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Endogenous Timing in Pollution Control: 

Stackelberg versus Cournot-Nash Equilibria 

 

Melanie Heugues
1 

 

In the framework of international cooperation on climate change to control greenhouse gas emissions 

(GHG), this paper aims to shed new light on the eventuality of the emergence of a country (or a group 

of countries) behaving as a leader in the implementation of its environmental policy. The sequence of 

moves in the existing literature is usually an exogenous assumption, – known as the Cournot 

assumption (if countries take action simultaneously) and the Stackelberg assumption (if they act 

sequentially, the latter observing the strategy of the former). The main purpose here is to make the 

timing endogenous. To do so, we introduce a pre-play stage in the basic two-country game. Then we 

provide different sets of minimal conditions – on the benefit and damage functions linked to GHG 

emissions into the atmosphere, yielding respectively the simultaneous and the two sequential modes of 

play. While the results essentially confirm the prevalence of the former, they also indicate that the 

latter are natural under some robust conditions: a leader can emerge endogenously when 

implementing its environmental policy. Finally we provide sufficient conditions for a specific leader 

to appear. All the results come with an analysis in terms of global emissions and global welfare. No 

extraneous assumptions such as concavity, existence, or uniqueness of equilibria are needed, and the 

analysis makes crucial use of the basic results from the theory of supermodular games. 
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1. Introduction 

Since the “Earth Summit” of Rio de Janeiro in 1992, almost all countries of the world are part of the 

United Nations Framework Convention on Climate Change (UNFCCC).
2
 This Convention recognizes 

the existence of climate change and sets general goals and rules for stabilizing greenhouse gas (GHG) 

concentrations. Among its general principles, members of the Convention have agreed to place the 

heaviest burden for fighting climate change on industrialized nations – since they are the source of 

most past and current GHG emissions –, and to develop national programs to slow climate change in 

sectors such as agriculture, energy, transportation and so on. They also recognized that the 

Convention was a "framework" document that had to be amended or augmented over time so that 

efforts to deal with global warming and climate change can be focused and made more effective.
3,4

 

Nevertheless, the current negotiation process is rather long and complex with a permanent risk of 

failure. The distinctive characteristics of the problem turn it into a big challenge. First of all, the 

environment – or the atmosphere, is a global public good that countries are free to provide or to enjoy 

freely.
5
 Secondly, States are sovereign and no supranational authority exists to implement a globally 

optimal environmental policy: each country has thus to decide voluntarily to reduce its GHG 

emissions given a strong incentive to free ride. Finally, even if countries agree on the existence of the 

problem and its urgency, national emissions are a strategic variable since they are linked to national 

economic activities, and thus to economic growth and development.
6
 

Actually, two arguments exist for and against a strategy to implement stronger or more lax national 

environmental policies than the others (Ulph, 2001). Because countries are linked through trade, 

environmental policies will affect the international competitiveness of particular sectors of an 

economy. If governments are concerned about this loss of competitiveness, they may set too lax 

environmental policies, essentially as a form of covert protection. An alternative point of view is that 

such strategic trade considerations may also induce governments to set tough environmental policies 

to give their domestic producers a competitive advantage in developing “green” technologies ahead of 

their rivals. In all, an important consideration for a country will be the economic cost of having to set 

tougher environmental policies than at least some other countries.  

Enhancing worldwide economic progress combined with reduced emissions is a rather hard task 

when each country is pursuing its own interest. In this framework, we aim to study the eventuality of 

the emergence of a country or a group of countries acting as a leader in the implementation of its 

                                                   
2
 The UNFCCC is an international treaty joined by192 countries around the world. Countries ratifying the treaty 

are called "Parties to the Convention". The Conference of the Parties (COP), as an association of all member 

countries, is the prime authority of the Convention. To know more, see the website http://unfccc.int/2860.php.  
3
 To tackle the problem of GHG accumulation in the atmosphere, governments of the world meet annually for a 

period of two weeks. They evaluate the status of climate change and the effectiveness of the treaty.  
4
 In 1997, the Convention led in turn to the adoption of the Kyoto Protocol.  

5
 The global character means that there is not a unique well identified and settled agent responsible for GHG 

emissions. Emissions are rather the indirect consequence of the performance of a large group of economies.  
6
 Negotiations are also the place to defend national economic interests (given the increasing inter-connexion of 

countries on global markets) and geostrategic positions. 
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environmental policy. To illustrate our purpose, we note that the last Conference of the Parties 

(COP15, Copenhagen, 2010) has been the occasion of intense discussions on United States and 

China’s respective GHG emissions: in which respect could we observe the emergence of leading 

behaviour from one of the two largest emitters of the planet? Conversely, the European Union was 

among the most involved in the process to promote cooperation by offering to strongly curb its GHG 

emissions and also trying to initiate an agreement among a more limited number of countries for the 

latter attempt to be more effective.
7
 

How can such behaviour be explained? Would it be a sacrifice of the leading country or group to 

implement such a policy? Is there no economic rationale? What would the consequences be at a 

global level (in terms of effectiveness) and what would the strategy adopted by the others be in 

response? The aim of this paper is to shed light on the economic circumstances justifying such 

behaviour, i.e. leading in the implementation of one’s national environmental policy. The results 

exposed are built on the literature studying international cooperation on global issues using non 

cooperative game theory.
8
 This tool has shown to be particularly suited to model strategic interactions 

among States. The fundamental model is the one introduced by Carraro and Siniscalco (1993) and 

called “the global emission game” (Finus, 2001).
9
 The game depicts the problem of GHG 

accumulation in the atmosphere and linked to human activities. Broadly speaking, emissions are 

viewed as an output of the production and consumption of goods from which countries derived 

benefits, while payoff functions describe the net welfare implications from emissions. 

As the game involves only two countries (or two groups), two alternatives exist when considering 

the sequence of moves in the global emission game: a simultaneous and a sequential move version of 

the constituent game. In the former case, countries choose their emission level at the same time 

whereas in the latter, one country chooses first, the second mover observing the decision of the 

former. In the first game, equilibria are called “Cournot-Nash equilibria” while in the second one, 

they are named “Stackelberg equilibria”. Both have been postulated and studied independently in the 

literature. Comparing outcomes of each game yields some differences (Finus, 2001).
10

  

Nonetheless, the main drawback of the sequential game is that the order of move is generally 

exogenously attributed to the countries, while the latter are a priori interchangeable. Hence, a general 

                                                   
7
 The question on the prospects of seeing a leader emerging in the implementation of its environmental policy 

can also be relevant with respect to other groups: Annex I and non-Annex I countries; signatories and non 

signatories of a potential Post-2012 Kyoto Protocol; or even among OECD members (inside Annex I countries). 
8
 Note that cooperation can even emerge in a non cooperative framework (Carraro and Siniscalco, 1993; Barrett, 

1994; Diamantoudi and Sartzetakis, 2006 and Heugues, 2009a).  
9
 An alternative game is the one in abatement proposed by Hoel (1991) or Barrett (1994). Both games are 

strictly equivalent as soon as countries’ individual emissions are always positive (Diamantoudi and Sartzetakis, 

2006). 
10

 When countries choose their emission level non cooperatively, the country which takes action first, i.e. the 

leader, has an advantage on the second mover, i.e. the follower, with regard to the case where both countries 

take action simultaneously: he can implement its best outcome. Hence, from a single country’s perspective the 

sequential move is clearly preferable, provided he can move first. 
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problem of the Stackelberg equilibrium concept is the motivation of the assumption that one agent (or 

group of agents) moves first, that is, has superior information compared to the follower(s). Another 

point raised by Finus (2001) is that, since each country has an incentive to be the leader, one would 

expect all countries to compete for this position. Therefore, as long as this leader-follower relationship 

is not obvious from the investigated problem itself, some doubts about the reason for such an 

asymmetry remain. If each country assumes the supposed leadership and chooses the corresponding 

emission level, both countries may end up in a situation which cannot be an equilibrium point. Hence, 

it seems plausible to expect that in this case countries are led back to the Cournot-Nash equilibrium. 

One purpose of this paper is to show that the reasoning above is incomplete. Specifically, we have 

to relate the payoff of the simultaneous game with the one of the follower in the sequential move 

game. If there are conditions under which the latter dominates the former, then the sequential global 

emission game becomes the appropriate representation of the game.  

More generally, this paper provides different sets of minimal conditions on the countries’ payoff 

functions yielding respectively the simultaneous and the two sequential modes of play. To do so we 

construct an extended game of the global emission game: we introduce a previous stage to the global 

emission game in which both countries decide simultaneously on the date (“Early” or “Late”) at 

which they want to play the constituent game.
11

 If both countries choose the same date, they’ll play 

simultaneously; if the dates are distinct, they’ll play sequentially with the order announced. Note that, 

in the second stage, countries choose their own emission level and fulfil any commitments made in 

the first stage. We thus assume that countries can commit.
12

 While our findings essentially confirm 

the predominance of the simultaneous game, they also indicate that the sequential game under perfect 

information is natural under some robust conditions. The key determinant of the analysis is the nature 

of the interactions between countries.
13

 

Finally, the results established in the paper rely on the theory of supermodular games. By this 

approach, no assumptions such as concavity of payoffs, existence or uniqueness of equilibria are 

needed and it lets us extend the usual framework of the literature. 
14, 15

 

The remainder of the paper is organised as follows. Section 2 describes the extended global 

emission game. Section 3 defines the solution concepts as well as the conditions of their existence. In 

section 4, the main results together with their interpretation are presented. Section 5 concludes. 

                                                   
11

 This procedure is drawn from the literature on industrial organization. See Hamilton and Slutsky (1990) or 

Amir and Grilo (1999) in the case of a duopoly game. 
12

 Other assumptions on countries’ capability to commit would lead to other results with certainty (Boadway et 

al., 2007). An extension would be to consider the consequences of only one country being able to commit.  
13

 The global emission game can be seen as a reduced form of the framework in Copeland and Taylor (2005) 

justifying to consider both kinds of interactions: substitutable and complementary. This point is also developed 

in Barrett (2003, 2005). 
14

 The approach can be applied in both cases of strategic complementarity and substitutability as the game 

considered is a two-player game.  
15

 In more to Appendix A, the interested reader can refer to Amir (2005), Topkis (1998), Vives (1999) or 

Cooper (1999) to have a larger view on the interest of this mathematical tool in economics. 
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Appendix A contains a summary of the lattice-theoretic notions we rely on, whereas Appendix B 

provides all the proofs and some intermediate results.  

2. The extended global emission game  

The game we consider in this section aims at determining the conditions under which a leader can 

emerge endogenously in the implementation of its national environmental policy. Until now to the 

best of our knowledge, this kind of behaviour has always been postulated exogenously in the referred 

literature.
16

 Instead, we introduce the possibility for countries to choose their position in the 

constituent game – named “the global emission game” (Finus, 2001). The game as a whole – hereafter 

named “the extended global emission game” – is a two-country, two-stage game.
17

 The timing is such 

that in the first stage, both countries decide simultaneously and independently the date they want to 

play in the second stage: “Early” or “Late”. In the second stage, countries play the global emission 

game, i.e. choose their individual emission level, maximising a payoff function defined below.
18

  

Formally, consider two countries not necessarily identical such that i = 1, 2 and N = 2. Linked to 

economic activities, each of them emits GHGs that mix uniformly in the atmosphere. We note x and y 

respectively as the emission levels of Country 1 and of Country 2. [ ]ii KX ,0=  stands for the strategy 

set of country i and is a compact interval of the reals. Ki accounts for a capacity constraint in terms of 

pollution. It means that country i cannot infinitely produce GHG emissions or that its economic 

activities are bounded. In its most general form, the payoff function of country i, fi, i = 1, 2, is 

expressed as the difference between the benefits of its own emissions, Bi(·), and the damages linked to 

global emissions, Di(·).
19

 Then countries 1 and 2 respectively have payoffs: 

)()(),( 111 yxDxByxf +−=  and )()(),( 222 yxDyByxf +−= . 

To establish our results, we assume throughout that Bi(·) and Di(·) are twice continuously 

differentiable and non decreasing, i = 1, 2. The assumption of differentiable payoff functions is only 

made to simplify the analysis. Given the choice made in the first stage of the extended game by both 

countries, the second stage game is played simultaneously or sequentially:  

i) If both countries choose the same date, the global emission game is then played 

simultaneously: each country determines its emission level given the emission level of the 

other. The resulting pure strategies Nash equilibria are named “Cournot-Nash equilibria”; 

                                                   
16

 Seminal works assume for example that a country has a greater environmental consciousness than the other 

(Finus, 2001; Pereau et al., 2002); or in the literature on international environmental cooperation, that the 

coalition of signatories holds more information than the non signatories (Barrett, 1994; Diamantoudi and 

Sartzetakis, 2006). 
17

 We call it “the extended global emission game” as we introduce a pre-play stage to the global emission game. 
18

 The sequence of moves supposes that both countries can commit to their announcement in the first stage. 
19

 Emissions in a country generate an externality causing environmental damage in this country but also in the 

other. The damage function traduces both the public good character and the global character of the environment. 
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ii) If the dates chosen differ, then the global emission game becomes a two-stage game of 

perfect information. The constituent game is played sequentially with the order of moves 

as announced: the country announcing to play “Early” chooses its emission level first, 

whereas the other (announcing “Late”) chooses its emission level observing the decision 

of the former. In this case, the underlying equilibrium concept is the one of “Stackelberg 

equilibrium”.
20

 

Figure 1 below displays the extensive form of the associated game. Here e and l stand for “Early” 

and “Late” and 1 and 2 for countries’ names.  
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Figure 1: Extensive form of the extended global emission game.

21
 

 

Figure 2 below displays the strategic form of the extended game. Notations are as follows: for i = 1, 

2, let fi
L
 and fi

F
 respectively stand for the equilibrium payoffs of the leader and of the follower, 

whereas fi
CN

 stands for the equilibrium payoff of a country when both choose the same date in the 

preliminary stage.  

Country 2 

  Early (e) Late (l)  

Country 1 Early (e) f1
CN

,  f2
CN

 f1
L
,  f2

F
  

 Late (l) f1
F
,  f2

L
 f1

CN
,  f2

CN
  

 

Figure 2: Strategic form of the extended global emission game. 

 

                                                   
20

 Strictly speaking, i) this case implies that the second stage of the extended game consists of two sub-stages; 

ii) the equilibrium concept of the sequential game is the one of subgame perfect equilibrium but the term of 

Stackelberg equilibrium is used to stay conform to the terminology of the literature. 
21

 The dotted lines mean that strategy sets in the constituent game are compact intervals of IR+ 
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Either if both countries choose to determine their emission level sooner or to postpone this decision, 

the equilibrium payoffs of the simultaneous game do not change: time does not matter when 

determining the payoffs. Note also that a country may not unilaterally choose to be a leader or a 

follower, though he may elect not to be the latter simply by deciding to move in the first period in the 

preliminary stage. Moreover, the situation in which both countries choose their first mover optimal 

action can never be an equilibrium outcome of the extended game. 

Hence, instead of considering both simultaneous and sequential games independently, this 

extension of the global emission game allows capturing the notion of endogenous timing. The 

subgame perfect equilibria (SPE) of the extended game thus induce an endogenous 

sequencing of moves in the original game. Consideration is restricted to the SPE in pure 

strategies only. They arise from the comparison of equilibrium payoffs of the simultaneous 

game with those of the sequential game when a country is the leader and when he is the 

follower. All the cases that can arise are summed up in Proposition 0 below. The 

characterization of the SPE is very general in that the uniqueness of the Cournot-Nash and 

Stackelberg equilibria for the constituent game is not postulated. As we do not assume 

continuity of the best responses, the fact that each country prefers being a leader than a 

simultaneous player at equilibrium needs to be included as an assumption in our setting.
22

  

For the given two-country constituent game, let C
N
 denote the set of Cournot-Nash equilibrium 

strategies and Si denote the set of Stackelberg equilibrium strategies with country i as the leader. 

Finally let E denote the set of SPE of the extended game. With a slight abuse of notation, each 

element of E will be written as a pair of timing announcements and a sequential or simultaneous play 

of the constituent game. For example { }N
CeeE ),,(=  means that both countries choose to act early 

leading them to produce one of their Cournot-Nash equilibrium emission levels in the constituent 

game. 

  

                                                   
22

 This assumption is not restrictive as the global emission game belongs to the class of games for which this 

assertion is always satisfied (Amir and Grilo, 1999). 
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Proposition 0: 

Consider the two-country game with φ≠N
C  and φ≠iS , i = 1, 2. When each country i is better off 

at any point in Si than at any point in C
N
, the set of pure strategy subgame perfect equilibria of the 

extended game is such that:  

a) If country i’s payoff is strictly higher at his least preferred point in C
N
 than at every point in 

Sj, ij ≠ for j, i = 1, 2, then { }N
CeeE ),,(= . 

b) If country i’s payoff is strictly higher at any point in Sj than at his most preferred point in C
N
, 

i = 1, 2, then { } { }21 ),,(),,( SelSleE ∪= . 

c) If countries are such that, for example Country 1 is as in a) and Country 2 is as in b), then

{ }1),,( SleE = . 

Proposition 0 confirms that even if both countries always prefer to be a leader, a solution of the 

simultaneous game does not necessarily emerge: we also need to compare the payoff of the follower 

with regard to the one of the simultaneous game.
23

 Given the three cases of Proposition 0 (a, b and c), 

we have to establish the conditions under which a country prefers its payoff as a follower to the one as 

a simultaneous player, i.e. f 
F
 < [>] f 

CN
. To do so, the next section characterizes the set of Cournot-

Nash equilibria of the simultaneous constituent game and the set of Stackelberg equilibria of the 

sequential constituent game. 

3. Definition, existence and characterization of equilibria in the 

constituent game  

This section defines and characterizes the set of equilibria of the global emission game first when 

both countries choose their emission level simultaneously and when they choose it sequentially under 

perfect information. The characterization will rely on the sign of the cross partial derivative of payoff 

functions: if positive the objective reflects strategic complementarities and if negative it reflects 

strategic substitutes. In each case we show that at least one pure strategy Cournot-Nash equilibrium in 

the simultaneous game and at least one Stackelberg equilibrium in the sequential constituent game 

always exist. 

3.1 Definition of Cournot-Nash and Stackelberg equilibria 

Formally, in the simultaneous game, a Cournot-Nash equilibrium is a pair (x
N
, y

N
) such that, for all 

0, ≥yx , ),(),( 11

NNN
yxfyxf ≥  and ),(),( 22 yxfyxf

NNN ≥ . In equilibrium no country has the 

incentive to deviate given the strategy of the other. 

In the sequential game under perfect information, i.e. the follower observes the action of the leader 

before acting, a pure strategy for the leader (e.g. Country 1) is the choice x ≥ 0, and a strategy for the 

                                                   
23

 Proposition 0 is only a translation of the Nash equilibria of the extended game. 
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follower is the mapping [ ] [ ]KKg ,0,0: → . Any Stackelberg equilibrium is a subgame perfect Nash 

equilibrium of the two-stage game, i.e. a pair ))(,( ⋅SS gx  such that: 

i) ,0))(,())(,( 11 ≥∀≥ xxgxfxgxf SSSS
  

ii) .0),())(,( 22 ≥∀≥ yyxfxgxf SSSS
 

Any Stackelberg equilibrium is such that ),( SS yx  lies on the follower’s best response 

correspondence defined by ),(maxarg)( 202 yxfxbr y≥= . Moreover there is no x ≥ 0, Sxx ≠ such that

)(),,(),( 211 xbryyxfyxf
SS ∈∀> . It means that there is no emission level other than x

S
 leading to 

a higher payoff level for the leader. The leader when choosing its equilibrium emission level in the 

first stage takes into account the second stage best response of the follower )(2 xbr  in its objective 

function. The game is then solved by backward induction. Through this equilibrium strategy, the 

problem of maximization of the follower does not change with regard to the situation where both 

countries choose simultaneously. 

In what follows we characterize the set of Cournot-Nash and Stackelberg equilibria of the global 

emission game given the assumptions on the benefit and damage functions. Only pure strategy 

equilibria are taken into account.  

3.2 Existence and characterisation of equilibria in each subgame 

We now define the conditions under which the sets of Cournot-Nash and Stackelberg equilibria are 

non empty. The analysis relies on the sign of the cross partial derivative of a country’s payoff function 

in its strategy x and in the strategy of the other y: if negative, a country’s strategies are substitutable; if 

positive, a country’s strategies are complement. The former case means that a country does more as 

the other does less (negative feedback); the latter means that a country does more as the other does 

more (positive feedback) (Barrett, 2003).
24

 This sign is the key determinant of the overall analysis: 

given this sign, equilibrium behaviours and payoffs change. From now on, the analysis relies on two 

minimal and strictly distinct sets of assumptions on the benefit and damage functions. We expose 

them and then explain them (the details on the mathematical definition are exposed in Appendix B).   

Assumptions under A1: 

- The damage function Di(·), (i = 1, 2) is strictly convex, 0, ≥∀ yx and  

- [ ]ii KZ ,0∈∃  such that ZZDZBZDZB iiiiii ∀−≤− ),()()()(  (i = 1, 2). 

  

                                                   
24

 The limit case is when the cross partial derivative is null: countries’ strategies are independent, i.e. as a 

country does more/less, the other does nothing (no feedback). 
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Assumptions under A2: 

- The damage function Di(·), (i = 1, 2) is strictly concave, 0, ≥∀ yx and
25

 

- The benefit function Bi(·), (i = 1, 2) is strictly concave, 0, ≥∀ yx . 

Under the set denoted A1, a country’s strategies are strategic substitutes and best responses are 

strictly decreasing in the strategy of the other. In fact the strict convexity of the damage function 

(damages increase at an increasing rate) yields to payoff functions with strictly decreasing differences 

in (x, y) whatever the assumption on the benefit function. The definition of iZ lets us express the best 

response of country i when the other pollute 0.  

Under the set A2, a country’s strategies are strategic complements and best responses are strictly 

increasing in the strategy of the other. The strict concavity of the damage function (damages increase 

at a decreasing rate) insures that payoff functions have strictly increasing differences in (x, y). The 

strict concavity of the benefit function is needed to insure global consistency between individual and 

global emission levels (Heugues, 2009b).
26

 

The next proposition presents the minimal conditions under which C
N
 is non empty when both 

countries’ strategies are substitutable. In this case, the use of lattice theory is appropriate only because 

the number of agents is limited to two. To use it, we consider for one country the opposite sign on its 

strategy set (Amir, 2005). For example if Country 2 chooses the emission level –y instead of y, 

decreasing differences in (x, y) become increasing differences in (x, –y). This kind of argument cannot 

be generalized to games with more than two agents.
27

 

Proposition 1: 

Under the set of assumptions A1, the two-country global emission game is a supermodular game with 

the order reversal on the strategy set of one country, and C
N
 is non empty. 

The strict convexity of the damage function alone yields to payoff functions with strictly decreasing 

differences in (x, y). To establish the existence of an equilibrium, we can distinguish two sub-cases 

relying on the form of the benefit function. If the latter is concave, countries’ strategies are weakly 

substitutable (the slope of the best responses is strictly less than one in absolute terms) and the 

equilibrium is unique.
28

 On the contrary, if the benefit function is convex, countries’ strategies are 

strongly substitutable (best responses are strongly decreasing with a slope greater than one in absolute 

terms) and payoff functions are not anymore necessarily concave. In this case, the second assumption 

in the set A1 ensures the existence of an asymmetric equilibrium in which one country has positive 

                                                   
25

 The empirical literature on the evaluation of the impacts of climate change has recognized the importance of 

non linearities in the climate change issue (Ortiz and Markandya, 2009). On way to do it is to consider a S-

shaped damage function (Dumas and Ha-Duong, 2005). 
26

 As z = x + y, if x and y are mutually increasing, z must be increasing as well. 
27

 See Vives (1999) for an alternative argument leading to the same conclusions. 
28

 The proof is immediate because of the concavity of the payoff function. This case is one of the most exploited 

in the literature quoted above because of this nice mathematical property. 
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emissions, the rival producing no emission (Heugues, 2009b). The following corollary to Proposition 

1 aims at characterizing the Cournot-Nash equilibria of the game under the set of assumptions A1.    

Corollary 1: 

Under the set of assumptions A1, the extreme selections of the best-response correspondence bri(·) are 

non increasing in the rival’s emissions. Hence, C
N
 includes the point ),( yx where Country 1 

[Country 2] chooses its highest [lowest] emission level in C
N
. Furthermore, this point lies on 

)(min)( 22 ⋅=⋅ brbr and is Country 2’s least preferred Cournot-Nash equilibrium. 

When countries’ strategies are substitutable and N = 2, a Cournot-Nash equilibrium in pure 

strategies always exists. The aim of Corollary 1 is to define an order on the preferences of each 

country. A direct consequence of the set of assumptions A1 is that best responses are decreasing. In 

considering the opposite sign on the strategy set of Country 2, we can establish that the set of 

Cournot-Nash equilibria has a smallest and a highest element. The highest element is ),( yx and it is 

the highest equilibrium for Country 1, i.e. providing him the highest payoff of the simultaneous game. 

This equilibrium is also the least preferred by Country 2. We can also define the point ),( yx as the 

smallest element in the set of Cournot-Nash equilibria and yielding to the highest payoff for Country 

2 and the smallest payoff for Country 1. 

With Proposition 2 and its corollary, we proceed as well to establish the conditions of existence of 

any Cournot-Nash equilibrium when countries’ strategies are complementary. In this case the use of 

the theorems of the theory of supermodular games is direct. 

Proposition 2: 

Under the set of assumptions A2, the global emission game is supermodular with the natural order on 

countries’ strategy sets, and C
N
 is non empty. 

If individual emission levels (x and y) are increasing, the global emission level (z) must also be 

increasing. Here the global consistency of the game is provided by the strict concavity of the benefit 

functions. Under the set of assumptions A2, we can provide the following corollary to Proposition 2.  

Corollary 2: 

Under the set of assumptions A2, the extreme selections of the best response correspondence bri(·) are 

non decreasing in the rival’s emissions. Hence, the smallest Cournot-Nash equilibrium ),( yx  

belongs to C
N
 and both countries prefer it to all other Cournot-Nash equilibria.  

Under A2, the global emission game is naturally a supermodular game and best response 

correspondences are strictly increasing. The set of equilibria of the simultaneous game is thus non 

empty and has a smallest and a highest element Pareto ordered. In this case, the most preferred 
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equilibrium for the countries (i.e. leading to the highest payoffs) is the one where both choose their 

lowest emission level ),( yx . On the contrary, the equilibrium point ),( yx  provides the lowest 

payoffs of the simultaneous game. This relation between emission levels and equilibrium payoffs is 

linked to the nature of the externalities – negative, generated by countries’ strategic behaviours.  

Let us now characterize the set of Stackelberg equilibria through Proposition 3. With 

respect to the works of Hellwig and Leininger (1987), this set is non empty independently of 

the sets of assumptions A1 and A2.
29

  

Proposition 3: 

Under the set of assumptions A1 [respectively A2], the set of Stackelberg equilibrium strategies with 

country i as leader is such that { })(),(:),(maxarg 0 ⋅∈= ≥ jixii brGRyxyxfS . Hence, every point in Si 

gives the leader the same payoff, which is at least as high as his best Cournot-Nash payoff. 

By Proposition 3, any Stackelberg equilibrium lies on the lowest best response correspondence of 

the follower. Moreover, even if the leader has several strategies maximizing its payoff, we can always 

assume the uniqueness (its payoff function being continuous in the strategy of the follower): if there is 

a multitude of equilibria for the leader, he can always choose the emission level yielding to the 

highest payoff for her. Furthermore given Corollaries 1 and 2, the most preferred Cournot-Nash 

equilibrium always lies on the lowest best response correspondence of the rival. As the leader can 

always choose its preferred equilibrium emission level which lies on the same correspondence, it 

follows that any strategy for the leader brings him a payoff at least as high as the one he receives at 

the equilibrium of the simultaneous game. 

Given the equilibria of the simultaneous and of the sequential games, we now compare the 

associated payoffs to establish the SPE of the extended game.    

4. Results : Subgame perfect equilibria of the extended game and 

their respective environmental consequences  

This section determines the conditions under which both countries choose the same position in the 

global emission game and those under which the positions chosen differ. The choice for one 

alternative is directly linked to the nature of the interactions between the countries. So the following 

propositions strongly rely on the existence results of the previous section. In each case, we also 

discuss the environmental impact of countries’ strategic behaviours with regard to the alternative not 

chosen. The next proposition provides the conditions under which the endogenous determination of 

the sequence of choices yields to the simultaneous game and thus to one Cournot-Nash equilibrium.  

                                                   
29

 The authors establish that, for compact strategy sets and continuous payoff functions, Stackelberg equilibria 

always exist and Stackelberg equilibrium strategy sets (Si, i = 1, 2) are non empty. These conditions are true 

under both sets of assumptions A1 and A2. 
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Proposition 4: 

Under the set of assumptions A1, assume that no Cournot-Nash equilibrium lies on a boundary (i.e. 

with one emission level being 0). Then the set of subgame perfect Nash equilibria of the extended 

game is such that { }NCeeE ),,(= . 

When countries’ strategies are substitutable, the sole outcome of the extended game is the one in 

which the countries act simultaneously. The reason is twofold: both countries prefer their payoff as 

the leader and second, they will do all that is possible not to be the follower. The reason is that their 

payoff as the follower is always below the one they can get at any Cournot-Nash equilibrium.
30

  

From an environmental impact point of view, this case is the most difficult to interpret. It appears 

through the proof of Proposition 4 that the leader would have higher emissions, whereas the follower 

would have lower emissions with regard to the solution of the simultaneous game. The conclusion on 

the environmental impact of this SPE thus depends on the strength of the substitutability between 

countries’ strategies. Two cases are relevant: substitutability is weak or substitutability is strong.
31

 

The solution of the simultaneous game is preferable from a global point of view (to the sequential 

one) when countries’ strategies are weakly substitutable: the SPE of Proposition 4 leads to a lower 

global equilibrium emission level than if a leader were to emerge because in this case, an increase of 

emissions by the leader would not be compensated by the decrease of emissions by the follower.  

This assertion becomes false when countries’ strategies are strongly substitutable and the 

equilibrium is interior: in this case, an increase of emissions by the leader would now be completely 

compensated by the decrease of emissions by the follower. Therefore the SPE of Proposition 4 is not 

anymore the most favourable outcome from a global point of view when countries’ strategies are 

strongly substitutable. 

The following proposition provides the conditions under which the endogenous determination of the 

sequence of choices yields to one of the sequential modes of play: if a country chooses to play first in 

the first stage, the other will choose to play second and vice versa. These conditions lead to the 

emergence of a leader in the global emission game.  

Proposition 5: 

Under the set of assumptions A2, the set of subgame perfect Nash equilibria of the extended game is 

such that { } { }21 ),,(),,( SelSleE ∪= .  

When countries’ strategies are complementary, the solution of the extended game is such that one of 

the two leader-follower configurations emerges. The reason is that even if both countries prefer their 

payoff as the leader, their payoff at any Cournot-Nash equilibrium is always lower than the one a 

                                                   
30

 For strictly positive emission levels (the equilibrium is interior), we show in Appendix B that the sets of 

Cournot-Nash and Stackelberg equilibria are always distinct (See Lemma B.1). 
31

 Each case depends on the assumption on the benefit functions (cf. the discussion following Proposition 1) 
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country gets as the follower. Consequently if Country 1 anticipates that Country 2 will choose to act 

first, he will act second and vice versa.
32

 

Another striking point is that the individual equilibrium emission levels of the sequential game are 

below those of the simultaneous game: both countries choose to reduce their emission level with 

regard to the Pareto dominant emission levels of the simultaneous game. Therefore the position of 

leadership does not necessarily mean that the leader will increase its emissions to the detriment of the 

follower. As the strategies are complementary, the feedback is positive and both countries reduce their 

individual emission level. We can thus conclude without any ambiguity that the SPE of the extended 

game underlined by Proposition 5 is the best outcome from an environmental point of view with 

regard to the simultaneous one. 

The fact remains that a limit to Proposition 5 is that both leader-follower configurations can emerge. 

The proposition cannot endogenously explain why a country should be a leader or a follower. The 

following proposition provides sufficient conditions under which a specific leader emerges in the 

global emission game.  

Proposition 6: 

Consider for example that Country 1’s payoff function checks the set of assumptions A1 and that 

Country 2’s payoff function checks the set of assumptions A2. If an interior Cournot-Nash equilibrium 

exists, then the set of subgame perfect Nash equilibria of the extended game is such that

{ }1),,( SleE = .  

When the nature of the interactions between the countries differs, Proposition 6 lets us conclude that 

the leader is the country whose payoff function presents strategic substitutability. Given Proposition 4, 

we know that such a country will do all he can not to be the follower. Therefore the strategy “Late” in 

the first stage of the extended game is strictly dominated for Country 1. On the contrary the country 

whose payoff function exhibits strategic complementarities always prefers to be a follower, instead of 

the outcome where both countries take action simultaneously (See Proposition 5). In this 

configuration, strategic behaviours of both countries are well matched and a specific leader emerges.  

Note that in this case, we need to assume the existence of an equilibrium point in the simultaneous 

game. As best response correspondences are not necessarily continuous, it’s possible that no Cournot-

Nash equilibrium exists; but if there exists one, it’s necessarily unique. This point is linked to the fact 

that best response strategies progress in opposite directions (the one of Country 1 is strictly 

decreasing, whereas the one of Country 2 is strictly increasing). A sufficient condition to guarantee 

the existence of such an equilibrium point is that the payoff functions are quasi concave in their own 

strategy: this assumption ensures continuous best response strategies that necessarily intersect. 

                                                   
32

 For strictly positive emission levels, Lemma B.2 in Appendix B shows that the sets of Cournot-Nash and 

Stackelberg equilibria are always distinct. 
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The last result is also interesting when considering the environmental impact of countries’ 

strategies. This configuration is such that the leader as well as the follower reduce their emission level 

with regard to the simultaneous case, yielding a lower aggregated emission level and thus a better 

environment. 

5. Conclusion 

The paper confirms the widespread perception that the Stackelberg concept is unsuitable under the 

usual assumptions of the global emission game, i.e. when countries’ strategies are substitutable. In 

this case, each country has an incentive to be the leader (and certainly not a follower), and both are led 

back to one of the Cournot-Nash equilibria of the simultaneous game. Thus considering the existence 

of negative leakages between countries’ economic activities – as postulated in the existing literature 

on international cooperation to control GHG emissions, no country or group should emerge as a 

leader in the implementation of its environmental policy. 

Nonetheless conditions yielding to sequential outcomes also exist: a leader can emerge 

endogenously. These cases are those in which the payoff function of one or both countries exhibits 

strategic complementarities. A striking point under these circumstances is that both the leader and the 

follower reduce their individual emissions with respect to the simultaneous alternative. From an 

economic point of view, it means that a country (or a group) can choose to implement a stronger 

national environmental policy than the others. In this prospect, he will be followed by the others: they 

will reduce as well their emissions even if not necessarily as much as the leader. A second mover 

advantage can also appear depending on the strength of the interactions between countries. Hence, if 

reinforcement effects exist between countries’ economic activities (because of increasing return to 

scale, transfers of technologies, imitation), we should observe the emergence of a country (or a group) 

leading in the implementation of its environmental policy.   

Finally, the set of propositions in this paper relies on minimal assumptions, including the absence of 

technical ones, such as concavity of payoffs and uniqueness of Cournot-Nash and Stackelberg 

equilibria. Hence, a sufficient condition for our analysis is the one of global monotony of the best 

responses. For all the cases studied, the interiority assumptions are needed only to ensure that both 

equilibrium concepts do not coincide. This allows us to provide clear predictions on countries’ 

behaviours in the extended global emission game and ensures that sequential and simultaneous 

outcomes are not equilibria at the same time.  
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Appendix A: Definitions and main theorems of lattice theory 
Definitions and theorems introduce in this appendix are only a simplified version of the ones of lattice 

theory. We take the parameter and action sets, respectively T and X, to be compact subsets of IR, and 

Xt a correspondence from T to X, with Xt being the set of feasible actions when the parameter is t. 

 

Definition A.1: 

A function IRTXf →×:
 
has [strictly] increasing differences in (x, t) if for all xx ≥′  and tt ≥′ :

[ ] ),(),(),(),( txftxftxftxf −′>≥′−′′ . 

 

Lemma A.1 (see Amir, 2003, p. 5 for the proof):  
If f is twice continuously differentiable, f has [strictly] increasing differences in (x, t) if and only 

[ ] 0/),(2 >≥∂∂∂ txtxf
 
for all x and t. 

 

For functions defined on IR
2
, increasing differences is equivalent to supermodularity, so the two terms 

can be used interchangeably.  

 

Definition A.2: 

A function IRXf →:  is upper semi-continuous in x0 if )()(suplim 00
xfxfxx ≤→

. A function f is upper 

semi-continuous if it is for all Xx ∈0
. 

 

Definition A.3: 

For
+∈ Rt , let [ ] +⊂= RthtgX t )(),( , with )(⋅g and )(⋅h being real valued functions and with g ≤ h. 

Xt is ascending [descending] in t if )(⋅g and )(⋅h are increasing [decreasing] in t. 

 

A non cooperative game is a triple (N, Xi, fi) consisting of a non empty set of players N, a set Xi of 

feasible individual strategies, and a payoff function fi defined on i

ni

i X
=
=× 1 for each player i in N.  

 

Definition A.4: 

A non-cooperative game (N, Xi, fi) is a supermodular game if each set Xi of feasible strategies is a 

compact set of the Euclidian space and if each payoff function ),( iii xxf −  
is upper semi-continuous 

in xi and has increasing differences in (xi, xj) for all players Nji ∈, and ji ≠ .  

 

Lemma A.2 (Topkis, 1998, chapter 4): 
The set of all equilibrium points for a non cooperative game (N, Xi, fi) is identical to the set of fixed 

points for the best joint response correspondence, i.e. the direct product of players’ individual best 

response correspondences )(1 ⋅× =
= i

ni

i br . 

 

Theorem A.1 (Topkis, 1978): 

If IRTXf →×:
 
is upper semi-continuous and has increasing [decreasing] differences in (x, t), and 

Xt is ascending [descending] in t, then the maximum and minimum selections of 

),(maxarg)(* txftx Xtx∈= are increasing [decreasing] in t. If f has strictly increasing [decreasing] 

differences in (x, t), then the conclusion of theorem holds for every selection of x*(·). 
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Theorem A.2 (Topkis, 1979): 

If IRTXf →×:  is upper semi-continuous in x for each t, and f has increasing differences in (x, t) 

then: (i) ),(maxarg)( txftx Xx∈=
 
is non empty and possess maximal and minimal selections, )( tx  

and )(tx  
for all t; (ii) maximal and minimal selections of x(t) are increasing functions of t. 

Furthermore, if f has strictly increasing differences in (x, t), then every selection of x(t) is increasing.  

 

Theorem A.3 (Tarsky, 1955): 

Let X be an non empty and compact interval of the Euclidian space and let XXf →: be an 

increasing function ( )()( yfxf ≤  
if yx ≤ ). Then the set of fixed points of f is non empty and 

contains a smallest and a largest element in X. 

 

Theorem A.4 (Milgrom and Roberts, 1990): 

Let *x  
and *x denote the smallest and largest elements of X, and suppose y and z are two equilibria 

with zy ≥ . (1) If ),( iii xxf −  
is increasing in x-i, then )()( zfyf ii ≥ . (2) If ),( iii xxf −  

is decreasing 

in x-i, then )()( zfyf ii ≤ . If the condition in (1) holds for some subset of players N1 and the condition in 

(2) holds for the remainder N\N1, then the largest equilibrium is the most preferred equilibrium for 

the players in N1, and the least preferred for the remaining players. The smallest equilibrium is the 

least preferred by the players in N1, and the most preferred by the remaining players. 

Appendix B: Proofs 
This appendix contains the proofs of propositions made in the text. We also introduce intermediate 

results (Lemma B.1 and B.2) that are useful building blocks to simplify proofs of Propositions 4, 5 

and 6. Propositions 1 and 2 and their respective corollaries (Corollary 1 and 2) provide the conditions 

under which the two country game possesses at least one pure strategy Cournot-Nash equilibrium (C
N 

non empty) and characterize properties of equilibria given the nature of interactions between 

countries. Proposition 3 does the same for Stackelberg equilibria (Si non empty, i = 1, 2). Finally, by 

comparing equilibrium payoffs, we can conclude on the subgame perfect equilibria (SPE) of the 

extended game (Propositions 4, 5 and 6). 

 

Reminder:  

- The functions 
++ → IRIRB :  

and 
++ → IRIRD :  

are twice continuously differentiable and non 

decreasing. The analysis is split into two distinct sets of assumptions:  

o Under A1, the damage function Di(·), (i = 1, 2) is strictly convex, 0, ≥∀ yx and [ ]ii KZ ,0∈∃  

such that ZZDZBZDZB iiiiii ∀−≤− ),()()()(  (i = 1, 2): countries’ strategies are substitutable;  

o Under A2, both the benefit function Bi(·), (i = 1, 2) and the damage function Di(·), (i = 1, 2) are 

strictly concave: countries’ strategies are complement. 

- C
N
, Si and E denote respectively the set of Cournot-Nash equilibrium strategies, the set of 

Stackelberg equilibrium strategies with player i as leader and the set of SPE of the extended game 

(in no case, uniqueness is required).  

 

Proof of Proposition 0: 
The proof of Proposition 0 comes directly from the strategic form of the extended game (see Figure 

2). Countries’ best responses are such that, if Country 1 anticipates that: 

- Country 2 play “Early”, it chooses to play “Early” if f1
CN

 >  f1
F
 and “Late” if not; 

- Country 2 play “Late”, it always chooses to play “Early” as f1
L
 > f1

CN
 by assumption. 

Idem for Country 2, if it anticipates that: 

- Country 1 play “Early”, it chooses to play “Early” if f2
CN

 >  f2
F
 and “Late” if not; 

- Country 1 play “Late”, it always chooses to play “Early” as f2
L
 > f2

CN
 by assumption. 

Combining countries’ best responses leads to the conclusions of Proposition 0. ■ 
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Proof of Proposition 1: 
Strategy sets are compact subsets of the real and such that Xi = [0, Ki], i = 1, 2. As benefit and 

damage functions are continuous, both countries’ payoff functions are continuous in their own 

strategy. Then if damage functions are strictly convex, payoff functions have strictly decreasing 

differences in (x, y): 

2,1),()(),( =∀+−= iyxDxByxf iii
,  

and:    2,1,0)(
),(2

=∀<+′′−=
∂∂

∂
iyxD

yx

yxf
i

i .  

Under these conditions, any selection of a country’s best response correspondence is non increasing in 

the strategy of the other country: for Country 1, ),(maxarg)( 11 1
yxfybr Xx∈=

 
is non increasing in y, 

while for Country 2, ),(maxarg)( 22 2
yxfxbr Xy∈=

 
is non increasing in x (see Theorem A.1, 

Topkis, 1978, Appendix A). 

Secondly, the actual strategy set of a country is [0, iZ ], with iZ  being the emission level a country 

adopts when it’s sole to pollute (i.e. )0(ii brZ = ). When best responses are monotone decreasing, 

iZ  is also the highest equilibrium emission level a country can choose. 

Reversing the natural order on one country’s emission set, for example Country 2, payoff functions 

then present increasing differences in (x, –y). Under the set of assumptions A1, the two-country global 

emission game is a supermodular game. By Theorems A.2 (Topkis, 1979) and A.3 (Tarski, 1955) in 

Appendix A, the set C
N
 is non empty and has a smallest and a largest element. ■ 

 

Proof of Corollary 1: 

Under A1, C
N
 is non empty and extreme selections of the best response correspondence of a country 

are decreasing in the emission level of the rival (with the natural order on the strategy sets) by 

Theorem A.1 (Appendix A). Reversing the natural order on Country 2’s strategy set, extreme 

selections become increasing, respectively in –y for Country 1 and in x for Country 2. Consequently 

the maximal selection in C
N
 is ),( yx −

 
in the new order or equivalently, ),( yx in the natural order.  

The proof that ),( yx lies on )(2 ⋅br is given by contradiction: suppose that )(),( 2 ⋅∉ brGryx and that 

there is a fixed point NCyx ∈′′ ),( with )(),( 2 ⋅∈′′ brGryx . It means that yy <′ or equivalently

)()'( 22 xbrxbr < . As with the natural order on the strategy sets, )(2 ⋅br is decreasing we find that

xx >' . Both xx >' and yy <′ contradicts the extreme nature of ),( yx .  

Finally the fact that ),( yx is the least preferred by Country 2 is a direct consequence of Theorem 

A.4 (Milgrom and Roberts, 1990). ■ 

 

Proof of Proposition 2: 
Under A2, the global emission game is naturally a supermodular game, i.e. countries’ payoff functions 

have strictly increasing differences in (x, y). By Theorem A.2 (Topkis, 1979), best responses are thus 

strictly increasing and by Theorem A.3 (Tarski, 1955), C
N
 is non empty. ■ 

 

Proof of Corollary 2: 
Under A2, both countries’ payoff functions have strictly increasing differences in (x, y) and by 

applying Theorem A.2 (Topkis, 1979), any selection of a country best response is increasing in the 

strategy of the other country. For Country 1, ),(maxarg)(* 11
yxfyx Xx∈=

 
is increasing in y, 

whereas for Country 2, ),(maxarg)(* 22
yxfxy Xy∈= is increasing in x. As the global emission game is 

a game of negative externality, Theorem A.4 (Milgrom and Roberts, 1990) lets us conclude that the 

smallest element in C
N
, i.e. ),( yx , is also the Pareto dominant equilibrium; the highest element in C

N
, 

i.e. ),( yx , is the Pareto dominated equilibrium. The former provides the highest possible equilibrium 

payoff for both countries and the latter the worst equilibrium payoff for both of them. The proof is 
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trivial: let *)*,( yx and ),( yx ′′ be two Nash equilibria in pure strategies such that ),(*)*,( yxyx ′′> . 

Then *)*,()*,(),( yxfyxfyxf ≥′≥′′ . The first inequality is due to the fact that ),( yx ′′ is an 

equilibrium and the second inequality is because f(·) is decreasing in y. Equilibria of the game are thus 

ordered, the smallest being Pareto dominant. ■  

 

Proof of Proposition 3: 
Proposition 3 aims at characterizing the set of Stackelberg equilibria in the global emission game 

whatever the nature of interactions between countries. The proof relies on the assumptions on the 

benefit and damage functions, the latter defining the properties of the follower’s best response 

correspondence on which lies the Stackelberg equilibrium. We thus consider respectively each set of 

assumptions A1 and A2. Under A1 or A2, continuity of payoff functions in countries’ own strategy 

insures that the follower’s best response correspondence has a closed graph. In what follows, we 

assume that Country 1 acts as a leader and Country 2 as a follower. Consequently Country 2’s best 

response correspondence has a lowest element )(2 ⋅br  and we aim at showing that any Stackelberg 

equilibrium lies on this minimal reaction curve. 

 

i) Under A1, the minimal reaction curve )(2 ⋅br  
is at least lower semi-continuous and right-

continuous. Yet, a strictly decreasing reaction curve, if discontinuous, can only jump down. By 

contradiction, suppose that there is a Stackelberg equilibrium ),( SS yx such that )(),( 2 ⋅∉ brGRyx SS

 

and )(2

SS
xbry > . By Corollary 1, any selection of )(2 ⋅br  

is non increasing with the natural order on 

the strategy sets. Hence the (finite) set of points at which )(2 ⋅br  
is not uniquely defined coincides 

with the one at which )(2 ⋅br  
is discontinuous. By the contradiction assumption, )(2 ⋅br is multi-valued 

at the point x
S
. We can thus find a sufficiently small ε > 0 such that choosing x

S
 + ε for the leader 

would lead to a unique best reply by the follower that is strictly smaller than y
S
. It means that )(2 ⋅br  

is single valued at x
S
 + ε, with )(2

SS
xbry >

 
as )(2 ⋅br  

is right-continuous. The payoff of the leader is 

then such that ),())(,( 121

SSSS
yxfxbrxf >++ εε as ),(1 yxf is continuous in x and strictly 

decreasing in y. But this assertion contradicts the initial statement that ),( SS
yx

 
is a Stackelberg 

equilibrium. It follows that )(),( 2 ⋅∈ brGRyx SS and that ))(,(maxarg 2101 xbrxfS x≥= .  

What about the existence of multiple Stackelberg equilibria. If they exist, it’s always relative to

)(2 ⋅br which is a parameter in the payoff function of the leader. Yet, if the leader has to choose 

between several equilibria, he will always adopt the strategy leading to the highest payoff. Therefore 

we can assume the uniqueness of the Stackelberg equilibrium, with any point in S1 leading to the same 

payoff for the leader.  

Finally, as Country 1’s most preferred Cournot-Nash equilibrium is ),( yx with )(),( 2 ⋅∈ brGRyx , the 

payoff of the leader is at least as high as the one he would obtain at his most preferred equilibrium of 

the simultaneous game. 

 

ii) Under A2, the minimal reaction curve )(2 ⋅br  
is at least upper semi-continuous and left-

continuous. Yet, a strictly increasing reaction curve, if discontinuous, can only jump up. We adopt the 

same reasoning as before, except that we consider x
S
 – ε with ε > 0, instead of x

S
 + ε. This deviation is 

possible only if 0≠S
x . Now, by contradiction, suppose that there is a Stackelberg equilibrium

),( SS yx such that )(),( 2 ⋅∉ brGRyx SS and )(2

SS
xbry > . By Corollary 2, any selection of )(2 ⋅br  

is non 

decreasing with the natural order on the strategy sets. Hence the (finite) set of points at which )(2 ⋅br  
is not uniquely defined coincides with the one at which )(2 ⋅br  

is discontinuous. By the contradiction 

assumption, )(2 ⋅br is multi-valued at the point x
S
. We can thus find a sufficiently small ε > 0 such that 

choosing x
S
 – ε for the leader would lead to a unique best reply by the follower that is strictly smaller 

than y
S
. It means that )(2 ⋅br  

is single valued at x
S
 – ε, with )(2

SS
xbry >

 
as )(2 ⋅br  

is left-continuous. 
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The payoff of the leader is then such that ),())(,( 121

SSSS
yxfxbrxf >−− εε as ),(1 yxf is 

continuous in x and strictly decreasing in y. But this assertion contradicts the initial statement that

),( SS
yx is a Stackelberg equilibrium. It follows that )(),( 2 ⋅∈ brGRyx SS and that

))(,(maxarg 2101 xbrxfS x≥= . 

As for point i) above, we can assume the uniqueness of the Stackelberg equilibrium and any point in 

S1 leads to the same payoff for the leader. This payoff is at least as high as the one the leader would 

obtain at his most preferred equilibrium of the simultaneous game. ■ 

  

Lemma B.1: 
Under the set of assumptions A1, if all Cournot-Nash equilibria are interior (i.e. with no emission 

level being 0), then the extreme Cournot-Nash equilibrium ),( yx is such that
1),( Syx ∉ . 

Proof: 

Under A1, a country’s payoff function has strictly decreasing differences in (x, y). Thus xf ∂⋅∂ /)(
 
is 

strictly decreasing in y and each country’s best reply strategies are strictly decreasing. The proof relies 

on the interiority of the equilibrium. By contradiction, suppose that the argument maximum is 

constant, i.e. yy >′ , )(*)(* yxyx =′ . For any y, first order conditions are such that: 

0
),(

=
∂

∂

x

yxf
  and 0

),(
=

∂

′∂

x

yxf
.  

Both equalities contradict the statement that xf ∂⋅∂ /)(
 
is strictly decreasing in y. Hence any selection 

of )(⋅br is strictly decreasing. 

Now we show that Cournot-Nash and Stackelberg equilibria never coincide, i.e. that
1),( Syx ∉ . 

Suppose ))(,( 2

SS
xbrx any Stackelberg equilibrium with Country 1 as leader. As ),( yx is interior, it 

is such that 0/),( =∂∂ xyxf . If ))(,( 2

SS
xbrx

 
is interior as well, then we can check the following first 

order condition: 

0)(
))(,())(,(

2
2121 =′⋅

∂

∂
+

∂

∂ S

SSSS

xrb
y

xbrxf

x

xbrxf
. 

As 0)(2 <⋅′rb and 0/1 <∂∂ yf , we conclude that 0
))(,( 21 <

∂

∂

x

xbrxf
SS

. Hence S
xx ≠ and )()( 22

Sxbrxbr ≠ . 

If the Stackelberg equilibrium is not interior, the same conclusion follows as ),( yx is necessarily 

interior. ■ 

 

Proof of Proposition 4: 
Given Propositions 1 and 3, C

N
, S1 and S2 are non empty. In more by Proposition 3 Country i is better 

off at any point of Si than at any point of C
N
. Finally, by Corollary 1, N

Cyx ∈),( where y
 
is Country 

2’s lowest equilibrium emission level and also its worst equilibrium. By Proposition 0, we have still to 

show that a country prefers its worst Cournot-Nash equilibrium to its payoff as a follower. Suppose

),( SS yx is the Stackelberg equilibrium with Country 1 as leader and ),( yx
 
is its most preferred 

equilibrium when both choose their strategy simultaneously. By Lemma B.1, ),(),( yxyx
SS ≠

 
even if 

both lie on )(2 ⋅br . By Proposition 3, we know that Country 1 prefers its payoff as a leader to its most 

preferred Cournot-Nash payoff, i.e.:   

),(),( 11 yxfyxf
SS > . 

By definition of Nash equilibrium, we can also write the following inequality: 

),(),( 11 yxfyxf
SSS ≥ .       (1) 
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It means that if Country 2 chooses it Cournot-Nash equilibrium strategy, x
S
 is not a best reply for 

Country 1. As the game is of negative externality ( 0/),(1 <∂∂ yyxf ), the inequality (1) lets us 

conclude that yyS < , or equivalently )()( 22 xbrxbr
S < . As )(2 ⋅br is strictly decreasing, it follows that

xx
S > .  

For the follower, given the order defined on countries’ individual emission levels at the Cournot-

Nash and Stackelberg equilibria, we find the following inequalities on its equilibrium payoffs: 

),(),(),( 222 yxfyxfyxf
SSS << .     (2) 

The first inequality in (2) is due to the fact that xx
S >  and that Country 2’s payoff is decreasing in 

the strategy of the other country (the game is of negative externality and 0/),(2 <∂∂ xyxf ). The 

second inequality is linked to the definition of Nash equilibrium: the payoff of Country 2 is maximum 

when the latter adopts its best response to x . We can conclude that the follower always prefers its 

worst Cournot-Nash payoff of the simultaneous game rather than its payoff at the Stackelberg 

equilibrium. The proof when Country 2 is leader is the same and relies on the equilibrium ),( yx . By 

Proposition 0, the conditions studied here are the one under which the set of equilibria of the extended 

global emission game is { }NCeeE ),,(=  . ■ 

 

Lemma B.2: 
Under the set of assumptions A2, if all Cournot-Nash equilibria are interior, then they never coincide 

with the Stackelberg equilibria; in particular
1),( Syx ∉ .  

 Proof: 

The proof of Lemma B.2 is identical to the one of Lemma B.1 except that, under A2, a country’s 

payoff function has strictly increasing differences in (x, y). Thus xf ∂⋅∂ /)( is strictly increasing in y 

and each country’s best reply strategies are strictly increasing. As previously, the proof relies on the 

interiority of the equilibrium. By contradiction, suppose that the argument maximum is constant, i.e.

yy >′ , )(*)(* yxyx =′ . For any y, first order conditions are such that: 

0
),(

=
∂

∂

x

yxf
  and 0

),(
=

∂

′∂

x

yxf
. 

Both equalities contradict the statement that xf ∂⋅∂ /)( is strictly increasing in y. Hence any selection 

of )(⋅br is strictly increasing. The proof that Cournot-Nash and Stackelberg equilibria never coincide 

is the same as for Lemma B.1. ■ 

 

Proof of Proposition 5: 
Under A2, the global emission game is supermodular with the natural order on the strategy sets; 

countries’ best responses are non decreasing. By Theorem A.4 (Milgrom and Roberts, 1990), the 

Pareto dominant equilibrium is the one with the lowest emission levels for both countries:
N

Cyx ∈),( . Moreover we know that a country i is better off at any point of Si (i.e. as a leader) than 

at any point of C
N
 (Proposition 3). By Proposition 0, we have to establish that a country always 

prefers its payoff as a follower to any other payoff resulting from the simultaneous game. To do so, 

consider ),( SS
yx as any Stackelberg equilibrium with Country 1 as leader. By Lemma B.2, we know 

that
NSS

Cyx ∉),( . Moreover, by Proposition 3, Country 1 always prefers its payoff as a leader to any 

other payoff of the simultaneous game, and in particular to its most preferred Cournot-Nash payoff 

i.e.: 

),(),( 11 yxfyxf
SS > .      

Another inequality follows from the definition of Nash equilibrium: if Country 2 chooses its 

equilibrium strategy of the simultaneous game, x
S
 is not a best response for Country 1. Then: 

),(),( 11 yxfyxf
SSS ≥ .        (3) 
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As the game is of negative externality ( 0/),(1 <∂∂ yyxf ), inequality (3) lets us conclude that yy
S < , or 

equivalently )()( 22 xbrxbr S < . As )(2 ⋅br is strictly increasing by Lemma B.2, it follows that xx
S < . 

For the follower, given the order defined on countries’ individual emission levels at the Cournot-

Nash and Stackelberg equilibria, we find the following inequalities on its equilibrium payoffs: 

),(),(),( 222

SSS
yxfyxfyxf << .     (4) 

The first inequality of (4) is due to the fact that xx
S <  and that Country 2’s payoff is decreasing in 

the strategy of the other country (the game is of negative externality and 0/),(2 <∂∂ xyxf ).The second 

inequality is linked to the definition of Nash equilibrium: Country 2’s payoff is maximum when it 

adopts its best response to x
S
. We conclude that the leader and the follower always prefer their 

respective payoff at the Stackelberg equilibrium than their most preferred Cournot-Nash payoff of the 

simultaneous game. By Proposition 0, the conditions studied here are the one under which the set of 

equilibria of the extended global emission game is { } { }
21 ),,(),,( SpsSspE ∪= . ■ 

 

Proof of Proposition 6: 
Proposition 0 leads to a particular sequence of moves in the extended global emission game if: i) a 

country i is better off at any point of Si than at any point of C
N
; ii) Country 1 is better off at its least 

preferred equilibrium in C
N
 than at any point in S2, whereas Country 2 is better off at any point in S2 

than at any point in C
N
. Whatever the set of assumptions A1 or A2, point i) is true by Lemma B.1. 

Preferences in point ii) can only be established if C
N
 is non empty: to use Lemma B.1 and B.2, we 

have to assume the existence of an interior equilibrium in the simultaneous move game.  

Under A1, Country 1’s payoff function presents strictly decreasing differences and by Lemma B.1, 

any selection of )(1 ⋅br is thus strictly decreasing. Similarly, under A2, Country 2’s payoff function 

presents strictly increasing differences and by Lemma B.2, any selection of )(2 ⋅br is thus strictly 

increasing. Given the monotony of best responses for both countries and their direction, if an 

equilibrium exists, it is necessarily unique. Call it *)*,( yx . Then the proof of Proposition 6 is 

identical to the ones of Propositions 4 and 5. Note ),( 11 yx the Stackelberg equilibrium with Country 

1 as leader. By Proposition 3 and the definition of Nash equilibrium, we can write the two following 

inequalities: 

*)*,(),( 1

11

1 yxfyxf >  and  *),(),( 1

1

11

1 yxfyxf ≥ . 

The game being of negative externality, we deduce that **)()( 2

1

2

1
yxbrxbry =<= . As )(2 ⋅br

is strictly increasing, it follows that *1
xx < . Finally for the follower, the inequalities are such that 

(the reasoning is the same as for relation (4)): 

),(*),(*)*,( 11

2

1

22 yxfyxfyxf << . 

It means that Country 2 prefers its payoff as a follower at the Stackelberg equilibrium to its payoff at 

the Cournot-Nash equilibrium.  

To show that Country 1 prefers its Cournot-Nash payoff to its Stackelberg payoff as follower, we 

proceed as for the proof of Proposition 4. Suppose ),( 22 yx the Stackelberg equilibrium with Country 

2 as leader, such that the two following inequalities are true: 

*)*,(),( 2

22

2 yxfyxf >  and  *),(),( 2

2

22

2 yxfyxf ≥ . 

As countries’ payoffs are decreasing in the strategy of the other (game of negative externality),

**)()( 1

2

1

2 yxbrxbry =<= . As )(1 ⋅br is strictly decreasing, we deduce that *2
xx > . It follows for 

the follower that (the reasoning is the same as for relation (2)): 

*)*,()*,(),( 1

2

1

22

1 yxfyxfyxf << . 

Meaning that Country 1 always prefers its payoff at the Cournot-Nash equilibrium to the one it 

obtains at the Stackelberg equilibrium as follower. 

To conclude, under the assumptions of Proposition 6, the unique SPE of the extended game is such 

that Country 1 (with strategic substitutability) plays as a leader, whereas Country 2 (with strategic 

complementarities) plays as a follower. ■ 
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