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Abstract

More and more users aim at taking advantage of the existing Linked
Open Data environment to formulate a query over a dataset and to then
try to process the same query over different datasets, one after another,
in order to obtain a broader set of answers. However, the heterogeneity
of vocabularies used in the datasets on the one side, and the fact that the
number of alignments among those datasets is scarce on the other, makes
that querying task difficult for them.

Considering this scenario we present in this paper a proposal that al-
lows on demand translations of queries formulated over an original dataset,
into queries expressed using the vocabulary of a targeted dataset. Our ap-
proach relieves users from knowing the vocabulary used in the targeted
datasets and even more it considers situations where alignments do not
exist or they are not suitable for the formulated query. Therefore, in
order to favour the possibility of getting answers, sometimes there is no
guarantee of obtaining a semantically equivalent translation.

The core component of our proposal is a query rewriting model that
considers a set of transformation rules devised from a pragmatic point of
view. The feasibility of our scheme has been validated with queries defined
in well known benchmarks and SPARQL endpoint logs, as the obtained
results confirm.

1 Introduction

People are witnessing an explosion of types, availability and volume of data
sources accessible in the Web. In particular the so called Web of Data can be
considered one of the major global repositories in which the number of available
linked datasets is continuously increasing, mainly promoted by initiatives such
as Linked Open Data, Open Government and Linked Life Data. One main
objective of these initiatives is to open up data silos and to publish their contents



in a semi structured format with links between related data entities. As a result
a growing number of Linked Open Data sources (from diverse provenance and
about different domains) are made available which can be freely browsed and
searched to find and extract useful information.

In this new scenario, users and more particularly scientists, envision new
opportunities to advance faster in their research accessing available sources.
However, access to them is difficult for the users. Difficulties are mainly related
to the highly distributed structure and evolving nature of the environment. As-
pects related to volume (the number of datasets is large and it is difficult to
know of their existence), dynamism (datasets evolve quickly and are added and
removed over time) and heterogeneity (datasets vary in size, there is no standard
for source descriptions, and access options vary) present unique research chal-
lenges. In this paper, we mainly focus on the heterogeneity aspect. It is quite
common for several datasets to describe the same or overlapped domains (for
example Linked GeoDataH and Geo Linked Datzﬂ in the geographic domain)
but then use different vocabularies to describe similar information.

The development of systems that allow an easy access to information coming
from different data sources, distributed over the internet, has been and still is
considered a relevant research topic in the specialized literature. For example,
a large variety of strategies have been proposed for distributed and federated
databases (e.g. [1l 2, B]) and in recent times for distributed RDF data sources
(e.g. [, B]). Although some research challenges are similar in both scenarios,
there are also significant differences, as presented in [0].

In this paper we present a proposal that allows a user first, to formulate
a query over a source dataset she/he is familiar with, and then, to enrich the
obtained answer by accessing other different datasets, on demand of the user,
without having to be aware of their internal structure. The novel contributions
of our proposal are presented in the following paragraphs.

A friendly and incremental query answering process The user formu-
lates queries in a selected source vocabulary, then selects the target datasets
where the query must be evaluated. Our system is in charge of navigating
through those target datasets, one by one, providing the answers in an incre-
mental way. Our system tries to faithfully translate the formulated query but,
sometimes, due to a mismatch of dataset vocabularies or due to an incomplete
definition of alignment axioms, it is not possible to guarantee a translation that
preserves the semantics of the original query. Then, our approach offers a non-
semantics-preserving translation but an acceptable and effective enough one,
that we think is better than not providing a translation at all, because that
translation can be used by the user for getting more answers. In the case of not
semantics preserving translations, our system provides to the user with a mea-
sure of the semantic similarity between the original query and the translation,
but the computation and processing of this similarity factor is out of the scope

Thttp://linkedgeodata.org/
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of this paper.

On the fly management of a wide range of transformation rules Trans-
lation across datasets is achieved through the management of a wide range of
transformation rules. Apart from the rules based on classical mappings defined
between datasets (synonyms, hyponyms, hypernyms), the system also deals with
EDOAL (Expressive and Declarative Ontology Alignment Language) [7] align-
ment rules and some other heuristic based rules which conforms a carefully con-
trolled set of cases (answer-based rules, profile-based rules and feature-based
rules). This allows a greater range of query transformations and therefore the
chance of obtaining new answers increases. Rules are applied on the fly during
the query processing task, taking into account the already existing mapping
information that at that time is at hand.

Finally, we want to mention that the proposal has been validated with a
prototype implementation that processes queries that appear in well known
benchmarks such as QALD E| and FedBench [§] and in SPARQL endpoints
logs(DBpedizﬁ and BNEED. The results of the validation process are promis-
ing and are presented in section [6]

In section [2] we present some works related with our proposal for querying
distributed and heterogeneous datasets. Then, in section [3| we introduce some
basic concepts and notation used throughout the paper. Next, in section [ we
explain the query rewriting model proposed. Later on, we show an overview of
the query translation process at section[5]and experimental results are displayed
in section [fl We finish with conclusions and future work.

2 Related work

The problem of query processing over linked data sources has been considered
from different perspectives, such as the development of graphical user interfaces,
to facilitate query formulation and architectural issues.

Among the works that try to develop a query tool, we can mention the fol-
lowing: 1) PowerAqua [9] which is an ontology based question answering system
that offers a Natural Language query interface, which is able to locate and inte-
grate information that can be massively distributed across heterogeneous data
resources, and return answers. 2) AUTOSPARQL [I0], SINA [II] whose goal
is to convert keywords or natural language expressions to a SPARQL query. 3)
SWIP system [12] that allows for querying RDF data from natural language-
based queries. SWIP is based on the use of query patterns that characterize
families of queries and that are instantiated with respect to the initial user query
expressed in natural language (these patterns are specific to the vocabulary used
to describe the data source to be queried. For rewriting query patterns, they

3http://nlp.uned.es/clef-qa/
4http://dbpedia.org
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experiment ontology matching approaches in order to find complex correspon-
dences between different ontologies). 4) Query Med [13] that allows users to
query multiple biomedical data sources providing keywords as input.

In our approach the starting point is a SPARQL query formulated over a
source dataset. It can be argued that our proposal is less flexible at the time of
query formulation. However, in contrast to many other works, our proposal does
not impose restrictions concerning the types of queries that can be formulated
and moreover, our query rewriting model considers a broader spectrum of query
translations as we explain at section[d] Finally our approach could benefit from
some advantages provided by the mentioned studies.

With respect to the underlying architecture two broad classes of approaches
can be distinguished: centralized repositories, where several datasets are col-
lected in advance, preprocessed and stored in centralized repositories and where
the queries are evaluated against those centralized repositories, and distributed
query processing, where queries are evaluated against the distributed sources.
Within the last type of approach two more alternatives can be distinguished:
federated query processing (e.g. [14], 4, [15]) in which a query against a federation
of data sources is split into queries that can be answered by the individual data
sources, and explorative query processing (e.g. [16]) ), where a query is first
evaluated on an initial data source and then the Web of Data is explored by
traversing interesting links pointing to other data sources which may contain
more data entities satisfying the query. An interesting variant in the latter case
are the so called indez-based approaches (e.g. [17, [18]), that ignore the existence
of links during the query execution process and rely on a pre-populated index
which is used for identifying URIs to look up during query execution time. If
we compare our approach with the mentioned approaches, we can say that it
is more flexible in the sense that, on the one hand, it does not require a costly
preprocessing task of data sources nor the management of synchronization tech-
niques, as in the case of centralized repositories; and on the other hand, it does
not require to perform the complicated task of building a federation. Moreover,
as it happens in the case of the explorative query processing approach, using
our proposal, the user formulates a query over a source dataset with which he
is familiar and then it offers the possibility of enriching the obtained answer by
accessing other different data sources (in an incremental way, one data source at
a time) in a transparent way; that is, without being aware of the internal struc-
ture of the data sources. The main difference in this case is that our proposal
is able to deal, during the navigation process, with datasets supported by het-
erogeneous vocabularies. It also manages a wide range of query transformation
rules (not only equivalence type mappings in contrast to many of the existing
approaches), although it does not deal with weighted ontology mappings as the
work presented in [I5] does.

Regarding semantics-preserving query translation, we can find works such
as [B] that provide a generic method for SPARQL query rewriting with respect to
a set of predefined mappings between ontology schemas, being the work in [19]
the most similar to our spirit of running the same query over different datasets.
In this last case, they are more concerned with the expressiveness and some



limitations of their selected alignment model. In particular, they do not tackle
properly the FILTER clause of SPARQL queries. Our proposal deals with a sce-
nario where a translation that preserves the semantics is not a requirement and
therefore it obtains semantics-preserving and not-semantics-preserving transla-
tions in order to increase the opportunities of getting translations.

Some other works [20, 2], 22] consider the relaxation of constraints in the
query. In [20], the authors promote query relaxation on the fly, that is, the
provision of approximate answers by relaxing the query conditions during query
execution. In[21], relaxation is controlled by conditions from domain and user
preference ontology; and in [22], the authors propose a SKOS-based term ex-
pansion and scoring technique to improve retrieval effectiveness. However, all of
these approaches consider only a fixed source dataset for the relaxed query. That
is to say, no change of vocabulary is considered. In contrast, our system handles
different vocabularies and eventually with incompletely aligned datasets.

Finally, to deal with the diversity of representations of identical data items
across different data sources, our proposal takes advantage of services such as
Balloon [23] and SameAs (interlinking the Web of Data) [24], that manage co-
reference relationships.

3 Preliminaries

In this section we briefly introduce key concepts and notation used throughout
the rest of the paper. For a complete definition of RDF and SPARQL we refer
to [25 26].

Let I be the set of all IRIs (Internationalized Resource Identifiers), L be the
set of RDF literals, and B be the set of RDF blank nodes. These three infinite
sets are pairwise disjoint. An RDF triple is a tuple (s,p,0) € (I U B) x I x
(IUBUL); s is called the subject, p is called the predicate, and o is called the
object of the triple, respectively. A finite set of triples can be represented as a
directed edge-labelled graph where subjects and objects are nodes and edges are
labelled by predicates. An RDF graph is a finite set of triples. For the purpose
of this paper, a Dataset is an RDF graph. Given a dataset D, we refer to the
set voc(D) C (IU L) of IRIs and literals occurring in D as the vocabulary of D.
We use the words term or resource to refer to elements in I U L.

SPARQL is the standard query language for RDF. The core of a SPARQL
query is a graph pattern, which is used to match an RDF graph in order to
search for the required answers. Let V be an infinite set of variables, disjoint
from (IU BUL). Variables in V are denoted by prefixing them with a question
mark (for example, 7x). Within this paper, a triple pattern is a tuple in (I U
V)x (IUV)x (IULUYV). That is to say, a triple pattern is a triple, without
blank nodes, where a variable may occur in any place of the triple. And a Graph
pattern is an expression recursively defined as follows:

e a triple pattern is a graph pattern.



e if P, P; are graph patterns, then (P; AND P,), (P; UNION P), and (P,
OPT P,) are graph patterns.

e if P is a graph pattern and C is SPARQL constraint, then (P FILTER C)
is a graph pattern.

Within the scope of this paper, a query is defined by a pair @ = (D, P) where
D is the dataset to be used during the pattern matching and P is the graph
pattern of the query. To define the semantics of a SPARQL query we refer
o [27]. Here, we briefly present an intuitive notion. Let vars(P) be the set of
variables occurring in P. The result of the evaluation of the pattern P against
the dataset D is a set of bindings of the variables in vars(P) to elements in voc(D)
in such a way that the graph pattern P, with each variable substituted by its
corresponding binding and preserving the semantics of the SPARQL operators
AND, UNION, OPT, and FILTER, matches the graph D.

A binding function over dataset D is a partial function p: V' — voc(D) from
the set of variables to the vocabulary of D. Let us abuse of notation. Given a
triple ¢ = (s,p,0), we write u(t) referring to the triple (u(s), u(p), u(0)) where
1 is the identity function for terms that are not a variable. Given a set of triple
patterns S, we write u(S) referring to the set {u(¢) | ¢t € S}. Then, a set of triple
patterns S matches a graph D if there is a binding function p: V' — woc(D)
with vars(S) C dom(u) such that u(S) C D.

Given a query Q = (D, P) we write voc(Q) to denote the vocabulary of the
query and voc(Q) = voc(D). We write voc(P) C (I U L) to denote the set of
IRIs and literals occurring in the pattern P.

Definition 3.1. A query Q = (D, P) is adequate if voc(P) C voc(Q).

The aim of this paper is to present and to evaluate a process that takes a
given adequate query Qs = (Ds, Ps) (suitable for a source dataset Dj), and
translates it into another adequate query Q¢ = (Ds, P;) in order to be suitably
evaluated over a selected target dataset D;. The translating process produces
Q: as a semantically equivalent query to Qs as long as enough equivalence
mappings between voc(D;) and voc(D; ) are found. Those mappings may come
from whatever accessible device: VoIDﬂ linksets, co-reference services, mapping
services, etc. The distinguishing point is that the process produces a mimetic
query (; even in the case when no equivalent translation for @), is found. That
is to say, sometimes the translation is not semantics-preserving due to our goal
of producing a query fully adequate for the target dataset demanded by the
user. The process is based on the graph pattern rewriting rules that will be
presented in the next section.

4 Query rewriting model

This section presents a set of rules devised in order to rewrite a query graph
pattern in a stepwise way towards the goal of being properly evaluated within

Shttp://www.w3.org/TR/void/



a targeted dataset, different from the source dataset of the original query.

The rule system has been devised from a pragmatic point of view. The
rules set up common sense heuristics to obtain acceptable translations even
when no semantically equivalent translations are at hand (due to vocabulary
mismatch, for instance). The rules can be easily implemented and can be effi-
ciently processed as will be shown in section [f] Moreover, again for pragmatic
reasons, preconditions for the application of the rules take into account a care-
fully restricted context of the terms occurring in the graph pattern. Although
restricted, the system has shown to be quite effective achieving acceptable trans-
lations (see section @ Nevertheless, the system can be easily extended with
additional rules.

Before presenting the rule model we need to introduce some notation. Rewrit-
ing rules need to express triple transformation by substitution of any of its
components.

Definition 4.1. Let (s, p,0) be a triple pattern. Substitution of term v by term
x is defined by the following function

x,p,0) if v=s

s,x,0) if v=p
s,p,xz) if v=o0
s,p,0) otherwise

E
(s:p,0)[v/a] = |
(

Rewriting rules will be applied to graph patterns.

Definition 4.2. Let P be a graph pattern. Replacement of triple pattern ¢ by
a graph pattern r is defined by the following function

P if P is a triple pattern and P # ¢

r if P is a triple pattern and P = g

Py[q/r] op Palq/r] if P = P op P, with op € {AND, UNION, OPT}
Py[g/r] FILTER C[gq/r] if P = P; FILTER C

Plg/r] =

The rules are composed of two clauses, the left hand side (LHS) and the right
hand side (RHS). The LHS clause presents a pattern which is to be matched to
a subgraph in the graph pattern that must be rewritten. LHS has two parts that
we call pattern QP and context {QC}. QP is a graph pattern and {QC} is a
constraint predicate that relates terms occurring in QP and a set of triples from
the close context of terms occurring in the query pattern P. The RHS clause
is a surrogate graph pattern RP which will replace the subgraph matched by
QP. We write the rule in the following form: QP{QC} — RP. This means
that, if in the graph pattern to be rewritten there is a subgraph matched by QP
and the query constraint QC is satisfied, then the result of applying the rule is
P[QP/RP].

We consider five kinds of rules, each kind based on a different motif: equiva-
lence, hierarchy, answer-based, profile-based, and feature-based. Moreover, each
rule application carries a similarity factor, whose value depends on the elements
involved in the replacement. That factor is kept associated to the rewritten



element of the original query pattern, and it is meant to reflect a similarity
measure between the replaced term and the replacement after application of
the rule. The explanation of the detailed computation of that factor is out of
the scope of this paper. Let us just point out that it is a value in the closed real
interval [0, 1].

Now, let us consider a pragmatic scenario in which a bridge dataset is taken
into account. In order to favour the possibilities of finding alignments we admit
mappings between both the original and target dataset and a bridge dataset.
That scenario is quite frequent, since in almost any domain there is a popular
dataset that may play such a reference role.

In the following subsections each kind of rule is explained and motivated.
Generic v:-prefixed letters v:s, v:p, v:o are used to refer to terms belonging to
vocabulary voc(D, ). Specifically, s:-prefix, t:-prefix, and b:-prefix refer to the
source, target, and bridge vocabulary, respectively. No syntactic relationship is
assumed among s:u, t:u, and b:u. Notice that the aim of the system is to trans-
late a SPARQL query expressed in terms of a source dataset Dy into another
query expressed in terms of a target dataset Dy, perhaps using a bridge dataset
Dy,

Notice also that RDF literals occurring in the queries are not rewritten
with the following rules, but with string transformation functions properly con-
structed. We consider that, previous to the process of rules application, every lit-
eral s occurring in the graph pattern of the original query is replaced by the cor-
responding literal f;(s) in the target dataset D;. Therefore, in the context part
of the rules, the reference for a non adequate term is always u; € (I —voc(Dy)).

4.1 Equivalence rules

Equivalence rules apply when non adequate terms (i.e. terms not belonging to
the target dataset D;) occurring in the current query are involved in individual
equivalence mappings such as owl:samels, or structural equivalence mappings
such as those captured by the EDOAL language. The aim of these rules is to
transform a query into an equivalent one.

First of all, the system takes advantage of equivalence alignments obtained
by any pattern matching system (for instance, LogMalﬂ, Scarlet [28], Bloomsﬂ
or any else). Assume those alignments are captured as EDOAL alignments
where the registered relation is Equivalence. Then, if <ELHS> and <t:ERHS>
(i.e. every term in ERHS is in D;) are, respectively, the left and right hand side
of an EDOAL equivalence rule, the system incorporates the rule:

ELHS — t:ERHS (1)

Secondly, individual equivalence mappings between adequate and non ade-
quate terms are taken into account by the following rule. The generic predicate
eq represents a wildcard for any predicate of an extensible set of equivalence

Thttp:/ /www.cs.ox.ac.uk/projects/LogMap/
8http://semanticweb.org/wiki/BLOOMS



predicates such as {owl:sa.meAs, skos:exactMatch, owl:equivalentClass,
owl:equivalentProperty}. Notice that eq is symmetric, and therefore triple
(a,eq,b) means the same as triple (b,eq,a).

(u1,u2,uz){Fi. u; € (I —voc(Dy)) ANVk € {1,...,n}.(us, eq,t: ug)}
— UNIONg—1. (U1, u2, uz)[u;/t: ug] (2)

Thirdly, a selected bridge dataset Dy may be considered to help in finding
more equivalence mappings. This is captured by the following rule:

(u1,ug,u3){Fi. u; € (I —voc(Ds)) A
Vk e {l,...,n}.(us,eq,b: ug) A (b: ug,eq,t: ug)}
— UNIONk:L__n(Ul,’LLQ,u;;)[ui/ti Uk] (3)

Equivalence mappings may be taken from VolD linksets associated to any
of the involved datasets or retrieved from any co-reference service system such

as sameAs.orgEI or Balloorﬂ

4.2 Hierarchy rules

These kind of rules transform the query by generalising or specialising non
adequate terms for which equivalence rules did not succeed in their translation.
The aim of these rules is to construct a looser or tighter query when the known
mappings do not inform of direct equivalences.

We use a generic predicate sub to represent a wildcard for any predicate of an
extensible set of hierarchy predicates such as {skos:narrower, skos:broader,
rdfs:subClass0f, rdfs:subProperty0f}. The system considers two basic
possibilities: (1) A term in a triple pattern is known to be a subterm of a
collection of adequate terms, then the triple pattern will be replaced by the
conjunction (i.e. AND operator) of a looser triple patterns, and (2) A term in
a triple pattern is known to be a superterm of a collection of adequate terms,
then the triple pattern will be replaced by the disjunction (i.e. UNION operator)
of a tighter triple patterns.

(u1,u2,u3){3i. u; € (I —wvoc(Dy)) A
Vk e {1...n}(u;, sub,t: vg) V
( (ui, sub,v) A (v, sub,t: vg) )V
( (ui, sub,v) A (vyeq,t: vg) )}
— ANDg—1..n(u1, ug, ug)[u;/t: vg] (4)

9http://sameas.org/
10http://schlegel.github.io/balloon /balloon-fusion.html



(w1, ug,us3){Fi. u; € (I —voc(Dy))
VEk e{l...n}(t: vg, sub,u;)
( (t: vg, sub,v) A (v, sub,u;) )
( (t: vk, eq,v) A (v, sub,u;) )}
— UNIONg—1 . n (U1, ug, us)[u; /t: vg] (5)

A
V
V

This kind of rules replaces a triple pattern by a looser or tighter pattern.

4.3 Answer-based rules

It is possible that after applying equivalence and hierarchy rules some non ade-
quate terms remain in the query pattern. Instead of abandoning the translation,
some heuristics are used to try to obtain mimetic translations. The following
kind of rules use resources, that are answers to the query in the source dataset,
as examples of what the query is looking for in the target dataset. Triples in-
volving those resources in the target dataset are used to mimic the triple pattern
to be replaced. The intuition is that triples stated about the answer samples in
the target dataset probably resemble expected answers of the original query.

Let A be a set of resources. Let us define the set ZD;(A) of resources in
target vocabulary that are known to be the same (modulo equivalence) as some
resource in a given set A of resources.

IDi(A) ={be€ voc(Dy) | Ja € A.(a,eq,b) € E(A,Dy)}

Let A(Qs,?x) be the set of value bindings to variable ?z (i.e. the resource
answer set for 7x) when evaluating query Qs = (Ds, Ps). Then ZD;(A(Qs, ?x))
is the set of resources in the target dataset that are equivalent to some resource
in the answer set for 7x after evaluation of the query on the source dataset.
Triple patterns looking for subject (resp. object) with adequate predicate
t: p and non adequate object (resp. subject) will be replaced by the union of
triple patterns composed by samples of objects (resp. subjects) related with
answers by the predicate £: p. Let us formalise it with the following rules:

(?z,t: p,u){u € (I —voc(Dy)) A
Vk e {1...n}t: s, € IDy(A(Qs, 7)) A

/\ (t: sp,t:p,t:og;)}

Jj=l..my

— UNIONj—1..n (AND =1y (72,8 p,t: 015)) (6)

(u,t: p,?x){u € (I —voc(D;)) A
Vk e {1l...n}.t: o € ID:(A(Qs,72)) A

/\ (t: Skj,t:p,t:ok)}

j=1..myg

— UNIONg=1.. n(ANDj=1.. m, (t: Skj,t: p, 7)) (7)

10



Triple patterns looking for subject (resp. object) with non adequate predi-
cate p and adequate object t: o (resp. subject) will be replaced by the conjunc-
tion of triple patterns composed with the shared predicates of the triples where
answers are subjects. Let us define the set FO.(A,r) (we call it fized object)
of predicates of triples in D; that are shared by every resource in A and have
object r:

FOL(A,r) ={p € voc(Dy) | Va € A.(a,p,r) € D;}

Respectively, let us define the set FS;(A, 0) (we call it fized subject) of predicates
of triples in D; that are shared by every resource in A and have subject r.
FS:(A,r) ={p € voc(D:) | Ya € A.(r,p,a) € D}

Then, the rewriting rules are the following:

(?x,p,t: o){p € (I —voc(Dy)) A
Vk e {l...n}t: pp € FOL(ID,(A(Qs,7x)),t: 0)}
— ANDg—1. n(?x,t: pg,t: 0) (8)

(t: s,p,?x){p € (I —voc(Dy)) A

Vk e {1...n}t: pr, € FS:(ZD:(A(Qs, ?x)),t: s)}
— ANDg—1. n(t: 8,t: p, ) (9)
Triple patterns looking for subject (resp. object) and predicate with non
adequate object o (resp. subject s) will be replaced by a triple pattern with
subject (resp. object) and predicate variables and an adequate object (resp.
subject) determined by majority of occurrences in triples describing the answer
set. Let us denote MFO,(A) (we call it most frequent object) the resource in

Dy that occurs more frequently as object in triples in D; whose subjects are the
resources in the answer set.

O4(A) = {r € voc(Dy) | Is € ATp.(s,p,7) € Dy}
Ni(r) = number of occurrences of resource r in triples in D,
where the subject is a member of ZD,(A(Qs, 7x))
MFOi(A) =t: 0o such that Vr € O (ZD:(A(Qs, 7)) . Ni(t: 0) > Ni(r)

Analogously, we denote MFS,(A) to the most frequent subject in D; that
occurs more frequently as subject in triples in D; whose objects are the resources
in the answer set.

(?x,?p,0){o € (I — voc(Dy))
= (T2, 7p, MFO(ID:(A(Qs, 72)))) (10)

(s, ?p,7x){s € (I —voc(D;))
= (MFS((IDy(A(Qs, 7)), ?p, Tx) (11)

11



4.4 Profile-based rules

This kind of rules consider the triples in the source dataset describing each
non adequate resource in the query pattern. Let us call Ps(x) the profile of a
resource x in a dataset D,. It is the set of resources that are related to x by
triples in D;.

Ps(x) = {v € voc(Ds) | (Fp.(x,p,v) € Ds V (v,p,z) € Dy)
V (Ja.(a,z,v) € Ds V (v,2,a) € D)}

If a resource v, in the profile of a non adequate resource u, is equivalent to a
resource t: v in the target dataset, and there is a resource t: u in the profile of
t: v, sufficiently similar to u, then w will be replaced by ¢: u.

We denote mazSim(a,b, h) the predicate that is satisfied if b is the resource
with greatest similarity factor with respect to a and that factor is greater than
h.

(u,p,0){u € (I —wvoc(D;)) N

((u,8:¢,8:a)V(s:a,s:qu))A(s:aeqt:a)A

((t:a,t:qt:b)V(t: bt: q,t: a) ) A mazSim(u,t: b, threshold)
— (u,p,0)[u/t: b (12)

(s,p,u){u € (I —voc(Dy)) A

((u,s:¢,8:a)V(s:a,8:q,u))A(s:a,eqt:a)A

((tra,t:q,t:b)V(t:b,t:q,t: a) ) AmazSim(u,t: b, threshold)
— (s,p,u)[u/t: b (13)

(s,p,0){p € (I —voc(Dy)) N

((s:a,p,s:b)V (s:b,p,s:a))A(s:a,eq,t:x)A

((t:z,t:q,t:y)V(t:y,t: g, t: x) ) A mazSim(p,t: q, threshold)
— (s,p,0)[p/t: ] (14)

4.5 Feature-based rules

This rule is the last option if non adequate terms remain in the query pattern
after the above rules have already been applied. In this case, the intuitive motif
is to replace the non adequate term by a new variable (therefore, generalizing
the query) but constraining that variable with features of the replaced term
(that is to say, triples where the term is the subject).

Finally, equivalence and hierarchy rules (in that order) are applied to the
resulting feature-based transformed query graph. After that, any residual non
adequate triple pattern is removed from the graph pattern.
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(u1, ug, usz){Ji.u; € (I —voc(Dy)) A
/\ (us, S: pr, 8t o)}

k=1...n
— (u1, u2, us)[u;/?0;|ANDg=1. (Ui, St Dk, St Ok ) [t /T04]
7v; a new variable not occurring in the graph pattern. (15)

4.6 Rules application order

The rule system initially tries to translate an original query into a semantically
equivalent one. Therefore, equivalence rules are applied first. And, specifically,
in the order of their numbers (1), (2), and (3).

Furthermore, while non adequate terms remain in the graph pattern the
system sequentially applies the different kinds of rules. The second kind of rules
to be applied are hierarchy rules, looking for looser or tighter adequate terms
that could replace non adequate terms. Equivalence and hierarchy rules apply
certain semantic relationships between terms. If that is not enough, the system
turns to similarity relationships (with uncertain semantic transfer) mostly based
on examples of answers and profile of the terms.

The third kind of rules to be applied is answer-based rules and the fourth
kind is the profile-based rules. This latter kind is the most computationally
expensive of the four and that is the reason why it is pushed to backward
position. However, as it will be shown in section [6] that kind of rules solved a
significant portion of the queries in the experiment.

Finally, if the precedent four kinds of rules do not succeed in obtaining an
adequate query, the system applies the feature-based rules as an ultima ratio.

5 Overview of the query translation process

This section presents a motivating example that illustrates the steps followed
in the query translation process. Imagine a film reporter who wants to know
people who acted on a film entitled Gravity. Since the reporter is familiar
with the vocabulary of LinkedMDBIE (a linked open dataset about movies), the
following SPARQL query is written and submitted to our system, specifying
LinkedMDB as the source dataset.

PREFIX movie: <http://data.linkedmdb.org/resource/movie/>
PREFIX dc: <http://purl.org/dc/terms/>
SELECT 7actor
WHERE
{ ?film dc:title ’Gravity’
?film movie:actor ?actor . }

Uhttp://linkedmdb.org/
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The system issues the query to the corresponding SPARQL endpoint but,
unfortunately, no element is received as an answeIH Then, the reporter de-
mands issuing that query to the DBpedia dataset. The first step for the system
is to parse the query and generate its graph representation. During that process,
the terms dc:title and movie:actor are discovered as non adequate for DB-
pedia. Moreover, DBpedia literal transforming function is applied to Gravity
and it results fpppedio(Gravity) = Gravity@en. Then, the rule application
process is launched.

Equivalence rules are the first to be applied. EDOAL rules matching the
graph pattern are searched in the mapping repository associated to the pair
LinkedMDB and DBpedia. Since no matching rule is found, the system tries to
apply the rule number (2). The search for triples of the form (u, eq,t: u) where u
isdc:title or movie:actor is implemented by parameterized SPARQL queries
over the corresponding mapping repositories, specific for rule number (2), and by
asking co-reference services. In this case, specific SPARQL queries returned an
empty set as an answer. However, the service sameAs.org reported 12 synonyms
for dc:title, two of them (foaf:name and rdfs:1label) adequate for DBpedia.
No adequate synonym was reported for movie:actor. Applying rule number
(2), the graph pattern is transformed into:

{ { 7film rdfs:label ’Gravity’@en .}
UNION
{ ?film foaf:name ’Gravity’@en .}
?film movie:actor ?actor . }

The next rule to be tried is number (3), but the search for triples of the form
(movie:actor,eq,b: u) and (b: u,eq,t: u), using Freebas@ as bridge dataset,
does not succeed. Then, it is the turn for hierarchy rules (4) and (5), but
their preconditions for the term movie:actor are not satisfied either. Next,
answer-based rules (6) to (11) should be considered, but they cannot apply
because the pattern part in the LHS of all those rules (?z,t: p,u), (u,t: p, 7x),
(Px,p,t: 0), (t: s,p,7x), (?x,?p,0), and (s, ?p,?x), does not match the triple
pattern (?film, movie:actor, 7actor).

Then, profile-based rules get into the play. Rules number (12) and (13) can-
not apply because the constraint conditions in the context part of the rules ask
for a non adequate IRI subject (for rule (12)) or IRI object (for rule (13)) while
the triple pattern to be matched (?film, movie:actor, 7actor) presents
variables in these places. However, precondition for rule number (14) is satisfied
due to triples in LinkedMDB and DBpedia as the following (among others):

PREFIX db-o: <http://dbpedia.org/ontology/>

PREFIX db-r: <http://dbpedia.org/resource/>

(movie:film/62333, movie:actor, movie:actor/338)
(db-r:Alastair_Mackenzie, db-o:starring, db-r:The_Last_Great_Wilderness)
(movie:actor/338, owl:sameAs, db-r:Alastair_Mackenzie)

(movie:film/1894, movie:actor, movie:actor/40969)

(db-r:Killer’s_Kiss, db-o:producer , db-r:Stanley_Kubrick)

12The query was issued on 24th/7/2014
13https://www.freebase.com/
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(movie:film/1894, owl:sameAs, db-r:Killer’s_Kiss)
(movie:film/10849, movie:actor, movie:actor/29437)
(db-r:The_Indian_Runner, db-o:director , db-r:Sean_Penn)
(movie:film/10849, owl:sameAs, db-r:The_Indian_Runner)

The similarity function between the term movie:actor and each term of the
properties set {db-o:starring, db-o:producer, db-o:director,...} is eval-
uatecﬂ and it turns out that results that the greatest similarity is achieved with
the term db-o:starring and its value is also above the threshold parameter.

Then, substitution (?film, movie:actor, 7actor) [movie:actor/db-o:starring]
is applied and the query graph pattern becomes:

{ { ?film rdfs:label ’Gravity’@en .}
UNION
{ ?film foaf:name ’Gravity’@en .}
?7film db-o:starring 7actor . }

which represents an adequate query for DBpedia dataset. Therefore, feature-
based rules do not get into the play and rule applications reach the end.

Finally, the obtained translation and the result of its evaluation are shown
in table [1

Translation Results
<http://dbpedia.org/resource/Eric_Schaeffer>
<http://dbpedia.org/resource/Krysten_Ritter>

SELECT ?actor <http://dbpedia.org/resource/Ivan_Sergei>

WHERE <http://dbpedia.org/resource/Ving_Rhames>

{ { 7film rdfs:label 'Gravity’@en . } | <http://dbpedia.org/resource/Rachel_Hunter>

UNION <http://dbpedia.org/resource/Robyn_Cohen>

{ 7film foaf:name ’'Gravity’@en . } <http://dbpedia.org/resource/James_Martinez_(actor)>
?film db-o:starring ?actor . } <http://dbpedia.org/resource/Seth_Numrich>

<http://dbpedia.org/resource/Sandra_Bullock >
<http://dbpedia.org/resource/George_Clooney >

Table 1: Adequate query for DBpedia and its results

6 Evaluation of the proposal

In this section we present some features concerning the validation process of our
proposal. First of all, we show how the queries that took part in the tests were
selected and then, we discuss the results.

6.1 Selection of the considered query set

When selecting the queries, our aim was to get a set that would contain a
broad spectrum of SPARQL query types. For that reason, we looked at two
aspects when making our selection: place of provenance of the queries and their
syntactic structure. Concerning provenance we selected on the one hand, queries

141t takes into account searches in Wordnet synsets and some other computations.
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that appeared in well known benchmarks (we selected 6 queries from QAL[ﬁ
and 7 from FedBench[§]), and on the other hand, queries that belonged to LOD
SPARQL endpoints logs (we selected 3 queries from Dbpedia log and 2 from
BNE log). Notice that those 18 queries were formulated over heterogeneous
domains such as bibliographic, life science, etc.

Regarding the syntactic structure, we can mention that a variety of the
SPARQL operators and joins of variables appear in the queries. Moreover,
although SELECT type queries are the only type considered, such option should
not be seen as a limitation, because the focus of our proposal is to translate query
patterns and to show that translation process can also be analogously applied
to other types of queries such as ASK, CONSTRUCT or DESCRIBE.

Tables [3 [} [l [6} [7}, and [§] in [A] present the initial set of queries, grouped by
domain, with its Gold standard and the translation obtained by our system.

6.2 A discussion about results

Taking into account that our approach generates adequate translations (notice
that those translations do not always preserve the semantics of the initial query),
we decided to analyse the nature of those generated translations and the answers
that they provided. For that, first of all, we asked some experts (those having
experience in querying the source and target datasets) to express the original
queries that took part in the tests in terms of the target datasets (we call them
Gold standard querieﬂ. Then, we run the translation and the Gold standard
queries over the corresponding target datasets. The answers obtained running
the translation queries were called Retrieved results, and those obtained running
the Gold standard queries were called Relevant results. Using those result sets,
we calculated the well known information retrieval measures: Precision, Recall,
and F-measure (see table E

|Relevant N Retrieved| |Relevant N Retrieved)|
Recall =

Precision =
|Retrieved| |Relevant|

Precision X Recall
F-measure =2 X —M8MM8Mm™M—
Precision + Recall

An analysis of the results revealed the following considerations: In 12 out of
18 queries that made up the considered set of queries (that is, the 66.6% of the
queries) the translation queries provided the same results as the corresponding
Gold standard queries. For those queries (Q1, Q3, Q4, Q6, Q7, Q8, Q9, Q10,
Q13, Q14, Q15, and Q18) the F-measure value was 1. A deeper analysis of those
12 queries also revealed that in eight of them, the translation was equal to the
Gold standard expression (Q3, Q6, Q8, Q9, Q10, Q13, Q15, and Q18). Even
more, in four of them (Q8, Q9, Q10, and Q13) the semantics of the original query

15http://nlp.uned.es/clef-qa/
163ee
17The experiments were conducted on 24th/7/2014.
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Queries
Domain: Media-Domain
Queries Q1 Q2 Q3 Q4 Q5 Q6
Relevant results| 12 5 9 20 358 39
Retrieved results| 12 4103 9 20 496 39
Retrieved N Relevant| 12 5 9 20 358 39
Precision 1 0.001 1 1 0.72 1
Recall 1 1 1 1 1 1
F-measure 1 0.002 1 1 0.83 1
Domain: LifeScience-Domain
Queries Q7 Q8 Q9 Q10 Q11 Q12
|Relevant results| 1 6 1 173 1 11
|Retrieved results| 1 6 1 173 2 1
|Retrieved N Relevant| 1 6 1 173 1 1
Precision 1 1 1 1 0.5 1
Recall 1 1 1 1 1 0.09
F-measure 1 1 1 1 0.66 0.16
Domain: Bibliographic-Domain
Queries Q13 Q14 Q15 Q16 Q17 Q18
Relevant results| 37 1 1 301 682 26
Retrieved results| 37 1 1 4 19827 26
Retrieved N Relevant| 37 1 1 4 682 26
Precision 1 1 1 1 0.034 1
Recall 1 1 1 0.013 1 1
F-measure 1 1 1 0.026 0.066 1

Table 2: Accuracy metrics for the original queries set

was preserved by the translation because the similarity factor was equal to 1,
and in the other four (Q3, Q6, Q15, and Q18) the semantic was not preserved.
In the case of queries (Q1, Q4, Q7, and Q14) the translation was different from
the Gold standard expression but notice that they provided the same answers.

Regarding the remaining queries (Q2, Q5, Q11, Q12, Q16, and Q17) the
translations did not provided the same results as the corresponding Gold stan-
dards: the F-measure values was less than 1 and the translation and Gold
standard queries were obviously different. However, we noticed that in none
of them precision and recall were lost for the same query. Queries (Q12 and
Q16) lost recall but preserved precision and queries (Q2, Q5, Q11, and Q17)
lost precision but preserved recall.

Concerning running time, we distinguish between the time that our proto-
type implementation needs to generate the translations and the time to run
them in the corresponding SPARQL endpoints. Figure [1| displays both times
for each query of the experiment. Focussing only in the query rewriting time
which is the time dedicated by our implementation we can observe at figure [2]
that context-based rules are those that needed highest rewriting times, as for
those rules, both datasets have to be consulted and the number of pairs of ele-
ments that need to be compared for measuring the similarity was usually high.
On the opposite side are equivalence rules because the verification of the rules
precondition is very fast in this case.
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7 Conclusion and future work

Since the use of Linked Open datasets to extract actionable information is be-
coming very common for more and more people, the development of systems
that provide an easy access and navigation among them is acquiring special rel-
evance. In this paper we have presented a model that allows users to querying
distributed and heterogeneous datasets abstracting from some technical issues
such as the vocabulary heterogeneity. This way the users can use the vocabu-
lary with which they are familiar to formulate the queries and the system is in
charge of translating those query expressions according to the vocabulary of the
target dataset. Moreover, the answer is upgraded in an incremental way.

During the translation process, a set of rewriting rules is used in our proposal.
In addition to equivalence, hierarchical and EDOAL alignments among datasets
(considered by a majority of distributed query processing approaches), our rules
manage other types of information that enhance the possibilities of getting trans-
lations. Therefore, a novel contribution of the proposal presented in the paper
is the definition and implementation of three new kinds of rules: answer-based
rules, profile-based rules and feature-based rules respectively. These rules man-
age three different types of information as an example of what the query is look-
ing for in the target dataset. In this way, answer-based rules use answers to the
query in the source dataset; profile-based rules use triples in the source dataset
describing each non-translated resource; and finally, feature-based rules gener-
alize non-translated resources by variables, however constraining those variables
in such a way that only triples where non-translated resources appear as sub-
ject are considered. The idea behind these rules is to capture semantics, that is
relevant, and which is not explicitly expressed in the existing alignments.

Furthermore, in order to check the feasibility of our proposal we validated
it not using synthetic examples but using queries extracted from well- known
benchmarks and SPARQL endpoints logs. The validation process showed that
about two thirds of the translations obtained equivalent results to those obtained
by the Gold standard queries used for comparison, a fact that we consider
encouraging. Moreover, the average running time for the query rewriting process
is 5 sec., which can be considered acceptable in a real environment. As future
work we plan to improve the current implementation in order to decrease the
query rewriting time.
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A Experimental queries

Query 1(FedBench CD4) - LinkedMDB

SELECT ?7actor WHERE 7?film purlc:title "Top Gun’ .

7film movie:actor 7actor .

Gold Standard - DBpedia:
SELECT ?actor WHERE
?film foaf:name "Top Gun’ .
?film db-o:starring ?actor .

Translation - DBpedia:

SELECT 7actor WHERE

{ ?film foaf:name ‘Top Gun’ .}
UNION { ?film rdfs:label ‘Top Gun’ .}
?film db-o:starring 7actor .

Query 2(FedBench CD5) - LinkedMDB

SELECT ?film 7director 7genre WHERE 7film movie:director ?director.

?film movie:country movie:country/IT. ?film

movie:genre ?genre .

Gold Standard - DBpedia

SELECT 7film ?director 7genre WHERE
?film db-o:director ?director.

?film db-p:country ‘Italy’.

?film db-o:genre ?genre .

Translation - DBpedia

SELECT 7film 7director ?genre WHERE
?film db-o:director ?director.

?film db-p:country db-r:Italy.

?film ?p 7genre .

Query 3(QALD4) - MusicBrainz

SELECT 7name ?band WHERE 7artist rdfs
?artist mo:member_of ?band. ?band rdfs:lab

:label 7name.
el ‘The Beatles’ .

Gold Standard - DBpedia

SELECT ?name ?band WHERE
?artist foaf:name ?name.

?band db-o:formerBandMember
7artist. ?band foaf:name ‘The Beatles’.

Translation - DBpedia

SELECT ?name ?band WHERE
?artist foaf:name ?name.

?band db-o:formerBandMember
7artist. ?band foaf:name ‘The Beatles’.

Query 4(QALD4) - MusicBrainz

SELECT 7album WHERE 7album rdf:type mo:Record .
7album foaf:maker 7artist . 7artist foaf:name Slayer .

Gold Standard - DBpedia
SELECT ?7album WHERE
?album rdf:type db-o:Album .
?album db-o:artist ?artist.
artist foaf:name ‘Slayer’.

Translation - DBpedia

SELECT ?album WHERE

{ ?album rdf:type db-o:Album . }
union{ 7album rdf:type db-o:Single.}
7album db-o:artist 7artist.

artist foaf:name ‘Slayer’.

Query 5(DBPEDIA log) - DBpedia

SELECT DISTINCT 7a WHERE 7a a db-o:

Artist.

?a foaf:name ?n. FILTER (regex(?n, ‘John’,‘i’)) .

Gold Standard - LinkedMDB
SELECT DISTINCT ?a WHERE
?a a foaf:Person .

7a rdfs:label 7n .

FILTER (regex(?n, ‘John’,‘i’)) .

Translation - LinkedMDB
SELECT DISTINCT 7a WHERE

{ ?a a movie:editor .}

UNION { ?a a db:movie/producer .
UNION { ?a a foaf:Person . }

?a rdfs:label 7n .

FILTER (regex(?n, ‘John’,‘i’)) .

}

Table 3: Query set -

Media Domain 1

Query 6(DBPEDIA log) - DBpedia

SELECT DISTINCT ?a WHERE db-r:The_Other_Side_of_the_Wind 7p 7a .

Gold Standard - LinkedMDB
SELECT DISTINCT ?a WHERE
movie:46921 7p ?a .

Translation - LinkedMDB
SELECT DISTINCT ?a WHERE
movie:46921 7p ?a .

Table 4: Query set -
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Query T (FedBench LS1) - Drugbank

SELECT 7drug ?melt WHERE 7drug rdf:type drugbank:drugs .
?drug drugbank:meltingPoint ?melt .

Gold Standard - DBPedia Translation - DBPedia
SELECT 7drug ?melt WHERE SELECT ?drug ?melt WHERE
?drug rdf:type db-o:drug . ?drug rdf:type db-o:drug .
?drug db-o:meltingPoint ?melt. ?drug ?p ?melt.

Query 8(FedBench LS2) - Drugbank

SELECT 7predicate 7object WHERE drugbank-drugs:DB00201 ?predicate 7object .

Gold Standard - KEGG Translation - KEGG
SELECT 7?predicate 7object WHERE SELECT 7?predicate 7object WHERE
kegg:D005281 ?predicate 7object . kegg:D005281 ?predicate 7object .

Query 9(QALD4) - Drugbank

SELECT 7x WHERE drugbank-drugs:DB00404 rdfs:label 7x .

Gold Standard - SIDER Translation - SIDER
SELECT 7?x WHERE SELECT ?x WHERE
sider:2118 rdfs:label 7x . sider:2118 rdfs:label ?x .

Query 10(QALD4) - SIDER

SELECT 7pl ?yl ?p2 7y2 WHERE sider:1690 7pl 7yl . sider:119607 7p2 7y2 .

Gold Standard - Drugbank Translation - Drugbank

SELECT 7pl 7yl ?p2 ?7y2 WHERE SELECT 7pl ?yl 7p2 7y2 WHERE
drugbank-drugs::DB00445 7pl 7yl . drugbank-drugs::DB00445 7pl 7yl .
drugbank-drugs::DB00580 7p2 7y2 . drugbank-drugs::DB00580 7p2 7y2 .

Table 5: Query set - Life Science 1

Query 11(QALD4) - Drugbank

SELECT DISTINCT ?v0 ?vl WHERE
{ drugbank-drugs:DB00194 drugbank:molecularWeightAverage ?v0.
OPTIONAL { drugbank-drugs:DB00194 drugbank: molecularWeightMono ?v1. } }

Gold Standard - DBPedia Translation - DBPedia

SELECT DISTINCT ?v0 WHERE | SELECT DISTINCT ?v0 ?vl WHERE
dbpedia-r:Vidarabine db-r:Vidarabine

db-o:molecularWeight 7v0 . db-o:molecularWeight 7v0 .

OPTIONAL {db-r:Vidarabine
db-o:molecularWeight ?v1. } .

Query 12(QALD4) - SIDER

SELECT DISTINCT ?x WHERE sider:8378 sider:drugName 7x

Gold Standard - DBPedia Translation - DBPedia
SELECT DISTINCT ?x WHERE SELECT DISTINCT ?x WHERE
db-r:Allopurinol rdfs:label 7x. db-r:Allopurinol db-o:tradename 7x.

Table 6: Query set - Life Science 2
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Query 13(BNE log) - BNE

SELECT DISTINCT 7p 7o WHERE bne-resource:XX1718747 7p 7o .

Gold Standard - BNB

SELECT DISTINCT 7p 70 WHERE
bnb:CervantesSaavedraMigueldel1547-1616
75 ?

’p 70 .

Translation - BNB

SELECT DISTINCT 7p 70 WHERE
bnb:CervantesSaavedraMigueldel1547-1616
75 ?

’p 70 .

Query 14(DBpedia log) - DBpedia

SELECT DISTINCT 7label 7author WHERE db-r:Pride_and_Prejudice
a db-0:Book . db-r:Pride_and_Prejudice foaf:name ?label .
db-r:Pride_and_Prejudice db-o:author 7author .

7author a db:owl:Artist .

Gold Standard - Cambridge
SELECT DISTINCT 7label 7author
WHERE cam:cambrdgedb._...79{80074f
a owl: Thing .
cam:cambrdgedb._...79f80074f
rdfs:label ?label .
cam:cambrdgedb._...79f80074f
dct:creator Tauthor .

7author a foaf:Person .

Translation - Cambridge

SELECT DISTINCT 7label 7author
WHERE cam:cambrdgedb._...79{80074f
a 70 .

cam:cambrdgedb._...79f80074f
rdfs:label ?label .
cam:cambrdgedb._...79f80074f
dct:creator 7author .

7author a foaf:Person.

Table 7: Query set -Bibliographic 1
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Query 15(BNE log) - DBpedia

SELECT 7a ?birth WHERE
?a db-o:writer db-r:Leo_Tolstoy .

OPTIONAL { db-r:Leo_Tolstoy db-owl:dateOfBirth ?birth. }

Gold Standard - BNE
SELECT 7a ?birth WHERE
bne-r:XX933715 {r:P2010 ?a .
OPTIONAL { bne-r:XX933715
fr:P3040 ?birth. }.

Translation - BNE

SELECT 7a ?birth WHERE
bne-r:XX933715 {r:P2010 ?a .
OPTIONAL { bne-r:XX933715
fr:P3040 ?birth. }.

Query 16(Fedbench ) - DBLP

SELECT * WHERE
?a akt:has-author dblp-r:person/100007.

OPTIONAL { ?e akt:edited-by dblp-r:person/100007. }

Gold Standard - DBpedia
SELECT * WHERE

?a db-o:author
db-r:Tim_Berners-Lee .
OPTIONAL {?e 7p
db-r:Tim_Berners-Lee .}

Translation - DBpedia
SELECT * WHERE

?a db-o:author
db-r:Tim_Berners-Lee .
OPTIONAL {?e db-o:owner
db-r:Tim_Berners-Lee .}

Query 17(Fedbench ) - DBpedia

SELECT DISTINCT 7a ?r WHERE
?a db-o:publishedIn ?r

Gold Standard - DBLP
SELECT DISTINCT 7a 7r WHERE
7a dblp:article-of-journal ?r

Translation - DBLP
SELECT DISTINCT ?a ?7r WHERE
7a Tp 7c

Query 18(Fedbench ) - DBLP

SELECT 7?article WHERE
?article dblp:Article_ IsWrittenBy ?author .
?author akt:full-name ?Author .

FILTER ( regex ( ?Author, ‘Tanenbaum’, ‘i’ ) )

ORDER BY ?7Author

Gold Standard - BNB

SELECT ?article WHERE

?author bnb:hascreated 7article .

?author foaf:name ?Author .

FILTER (regex(?Author, ‘Tanenbaum’, ‘i’))
ORDER BY ?7Author

Translation - BNB

SELECT ?article WHERE

?author bnb:hascreated 7article .

?author foaf:name ?Author .

FILTER (regex(?Author, ‘Tanenbaum’, ‘i’))
ORDER BY ?Author

Table 8: Query set - Bibliographic 2
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