre el plano del chasis.

Figura 6. Planos.

Figura 7. Posicionamiento del chasis.

Figura 8. Figuras montadas.

4. Con el basculante ya montado \checkmark se define el muelle. Mecanismo - insertar muelle . Se indica la constante de rigidez k=100 N/mm, con CTRL los puntos de conexión al basculante y al chasis y el diámetro D=40 mm. Aceptar \checkmark .

Figura 9. Montando el muelle.

5. Si está bien definido, clicando en vy después en el basculante, debería permitir girar el basculante respecto del chasis y comprimir o estirar el muelle.

Figura 10. Mecanismo.

2.1.3. Paso 3: definir análisis de mecanismos

Lo siguiente es definir el motor cinemático y los análisis del mecanismo. Se quieren realizar dos estudios, uno de velocidades en el que se obtienen la velocidad vertical de la rueda y la velocidad del muelle, y otro de fuerzas en el que se obtiene la fuerza que es necesaria aplicar en el eje de la rueda para que el basculante se mueva a una posición concreta y comprima al muelle.

1. En mecanismos $\frac{1}{2}$ hacer clic en motor cinemático \mathcal{P} .

- Seleccionar el eje de unión como el punto de giro del basculante.

- En el perfil, se selecciona 'velocidad' de la tabla de especificación.

- Se define la constante de velocidad a 1.

- En \bowtie se indica que el ángulo considerado como 0 es 30 grados por debajo de la horizontal, posición inicial del basculante.

Como ángulo inicial se indica 0 y se visualiza
 .

2. Se define el <u>análisis de velocidades</u>.

- En tipo de análisis se selecciona cinemático.

- En visualización grafica se elige como medida "duración y velocidad".

- En tiempo de inicio se indica 0 y en tiempo final 50, para que haga un giro de -30° a 20° .

- En intervalo mínimo, se indica que vaya contando cada 0,1 la velocidad.

Figura 11. Motor cinemático.

Nombre	
AnalysisDefinition1	
Tipo Cinemático	Ŧ
Preferencias Motores	argas externas
Visualización gráfica	
Tiempo de inicio	
Duración y velocidad	
End Time 50	
Número de marcos 501	
Velocidad de marcos 10	
Intervalo mínimo	
Colidados bisconstas	
cintidades proquéadas	0.
	¹ 4 ↓0 ↓2
	⁴ № № ×
	× 🕂 🖓 🖁
	La de aca gare
	De octo ge e
Configuración inicial	Rescepte
Configuración inicial © Current	Activar
Configuración inicial © Current Snapshot	Activar

Figura 12. Análisis de velocidades.

3. Una vez definido, hacer clic en ejecutar y una vez corrido el análisis, se acepta.

Figura 13. Recorrido de la suspensión.

4. Se da clic en medidas \bowtie . Obtenemos la velocidad $\dot{y_c}$.

De momento no aparecen medidas en el cuadro de resultados. Damos clic en nueva medida le indicamos nombre [vel_yc].

- Se define velocidad, el punto donde medir y un sistema de coordenadas e indicamos que se desea medir la componente Y.

Figura 14. Medida de velocidad yc.

Figura 15. Medida de velocidad lm.

5. De nuevo clicamos en nueva medida \square y medimos la velocidad del muelle l_m .

- El muelle es un elemento que se comprime y que además cambia su posición en vertical pero también en horizontal. Por ello, se le indica al programa que mida la velocidad entre dos puntos. 6. Se pueden obtener también el desplazamiento de los puntos y_c y l_m , de la misma manera que como se han obtenido las velocidades, pero en vez de indicar velocidad, indicar posición.

7. En el cuadro de medidas, podemos obtener los gráficos de las mismas y exportarlos a una hoja de Excel. Para ello, debemos seleccionar el análisis junto con la medida que queremos obtener y dando clic en gráficos is obtenemos su correspondiente curva.

Figura 16. Gráficos de medidas.

8. Se define el <u>análisis de fuerzas</u>.

- En tipo de análisis escogemos "equilibrio de fuerzas".

- Dando clic en ⁵³³ de grados de libertad, aparece el valor de 1. Por ello, se debe de meter una fuerza vertical hacia arriba: se da clic en ⁵⁴ y se introducen sus coordenadas (0, 1, 0). Así, hay 0 GDL. Y aceptamos.

Figura 17. Análisis de fuerzas.

9. Para que el programa de paso a paso los valores de la fuerza F, se introduce un nuevo análisis, esta vez de posición.

- En "End time" se pone el valor de 1 para que vaya paso a paso.

- Se introduce con E el motor cinemático definido anteriormente.

- Aceptamos.

10. El árbol queda por tanto como se muestra en la figura. Es tiempo de obtener las fuerzas.

- En el motor se ha definido que comience en -30°. Por tanto, ejecutando el análisis de posición el basculante se mueve un grado y ejecutando después el análisis de fuerzas nos da la primera fuerza necesaria para hacer que el basculante se mueva un grado.

- Para que el basculante se mueva otro grado, es necesario que en el motor se clique en "vigente" después de que el basculante se haya movido el primer grado. Así, se va moviendo de grado en grado y dando la fuerza cada vez que se ejecuta.

los valores de fuerza se van copiando en una tabla de Excel para obtener la curva de rigidez.
"En el análisis de la suspensión Full Floater se obtiene todo de forma más sencilla."

Figura 18. Análisis de posición.

80 😤 💌	
🔻 Árbol del modelo 🎢 🔻 📰	•
×	+
SISTEMACLASICO.ASM	
CHASIS.PRT	
BASCULANTE.PRT	
Árbol del mecanismo	
X MECHANISM	
▶ 🏪 BODIES	
gravity	
▶ 🏷 CONNECTIONS	
V S MOTORS	Ξ
▼ 🧿 SERVO	
ServoMotor1 (VEL - SISTEMACLASICO)	
🔊 FORCE	
▼ 💐 SPRINGS	
Muelle 1 (SISTEMACLASICO)	
🗴 DAMPERS	
💥 BUSHING LOADS	
FORCES/TORQUES	
INITIAL CONDITIONS	
TERMINATION CONDITIONS	
V X ANALYSES	
AnalysisDefinition2 (POSITION)	
AnalysisDefinition3 (FORCE BALANCE)	
AnalysisDefinition1 (KINEMATICS)	
PLAYBACKS	Ŧ

Figura 19. Árbol.

2.1.4. Paso 4: Estudio en Ansys

Mediante ANSYS se comprueba que la curva de rigidez calculada en Creo por fuerzas es la correcta.

- Preferences \rightarrow estructural
- Preprocesor
- Element type \rightarrow add/edit/delete \rightarrow add: elegir el tipo beam 2 node188.
- Material Props \rightarrow material models \rightarrow structural \rightarrow linear \rightarrow elastic \rightarrow isotropic: introducir un modulo de Young E=21000 N/mm² y coeficiente de Poisson v = 0.3.
- Sections \rightarrow beam \rightarrow common sections: se define el perfil del basculante B = 0.1 y H = 0.1.
- Modeling \rightarrow create \rightarrow keypoints \rightarrow in active CS: crear dos puntos en las siguientes coordenadas (0, 0, 0) y (-433, -250, 0).
- Modeling \rightarrow create \rightarrow lines \rightarrow straight line: crear linea seleccionando los keypoints.
- Meshing → size controls → manual size → lines → all lines: especificar el número de elementos de la malla (10).
- Meshing \rightarrow mesh \rightarrow lines: mallar la linea.
- Element type \rightarrow add/edit/delete \rightarrow add: elegir el tipo combination \rightarrow spring-damper 14.
- Real constants \rightarrow Add/edit/delete \rightarrow add \rightarrow combin14: introducir un coeficiente de rigidez k = 100000 N/mm.
- Modeling \rightarrow create \rightarrow elements \rightarrow element attributes: seleccionar en type, combin 14.
- PlotCntrls→ numbering: activar la visibilidad de los nodos para saber cuál es el ultimo nodo en el sistema.
- Modeling → create → nodes → in active CS: introducimos un nodo superior al último que hay. Node 12 (-128.56, 153.21, 0).
- Modeling \rightarrow create \rightarrow elements \rightarrow auto Numbered \rightarrow thru nodes: crear el muelle seleccionando el nodo 7 y el nodo 12.
- Loads → define loads →apply → structural → displacement → on keypoints: introducir condiciones de ligadura en el keypoint 1 (Ux, Uy, Uz, ROTx, ROTy).
- Loads → define loads → apply → structural → displacement → on nodes: restringir todos los GDL en el node 12 (All DOF).
- Loads \rightarrow define loads \rightarrow apply \rightarrow structural \rightarrow Force/moment \rightarrow on keypoints: introducir la fuerza en el keypoint 2 (*Fy* = 6802,58069)
- <u>Solution</u>

- Analysis type \rightarrow Sol'n Controls
 - o analysis options: large displacement Static
 - \circ Time at end of load step: 1
 - Automatic time stepping: off
 - Number of steps: 50
 - Frequency: write every substep
 - Solve \rightarrow Current LS: analiza el modelo generado en el preprocesador.

Figura 20. Análisis.

- General Postproc
- Plot results → deformed shape: dibuja la deformada.

Figura 21. Deformed shape.

- <u>Time Hist Postpro</u>
- Se visualizan las graficas correspondientes al desplazamiento vertical de la rueda (UY en ANSYS) y la fuerza vertical producida por el bache (FY en ANSYS).
- Clicamos en $\pm \rightarrow$ Nodal solution \rightarrow DOF solution \rightarrow Y-Component of displacement.
- Clicamos en 1 \rightarrow Element solution \rightarrow Structural forces \rightarrow Y-Component of force.
- Seleccionamos los dos parámetros y clicamos en grafico A, donde se visualizan las curvas de UY y FY respecto del tiempo.

 Seleccionamos los dos parámetros y clicamos en guardar II, donde escribiendo UY.xls y FY.xls guarda en una hoja de cálculo los valores de los gráficos.

De esta manera, se pueden comparar las curvas de rigidez, las cuales aparecen a continuación, obtenidas de hojas de cálculo.

2.1.5. Paso 5: Excel

A continuación se exponen todas las tablas de Excel y gráficos que se han utilizado para el cálculo de la rigidez del sistema clásico. Se exponen en un intervalo de 1° por simplicidad de datos.

2.1.5.1. Rigidez reducida con velocidades

Utilizando la ecuación 6 de la rigidez reducida, obtenida en el apartado 7.1.3., del documento de memoria, se obtienen los siguientes valores de rigidez, y su curva correspondiente.

$$kr = k \cdot \left(\frac{\dot{lm}}{\dot{yc}}\right)^2$$

k	100	N/mm

grados	y _c	Уc	y_c	ý _c	$\dot{l_m}$	kr=k*(lm'/yc')^2
-30,00	-250,00000	250,00000	0,00000	7,55750	-2,93465	15,07842
-29,00	-242,40481	242,40481	7,59519	7,63250	-2,95488	14,98813
-28,00	-234,73578	234,73578	15,26422	7,70517	-2,97483	14,90598
-27,00	-226,99525	226,99525	23,00475	7,77550	-2,99449	14,83167
-26,00	-219,18557	219,18557	30,81443	7,84346	-3,01386	14,76489
-25,00	-211,30913	211,30913	38,69087	7,90903	-3,03292	14,70539
-24,00	-203,36832	203,36832	46,63168	7,97219	-3,05168	14,65290
-23,00	-195,36556	195,36556	54,63444	8,03292	-3,07013	14,60722
-22,00	-187,30330	187,30330	62,69670	8,09121	-3,08827	14,56812
-21,00	-179,18397	179,18397	70,81603	8,14703	-3,10608	14,53542
-20,00	-171,01007	171,01007	78,98993	8,20037	-3,12357	14,50895
-19,00	-162,78408	162,78408	87,21592	8,25121	-3,14072	14,48853
-18,00	-154,50850	154,50850	95,49150	8,29953	-3,15754	14,47403
-17,00	-146,18585	146,18585	103,81415	8,34533	-3,17400	14,46531
-16,00	-137,81868	137,81868	112,18132	8,38859	-3,19012	14,46223
-15,00	-129,40952	129,40952	120,59048	8,42929	-3,20587	14,46469
-14,00	-120,96095	120,96095	129,03905	8,46743	-3,22125	14,47259
-13,00	-112,47553	112,47553	137,52447	8,50298	-3,23625	14,48581
-12,00	-103,95585	103,95585	146,04415	8,53595	-3,25087	14,50427
-11,00	-95,40450	95,40450	154,59550	8,56631	-3,26509	14,52789
-10,00	-86,82409	86,82409	163,17591	8,59407	-3,27890	14,55658
-9,00	-78,21723	78,21723	171,78277	8,61921	-3,29230	14,59027
-8,00	-69,58655	69,58655	180,41345	8,64172	-3,30526	14,62888
-7,00	-60,93467	60,93467	189,06533	8,66160	-3,31778	14,67234
-6,00	-52,26423	52,26423	197,73577	8,67884	-3,32985	14,72059
-5,00	-43,57787	43,57787	206,42213	8,69344	-3,34144	14,77355
-4,00	-34,87824	34,87824	215,12176	8,70539	-3,35255	14,83114

-3,00	-26,16798	26,16798	223,83202	8,71469	-3,36316	14,89330
-2,00	-17,44975	17,44975	232,55025	8,72133	-3,37324	14,95995
-1,00	-8,72620	8,72620	241,27380	8,72532	-3,38279	15,03099
0,00	0,00000	0,00000	250,00000	8,72665	-3,39177	15,10633
1,00	8,72620	8,72620	258,72620	8,72532	-3,40017	15,18587
2,00	17,44975	17,44975	267,44975	8,72133	-3,40796	15,26949
3,00	26,16798	26,16798	276,16798	8,71469	-3,41512	15,35705
4,00	34,87824	34,87824	284,87824	8,70539	-3,42160	15,44839
5,00	43,57787	43,57787	293,57787	8,69344	-3,42739	15,54335
6,00	52,26423	52,26423	302,26423	8,67884	-3,43245	15,64171
7,00	60,93467	60,93467	310,93467	8,66160	-3,43673	15,74324
8,00	69,58655	69,58655	319,58655	8,64172	-3,44019	15,84766
9,00	78,21723	78,21723	328,21723	8,61921	-3,44279	15,95465
10,00	86,82409	86,82409	336,82409	8,59407	-3,44448	16,06384
11,00	95,40450	95,40450	345,40450	8,56631	-3,44519	16,17480
12,00	103,95585	103,95585	353,95585	8,53595	-3,44487	16,28702
13,00	112,47553	112,47553	362,47553	8,50298	-3,44344	16,39991
14,00	120,96095	120,96095	370,96095	8,46743	-3,44082	16,51279
15,00	129,40952	129,40952	379,40952	8,42929	-3,43693	16,62488
16,00	137,81868	137,81868	387,81868	8,38859	-3,43167	16,73525
17,00	146,18585	146,18585	396,18585	8,34533	-3,42493	16,84283
18,00	154,50850	154,50850	404,50850	8,29953	-3,41658	16,94637
19,00	162,78408	162,78408	412,78408	8,25121	-3,40650	17,04445
20,00	171,01007	171,01007	421,01007	8,20037	-3,39453	17,13538

Tabla	1.	Rigidez	reducida	con	velocidades.
		0			

Figura 24. Gráfico de la rigidez reducida con velocidades.

Para un desplazamiento vertical entre 0 y 40 mm:

grados	<i>y_c</i>	<i>y</i> _c	<i>y</i> _c	ý _c	l_m^{\cdot}	kr=k*(lm'/yc')^2
-30,00	-250,00000	250,00000	0,00000	7,55750	-2,93465	15,07842
-29,90	-249,24387	249,24387	0,75613	7,56510	-2,93668	15,06902
-29,80	-248,48698	248,48698	1,51302	7,57268	-2,93872	15,05970
-29,70	-247,72933	247,72933	2,27067	7,58024	-2,94075	15,05046
-29,60	-246,97093	246,97093	3,02907	7,58777	-2,94278	15,04131
-29,50	-246,21178	246,21178	3,78822	7,59529	-2,94480	15,03224
-29,40	-245,45188	245,45188	4,54812	7,60277	-2,94682	15,02325
-29,30	-244,69123	244,69123	5,30877	7,61024	-2,94884	15,01435
-29,20	-243,92983	243,92983	6,07017	7,61768	-2,95086	15,00552
-29,10	-243,16769	243,16769	6,83231	7,62510	-2,95287	14,99679
-29,00	-242,40481	242,40481	7,59519	7,63250	-2,95488	14,98813
-28,90	-241,64119	241,64119	8,35881	7,63987	-2,95689	14,97955
-28,80	-240,87684	240,87684	9,12316	7,64722	-2,95890	14,97106
-28,70	-240,11175	240,11175	9,88825	7,65454	-2,96090	14,96264
-28,60	-239,34593	239,34593	10,65407	7,66185	-2,96290	14,95431
-28,50	-238,57938	238,57938	11,42062	7,66913	-2,96489	14,94606
-28,40	-237,81210	237,81210	12,18790	7,67638	-2,96689	14,93788
-28,30	-237,04410	237,04410	12,95590	7,68361	-2,96888	14,92979
-28,20	-236,27538	236,27538	13,72462	7,69082	-2,97087	14,92178
-28,10	-235,50594	235,50594	14,49406	7,69801	-2,97285	14,91384
-28,00	-234,73578	234,73578	15,26422	7,70517	-2,97483	14,90598
-27,90	-233,96491	233,96491	16,03509	7,71231	-2,97681	14,89820
-27,80	-233,19332	233,19332	16,80668	7,71943	-2,97879	14,89050
-27,70	-232,42102	232,42102	17,57898	7,72652	-2,98076	14,88288
-27,60	-231,64802	231,64802	18,35198	7,73359	-2,98273	14,87533
-27,50	-230,87431	230,87431	19,12569	7,74063	-2,98470	14,86787
-27,40	-230,09989	230,09989	19,90011	7,74765	-2,98666	14,86047
-27,30	-229,32478	229,32478	20,67522	7,75465	-2,98863	14,85316
-27,20	-228,54896	228,54896	21,45104	7,76162	-2,99058	14,84592
-27,10	-227,77245	227,77245	22,22755	7,76857	-2,99254	14,83876
-27,00	-226,99525	226,99525	23,00475	7,77550	-2,99449	14,83167
-26,90	-226,21735	226,21735	23,78265	7,78240	-2,99644	14,82466
-26,80	-225,43877	225,43877	24,56123	7,78928	-2,99839	14,81772
-26,70	-224,65950	224,65950	25,34050	7,79614	-3,00033	14,81086
-26,60	-223,87954	223,87954	26,12046	7,80297	-3,00227	14,80407
-26,50	-223,09891	223,09891	26,90109	7,80978	-3,00421	14,79736
-26,40	-222,31759	222,31759	27,68241	7,81656	-3,00615	14,79072
-26,30	-221,53560	221,53560	28,46440	7,82332	-3,00808	14,78415
-26,20	-220,75293	220,75293	29,24707	7,83006	-3,01001	14,77766
-26,10	-219,96958	219,96958	30,03042	7,83677	-3,01193	14,77124
-26,00	-219,18557	219,18557	30,81443	7,84346	-3,01386	14,76489
-25,90	-218,40089	218,40089	31,59911	7,85012	-3,01578	14,75862

-25,80	-217,61555	217,61555	32,38445	7,85676	-3,01769	14,75242
-25,70	-216,82954	216,82954	33,17046	7,86338	-3,01961	14,74629
-25,60	-216,04287	216,04287	33,95713	7,86997	-3,02152	14,74023
-25,50	-215,25555	215,25555	34,74445	7,87654	-3,02343	14,73425
-25,40	-214,46757	214,46757	35,53243	7,88309	-3,02533	14,72833
-25,30	-213,67893	213,67893	36,32107	7,88961	-3,02723	14,72249
-25,20	-212,88965	212,88965	37,11035	7,89611	-3,02913	14,71672
-25,10	-212,09971	212,09971	37,90029	7,90258	-3,03103	14,71102
-25,00	-211,30913	211,30913	38,69087	7,90903	-3,03292	14,70539
-24,90	-210,51791	210,51791	39,48209	7,91545	-3,03481	14,69983
-24,80	-209,72604	209,72604	40,27396	7,92185	-3,03670	14,69434
-24,70	-208,93354	208,93354	41,06646	7,92823	-3,03858	14,68892
-24,60	-208,14040	208,14040	41,85960	7,93458	-3,04046	14,68356
-24,50	-207,34662	207,34662	42,65338	7,94091	-3,04234	14,67828
-24,40	-206,55221	206,55221	43,44779	7,94721	-3,04422	14,67307
-24,30	-205,75718	205,75718	44,24282	7,95349	-3,04609	14,66793
-24,20	-204,96152	204,96152	45,03848	7,95975	-3,04796	14,66285
-24,10	-204,16523	204,16523	45,83477	7,96598	-3,04982	14,65784
-24,00	-203,36832	203,36832	46,63168	7,97219	-3,05168	14,65290

Tabla 2. Rigidez reducida con velocidades para un desplazamiento de 0 a 47 mm.

Figura 25. Gráfico de la rigidez reducida con velocidades para un desplazamiento desde 0 hasta 47 mm.

2.1.5.2. Rigidez reducida con fórmula

Mediante el uso de la ecuación 21 obtenida en el apartado 7.1.4., del documento de memoria:

$$kr = k \cdot \left(\frac{|OP \cdot (Y_B \cos \theta - X_B \sin \theta)|}{\sqrt{OP^2 + 2OP(Y_B \sin \theta + X_B \cos \theta) + X_B^2 + Y_B^2}} \cdot \frac{1}{L \cos \theta}\right)^2$$

X _B	-128,558	ОР	250,000	k	100,000	N/mm
Y_B	153,209	L	500,000			

grados θ	radianes	seno θ	$\cos \theta$	$yc = L \cdot \cos \theta$	y_c	kr	kr/k	MR
30	0,524	0,500	0,866	250,000	0,000	15,189	1,519	1,232
29	0,506	0,485	0,875	242,405	7,595	15,100	1,510	1,229
28	0,489	0,469	0,883	234,736	15,264	15,020	1,502	1,226
27	0,471	0,454	0,891	226,995	23,005	14,948	1,495	1,223
26	0,454	0,438	0,899	219,186	30,814	14,883	1,488	1,220
25	0,436	0,423	0,906	211,309	38,691	14,825	1,483	1,218
24	0,419	0,407	0,914	203,368	46,632	14,775	1,478	1,216
23	0,401	0,391	0,921	195,366	54,634	14,732	1,473	1,214
22	0,384	0,375	0,927	187,303	62,697	14,695	1,470	1,212
21	0,367	0,358	0,934	179,184	70,816	14,665	1,467	1,211
20	0,349	0,342	0,940	171,010	78,990	14,642	1,464	1,210
19	0,332	0,326	0,946	162,784	87,216	14,624	1,462	1,209
18	0,314	0,309	0,951	154,508	95,492	14,613	1,461	1,209
17	0,297	0,292	0,956	146,186	103,814	14,608	1,461	1,209
16	0,279	0,276	0,961	137,819	112,181	14,608	1,461	1,209
15	0,262	0,259	0,966	129,410	120,590	14,615	1,461	1,209
14	0,244	0,242	0,970	120,961	129,039	14,627	1,463	1,209
13	0,227	0,225	0,974	112,476	137,524	14,644	1,464	1,210
12	0,209	0,208	0,978	103,956	146,044	14,667	1,467	1,211
11	0,192	0,191	0,982	95,404	154,596	14,696	1,470	1,212
10	0,175	0,174	0,985	86,824	163,176	14,730	1,473	1,214
9	0,157	0,156	0,988	78,217	171,783	14,769	1,477	1,215
8	0,140	0,139	0,990	69,587	180,413	14,814	1,481	1,217
7	0,122	0,122	0,993	60,935	189,065	14,863	1,486	1,219
6	0,105	0,105	0,995	52,264	197,736	14,918	1,492	1,221
5	0,087	0,087	0,996	43,578	206,422	14,978	1,498	1,224
4	0,070	0,070	0,998	34,878	215,122	15,043	1,504	1,227
3	0,052	0,052	0,999	26,168	223,832	15,113	1,511	1,229
2	0,035	0,035	0,999	17,450	232,550	15,188	1,519	1,232
1	0,017	0,017	1,000	8,726	241,274	15,268	1,527	1,236
0	0,000	0,000	1,000	0,000	250,000	15,353	1,535	1,239
-1	-0,017	-0,017	1,000	-8,726	258,726	15,443	1,544	1,243
-2	-0,035	-0,035	0,999	-17,450	267,450	15,538	1,554	1,247

-3	-0,052	-0,052	0,999	-26,168	276,168	15,637	1,564	1,250
-4	-0,070	-0,070	0,998	-34,878	284,878	15,741	1,574	1,255
-5	-0,087	-0,087	0,996	-43,578	293,578	15,849	1,585	1,259
-6	-0,105	-0,105	0,995	-52,264	302,264	15,962	1,596	1,263
-7	-0,122	-0,122	0,993	-60,935	310,935	16,078	1,608	1,268
-8	-0,140	-0,139	0,990	-69,587	319,587	16,199	1,620	1,273
-9	-0,157	-0,156	0,988	-78,217	328,217	16,324	1,632	1,278
-10	-0,175	-0,174	0,985	-86,824	336,824	16,452	1,645	1,283
-11	-0,192	-0,191	0,982	-95,404	345,404	16,583	1,658	1,288
-12	-0,209	-0,208	0,978	-103,956	353,956	16,717	1,672	1,293
-13	-0,227	-0,225	0,974	-112,476	362,476	16,853	1,685	1,298
-14	-0,244	-0,242	0,970	-120,961	370,961	16,991	1,699	1,303
-15	-0,262	-0,259	0,966	-129,410	379,410	17,130	1,713	1,309
-16	-0,279	-0,276	0,961	-137,819	387,819	17,269	1,727	1,314
-17	-0,297	-0,292	0,956	-146,186	396,186	17,408	1,741	1,319
-18	-0,314	-0,309	0,951	-154,508	404,508	17,545	1,754	1,325
-19	-0,332	-0,326	0,946	-162,784	412,784	17,679	1,768	1,330
-20	-0,349	-0,342	0,940	-171,010	421,010	17,809	1,781	1,335

Tabla 3. Rigidez reducida con fórmula.

Figura 26. Gráfico de la rigidez reducida con fórmula.

Cambiando los valores de X_T e Y_T a -80 y 200 mm respectivamente, la suspensión pasa a ser progresiva.

$$kr = k \cdot \left(\frac{|OP \cdot (Y_B \cos \theta - X_B \sin \theta)|}{\sqrt{OP^2 + 2OP(Y_B \sin \theta + X_B \cos \theta) + X_B^2 + Y_B^2}} \cdot \frac{1}{L \cos \theta}\right)^2$$

X_B	-80,000	ОР	250,000	k	100,000
Y _B	200,000	L	500,000		

grados θ	radianes	seno θ	$\cos \theta$	$yc = L \cdot \cos \theta$	yc	kr	kr/k	MR
30	0,524	0,500	0,866	250,000	0,000	12,194	1,219	1,104
29	0,506	0,485	0,875	242,405	7,595	12,195	1,219	1,104
28	0,489	0,469	0,883	234,736	15,264	12,201	1,220	1,105
27	0,471	0,454	0,891	226,995	23,005	12,213	1,221	1,105
26	0,454	0,438	0,899	219,186	30,814	12,230	1,223	1,106
25	0,436	0,423	0,906	211,309	38,691	12,252	1,225	1,107
24	0,419	0,407	0,914	203,368	46,632	12,279	1,228	1,108
23	0,401	0,391	0,921	195,366	54,634	12,311	1,231	1,110
22	0,384	0,375	0,927	187,303	62,697	12,348	1,235	1,111
21	0,367	0,358	0,934	179,184	70,816	12,391	1,239	1,113
20	0,349	0,342	0,940	171,010	78,990	12,438	1,244	1,115
19	0,332	0,326	0,946	162,784	87,216	12,490	1,249	1,118
18	0,314	0,309	0,951	154,508	95,492	12,548	1,255	1,120
17	0,297	0,292	0,956	146,186	103,814	12,610	1,261	1,123
16	0,279	0,276	0,961	137,819	112,181	12,677	1,268	1,126
15	0,262	0,259	0,966	129,410	120,590	12,750	1,275	1,129
14	0,244	0,242	0,970	120,961	129,039	12,828	1,283	1,133
13	0,227	0,225	0,974	112,476	137,524	12,911	1,291	1,136
12	0,209	0,208	0,978	103,956	146,044	12,999	1,300	1,140
11	0,192	0,191	0,982	95,404	154,596	13,093	1,309	1,144
10	0,175	0,174	0,985	86,824	163,176	13,192	1,319	1,149
9	0,157	0,156	0,988	78,217	171,783	13,297	1,330	1,153
8	0,140	0,139	0,990	69,587	180,413	13,408	1,341	1,158
7	0,122	0,122	0,993	60,935	189,065	13,524	1,352	1,163
6	0,105	0,105	0,995	52,264	197,736	13,646	1,365	1,168
5	0,087	0,087	0,996	43,578	206,422	13,775	1,377	1,174
4	0,070	0,070	0,998	34,878	215,122	13,909	1,391	1,179
3	0,052	0,052	0,999	26,168	223,832	14,050	1,405	1,185
2	0,035	0,035	0,999	17,450	232,550	14,198	1,420	1,192
1	0,017	0,017	1,000	8,726	241,274	14,352	1,435	1,198
0	0,000	0,000	1,000	0,000	250,000	14,514	1,451	1,205
-1	-0,017	-0,017	1,000	-8,726	258,726	14,682	1,468	1,212
-2	-0,035	-0,035	0,999	-17,450	267,450	14,859	1,486	1,219
-3	-0,052	-0,052	0,999	-26,168	276,168	15,042	1,504	1,226

-4	-0,070	-0,070	0,998	-34,878	284,878	15,234	1,523	1,234
-5	-0,087	-0,087	0,996	-43,578	293,578	15,434	1,543	1,242
-6	-0,105	-0,105	0,995	-52,264	302,264	15,642	1,564	1,251
-7	-0,122	-0,122	0,993	-60,935	310,935	15,860	1,586	1,259
-8	-0,140	-0,139	0,990	-69,587	319,587	16,086	1,609	1,268
-9	-0,157	-0,156	0,988	-78,217	328,217	16,322	1,632	1,278
-10	-0,175	-0,174	0,985	-86,824	336,824	16,568	1,657	1,287
-11	-0,192	-0,191	0,982	-95,404	345,404	16,824	1,682	1,297
-12	-0,209	-0,208	0,978	-103,956	353,956	17,091	1,709	1,307
-13	-0,227	-0,225	0,974	-112,476	362,476	17,369	1,737	1,318
-14	-0,244	-0,242	0,970	-120,961	370,961	17,659	1,766	1,329
-15	-0,262	-0,259	0,966	-129,410	379,410	17,961	1,796	1,340
-16	-0,279	-0,276	0,961	-137,819	387,819	18,275	1,828	1,352
-17	-0,297	-0,292	0,956	-146,186	396,186	18,603	1,860	1,364
-18	-0,314	-0,309	0,951	-154,508	404,508	18,945	1,894	1,376
-19	-0,332	-0,326	0,946	-162,784	412,784	19,301	1,930	1,389
-20	-0,349	-0,342	0,940	-171,010	421,010	19,672	1,967	1,403

Tabla 4. Rigidez reducida con fórmula para una $X_B = -80$ e $Y_B = 200$.

Figura 27. Gráfico de rigidez reducida con fórmula para una X_B =-80 e Y_B =200.

2.1.5.3. Rigidez reducida con fuerzas en Creo

Utilizando la expresión de fuerzas, ecuación 15 obtenida en el apartado 7.1.3., del documento de memoria, se obtiene la curva de rigidez sin despreciar ningún sumando.

$$kr = \frac{\Delta F}{\Delta yc}$$

grados	F	Vc	V _c	$kr = \Delta F / \Delta yc$
-30	0,09	-250	0	
-29	114,97827	-242,40481	7,59518988	15,1264513
-28	229,13171	-234,735781	15,2642186	14,8849931
-27	343,50581	-226,99525	23,0047501	14,7760008
-26	458,16838	-219,185573	30,8144266	14,6821152
-25	573,18491	-211,309131	38,6908691	14,6025988
-24	688,6188	-203,368322	46,6316785	14,5367915
-23	804,53149	-195,365564	54,6344358	14,4840941
-22	920,98269	-187,303297	62,6967033	14,4439761
-21	1038,03044	-179,183975	70,8160252	14,4159513
-20	1155,73128	-171,010072	78,9899283	14,3995884
-19	1274,14036	-162,784077	87,2159228	14,3945004
-18	1393,31147	-154,508497	95,4915028	14,4003332
-17	1513,2972	-146,185852	103,814148	14,4167789
-16	1634,14899	-137,818678	112,181322	14,4435604
-15	1755,9169	-129,409523	120,590477	14,4803972
-14	1878,65005	-120,960948	129,039052	14,5270834
-13	2002,39642	-112,475527	137,524473	14,5834102
-12	2127,20277	-103,955845	146,044155	14,6491798
-11	2253,11464	-95,4044977	154,595502	14,7242136
-10	2380,17643	-86,8240888	163,175911	14,8083608
-9	2508,43106	-78,2172325	171,782767	14,901449
-8	2637,9201	-69,5865505	180,41345	15,003338
-7	2768,68351	-60,9346717	189,065328	15,1138745
-6	2900,75942	-52,2642316	197,735768	15,2328958
-5	3034,18406	-43,5778714	206,422129	15,3602471
-4	3168,99135	-34,8782369	215,121763	15,4957418
-3	3305,21275	-26,1679781	223,832022	15,639191
-2	3442,87674	-17,4497484	232,550252	15,7903604
-1	3582,00857	-8,72620322	241,273797	15,949001
0	3722,62973	0	250	16,1148161
1	3864,75704	8,72620322	258,726203	16,2874169
2	4008,4026	17,4497484	267,449748	16,4664202
3	4153,57258	26,1679781	276,167978	16,6513138
4	4300,26632	34,8782369	284,878237	16,8414905

5	4448,47577	43,5778714	293,577871	17,0362847
6	4598,18354	52,2642316	302,264232	17,2348102
7	4749,36209	60,9346717	310,934672	17,4360873
8	4901,97152	69,5865505	319,58655	17,6388775
9	5055,95838	78,2172325	328,217233	17,841795
10	5211,25297	86,8240888	336,824089	18,0431257
11	5367,76691	95,4044977	345,404498	18,2408487
12	5525,39016	103,955845	353,955845	18,4325623
13	5683,98751	112,475527	362,475527	18,6154078
14	5843,39459	120,960948	370,960948	18,7859962
15	6003,41305	129,409523	379,409523	18,9402905
16	6163,80512	137,818678	387,818678	19,0735054
17	6324,28715	146,185852	396,185852	19,1799551
18	6484,52203	154,508497	404,508497	19,2528797
19	6644,11059	162,784077	412,784077	19,2842748
20	6802,58069	171,010072	421,010072	19,2645523

Tabla 5. Rigidez reducida con fuerzas.

Figura 28. Gráfico de la rigidez reducida con fuerzas.

2.1.5.4. Rigidez reducida con fuerzas en ANSYS

Realizando un estudio en el programa informático ANSYS, se grafican los valores de la fuerza vertical en la rueda respecto del desplazamiento vertical de la misma, es decir, la ecuación 15 obtenida en el apartado 7.1.3., del documento de memoria.

$$kr = \frac{\Delta F}{\Delta yc}$$

grados	UY	UY (mm)	FY	FY (N)	kr=ΔFY/ΔUY
-30	0	0	0	0	
-29	9,18E-03	9,17891	-138	138	15,0344649
-28	1,84E-02	18,4449	-276,9	276,88	14,9881448
-27	2,78E-02	27,7864	-415,2	415,16	14,8027619
-26	3,72E-02	37,1901	-553,3	553,26	14,6857088
-25	4,66E-02	46,6435	-691,4	691,41	14,6137897
-24	5,61E-02	56,1344	-829,6	829,62	14,5623703
-23	6,57E-02	65,6513	-967,9	967,94	14,5341445
-22	7,52E-02	75,1828	-1106,4	1106,4	14,5265698
-21	8,47E-02	84,7184	-1244,9	1244,9	14,5245186
-20	9,42E-02	94,2479	-1383,6	1383,6	14,5548035
-19	0,10376	103,76	-1522,3	1522,3	14,5814279
-18	0,11325	113,25	-1661,2	1661,2	14,6364594
-17	0,12271	122,71	-1800,1	1800,1	14,6828753
-16	0,13212	132,12	-1939	1939	14,7608927
-15	0,14149	141,49	-2078	2078	14,8345784
-14	0,1508	150,8	-2217	2217	14,9301826
-13	0,16006	160,06	-2355,9	2355,9	15
-12	0,16924	169,24	-2494,9	2494,9	15,1416122
-11	0,17836	178,36	-2633,8	2633,8	15,2302632
-10	0,1874	187,4	-2772,7	2772,7	15,3650442
-9	0,19636	196,36	-2911,6	2911,6	15,5022321
-8	0,20524	205,24	-3050,4	3050,4	15,6306306
-7	0,21403	214,03	-3189,3	3189,3	15,8020478
-6	0,22274	222,74	-3328,1	3328,1	15,9357061
-5	0,23135	231,35	-3466,8	3466,8	16,1091754
-4	0,23987	239,87	-3605,6	3605,6	16,2910798
-3	0,2483	248,3	-3744,4	3744,4	16,4650059
-2	0,25663	256,63	-3883,1	3883,1	16,6506603
-1	0,26487	264,87	-4021,8	4021,8	16,8325243
0	0,27302	273,02	-4160,5	4160,5	17,0184049
1	0,28107	281,07	-4299,2	4299,2	17,2298137
2	0,28902	289,02	-4437,9	4437,9	17,4465409
3	0,29688	296,88	-4576,6	4576,6	17,6463104

4	0,30465	304,65	-4715,3	4715,3	17,8507079
5	0,31232	312,32	-4853,9	4853,9	18,0704042
6	0,31991	319,91	-4992,6	4992,6	18,2740448
7	0,3274	327,4	-5131,3	5131,3	18,518024
8	0,33481	334,81	-5269,9	5269,9	18,7044534
9	0,34214	342,14	-5408,6	5408,6	18,9222374
10	0,34938	349,38	-5547,3	5547,3	19,1574586
11	0,35654	356,54	-5686	5686	19,3715084
12	0,36363	363,63	-5824,6	5824,6	19,5486601
13	0,37065	370,65	-5984,2	5964,2	19,8860399
14	0,3776	377,6	-6123,5	6100,8	19,6546763
15	0,38449	384,49	-6256,1	6237,7	19,8693759
16	0,39132	391,32	-6390,1	6374,2	19,9853587
17	0,3981	398,1	-6524,6	6511,5	20,2507375
18	0,40483	404,83	-6659,6	6649,6	20,5200594
19	0,41153	411,53	-6795,8	6785,8	20,3283582
20	0,4182	418,2	-6934,3	6924,3	20,7646177

Tabla 6. Rigidez reducida con ANSYS.

Figura 29: Gráfico de la rigidez reducida con ANSYS.

2.1.5.5. Rigidez reducida con fórmula completa

Utilizando la ecuación completa 22 (sin despreciar ningún sumando), obtenida en el apartado 7.2.1.3., del documento de memoria, se obtienen los valores verdaderos de la rigidez reducida.

$$k_r = \frac{dF}{dy_C} = \frac{d[k \cdot (L_m - L_{m0})]}{dy_C} \cdot \tau + F_e \cdot \frac{d\tau}{dy_C}$$

k 100 N/mm

θ	<i>y</i> _c	ý _c	l_m	MR=(lm'/yc')	$\Delta MR/\Delta Yc$	l_m	Fm=K(Lm-Lmo)	$\Delta Fm/\Delta Yc$
-30	0,00	7,557	-2,935	0,388		292,85	0,000	
-29	7,60	7,632	-2,955	0,387	-0,000147	289,90	294,479	38,77
-28	15,26	7,705	-2,975	0,386	-0,000132	286,94	590,967	38,66
-27	23,00	7,775	-2,994	0,385	-0,000118	283,95	889,436	38,56
-26	30,81	7,843	-3,014	0,384	-0,000105	280,95	1189,856	38,47
-25	38,69	7,909	-3,033	0,383	-0,000093	277,93	1492,197	38,39
-24	46,63	7,972	-3,052	0,383	-0,000081	274,88	1796,430	38,31
-23	54,63	8,033	-3,070	0,382	-0,000070	271,82	2102,524	38,25
-22	62,70	8,091	-3,088	0,382	-0,000059	268,74	2410,446	38,19
-21	70,82	8,147	-3,106	0,381	-0,000048	265,65	2720,167	38,15
-20	78,99	8,200	-3,124	0,381	-0,000038	262,53	3031,652	38,11
-19	87,22	8,251	-3,141	0,381	-0,000028	259,40	3344,869	38,08
-18	95,49	8,300	-3,158	0,380	-0,000019	256,25	3659,785	38,05
-16	112,18	8,389	-3,190	0,380	-0,000001	249,90	4294,574	38,03
-14	129,04	8,467	-3,221	0,380	0,000016	243,49	4935,736	38,03
-12	146,04	8,536	-3,251	0,381	0,000032	237,02	5582,974	38,06
-10	163,18	8,594	-3,279	0,382	0,000047	230,49	6235,978	38,12
-8	180,41	8,642	-3,305	0,382	0,000062	223,90	6894,423	38,20
-6	197,74	8,679	-3,330	0,384	0,000076	217,27	7557,964	38,31
-4	215,12	8,705	-3,353	0,385	0,000089	210,59	8226,237	38,44
-2	232,55	8,721	-3,373	0,387	0,000102	203,86	8898,851	38,59
0	250,00	8,727	-3,392	0,389	0,000114	197,09	9575,390	38,77
2	267,45	8,721	-3,408	0,391	0,000125	190,29	10255,405	38,97
4	284,88	8,705	-3,422	0,393	0,000136	183,46	10938,406	39,19
6	302,26	8,679	-3,432	0,395	0,000145	176,61	11623,860	39,43
8	319,59	8,642	-3,440	0,398	0,000154	169,74	12311,178	39,68
10	336,82	8,594	-3,444	0,401	0,000160	162,85	12999,706	39,94
12	353,96	8,536	-3,445	0,404	0,000163	155,96	13688,710	40,22
14	370,96	8,467	-3,441	0,406	0,000164	149,07	14377,358	40,50
16	387,82	8,389	-3,432	0,409	0,000159	142,20	15064,698	40,77
18	404,51	8,300	-3,417	0,412	0,000148	135,35	15749,630	41,04
20	421,01	8,200	-3,395	0,414	0,000128	128,54	16430,867	41,28

kr	kr							
	15,08	$\frac{\text{Kr}=(\Delta \text{Fm}/\Delta \text{Yc})^*\text{MR}+\text{Fm}^*(\Delta \text{MR}/\Delta \text{Yc})}{\ln (1+\pi)^{1/2}}$						
14,97	14,99	$kr = k^{(1m/yc)^{2}}$						
14,85	14,91							
14,74	14,83							
14,66	14,76							
14,58	14,71							
14,52	14,65							
14,47	14,61							
14,44	14,57	Curro do rigidoz (fuorzos)						
14,41	14,54	Curva de lígidez (lueizas)						
14,40	14,51	25						
14,40	14,49							
14,41	14,47							
14,46	14,46	S S						
14,55	14,47	· 코 15						
14,67	14,50							
14,84	14,56	물 10						
15,04	14,63							
15,27	14,72							
15,53	14,83							
15,83	14,96							
16,16	15,11	0,00 100,00 200,00 300,00 400,00 500,00						
16,51	15,27	Despiazamiento vertical de la rueda yc (mm)						
16,89	15,45							
17,28	15,64	Figura 30. Gráfico de rigidez reducida con fórmula de velocidades						
17,69	15,85	y con fórmula completa.						
18,09	16,06							
18,47	16,29							
18,81	16,51							
19,08	16,74							
19,23	16,95							
19,20	17,14							

Tabla 7. Rigidez reducida con fórmula de velocidades y con fórmula completa.

3. SISTEMA FULL FLOATER

3.1. Cálculo de la curva de rigidez para el sistema Full Floater

Figura 31. Primer ejemplo del sistema Full Floater en Creo.

Para el cálculo de la curva óptima de la suspensión Full Floater, se comienzan realizando unas piezas las cuales se unen formando el mecanismo. Se calcula la curva de rigidez de esta configuración y si no es la adecuada, se cambia la geometría de las piezas hasta encontrar la curva óptima.

En este apartado de cálculos se realizan los siguientes pasos:

- Paso 1: definir las piezas del sistema de suspensión, el basculante, el chasis, la bieleta, la rueda y el triángulo de suspensión o balancín;
- Paso 2: definir el mecanismo. Se define el muelle, al cual se le da una constante, una longitud y un diámetro definidos por la organización;
- Paso 3: definir análisis de mecanismos. Se definen el motor cinemático y el análisis de cinemático y se ejecuta, obteniendo los valores de la curva, etc.;
- Paso 4: variaciones en las dimensiones de las piezas para ver su influencia en la rigidez;
- Paso 5: cinco modelos de suspensión y resultados de la pieza final en Excel.

3.1.1. Paso 1: definir piezas

Al igual en se ha hecho con la suspensión tradicional, se definen las piezas in Creo Parametric, por lo que no se va a explicar tan detalladamente como en el anterior caso.

Figura 32. Diseño inicial del basculante. La medida de su longitud debe de ser siempre 525 mm.

Figura 33. Diseño inicial de la bieleta.

Figura 34. Diseño inicial del chasis.

Figura 35: Diseño inicial del triángulo de suspensión.

Figura 36. Diseño inicial de la rueda.

3.1.2. Paso 2: definir el mecanismo

Una vez definidas las piezas, estas se unen formando una configuración, que junto con el muelle forman el mecanismo **II**.

1. Como en el caso anterior, se define un esbozo y se dibuja sobre el plano XY una línea inclinada, donde va incorporado el chasis. Si se quiere, no es necesario realizar el chasis como una pieza ya que se puede utilizar esta línea como si fuese la pieza en sí, y variar su longitud e inclinación cuando sea necesario, sin tener que variar también la pieza chasis.

Figura 37. Planos.
2. Aceptado el esbozo, se montan ¹ las piezas.
Primero el chasis y después las demás piezas sobre él.

La restricción para el chasis es rígida i y coincidente i en sus dos extremos y en el plano XY. Para la rueda sobre el basculante también es rígido mientras que los demás están unidos mediante "pin" o "definido por el usuario", pero aun así todos coincidente.

Figura 38. Primer boceto.

Figura 39. Montar un símil de muelle.

Figura 40. Montando el muelle.

3. Antes de introducir el muelle, se introduce una última pieza, el muelle en pieza, el cual es necesario para determinar la longitud inicial de la suspensión. Esta nueva pieza debe de tener siempre 268 mm de longitud.

4. Con todo ya montado \checkmark se define el muelle. Mecanismo[®] - insertar muelle ^{\$\$}. Se indica la constante de rigidez k=105 N/mm, y el diámetro D=72 mm.

3.1.3. Paso 3: Definir análisis de mecanismos

En la suspensión trasera tradicional se ha visto una manera de introducir un motor cinemático y un análisis de velocidades. En esta suspensión, se realiza de una manera un poco diferente, más sencilla.

1. En mecanismos $\stackrel{\text{\tiny (b)}}{=}$ hacer clic en <u>motor</u> <u>cinemático</u> $\stackrel{\text{\tiny (c)}}{>}$.

- Seleccionar el eje de unión como el punto de giro del basculante.

- En el perfil, se selecciona velocidad de la tabla de especificación.

- Se define la constante de velocidad a 1.

- Como ángulo inicial se clica en vigente.

Definición de motor cinemático X	PRT_CSYS_DEF
Nombre	
ServoMotor1	
Tipo Perfil Especificación Velocidad v deg/sec	
Initial Angle	
ර්ත් 6.9426 deg	
Magnitud Constante	
A 1	PRT_CS.
Posicion Posicion Velocidad En gráficos distintos Aceleración	
Aceptar Aplicar Cancelar	

Figura 41. Motor cinemático.

Definición d	le análisis 🔹 🕽
Nombre	
AnalysisDefinition1	
Тіро	
Cinemático	Ŧ
Preferencias Motor	es Cargas externas
Visualización gráfica	
Tiempo de inicio 0	
Duración y velocidad	•
End Time	10
Número de marcos	101
Velocidad de marcos	10
Intervalo mínimo	0.1
Entidades blogueada	
	Despegue
Configuración inicial	
Current	
O Snapshot: Sr	apshot1 🔍 ÖÖ
Aceptar	Ejecutar Cancelar

Figura 42. Análisis de velocidades.

2. Se define el <u>análisis de velocidades</u>.

- En tipo de análisis se selecciona cinemático.

- En visualización grafica se elige como medida "duración y velocidad".

- En tiempo de inicio se indica 0 y en tiempo final un numero cualquiera mayor que 0.

- Una vez definido, hacer clic en ejecutar y una vez corrido el análisis, se acepta.

3. Se da clic en medidas $\stackrel{[]}{\boxtimes}$. Como en el caso anterior, obtenemos la velocidad $\dot{y_c}$, y la velocidad del muelle $\dot{l_m}$. A su vez, se obtienen los desplazamientos y_c y l_m . También los valores de las fuerzas F y F_e introduciendo como el tipo de medida, la definida por el usuario, e indicando en esta: -Fe*(vel_lm/vel_yc) para F y 105*(268-lm) para F_e .

- Con estas medidas, se puede también introducir otra medida más, la rigidez reducida kr indicando $105*(vel_lm/vel_yc)^2$ en medida definida por el usuario. Esta es la kr de velocidades, obtenida mediante la ecuación 6 que se indica en el apartado 7.1.3., del documento de memoria.

$$kr = k \cdot \left(\frac{\dot{lm}}{\dot{yc}}\right)^2$$

4. Como se ha indicado en el apartado 8.1.2., del documento de memoria, se puede obtener la rigidez reducida mediante una relación de distancias, ecuación 27.

$$k_r = k \cdot \left(\frac{L_a \cdot L_2 + L_1 \cdot L_l}{L_w \cdot L_2}\right)^2$$

- Por lo tanto, debemos de obtener estas distancias en medidas y corroborar que se cumple la ecuación. L_2 , L_l y L_w se obtienen fácilmente indicando en medidas que se tratan de posición. Se indica el punto respecto del que se mide, y el sistema de coordenadas de la pieza en movimiento.

- El muelle no es una pieza y como tal no tiene un sistema de coordenadas que realice su movimiento. Por ello, se introduce una nueva pieza muelle que esté unida al basculante y que el plano perpendicular al plano XY de la pieza esté siempre coincidente con el eje del balancín donde va el muelle. De esta manera, esta pieza tiene libertad de

Figura 43. Medida de L_2 .

Figura 44. Medida de L_l .

movimiento, realizando el mismo que el muelle verdadero. Así, ya tenemos un sólido con el que poder medir L_1 y L_a .

-En nueva medida se introduce kr de distancias indicando como medida definida por el usuario:

 $105*((L2*La+(-L1)*Ll)/(L2*(-Lw)))^2$

Esta medida coincide a la percepción con la anterior: kr de velocidades.

Figura 45. Medida de L_1 .

5. De esta manera ya tenemos calculada la rigidez reducida para la suspensión trasera Full Floater.

Una vez realizado el primer análisis, debemos de ver si la curva de rigidez es la deseada. Si no lo es, debemos de cambiar la configuración e ir visualizando la curva hasta encontrar la que queremos. Para que los valores den bien, se debe de introducir en cada ejecución la primera pieza muelle para que el muelle tenga la longitud inicial de 268 mm.

6. Para conocer la fuerza que actúa en la bieleta en el momento crítico (F=2500 N), se introduce el valor de la carga más desfavorable en la rueda de 2500 N y después se realiza un <u>análisis estático</u>. En el análisis se introduce la fuerza que hemos insertado. Antes de ejecutar, se realiza un análisis de velocidades y se mira en qué posición se da la fuerza de 2500 N. Yendo a esa posición, se ejecuta el análisis estático para que el programa dé el valor de la fuerza que actúa en la bieleta en dicha posición.

En el apartado de medidas, se selecciona "reacción de conexión", se escoge un punto de unión de la bieleta y se escoge la fuerza radial como magnitud de medida.

3.1.4. Paso 4: Variaciones en las piezas

En realidad, variando la geometría de una sola pieza no se obtiene la curva deseada, sino que hay que ir variando cada vez una de las medidas de cada pieza. A continuación se van a ir mostrando ejemplos de cómo variando una sola medida, la curva queda de una manera o de otra. El planteamiento para llegar a la figura final comienza con una configuración inicial a la que se le van realizando variaciones, ayudándonos de los resultados de las curvas de rigidez de las variaciones que se muestran a continuación.

Como modo de comparación se utiliza la ecuación 27.

Figura 46. Medidas a variar en la suspensión Full FLoater.

3.1.4.1. Variando el basculante (swing arm)

Variando CAx

Figura 47. Variación de CAx para la configuración inicial de suspensión Full Floater.

Figura 48. Curvas de rigidez de la configuración inicial de suspensión Full Floater variando CAx.

Variando CAx hacia izquierdas, se ve como la curva de rigidez aumenta en valor, tanto al principio como durante todo su recorrido. Se podría decir que cada vez que la bieleta está anclada más cerca del punto donde se aplica la fuerza (punto C), la curva aumenta, pero como consecuencia, disminuye en recorrido. Esto es debido al aumento de L_1 , distancia en perpendicular de la bieleta al punto rotacional del basculante. De todas maneras no se trata de un aumento tan llamativo.

Time (Sec)	415	400	380	350	330	Time (Sec)	415	400	380	350	330
0,00	9,75	10,60	11,58	12,81	13,51	7,10	16,94	18,53	20,24	22,18	23,23
0,10	9,81	10,67	11,66	12,90	13,60	7,20	17,11	18,71	20,43	22,38	23,43
0,20	9,88	10,74	11,74	12,99	13,70	7,30	17,28	18,90	20,62	22,58	23,63
0,30	9,94	10,82	11,82	13,08	13,80	7,40	17,45	19,08	20,82	22,78	23,83
0,40	10,01	10,89	11,90	13,17	13,90	7,50	17,63	19,27	21,02	22,99	24,04
0,50	10,07	10,96	11,99	13,26	14,00	7,60	17,81	19,47	21,22	23,20	24,24
0,60	10,14	11,04	12,07	13,36	14,10	7,70	17,99	19,66	21,43	23,41	24,45
0,70	10,20	11,11	12,15	13,45	14,20	7,80	18,18	19,86	21,64	23,62	24,67
0,80	10,27	11,19	12,24	13,55	14,30	7,90	18,37	20,07	21,86	23,84	24,88
0,90	10,34	11,26	12,32	13,65	14,40	8,00	18,56	20,28	22,07	24,06	25,10
1,00	10,41	11,34	12,41	13,74	14,51	8,10	18,76	20,49	22,30	24,28	25,32
1,10	10,48	11,42	12,50	13,84	14,61	8,20	18,96	20,71	22,52	24,51	25,54
1,20	10,55	11,50	12,59	13,94	14,72	8,30	19,17	20,93	22,75	24,74	25,77
1,30	10,62	11,58	12,67	14,04	14,82	8,40	19,38	21,15	22,98	24,97	26,00
1,40	10,69	11,66	12,77	14,14	14,93	8,50	19,59	21,38	23,22	25,21	26,23
1,50	10,77	11,74	12,86	14,25	15,04	8,60	19,81	21,61	23,46	25,45	26,47
1,60	10,84	11,82	12,95	14,35	15,15	8,70	20,03	21,85	23,71	25,70	26,71
1,70	10,92	11,91	13,04	14,45	15,26	8,80	20,26	22,10	23,96	25,94	26,95
1,80	10,99	11,99	13,14	14,56	15,37	8,90	20,50	22,34	24,22	26,20	27,20
1,90	11,07	12,08	13,23	14,66	15,49	9,00	20,73	22,60	24,48	26,45	27,45
2,00	11,15	12,16	13,33	14,77	15,60	9,10	20,98	22,86	24,74	26,71	27,70
2,10	11,23	12,25	13,42	14,88	15,71	9,20	21,23	23,12	25,01	26,98	27,95
2,20	11,31	12,34	13,52	14,99	15,83	9,30	21,48	23,39	25,29	27,24	28,21
2,30	11,39	12,43	13,62	15,10	15,95	9,40	21,74	23,67	25,57	27,52	28,48
2,40	11,47	12,52	13,72	15,21	16,07	9,50	22,01	23,95	25,86	27,79	28,74
2,50	11,55	12,61	13,83	15,33	16,18	9,60	22,28	24,24	26,15	28,08	29,02
2,60	11,64	12,71	13,93	15,44	16,30	9,70	22,56	24,53	26,45	28,36	29,29
2,70	11,72	12,80	14,03	15,56	16,43	9,80	22,85	24,83	26,75	28,65	29,57
2,80	11,81	12,90	14,14	15,67	16,55	9,90	23,14	25,14	27,06	28,95	29,85
2,90	11,89	12,99	14,25	15,79	16,67	10,00	23,44	25,45	27,38	29,25	30,14
3,00	11,98	13,09	14,35	15,91	16,80	10,10	23,75	25,78	27,70	29,56	30,43
3,10	12,07	13,19	14,46	16,03	16,92	10,20	24,06	26,11	28,03	29,87	30,73
3,20	12,16	13,29	14,57	16,15	17,05	10,30	24,39	26,44	28,37	30,19	31,03
3,30	12,25	13,39	14,68	16,28	17,18	10,40	24,72	26,79	28,71	30,51	31,33
3,40	12,35	13,49	14,80	16,40	17,31	10,50	25,06	27,15	29,07	30,84	31,64
3,50	12,44	13,60	14,91	16,53	17,44	10,60	25,41	27,51	29,43	31,17	31,96
3,60	12,54	13,70	15,03	16,65	17,57	10,70	25,77	27,88	29,79	31,51	32,28
3,70	12,63	13,81	15,15	16,78	17,71	10,80	26,14	28,27	30,17	31,86	32,60
3,80	12,73	13,92	15,27	16,91	17,84	10,90	26,52	28,66	30,56	32,21	32,93
3,90	12,83	14,03	15,39	17,04	17,98	11,00	26,91	29,06	30,95	32,57	33,26
4,00	12,93	14,14	15,51	17,18	18,12	11,10	27,31	29,48	31,35	32,94	33,60
4,10	13,03	14,25	15,63	17,31	18,26	11,20	27,73	29,90	31,77	33,31	33,95
4,20	13,14	14,37	15,76	17,45	18,40	11,30	28,16	30,34	32,19	33,69	34,30
4,30	13,24	14,48	15,88	17,58	18,54	11,40	28,60	30,79	32,62	34,08	34,66

4,40	13,35	14,60	16,01	17,72	18,69	11,50	29,05	31,25	33,07	34,48	35,02
4,50	13,46	14,72	16,14	17,86	18,83	11,60	29,52	31,73	33,53	34,88	35,39
4,60	13,57	14,84	16,27	18,00	18,98	11,70	30,00	32,22	33,99	35,29	35,77
4,70	13,68	14,96	16,41	18,15	19,13	11,80	30,50	32,72	34,47	35,71	36,15
4,80	13,79	15,09	16,54	18,29	19,28	11,90	31,01	33,24	34,97	36,14	36,54
4,90	13,91	15,21	16,68	18,44	19,43	12,00	31,55	33,78	35,47	36,58	36,93
5,00	14,02	15,34	16,82	18,59	19,58	12,10	32,10	34,33	35,99	37,03	37,34
5,10	14,14	15,47	16,96	18,74	19,74	12,20	32,67	34,90	36,52	37,49	
5,20	14,26	15,60	17,10	18,89	19,89	12,30	33,26	35,49	37,07		
5,30	14,38	15,74	17,24	19,05	20,05	12,40	33,87	36,10	37,64		
5,40	14,51	15,87	17,39	19,20	20,21	12,50	34,50	36,73	38,22		
5,50	14,63	16,01	17,54	19,36	20,37	12,60	35,16	37,38	38,82		
5,60	14,76	16,15	17,69	19,52	20,54	12,70	35,85	38,05			
5,70	14,89	16,29	17,84	19,68	20,70	12,80	36,56	38,75			
5,80	15,02	16,44	18,00	19,85	20,87	12,90	37,30	39,48			
5,90	15,15	16,58	18,16	20,01	21,04	13,00	38,07	40,23			
6,00	15,29	16,73	18,32	20,18	21,21	13,10	38,87	41,01			
6,10	15,43	16,88	18,48	20,35	21,38	13,20	39,71				
6,20	15,57	17,03	18,64	20,53	21,56	13,30	40,59				
6,30	15,71	17,19	18,81	20,70	21,74	13,40	41,50				
6,40	15,86	17,35	18,98	20,88	21,92	13,50	42,46				
6,50	16,00	17,51	19,15	21,06	22,10						
6,60	16,15	17,67	19,32	21,24	22,28						
6,70	16,31	17,84	19,50	21,42	22,47						
6,80	16,46	18,01	19,68	21,61	22,65						
6,90	16,62	18,18	19,86	21,80	22,84						
7,00	16,78	18,35	20,05	21,99	23,04						

Tabla 8. Valores de rigidez variando CAx

Variando OAy

Figura 49. Variación de OAy para la configuración inicial de suspensión Full Floater.

Figura 50: Curvas de rigidez de la configuración inicial de suspensión Full Floater variando OAy.

Aumentando el valor OAy, la curva aumenta el valor de la rigidez reducida. En valores cercanos al final del recorrido útil del muelle, la rigidez se dispara cuanto más grande sea OAy. Además, el tiempo en llegar a la compresión final es cada vez más corto, es decir, se necesita menos recorrido.

Time (Sec)	5	20	40	60	100	Time (Sec)	5	20	40	60	100
0,00	15,03	17,28	21,12	25,69	35,88	5,10	27,36	34,41	46,89	59,79	72,70
0,10	15,17	17,45	21,35	25,98	36,22	5,20	27,79	35,08	48,06	61,47	74,35
0,20	15,31	17,63	21,59	26,27	36,57	5,30	28,23	35,77	49,29	63,25	76,08
0,30	15,45	17,81	21,83	26,57	36,92	5,40	28,69	36,50	50,58	65,15	77,91
0,40	15,60	18,00	22,07	26,88	37,29	5,50	29,16	37,25	51,95	67,18	79,85
0,50	15,75	18,19	22,33	27,19	37,66	5,60	29,64	38,04	53,40	69,35	81,90
0,60	15,90	18,38	22,59	27,51	38,04	5,70	30,15	38,86	54,94	71,67	84,07
0,70	16,06	18,58	22,85	27,84	38,42	5,80	30,66	39,72	56,58	74,18	86,39
0,80	16,22	18,78	23,12	28,18	38,82	5,90	31,20	40,62	58,32	76,88	88,86
0,90	16,38	18,99	23,40	28,52	39,22	6,00	31,76	41,56	60,18	79,81	91,50
1,00	16,54	19,20	23,68	28,87	39,64	6,10	32,33	42,54	62,17	82,99	94,33
1,10	16,71	19,41	23,97	29,23	40,06	6,20	32,93	43,57	64,30	86,47	97,38
1,20	16,88	19,63	24,27	29,61	40,49	6,30	33,54	44,66	66,60	90,28	100,67
1,30	17,05	19,85	24,57	29,99	40,93	6,40	34,18	45,80	69,07	94,48	104,24
1,40	17,23	20,08	24,88	30,38	41,39	6,50	34,85	47,01	71,76	99,14	108,13
1,50	17,41	20,31	25,20	30,78	41,85	6,60	35,54	48,28	74,67	104,34	112,37
1,60	17,59	20,55	25,53	31,19	42,33	6,70	36,26	49,62	77,86	110,18	117,04
1,70	17,78	20,79	25,86	31,61	42,81	6,80	37,01	51,04	81,35	116,80	122,19
1,80	17,97	21,04	26,21	32,05	43,31	6,90	37,78	52,55	85,19	124,37	127,93
1,90	18,16	21,30	26,56	32,50	43,82	7,00	38,60	54,16	89,45	133,13	134,36
2,00	18,36	21,56	26,93	32,96	44,35	7,10	39,45	55,87	94,19	143,39	141,62
2,10	18,56	21,82	27,30	33,43	44,89	7,20	40,33	57,70	99,51	155,58	149,90

2,20	18,77	22,10	27,69	33,92	45,44	7,30	41,26	59,66	105,54	170,35	159,46
2,30	18,98	22,37	28,08	34,42	46,01	7,40	42,23	61,76	112,41	188,65	170,63
2,40	19,20	22,66	28,49	34,94	46,60	7,50	43,25	64,02	120,33	211,98	183,89
2,50	19,41	22,95	28,90	35,48	47,20	7,60	44,32	66,47	129,57	242,84	199,95
2,60	19,64	23,25	29,33	36,03	47,82	7,70	45,44	69,11	140,52	285,75	219,87
2,70	19,87	23,56	29,78	36,60	48,45	7,80	46,62	72,00	153,69	349,84	245,32
2,80	20,10	23,88	30,24	37,19	49,11	7,90	47,87	75,14	169,89		279,19
2,90	20,34	24,20	30,71	37,80	49,79	8,00	49,19	78,59	190,33		326,80
3,00	20,58	24,54	31,19	38,43	50,48	8,10	50,58	82,40	216,99		
3,10	20,83	24,88	31,70	39,08	51,20	8,20	52,06	86,62	253,33		
3,20	21,09	25,23	32,21	39,76	51,94	8,30	53,62	91,32			
3,30	21,35	25,59	32,75	40,46	52,70	8,40	55,29	96,61			
3,40	21,62	25,96	33,30	41,18	53,49	8,50	57,06	102,59			
3,50	21,89	26,35	33,88	41,94	54,31	8,60	58,96	109,43			
3,60	22,17	26,74	34,47	42,72	55,16	8,70	60,99	117,31			
3,70	22,46	27,14	35,09	43,54	56,03	8,80	63,18	126,53			
3,80	22,75	27,56	35,73	44,38	56,94	8,90	65,53	137,45			
3,90	23,05	27,99	36,39	45,27	57,88	9,00	68,07	150,62			
4,00	23,36	28,43	37,08	46,19	58,85	9,10	70,82	166,82			
4,10	23,68	28,89	37,79	47,15	59,86	9,20	73,82				
4,20	24,00	29,36	38,53	48,15	60,92	9,30	77,09				
4,30	24,34	29,85	39,31	49,21	62,01	9,40	80,69				
4,40	24,68	30,35	40,11	50,31	63,15	9,50	84,65				
4,50	25,03	30,87	40,96	51,46	64,34	9,60	89,05				
4,60	25,39	31,41	41,84	52,67	65,58	9,70	93,96				
4,70	25,76	31,97	42,75	53,95	66,88	9,80	99,48				
4,80	26,15	32,55	43,72	55,29	68,23	9,90	105,74				
4,90	26,54	33,14	44,72	56,71	69,65	10,00	112,88				
5,00	26,94	33,76	45,78	58,20	71,14						

Tabla 9. Valores de rigidez variando OAy.

Variando OPy

Figura 51. Variación de OPy para la configuración inicial de suspensión Full Floater.

Disminuyendo OPy la rigidez disminuye, es decir, la suspensión se hace cada vez menos dura, llegando a convertirse básicamente en una curva lineal, casi regresiva. Sin embargo, cuanto memos OPy, más desplazamiento vertical de la rueda.

Figura 52: Curvas de rigidez de la configuración inicial de suspensión Full Floater variando OPy.

Time (Sec)	50	35	20	10	5	Time (Sec)	50	35	20	10	5
0,00	15,03	10,77	8,14	6,95	6,48	9,00	68,07	25,45	14,85	11,39	10,17
0,10	15,17	10,84	8,18	6,98	6,51	9,10	70,82	25,82	14,98	11,47	10,23
0,20	15,31	10,92	8,23	7,02	6,54	9,20	73,82	26,19	15,11	11,54	10,29
0,30	15,45	11,00	8,27	7,05	6,57	9,30	77,09	26,58	15,24	11,62	10,35
0,40	15,60	11,07	8,32	7,08	6,60	9,40	80,69	26,97	15,37	11,70	10,42
0,50	15,75	11,15	8,36	7,12	6,63	9,50	84,66	27,38	15,51	11,78	10,48
0,60	15,90	11,23	8,41	7,15	6,65	9,60	89,05	27,80	15,65	11,86	10,54
0,70	16,06	11,31	8,46	7,18	6,68	9,70	93,96	28,23	15,79	11,94	10,61
0,80	16,22	11,40	8,50	7,22	6,71	9,80	99,48	28,68	15,93	12,02	10,67
0,90	16,38	11,48	8,55	7,25	6,74	9,90	105,74	29,14	16,08	12,11	10,74
1,00	16,54	11,56	8,60	7,29	6,77	10,00	112,89	29,61	16,22	12,19	10,81
1,10	16,71	11,65	8,65	7,32	6,80	10,10		30,10	16,37	12,28	10,88
1,20	16,88	11,74	8,70	7,36	6,83	10,20		30,61	16,53	12,37	10,94
1,30	17,05	11,82	8,75	7,39	6,86	10,30		31,13	16,68	12,46	11,01
1,40	17,23	11,91	8,80	7,43	6,89	10,40		31,67	16,84	12,54	11,08
1,50	17,41	12,00	8,85	7,46	6,92	10,50		32,23	17,00	12,64	11,15
1,60	17,59	12,09	8,90	7,50	6,96	10,60		32,81	17,16	12,73	11,23
1,70	17,78	12,18	8,95	7,54	6,99	10,70		33,41	17,33	12,82	11,30
1,80	17,97	12,28	9,00	7,57	7,02	10,80		34,03	17,50	12,91	11,37
1,90	18,16	12,37	9,06	7,61	7,05	10,90		34,68	17,67	13,01	11,45
2,00	18,36	12,47	9,11	7,65	7,08	11,00		35,35	17,85	13,11	11,52

2,10	18,56	12,57	9,16	7,69	7,11	11,10	36,04	18,03	13,21	11,60
2,20	18,77	12,66	9,22	7,73	7,15	11,20	36,77	18,21	13,31	11,67
2,30	18,98	12,76	9,27	7,76	7,18	11,30	37,52	18,40	13,41	11,75
2,40	19,20	12,87	9,33	7,80	7,21	11,40	38,31	18,59	13,51	11,83
2,50	19,41	12,97	9,38	7,84	7,25	11,50	39,13	18,78	13,61	11,91
2,60	19,64	13,07	9,44	7,88	7,28	11,60	39,98	18,98	13,72	11,99
2,70	19,87	13,18	9,50	7,92	7,31	11,70	40,87	19,18	13,82	12,07
2,80	20,10	13,29	9,55	7,96	7,35	11,80	41,81	19,39	13,93	12,16
2,90	20,34	13,39	9,61	8,00	7,38	11,90	42,79	19,60	14,04	12,24
3,00	20,58	13,50	9,67	8,04	7,42	12,00	43,82	19,81	14,15	12,33
3,10	20,83	13,62	9,73	8,09	7,45	12,10	44,89	20,03	14,27	12,41
3,20	21,09	13,73	9,79	8,13	7,49	12,20	46,03	20,25	14,38	12,50
3,30	21,35	13,85	9,85	8,17	7,52	12,30	47,22	20,48	14,50	12,59
3,40	21,62	13,96	9,91	8,21	7,56	12,40	48,48	20,71	14,62	12,68
3,50	21,89	14,08	9,97	8,25	7,60	12,50	49,80	20,95	14,74	12,77
3,60	22,17	14,20	10,04	8,30	7,63	12,60		21,19	14,86	12,86
3,70	22,46	14,32	10,10	8,34	7,67	12,70		21,44	14,98	12,95
3,80	22,75	14,45	10,16	8,39	7,71	12,80		21,70	15,11	13,05
3,90	23,05	14,58	10,23	8,43	7,74	12,90		21,96	15,24	13,14
4,00	23,36	14,70	10,29	8,47	7,78	13,00		22,22	15,37	13,24
4,10	23,68	14,83	10,36	8,52	7,82	13,10		22,49	15,50	13,34
4,20	24,00	14,97	10,43	8,57	7,86	13,20		22,77	15,63	13,44
4,30	24,34	15,10	10,49	8,61	7,90	13,30		23,06	15,77	13,54
4,40	24,68	15,24	10,56	8,66	7,93	13,40		23,35	15,91	13,64
4,50	25,03	15,38	10,63	8,70	7,97	13,50		23,65	16,05	13,75
4,60	25,39	15,52	10,70	8,75	8,01	13,60		23,96	16,19	13,85
4,70	25,76	15,66	10,77	8,80	8,05	13,70		24,27	16,34	13,96
4,80	26,15	15,81	10,84	8,85	8,09	13,80		24,60	16,48	14,07
4,90	26,54	15,96	10,92	8,90	8,13	13,90		24,93	16,63	14,18
5,00	26,94	16,11	10,99	8,95	8,17	14,00		25,27	16,79	14,29
5,10	27,36	16,26	11,06	9,00	8,22	14,10		25,62	16,94	14,40
5,20	27,79	16,42	11,14	9,05	8,26	14,20		25,98	17,10	14,52
5,30	28,23	16,58	11,22	9,10	8,30	14,30		26,35	17,26	14,63
5,40	28,69	16,74	11,29	9,15	8,34	14,40		26,73	17,43	14,75
5,50	29,16	16,90	11,37	9,20	8,39	14,50		27,12	17,59	14,87
5,60	29,64	17,07	11,45	9,25	8,43	14,60		27,52	17,76	14,99
5,70	30,15	17,24	11,53	9,30	8,47	14,70		27,93	17,94	15,12
5,80	30,66	17,42	11,61	9,36	8,52	14,80		28,36	18,11	15,24
5,90	31,20	17,60	11,69	9,41	8,56	14,90		28,79	18,29	15,37
6,00	31,76	17,78	11,77	9,46	8,61	15,00		29,25	18,48	15,50
6,10	32,33	17,96	11,86	9,52	8,65	15,10			18,66	15,63
6,20	32,93	18,15	11,94	9,57	8,70	15,20			18,85	15,77
6,30	33,54	18,34	12,03	9,63	8,74	15,30	1		19,05	15,91
6,40	34,18	18,54	12,12	9,69	8,79	15,40			19,25	16,04
6,50	34,85	18,74	12,20	9,74	8,84	15,50			19,45	16,18

6,60	35,54	18,94	12,29	9,80	8,88	15,60		19,65	16,33
6,70	36,26	19,15	12,38	9,86	8,93	15,70		19,86	16,47
6,80	37,01	19,36	12,48	9,92	8,98	15,80		20,08	16,62
6,90	37,78	19,57	12,57	9,98	9,03	15,90		20,30	16,77
7,00	38,60	19,79	12,66	10,04	9,08	16,00		20,52	16,93
7,10	39,45	20,02	12,76	10,10	9,13	16,10		20,75	17,08
7,20	40,33	20,25	12,85	10,16	9,18	16,20		20,98	17,24
7,30	41,26	20,49	12,95	10,22	9,23	16,30		21,22	17,40
7,40	42,23	20,73	13,05	10,28	9,28	16,40		21,47	17,57
7,50	43,25	20,97	13,15	10,35	9,33	16,50		21,72	17,73
7,60	44,32	21,22	13,25	10,41	9,38	16,60		21,97	17,90
7,70	45,44	21,48	13,36	10,48	9,43	16,70		22,23	18,08
7,80	46,62	21,74	13,46	10,54	9,49	16,80			18,25
7,90	47,87	22,01	13,57	10,61	9,54	16,90			18,43
8,00	49,19	22,29	13,68	10,68	9,60	17,00			18,62
8,10	50,58	22,57	13,79	10,74	9,65	17,10			18,81
8,20	52,06	22,86	13,90	10,81	9,71	17,20			19,00
8,30	53,62	23,15	14,01	10,88	9,76	17,30			19,19
8,40	55,29	23,46	14,13	10,95	9,82	17,40			19,39
8,50	57,06	23,77	14,24	11,02	9,87	17,50			19,59
8,60	58,96	24,09	14,36	11,09	9,93	17,60			19,80
8,70	60,99	24,42	14,48	11,17	9,99				
8,80	63,18	24,75	14,60	11,24	10,05				
8,90	65,53	25,10	14,73	11,31	10,11				

Tabla 10. Valores de rigidez variando OPy.

Variando OPx

Figura 53. Variación de OPx para la configuración inicial de suspensión Full Floater.

Cuanto más se acerque la unión del muelle al chasis, mas lineal se convierte la curva y por tanto menos progresividad para la suspensión. El desplazamiento vertical de la rueda aumenta también al unísono que la curva se vuelve menos progresiva.

Figura 54: Curvas de rigidez de la configuración inicial de suspensión Full Floater variando OPx.

Time (Sec)	80	60	40	30	15	Time (Sec)	80	60	40	30	15
0,00	12,95	9,75	7,11	5,97	4,43	9,10	32,94	20,98	14,01	11,46	8,36
0,10	13,04	9,81	7,16	6,00	4,46	9,20	33,49	21,23	14,15	11,56	8,43
0,20	13,13	9,88	7,20	6,04	4,49	9,30	34,07	21,48	14,28	11,66	8,50
0,30	13,23	9,94	7,25	6,08	4,51	9,40	34,66	21,74	14,42	11,77	8,57
0,40	13,32	10,01	7,29	6,11	4,54	9,50	35,27	22,01	14,56	11,87	8,64
0,50	13,42	10,07	7,34	6,15	4,57	9,60	35,91	22,28	14,70	11,98	8,71
0,60	13,51	10,14	7,38	6,19	4,60	9,70	36,57	22,56	14,85	12,09	8,78
0,70	13,61	10,20	7,43	6,23	4,63	9,80	37,26	22,85	14,99	12,20	8,85
0,80	13,71	10,27	7,48	6,27	4,66	9,90	37,97	23,14	15,14	12,31	8,93
0,90	13,81	10,34	7,52	6,31	4,69	10,00	38,71	23,44	15,30	12,42	9,00
1,00	13,91	10,41	7,57	6,35	4,72	10,10	39,48	23,75	15,45	12,54	9,08
1,10	14,02	10,48	7,62	6,39	4,75	10,20	40,29	24,06	15,61	12,66	9,15
1,20	14,12	10,55	7,67	6,43	4,78	10,30	41,12	24,39	15,77	12,78	9,23
1,30	14,23	10,62	7,72	6,47	4,81	10,40	42,00	24,72	15,94	12,90	9,31
1,40	14,34	10,69	7,77	6,51	4,84	10,50	42,91	25,06	16,11	13,02	9,39
1,50	14,45	10,77	7,82	6,55	4,87	10,60	43,86	25,41	16,28	13,15	9,47
1,60	14,56	10,84	7,87	6,59	4,90	10,70	44,86	25,77	16,45	13,27	9,56
1,70	14,67	10,92	7,92	6,64	4,93	10,80	45,91	26,14	16,63	13,40	9,64
1,80	14,78	10,99	7,97	6,68	4,97	10,90	47,01	26,52	16,81	13,53	9,72
1,90	14,90	11,07	8,02	6,72	5,00	11,00	48,16	26,91	16,99	13,67	9,81
2,00	15,02	11,15	8,08	6,76	5,03	11,10	49,37	27,31	17,18	13,80	9,90
2,10	15,14	11,23	8,13	6,81	5,06	11,20	50,65	27,73	17,37	13,94	9,98
2,20	15,26	11,31	8,18	6,85	5,10	11,30	52,00	28,16	17,57	14,08	10,07
2,30	15,38	11,39	8,24	6,90	5,13	11,40	53,43	28,60	17,77	14,23	10,17
2,40	15,51	11,47	8,29	6,94	5,16	11,50	54,93	29,05	17,97	14,37	10,26
2,50	15,63	11,55	8,35	6,99	5,20	11,60	56,53	29,52	18,18	14,52	10,35

2.60	1576	11 64	0.40	7.02	5 02	11 70	1	20.00	10.20	14 67	10.45
2,00	15,70	11,04	8,40	7,05	5,25	11,70		30,00	18,39	14,07	10,43
2,70	15,09	11,72	0,40 0 5 2	7,08	5.20	11,00		30,30	10,01	14,05	10,54
2,80	10,05	11,01	8,32 9,59	7,15	5,50	12.00		21.55	10,05	14,98	10,04
2,90	10,10	11,89	8,58	7,18	5,54	12,00		31,55	19,00	15,14	10,74
3,00	16,30	11,98	8,63	7,22	5,37	12,10		32,10	19,29	15,31	10,84
3,10	16,44	12,07	8,69	7,27	5,41	12,20		32,67	19,53	15,47	10,94
3,20	16,58	12,16	8,75	7,32	5,44	12,30		33,26	19,77	15,64	11,05
3,30	16,72	12,25	8,81	7,37	5,48	12,40		33,87	20,02	15,81	11,15
3,40	16,87	12,35	8,87	7,42	5,52	12,50		34,50	20,27	15,99	11,26
3,50	17,02	12,44	8,94	7,47	5,55	12,60		35,16	20,53	16,17	11,37
3,60	17,17	12,54	9,00	7,52	5,59	12,70		35,85	20,80	16,35	11,48
3,70	17,32	12,63	9,06	7,57	5,63	12,80		36,56	21,07	16,54	11,59
3,80	17,48	12,73	9,13	7,63	5,67	12,90		37,30	21,35	16,73	11,70
3,90	17,64	12,83	9,19	7,68	5,71	13,00		38,07	21,64	16,92	11,82
4,00	17,80	12,93	9,26	7,73	5,75	13,10		38,87	21,93	17,12	11,94
4,10	17,96	13,03	9,32	7,78	5,78	13,20		39,71	22,23	17,32	12,06
4,20	18,13	13,14	9,39	7,84	5,82	13,30		40,59	22,54	17,53	12,18
4,30	18,30	13,24	9,46	7,89	5,86	13,40			22,85	17,74	12,30
4,40	18,47	13,35	9,53	7,95	5,90	13,50			23,18	17,96	12,43
4,50	18,65	13,46	9,60	8,01	5,94	13,60			23,51	18,18	12,56
4,60	18,83	13,57	9,67	8,06	5,99	13,70			23,86	18,40	12,69
4,70	19,01	13,68	9,74	8,12	6,03	13,80			24,21	18,63	12,82
4,80	19,20	13,79	9,81	8,18	6,07	13,90			24,57	18,87	12,96
4,90	19,39	13,91	9,88	8,24	6,11	14,00			24,94	19,11	13,09
5,00	19,59	14,02	9,96	8,29	6,15	14,10			25,33	19,36	13,23
5,10	19,78	14,14	10,03	8,35	6,20	14,20			25,72	19,61	13,38
5,20	19,98	14,26	10,11	8,41	6,24	14,30			26,13	19,87	13,52
5,30	20,19	14,38	10,18	8,48	6,29	14,40			26,55	20,13	13,67
5,40	20,40	14,51	10,26	8,54	6,33	14,50			26,98	20,41	13,82
5,50	20,61	14,63	10,34	8,60	6,37	14,60			27,43	20,69	13,97
5,60	20,83	14,76	10,42	8,66	6,42	14,70			27,89	20,97	14,13
5,70	21,06	14,89	10,50	8,73	6,47	14,80			28,37	21,26	14,29
5,80	21,28	15,02	10,58	8,79	6,51	14,90			28,86	21,56	14,45
5,90	21,52	15,15	10,66	8,86	6,56	15,00			29,37	21,87	14,61
6,00	21,75	15.29	10,74	8,92	6,61	15,10			29,89	22,19	14,78
6,10	22,00	15,43	10.83	8,99	6,65	15,20			30,44	22,51	14,96
6,20	22,24	15.57	10,91	9,06	6,70	15,30			31.00	22,85	15.13
6.30	22.50	15.71	11.00	9.13	6.75	15.40			,	23.19	15.31
6,40	22.76	15.86	11.09	9,20	6,80	15.50		ļ		23.55	15.49
6,50	23.02	16.00	11.18	9.27	6.85	15.60				23.91	15.68
6,60	23.29	16.15	11.27	9.34	6.90	15.70				24.28	15.87
6.70	23 57	16 31	11 36	9 41	6.95	15.80				24 67	16.06
6.80	23.85	16.46	11.00	9.49	7.00	15,00				25.07	16.26
6.90	23,03	16,40	11,55	9.56	7.05	16.00				25.48	16.47
7.00	24 44	16 78	11,55	9.63	7 11	16.10				25 90	16.67
,,00	,		,	-,00	· , • •	10,10	1		1	,	, - /

7,10	24,74	16,94	11,74	9,71	7,16	16,20		26,33	16,89
7,20	25,06	17,11	11,84	9,79	7,21	16,30		26,78	17,10
7,30	25,38	17,28	11,94	9,86	7,27	16,40		27,25	17,33
7,40	25,71	17,45	12,04	9,94	7,32	16,50		27,73	17,55
7,50	26,04	17,63	12,14	10,02	7,38	16,60			17,79
7,60	26,39	17,81	12,25	10,10	7,43	16,70			18,02
7,70	26,74	17,99	12,35	10,19	7,49	16,80			18,27
7,80	27,11	18,18	12,46	10,27	7,55	16,90			18,52
7,90	27,48	18,37	12,57	10,35	7,61	17,00			18,77
8,00	27,87	18,56	12,68	10,44	7,67	17,10			19,04
8,10	28,26	18,76	12,79	10,53	7,72	17,20			19,31
8,20	28,67	18,96	12,90	10,61	7,78	17,30			19,58
8,30	29,09	19,17	13,02	10,70	7,85	17,40			19,87
8,40	29,52	19,38	13,14	10,79	7,91	17,50			20,16
8,50	29,96	19,59	13,26	10,88	7,97	17,60			20,45
8,60	30,42	19,81	13,38	10,98	8,03	17,70			20,76
8,70	30,89	20,03	13,50	11,07	8,10	17,80			21,08
8,80	31,38	20,26	13,62	11,17	8,16	17,90			21,40
8,90	31,88	20,50	13,75	11,26	8,23	18,00			21,73
9,00	32,40	20,73	13,88	11,36	8,29	18,10			22,08
						18,20			22,43
						18,30			22,79
						18,40			23,17
						18,50			23,55

Tabla 11. Valores de rigidez variando OPx.

3.1.4.2. Variando el triángulo de suspensión (Rocker - arm)

Variando ED

Figura 55. Variación de ED para la configuración inicial de suspensión Full Floater.

Si nos fijamos en el balancín. Vemos como disminuyendo la longitud ED disminuye también la distancia entre T y D. Si quisiéramos tener siempre un triángulo isósceles o equilátero, deberíamos

de variar también alguna otra medida, como el ángulo φ o ETy. Ahora veremos que ocurre con la rigidez debido a esta variación realizada.

Figura 56: Curvas de rigidez de la configuración inicial de suspensión Full Floater variando ED.

Disminuyendo únicamente ED se tienen curvas cada vez menos rígidas. Esto es debido a que la distancia L_1 (distancia en perpendicular entre el muelle y el pivote del balancín) es cada vez más pequeña, al igual que L_a y por tanto L_2 (distancia en perpendicular ente la bieleta y punto de rotación del balancín) es cada vez mayor, manteniéndose L_1 .

Time (Sec)	160	140	120	100	80	Time (Sec)	160	140	120	100	80,
0,00	20,49	14,51	9,34	5,36	2,86	9,00	50,81	32,85	20,89	11,15	6,18
0,10	20,64	14,61	9,41	5,39	2,88	9,10	51,59	33,29	21,16	11,27	6,26
0,20	20,79	14,71	9,47	5,43	2,90	9,20	52,40	33,73	21,43	11,40	6,33
0,30	20,94	14,81	9,53	5,46	2,92	9,30	53,23	34,19	21,71	11,53	6,40
0,40	21,09	14,91	9,60	5,50	2,94	9,40	54,09	34,66	22,01	11,66	6,48
0,50	21,25	15,01	9,66	5,53	2,97	9,50	54,98	35,14	22,30	11,79	6,55
0,60	21,40	15,12	9,73	5,57	2,99	9,60	55,89	35,63	22,61	11,93	6,63
0,70	21,56	15,22	9,80	5,61	3,01	9,70	56,83	36,14	22,92	12,07	6,71
0,80	21,72	15,33	9,87	5,64	3,03	9,80	57,80	36,66	23,25	12,21	6,79
0,90	21,89	15,44	9,93	5,68	3,05	9,90	58,81	37,19	23,58	12,36	6,88
1,00	22,05	15,54	10,00	5,72	3,07	10,00		37,75	23,92	12,51	6,96
1,10	22,22	15,66	10,07	5,76	3,09	10,10		38,31	24,27	12,66	7,05
1,20	22,39	15,77	10,15	5,79	3,12	10,20		38,90	24,63	12,82	7,14
1,30	22,57	15,88	10,22	5,83	3,14	10,30		39,50	25,00	12,98	7,23
1,40	22,74	15,99	10,29	5,87	3,16	10,40		40,11	25,39	13,14	7,33
1,50	22,92	16,11	10,37	5,91	3,18	10,50		40,75	25,78	13,31	7,42
1,60	23,10	16,23	10,44	5,95	3,21	10,60		41,41	26,19	13,48	7,52

	1		I				1 1				I
1,70	23,28	16,35	10,52	6,00	3,23	10,70		42,09	26,60	13,66	7,62
1,80	23,47	16,47	10,59	6,04	3,26	10,80		42,79	27,04	13,84	7,73
1,90	23,65	16,59	10,67	6,08	3,28	10,90		43,51	27,48	14,03	7,83
2,00	23,85	16,71	10,75	6,12	3,30	11,00		44,26	27,94	14,22	7,94
2,10	24,04	16,84	10,83	6,16	3,33	11,10		45,03	28,42	14,42	8,05
2,20	24,23	16,96	10,91	6,21	3,35	11,20		45,83	28,91	14,62	8,17
2,30	24,43	17,09	10,99	6,25	3,38	11,30		46,65	29,42	14,82	8,29
2,40	24,64	17,22	11,07	6,30	3,40	11,40		47,51	29,95	15,04	8,41
2,50	24,84	17,36	11,16	6,34	3,43	11,50		48,40	30,50	15,25	8,53
2,60	25,05	17,49	11,24	6,39	3,46	11,60			31,06	15,48	8,66
2,70	25,26	17,62	11,33	6,43	3,48	11,70			31,65	15,71	8,79
2,80	25,47	17,76	11,42	6,48	3,51	11,80			32,26	15,95	8,93
2,90	25,69	17,90	11,51	6,53	3,54	11,90			32,90	16,19	9,07
3,00	25,91	18,04	11,60	6,57	3,56	12,00			33,56	16,44	9,21
3,10	26,14	18,19	11,69	6,62	3,59	12,10			34,25	16,70	9,36
3,20	26,37	18,33	11,78	6,67	3,62	12,20			34,96	16,97	9,52
3,30	26,60	18,48	11,87	6,72	3,65	12,30			35,71	17,25	9,67
3,40	26,83	18,63	11,97	6,77	3,68	12,40			36,49	17,54	9,84
3,50	27,07	18,78	12,06	6,82	3,71	12,50			37,30	17,83	10,01
3,60	27,32	18,94	12,16	6,87	3,73	12,60			38,16	18,14	10,18
3,70	27,56	19,09	12,26	6,92	3,76	12,70			39,05	18,45	10,36
3,80	27,81	19,25	12,36	6,98	3,79	12,80			39,99	18,78	10,55
3,90	28,07	19,41	12,46	7,03	3,83	12,90			40,97	19,12	10,74
4,00	28,33	19,58	12,57	7,08	3,86	13,00			42,00	19,47	10,94
4,10	28,59	19,74	12,67	7,14	3,89	13,10				19,83	11,15
4,20	28,86	19,91	12,78	7,19	3,92	13,20				20,21	11.37
4,30	29,13	20,08	12,89	7,25	3,95	13,30				20,60	11.59
4,40	29,41	20,26	13.00	7,31	3,98	13,40				21.01	11.82
4.50	29.69	20.43	13.11	7.36	4.02	13.50				21.44	12.06
4,60	29,98	20,61	13,22	7,42	4,05	13,60				21,88	12,32
4.70	30.27	20.79	13.34	7.48	4.09	13.70				22.34	12.58
4,80	30,57	20,98	13,46	7,54	4,12	13,80				22,82	12,85
4.90	30.87	21.17	13.57	7.60	4.15	13.90				23.32	13.14
5.00	31.18	21.36	13.69	7.67	4.19	14.00				23.85	13.44
5,10	31.50	21.55	13.82	7.73	4.23	14.10				24.40	13.75
5.20	31.82	21.75	13.94	7,79	4.26	14.20				24.97	14.08
5 30	32.14	21.95	14 07	7.86	4 30	14 30				25.58	14 42
5.40	32,11	22,55	14 20	7,00	4 34	14.40				26,30	14 78
5,40	32,40	22,10	14,20	7 99	4 38	14,40				26,21	15,16
5,50	32,02	22,30	14 46	8.06	4,50	14.60				20,00	15,10
5,00	33,10	22,30	14,40	8 12	7,41	14,00				21,37	15.00
5.80	32.07	22,19	14,00	8 10	4,40	14,70				20,33	15,70
5,00	24.24	23,01	14,/3	0,19	4,49	14,00				29,11	10,43
5,90	34,24	23,23	14,88	0,20	4,33	14,90				29,94	10,90
0,00	34,01	23,46	15,02	8,34	4,5/	15,00				30,82	17,39
6,10	54,99	23,69	15,16	8,41	4,62	15,10				31,/6	17,92

6,20	35,38	23,93	15,31	8,48	4,66	15,20		32,76	18,49
6,30	35,78	24,17	15,46	8,56	4,70	15,30		33,82	19,09
6,40	36,18	24,41	15,61	8,63	4,74	15,40		34,96	19,73
6,50	36,60	24,66	15,77	8,71	4,79	15,50		36,18	20,41
6,60	37,02	24,91	15,93	8,79	4,83	15,60		37,49	21,15
6,70	37,45	25,17	16,09	8,87	4,88	15,70		38,91	21,94
6,80	37,89	25,43	16,26	8,95	4,93	15,80		40,44	22,80
6,90	38,34	25,70	16,42	9,03	4,97	15,90		42,11	23,72
7,00	38,81	25,97	16,59	9,12	5,02	16,00		43,92	24,73
7,10	39,28	26,25	16,77	9,20	5,07	16,10		45,91	25,83
7,20	39,76	26,54	16,95	9,29	5,12	16,20		48,10	27,04
7,30	40,25	26,83	17,13	9,38	5,17	16,30			28,37
7,40	40,76	27,12	17,31	9,47	5,22	16,40			29,85
7,50	41,27	27,43	17,50	9,56	5,27	16,50			31,49
7,60	41,80	27,73	17,70	9,65	5,33	16,60			33,33
7,70	42,35	28,05	17,89	9,75	5,38	16,70			35,41
7,80	42,90	28,37	18,09	9,84	5,44	16,80			37,77
7,90	43,47	28,70	18,30	9,94	5,49	16,90			40,50
8,00	44,05	29,04	18,51	10,04	5,55	17,00			43,67
8,10	44,65	29,38	18,72	10,14	5,61	17,10			47,40
8,20	45,27	29,73	18,94	10,24	5,67	17,20			51,87
8,30	45,89	30,09	19,17	10,35	5,73	17,30			57,31
8,40	46,54	30,46	19,40	10,46	5,79	17,40			64,11
8,50	47,20	30,83	19,63	10,57	5,85	17,50			72,83
8,60	47,89	31,22	19,87	10,68	5,92	17,60			84,47
8,70	48,59	31,61	20,11	10,79	5,98	17,70			100,77
8,80	49,31	32,02	20,37	10,91	6,05	17,80			125,32
8,90	50,05	32,43	20,62	11,03	6,12	17,90			166,52
						18,00			249,83

Tabla 12. Valores de rigidez variando ED.

Variando ETy

Figura 57. Variación de ETy para la configuración inicial de suspensión Full Floater.

Figura 58: Curvas de rigidez de la configuración inicial de suspensión Full Floater variando ETy.

Aminorando ETy provocamos que L_2 sea menor, L_1 y L_1 mayor y que L_a cada vez se aproxime más a 0. Esto ocasiona que la rigidez aumente, tal y como se ve entre la curva morada y la verde, mostradas en la figura 58. Junto con este aumento, se produce un descenso en el desplazamiento vertical de la rueda, llegando antes a comprimir el muelle los 50 mm de recorrido útil. Sin embargo, en otros estudios como en el apartado 6.2.3.3., de la teoría del sistema Full Floater se muestra que disminuyendo esta distancia, la curva se vuelve cada vez más lineal hasta el punto de llegar a ser regresiva.

Time (Sec)	50	40	30	15	Time (Sec)	50	40	30
0,00	11,27	19,48	41,88	405,77	6,10	17,88	33,15	85,06
0,10	11,34	19,62	42,25	414,55	6,20	18,05	33,52	86,45
0,20	11,41	19,76	42,62	423,71	6,30	18,21	33,89	87,90
0,30	11,49	19,90	43,00	433,24	6,40	18,38	34,28	89,39
0,40	11,56	20,05	43,39	443,16	6,50	18,56	34,67	90,93
0,50	11,64	20,19	43,79	453,50	6,60	18,73	35,07	92,53
0,60	11,71	20,34	44,19	464,29	6,70	18,91	35,47	94,18
0,70	11,79	20,49	44,60	475,55	6,80	19,09	35,89	95,89
0,80	11,87	20,64	45,01	487,33	6,90	19,28	36,31	97,66
0,90	11,95	20,80	45,43	499,66	7,00	19,47	36,75	99,49
1,00	12,03	20,96	45,86	512,57	7,10	19,66	37,20	101,40
1,10	12,11	21,12	46,30	526,12	7,20	19,86	37,65	103,38
1,20	12,19	21,28	46,74	540,35	7,30	20,05	38,12	105,44
1,30	12,28	21,44	47,19	555,32	7,40	20,26	38,59	107,58
1,40	12,36	21,60	47,65	571,09	7,50	20,46	39,08	
1,50	12,45	21,77	48,12	587,73	7,60	20,67	39,58	

1,60	12,53	21,94	48,59	605,31	7,70	20,89	40,10
1,70	12,62	22,11	49,08	623,92	7,80	21,11	40,62
1,80	12,71	22,29	49,57	643,66	7,90	21,33	41,16
1,90	12,80	22,47	50,07	664,63	8,00	21,56	41,71
2,00	12,89	22,65	50,58	686,95	8,10	21,79	42,28
2,10	12,98	22,83	51,10	710,78	8,20	22,02	42,86
2,20	13,07	23,01	51,64	736,26	8,30	22,27	43,46
2,30	13,17	23,20	52,18	763,60	8,40	22,51	44,07
2,40	13,26	23,39	52,73	792,99	8,50	22,76	44,70
2,50	13,36	23,59	53,29	824,69	8,60	23,02	45,35
2,60	13,46	23,78	53,86	859,01	8,70	23,28	46,02
2,70	13,55	23,98	54,45		8,80	23,55	46,70
2,80	13,65	24,18	55,05		8,90	23,82	47,41
2,90	13,76	24,39	55,66		9,00	24,10	48,13
3,00	13,86	24,60	56,28		9,10	24,38	48,88
3,10	13,96	24,81	56,91		9,20	24,68	49,65
3,20	14,07	25,02	57,56		9,30	24,97	50,45
3,30	14,18	25,24	58,22		9,40	25,28	51,27
3,40	14,28	25,46	58,90		9,50	25,59	52,11
3,50	14,39	25,69	59,59		9,60	25,91	52,99
3,60	14,50	25,92	60,30		9,70	26,24	53,89
3,70	14,62	26,15	61,02		9,80	26,57	54,82
3,80	14,73	26,39	61,76		9,90	26,91	55,79
3,90	14,85	26,63	62,51		10,00	27,26	56,79
4,00	14,97	26,87	63,29		10,10	27,62	57,82
4,10	15,08	27,12	64,08		10,20	27,99	
4,20	15,21	27,37	64,89		10,30	28,37	
4,30	15,33	27,63	65,72		10,40	28,76	
4,40	15,45	27,89	66,57		10,50	29,16	
4,50	15,58	28,16	67,44		10,60	29,56	
4,60	15,71	28,43	68,33		10,70	29,98	
4,70	15,84	28,71	69,25		10,80	30,41	
4,80	15,97	28,99	70,19		10,90	30,86	
4,90	16,10	29,27	71,15		11,00	31,31	
5,00	16,24	29,56	72,14		11,10	31,78	
5,10	16,38	29,86	73,16		11,20	32,26	
5,20	16,52	30,16	74,20		11,30	32,76	
5,30	16,66	30,47	75,27		11,40	33,27	
5,40	16,80	30,78	76,37		11,50	33,79	
5,50	16,95	31,10	77,51		11,60	34,34	
5,60	17,10	31,43	78,67		11,70	34,90	
5,70	17,25	31,76	79,88		11,80	35,47	
5,80	17,41	32,10	81,11		11,90	36,07	
5,90	17,56	32,44	82,39		12,00	36,68	
6,00	17,72	32,79	83,70		12,10	37,32	

		12,20	37,98	
		12,30	38,66	
		12,40	39,36	
		12,50	40,09	
		12,60	40,85	
		12,70	41,63	

Tabla 13. Valores de rigidez variando ETy.

Variando φ

Figura 59. Variación de φ para la configuración inicial de suspensión Full Floater.

Figura 60: Curvas de rigidez de la configuración inicial de suspensión Full Floater variando φ .

Aumentando el ángulo φ , disminuye L₂, L₁ y L_a y aumenta L₁. Esto provoca que la rigidez comience cada vez más alta y por tanto la curva suba más. Sin embargo, el desplazamiento disminuye cuando φ aumenta.

Time (Sec)	20	22,5	24	28	32	Time (Sec)	20	22,5	24	28	32
0,00	13,24	19,28	23,64	38,24	57,94	6,10	20,28	31,07	39,85	77,06	
0,10	13,32	19,40	23,80	38,57	58,56	6,20	20,46	31,39	40,30	78,39	
0,20	13,40	19,53	23,96	38,90	59,19	6,30	20,64	31,71	40,77	79,78	
0,30	13,48	19,65	24,13	39,24	59,84	6,40	20,82	32,04	41,24	81,22	
0,40	13,56	19,78	24,30	39,58	60,50	6,50	21,01	32,37	41,73	82,72	
0,50	13,64	19,91	24,47	39,92	61,17	6,60	21,20	32,71	42,23	84,28	
0,60	13,72	20,04	24,64	40,28	61,86	6,70	21,40	33,06	42,74	85,92	
0,70	13,80	20,18	24,82	40,63	62,56	6,80	21,60	33,42	43,27	87,62	
0,80	13,89	20,31	24,99	41,00	63,27	6,90	21,80	33,79	43,81	89,41	
0,90	13,97	20,45	25,17	41,37	64,00	7,00	22,00	34,16	44,37	91,28	
1,00	14,05	20,58	25,36	41,74	64,75	7,10	22,21	34,55	44,94	93,25	
1,10	14,14	20,72	25,54	42,13	65,51	7,20	22,43	34,94	45,53	95,31	
1,20	14,23	20,86	25,73	42,52	66,29	7,30	22,65	35,34	46,13	97,49	
1,30	14,32	21,01	25,92	42,91	67,09	7,40	22,87	35,76	46,76	99,79	
1,40	14,41	21,15	26,11	43,32	67,91	7,50	23,10	36,18	47,40		
1,50	14,50	21,30	26,31	43,73	68,75	7,60	23,33	36,62	48,06		
1,60	14,59	21,44	26,50	44,14	69,60	7,70	23,57	37,07	48,75		
1,70	14,68	21,59	26,71	44,57	70,48	7,80	23,82	37,52	49,45		
1,80	14,77	21,75	26,91	45,00	71,38	7,90	24,07	38,00	50,18		
1,90	14,87	21,90	27,12	45,44	72,30	8,00	24,32	38,48	50,94		
2,00	14,96	22,06	27,33	45,89	73,24	8,10	24,58	38,98	51,72		
2,10	15,06	22,22	27,54	46,35	74,20	8,20	24,85	39,50	52,53		
2,20	15,16	22,38	27,75	46,82	75,20	8,30	25,13	40,03	53,37		
2,30	15,26	22,54	27,97	47,29	76,21	8,40	25,41	40,58	54,24		
2,40	15,36	22,70	28,20	47,78	77,26	8,50	25,70	41,14	55,15		
2,50	15,46	22,87	28,42	48,27	78,33	8,60	25,99	41,72	56,09		
2,60	15,56	23,04	28,65	48,78	79,44	8,70	26,30	42,33	57,07		
2,70	15,67	23,21	28,88	49,29	80,57	8,80	26,61	42,95	58,10		
2,80	15,77	23,39	29,12	49,82	81,74	8,90	26,93	43,60	59,17		
2,90	15,88	23,57	29,36	50,36	82,94	9,00	27,25	44,26	60,29		
3,00	15,99	23,75	29,60	50,91	84,17	9,10	27,59	44,96	61,46		
3,10	16,10	23,93	29,85	51,47	85,45	9,20	27,94	45,68	62,69		
3,20	16,21	24,11	30,10	52,04	86,76	9,30	28,30	46,42	63,98		
3,30	16,33	24,30	30,36	52,62	88,11	9,40	28,67	47,20			
3,40	16,44	24,49	30,62	53,22	89,51	9,50	29,05	48,01			
3,50	16,56	24,69	30,89	53,83	90,95	9,60	29,44	48,85			
3,60	16,68	24,88	31,16	54,46	92,44	9,70	29,84	49,74			
3,70	16,79	25,08	31,43	55,10	93,98	9,80	30,26	50,66			
3,80	16,92	25,29	31,71	55,76	95,58	9,90	30,69	51,62			
3,90	17,04	25,49	31,99	56,43	97,23	10,00	31,14	52,64			
4,00	17,16	25,70	32,28	57,12	98,94	10,10	31,60	53,70			
4,10	17,29	25,92	32,57	57,82	100,71	10,20	32,08	54,82			
4,20	17,42	26,13	32,87	58,54	102,55	10,30	32,57				
4,30	17,55	26,35	33,18	59,29	104,47	10,40	33,09				

4,40	17,68	26,58	33,49	60,05	106,46	10,50	33,63		
4,50	17,82	26,81	33,81	60,83	108,53	10,60	34,18		
4,60	17,95	27,04	34,13	61,63	110,69	10,70	34,76		
4,70	18,09	27,27	34,46	62,46	112,94	10,80	35,37		
4,80	18,23	27,51	34,79	63,30	115,30	10,90	36,00		
4,90	18,37	27,76	35,13	64,18	117,76	11,00	36,66		
5,00	18,52	28,01	35,48	65,07	120,34	11,10	37,36		
5,10	18,67	28,26	35,84	66,00	123,04	11,20	38,09		
5,20	18,82	28,52	36,20	66,95	125,88	11,30	38,85		
5,30	18,97	28,78	36,57	67,93	128,87	11,40	39,66		
5,40	19,12	29,05	36,95	68,94	132,02	11,50	40,51		
5,50	19,28	29,32	37,34	69,99	135,35	11,60	41,40		
5,60	19,44	29,60	37,73	71,07	138,87	11,70	42,36		
5,70	19,60	29,88	38,14	72,18	142,60	11,80	43,37		
5,80	19,77	30,17	38,55	73,34	146,56	11,90	44,45		
5,90	19,94	30,47	38,97	74,54	150,79	12,00	45,60		
6,00	20,11	30,77	39,41	75,77	155,30				

Tabla 14. Valores de rigidez variando φ .

3.1.4.3. Variando la bieleta (Connecting rod)

El parámetro de la biela que se puede variar es su longitud, es decir, la distancia entre A y E.

Variando EA

Figura 61. Variación de EA para la configuración inicial de suspensión Full Floater.

Disminuyendo la longitud de la bieleta, disminuyen los valores de rigidez. Prácticamente las distancias L_1 , L_2 , L_1 y L_a no varían, solo varia L_w un poco, lo que hace que la rigidez se comporte de esa manera. Este estudio nos sirve para saber si la bieleta puede servir como elemento regulable en la suspensión.

Figura 62: Curvas de rigidez de la configuración inicial de suspensión Full Floater variando EA.

Time (Sec)	320	300	280	260	Time (Sec)	320	300	280	260
0,00	25,56	23,64	22,07	20,71	5,00	39,07	35,48	32,71	30,39
0,10	25,74	23,80	22,22	20,85	5,10	39,50	35,84	33,02	30,66
0,20	25,92	23,96	22,37	20,99	5,20	39,94	36,20	33,33	30,94
0,30	26,10	24,13	22,52	21,13	5,30	40,38	36,57	33,65	31,23
0,40	26,28	24,30	22,68	21,27	5,40	40,84	36,95	33,98	31,52
0,50	26,47	24,47	22,83	21,42	5,50	41,31	37,34	34,31	31,81
0,60	26,66	24,64	22,99	21,57	5,60	41,79	37,73	34,65	32,11
0,70	26,86	24,82	23,16	21,72	5,70	42,29	38,14	35,00	32,41
0,80	27,05	24,99	23,32	21,87	5,80	42,79	38,55	35,35	32,72
0,90	27,25	25,17	23,48	22,02	5,90	43,32	38,97	35,71	33,04
1,00	27,45	25,36	23,65	22,17	6,00	43,85	39,41	36,07	33,36
1,10	27,66	25,54	23,82	22,33	6,10	44,40	39,85	36,45	33,69
1,20	27,87	25,73	23,99	22,49	6,20	44,97	40,30	36,83	34,02
1,30	28,08	25,92	24,16	22,65	6,30	45,55	40,77	37,22	34,36
1,40	28,29	26,11	24,34	22,81	6,40	46,16	41,24	37,62	34,71
1,50	28,51	26,31	24,52	22,97	6,50	46,78	41,73	38,03	35,06
1,60	28,73	26,50	24,70	23,14	6,60	47,42	42,23	38,44	35,42
1,70	28,95	26,71	24,88	23,31	6,70	48,08	42,74	38,87	35,79
1,80	29,18	26,91	25,07	23,48	6,80	48,76	43,27	39,31	36,16
1,90	29,41	27,12	25,26	23,65	6,90	49,46	43,81	39,75	36,54
2,00	29,65	27,33	25,45	23,83	7,00	50,20	44,37	40,21	36,93
2,10	29,89	27,54	25,64	24,00	7,10	50,95	44,94	40,67	37,33
2,20	30,13	27,75	25,84	24,18	7,20	51,74	45,53	41,15	37,73
2,30	30,37	27,97	26,03	24,36	7,30	52,55	46,13	41,64	38,15
2,40	30,63	28,20	26,24	24,55	7,40	53,39	46,76	42,14	38,57
2,50	30,88	28,42	26,44	24,74	7,50	54,27	47,40	42,65	39,01

2,60	31,14	28,65	26,65	24,93	7,60	55,19	48,06	43,18	39,45
2,70	31,40	28,88	26,86	25,12	7,70	56,14	48,75	43,72	39,90
2,80	31,67	29,12	27,07	25,31	7,80	57,14	49,45	44,28	40,36
2,90	31,94	29,36	27,29	25,51	7,90	58,18	50,18	44,85	40,84
3,00	32,22	29,60	27,51	25,71	8,00	59,26	50,94	45,43	41,32
3,10	32,50	29,85	27,73	25,91	8,10	60,41	51,72	46,03	41,82
3,20	32,79	30,10	27,95	26,12	8,20	61,60	52,53	46,65	42,32
3,30	33,09	30,36	28,18	26,32	8,30	62,86	53,37	47,29	42,85
3,40	33,38	30,62	28,42	26,54	8,40	64,19	54,24	47,95	43,38
3,50	33,69	30,89	28,65	26,75	8,50	65,59	55,15	48,62	43,93
3,60	34,00	31,16	28,89	26,97	8,60	67,08	56,09	49,32	44,49
3,70	34,31	31,43	29,14	27,19	8,70	68,65	57,07	50,04	45,06
3,80	34,64	31,71	29,39	27,41	8,80	70,33	58,10	50,78	45,65
3,90	34,97	31,99	29,64	27,64	8,90	72,12	59,17	51,55	46,26
4,00	35,30	32,28	29,89	27,87	9,00	74,03	60,29	52,34	46,88
4,10	35,64	32,57	30,16	28,11	9,10	76,08	61,46	53,16	47,52
4,20	35,99	32,87	30,42	28,34	9,20		62,69	54,01	48,18
4,30	36,35	33,18	30,69	28,59	9,30		63,98	54,89	48,86
4,40	36,71	33,49	30,96	28,83	9,40			55,81	49,56
4,50	37,08	33,81	31,24	29,08	9,50			56,76	50,28
4,60	37,46	34,13	31,52	29,33	9,60			57,75	51,02
4,70	37,85	34,46	31,81	29,59	9,70				51,79
4,80	38,25	34,79	32,10	29,85	9,80				52,58
4,90	38,66	35,13	32,40	30,12	9,90				53,40
					10,00				54,24

3.1.5. Paso 5: resultados de las alternativas y del modelo escogido

3.1.5.1. **Primer resultado**

Figura 63. Primer diseño de suspensión trasera Full Floater.

3.1.5.1.1. Estudio con velocidades

En esta ocasión, no es necesaria la utilización de una hoja de Excel para obtener las curvas de rigidez, sino que en el propio programa podemos introducir las formulas y el mismo calcula los valores dando una curva u otra.

La curva de rigidez para esta suspensión, utilizando la ecuación 6 es la siguiente.

$$k_r = k \cdot \left(\frac{\dot{L_m}}{\dot{y_c}}\right)^2$$

Figura 64. Curva de rigidez (con velocidades) suspensión Full Floater.

3.1.5.1.2. <u>Estudio con fórmula</u>

Utilizando la formula obtenida analíticamente, ecuación 27, la curva de rigidez debería de ser la misma, y lo es. En el programa, se miden las distancias que aparecen en la formula y se introduce esta como nueva medida, dando la curva de rigidez.

$$k_r = k \cdot \left(\frac{L_a \cdot L_2 + L_1 \cdot L_l}{L_w \cdot L_2}\right)^2$$

Figura 65. Curva de rigidez (con fórmula) suspensión Full Floater.

3.1.5.1.3. Estudio con fuerzas

Al igual que como se ha visto en la suspensión clásica, se va a considerar ahora que la rigidez reducida es igual a la derivada de la fuerza vertical aplicada al eje de la rueda con respecto al desplazamiento vertical de la rueda, al no ser la rigidez reducida k_r constante a lo largo de y_c .

$$k_r = \frac{dF}{dy_C} = \frac{d[k \cdot (L_m - L_{m0})]}{dy_C} \cdot \tau + k \cdot (L_m - L_{m0}) \cdot \frac{d\tau}{dy_C}$$

O lo que es lo mismo:

$$k_r = \frac{dF}{dy_C} = \frac{d[k \cdot (L_m - L_{m0}) \cdot \tau]}{dy_C}$$

En una hoja de Excel, se introducen el valor de la fuerza F, $(k \cdot (L_m - L_{m0}) \cdot \tau)$ y el del desplazamiento y_c y se calcula su curva de rigidez mediante sus derivadas $\frac{dF}{dy_c}$.

Figura 66. Curvas de rigidez $\left(k_r = k \cdot \left(\frac{\dot{l_m}}{\dot{y_c}}\right)^2 y k_r = \frac{dF}{dy_c}\right)$ para el sistema de suspensión Full Floater.

Sin despreciar ningún termino, se alcanza antes una rigidez reducida de 20 N/mm y a los 800 N, se tiene una rigidez de 22 N/mm aproximadamente. Si se quisiera llegar la optimización total del sistema, habría que tener en cuenta esta ecuación.

3.1.5.1.4. Otros estudios

El siguiente grafico muestra la fuerza F en función del desplazamiento vertical de la rueda. Como se ve, la curva sigue una trayectoria ascendente, mostrando progresividad en la suspensión.

Figura 67. Curva de fuerza - desplazamiento vertical de la rueda para la suspensión Full Floater.

A continuación, se puede ver claramente que en 800 N de carga aplicada (cuando se alcanza el punto de equilibro), la rigidez reducida de la suspensión alcanza los 20 N/mm.

Figura 68. Curva de rigidez en 800 N de fuerza vertical aplicada en la rueda.

El movimiento cinemático de la suspensión es mostrado en la siguiente figura donde se visualiza el inicio y el final del movimiento. El final, es cuando el muelle llega a hacer tope, es decir, ha realizado todo su recorrido útil $\delta = 50$ mm. Debajo de estas figuras, se muestra la curva de rigidez de la suspensión, pero esta vez con la fuerza elástica del muelle como eje de abscisas.

Figura 69. Movimiento cinemático del primer diseño de suspensión trasera Full Floater.

Figura 70. Curva de rigidez de la suspensión Full Floater con Fe en el eje de abscisas.

Para 5250 N de fuerza elástica en la rueda, se tienen 3695 N de fuerza vertical en la rueda trasera, por lo que estamos por encima de 2500 N, lo que hace que el diseño sea completamente optimo. La fuerza máxima en la biela es de 13000N.

3.1.5.2. Segundo resultado

El segundo sistema, ofrece las mismas prestaciones de rigidez que el primero.

Figura 71. Segundo diseño de suspensión trasera Full Floater.

La diferencia respecto del primer diseño deriva en la longitud de la bieleta, la cual se ha reducido en 100 mm, y a la vez, se ha incrementado el basculante en 100. De esta manera, la curva de rigidez no varía demasiado ya que la fórmula de rigidez depende de una serie de distancias que no han alterado.

3.1.5.2.1. Estudio con velocidades

La curva obtenida mediante la ecuación 6 queda prácticamente igual que el otro diseño de suspensión tal y como se ve en la figura 72 debajo de estas líneas.

$$k_r = k \cdot \left(\frac{\dot{L_m}}{\dot{y_c}}\right)^2$$

Figura 72. Curva de rigidez (con velocidades) suspensión Full Floater.

3.1.5.2.2. Estudio con fórmula

Al igual que en el anterior diseño, las curvas obtenidas por las ecuaciones 6 y 27 son idénticas, ya que la relación de velocidades τ es indistintamente igual a $(L_a \cdot L_2 + L_1 \cdot L_l)/(L_w \cdot L_2)$ como a $\dot{L_m}/\dot{y_c}$, para este tipo de suspensión.

$$k_r = k \cdot \left(\frac{L_a \cdot L_2 + L_1 \cdot L_l}{L_w \cdot L_2}\right)^2$$

Figura 73. Curva de rigidez (con fórmula) suspensión Full Floater.

3.1.5.2.3. Estudio con fuerzas

Estudiando la rigidez por fuerzas, los valores aumentan para un mismo valor de desplazamiento. Cuando la rigidez reducida es igual a 20 N/mm para $k_r = k \cdot \tau^2$, en 800 N, es 23 N/mm para dF/dy_c en 800 N. De todas maneras, se desprecia.

$$k_r = \frac{dF}{dy_c} = \frac{d[k \cdot (L_m - L_{m0}) \cdot \tau]}{dy_c}$$

Figura 74. Curvas de rigidez $\left(k_r = k \cdot \left(\frac{l_m}{y_c}\right)^2 y k_r = \frac{dF}{dy_c}\right)$ para el sistema de suspensión Full Floater.

3.1.5.2.4. <u>Otros estudios</u>

La siguiente figura es otra muestra de progresividad en la suspensión, pero en este caso, no se visualiza la rigidez reducida, sino la fuerza vertical. Como se ha visto en la teoría de la suspensión, este tipo de curva es característica de progresividad.

Figura 75. Curva de fuerza - desplazamiento vertical de la rueda para la suspensión Full Floater.

Esta otra figura muestra como se obtienen los 20 N/mm de rigidez para 800 N de carga en la rueda trasera, lo cual evidencia la idoneidad de la suspensión.

Figura 76. Curva de rigidez en 800 N de fuerza vertical aplicada en la rueda.

Las dos figuras (izquierda y derecha) inferiores muestran el movimiento realizado por la suspensión desde el inicio hasta cuando el muelle llega a realizar todo su recorrido útil, 50 mm, y por tanto se han alcanzado los 5250 N de carga elástica en el muelle.

Figura 77. Movimiento cinemático del segundo diseño de suspensión trasera Full Floater.

La siguiente figura que se muestra es la curva de rigidez en función de la fuerza elástica del muelle, demostrando como a 5250 N de carga elástica, se tienen 52 N/mm aproximadamente de rigidez reducida. Por lo tanto, tenemos una suspensión que es capaz de tener una rigidez de 20 N/mm en reposo hasta 52 N/mm cuando el muelle hace tope.

Figura 78. Curva de rigidez de la suspensión Full Floater con Fe en el eje de abscisas.

Por último, al igual que el anterior caso, para 5250 N de fuerza elástica en la rueda, se tienen 3695N de fuerza vertical en la rueda trasera y la fuerza máxima en la biela es de 13000N.

3.1.5.3. Tercer resultado

En esta ocasión, se ha optado por conectar en un mismo eje al amortiguador y la bieleta.

Figura 79. Tercer diseño de suspensión trasera Full Floater.

3.1.5.3.1. Estudio con velocidades

La curva de rigidez obtenida mediante la ecuación 6 muestra una progresividad que va desde 15 N/mm hasta 90 N/mm en el momento de máxima compresión útil del muelle (recorrido útil).

$$k_r = k \cdot \left(\frac{\dot{L_m}}{\dot{y_c}}\right)^2$$

Figura 80. Curva de rigidez (con velocidades) suspensión Full Floater.
3.1.5.3.2. <u>Estudio con fórmula</u>

Al igual que en el anterior diseño, las curvas obtenidas por las ecuaciones 6 y 27 son idénticas, ya que la relación de velocidades τ es indistintamente igual a $(L_a \cdot L_2 + L_1 \cdot L_l)/(L_w \cdot L_2)$ como a $\dot{L_m}/\dot{y_c}$, para este tipo de suspensión.

$$k_r = k \cdot \left(\frac{L_a \cdot L_2 + L_1 \cdot L_l}{L_w \cdot L_2} \right)^2$$

Figura 81. Curva de rigidez (con fórmula) suspensión Full Floater.

3.1.5.3.3. Estudio con fuerzas

Estudiando la rigidez por fuerzas, los valores aumentan para un mismo valor de desplazamiento. Cuando la rigidez reducida es igual a 20 N/mm para $k_r = k \cdot \tau^2$, en 800 N, es 24,6 N/mm para dF/dy_c en 800 N.

$$k_r = \frac{dF}{dy_c} = \frac{d[k \cdot (L_m - L_{m0}) \cdot \tau]}{dy_c}$$

Figura 82. Curvas de rigidez $\left(k_r = k \cdot \left(\frac{l_m}{y_c}\right)^2 y k_r = \frac{dF}{dy_c}\right)$ para el sistema de suspensión Full Floater.

3.1.5.3.4. <u>Otros estudios</u>

Figura 83. Curva de fuerza - desplazamiento vertical de la rueda para la suspensión Full Floater.

Figura 84. Curva de rigidez en 800 N de fuerza vertical aplicada en la rueda.

Las dos figuras (izquierda y derecha) que se muestran después muestran el movimiento realizado por la suspensión desde el inicio hasta cuando el muelle llega a realizar todo su recorrido útil, 50 mm, y por tanto se han alcanzado los 5250 N de carga elástica en el muelle.

Figura 85. Movimiento cinemático del tercer diseño de suspensión trasera Full Floater.

La siguiente figura que se muestra es la curva de rigidez en función de la fuerza elástica del muelle, demostrando como a 5250 N de carga elástica, se tienen 90 N/mm aproximadamente de rigidez reducida. Por lo tanto, tenemos una suspensión que es capaz de tener una rigidez de 20 N/mm en reposo hasta 90 N/mm cuando el muelle hace tope.

Figura 86. Curva de rigidez de la suspensión Full Floater con Fe en el eje de abscisas.

Por último, indicar que para 5250 N de fuerza elástica en la rueda, se tienen 4872 N de fuerza vertical en la rueda trasera, por lo que estamos por encima de 2500 N, lo que hace que el diseño sea completamente optimo. La fuerza máxima en la biela es de 11500N.

3.1.5.4. Cuarto resultado

Figura 87. Cuarto diseño de suspensión trasera Full Floater.

3.1.5.4.1. Estudio con velocidades

La curva de rigidez obtenida mediante la ecuación 6 muestra una progresividad que va desde 15 N/mm hasta 52 N/mm en el momento del fin del recorrido útil del muelle.

$$k_r = k \cdot \left(\frac{\dot{L_m}}{\dot{y_c}}\right)^2$$

Figura 88. Curva de rigidez (con velocidades) suspensión Full Floater.

3.1.5.4.2. Estudio con fórmula

Al igual que en el anterior diseño, las curvas obtenidas por las ecuaciones 6 y 27 son idénticas, ya que la relación de velocidades τ es indistintamente igual a $(L_a \cdot L_2 + L_1 \cdot L_l)/(L_w \cdot L_2)$ como a $\dot{L_m}/\dot{y_c}$, para este tipo de suspensión.

$$k_r = k \cdot \left(\frac{L_a \cdot L_2 + L_1 \cdot L_l}{L_w \cdot L_2}\right)^2$$

Figura 89. Curva de rigidez (con fórmula) suspensión Full Floater.

3.1.5.4.3. <u>Estudio con fuerzas</u>

Estudiando la rigidez por fuerzas, los valores aumentan para un mismo valor de desplazamiento. Cuando la rigidez reducida es aproximada a 20 N/mm para $k_r = k \cdot \tau^2$ en 800 N, es 22,3 N/mm para dF/dy_c en 800 N.

$$k_r = \frac{dF}{dy_C} = \frac{d[k \cdot (L_m - L_{m0}) \cdot \tau]}{dy_C}$$

Figura 90. Curvas de rigidez $\left(k_r = k \cdot \left(\frac{\dot{l_m}}{\dot{y_c}}\right)^2 y k_r = \frac{dF}{dy_c}\right)$ para el sistema de suspensión Full Floater.

Figura 91. Curva de fuerza - desplazamiento vertical de la rueda para la suspensión Full Floater.

Figura 92. Curva de rigidez en 800 N de fuerza vertical aplicada en la rueda.

Las dos figuras (izquierda y derecha) que se muestran después muestran el movimiento realizado por la suspensión desde el inicio hasta cuando el muelle llega a realizar todo su recorrido útil, 50 mm, y por tanto se han alcanzado los 5250 N de carga elástica en el muelle.

Figura 93. Movimiento cinemático del cuarto diseño de suspensión trasera Full Floater.

La siguiente figura que se muestra es la curva de rigidez en función de la fuerza elástica del muelle, demostrando como a 5250 N de carga elástica, se tienen 52 N/mm aproximadamente de rigidez reducida. Por lo tanto, tenemos una suspensión que es capaz de tener una rigidez de 20 N/mm en reposo hasta 52 N/mm cuando el muelle hace tope.

Figura 94. Curva de rigidez de la suspensión Full Floater con Fe en el eje de abscisas.

Por último, indicar que para 5250 N de fuerza elástica en la rueda, se tienen 3700 N de fuerza vertical en la rueda trasera, por lo que estamos por encima de 2500 N, lo que hace que el diseño sea completamente optimo. La fuerza máxima en la biela es de 12000N.

3.1.5.5. **Quinto resultado o resultado final**

Figura 95. Suspensión trasera Full Floater elegida.

3.1.5.5.1. Estudio con velocidades

La curva de rigidez obtenida mediante la ecuación 6 muestra una progresividad que va desde 15,57 N/mm hasta 53,34 N/mm en el momento del fin del recorrido útil del muelle.

$$k_r = k \cdot \left(\frac{\dot{L_m}}{\dot{y_c}}\right)^2$$

Figura 96. Curva de rigidez (con velocidades) suspensión Full Floater.

3.1.5.5.2. Estudio con fórmula

Al igual que en el anterior diseño, las curvas obtenidas por las ecuaciones 6 y 27 son idénticas, ya que la relación de velocidades τ es indistintamente igual a $(L_a \cdot L_2 + L_1 \cdot L_l)/(L_w \cdot L_2)$ como a $\dot{L_m}/\dot{y_c}$, para este tipo de suspensión.

$$k_r = k \cdot \left(\frac{L_a \cdot L_2 + L_1 \cdot L_l}{L_w \cdot L_2}\right)^2$$

Figura 97. Curva de rigidez (con fórmula) suspensión Full Floater.

3.1.5.5.3. Estudio con fuerzas

Estudiando la rigidez por fuerzas, los valores aumentan para un mismo valor de desplazamiento. Cuando la rigidez reducida es aproximada a 20 N/mm para $k_r = k \cdot \tau^2$ en 800 N, es 22,3 N/mm para dF/dy_c en 800 N.

$$k_r = \frac{dF}{dy_C} = \frac{d[k \cdot (L_m - L_{m0}) \cdot \tau]}{dy_C}$$

Figura 98. Curvas de rigidez $\left(k_r = k \cdot \left(\frac{l_m}{y_c}\right)^2 y k_r = \frac{dF}{dy_c}\right)$ para el sistema de suspensión Full Floater.

3.1.5.5.4. Otros estudios

Figura 99. Curva de fuerza - desplazamiento vertical de la rueda para la suspensión Full Floater.

Figura 100. Curva de rigidez en 800 N de fuerza vertical aplicada en la rueda.

Las dos figuras (izquierda y derecha) que se muestran después muestran el movimiento realizado por la suspensión desde el inicio hasta cuando el muelle llega a realizar todo su recorrido útil, 50 mm, y por tanto se han alcanzado los 5250 N de carga elástica en el muelle.

Figura 101. Movimiento cinemático del quinto diseño de suspensión trasera Full Floater.

La siguiente figura que se muestra es la curva de rigidez en función de la fuerza elástica del muelle, demostrando como a 5250 N de carga elástica, se tienen 53,34 N/mm aproximadamente de rigidez reducida. Por lo tanto, tenemos una suspensión que es capaz de tener una rigidez de 20 N/mm en reposo hasta 53,34 N/mm cuando el muelle hace tope.

Figura 102. Curva de rigidez de la suspensión Full Floater con Fe en el eje de abscisas.

Para 5250 N de fuerza elástica en la rueda, se tienen 3600 N de fuerza vertical en la rueda trasera y la fuerza máxima en la biela es de 8707 N.

3.1.5.5.5. Excel del resultado final Full Floater

$kr = k \cdot \left(\frac{l\dot{m}}{\dot{yc}}\right)^2 = k \cdot \left(\frac{L_a \cdot L_2 + L_1 \cdot L_l}{L_w \cdot L_2}\right)^2$
$k_r = \frac{dF}{dyc}$

ус	ус	kr	F	Fe	kr	Fbieleta
-1,115	0,000	15,569	0,000	0,000		0,000
-0,231	0,885	15,634	13,803	35,770	15,600	26,189
0,654	1,770	15,700	27,714	71,671	15,716	52,688
1,540	2,656	15,767	41,721	107,665	15,816	79,471
2,426	3,542	15,835	55,825	143,753	15,918	106,544
3,312	4,428	15,903	70,027	179,935	16,022	133,911
4,199	5,315	15,973	84,329	216,212	16,128	161,575
5,086	6,202	16,043	98,733	252,586	16,235	189,541
5,974	7,090	16,115	113,240	289,056	16,344	217,814
6,862	7,978	16,187	127,853	325,624	16,456	246,399
7,750	8,866	16,261	142,573	362,291	16,569	275,301
8,639	9,755	16,336	157,401	399,058	16,684	304,523
9,528	10,644	16,411	172,341	435,925	16,801	334,072
10,418	11,533	16,488	187,393	472,894	16,921	363,953
11,308	12,423	16,566	202,559	509,966	17,042	394,170
12,198	13,314	16,645	217,843	547,141	17,166	424,729
13,089	14,204	16,725	233,245	584,421	17,293	455,637
13,980	15,095	16,806	248,769	621,807	17,421	486,897
14,871	15,987	16,889	264,416	659,299	17,552	518,517
15,763	16,879	16,973	280,188	696,900	17,686	550,503
16,655	17,771	17,058	296,088	734,610	17,822	582,859
17,548	18,663	17,144	312,119	772,430	17,961	615,593
18,441	19,556	17,232	328,282	810,361	18,102	648,712
19,334	20,450	17,321	344,580	848,405	18,246	682,221
20,228	21,343	17,411	361,017	886,562	18,393	716,127
21,122	22,237	17,503	377,594	924,835	18,543	750,438
22,016	23,131	17,596	394,314	963,224	18,696	785,160
22,911	24,026	17,691	411,181	1001,731	18,853	820,302
23,806	24,921	17,787	428,197	1040,356	19,012	855,870
24,701	25,816	17,885	445,364	1079,102	19,175	891,872
25,597	26,712	17,985	462,688	1117,970	19,341	928,316
26,493	27,608	18,086	480,169	1156,961	19,510	965,211
27,389	28,505	18,189	497,812	1196,076	19,683	1002,565
28,286	29,401	18,293	515,621	1235,318	19,860	1040,387
29,183	30,298	18,400	533,598	1274,687	20,041	1078,685
30,080	31,196	18,508	551,747	1314,186	20,226	1117,468
30,978	32,093	18,618	570,073	1353,815	20,415	1156,747

	1	1	1	1		1
31,876	32,991	18,730	588,578	1393,577	20,607	1196,531
32,774	33,890	18,844	607,267	1433,473	20,805	1236,830
33,673	34,788	18,960	626,143	1473,504	21,007	1277,655
34,572	35,687	19,078	645,212	1513,674	21,213	1319,016
35,471	36,586	19,198	664,477	1553,982	21,424	1360,924
36,370	37,486	19,320	683,944	1594,432	21,640	1403,390
37,270	38,386	19,445	703,616	1635,025	21,862	1446,427
38,170	39,286	19,572	723,498	1675,764	22,088	1490,047
39,071	40,186	19,702	743,596	1716,649	22,320	1534,261
39,972	41,087	19,833	763,914	1757,683	22,558	1579,084
40,873	41,988	19,968	784,459	1798,869	22,801	1624,528
41,774	42,889	20,105	805,235	1840,208	23,051	1670,608
42,675	43,791	20,245	826,248	1881,703	23,307	1717,338
43,577	44,693	20,387	847,505	1923,356	23,569	1764,732
44,480	45,595	20,532	869,011	1965,169	23,838	1812,806
45,382	46,497	20,681	890,773	2007,145	24,115	1861,577
46,285	47,400	20,832	912,798	2049,286	24,398	1911,061
47,188	48,303	20,987	935,092	2091,594	24,689	1961,274
48,091	49,206	21,144	957,663	2134,073	24,988	2012,235
48,994	50,110	21,306	980,518	2176,725	25,295	2063,963
49,898	51,014	21,470	1003,665	2219,553	25,611	2116,477
50,802	51,918	21,638	1027,112	2262,560	25,935	2169,796
51,707	52,822	21,810	1050,868	2305,748	26,269	2223,942
52,611	53,727	21,986	1074,941	2349,121	26,613	2278,937
53,516	54,631	22,166	1099,340	2392,681	26,966	2334,803
54,421	55,537	22,350	1124,076	2436,433	27,330	2391,563
55,326	56,442	22,538	1149,158	2480,379	27,705	2449,243
56,232	57,347	22,730	1174,597	2524,523	28,091	2507,868
57,138	58,253	22,928	1200,403	2568,869	28,490	2567,465
58,044	59,159	23,130	1226,588	2613,419	28,900	2628,062
58,950	60,066	23,337	1253,165	2658,179	29,324	2689,689
59,857	60,972	23,549	1280,144	2703,151	29,762	2752,375
60,763	61,879	23,766	1307,541	2748,341	30,214	2816,155
61,670	62,786	23,989	1335,368	2793,751	30,681	2881,061
62,578	63,693	24,218	1363,641	2839,388	31,164	2947,128
63,485	64,600	24,453	1392,374	2885,254	31,664	3014,396
64,393	65,508	24,694	1421,583	2931,356	32,181	3082,901
65,301	66,416	24,942	1451,286	2977,697	32,717	3152,687
66,209	67,324	25,197	1481,501	3024,283	33,273	3223,797
67,117	68,232	25,459	1512,245	3071,119	33,849	3296,276
68,025	69,141	25,728	1543,540	3118,211	34,446	3370,173
68,934	70,050	26,006	1575,406	3165,565	35,067	3445,540
69,843	70,959	26,292	1607,866	3213,186	35,712	3522,431
70,752	71,868	26,586	1640,943	3261,081	36,383	3600,904
71,662	72,777	26,890	1674,662	3309,257	37,082	3681,021

72,571	73,687	27,203	1709,051	3357,719	37,810	3762,845
73,481	74,596	27,526	1744,137	3406,476	38,569	3846,448
74,391	75,506	27,860	1779,952	3455,534	39,361	3931,902
75,301	76,416	28,205	1816,527	3504,902	40,189	4019,287
76,211	77,326	28,562	1853,897	3554,588	41,054	4108,688
77,121	78,237	28,931	1892,100	3604,601	41,960	4200,194
78,032	79,148	29,314	1931,175	3654,949	42,910	4293,905
78,943	80,058	29,710	1971,165	3705,642	43,907	4389,923
79,854	80,969	30,122	2012,117	3756,690	44,954	4488,362
80,765	81,880	30,550	2054,080	3808,105	46,055	4589,345
81,676	82,792	30,994	2097,109	3859,897	47,216	4693,002
82,588	83,703	31,457	2141,262	3912,078	48,441	4799,478
83,499	84,615	31,939	2186,603	3964,660	49,735	4908,928
84,411	85,527	32,441	2233,201	4017,659	51,105	5021,523
85,323	86,439	32,966	2281,132	4071,086	52,558	5137,449
86,235	87,351	33,515	2330,479	4124,959	54,102	5256,909
87,148	88,263	34,090	2381,334	4179,294	55,746	5380,130
88,060	89,175	34,692	2433,798	4234,107	57,500	5507,358
88,973	90,088	35,325	2487,982	4289,419	59,376	5638,871
			2500	4300		5673
89,885	91,001	35,991	2544,012	4345,248	61,388	5774,974
90,798	91,914	36,693	2602,025	4401,618	63,552	5916,011
91,711	92,827	37,435	2662,176	4458,552	65,885	6062,365
92,624	93,740	38,220	2724,642	4516,076	68,409	6214,471
93,537	94,653	39,052	2789,619	4574,218	71,150	6372,820
94,451	95,566	39,938	2857,334	4633,009	74,137	6537,974
95,364	96,480	40,883	2928,045	4692,483	77,406	6710,576
96,278	97,393	41,894	3002,049	4752,677	81,000	6891,370
97,192	98,307	42,979	3079,691	4813,634	84,971	7081,219
98,106	99,221	44,149	3161,375	4875,399	89,384	7281,136
99,020	100,135	45,415	3247,579	4938,024	94,317	7492,322
99,934	101,049	46,792	3338,870	5001,570	99,871	7716,206
100,848	101,963	48,298	3435,933	5066,102	106,172	7954,516
101,762	102,878	49,955	3539,600	5131,698	113,384	8209,363
102,670	103,785	51,988	3650,900	5198,450	122,664	8483,361
103,362	104,475	53,34	3742,05	5250	132,101	8707,07
ус	ус	kr	F	Fe	kr	Fbieleta

Tabla 16. Resultados de los parámetros de la suspensión final.

3.2. Simulación por EF de las piezas

A continuación se procede a estudiar las piezas por el método de elementos finitos. Se estudian el triángulo y la bieleta. En este apartado, se muestra el paso a paso para llegar a conseguir la simulación, y diferentes variantes de las piezas estudiadas, para al final mostrar la escogida para la moto de competición.

3.2.1. Triángulo de suspensión

3.2.1.1. Simulación del triángulo

3.2.1.1.1. Obtener las fuerzas

1. En el conjunto de la suspensión, se ha introducido un análisis estático con una fuerza de 2500 N, tal y como se explica en el apartado 3.1.3., de este documento. Se corre el análisis y se obtienen los resultados. Clicamos en [análisis -Usar en simulación] y aparece una ventana que permite exportar cargas. Seleccionamos el análisis estático, el triángulo y las tres cargas que necesitamos.

2. Entramos en la pieza triángulo y clicamos en Aplicaciones - Simulate . Una vez allí, se clica en Cargas - Mechanism Load . y se exportan del conjunto.

 Se convierten estas fuerzas en tipo Bearing para que queden simuladas como lo más parecido a la realidad (seleccionar la superficie de aplicación).
 Se realiza lo mismo con las tres cargas.

Cor	Exportar (niunto de resultados	cargas							
0	AnalysisDefinition2								
Cue	Cuerpo								
k	body2 : mode BALAN		0.prt						
Cor	mponente								
k	BALANCIN_DEFINITIV	O.PRT							
Eva	luar en								
Fina	I = 0		s						
Info	o. de carga								
_	Carga	Magnitud	Unidades						
\checkmark	Muelle 1	4212.23	Ν						
\checkmark	Connection_9_Force	9889.65	N						
	Connection_9_Moment	0.0216112	mm N						
\checkmark	Connection_10_Force	5715.55	N						
	Connection_10_Mom	1.20088e-11	mm N						
	Angular_Vel	0	rad / sec						
	Angular_Accel	2.16544e-07	rad / sec^2						

Figura 103. Exportar cargas.

Figura 104. Fuerzas.

Figura 105. Fuerzas bearing.

3.2.1.1.2. <u>Material</u>

 El material del triángulo es la aleación aluminio
 5083. Sin embargo, no aparece en la lista de materiales del Creo. Por ello, se utiliza el aluminio
 6061. Se clica en Materials ¹, se añade y
 clicando en Material assignment ¹ y
 seleccionando el triángulo, se da material al mismo.

3.2.1.1.3. <u>Mallado</u>

 En refinar modelo y clicando en ²²², se define el tamaño máximo de elemento, en nuestro caso 6 mm. De esta manera, todo el componente esta mallado con elementos de tamaño máximo de 6 mm.

2. Sin embargo, hay zonas donde nos interesa tener un mallado más denso. En la misma ventana, se eligen superficies y se especifica un tamaño de malla como de 3 mm.

Figura 106. Añadir y asignar material.

AutoGEMContr	ol	2	
Referencias Components		T	
Part : BALAI	ICIN_DEFINITIVO1		oMaxSize:6 (m
Tamaño de eler	nento		- <u>-</u>

Figura 107. Asignar tamaño de malla.

Control de tamaño máximo de elemento X Name AutoGEMControl2 Referencias Surfaces
Surfaces : Individual Boundary Intent Surface Surface Surface Surface
Surface Sets
Aceptar Cancelar

Figura 108. Asignar tamaño de malla más denso.

3. Clicando después en Auto GEM ³³³³, se genera el mallado que se ha definido.

Figura 109. Malla.

3.2.1.1.4. <u>Restricciones y análisis (Inertia relief)</u>

Como se ha mencionado en el apartado 8.5.1.4.1., del documento de memoria, para el análisis del triángulo no es necesario utilizar restricciones en las uniones ya que existe un método más sencillo y con mejores resultados. Este es el llamado "Inertia relief". Mediante este método se supone que el sólido está suspendido en el espacio con las tres cargas aplicadas. Este estudio se realiza en equilibrio estático y el mismo aplica unas restricciones en los puntos donde considera oportunos. Sin embargo, estas restricciones no van a ser unas cuales quiera, sino que se ayuda del conjunto de la suspensión para saber donde aplicarlas y como.

Suposición: En la formación del mecanismo, se ha especificado que la unión bieleta - balancín sea una unión tipo Pin, al igual que la unión con el muelle y la unión con el chasis. Las fuerzas están aplicadas en una dirección concreta y por tanto las restricciones están supuestamente aplicadas en la superficie donde la fuerza tipo bearing está en contacto.

1. Se clica en analysis and studies $\stackrel{\bullet}{\square}$ y una vez en la ventana, se crea un análisis estático. Se especifica Inertia relief y las tres fuerzas.

Static Analysis Definition	
Name:	
Analysis1	
Description:	
Nonlinear / Use Load Histories	
Constraints	
Combine Constraint Sets	
Constraint Set / Component	
Loads	
Sum Load Sets	
Load Set / Component	
Loud Oot / Component	

Figura 110. Analysis and studies.

Figura 111. Correr el análisis.

3. Se visualizan las tensiones de Von mises y las deformaciones.

Figura 112. Simulación.

3.2.1.1.5. <u>Restricciones y análisis (estudio con restricciones)</u>

Además del estudio Inertia Relief, se realiza un estudio colocando restricciones en los apoyos del muelle y el chasis e introduciendo únicamente la fuerza de la bieleta, para probar que el estudio Inertia relief ofrece los mismos resultados.

 Se introducen las restricciones en los apoyos
 Como el rodamiento y la rotula están haciendo fuerza en una determinada dirección, lo mas real seria colocar las restricciones en esas direcciones.
 Para ello, se colocan puntos en los que se les va a denegar la traslación en todos los sentidos.
 Únicamente se permite rotación.

Figura 113. Displacements.

La siguiente figura muestra las restricciones en los apoyos y la fuerza que la bieleta ejerce sobre el balancín.

Figura 114. Restricciones y fuerza en el triángulo.

2. En analysis and studies se edita un análisis estático. En él se eligen la fuerza de la bieleta y las restricciones realizadas en chasis y muelle.

	Static Analysis Definition
Name:	
Analysis1	
Description:	
Nonlin	near / Use Load Histories
Comb	ine Constraint Sets
- Comb	Constraint Set / Component
restri	ccionbieleta / BALANCIN_DEFINITIVO5DEFINITIVO
restri	ccionchasis / BALANCIN_DEFINITIVO5DEFINITIVO
✓ restri	ccionmuelle / BALANCIN_DEFINITIVO5DEFINITIVO
Loads	
Sum L	oad Sets
	Load Set / Component
fuerz	abieleta / BALANCIN_DEFINITIVO5DEFINITIVO
fuerz	achasis / BALANCIN_DEFINITIVO5DEFINITIVO
fuerz	amuelle / BALANCIN DEFINITIVO5DEFINITIVO

Figura 116. Correr el análisis.

4. Se visualizan las tensiones de Von mises y las deformaciones, que como se puede observar los resultados son bastante parecidos a los obtenidos por Inertia relief. La distribución de tensiones es

casi idéntica, mientras que las deformaciones varían muy ligeramente.

Figura 117. Simulación.

3.2.1.2. Variaciones del triángulo

A continuación se muestran varios triángulos de suspensión junto con sus análisis de resultados de las tensiones de Von mises y las deformaciones. No se debe de olvidar que en la variación de la geometría del triángulo hay varias medidas que obligatoriamente no está permitido variar, debido al posible cambio en la curva de rigidez de la suspensión. Estos análisis se han llevado a cabo mediante el método Inertia relief. Puede parecer que es un método no valido, sin embargo, se acaba de demostrar, apartado 3.2.1.1.5., que el método para el estudio del triángulo es válido.

Figura 118. Primer triángulo de suspensión.

Como se puede ver, el primer triángulo es bueno. Sin embargo la tensión VM queda bastante por debajo del límite elástico por lo que aun podemos quitar material y agilizar la suspensión.

Figura 119. Segundo triángulo de suspensión.

Como se puede ver, el triángulo del caso dos es idóneo ya que no rompe al tener la tensión de Von mises por debajo del límite elástico 0,2% o limite de fluencia.

Figura 120. Tercero triángulo de suspensión.

En este tercer resultado, se ha eliminado espesor, apreciándose por el color gris. En el análisis, el triángulo sobrepasa bastante el límite de fluencia del material.

Figura 121. Cuarto triángulo de suspensión.

La diferencia respecto del tercer caso radica en el tamaño del hueco. En el tercer caso el material inferior es muy fino y se ha aumentado para conseguir una tensión de Von Mises por debajo del límite de fluencia, así como deformaciones pequeñas.

Figura 122. Quinto triángulo de suspensión.

3.2.1.3. **<u>Resultado final</u>**

Finalmente el triángulo definitivo y por tanto el que va a llevar la suspensión Full Floater es el Cuarto. A continuación se puede ver la pieza, el mallado, las tensiones de Von mises, y las deformaciones.

Figura 123. Triángulo de suspensión final.

La pieza final esta mallada con elementos tetraedros de tamaño máximo 6 y mínimo 3 mm.

Figura 124. Mallado del triángulo de suspensión final.

126.148 113.554 100.959 88.3648 75.7703 63.1759 50.5814 37.9869 25.3925 12.7980 0.20353

3.2.1.3.1. <u>Análisis del triángulo final con el método inertia relief</u>

Figura 125. Tensiones de Von mises en el triángulo de suspensión final. (Inertia Relief).

Como se puede observar la tensión máxima de Von mises se da a 120 MPa quedando por debajo de los 125 - 130 MPa del límite de fluencia y de los 230 - 290 MPa de la resistencia a tracción o limite de fatiga.

Figura 126. Deformaciones en el triángulo de suspensión final. (Inertia Relief).

El material se deforma como máximo menos de la decima de milímetro. Esta deformación es prácticamente despreciable.

Advises 3458.72 130.000 113.750 97.5000 81.2500 65.0000 48.7500 32.5000 16.2500 0.00000 0.01345

3.2.1.3.2. <u>Análisis del triángulo final con restricciones en los apoyos</u>

Figura 127. Tensiones de Von mises en el triángulo de suspensión final. (Con restricciones).

Las tensiones que aparecen en el triángulo son bastante parecidas que en el estudio por Inertia relief, lo que hace que los dos métodos sean validos para el estudio del triángulo. Como se aprecia, las tensiones de Von Mises son menores o iguales que el límite elástico del aluminio por lo que la pieza resiste las cargas a las que está sometida.

Figura 128. Deformaciones en el triángulo de suspensión final. (Con restricciones).

En cuanto a las deformaciones, no son demasiado grandes como para que la pieza no sea válida. Además, los datos que el programa está dando no son totalmente reales sino que son menores. Pos así decirlo, se sitúan entre estos datos y los ofrecidos por Inertia Relief.

3.2.2. <u>Bieleta</u>

Para que la bieleta sea progresiva y se pueda variar su longitud, es necesario que quede como en la figura que se muestra a continuación. En ella se tiene una cabeza de articulación (unión al basculante), un tensor el cual se enrosca o desenrosca en función de la longitud que se desee de la bieleta, y una horquilla (unión al triángulo de suspensión).

La horquilla y el tensor se deben de analizar por elementos finitos.

3.2.2.1. Simulación de la horquilla

3.2.2.1.1. Definir la geometría

1. Se define la geometría de la horquilla. Esta consta de varias cotas obligatorias. La longitud de las orejetas debe de ser de más de 127 mm para no chocar con el triángulo y la distancia entre orejas, de más de 12 mm. Además, consta de una rosca hembra en la que el tensor debe de roscarse. La rosca es de métrica 12 mm.

Otra cota obligatoria es el espesor mínimo de las orejas, mínimo 5 mm calculado en el apartado 8.5.2.2.1., de memoria, donde se estudia el pandeo cuando está la fuerza de 5700 N comprimiéndolas.

3.2.2.1.2. <u>Material</u>

1. El material de la horquilla es acero ST-35. Las características de este material son las siguientes:

Densidad: 7,827 g/cm³ Módulo de elasticidad: 210000 N/mm² Resistencia a la tracción: 340 – 470 Mpa Límite elástico 0,2%: 235 MPa

Se clica en Materials 🤄, se añade y clicando en Material assignment 🔄 y seleccionando la horquilla, se da material al mismo.

Figura 131. Añadir y asignar material.

3.2.2.1.3. <u>Mallado</u>

1. Se define el tamaño máximo de elemento $\frac{1}{2}$, en nuestro caso 2 mm.

2. Además, se mallan zonas de concentración de tensiones, etc., con mayor densidad, 0,5 mm.

3. Clicando después en Auto GEM SE, se genera el mallado que se ha definido.

3.2.2.1.4. <u>Restricciones</u>

 Se introducen las restricciones en los apoyos
 En este caso, se restringe la traslación en todos los sentidos en la rosca hembra de la horquilla.

Figura 132. Malla

Figura 133. Displacements.

3.2.2.1.5. <u>Fuerza</u>

1. Se introduce una fuerza bearing en compresión de 5700 N en los agujeros de las orejas de la horquilla (unión con el pasador que une al triángulo).

	Bearing Load X
	Name
	Load1
	Member of Set
	LoadSet1 Vew
* /*//////////////////////////////////	References
I PHILAUN NA IN PHILADAN	Surfaces 🔻
》作品词:"加品词句	Surface Surface
	Properties
	Coordinate System: World Selected
	₅,Ľ, wcs
	Force
	Components 💌
	X 0
oMaxSize:3 [mm]	Y -5700
	Z 0
	N

Figura 134. Fuerza.

3.2.2.1.6. <u>Análisis estático lineal</u>

1. El análisis es estático. Se introduce la fuerza de 5700 N en los agujeros de las orejas de la horquilla frente a la restricción en la rosca hembra.

2. Se corre el análisis. Y se visualizan los resultados de tensiones de Von Mises y deformaciones .

Static Analysis Definition	×
lame:	
Analysis1	
Description:	
	OviaxSize:3
Nonlinear / Use Load Histories Inertia Relief	
Constraints	
Combine Constraint Sets	
Constraint Set / Component	
ConstraintSet1 / HORQUILLA_DEFINITIVA	
Loads	
Sum Load Sets	
Load Set / Component	
✓ LoadSet1 / HORQUILLA_DEFINITIVA	xSize

Figura 135. Análisis estático.

3.2.2.1.7. <u>Análisis de pandeo</u>

Las piezas delgadas y los ensamblajes con piezas delgadas que se cargan en dirección axial se deforman bajo cargas axiales relativamente pequeñas. Dichas estructuras pueden presentar errores debido al pandeo mientras que las tensiones están muy por debajo de los niveles críticos. En el caso de dichas estructuras, la carga de pandeo se convierte en un factor de diseño crítico.

En el apartado 8.5.2.2.1., del documento de memoria, se calcula el espesor mínimo de las orejas para que la pieza no entre en pandeo. Por ello, se va a someter únicamente a un estudio de pandeo a la pieza que creemos definitiva, y corroborar que el estudio manual da buenos resultados.

1. Una vez corrido el análisis estático lineal, se edita un análisis de pandeo (Buckling) al que se le debe de agregar el análisis estático anterior.

2. Se corre el análisis. y se visualizan los resultados de desplazamientos .

El programa calcula los desplazamientos y el factor de carga crítico BFL para el primer modo, es decir, el modo más bajo (modo 1) debido a que está asociado a la carga crítica más baja.

	Buc	kling Ana	ilysis Defi	nition		
Name:						
Analysis2						
Description	:					
Previous			Excluded	L		
Analysis	Convergence	Output	Element	s		
Ise s	tatic analysis resu	Its from pr	revious des	ign study		
Design St	udy:	Analys	is1			
Static Ana	alysis:	Analysis1				
Load Set:		Name Co		Component		
		LoadSe	et1	HORQUILLA DEFINITIVA		
				-		
		4				
umber of B	uckling Modes 1)				
				OK	C	
				OK	Cance	

Figura 137. Análisis de pandeo.

El factor de carga crítica de pandeo (BLF, por sus siglas en inglés) es el factor de seguridad contra el pandeo o la relación de las cargas de pandeo con respecto a las cargas aplicadas. La siguiente tabla ilustra la interpretación de los valores BLF posibles:

BLF>1	Pandeo no	Las cargas aplicadas son menos que las cargas críticas
	previsto	calculadas. No se espera el pandeo.
$0 < BLF \le 1$	Pandeo	Las cargas aplicadas son iguales o superan las cargas críticas
	previsto	calculadas. Se espera el pandeo.

Tabla 17. Valores de BLF posibles.

Por tanto debemos de conseguir obtener un BLF mayor que la unidad.

3.2.2.2. Variaciones de la horquilla

A continuación se encuentran varias de las variaciones realizadas a la horquilla.

Figura 138. Primera simulación de la horquilla.

En este caso, la distancia ente orejas es de 20 mm, el espesor de las orejas de 5 mm. Además, las orejas son de sección variable pues comienzan en 20 mm en su base hasta 25 mm en la parte superior.

A pesar de los valores de tensión por encima de la tensión de fluencia del acero, en la realidad todos los valores se sitúan por debajo ya que donde se está dando una tensión muy alta es en una arista

viva del agujero donde va el tensor enroscado, y eso es algo que en verdad no ocurre ya que las tensiones se distribuyen por la rosca y además la restricción no llega hasta la arista en cuestión.

En cuanto al pandeo de las orejas, al tener un espesor de 5 mm y una anchura de 20 mm mínima, las orejas se encuentran un poco por encima de los límites frente a pandeo.

Figura 139. Segunda simulación de la horquilla.

En este caso, se han agrandado los espesores de las orejas a 10 mm. Las tensiones quedan también por debajo de la fluencia del material, olvidándonos de la tensión en la arista, y por tanto la horquilla valdría como elemento para la bieleta final, ya que además, esta fuera de los límites de peligro frente a pandeo.

Sin embargo, es recomendable reducir en material y encontrar una horquilla más ligera.

Figura 140. Tercera simulación de la horquilla.

En el tercer estudio, se vuelven a dejar las orejas con 5 mm de espesor. Sin embargo, su sección ya no es variable, sino de 20 mm de anchura. A 5 mm de espesor se está muy cerca de los límites frente a pandeo, por lo que es conveniente un aumento del espesor.

Figura 141. Cuarta simulación de la horquilla.

En la cuarta simulación, se ha aumentado el espesor de las orejas a 6 mm de tal manera que se esté lejos de una rotura por pandeo. La separación entre orejas se ha disminuido a 16 mm. De esta manera, se tienen 2 mm de hueco entre un lado del triángulo de suspensión y una oreja. La anchura de las orejas es constante a 20 mm. Se ha decidido rebajar de 25 mm a 20 mm el diámetro o espesor superior de la oreja ya que al estar la horquilla a compresión, el radio superior no trabaja y es material sobrante.

Con esta geometría, la horquilla no rompe, no se plastifica ni se deforma lo más mínimo.

Figura 142. Quinta simulación de la horquilla.

En esta quinta simulación, se reduce aun más la horquilla de tal manera que

Aun con esta geometría, la horquilla se encuentra dentro de los límites de fluencia, si no consideramos la tensión en la arista viva del agujero roscado. Sin embargo, es bastante raro que no rompa o sufra algún tipo de anomalía por lo que esta geometría queda totalmente descartada.

3.2.2.3. Resultado final de la horquilla

Finalmente la horquilla definitiva que forma parte de la bieleta definitiva y por tanto la que va a llevar la suspensión Full Floater es la cuarta de las arriba estudiadas. A continuación se puede ver la pieza, el mallado, las tensiones de Von mises, las deformaciones y el pandeo.

La horquilla final es la que se visualiza en la siguiente figura.

La malla con la que se ha estudiado la horquilla es la que se visualiza en la siguiente figura.

Figura 144. Mallado de la horquilla final.

La malla de la horquilla está formada por elementos tetraédricos. El tamaño de malla general son 3 mm, mientras que en zonas puntuales como redondeos, chaflanes o el interior de la rosca hembra, tienen un mallado de 1 mm.

Figura 145. Tensiones de Von mises en la horquilla final. Última figura: Final del agujero roscado.

Si nos fijamos en los resultados de tensiones de Von Mises, aparecen tensiones por encima del límite elástico. Estas tensiones se dan en una arista viva al final del agujero del tensor. En la realidad, esto no ocurre ya que las tensiones se distribuyen por el agujero roscado, dando tensiones adecuadas.

Por tanto, olvidándonos de lo que ocurre en el final del agujero de la rosca hembra, en el resto del tensor las tensiones de Von mises σ_{VM} alcanzadas son mínimas, menores que el límite elástico del acero ST-35 que es de 235 MPa y aún más menores a la resistencia a tracción que es de 340-470 MPa, por lo tanto no rompe.

Figura 146. Deformaciones en la horquilla final.

En cuanto a las deformaciones ε , son todas menores a la decima de milímetro por lo que no es demasiada deformación.

Figura 147. Pandeo en la horquilla final.

El análisis de pandeo estudiado, muestra un valor de factor de carga de pandeo BLF mayor que la unidad, lo que nos dice que la pieza no está sometida a pandeo. Esta simulación corresponde al análisis del modo 1, el cual realiza el desplazamiento que se visualiza en la figura encima de estas líneas. Esta pieza está empotrada en un extremo y libre en el otro, parecido a una ménsula, en la que la longitud de pandeo duplica a la longitud de la pieza.

Los valores de deformación hay que tomarlos con cautela, porque en realidad no está determinando lo que realmente pasaría después de que el modelo pandee, pero la animación proporciona de alguna manera como sería la deformación del modelo.

3.2.2.4. Simulación del tensor

3.2.2.4.1. <u>Definir la geometría</u>

1. Se define la geometría del tensor. Este tiene una longitud de 48 mm, y consta de una rosca hembra a la cual va roscada la cabeza de articulación y de una rosca macho que se enrosca a la horquilla.

1. El material del tensor es acero ST-35. Las características de este material son las siguientes:

Densidad: 7,827 g/cm³ Módulo de elasticidad: 210000 N/mm² Resistencia a la tracción: 340 – 470 Mpa Límite elástico 0,2%: 235 MPa

Se clica en Materials ¹, se añade y clicando en Material assignment ¹ y seleccionando el tensor, se da material al mismo.

1. Se define el tamaño máximo de elemento $\frac{1}{2}$, en nuestro caso 2 mm.

2. Además, se mallan zonas de concentración de tensiones, etc., con mayor densidad, 0,5 mm.

3. Clicando después en Auto GEM 2000, se genera el mallado que se ha definido.

Figura 148. Geometría del tensor.

Material Assignment X						
Name						
MaterialAssign1						
 References						
Components 💌						
Part : TENSOR						
 Properties						
Material						
STEEL V More						
Material Orientation						
(None) v More						
 OK Cancel						

Figura 149. Añadir y asignar material.

Figura 150. Malla

3.2.2.4.4. <u>Restricciones</u>

 Se introducen las restricciones en los apoyos
 En este caso, se restringe la traslación en todos los sentidos en la rosca hembra del tensor.

Figura 151. Displacements.

3.2.2.4.5. <u>Fuerza</u>

 Se introduce una fuerza en compresión de 5700N en la rosca macho del tensor.

Figura 152. Fuerza.

3.2.2.4.6. <u>Análisis</u>

1. El análisis es estático. Se introduce la fuerza de 5700N en la rosca macho del tensor frente a la restricción en la rosca hembra.

2. Se corre el análisis. Y se visualizan los resultados de tensiones de Von Mises y deformaciones .

	Analysis1	MaxSize
	Nonlinear / Use Load Histories Inertia Relief	
	Constraints	1 - C
	Combine Constraint Sets	
	Constraint Set / Component	
	ConstraintSet1 / TENSOR	1
		a.u.
	Lorde	
	Sum Load Sata	
	Load Set / Company	
	LoadSet1 / TENSOR	
2		

Figura 153. Análisis estático.

3.2.2.5. Variaciones del tensor

Tras definir el tensor en el programa, se analizan varios tensores hasta encontrar el que se ajuste a nuestras necesidades y entre dentro de los parámetros mecánicos.

Figura 154. Primer tensor.

Si nos fijamos en el primer tensor estudiado, la tensión de Von Mises se eleva hasta 1900 N aproximadamente. Sin embargo, como ocurre en la horquilla, hay una arista viva en la rosca hembra del tensor que provoca ese aumento de tensión tan cuantioso. Y como en esta, estas tensiones no son reales sino que todas son menores que 235 N, por debajo del límite de fluencia y por tanto el tensor valdría como definitivo. En cuanto a deformaciones, no hay ningún problema ya que son menores que la segunda decima de milímetro.

Figura 155. Segundo tensor.

En el segundo caso se ha reducido el diámetro exterior del primer tensor, figura 154. Al igual que el anterior, las tensiones son menores que el límite de fluencia del acero, 235 MPa.

Figura 156. Tercer tensor.

En este último tensor estudiado, el diámetro se ha reducido aun más. Además, en vez de redondear la arista existente entre los dos cilindros, se ha optado por achaflanar la superficie.

Como se ve, si nos olvidamos del tema de la arista viva de la rosca hembra, las tensiones siguen siendo menores que el límite de fluencia.

3.2.2.6. **<u>Resultado final del tensor</u>**

Finalmente el tensor definitivo que forma parte de la bieleta definitiva y por tanto el que va a llevar la suspensión Full Floater es el segundo. Se podría haber elegido el tercer estudio, sin embargo se ha escogido el segundo para estar por el lado de la seguridad. A continuación se puede ver la pieza, el mallado, las tensiones de Von mises, y las deformaciones.

El tensor final es el que se visualiza en la siguiente figura.

Figura 157. Tensor final.

La malla con la que se ha estudiado el tensor es la que se visualiza en la siguiente figura.

Figura 158. Mallado del tensor final.

La malla del tensor está formada por elementos tetraédricos. El tamaño de malla general son 2 mm, mientras que en zonas puntuales como redondeos, chaflanes o el interior de la rosca hembra, tienen un mallado de 0,5 mm.

Figura 159. Tensiones de Von mises en el tensor final.

Olvidándonos de lo que ocurre en el final del agujero de la rosca hembra, explicado anteriormente, en el resto del tensor las tensiones de Von mises σ_{VM} alcanzadas son mínimas, menores que el límite elástico del acero ST-35 que es de 235 MPa y aún más menores a la resistencia a tracción que es de 340-470 MPa, por lo tanto no rompe.

Figura 160. Deformaciones en el tensor final.

En cuanto a las deformaciones ε , son todas menores a la decima de milímetro por lo que no es demasiada deformación.

3.2.3. Resultado final del triángulo, la bieleta y el muelle

La siguiente figura muestra el resultado final del triángulo, la bieleta, la unidad muelle – amortiguador y los respectivos componentes que forman el sistema de suspensión. Sin embargo, aún falta por diseñar el basculante para dejar definida del todo la suspensión.

Figura 161. Sistema de suspensión final sin el basculante diseñado.

4. EL BASCULANTE

Una vez estudiada la suspensión, se realiza un diseño preliminar del basculante. Esto es un estudio de diseño global, a rigideces: longitudinal, torsional, a flexión y lateral, y un estudio a detalle de resistencia para las orejas de unión al muelle y a la bieleta de la suspensión.

Para realizar los estudios es necesario diseñar la geometría, el mallado, las fuerzas, las restricciones, etc. Por ello, se muestra a continuación la forma de realizarlo, utilizando como base un basculante cualquiera, sin necesidad de ser el definitivo.

4.1. Diseño global del basculante: rigideces

4.1.1. Simulación global del basculante

4.1.1.1. Definir la geometría

Se define la geometría del basculante. Para ello, se definen cuatro partes: un triángulo trasero, un delantero y dos piezas centrales. Todas ellas se duplican simétricamente y se unen, formando el basculante. Se pueden realizar los agujeros y recortes necesarios, aunque no son muy influyentes para el cálculo de la rigidez.

4.1.1.2. <u>Material</u>

El material del basculante se ha decidido que sea de aluminio 5083. Las características de este material son las siguientes:

Al 5083 $\begin{cases}
Densidad: 2,7 \text{ g/cm}^3 \\
Módulo de elasticidad: 71000 \text{ N/mm}^2
\end{cases}$

Sin embargo, al no estar en la biblioteca de Creo 2.0 se elige el Al 6061 de parecidas propiedades. Se clica en Materials ^(C), se añade y clicando en Material assignment ^(C) y seleccionando el basculante, se da material al mismo.

Figura 162. Geometría del basculante.

Figura 163. Añadir y asignar material.

4.1.1.3. Mallado

Se define un tamaño máximo de elemento de de 6 mm. Clicando después en Auto GEM , se genera el mallado que se ha definido. Este mallado es bastante denso y podría reducirse para reducir en coste computacional.

Figura 164. Malla

4.1.1.4. **<u>Restricciones</u>**

Se introducen las restricciones en los apoyos . Se restringe la traslación en los apoyos al chasis para permitir la rotación del basculante.

4.1.1.5. **Fuerzas**

Dependiendo de cuál sea el estudio de rigidez, se introduce una fuerza u otra.

1. Si es <u>rigidez longitudinal</u>, se introduce una fuerza de tracción o compresión en el eje de la rueda de 1 kN en sentido del eje 'x'.

Figura 165. Displacements.

Figura 166. Fuerza longitudinal.

2. Si el estudio es de <u>rigidez a torsión</u>, se deben de introducir dos cargas de 4081 N cada una. Una fuerza esta aplicada en una dirección vertical, mientras que la otra en vertical pero en sentido contrario, asemejando a un momento torsor aplicado en el centro, es decir, en la rueda.

Para calcular el giro a torsión, es necesario introducir una barra Beam a la cual se le da un diámetro de 0,1 mm, ya que no queremos que influya demasiado en el cálculo. Solo queremos su giro.

	Force/Mom	ent Load	х	
	Name			
	torsion1		2	
	Member of Set			
	torsion		• New	
	References			
- 18 C	Surfaces		•	
	Surfaces : Individual	Boundary 🔘 Inte	nt	
	Surface : BASCULANTESOL	IDOPATATRASERA	4	
	Surface Sets			
=	Properties			=
	Coordinate System: World	Selected		
₽	₅Ļ, wcs	Ad	lvanced >>	
	Force	Moment		
	Components v	Components		
	X 0	X 0		
	Y -4081	Y 0		
	Z 0	z 0		
	N	mm N		
	ОК	Preview	Cancel	
				1

Figura 167. Fuerza de torsión.

Figura 168. Barra Beam

	For	ce/Moment	Load	×
	Name			
	flexion			
	Member of Set			
	flexion		▼ New	
	References			-
	Surfaces		-	
	Surfaces : Individ	ual 🔿 Boun	dary 🔿 Intent	
	Surface : BASCUL	ANTESOLIDO	PATATRASERA	
	Surface Sets			
	Properties	World	Calacted	12-
	Coordinate System.		Selected	
	JA, WCS		Advanced >>	
	Force		Moment	
	Components	▼ C	omponents	
	X 0	x	0	
The state of the s	Y -1000		0	1
	7 0		0	
	2 0		U	
· 1	N	v n	nm N	
		OK	Preview Cancel	
		ON	Calicer	

3. Si el estudio es de <u>rigidez a flexión</u>, se introducen fuerzas verticales de 1 kN en el eje de la rueda trasera.

Figura 169. Fuerza vertical.

4. Si el estudio es de <u>rigidez lateral</u>, se introducen las fuerzas laterales de 500 N cada una, en la unión con la rueda trasera.

Name	
lateral	2
Member of Set	
lateral	New
References	
Surfaces	
Surfaces : Individual Boundary Inten	t
Surface : BASCULANTESOLIDOPATATRASERA	\$
Surface Sets	
Properties	
Coordinate System: World Selected	
st, WCS Adv	vanced >>
Force Moment	
Components	
X 0 X 0	
Y 0 Y 0	
Z -500 Z 0	

Figura 170. Fuerza lateral.

4.1.1.6. **<u>Rigid Links</u>**

Para considerar las demás piezas del basculante (tensor, eje, esparrago, etc.) que están colocadas en la unión a la rueda trasera, se introducen unos elementos rigidizadores.

Para ello, se utiliza el término Rigid Link, donde se eligen la zona de la unión.

Figura 171. Rigid Links.

4.1.1.7. Análisis estático lineal

1. El análisis es estático. Se introduce la fuerza longitudinal, lateral, a torsión o a flexión en los agujeros de la unión a la rueda frente a las restricciones en las uniones al chasis.

2. Se corre el análisis. y se visualizan los resultados de desplazamientos 🔡.

		A	nalyses	and D	esign	Studie	s			Х
<u>F</u> ile	ile <u>E</u> dit <u>R</u> un <u>I</u> nfo <u>R</u> esults									
1		×					• 51	51		
Anal	yses and	Design S	tudies —							
	Name			Туре			Sta	atus		
I	Analysi	is1		Standa	rd/Stati	с		Com	pleted	

Figura 172. Análisis estático.

4.1.2. Variaciones del basculante

Primer basculante:

Tras definir el basculante en el programa, se analizan varios hasta encontrar el que se ajuste a nuestras necesidades y entre dentro de los parámetros de rigidez especificados en la memoria. Recordamos, que para que los basculantes valgan, se deben de cumplir las siguientes rigideces:

<u>Longitudinal</u>	<u>Torsión</u>
$K_L = \frac{F_L}{\delta_L}$	$K_T = \frac{M_T}{\theta_T}$
$\delta_{Lm\acute{a}x} = \frac{1}{30} = 0.0\widehat{33}mm$	$\theta_{T \ m\acute{a}x \ \div m\acute{n}} = 1^{\circ} \div 0,625^{\circ}$
Flexión	Lateral
$K_F = \frac{F_F}{\delta_F}$	$K_{La} = \frac{F_{La}}{\delta_{La}}$
δ_F lo menor posible	$\delta_{La\ min} = \frac{1}{0.9} = 1, \widehat{11}\ mm$

Para que el basculante sea correcto, se deben de cumplir las cuatro rigideces, por lo que en el momento que una de ellas no cumpla, se debe de mejorar la geometría. A continuación se presentan cinco basculantes, en los cuales se muestran los resultados de los desplazamientos y giros.

- - Figura 173. Primer basculante.

Figura 174. Desplazamientos longitudinales para el primer basculante.

Figura 175. Giro a torsión para el primer basculante.

Figura 176. Giro a flexión para el primer basculante.

Figura 177. Desplazamientos laterales para el primer basculante.

Observando los resultados, se puede descartar este basculante, ya que se superan los límites en cuanto a la torsión. El basculante ha girado 1,43 ° en torsión cuando solo se permite hasta 1°, lo cual lo hace ineficaz e inaceptable.

Y en cuanto a rigidez longitudinal se refiere, el desplazamiento máximo es de 0,33 mm, y el valor en este estudio es de 0,325 mm por lo que es muy justo y es necesario reducirlo.

• <u>Segundo basculante</u>:

En este basculante, se ha reducido la pendiente de la zona central para ver como esta influye en los resultados. Las demás medidas se mantienen igual que el primer basculante estudiado.

Figura 178. Segundo basculante.

Figura 180. Giro a torsión para el segundo basculante.

Figura 181. Desplazamiento a flexión para el segundo basculante.

Figura 182. Desplazamientos laterales para el segundo basculante.

Como podemos observar, el basculante continua siendo débil en rigidez torsional, al girar más de 1°. Además, continúa teniendo una rigidez longitudinal muy cercana a 30 kN/mm. Por ello, se hace necesario continuar buscando un basculante que cumpla los requisitos de rigidez.

Para reducir en coste computacional, en vez de estudiar los cuatro casos de desplazamientos, se estudia en que da más problemas, en este caso, el torsional, y así descartarlo antes de seguir con pasos en vano.

• Tercer basculante:

En el tercer caso, se mantiene la pendiente pero se aumenta la altura de las piezas hasta 120 mm, cambiando bastante la geometría.

Figura 183. Tercer basculante.

Figura 184. Giro a torsión para el tercer basculante.

En el tercero, pese a haber aumentado la altura hasta 120 mm, se sigue superando, por muy poco, el límite de giro a torsión permitido. Por ello, se va a aumentar más esta altura.

• Cuarto basculante:

Ahora, se ha aumentado la altura hasta 140 mm. De esta manera, además de reducir el giro a torsión, se disminuye el desplazamiento vertical y con ello se aumenta la rigidez a flexión.

Figura 185. Cuarto basculante.

Figura 186. Giro a torsión para el cuarto basculante.

En el giro a torsión es de 0,87°, menor de 1°, por lo que es válido y continuo estudiando los demás desplazamientos, el lateral, el longitudinal y el de flexión. La rigidez a torsión para este basculante es de 1,15 $\frac{kN \cdot m}{s}$.

Figura 187. Desplazamientos longitudinales para el cuarto basculante.

En cuanto al desplazamiento longitudinal, este es de 0,0193 mm, menor de 0,033 mm, por lo que tiene una rigidez de 51,6 kN/mm. Estos valores entran dentro de los permitidos, por lo que el basculante es rígido frente a una deformación axial.

Figura 188. Desplazamiento a flexión para el cuarto basculante.

En flexión, no hay valores máximos ni mínimos de rigidez indicados, pero sí que se sabe que se requiere el valor lo más alto posible, para que el basculante se deforme lo más mínimo. Comparando el valor obtenido en este cuarto diseño, 1,2586 mm en términos absolutos, con el segundo o primer resultado, este presenta menos deformación, y por tanto más rigidez, quedando en 0,8 kN/mm.

Figura 189. Desplazamientos laterales para el cuarto basculante.

El desplazamiento lateral del cuarto basculante es de 1,92369 mm. Este valor es mayor que 1,11 mm, lo que hace que sea válido y tenga una rigidez de 0,52 kN/mm, por debajo de 0,9 kN/mm.

Por último, para que este basculante sea válido, debe de tener una masa de menos de 6 kg, tal y como se especifica en la normativa del apartado 4.2., del documento de memoria. Para saberlo, se calcula el peso en el programa Creo Parametric, donde introduciendo el valor de la densidad del aluminio, $2700 \frac{kg}{m^3}$, el programa te calcula la masa del solido.

	Pr	opiedades de	masa 3			
Definir p	ropiedades por					
Geometr	ía y parámetros		▼ ¹			
Sistema	de coordenadas					
SCOOR p	or defecto		Usar anterior			
Sistema (de coordenadas alternativo					
SCOOR p	oor defecto		Usar anterior 🔻 🔟 Dependiente			
Propieda	ades básicas		Centro de gravedad [m]			
Densidad 2.700000e+03		kg/m^3	X -1.814585e-02			
Volumen	/olumen 1.904822e-03		V 2 580106e 02			
Masa	5.143019e+00	kg	2.0001000=02			
Área	3.456894e-01	m^2	Z -1.225000e-01			
Inercia (En el En el	m^2 kg] origen del sistema de co centro de gravedad	ordenadas				
	12600e+07	bxy	-1.926300e+05			
box 4.8			-4.234165e+06			
box 4.8 lyy 7.6	15925e+07	bz	-4.234165e+06			

Figura 190. Cálculo de la masa del basculante.

Como se observa, la masa del basculante es de 5,15 kg, menor de 6 kg, lo cual es un peso aceptable para este componente de masa no suspendida.

• <u>Quinto basculante:</u>

En este basculante se realizan varios vaciados con aristas redondeadas para minimizar lo máximo posible el efecto perjudicial de las concentraciones de tensiones. Se elimina material para reducir en masa no suspendida. Se incluyen también los vaciados para las orejas de unión con la suspensión.

Figura 191. Quinto basculante.

Figura 192. Desplazamientos longitudinales para el cuarto basculante.

Este basculante presenta un desplazamiento longitudinal en el ele de la rueda de 0,0253 mm, lo cual conlleva a una rigidez longitudinal de 39,53 kN/mm, mayor de 30 kN/mm, por lo que es aceptable axialmente.

Figura 193. Giro a torsión para el cuarto basculante.

El giro del basculante es de 1,436°. Este supera los 1° permitidos, por lo que el basculante no es válido. Por ello, se deja de estudiar el basculante con esta clase de vaciados.

4.1.3. <u>Resultado final</u>

Finalmente, el basculante escogido es la cuarta elección ya que los demás no son validos, al superar o no llegar a los valores de rigidez establecidos en la normativa. En el basculante elegido, falta únicamente por definir los vaciados para las orejas de unión a la suspensión. Estos vaciados son muy significantes y no afectan a la rigidez del basculante.

Figura 194. Basculante preliminar final.

Las rigideces del basculante son las siguientes. En vez de mostrar de nuevo las imágenes de los desplazamientos, se muestra una tabla con los valores finales.

R. Longitudinal K_L	R. Torsional K_T	R. Flexión K _F	R. Lateral K_{La}	Peso
$51,6\frac{kN}{mm}$	1,15 $\frac{kN \cdot m}{\circ}$	$0,8\frac{kN}{mm}$	$0,52\frac{kN}{mm}$	5,26 <i>kg</i>

Tabla 18. Resultados de rigidez para el basculante preliminar final.

El mallado del basculante preliminar final es el siguiente. Está formado por elementos tetraedros de 6 mm de tamaño máximo. Como se puede ver, es una malla bastante densa, razón por la cual el análisis estático tarda demasiado en correr. No pasaría nada si se pusiera un mallado menos denso. Los resultados darían bastante parecidos. Otra opción podría ser mallar menos denso todo el basculante y colocar mas densidad en las zonas donde necesitamos obtener los valores, estas zonas son las uniones del basculante con la rueda.

Figura 195. Mallado del basculante preliminar final.

4.2. Diseño a detalle del basculante: resistencia

Para sujetar los elementos de la suspensión (bieleta y resorte - amortiguador) es necesario la colocación en el basculante de los orejas. En estas orejas es donde van aplicadas las cargas debido a la fuerza de 2500 N en la rueda trasera. Por ello, se somete a un estudio de resistencia por elementos finitos para conocer cómo debe de ser la geometría en la que no se supera el límite elástico o por lo menos el límite de fatiga del material.

4.2.1. Simulación a detalle del basculante

4.2.1.1. Definir la geometría

Se define la geometría de las orejas y se enlazan al basculante antes calculado.

Figura 196. Geometría de las orejas.

4.2.1.2. <u>Material</u>

El material de las orejas es el mismo que el del basculante: aluminio 5083.

Al 5083 Módulo de elasticidad: 71000 N/mm² Límite de fatiga: 280 MPa Límite elástico 0,2%: 110 – 130 MPa

Sin embargo, al no estar en la biblioteca de Creo 2.0 se elige el Al 6061 de parecidas propiedades.

Figura 197. Añadir y asignar material.

4.2.1.3. Mallado

Se define el tamaño máximo de elemento de 15 mm y un tamaño de 6 mm en las zonas cercanas a las orejas. De esta manera, se reduce en coste computacional.

4.2.1.4. **<u>Restricciones</u>**

Se introducen las restricciones en los apoyos . Se restringe la traslación en los apoyos al chasis, a la rueda, y a las dos orejas, pudiendo después no utilizar las restricciones en las orejas si es que se consideran las fuerzas que actúan en ellas.

Name Constraint3 References Surfaces : ● Individual ● Boundary ● Intent Surfaces : ● Individual ● Boundary ● Intent Surfaces : BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: Sets Coordinals System ● World ● Selected J [*]	Name Constraint1 Wenber of Set ConstraintSet1 References Surfaces : Individual O Boundary O Intent Surface: BASCULAITEPATAPELAITEPAA Surface: BASCULAITEPATAPELAITEPAA Surface: BASCULAITEPATAPELAITEPAA Surface: BASCULAITEPATAPELAITEPAA Surface: Sets Coordinate System Ø Ø V + O Ø J + P Ø J + P Ø V + O Ø V + O Ø V + O Ø J + P Ø N/A	Constraint	
Constraint1 Image: Constraint1 Image: Constraint2 Image: Constr	Constraint Weeker of Set Constraint References Surfaces Surface	Name	
Newber of Set ConstraintSet1 Vertexes Surfaces ASCULANTEPATAPELANTERA Surfaces BASCULANTEPATAPELANTERA Surfaces Surfaces Surfaces Starfaces Surfaces Surfaces Starfaces Surfaces Surfaces Starfaces Starfaces Surfaces Starfaces Starfaces <t< td=""><td>Member of Set ConstraintSet1 Variaces Surfaces Vertal Surfaces Vertal Surfaces Vertal Surfaces Vertal Surfaces Vertal Surfaces Vertal</td><td>Constraint1</td><td>2</td></t<>	Member of Set ConstraintSet1 Variaces Surfaces Vertal Surfaces Vertal Surfaces Vertal Surfaces Vertal Surfaces Vertal Surfaces Vertal	Constraint1	2
ConstraintSet1 References Surfaces : Antiperiod in the set of t	ConstantiSet1 ▼ New References Surfaces: ▼ Surfaces: ● Individual Debundary O Intent Surface: Nasculu.AITEPATADELANTERA Surface: Nasculu.AITEPATADELANTERA Surface: Nasculu.AITEPATADELANTERA Surface: Nasculu.AITEPATADELANTERA Surface: Nasculu.AITEPATADELANTERA Surface: Na Coordinate System ● Ø Ø V Ø Ø Ø Z Ø Ø Ø N/A N/A	Member of Set	
References Surfaces : ● Individual ● Boundary ● Intert Surfaces : ● Individual ● Boundary ● Intert Surfaces : BASCULANTEPATADELANTERA Coordinate System ● World ● Selected J√w WCS	Reference Surfaces : ● Individual ● Boundary ● Intent Surfaces : ● Individual ● Boundary ● Intent Surfaces : ● ASCULANTERAA Surfaces : BASCULANTERAA Coordinate System ● World ● Selected √w WCS Transition X ● ● ● ● ● ● ● Z ● ● ● ● ● ● ● ● ● N/A	ConstraintSet1	▼ New
Surfaces view of hold with a state of the st	Surfaces individual Guadary Intent Surfaces : 6 ASCULANTERATADELANTERA Surface: 8ASCULANTERATADELANTERA Surface: 8ASCULANTERATADELANTERA Surface: 8ASCULANTERATADELANTERA Surface: 8ASCULANTERATADELANTERA Coordinate System World Gostected Surface: 9 Selected Surface:	References	
Surface: (● Individual () Boundary () Intent Surface: BASCULAITEPATADELAITEPA Surface: BASCULAITEPATADELAITEPA Surface: BASCULAITEPATADELAITEPA Surface: BASCULAITEPATADELAITEPA Surface: Sets Coordinate System © World () Selected \$\$\screwvcs} Translation X • (\$	Surface: @ Individual () Boundary () Intent Surface: BASCULANTEPATADELANTEPA Surface: BASCULANTEPATADELANTEPA Surface: BASCULANTEPATADELANTEPA Surface: BASCULANTEPATADELANTEPA Surface: Sets Coordinate System () World () Selected \$\screwer \lambda \l	Surfaces	
Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Coordinate System World O Selected JC World O Selected JC World O Selected JC O	Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA Surface: BASCULANTEPATADELANTERA © World O Selected \$\screen selected \$\scr	Surfaces : 💿 Individual 🔘 Boundary	 Intent
	N/A	Surface: BASCULANTERATADELANT Surface: BASCULANTERATADELANT SURFA	ERA ERA ERA
Y • • • • · · · · · · · · · · · · · · ·		4	I/A

Figura 199. Displacements.

4.2.1.5. **Fuerzas**

Las fuerzas que actúan en el basculante son las de la bieleta y las del muelle. Para el estudio, es necesario colocar estas fuerzas en la dirección y valor correspondiente. Por ello, vamos a la simulación del triangulo de suspensión y nos fijamos en las fuerzas. Se cogen los valores y se posicionan en las orejas del basculante, con la dirección de la fuerzas al revés.

Figura 200. Fuerzas en el triángulo.

2. En las orejas se colocan las fuerzas.

Figura 201. Fuerza de torsión.

4.2.1.6. Análisis estático lineal

1. Para el cálculo de resistencia, se realizan dos análisis estáticos. Un considerando la fuerza del muelle y restringiendo todo lo demás, y otro considerando las fuerzas del muelle y de la bieleta y restringiendo la rueda y el chasis.

2. Se corre el análisis. Y se visualizan los resultados de tensiones de Von Mises y desplazamientos .

Analyses and Design Studies							×			
<u>F</u> ile	<u>E</u> dit	<u>R</u> un	<u>I</u> nfo	<u>R</u> esi	<u>R</u> esults					
1		X 🗸					• 51	51		
Anal	yses and I	Design S	tudies —							
	Name		Туре		Sta	atus				
1	Analysi	s1		Standa	rd/Stati	с		Com	pleted	

4.2.2. Variaciones de las orejas

Tras introducir los parámetros necesarios se realizan los estudios. A continuación se muestran varias variaciones de las orejas y sus resultados.

• <u>Primer estudio</u>

Figura 203. Primer estudio.

Figura 204. Tensiones de Von Mises y desplazamientos para el primer estudio.

Figura 205. Tensiones de Von Mises en el primer estudio.

Como se observa en las imágenes, se han empotrado los agujeros de unión al chasis, rueda y bieleta. De esta manera, vemos lo que ocurre cuando se introduce la fuerza del muelle. Las tensiones superan el límite elástico. Sin embargo, los valores altos se corresponden con las restricciones en las orejas de la bieleta, lo cual es un resultado erróneo, ya que en la realidad no estaría sometido a tales valores de tensión. Por otra parte, en las orejas de unión al muelle, se tienen valores muy altos en el enganche al basculante. Pero al haber en la realidad una soldadura, no se tendrían estos valores de tensión. Por ello, se puede decir que las orejas están bajo tensiones por debajo del límite de fluencia del material, exceptuando pequeñas zonas de concentración de tensiones donde únicamente se plastificarían, sin afectar al funcionamiento.

En cuanto al desplazamiento, se tienen valores máximos de 0,38 mm. Estos valores no llegan a medio milímetro pero si superan la decima.

Figura 206. Restricciones y fuerzas.

• <u>Segundo estudio</u>

Figura 207. Segundo estudio.

En este segundo estudio, se han reducido los espesores de las orejas de 6 a 3 mm. De esta manera se quiere demostrar como con menos de 6 o 5 mm las orejas no soportan las fuerzas a las que están sometidas.

Como se ve, las tensiones aumentan el más del doble si reducimos el espesor hasta 3 mm. Si nos fijamos en la siguiente figura, casi toda la parte superior de la oreja está sometida a tensiones por encima de la fluencia e incluso de la fatiga. Además, los desplazamientos han aumentado hasta 0,62, lo cual es una atrocidad.

Figura 210. Tensiones de Von Mises para el segundo estudio.

• <u>Tercer estudio</u>

Figura 211. Tercer estudio.

Figura 212. Tensiones de Von Mises y desplazamientos para el tercer estudio.

Figura 213. Geometría de la oreja (muelle) para el tercer estudio.

En este estudio, se ha vuelto a aumentar el espesor a 6 mm, pero además, se ha aumentado el radio inferior de las orejas de tal manera que se reduzca el desplazamiento. Sin embargo, no se ha llegado a reducir ni 0,02 mm, lo cual nos lleva a variar de nuevo la geometría.

• Cuarto estudio

Figura 214. Cuarto estudio.

Stress von Mises (WCS) Maximum of beam (MPa) Loadset orejamuelle : BASCULANTESOLIDO

Displacement Mag (WCS) (mm) Max Disp 3.7426E-01 Loadset:orejamuelle : BASCULANTESOLIDO

Figura 215. Tensiones de Von Mises y desplazamientos para el tercer estudio.

Figura 216. Geometría de la oreja (muelle) para el cuarto estudio.

En el cuarto estudio, El radio exterior se ha aumentado hasta 35 mm, y se ha mantenido el radio de 30 mm. Los desplazamientos se mantienen pero se ha logrado reducir las tensiones de Von Mises.

• <u>Quinto estudio</u>

Figura 217. Tensiones de Von Mises y desplazamientos para el quinto estudio.

En el quinto estudio, se somete a las dos orejas a las fuerzas de la bieleta y el muelle, restringiendo esta vez las uniones con el chasis y la rueda.

Figura 218. Restricciones y fuerzas.

Figura 219. Tensiones de Von mises en las orejas del quinto estudio.

Cuando la carga de la bieleta actúa, el agujero interior de la oreja recibe toda la carga y por ello, aumentan las tensiones en esa zona.

• <u>Sexto estudio</u>

Figura 220. Sexto estudio.

Figura 221. Tensiones de Von Mises y desplazamientos para el sexto estudio.

Figura 222. Geometría de la oreja (bieleta) para el sexto estudio.

En el sexto estudio, se aumenta el diámetro exterior de las orejas de unión a al bieleta. De esta manera, se consigue eliminar las tensiones en los agujeros de las orejas de unión a la bieleta, quedando las σ_{VM} por debajo de la fatiga y de la fluencia. Sin embargo, aun quedan tensiones bastante altas en el radio tangente al diámetro exterior de la oreja y a la superficie del basculante.

En necesario por tanto aumentar el espesor de la oreja.

• <u>Séptimo estudio</u>

Figura 223. Séptimo estudio.

Figura 224. Tensiones de Von Mises y desplazamientos para el séptimo estudio.

Aumentando el espesor de las orejas de unión a la bieleta hasta 9 mm, las tensiones disminuyen radicalmente, quedando por debajo del límite de fatiga y del de fluencia, pudiendo estar algunas pequeñas áreas, plastificadas al estar por encima de la fluencia. Sin embargo, no influye en el funcionamiento del basculante, y por tanto se puede decir que este diseño garantiza su función.

4.2.3. <u>Resultado final</u>

Finalmente, tras varios estudios, el diseño definitivo es el séptimo ya que a pesar de no haber conseguido reducir el desplazamiento, se han reducido las tensiones de Von Mises, consiguiendo unas orejas incapaces de romperse.

A continuación se puede ver la geometría final de las orejas, el basculante y el mallado.

Figura 225. Oreja de unión al muelle 6 mm espesor (Izqda.) y de unión a la bieleta 9 mm (dcha.).

Figura 226. Visualización de las orejas acopladas al basculante.

Figura 227. Alzado del basculante con las bieletas.

Figura 228. Basculante con las orejas finales.

Figura 229. Mallado.

5. ILUSTRACIÓN FINAL DE LA SUSPENSIÓN

A continuación se muestra la suspensión completamente terminada (exceptuando el diseño preliminar del basculante).

Figura 230. Conjunto Suspensión Full Floater terminada.

Figura 231. Vista 3D de la suspensión.

Como se puede observar, los componentes encajan a la percepción. En la siguiente figura se muestra la diferencia entre el modelo de suspensión inicial y el finalmente obtenido.

Figura 232. Suspensión inicial (izqda.) y final (dcha.).

A continuación se puede ver la posición final de la suspensión cuando el muelle ha realizado todo su recorrido útil.

Figura 233. Suspensión al final del recorrido del muelle.