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1 Introduction

Most of the equilibrium concepts in the literature of in�nitely repeated games
may su¤er from a serious drawback: they do not consider the possibility of a
group of players forming a coalition to deviate. Subgame perfect equilibrium
strategies are de�ned to avoid single player deviations. Deviations of two
or more players are often ignored. In a ground-breaking paper, Horniacek
(1996) argues that group deviations should not be ignored, and that any
deviation of any coalition (other than the grand one) must be punished by
the complementary coalition. Interested readers are referred to Horniacek�s
paper (1996, pp. 101-102).
In order to punish coalitional deviations we introduce simple coalitional

strategy pro�les which generalize the simple strategy pro�les de�ned by Ab-
reu (1989). A simple coalitional strategy pro�le consists of one cooperative
path and one punishment path for each coalition other than the grand one.
These strategies are de�ned as follows: Start the cooperative path and re-
main on it if no player deviates. If, a coalition deviates after any history,
then start the punishment phase of that coalition. Only deviations of all
players are ignored.
The equilibrium concept used throughout the paper is the Quasi Strong

Perfect Equilibrium (QSPE) introduced by Horniacek (1996). An equilibrium
is QSPE if no coalition can, taking the actions of its complement as given,
deviate in a way that bene�ts all of its members. It is explained in Section
3 why the Strong Perfect Equilibrium of Rubinstein (1980) cannot be used.
Next we outline why the problem of checking whether a simple coalitional

strategy pro�le is QSPE can be so complex especially when the number of
players n is big. To avoid coalitional deviations we need to punish all coali-
tions except the grand one. Even in the simplest case of a single punishment
for each coalition (irrespective of the phase in which the deviation has taken
place) deviations of any of the 2n�2 coalitions from any of the 2n�1 outcome
paths must be avoided. Each coalition could deviate for only one period, for
any �nite number of periods, or even forever. Furthermore, coordinated
deviations (which are explained in detail in Section 3) must be taken into
account. As will be shown, these coordinated deviations could potentially be
in�nitely complex.
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A relevant contribution of this paper is to simplify this problem sub-
stantially. In Section 3 we generalize a result similar to that of Abreu in
(1989). We prove that only one-shot deviations need to be checked to avoid
coalitional deviations, where a one-shot deviation is a single-period deviation
followed by sticking to the strategy in subsequent periods.
To obtain all the major results of this paper we need to introduce an

auxiliary equilibrium concept which is even stronger than QSPE, and which
we call the Quasi Even Stronger Perfect Equilibrium (QESPE). An equilib-
rium is QESPE if no coalition other than the grand one, taking the actions
of its complement as given, can deviate in a way that increases the sum of
the payo¤s of all of its members. Note that if a strategy is QESPE then it is
also QSPE, whereas the reverse is not true.
One of the contributions of this paper is to show that in the Cournot

supergame with any number of players it is possible to sustain the symmet-
ric monopoly outcome by means of a variety of strategies which satisfy the
requirement that no coalition other than the grand one may deviate in any
subgame (provided that the discount factor is close enough to 1). A straight-
forward conclusion from this result is that, at least in the symmetric Cournot
model, any coalition which has the possibility of improving the payo¤s of all
of its members with a deviation, also has di¤erent strategies for sustaining
that deviation in a credible way (where credibility means that no subcoali-
tion will deviate further). This enables us to conclude that any deviation of
any coalition must be punished by the complementary coalition.
The rest of the paper is organized as follows. Section 2 contains the

preliminaries. Section 3 and 4 present the results. Section 5 concludes with
some comments on related work, with special attention to Horniacek (1996).
Appendix is divided into two parts, one with the lemmas used in the paper
and their proofs and the other with the proofs of the results.

2 Preliminaries

Let G = (Q1; :::; Qn; �1; :::;�n) be an n-player game where N = f1; :::; ng
is the set of players, Qi is the set of actions qi of player i and �i : Q =

Q1 � :::�Qn �! R is player i�s payo¤ function.
The associated in�nitely repeated game with discounting is denoted by
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G1 (�) where � 2 (0; 1) is the discount factor. If q (t) = (q1 (t) ; :::; qn (t)) is
the vector of actions played in period t, then fq (1) ; :::; q (t)g is a history h
of length t. A strategy �i of player i in G1 (�) is a sequence of functions �ti
(or �i(t)) from the set of all histories of length t � 1 to Qi, so �1i 2 Qi is
the initial action of player i. A stream of action pro�les fq (t)g1t=1 is referred
to as an outcome path and is denoted by S. A strategy pro�le � = (�i)i2N
generates an outcome path S (�) = fq (�) (t)g1t=1 de�ned inductively by:

q (�) (1) = �1

q (�) (t) = �t (q (�) (1) ; :::; q (�) (t� 1)) , if t > 1.
The value �i (q (t)) denotes the payo¤ of player i in period t when the

outcome in this period is q (t). And �i (S) denotes the discounted payo¤ of
player i for the outcome path S = fq (t)g1t=1:

�i (S) =

1X
t=1

�t�1�i (q (t)) .

Then, the discounted payo¤ of player i in G1 (�) obtained with the strategy
pro�le � is �i(�) = �i (S (�)) 1.
�i(� j h) denote the discounted payo¤ of player i when (� j h) is the

continuation of � after h.
A coalition D is a nonempty subset of N . Let QD = �

i2D
Qi, Q�D =

�
j2NnD

Qj, qD = (qi)i2D 2 QD and q�D = (qj)j2NnD 2 Q�D. We denote by

�D = (�i)i2D a strategy of coalition D and by ��D = (�j)j2NnD.
In this paper, we consider the Cournot Supergame with perfect monitor-

ing. So the preliminaries for this model are also introduced here.
Take n �rms producing a homogeneous product at a constant marginal

cost c > 0. The industry inverse demand function is denoted by p (z) and the
payo¤s are �i (q1; :::; qn) = (p (q1 + :::+ qn)� c) qi, where qi is the output of
�rm i.
Some reasonable assumptions about this game are:

Assumption A1. p : R+ �! R+ is continuous, di¤erentiable and with
p0 (z) < 0 for all z > 0 such that p (z) > 0, limz!1 p (z) = 0, and p (0) > c.

1Since there is no danger confusion, the discount factor is not explicicitly included
among its arguments.
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We introduce a capacity constraint in Qi in order to make this set com-
pact. Formally, Qi =

�
0;
_
q(�)

�
for all i = 1; :::; n, where

_
q(�) is such that

��1
�_
q(�); 0; :::; 0

�
>

�
�

1� �

�
sup
q
�1 (q; 0; :::; 0) .

Note that this capacity constraint
_
q(�) is not at all restrictive, since the

loss to a �rm from producing an output greater than
_
q(�) cannot be recouped

by any possible future gain (Abreu, 1986).

Let q�i (q�i) be a single period best response to q�i = (q1; :::; qi�1; qi+1; :::; qn),
i.e., q�i (q�i) satis�es �i(q1; :::; q

�
i (q�i); :::; qn) � �i(q1; :::; qi; :::; qn) for all qi 2

Qi. Set ��i (q1; :::; qn) = �i (q
�
i (q�i); q�i).

Assumption A2. q�i (q�i) is well de�ned, unique, and q
� (z) = q�1(q2; :::; qn),

where z = q2 + :::+ qn, is a continuous, non-increasing function.

Let nqm be the monopoly output level, i.e., qm is such that�1(nqm; 0; :::; 0) �
�1(q; 0; :::; 0) for all q 2 Q1.

Assumption A3. qm is unique, strictly positive and �1 (q; :::; q) declines
strictly monotonically as output increases beyond qm or falls below qm.

Assumptions A1;A2 and A3 are equivalent to the assumptions made
by Segerstrom (1988) and Abreu (1986). Segerstrom (1988) proved in his
Lemma 1, that the game with two players has exactly one Cournot Nash
equilibrium which is symmetric. For a game with n players the generaliza-
tion of this result is immediate.
We denote this unique Cournot Nash equilibrium by (qc; :::; qc) and its

payo¤ by �c = �i (q
c; :::; qc). Also (qm; :::; qm) and �m = �i (q

m; :::; qm).
For the sake of simplicity, we use qc instead of (qc; :::; qc) and qm instead of
(qm; :::; qm) whenever it is clear from the context which is which.
Finally, let ��(z) =maxf(p(q + z)� c)q j q 2 Q1g where

_
z is the unique

total quantity satisfying p(
_
z) = c. Abreu (1986) proved that ��(z) is strictly

decreasing and convex on [0;
_
z].
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3 Quasi Even Stronger Perfect Equilibrium

Simple strategy pro�les are de�ned to avoid single player deviations (Abreu
(1988)). Deviations of two or more players are always ignored. As argued in
the Introduction, group deviations cannot be ignored, and any deviation by a
coalition (other than the grand one) must be punished by the complementary
coalition.
Now, to prevent group deviations, we introduce simple coalitional strategy

pro�les.

A simple coalitional strategy pro�le � is determined by 2n � 1 outcome
paths (one cooperative path associated with ; and one punishment path for
each coalition other than the grand one). These outcome paths are denoted
by SI where SI =

�
qI (t)

	1
t=1
for I � N , which inductively de�ne the follow-

ing strategy pro�le:
(i) Play S; until a coalition deviates singly from S;.
(ii) For any I � N , play SD if coalition D deviates singly from SI , where
SI is an ongoing previously speci�ed path. Continue with SI if no further
deviation occurs or if all the players deviate simultaneously.

In other words, start cooperating and continue cooperating if no player
deviates. If after any history a coalition deviates, start the punishment phase
of that coalition. Only deviations of all players are ignored.
Rubinstein (1980) introduced the concept of Strong Perfect Equilibrium

(SPE) in repeated games. SPE requires that no coalition can improve the
payo¤ of all of its members after any history. In view of the arguments above
this is not a very strong solution concept. However in repeated games there
is often no SPE. For instance Farrell (2001) proves that in the Cournot model
with linear demand there is no SPE whenever n > 3: This is because there
is no way to punish the grand one. Thus, to avoid joint deviation by all the
players one is restricted to using Pareto-e¢ cient payo¤s in all the punishment
phases. In most cases it is not possible to deter deviations while maintaining
Pareto e¢ ciency.
So the problem of the existence of SPE is basically concerned with the

grand one. This motivates the introduction of a slight modi�cation of the
concept of SPE.
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A simple coalitional strategy pro�le � is a Quasi-Strong Perfect Equi-
librium (QSPE) (Horniacek (1996)) if there is no coalition D � N and no
strategy �0D such that for some history h: �i(�

0
D; ��D j h) > �i(� j h) for all

i 2 D.

If an equilibrium � is a QSPE, then the vector of payo¤s (�1 (�) ; :::;�n (�))
can also be said to be a QSPE.
QSPE guarantees that no coalition (other than the grand one) will deviate

in any subgame. The possibility of a deviation by the grand one is discussed
below in the Conclusions.
Now it needs to be explained why it is so complex to check whether a

simple coalitional strategy pro�le is QSPE (especially when n is big). Note
that deviations by any of the 2n�2 coalitions from any of the 2n�1 outcome
paths need to be prevented. Each coalition could also deviate for only one
period, for any �nite number of periods or for ever. Furthermore, coordinated
deviations2 need to be taken into account, which could seriously complicate
this problem.
The meaning of coordinated deviations here is illustrated with the follow-

ing example.

Example Consider the Cournot supergame with �ve players, a linear de-
mand function given by p = 100 � z ( if z < 100 and 0 otherwise) and a
linear cost function with marginal cost c = 20. Let � be the simple coali-
tional strategy pro�le de�ned by:
� S; = f(10; 10; 10; 10) ; (10; 10; 10; 10) ; (10; 10; 10; 10) ; :::g
� Sf1g = f(0; 50; 0; 0) ; (10; 10; 10; 10) ; (10; 10; 10; 10) ; :::g.
� Sf2g = f(50; 0; 0; 0) ; (10; 10; 10; 10) ; (10; 10; 10; 10) ; :::g.
� Sf3g = f(0; 0; 0; 50) ; (10; 10; 10; 10) ; (10; 10; 10; 10) ; :::g.
� Sf4g = f(0; 0; 50; 0) ; (10; 10; 10; 10) ; (10; 10; 10; 10) ; :::g.
� Sf1;2g = f(0; 0; 25; 25) ; (10; 10; 10; 10) ; (10; 10; 10; 10) ; :::g and for fi; jg 6=
f1; 2g, Sfi;jg is identical to Sf1;2g except that the roles of players 1 and 2, and
players i and j are interchanged.
� Sf1;2;3g = f(0; 0; 0; 50) ; (10; 10; 10; 10) ; (10; 10; 10; 10) ; :::g and for fi; j; kg 6=

2The problem of these coordinated deviations was pointed out by Rubinstein (1980).
In his paper he called them �deviations by stages�.
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f1; 2; 3g, Sfi;j;kg is identical to Sf1;2;3g except that the roles of players 1, 2
and 3, and players i, j and k are interchanged.

In this example it can be shown by simple but rather long computations,
that if � > 0:5625 no coalition D � N can obtain more bene�ts for all of its
members with joint deviations of �. However, players 1 and 2 can obtain more
bene�ts by coordinating their deviations according to the following plan:
First player 2 deviates singly from Sf1g. In the next period � recommends
that Sf2g be started. Instead, player 1 deviates from Sf2g, while player 2 fol-
lows �. Then � recommends that Sf1g be started again. But then again player
2 deviates singly from Sf1g, and in the next period player 1 deviates from
Sf2g, and so on. Note that�m = �1(10; 10; 10; 10) = �2(10; 10; 10; 10) = 400,
q�1(0; 0; 0) = q�2(0; 0; 0) = 40, ��1(40; 0; 0; 0) = ��2(0; 40; 0; 0) = 1600 and
�1(50; 0; 0; 0) = �2(0; 50; 0; 0) = 1500. Then, for � > 0:333, the result for
player 1 is: 1600+ 0�+1600�2+0�3+ ::: > 1500+ 400�+400�2+400�3+ :::
and for player 2: 0+1600�+0�2+1600�3+ ::: > 0+400�+400�2+400�3+ :::.
So both players �nd it more pro�table to follow the above plan of alternating
deviations than to continue with �. The conclusion is that although coalition
f1; 2g is not able to obtain more bene�ts for all of its members with a joint
deviation from � (after any history), players 1 and 2 are able to improve their
payo¤s by coordinating their actions.

In general a coordinated deviation by a coalition D alternates deviations
by subcoalitions B � D according to a plan which could, potentially, be
in�nitely complex. This seriously complicates the problem of checking that
no coalition D � N will ever deviate. In order to deal with this problem
a new equilibrium concept which is even stronger than SPE needs to be
introduced.

De�nition A simple coalitional strategy pro�le � is a Quasi-Even Stronger
Perfect Equilibrium (QESPE ) if there is no coalition D � N and no strategy
�0D such that for some history h:

P
i2D
�i(�

0
D; ��D j h) >

P
i2D
�i(� j h).

If an equilibrium � is a QESPE, then the vector of payo¤s (�1 (�) ; :::;�n (�))
can also be said to be a QESPE.
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QESPE is just an intermediate concept. We do not claim that it is inter-
esting in itself. We use it to prove the existence of QSPE. Note that if � is
QESPE then � is also SPE, whereas the reverse is not true.
This new concept allows us to obtain a result that signi�cantly simpli-

�es the process of checking that no coalition will ever deviate. Abreu (1988)
proves that simple strategy pro�les are simple not only because of their de�n-
ition but also because it is easy to check whether they are subgame perfect
equilibria. According to his Proposition 1 (p. 391), only one-shot deviations
need be checked to ensure subgame perfection, where a one-shot deviation
from a strategy consists of a single period deviation followed by sticking to
the strategy afterwards. The proposition below generalizes this �nding by
Abreu to the QESPE concept.

Proposition 1 The simple coalitional strategy pro�le � is a QESPE if and
only if

P
i2D
�i(qB; q

I
�B(t)) + �

P
i2D
�i(S

B) �
P
i2D
�i(S

I ; t) for all qB 2 QB,

B � D, D � N , I � N and t = 1; 2; :::.

This condition means that no coalition can in sum obtain more pay-
o¤s with a single period joint deviation followed by sticking to the strategy
thereafter. Nor are one-shot coordinated deviations pro�table in sum for any
subcoalition B � D.

4 QESPE in the Cournot Supergame

Proposition in Horniacek (1996) establishes a su¢ cient condition for an ac-
tion vector to be sustained by a QSPE (for a discount factor close enough to
1). From this condition it is straightforward to prove the existence of QSPE
in the Cournot model. However this result does not guarantee the Pareto
optimality of the payo¤s.
In this section we prove that, under assumptions A1-A3, the symmetric

monopoly outcome can be sustained as a QSPE even when the number of
players tends to in�nity.
Next we given su¢ cient conditions to sustain the symmetric monopoly

outcome as a QESPE.
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Proposition 2 The symmetric monopoly payo¤ vector (�m; :::;�m) is QESPE
for � close enough to 1 if there exists an action pro�le qp = (q0; q; :::q) 2 Q
such that:
(i) �1(qp) � �2(qp) � �m.
(ii) ��1(q

p) < �m.

Note that when �2(qp) � �m the problem of coordinated deviations does
not arise and everything is much simpler. Aramendia et al. (2002) prove in
their Theorem 6 that in the Cournot model with standard assumptions there
is always

_
n such that for all n �

_
n it is not possible to sustain �m (with

a simple, two-phase strategy pro�le) unless �2(qp) � �m. Hence, although
this condition seems to be very strong, it is in fact necessary to sustain �m

when there is a high enough number of players (9 in the linear case):
The simple coalitional strategy pro�le � is constructed as follows: Let

qp = (q0; q; :::q) be the vector of quantities that it is recommended to play
in the �rst period of S1 of the two-phase subgame perfect equilibrium. The
corresponding QESPE strategy pro�le � is de�ned by S; = fqmg1t=1 and
SI =

n
qI ; :::

t
; qI ; qm; qm; :::

o
for I � N , where qIi =

q0+(jIj�1)q
jIj if i 2 I and

qIi = q otherwise. See the proof of Proposition 2 to understand why this pro-
cedure works. The number of periods in the punishment phase of coalitions
I with more than one player may have to be increased, and some margin
will probably also be lost in the discount factor, but anyway the existence of
QESPE (and therefore of QSPE) is guaranteed for � close enough to 1
Let � be a two-phase simple strategy pro�le such that S; = fqmg1t=1, S1 =n

qp; :::
t
; qp; qm; qm; :::

o
and, for i 6= 1, Si is identical to S1 except that the roles

of players 1 and i are interchanged. Note that if a strategy of this kind is a
subgame perfect equilibrium and satis�es the requirement that �2(qp) � �m,
then conditions (i) and (ii) of the above Proposition 2 are automatically
met. This is because �1(qp) � �m and condition (ii) is necessary to ensure
subgame perfection.
The conclusion is surprising:

Corollary If the symmetric monopoly outcome can be sustained as a sub-
game perfect equilibrium with a two-phase simple strategy pro�le satisfying
�2(q

p) � �m, then there is a simple, two-phase coalitional strategy pro�le that
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also sustains the symmetric monopoly outcome as a QESPE (and therefore
as a QSPE)..

Now it is straightforward to prove the central theorem of this paper.

Theorem The symmetric monopoly outcome can be sustained as a QESPE
(and therefore as a QSPE) for any number of players provided that the dis-
count factor is close enough to 1.

The simple coalitional strategy pro�le strategy � considered in the proof
of this theorem is de�ned by S; = fqmg1t=1 and SI =

n
qc; :::

t
; qc; qm; qm; :::

o
for I � N: This strategy is not the trigger strategy although it is very similar.
Note that playing qc forever, i.e., SI = fqc; qc; qc; :::g is not QSPE since any
coalition D with more than one player can deviate from qc in any period.
The next step is to show that there is a variety of QESPE strategies for

which the symmetric monopoly outcome can be sustained, and that some of
these strategies may have a very di¤erent structure. To show this we include
two di¤erent types of QESPE strategy:

Type 1. Let � be de�ned by S; = fqmg1t=1 and SI =
n
qp; :::

t
; qp; qm; qm; :::

o
for I � N , where qp = (q0; :::; q0) is such that p((n� 1)q0) � c.

To see that � is QESPE it su¢ ces to check that conditions (i) and (ii) of
Proposition 2 are satis�ed. As �1(qp) = �2(qp) < 0 and ��1(q

p) = 0 the res-
ult follows. Therefore all these strategies sustain (�m; :::;�m) as a QESPE
for � close enough to 1. Note that strategies of this kind have a stick and
carrot structure and are similar to the strategies proposed by Abreu (1986).
However two di¤erences should be pointed out: the �rst is that t periods of
punishment may be needed instead of only one. The second is that in the
carrot phase of the punishment we always come back to qm whereas Abreu,
looking for the most severe punishment, returns in most cases to a level with
less pro�ts than �m.

Now we propose a new type of strategy that also sustains the monopoly
outcome as an QESPE. The idea is to force the cheater to accept the pun-
ishment, thus ensuring that this player in question will not deviate during
his punishment phase.
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Type 2. Let � be given by S; = f(qm; :::; qm); (qm; :::; qm); :::g and SI =n
qI ; :::

t
; qI ; qm; qm; :::

o
for I � N , where qIi =

R(q)+(jIj�1)q
jIj if i 2 I and qIi = q

otherwise, whith R(q) = q�((n� 1)q).

This strategy sustain (�m; :::;�m) as QESPE (when � is big enough) for all
q 2

h
qc;

_
z
n�1

i
such that �2(R(q); q; :::; q) � �m. We show that conditions

(i) and (ii) of Proposition 2 hold. Given that R(q) is non increasing (by
assumption A2), then R(q) � R(qc) = qc for all q 2

h
qc;

_
z
n�1

i
. Thus R(q) � q

and �1(R(q); q; :::; q) � �2(R(q); q; :::; q) � �m, hence condition (i) follows.
Moreover, as ��(z) is decreasing on [0;

_
z] we have ��1(R(q); q; :::; q) = �

�((n�
1)q) � ��((n� 1)qc) = �c < �m. Hence (ii) holds.
In the linear Cournot model, it can be easily shown that�2(R(q); q; :::; q) �

�m for all q 2
h
qc;

_
z
n�1

i
, so we conclude that � is QESPE for all q 2

h
qc;

_
z
n�1

i
.

5 Conclusions

In this paper we show that, in repeated games, coalitional deviations may
have to be punished. Otherwise coalitions could sustain their deviations with
QSPE strategies (i.e., strategies that meet the condition that no subcoalition
deviates further). In this setting, the subgame perfect equilibrium is therefore
a weak equilibrium concept. This conclusion is not new. It was reached by
Horniacek with a di¤erent, original argument.
One question that remains outstanding is this: what about deviations by

the grand one?
To prevent deviations by the grand one one would have to choose the

optimal strategy among all the QSPE strategies according to a criterion.
Using a common expression in game theory, it can be said that a QSPE
strategy is a strategy with internal stability. In these terms external stability
means that there is no other strategy which is QSPE and is preferred by all
players. As shown above, in the Cournot model, there are in�nite strategies
that are QSPE. However, due to the complexity of the problem, it is not
vet possible to characterize all QSPE strategies. We are only able to present
results concerning existence. That is why, this paper, does not attempt to
establish the external stability condition.
Horniacek (1996) seeks to approximate a Strong Perfect Equilibrium in
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the setting of discounted supergames. He solves the problem of deviations
by the grand one by imposing two additional requirements on the QSPE3

concept. The �rst is that no coalition can increase the average payo¤ of at
least one of its members by more than � without decreasing the average payo¤
of any other members. The second is to add Weak Renegotiation Proofness
in the sense of Farrell and Maskin (1989). Horniacek proves necessary and
su¢ cient conditions for the existence of this concept. However the strategies
used in his proofs are really complex. We believe that the main contribution
of our work is to simplify this problem by means of simple coalitional strategy
pro�les. We believe it might be of interest to follow Horniacek�s approach
using our results to advance in his line of investigation.

6 Appendix

Proof. (Proposition 1) We must show that � is a QESPE if and only ifX
i2D

�i(qB; q
I
�B(t)) + �

X
i2D

�i(S
B) �

X
i2D

�i(S
I ; t) (1)

for all qB 2 QB, B � D, D � N , I � N and t = 1; 2; :::.
Following the same steps as Abreu in his Proposition 1, from the point

of view of coalition D; ��D de�nes a stationary discounted Markov de-
cision problem with states qI�D(t), I � N , t = 1; 2; :::. Transition prob-
abilities are given by prob

�
qI�D(t+ 1) j qI�D(t); qD

�
= 1 if qD = qID(t) and

prob
�
qB�D(1) j qI�D(t); qD

�
= 1 if qB 6= qIB(t). The payo¤ of coalition D in

each period for each state is g
�
qI�D(t); qD

�
=
P
i2D
�i(qD; q

I
�D(t)). Then, by

Proposition 7, Chapter 6, Bertsekas (1976) the inequalities (1) assert that
�D is optimal, i.e., (�D j h) is a best response to (��D j h) for all history h.
This establishes su¢ ciency. Necessity follows directly from the de�nition of
QESPE.
Let � be a simple coalitional strategy pro�le with a two-phase punish-

ment such that S; = fqmg1t=1 and SI =
n
qI ; :::

t
; qI ; qm; :::

o
for I � N , where

the cooperative path S; takes the action qm for each period and the pun-
ishment path SI takes the action qI , t times, and then qm forever. The

3To be precise we have to say that he works with an equilibrium concept which is very
close to QSPE. He calls it Semi Strict Quasy Strong Perfect Equilibrium.
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following lemma establishes su¢ cient conditions for a strategy of this kind
to be QESPE provided that the players are su¢ ciently patient.
First we introduce some useful notation. Let D be a coalition of N . Set

q�D(q�D) such that
P
i2D
�i(q

�
D(q�D); q�D) �

P
i2D
�i(qD; q�D) for all qD 2 QD

and ��D (q1; :::; qn) =
P
i2D
�i (q

�
D(q�D); q�D).

Lemma 1 A simple coalitional strategy pro�le with a two-phase punishment
� is QESPE for a suitable t and � close enough to 1 if the following condi-
tions hold:
(a)

P
i2D
�i(q

B) < jDj�m for all B � D;D � N .

(b)
P
i2D
�i(q

B) �
P
i2D
�i(q

I) for all B � D and D; I � N .

(c) If
P
i2D
�i(q

B) =
P
i2D
�i(q

I) for some B � D andD; I � N then
P
i2D
�i
�
q�(qI�B); q

I
�B
�
<

jDj�m.

Proof. By Proposition 1 only one-shot deviations need be checked to ensure
that � is a QESPE. In this case only the following one-shot deviations need
be checked:
(i) Deviations of coalition D from path S;. To avoid this we must show

that the following inequality hold:X
i2D

�i
�
q�(qm�B); q

m
�B
�
+ �

X
i2D

�i(S
B) �

X
i2D

�i(S
;). (2)

Let F (�) =
P
i2D
�i
�
q�(qm�B); q

m
�B
�
+�

P
i2D
�i(S

B)�
P
i2D
�i(S

;). As �i(SB) =

�i(q
B) + ��i(q

B) + :::+ �t�i(q
B) + �t+1�m + ::: and �i(S;) = �m + ��m +

:::+ �t�m + �t+1�m + ::: then F (�) =
P
i2D
�i
�
q�(qm�B); q

m
�B
�
� jDj�m � (� +

:::+ �t)(jDj�m)�
P
i2D
�i(q

B)). Therefore, lim
�!1
F (�) =

P
i2D
�i
�
q�(qm�B); q

m
�B
�
�

jDj�m � t(jDj�m �
P
i2D
�i(q

B)).

Then, taking t >

P
i2D

�i(q�(qm�B);qm�B)�jDj�m

jDj�m�
P
i2D

�i(qB)
, by condition (a), we have that

lim
�!1
F (�) < 0 and (2) holds for � close enough to 1.

(ii) Deviations by coalition D from SI in the �rst period. Now the in-
equality to be checked is:X

i2D
�i
�
q�(qI�B); q

I
�B
�
+ �

X
i2D

�i(S
B) �

X
i2D

�i(S
I): (3)
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Let F (�) =
P
i2D
�i
�
q�(qI�B); q

I
�B
�
+�

P
i2D
�i(S

B)�
P
i2D
�i(S

I).Then F (�) =P
i2D
�i
�
q�(qI�B); q

I
�B
�
� jDj�m � (1 + � + ::: + �t�1)

P
i2D
(�i(q

I) � �i(qB)) +

(1� �t)
�
jDj�m �

P
i2D
(�i(q

B)

�
.

Hence lim
�!1
F (�) =

P
i2D
�i
�
q�(qI�B); q

I
�B
�
�jDj�m� t

P
i2D
(�i(q

I)��i(qB)).

Now, by condition (b),
P
i2D
�i(q

B) �
P
i2D
(�i(q

I). Therefore, if
P
i2D
�i(q

B) <

P
i2D
(�i(q

I), taking t >

P
i2D

�i(q�(qI�B);qI�B)�jDj�mP
i2D

(�i(qI)��i(qB)) , we have that lim
�!1
F (�) < 0.

Clearly if
P
i2D
�i(q

B) =
P
i2D
(�i(q

I), by (c), lim
�!1
F (�) =

P
i2D
�i
�
q�(qI�B); q

I
�B
�
�

jDj�m < 0. So (3) is true for � close enough to 1.
Finally it is straightforward that if a deviation from qI in the �rst period

of SI is not pro�table then a deviation from qI in periods 2; :::; t is not
pro�table either.
Note that when B = D = I, condition (c) of this lemma is simply

��D(q
D) < jDj�m. This condition must be met because otherwise coali-

tion D will �rst deviate from S; and then play q�D(q
D) forever. The following

lemma makes this condition easier to work with.

Lemma 2 If ��1(q; :::; q) < �
m then ��D(q; :::; q) < jDj�m for all D � N .

Proof. We �rst prove the following assertion4:

if ��(nq) � �mn then ��((n� k)q) � k�mn for all k = 2; :::; n (4)

We argue by induction on n. If n = 2 then ��((n� k)q) = ��(0) = 2�m2 and
the result follows. For n � 2, if k = n we have ��((n� k)q) = ��(0) = n�mn .
Suppose now that k � n � 1. Set q0 =

�
n
n�1
�
q. Then (n � k)q = (n �

k)
�
n�1
n

�
q0 =

�
1� k

n

�
(n�1�k)q0+ k

n
((n�1)�(k�1))q0. As ��(z) is convex

in [0;
_
z] we have ��((n�k)q) �

�
1� k

n

�
��((n�1�k)q0)+ k

n
��((n�1� (k�

1))q0). Given that ��((n� 1)q0) = ��(nq) � �mn = n�1
n
�mn�1 < �

m
n�1, by the

inductive hypothesis, we have ��((n�k)q) �
�
1� k

n

�
k�mn�1+

k
n
(k�1)�mn�1 =

k n�1
n
�mn�1 = k�

m
n and (4) holds.

4We write �mn instead of �m.
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Now, as ��(z) is strictly decreasing on [0;
_
z] the equation ��((n� k)q) =

k�mn has a unique solution
_
qk and the following assertion holds:

��((n� k)q) < k�mn if and only if q >
_
qk. (5)

Therefore, if ��((n� 1)q) < �mn then q >
_
q1. As �

�(n
_
q1) < �

�((n� 1)
_
q1) =

�mn , by (4), we have �
�((n � k)

_
qk) � k�mn , and by (5),

_
q1 �

_
qk. Hence

q >
_
qk and �

�((n � k)q) < k�mn . It follows that if ��((n � 1)q) < �mn then
��((n� k)q) < k�mn for all k = 2; :::; n.
Finally the result follows taking into account that ��1(q; :::; q) = �

�((n�
1)q) and ��D(q; :::; q) = �

�((n� jDj)q) for all D � N .

Proof. (Proposition 2) Consider the simple coalitional strategy pro�le �
de�ned by S; = fqmg1t=1.and SI =

n
qI ; :::

t
; qI ; qm; qm; :::

o
for I � N , where

qIi =
q0+(jIj�1)q

jIj if i 2 I and qIi = q otherwise. We prove that the conditions of

Lemma 1 are satis�ed. By construction, �i(qI) =
�1(qp)+(jIj�1)�i(qp)

jIj if i 2 I

and �i(qI) = �i(q
p) otherwise. Then, for B � D, by (i) and (ii), we have

that
P
i2D
�i(q

B) = �1(q
p) + (jBj � 1)�i(qp) + (jDj � jBj)�i(qp) = �1(qp) +

(jDj � 1)�i(qp) < jDj�m. Hence, condition (a) of Lemma 1 is satis�ed.
Now, we show that condition (b) holds. We have

P
i2D
�i(q

I) �
P
i2D
�i(q

B) =

jD \ Ij �1(q
p)+(jIj�1)�i(qp)

jIj + jDnIj�i(qp) � �1(qp) + (jDj � 1)�i(qp). ThenP
i2D
�i(q

I)�
P
i2D
�i(q

B) = (jIj�jD \ Ij)(�i(qp)��1(qp)) and by (i),
P
i2D
�i(q

I)�P
i2D
�i(q

B) � 0. Furthermore, the equality holds if and only if I � D or q0 = q.

In this case,
P
i2D
�i
�
q�(qI�B); q

I
�B
�
� ��D(q

I) = ��((n � jDj)q) = ��D(q).

Given that, by (ii), ��1(q) = �
�
1(q

p) < �m, then by Lemma 2, ��D(q) < jDj�m

and therefore condition (c) is also satis�ed.

Proof. (Theorem) It su¢ ces to show the existence of a quantity vector
qp = (q0; q; :::q) such that the su¢ cient conditions of Proposition 2 hold.
The possibilities are in�nite. The simplest one is to take qp = qc. Then
�1(q

c) = �2(q
c) = �c and ��1(q

c) = �c. As �c < �m the conditions of
Proposition 2 are satis�ed and the result follows.
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