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Chapter 1

Introduction

Machines take me by surprise with great frequency.

Alan Turing

1.1 Aims of the work

This thesis aims to connect Stochastic Optimization (SO) and Parallel Computing
(PC) in order to solve large scale optimization problems under uncertainty. The
proposed approach links mathematical perspective, by developing decomposition
algorithms, and a computer science environment, by using parallel computing
resources and implementations. Depending on the chosen objective, this connection
allows problems to be solved faster, larger problems to be solved or/and better
results to be obtained. A new paradigm for developing decomposition algorithms is
therefore proposed.

Therefore, the proposal in this memoir not only executes serial algorithm steps
in parallel, but more interestingly also adapts and extends serial algorithms to
be computationally more efficient in a parallel computing environment. This is
achieved by allowing deeper decomposition of the original problem, by sharing
the feasibility area, by creating synchronization and communication phases among
parallel executions or by defining divergent initial conditions.

Consequently, parallel computing approaches are presented for exact algorithms
as well as for matheuristic ones (the interoperation of metaheuristic methodologies
and Mathematical Programming). The scalability and performance of each
implementation are analysed using four problem testbeds of different scales: small,
medium, large and very large, respectively. Around 150 problems have been tested,
where the largest problem has 53.9 million variables (15.4 million of which are binary
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Chapter 1 Introduction

ones) and 57.8 million constraints.

Finally, this research aims to contribute to the discipline related to parallel
computing-conceived optimization algorithms where important domains of Math-
ematical Optimization could interact with a parallel computing environment, i.e.,
multiple aspects of the problem are exploited in parallel such as cuts, decomposi-
tion, heuristic search and so on.

1.2 Overview and contributions

The basic concepts of Parallel Computing and Stochastic Optimization are presented
in this chapter. This memoir introduces the path concept that links mathematical
algorithms with parallel computing executions, allowing more complex parallel
environments to be defined in terms of designing dynamic algorithms, building
hybrid algorithms or searching for multiple simultaneous objectives. Additionally,
a state-of-the-art description of parallel computing algorithms being designed and
implemented to solve stochastic mixed 0-1 multistage problems is included.

Chapter 2 considers the main ideas of Parallel Computing applied to Stochastic
Optimization from two perspectives: solving several small-scale subproblems of large-
scale models in parallel, leading to the so-named inner parallelization being defined,
and solving a single mixed 0-1 problem by parallel branching, creating a so-named
outer parallelization environment. These paradigms are applied in the next chapters
to decomposition algorithms due to their flexibility in terms of possible model and
task division, obtaining a remarkable speed-up and efficiency, see Aldasoro et al.
[2012].

Chapter 3 presents three exact Parallel Branch-and-Fix Coordination (P-BFC)
algorithms: Inner P-BFC (that reproduces the serial steps and performs tasks in
parallel, when possible), Outer P-BFC (based on simultaneous execution of paths)
and a combined Outer-Inner P-BFC as an innovative approach to solve medium-scale
mixed 0-1 optimization problems by parallel branching and simultaneous subproblem
solving. The proposed approaches obtain the optimal solution significantly faster
than the serial BFC and solve problems that the state-of-the-art optimization engine
cannot prove optimality, see Aldasoro et al. [2013a].

Chapter 4 introduces a version of the matheuristic decomposition algorithm
Stochastic Dynamic Programming, that allows large and very large-scale stochastic
problems to be solved. This research also contributes to parallel computing to obtain
tight bounds in very large-scale problems where the state-of-the-art optimization
engine cannot prove optimality, and for the largest instances, where that engine
cannot obtain any feasible solution. To do so, a Parallel Stochastic Dynamic

2



1.3 Basic concepts of Parallel Computing

Programming (P-SDP) approach is proposed in two paradigms: Inner P-SDP and
Outer P-SDP. A production planning problem has been used as a testbed for the
broad computational experience that is reported in the chapter, showing that the
ad-hoc P-SDP implementations enable not only a faster solution to be obtained but
also a tighter bound than the serial SDP, see Aldasoro et al. [2014].

Chapter 5 presents some perspectives on solving large-scale problems. The
chapter shows that the deeper algorithmic understanding resulting from a parallel
implementation leads to an improvement of the serial algorithm. Thus, the so-
named Dynamically guided and stage ordered Branch-and-Fix-Coordination (D-
BFC) improves the use of the stochastic tree structure. Additionally, several
matheuristic versions of the D-BFC algorithm are presented, based on the relaxation
of some steps of the exact algorithm, in order to solve very large-scale problems. See
Aldasoro et al. [2013b] for a detailed description of the model ordering improvements

Finally, Chapter 6 summarizes the conclusions drawn from this research
and outlines future research lines regarding the parallel computing approach of
decomposition algorithms, such as massively decomposition algorithms solved by
Graphic Processing Units (GPUs), data decomposition, simultaneous risk averse
analysis and, in general, new perspectives on designing algorithms.

1.3 Basic concepts of Parallel Computing

Let us define several basic concepts of parallel computing:

• A computer cluster consists of multiple computers with software that allows
the group to be viewed as a single system.

• A computing node is a single computer system (motherboard, one or more
processors, memory, network interface) within a cluster.

• A Central Processing Unit (CPU), commonly referred to as the
processor, is the piece of hardware within a computing node that carries
out the instructions of a computer program, such as the basic arithmetical,
logical, and input/output operations. A computer (or computing node) can
have more than one processor (CPU).

• A core is a physical processing unit within a CPU chip that reads and executes
program instructions. Currently multi-core processors (CPUs) are widely used.
Core-to-core communication is significantly faster than processor-to-processor
communication.

3



Chapter 1 Introduction

• A thread is a single line of commands that is active in a core. Generally,
a processor can only work on one thread per core. However, state-of-the art
processors allow multithreading inside a core, i.e., core level parallelization.

Therefore, a thread is the most elemental processing unit and is used throughout
the work to denote an independent line of commands execution.

In parallel computing the modeler can assign different tasks to the available
threads, define a hierarchy, create thread groups or subgroups and assign
communication environments. Let us present the naming convention used in this
research regarding the programmer defined thread management:

The thread-algorithm link is considered as follows:

• A path is an independent execution of an algorithm under a given set of
initial conditions. In a multiple path execution environment, the behaviour of
a path may change depending on the results obtained by other paths. A serial
algorithm execution can be considered as one-path.

The thread hierarchy is as follows:

• A main thread executes a copy of the implemented program and it is in
charge of managing a path. The set of main threads is called the main thread
group, with its cardinality being equal to the number of paths. The main
thread performs the non-parallelized steps of an algorithm execution.

• A task thread executes a copy of the implemented problem and it is assigned
to perform the parallelizable tasks of a path. Note that main threads are also
task threads. A task thread group is composed of a main thread and its
associated additional task threads.

• Any thread that works on a subproblem solving process is an auxiliary thread.
In addition to main thread and tasks threads (which are also auxiliary threads),
the state-of-the-art optimization engine of choice may use additional auxiliary
threads for its internal parallelization. Therefore, an auxiliary thread group
is composed of a main thread, a set of task threads and the auxiliary threads
associated to each task thread. The solver-driven auxiliary threads are not
linked to a copy of the implemented program and, therefore, are not directly
controlled by the user.

• The thread assignation of a parallel environment is denoted as (a × b × h),
where a is the number of main threads (one for each path), b is the number

4



1.4 A brief state-of-the-art on Parallel Computing

of task threads associated to each main thread (including itself) and h is the
number of auxiliary threads associated to each task thread (including itself).

Additionally, task threads can be divided into subgroups:

• A task thread subgroup is a subgroup of task threads within a task group.

• A coordinator task thread is a task thread that manages a task thread
subgroup and leads the communication.

• A subordinated task thread is a task thread inside a task thread subgroup
that performs the steps required by the corresponding coordinator task thread.

Four communication environments can be considered:

• The global communication environment allows the information exchange
among all threads that execute a copy of the program, i.e., main threads and
task threads.

• The primary communication environment allows the information exchange
within the main group.

• The secondary communication environment allows the information ex-
change within a task group, i.e., among a main thread and its associated
task threads.

• The tertiary communication environment allows the information exchange
within a task thread subgroup.

The execution coordination can be performed in two ways:

• A synchronized execution implies that all task thread groups are always at
the same algorithmic point.

• An asynchronized execution implies that all task thread groups are not
necessarily always at the same algorithmic point, i.e., the executions of different
groups may diverge.

1.4 A brief state-of-the-art on Parallel Computing

Parallel Computing is a computer science area that studies the necessary hardware
and software aspects to perform simultaneous execution of tasks. Currently,
this discipline is the prominent paradigm in high performance computing and
also in computer architecture, due to the industry’s shift to multicore processors
at hardware level. That type of platform embraces architecture, algorithms

5



Chapter 1 Introduction

and methods that brings an otherwise unreachable computing power under the
programmer’s control.

At the hardware level, the parallel computing era started in the late 1950s in
the form of shared memory multiprocessor supercomputers. The development of
this type of computers continued until the early 1980s when a new paradigm of
massively parallel multiprocessors (MPPs) arrived. MPPs wee seen to perform
significantly better and became dominant in high performance computing. In the
late 1980s computing clustering technology emerged when a large numbers of off-
the-shelf computers connected by an off-the-shelf network were linked. Nowadays,
parallel computing is mainly based on clusters and multicore processors. Every six
months, the Top 500 website gathers the information on the best supercomputing
sites globally http://www.top500.org/. For more in-depth information on parallel
computing hardware, see Culler et al. [1997]; Hennessy and Patterson [2003], among
others.

The cooperation among processors differ depending on the way processors
exchange information. The basic parallel architectures correspond to shared memory
and distributed memory (managed by message-passing). As described in Linderoth
[1998] “one processor of a shared memory machine can communicate with another by
writing the information into a global shared memory location and having the second
processor read directly from that location” using a bus. So, communication is carried
out by shared variables. This makes inter-processor communication very easy and
fast, but it has the drawback of simultaneous access to a unique memory location.
On the other hand, each processor on the distributed memory paradigm has its own
local memory connected by a network with the others, so, the communication is
based on message-passing.

shared memory distributed memory

P P P P

bus

M

P P P P

M M M M

general network

Figure 1.1: Parallel architectures (P: processor, M: memory)

Regarding mathematical optimization, we often find large-scale problems or we
need to solve many of them, which cannot be performed efficiently by a single
processor, even if computer science technology is constantly improving. Parallel
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1.5 Computing resources

Computing is a powerful tool to manage this type of problems, and operate on the
principle that large problems can often be divided into smaller ones. The idea is
simple: to use p processors in cooperation in order to (ideally) be able to solve a
problem p times faster or to solve a p times larger problem using the same amount
of computing time.

1.5 Computing resources

The computing experiments in this research were conducted at the ARINA
computational cluster at SGI/IZO-SGIker from Universidad del País Vasco/Euskal
Herriko Unibertsitatea, UPV/EHU. During the research for this thesis ARINA
provided 147 nodes connected by an QDR infiniband network with high bandwidth
(maximum rate of successful messages delivered over a communication channel)
and low latency (time interval between signal and response) and a 22 Tb high
performance Lustre based file system for data storage. The 147 nodes and 1400
cores were divided as follows: 147 Intel Xeon processor nodes (1112 cores in overall),
30 Intel Itanium processor nodes (248 cores in overall) and 5 AMD Opteron processor
nodes (40 cores in overall).

Table 1.1 summarizes the characteristics of the ARINA nodes used for the
computational experience considered here. The headings are as follows: T ype,
processor brand in the computing node; Proc., number of processors per computing
node; Core, number of cores per computing node; Frequency, CPU clock rate;
RAM , Random-access memory; Disc, hard disk data storage capacity; max.use,
maximum resources of that type used in a single execution, where N indicates number
of nodes and C number of cores; and finally Ch. indicates the chapters of the thesis
in which each resources are used.

Table 1.1: Computational experience ARINA nodes

Type Proc. Cores Frequency RAM Disc max. use Ch.

Intel Xeon 2 8 2.3 GHz 48 Gb 250 Gb 16N, 128C 2-3-5
Intel Xeon 2 12 2.4 GHz 48 Gb 250 Gb 8N, 96C 4

The algorithms in Chapter 2, Chapter 3 and Chapter 5 are implemented in a
C++ experimental code, whereas they are implemented in a C experimental code
in Chapter 4. The state-of-the-art LP/MIP solver CPLEX (versions V12.2 and
V12.5) called from the open source library COIN-OR (versions V1.3.1 and V1.6.0)
is used as optimization engine. The IntelMPI library is used as the Message
Passing Interface (MPI) standard for the message-passing communication in parallel
environment.

7
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1.6 A brief state-of-the-art on Stochastic Optimization

Stochastic Optimization (SO) is actually one of the most reliable tools for decision-
making. Since the 1950s, it has been well known that traditional deterministic
optimization is not appropriate for capturing the uncertain behaviour present in
most real world applications. Beale [1955] and Dantzig [1955] began to study
optimization problems under uncertainty, followed by Charnes and Cooper [1959]
and others, see also Wets [1974, 1975]. Moreover, it was not until the 1980s when
Stochastic Optimization was broadly applied in real-world applications.

Uncertainty is the key ingredient in many decision problems. There are several
ways in which uncertainty can be formalized and different approaches to optimization
under uncertainty have been developed over the past thirty years. The field of SO
appears as a response to the need of uncertainty to be incorporated in mathematical
optimization models. Basically, it deals with situations in which some parameters are
random variables. It allows the management, partially at least, of the risk inherent
to the random variables of the problem mainly in a time horizon environment.

New problem formulations appear almost every year and this variety is one of the
strengths of the field. Very frequently, mainly in problems with a given time horizon
to exploit, some coefficients in the objective function, the right hand side (rhs)
vector and the constraint matrix are not known with certainty when the decisions
have to be made, but some information is available. This circumstance allows to
use Stochastic Integer Optimization (SIO) to solve multistage mixed 0-1 problems
under uncertainty. The problem is formulated by the so-named Deterministic
Equivalent Model (DEM), a term coined by Wets [1974], that was first solved
by using Benders Decomposition (BD), see Benders [1962]; van Slike and Wets
[1969]; Birge and Louveaux [2011]; Laporte and Louveaux [2002], among others. A
generalization of BD is given in Carøe and Tind [1998] to deal with two-stage
stochastic programs having 0-1 mixed-integer recourse variables and either pure
continuous or pure first-stage 0-1 variables. A decomposition algorithm based
on a branch-and-cut approach to solve two-stage stochastic programs having first-
stage pure 0-1 variables and 0-1 mixed-integer recourse variables is proposed in
Sen and Sherali [2006], where a modified BD method is developed. Branch-and-
bound algorithms for problem solving having mixed-integer variables in both stages
are presented in Carøe and Schultz [1999]; Hemmecke and Schultz [2001].

A general algorithm to solve two-stage stochastic mixed 0-1 problems is presented
in Escudero et al. [2007, 2009b, 2010a]. In the general formulation of a multistage
stochastic integer optimization problem, decisions in each stage have to be made
stage-wise. At each stage, there are variables which correspond to decisions
that have to be made without anticipation of some of future problem data, i.e.,
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1.6 A brief state-of-the-art on Stochastic Optimization

they take the same value under each scenario in a given group (then, the so-
named non-anticipativity constraints (NAC) must be satisfied, stated in Wets [1975]
and restated in Rockafellar and Wets [1991], see also Birge and Louveaux [2011];
Alonso-Ayuso et al. [2009]; Pflug and Pichler [2014], among many others). Some
approaches have also been introduced to address multistage problems with 0-1 and
continuous variables anywhere in the model, and where uncertainty appears only in
the objective function coefficients and the rhs, see Alonso-Ayuso et al. [2003a, 2005].

Moreover, there are few attempts to solve up to optimality large-scale general
multistage stochastic mixed 0-1 models, where both types of variables appear at
any stage of the time horizon, and where uncertainty can appear anywhere in
the problem, i.e., objective function, constraints and rhs coefficients at any stage.
This type of problems is the most frequent one, but its complexity is the reason
for there not being many attempts at developing solving algorithms. For this
purpose, a decomposition-based multistage stochastic mixed 0-1 methodology so-
named Branch-and-Fix Coordination (for short, BFC), has been introduced in a
series of works in Escudero [2009]; Escudero et al. [2009a, 2010b, 2012a,b].

Good results have been obtained using the serial version of the Stochastic
Dynamic Programming (SDP) based matheuristic introduced in Cristobal et al.
[2009]; Escudero et al. [2013b]. However, the need to analyse the solution provided
for a given problem under different alternatives on decisional parameters requires
faster schemes than the serial one.

Multistage Stochastic Optimization problems in general require an intensive
computing force. Parallel Computing offers an alternative to solve very large scale
problems. It is the subject of this work. Actually, the process of solving complex
computational problems needs hardware platforms with PC capabilities enabled.

Over the last two decades, papers have appeared in the open literature
on Stochastic Optimization that take advantage of Parallel Computing for
two-stage and multistage stochastic continuous and mixed 0-1 optimization,
see Ruszczyinski [1993]; Birge et al. [1996]; Beraldi et al. [2000]; Fragniere et al.
[2000]; Linderoth et al. [2006]; Lucka et al. [2008] and Al-Khamis and M’Hallah
[2011], among others. Some works propose new decomposition methods that
are suitable for parallelization, see Mulvey and Ruszczynski [1995]; Vladimirou
[1998]; Blomval and Lindberg [2002]; Blomval [2003]. Others revisit classical
ones by considering Benders Decomposition for two-stage environment, see
Nielsen and Zenios [1997], and the nested approach for the multistage one, see
Birge et al. [1996], among others. See an algorithmic review, classification
and comparison in Vladimirou [1998] . See also several applications in Birge
[1997], particular applications in planning under uncertainty in the seminal
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work Dantzig and Glynn [1990], hydroelectric generation unit commitment in
Escudero et al. [1999] and finance in Gondzio and Kouwenberg [2001]; Hong et al.
[2010]; among others. Recently, Aldasoro et al. [2013a] and Pagès-Bernaus et al.
[2014] present parallel computing versions of the BFC algorithm.

In Dias et al. [2013], several parallelization strategies, the so-named static and
dynamic task scheduling, have are adopted to speed up the stochastic dynamic
programming solution to solve a large multiperiod hydrothermal planning problem
under uncertainty on a long-time horizon. See Li et al. [2014]; Zhang et al. [2013]
for parallel deterministic dynamic programming applied to reservoir operation
optimization. A generic parallel approach is introduced in Stivala et al. [2010]
considering dynamic programs for problems such as knapsack and shortest paths.

1.7 Multistage stochastic mixed 0-1 optimization

A general way to model a mathematical programming problem is as follows, see
Kall and Wallace [1994]:







min f(x)
s.t. gi(x) ≤ 0, i = 1, . . . , m,

x ∈ X ⊆ R
n,

(1.1)

and the corresponding stochastic program notation is:







min f(x, ξ)
s.t. gi(x, ξ) ≤ 0, i = 1, . . . , m,

x ∈ X ⊆ R
n,

(1.2)

where ξ is a random vector varying over a set Ξ ⊆ R
k. More precisely, we

assume throughout that a family F of events, i.e. subsets of Ξ, and the probability
distribution P on F are given. Hence for every subset A ⊆ Ξ that is an event, i.e.
A ∈ F , the probability P (A) is known. Furthermore, we assume that the functions
gi(x, ·) : Ξ → R ∀x, i are random variables themselves, and that the probability
distribution P is independent of x. We will use a scenario analysis approach to
model uncertainty. Discrete random variables, ξ, will be considered with a finite
number of values, ξω, ω ∈ Ω. To simplify notation, we will replace ξω with ω and Ξ
with Ω.

Definition 1.1. A stage of a given time horizon is a set of consecutive periods
where the realization of the uncertain parameters takes place.

Definition 1.2. A scenario is one realization of the uncertain parameters along
the stages of the given time horizon.
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t = 1 t = 2 t = 3 t = 4

1

2

3

4

5

6

7

8

9

10 ω = 1

11 ω = 2

12 ω = 3

13 ω = 4

14 ω = 5

15 ω = 6

16 ω = 7

17 ω = 8

T = {1, 2, 3, 4}

Ω = Ω1 = {1, 2, . . . , 8}

Ω2 = {1, 2, 3}

G = {1, . . . , 17}

G2 = {2, 3, 4}

A5 = {1, 2, 5}

Figure 1.2: An example of scenario tree

Definition 1.3. A scenario group for a given stage is the set of scenarios with
the same realization of the uncertain parameters up to the stage.

The notation related to the scenario tree to be used through this work, illustrated
in Figure 1.2, is as follows:

T , set of stages along the time horizon, such that T = |T | is the last stage.

T t, set of ancestor stages to stage t (including itself) whose variables have nonzero
elements in the constraints of stage t ∈ T

Ω, set of scenarios, where ω ∈ Ω represents a specific scenario.

G, set of scenario groups, so that there is a tree whose set of nodes is given by G.

Gt, set of scenario groups in stage t, for t ∈ T (Gt ⊆ G).

Ωg, set of scenarios in scenario group g, for g ∈ G (Ωg ⊆ Ω).

Ag, set consisting of scenario group g and its ancestors, for g ∈ G. Note: Ag is only
included by node g for g ∈ G1.
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wω, likelihood that the modeler associates with scenario ω, P (ξ = ξω) = wω, such
that

∑

ω∈Ω wω = 1.

wg, weight factor representing the likelihood that is associated with scenario group
g, for g ∈ G. Note: wg =

∑

ω∈Ωg wω

Let xt and yt denote the nx(t)- and ny(t)-vectors of the 0-1 and continuous
variables, respectively, in the following deterministic model,

min
∑

t∈T

(atxt + btyt)

s.t.
∑

t′∈T t

(At
t′xt′ + Bt

t′yt′) = ht ∀t ∈ T

xt ∈ {0, 1}nx(t), 0 ≤ yt ≤ ŷt ∀t ∈ T ,

(1.3)

where at and bt are the row vectors of the objective function coefficients, respectively,
ht is the m-column rhs, At

t′ and Bt
t′ are the m × nx(t) and m × ny(t) constraint

matrices, respectively, for stages in T t, and ŷt is the upper bound vector of variables
in vector yt, for t ∈ T . Note: T 1 is only included by stage t = 1. The model must
be extended in order to deal properly with the uncertainty in the values of some
parameters. Thus, an approach to model the uncertainty in the problem data is
needed.

Model (1.3) can be extended to consider uncertainty in some of the main
parameters. Many of today’s approaches to stochastic optimization are scenario-
based approaches to deal with the uncertainty. The information structure is
visualized as a tree, where each root-to-leaf way represents one specific scenario
and corresponds to one realization of the whole set of the uncertain parameters, see
Figure 1.2. Each node in the tree can be associated with a scenario group, such
that two scenarios belong to the same group in a given period, provided that they
have the same realization of the uncertain parameters up to the period. Given
the non-anticipativity principle, both scenarios should have the same value for the
related variables with the time index up to the given period. This research does
not distinguish between a scenario group and the corresponding node in the tree
(with the same number). For basic concepts and detailed introduction to stochastic
optimization, see the books by Birge and Louveaux [2011]; Alonso-Ayuso et al.
[2009]; Pflug and Pichler [2014], among others.

Different types of models can be presented depending upon the type of recourse to
consider, namely, simple, partial and full recourse. Let us consider the minimization
of the objective function expected value with multiperiod full recourse, i,e., the risk
neutral strategy. In this case, the compact representation of the stochastic version

12



1.7 Multistage stochastic mixed 0-1 optimization

of model (1.3) has the following Deterministic Equivalent Model (DEM) by groups,

zDEM = min
∑

g∈G

wg(agxg + bgyg)

s.t.
∑

q∈Ag

(Ag
qxq + Bg

q yq) = hg ∀g ∈ G

xg ∈ {0, 1}nx(g), 0 ≤ yg ≤ ŷg ∀g ∈ G,

(1.4)

where ag and cg are the row vectors of the objective function coefficients, Ag
q and Bg

q

are the constrains matrices for vectors xq and yq in the system related to scenario
group g, respectively, bg is the rhs, xg and yg are the vectors of the variables of
scenario group g, and ŷg is the upper bound vector of variables in vector yg, for
g ∈ G. All vectors and matrices have the appropriate dimensions. Hereafter, the
components of xq (whose stage is t(q)) will be referred as linking variables, since
they will directly affect the decision in stage t(g).

On the other hand, splitting variable representation by stages can be expressed
as follows, see Escudero et al. [2010b, 2012a],

zDEM = min
∑

ω∈Ω

∑

t∈T

wω
(
aω

t xω
t + bω

t yω
t

)

s.t.
∑

t′∈T t

(

At,ω
t′ xω

t′ + Bt,ω
t′ yω

t′

)

= hω
t ∀ω ∈ Ω, t ∈ T

xω
t − xω′

t = 0 ∀ω, ω′ ∈ Ωg : ω 6= ω′, g ∈ Gt, t ∈ T

yω
t − yω′

t = 0 ∀ω, ω′ ∈ Ωg : ω 6= ω′, g ∈ Gt, t ∈ T

xω
t ∈ {0, 1}nxω

t yω
t ∈ R

+nyω
t , ∀ω ∈ Ω, t ∈ T ,

(1.5)

where aω
t and bω

t are the objective function coefficients of the variables xω
t and yω

t

for stage t ∈ T under scenario ω ∈ Ω, respectively, and At,ω
t′ and Bt,ω

t′ ∀t′ ∈ T t are
the constraint matrices, for the xω

t′ and yω
t′ variables in the constraints related to

stage t ∈ T , respectively. Note that xω
t − xω′

t = 0 and yω
t − yω′

t = 0 are the NAC.
Finally, nxω

t and nyω
t denote the dimensions of the vectors of the x and y variables,

respectively, related to stage t under scenario ω.

Following the nonanticipativity principle, the corresponding equalities must be
satisfied for stage t,

aω
t = ag, bω

t = bg, hω
t = hg, ∀ω ∈ Ωg, g ∈ Gt, t ∈ T (1.6)

At,ω
t′ = Ag

q , Bt,ω
t′ = Bg

q , ∀q ∈ Gt′ , t′ ∈ T t, ω ∈ Ωg, g ∈ Gt (1.7)
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Chapter 2

Parallel computing in optimization

Diviser chacune des difficultés en autant de parcelles qu’il se pourrait,

et qu’il serait requis pour les mieux résoudre.

Divide each difficulty into as many parts as is feasible
and necessary to resolve it.

René Descartes, Le Discours de la Méthode

2.1 Introduction

This chapter presents the main ideas of Parallel Computing applied to Stochastic
Optimization in two directions, namely, parallel solving of multiple problems and a
parallel branching solving process of a single problem.

First, a general environment is presented for parallel computing when solving
several optimization problems by a message-passing paradigm code and its extension
to a combined distributed memory/shared memory parallelization. We present the
corresponding software/hardware environment, the scheme of the parallelization
strategy and the basics of the programming syntax used in its implementation.

We show the variation of computing time depending on the number of threads
used and the selected solver in the computational experience we are reporting.
This will lead to a comparison between the serial version and the different parallel
strategies to solve a set of mixed integer optimization problems and, ultimately, to
conclude that the parallel paradigm shows a significant improvement.

Second, the Parallel Computing based approach for improving the process to
solve a single mixed 0-1 stochastic problem is analysed. We present an extension of
the Branch & Bound (B&B) algorithm, the so-called Multipath Branch & Bound
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scheme in which the original binary variable tree is split among threads, i.e. parallel
node branching, and iterative communication, allowing an earlier branch pruning
by incumbent gathering. An illustrative example shows the reduction of branching
nodes for each thread, due to the parallel features. In addition to the simultaneous
branching, a stage perspective approach results in shorter computing time when
applying the Multipath Branch & Bound scheme to a smaller scale problem; these
features will be deeply exploited by the BFC algorithm proposed in Chapter 3 and
Chapter 5. The conclusions of this chapter lead to define the inner and outer
parallelization paradigms to be applied to decomposition algorithms presented in
Chapter 3 and Chapter 4.

The rest of the chapter is organized as follows: Section 2.2 presents the main
concepts of a message-passing parallelization environment. Section 2.3 describes the
parallel solving of multiple optimization and reports a computational experience.
Section 2.4 defines the inner parallelization paradigm based on the results of
the previous section. Section 2.5 introduces the Multipath Branch & Bound
algorithm intended to solve optimization problems by parallel branching. Section
2.6 defines the outer parallelization paradigm based on the Multipath Branch &
Bound performance conclusions. Section 2.7 summarizes the main conclusions.

2.2 Message-passing parallelization

The main idea behind message-passing parallelization is that every task thread
receives an exact copy of the executable and, as there are not shared variables,
the information exchange is performed by a message-passing environment. The
task distribution is achieved by a thread rank (thread identification number) based
branching, in other words, defining the rank of the thread that will perform a specific
statement or by branching data vectors by rank. This allows it to work on a Single
Program Multiple Data (SPMD) paradigm.

Let us start the description of the MPI environment by underlining the three
main phases that appear at machine level on a message-passing paradigm, see
Pacheco [1996]. These phases are not directly executed by the user and they are
automatically performed by the machine.

Phase a: The user issues a directive to the operating system which has the effect
of placing a copy of the same executable program on each task thread.

Phase b: Each task thread begins executing its copy of the executable.

Phase c: Different task threads can execute different statements by branching
within the program. Typically branching will be based on thread ranks.
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The implementation of the corresponding executable supports different experi-
mental codes. Figure 2.1 presents the general structure of an MPI implementation in
C++, see Pacheco [1996]. This layout can be divided into five groups by considering
the nature of the functions they use. Appendix A describes the layout groups of the
general MPI program.

...

#include "mpi.h"

...

main(int argc, char **argv) {

...

// Group 1: Declaring MPI variables.

...

// Group 2: Beginning of the MPI environment

(No MPI functions called before this).

...

// Group 3: Functions controlling the number of processes.

...

// Group 4: Communication functions.

...

// Group 5: Finishing the MPI environment

(No MPI functions called after this).

...

...

}

...

Figure 2.1: General structure of a MPI implementation

The full C++ code that we have developed for the parallel solving of several mixed
integer optimization problems is described in Aldasoro et al. [2012]. In addition, a
summarized and schematic version of the same code has been attached as Appendix
A to this thesis. Note that the short version of the code is not an executable file but
a useful tool for presenting its general structure.
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2.3 Parallel computing to solve multiple optimization

problems

The serial solving of multiple optimization problems consists of reading the data files,
creating the optimization models, solving them and reporting the corresponding
results, see Figure 2.2 for solving 44 problems.

0.0

READ DATA
{F.01, F.02, F.03, F.04, . . . , F.44}

CREATE MODELS
{F.01, F.02, F.03, F.04, . . . , F.44}

SOLVE MODELS
{F.01, F.02, F.03, F.04, . . . , F.44}

REPORT RESULTS
{F.01, F.02, F.03, F.04, . . . , F.44}

Figure 2.2: Serial execution. Basic steps.

We can extend this descriptive diagram to a two thread parallel version as shown
in Figure 2.3 for solving 44 problems. In this case, the first three tasks are performed
by both threads sharing the total amount of problems; it significantly reduces the
total amount of time. Once the solving process is finished in both threads, the main
thread gathers the numerical results by message-passing functions and reports them.

The modeler can define the branching cited on the third block according to
the desired parallel programming strategy. The following procedure illustrates the
parallel computing key idea behind the example code given in Appendix A, see a
parallel diagram illustrated in Figure 2.4. Observe that there is only a single main
thread in this section (remember the basic concepts of Parallel Computing in Section
1.3).

Step 0: Declaring optimization and MPI variables. [All task threads]

Step 1: Definition of the global environment. [All task threads]

• Beginning the MPI environment using functions presented in Section A.2
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0.0 1.0

READ DATA
{F.01, F.02, F.03, F.04, . . . , F.22}

READ DATA
{F.23, F.24, F.25, F.26, . . . , F.44}

CREATE MODELS
{F.01, F.02, F.03, F.04, . . . , F.22}

CREATE MODELS
{F.23, F.24, F.25, F.26, . . . , F.44}

SOLVE MODELS
{F.01, F.02, F.03, F.04, . . . , F.22}

SOLVE MODELS
{F.23, F.24, F.25, F.26, . . . , F.44}

REPORT RESULTS
{F.01, F.02, F.03, F.04, . . . , F.44}

send results

Figure 2.3: MPI based parallel execution. Basic steps.

Defining the total number of task threads, the thread rank of each of them
and creation of a new communicator by using functions presented in Section
A.3. By default, thread ranked 0 is defined as main thread.

Step 2: Presolve assigned models. [All task and auxiliary threads]

Every task thread reads the corresponding information and creates the
associated optimization models.

• If selected optimizer allows multiple auxiliary threads: Each task thread
starts a shared memory parallel computing environment with a chosen
number of auxiliary threads. An illustrative diagram is depicted in Figure
2.4 that corresponds to using 2 task threads and 4 auxiliary threads per
task thread. Assigned models are presolved.

• If selected optimizer only allows a single auxiliary thread: Each task thread
presolves assigned models.

Step 3: Global MPI communication. [All task threads]

The main thread gathers the presolve information of all models and all task
threads gather presolve status by using functions presented in Section A.4

Step 4: Check the presolve status [Main thread]

• If all models are feasible and bounded: Go to Step 5.
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DEFINE GLOBAL VARIABLES
npr, assignment, inicial...

DEFINE GLOBAL VARIABLES
npr, assignment, inicial...

DEFINE LOCAL VARIABLES
pid, zq_loc, x0_loc ...

DEFINE LOCAL VARIABLES
pid, zq_loc, x0_loc ...

READ ASSIGNED
MODELS

READ ASSIGNED
MODELS

CREATE ASSIGNED
MODELS

CREATE ASSIGNED
MODELS

SHARED PRESOLVE OF
ASSIGNED MODELS

SHARED PRESOLVE OF
ASSIGNED MODELS
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Figure 2.4: Parallelization diagram (1 main × 2 task × 4 auxiliary) threads

• Else: Go to Step 8.

Step 5: Solve assigned models. [All task and auxiliary threads]

• If selected optimizer allows multiple auxiliary threads: Each task thread
starts a shared memory parallel programming environment with a chosen
number of auxiliary threads (see Figure 2.4). Assigned models are solved.

• If selected optimizer only allows a single auxiliary thread: Each task thread
solves assigned models.

Step 6: Global MPI communication. [All task threads]

The main thread gathers the presolve information of all models by using
functions presented in Section A.4
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2.3 Parallel computing to solve multiple optimization problems

Step 7: Report results [Main thread]

The main thread reports all results.

• Finishing the MPI environment using functions presented in Section A.5

Step 8: Execution ends in all task threads. [All task threads]

2.3.1 Preliminary computational testing

Before performing the experiments we conducted some preliminary testing, in order
to have an initial characterization of the parallelization environment. To do so,
we have implemented the simplest possible parallel strategy, i.e., the strategy with
the steps described in Section 2.3 without the final gather of information. In this
context threads work in a fully independent way, and are only connected at the
very beginning to distribute the models to solve. As a consequence, the parallel
executions will not necessarily end simultaneously.

The chosen solver is COIN-OR V1.3.1, which does not support multiple auxiliary
threads. The work load consists of three different mixed 0-1 optimization problems
repeated 3 times, i.e., a total amount of 9 instances to be solved by an increasing
amount of threads in order to check the effect of the unbalanced work load, that is,
the bottle-neck effect.

Another aspect to analyse is the behaviour of the computational cluster regarding
the communication time. It should be reduced as far as possible since it impacts
the efficiency of the execution. As preliminary testing we will allow the ARINA
computational cluster to select the threads to be used, see Section 1.5. The results
are summarized in Table 2.1.

Table 2.1: Preliminary test. COIN-OR. 9 instances.

Available Maximum execution Elapsed time
threads # prob/thread 1 2 3 4 5 Average St. dev.

Serial 1 9 206 159 205 214 238 204.4 28.7

MPI 1 9 213 212 254 222 265 233.2 24.6
2 5 280 273 237 270 386 289.2 56.6
3 3 118 153 229 225 135 172 51.7
4 3 110 190 195 170 194 171.8 36
5 2 81 104 120 102 184 118.2 39.3
6 2 127 229 239 134 100 165.8 63.6
7 2 112 118 162 174 287 170.6 70.4
8 2 199 183 226 226 221 211 19.2
9 1 97 105 72 86 60 84 18.3
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To conclude, we can make several observations. First, the variability of the
elapsed time is highly significant, in other words, the necessary time to create
the MPI environment depends on the chosen threads and the machine work load
situation. Consequently from now on in this thesis the user will specifically select
the threads to be used, ideally being part of the same computing node in order to
reduce communication time.

Second, the absence of further communication among threads once the solving
process has started produces a chaotic behaviour with regard to the elapsed time.
Therefore, the other implementations reported in this work consider intermediate
communication among threads in order to guarantee the most simultaneous
execution as possible. Additionally, following the criterion that is very frequently
found in the general literature, the number of threads to be used will be a power of
2, since it is fast and convenient to implement in a computer.

Taking the above conclusions into account, the next subsection presents a broad
computational experience on comparing parallel and serial versions of decomposition
algorithms solve a set by instances of a medium-scale optimization problem.

2.3.2 Computational experience

The computational experiments were conducted in the ARINA computational cluster
at SGI/IZO-SGIker, Universidad del País Vasco, UPV/EHU, see Section 1.5. For
the reported experiments, Intel Xeon type computing nodes were used, consisting of
8 cores with 48Gb of RAM, see Table 1.1. The optimization problems were solved
using COIN-OR V1.3.1 and CPLEX v12.2 from COIN-OR V1.3.1 environment.

The set of instances whose computational experience is analysed in this
subsection is based on the scenario-cluster submodels obtained from the multistage
stochastic mixed 0-1 problem P4 taken from the computational experience reported
in Escudero et al. [2012a] and countered as one of the problems included in Testbed
2 whose results are reported in Table 3.2. The full model is a medium-scale problem
with |Ω| = 217 scenarios (structured in nonsymmetric scenario tree) and |T | = 4
stages, where the nonanticipativity constraints are relaxed for the first and second
stage, in order to generate the 44 instances considered in this subsection.

The dimensions of the original medium-scale optimization problem and the
related average and standard deviation of the dimensions of the subproblems are
shown in Table 2.2 and Table 2.3, respectively. The headings of the table are as
follows: m, number of constraints; nx, number of 0-1 variables; ny, number of
continuous variables; nel, number of nonzero coefficients in the constraint matrix
and dens, constraint matrix density (in %). Table 2.4 shows the value of the optimal
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objective function for the 44 mixed integer problems.

Table 2.2: Medium-scale problem dimensions

m nx ny nel dens

9248 2176 4792 515768 0.64

Table 2.3: Subproblem average (standard deviation) dimensions.

m nx ny nel dens

average 270 63 151 14263 7.93
(st. deviation) (53.46) (12.58) (251.16) (2981.38) (1.57)

Table 2.4: Solution values for the 44 subproblems. Testbed 1.

F.1 -2953.46 F.12 -3215.94 F.23 -8945.76 F.34 -2915.80
F.2 -5067.97 F.13 -6662.71 F.24 -7271.52 F.35 -4291.44
F.3 -3957.70 F.14 -4078.15 F.25 -7136.25 F.36 -9412.94
F.4 -5310.86 F.15 -5315.24 F.26 -7046.85 F.37 -7899.80
F.5 -9219.36 F.16 -8504.21 F.27 -5561.61 F.38 -4851.96
F.6 -6539.62 F.17 -6592.45 F.28 -5327.66 F.39 -7735.64
F.7 -8196.80 F.18 -5186.78 F.29 -3991.81 F.40 -7764.66
F.8 -6582.53 F.19 -6291.11 F.30 -8051.70 F.41 -9828.10
F.9 -7811.68 F.20 -7378.17 F.31 -4887.34 F.42 -2786.57
F.10 -8126.43 F.21 -8450.21 F.32 -5434.41 F.43 -4311.35
F.11 -8420.17 F.22 -8558.38 F.33 -9432.48 F.44 -8135.21

Table 2.5 and Table 2.6 show the main execution times for COIN-OR optimizer
and for CPLEX solver within COIN-OR (allowing one single auxiliary thread for
CPLEX), respectively. The headings are as follows: Available threads (th), the
number of threads for the serial and parallel programming; Maximum # prob/thread,

the bottleneck or maximum number of problems to be solved by thread, that is,
⌈

C
th

⌉

;

Min, Average, Max, the minimum, average and maximum CPU time by thread (in
seconds), respectively; Average, St. dev., the average and standard deviation (in
seconds) for the elapsed time after 15 executions of the same code. CPLEX being
called from COIN-OR is between 3 and 5 five times faster than own COIN-OR
optimizer (without any presolving or cut generation). Note that the CPU time
measures the instruction processing time of the computer program whereas the
elapsed time (also known as real time or wall-clock time) includes the CPU time,
the input/ouput time and the communication delay. We can conclude that the CPU
time and the elapsed time are not significantly different, therefore, throughout this
memoir elapsed time will be the analysed magnitude.
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Table 2.5: Computing times under COIN-OR. Testbed 1.

Available Maximum CPU time Elapsed time
threads # prob/thread Min. Average Max. Average St. dev.

Serial 1 44 17.651 17.651 17.651 17.780 0.013

MPI 1 44 18.013 18.013 18.013 18.239 0.093
2 22 8.823 8.866 8.779 8.972 0.010
4 11 5.018 5.165 5.271 5.373 0.029
8 6 3.118 3.647 3.960 4.508 0.253

16 3 1.735 2.077 2.272 2.632 0.270
32 2 1.239 1.857 1.996 2.054 0.005
64 1 0.839 1.403 1.517 1.590 0.260

Table 2.6: Computing times under CPLEX (single auxiliary thread). Testbed 1.

Available Maximum CPU time Elapsed time
threads # prob/thread Min. Average Max. Average St. dev.

Serial 1 44 6.107 6.107 6.107 6.163 0.019

MPI 1 44 6.344 6.344 6.344 6.401 0.005
2 22 3.161 3.165 3.168 3.201 0.002
4 11 1.647 1.667 1.685 1.706 0.005
8 6 0.992 1.025 1.074 1.120 0.030

16 3 0.521 0.546 0.564 0.604 0.058
32 2 0.349 0.390 0.405 0.426 0.0175
64 1 0.227 0.259 0.276 0.297 0.0857

Table 2.7 shows the execution times for CPLEX solver from COIN-OR
considering a number of available threads and several combinations between the
number of threads for distributed memory (task threads) and shared memory
(auxiliary threads). The other headings are as denoted in the previous tables. For 8
available threads the average elapsed time for computing the serial execution is 7.699
seconds, which corresponds to the worst strategy. Figure 2.5 shows the elapsed time
for COIN-OR in horizontal read line and the elapsed time for CPLEX in vertical
blue bars, it is classified according to the available number of threads, as detailed
in Tables 2.5 and 2.7. We can observe that for a fixed number of available threads
the elapsed time to solve the 44 problems (a large number of them with small
dimensions) decreases when the number of MPI threads increases. So, the fastest
case corresponds to the highest number of task threads and a single auxiliary thread
for CPLEX, which highlights the interest of MPI parallel computing.

Finally, Table 2.8 summarizes the best elapsed times for COIN-OR and CPLEX,
with all the available threads considered. The headings are as follows: Elapsed Time,
the wall clock time in seconds (average time over 15 realizations); Sth, speedup, serial
elapsed time over parallel elapsed time; and Eth%, efficiency, speedup over number of
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Table 2.7: Computing times under CPLEX (multiple auxiliary threads). Testbed 1.

Available task × auxiliary CPU time Elapsed time
threads threads Min. Average Max. Average St. dev.

1 1 × 1 6.107 6.107 6.107 6.163 0.019

2 1 × 2 4.328 4.328 4.328 5.683 0.046
2 2 × 1 3.161 3.165 3.168 3.201 0.002

4 1 × 4 2.382 2.382 2.382 6.076 0.055
4 2 × 2 2.141 2.184 2.227 2.986 0.022
4 4 × 1 1.647 1.667 1.685 1.706 0.005

8 1 × 8 2.590 2.590 2.590 7.699 0.222
8 2 × 4 1.184 1.229 1.258 3.229 0.245
8 4 × 2 1.095 1.124 1.176 1.632 0.032
8 8 × 1 0.992 1.025 1.074 1.120 0.030
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Figure 2.5: Classification for (task × auxiliary) threads execution time

threads, in percentage. The speedup and efficiency is high and similar in both solvers
for th= 2 and th = 4 available threads, but it is better for CPLEX optimization
solver for 8 or more threads. These results are illustrated in Figure 2.6.
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Table 2.8: Efficiency of COIN-OR and CPLEX. Testbed 1.

Available COIN-OR CPLEX
threads Elapsed time Sth Eth% Elapsed time Sth Eth%

Serial 1 17.780 1.000 100.0 6.163 1.000 100.0

MPI 2 8.972 1.982 99.1 3.201 1.925 96.3
4 5.373 3.309 82.7 1.706 3.613 90.3
8 4.508 3.944 49.3 1.120 5.503 68.8

16 2.632 6.755 42.2 0.604 10.204 63.8
32 2.054 8.656 27.1 0.426 14.670 45.8
64 1.590 11.182 17.5 0.297 20.751 32.4
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Figure 2.6: Speedup and efficiency vs number of threads

2.4 Inner parallelization paradigm

The truly potential of the strategy presented in Section 2.3 to solve multiple
optimization problems in parallel consists of its insertion into an iterative algorithm.
In other words, the parallelization environment can work as an iterative step
of a decomposition algorithm to solve large-scale problems, parallelizing the
resolution of the corresponding subproblems. We could define this new approach as
inner parallelization since it works as an internal parallelization of a serial algorithm.
The inner parallelization paradigm is applied to an exact decomposition algorithm
in Chapter 3 as well as to a matheuristic decomposition algorithm in Chapter 4.

2.5 Multipath Branch & Bound Algorithm

Once the MIP optimization model is split among submodels whose optimization
is assigned to the chosen solver executions, let us improve each solving process in
large-scale problems. The internal parallel mode of any solver is an efficient black
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box for the user, however, two weak points can be identified, namely, its parallel
resources are limited (up to 8 auxiliary threads are allowed under academic license
for the state-of-the-art optimizer CPLEX) and what is more difficult to overcome
in the near and medium future, the current solvers do not profit from the problem
structure. Therefore, this section analyses potential improvements in this direction,
leading to more complex solving environments.

In this section a parallel computing framework is presented to solve a large-scale
MIP problem. Based on the serial Branch & Bound algorithm, it includes two new
aspects drawn from weak points in the current solvers: simultaneous branching and
stage perspective.

2.5.1 Simultaneous branching

The serial Branch & Bound algorithm is a tool to solve mixed 0-1 problems by
obtaining its optimal solution. A linear programming problem is solved in every node
of a branching tree where the branching and pruning criteria ensures that the non
visited nodes are suboptimal. However, the number of visited nodes and, therefore,
the execution time, increases significantly for medium and large-scale problems.

Parallel computing can reduce the execution time of the serial Branch & Bound
algorithm, as different approaches can be found throughout the literature.

Note that the paradigm presented in Section 2.4 cannot be directly applied,
since it solves several problems in parallel and each node of the Branch & Bound
consists of a single problem. Nevertheless, this idea can be adapted to visiting several
nodes at the same time, that is, a parallel visiting of Branch & Bound nodes. This
simultaneous branching paradigm can be defined in several ways, such as a main
thread can lead the tree branching and several task threads can solve the neighbour
nodes or, more interestingly, the original problem tree can be split into parts. The
second option allows several simultaneous Branch & Bound executions to be worked
with, in other words, the original tree is branched by several paths, each managed
by a main thread. Thus, the serial version can be considered as a one-path Branch
& Bound.

Multipath B&B Algorithm

As previously mentioned, the Multipath Branch & Bound algorithm splits the
branching tree among paths. Consequently, each resulting tree will have a smaller
size since a modeler-driven set of integer variables from the original problem will be
fixed to integer values.

Additionally, the communication capability of MPI can be used for interacting
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among the paths. The incumbent solution could be updated by gathering the best
feasible solution from among all main threads, allowing an earlier pruning of the
branches. Moreover, as in general different paths need to visit a different number
of nodes they will not usually end simultaneously. Once a main thread ends the
algorithm execution, it is considered a dead path, but it does not mean that its
computational power is not to be used any more, since the Synchronization Phase
can be started. It consists of splitting an active path (a non-dead one) into two
paths, with one of them being assigned to the original main thread and the second
one to a main thread in dead status. Algorithm 2.1 and Figure 2.7 schematically
presents the steps of the algorithm.

This parallelization paradigm assures that the full parallel power is used during
the whole execution. It behaves very efficiently for big branching trees for medium-
scale or non divisible problems, see below.

A step-by-step numerical example

Considering that a numerical example can make it easier to understand the
mechanism of the outer parallelization by multipath branching, let us consider a
0-1 Knapsack optimization problem. This family of problems has the characteristic
of being purely binary and having only a single inequality constraint. We consider
that it is an appropriate environment for following the steps of the Multipath Branch
& Bound algorithm without loose of generality.

Let us consider the following Knapsack problem:

z = max 23x1 + 19x2 + 28x3 + 14x4 + 44x5

s.t. 8x1 + 7x2 + 11x3 + 6x4 + 19x5 ≤ 25
x1, x2, x3, x4, x5 ∈ {0, 1}

(2.1)

Table 2.9 shows the branching nodes and their solution for a serial Branch &
Bound algorithm. Figure 2.8 depicts the related branching tree. Table 2.10 and
Table 2.11 and Figure 2.9 and Figure 2.10 resume the resolution by two-path and
four-path, respectively, from the application of the Multipath Branch & Bound
algorithm.

Before starting, let us describe the branching criteria, valid for all strategies. The
first branching side for any variable non yet 0-1 valued is the 0 value. Additionally, if
the resolution of a LP relaxed problem gives as a result 0-1 values for some variables,
then the algorithm temporally fixes those variables to the solution values and branch
on the next one.
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Algorithm 2.1: Multipath Branch & Bound

Every main thread executes:

Step 0: (Initializations) Define the initial starting point of each path and
fix the variables for each of them.

Step 1: (Branch) The branching criterion could be modified by the user,
such as depth-first, 0-first etc.

Step 2: (Solve relaxed model) The corresponding relaxation of the
original problem is solved in serial by a unique main thread. The
value of the objective function is stored in the local zpath variable.

Step 3: (Gather zpath) All paths gather zpath values. Note that this step
works as a synchronization phase since all main threads must
arrive here in order to execute the communication.
The values are stored at a solution vector zvect.
If there is not any feasible solution of the original problem in
zvect, then go to Step 1.
If there is a feasible solution of the original problem, at least,
in zvect, then store the best solution value at the local variable z∗.

Step 4: (Update incumbent) Update the incumbent value,
if minimization problem then zDEM := min(zDEM , z∗).
if maximization problem then zDEM := max(zDEM , z∗).

Step 5: (Prune) Check if the branch can be locally pruned, (i.e., at the
current node), or if the branch can be pruned from an upper
position (this can be done when the incumbent solution value is
updated with a solution coming from a different main thread).

Step 6: (Gather execution status) All paths gather execution status,
knowing which paths are dead and which are still active.
If all paths are dead, then STOP.

Step 7: (Redefine path platform)
If there are death paths, the same amount of active path are split
in two active paths and the main threads related to dead paths
are reassigned to active paths.
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Figure 2.7: Multipath Branch & Bound algorithm. Basic steps

One-path Branch & Bound (serial B&B)

The serial Branch & Bound algorithm, understood as the one-path particular
case of the Multipath Branch & Bound algorithm, starts at the root node of the
tree. The first LP relaxed problem is solved obtaining a solution value of 67.45
and 0-1 values for x1 and x2 (see Table 2.9). Following the branching criteria the
algorithm fixes x1 and x2 to 1 and branches x3 to 0. Once the second relaxation
is solved we obtain to the third node, since the chosen problem is very small we
are already at the last tree level with all variables fixed to a binary value. The
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corresponding resolution gives an objective value of 56, and moreover, this solution
is feasible at the original problem (which is why the node is coloured in green in
Figure 2.8) and we can update the incumbent solution from −∞ to 56.

Table 2.9: One-path solving process. Solutions

node x1 x2 x3 x4 x5 zpath zDEM

1a 1 1 0.91 0 0 67.45 −∞
2a 1 1 0 1 0.21 65.26 −∞
3a 1 1 0 1 0 56 56
4a 1 1 0 1 1 infeasible 56
5a 1 1 0 0 0.53 65.16 56
6a 1 1 0 0 0 42 56
7a 1 1 0 0 1 infeasible 56
8a 1 1 1 0 0 infeasible 56
9a 1 0 1 1 0 65 65
10a 0 1 1 1 0.05 63.32 65
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Figure 2.8: Knapsack problem example. One-path B&B

Then we branch variable x5 to 1, obtaining an infeasible problem (yellow coloured
node) so we go up to the first non branched node (in this case node 2) and we keep
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the same branching criteria. After visiting several nodes we obtain to node 9, having
x1 and x2 branched to 1 and 0 respectively, the resolution of the relaxation shows
a feasible solution of the original problem, updating the incumbent solution to 65.
Finally we branch the starting x1 variable to 0, analysing the second side of the
tree. The relaxed solution gives an objective function value of 63.32, being smaller
than the incumbent solution we can prune the branch (the blue ring at Figure 2.8
indicates the prune) and the algorithm will stop.

Two-path Branch & Bound

Now let us apply the same criteria to a two-path Branch & Bound, denoted with
a and b superscripts respectively, see Table 2.10 and branching tree in Figure 2.9.

Table 2.10: Two-path solving process. Solutions

node x1 x2 x3 x4 x5 zpath zDEM

1a 0 1 1 1 0.05 63.32 −∞
2a 0 1 1 1 0 61 61
3a 0 1 1 1 1 infeasible 61
4a 0 1 1 0 0.37 63.21 61
5a 0 1 1 0 0 47 61
6a 0 1 1 0 1 infeasible 61
7a 0 1 0 1 0.63 60.79 61
8a 0 0 1 1 0.42 60.53 61
9a 1 0 1 1 0 65 65

1b 1 1 0.91 0 0 67.45 −∞
2b 1 1 0 1 0.21 65.26 61
3b 1 1 0 1 0 56 61
4b 1 1 0 1 1 infeasible 61
5b 1 1 0 0 0.53 65.16 61
6b 1 1 0 0 0 42 61
7b 1 1 0 0 1 infeasible 61
8b 1 1 1 0 0 infeasible 61
9b 1 0 0 1 0.58 62.47 65

The first change corresponds to the starting node, which is situated at the second
level of the algorithm, saving the branch of the x1 variable. Both paths obtain an
infeasible solution for the original problem (since not all variables have 0-1 values)
so they keep branching. At the second node Path a obtains a feasible solution whose
value is 61, whereas Path b obtains an infeasible solution of the original problem.
Since Path a obtains a feasible solution for the original problem, its solution value
61 is the incumbent for both paths.

Consequently at the z gather phase Path b will the 61 solution, both paths update
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Figure 2.9: Knapsack problem example. Two-path B&B

the incumbent to 61. They both check if it is possible to perform a local o upper
prune of the branch, as it is not the case they keep branching. After visiting several
nodes, Path a is capable of pruning nodes 7 and 8. At this point Path a is dead
and Path b needs to branch x3 to 0, this is when the Synchronization Phase takes
place, moving Path a to the Path b side and branching x3 to 1. Now nodes 9a and 9b

are solved and the solutions 65 and 62.47 are obtained respectively, gathering those
values both branches update incumbent value to 65. Consequently, both paths can
locally prune the branch and both paths are dead, so the algorithm stops.

In this example the three advantages of the multipath version of the Branch &
Bound algorithm can be observed: The starting node has a lower level than in the
serial version, paths exchange solutions allowing a faster update of the incumbent
solution and finally the reassignment phase ensures that main threads are working
without a break. On the other hand, in this case the number of visited nodes by the
longest branch is only slightly smaller, 9 compared to 10. Let us check if the use of
more paths improves that behaviour.
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Four-path Branch & Bound

Table 2.11: Four-path solving process. Solutions

node x1 x2 x3 x4 x5 zpath zDEM

1a 0 0 1 1 0.42 60.53 65
2a 1 1 0 1 0 56 65
3a 1 1 1 1 0 infeasible 65

1b 0 1 1 1 0 61 65
2b 1 1 0 0 1 infeasible 65
3b 1 1 1 0 1 infeasible 65

1c 1 0 1 1 0 65 65
2c 1 1 0 1 1 infeasible 65
3c 1 1 1 1 1 infeasible 65

1d 1 1 0.91 0 0 67.45 65
2d 1 1 0 0 0 42 65
3d 1 1 1 0 0 infeasible 65
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3d 3b 3a 3c

1a
1b 1c

1d

x5 = 0

x5 = 1

x5 = 0

x5 = 1

x5 = 0

x5 = 1

x5 = 0

x5 = 1

x4 = 0

x4 = 1

x4 = 0

x4 = 1

x3 = 0 x3 = 1

x2 = 0
x2 = 1

x2 = 0
x2 = 1

x1 = 0
x1 = 1

a

z1 = 60.53

z2 = 56

b
z1 = 63.32

c

z1 = 65
d

z1 = 67.45

z2 = 42

Figure 2.10: Knapsack problem example. Four-path B&B

Let the four paths be notated a, b, c and d, and keep the same branching criterion.
In this context, the starting point of the branching will be situated at the second
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2.5 Multipath Branch & Bound Algorithm

level of the tree, saving the branching of variables x1 and x2. The resolution of
the LP relaxation of the first nodes gives the function values: 60.53, 63.32, 65 and
67.45. All solutions are gathered by the paths and note that the solution of Path c
is feasible and the value is greater than those from Path a and Path b, consequently
Path a, Path b and Path c can be locally pruned and they are now dead. These
three paths are reassigned to Path d side, creating a same level branching for nodes
2a, 2b, 2c and 2d. Once the related LP relaxation is solved two feasible solutions
(2a and 2d) have been obtained but none of them improves the incumbent solution
value. Given that those nodes are already at the last level, Path a, Path b and Path
c are again dead, and then they are reassigned to Path d. All 3a, 3b, 3c and 3d are
infeasible and, therefore, all paths are dead, and so, the algorithm stops. See Table
2.11 and branching tree in Figure 2.10

In addition to the aspects underlined at the previous strategies, the four-path
strategy shows a significant reduction of visited nodes for each path (from 10 in
serial to 3 in this case).

2.5.2 Stage perspective

The second key aspect referred to at the beginning of Section 2.5, corresponds to
the stage perspective. Most of the state-of-the-art solvers (with CPLEX being one
of them) have no structural vision of the stochastic problem, and therefore, they
do not benefit from the variable hierarchy. However, decomposition algorithms can
take advantage of this information.

Let us analyse the potential effect of the variable order when solving a stochastic
mixed 0-1 problem. To do so let us take the Multipath Branch & Bound algorithm
as reference. In fact, preliminary tests can be enriched by adding preprocessing to
Algorithm 2.1, see also Figure 2.7; so that initially tighter bound can be obtained
and the values of the variables in a quasioptimal solution can be very useful for
reducing the computations in the algorithm to obtain the optimal solution.

Four possible set ups regarding the variable fixing criterion: always to zero
(0), as presented on the knapsack example, always to one (1), the values obtained
at the quasioptimal solution (Q) and the rounded solution of the LP relaxation
(round(LR)).

Computational experience

Let us consider a mixed 0-1 problem in order to test the effect of set up parameters.
Specifically, let problem P11 taken from the computational experience reported in
Escudero et al. [2012a] and later included in Testbed 2 in Table 3.2. By applying a
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break stage clustering process with t∗ (see Section 3.2), 5 subproblems are generated.
The selected subproblem is the one related to cluster number 1.

The computational experiments were conducted in the ARINA computational
cluster at SGI/IZO-SGIker from UPV/EHU; using two Intel Xeon nodes with 8 cores
and 48Gb of RAM (remember Table 1.1). The LP relaxation problems were solved
by using CPLEX V12.2 from COIN-OR V1.3.1. The environment corresponds to
16 paths (using a single CPLEX auxiliary thread each) of Algorithm 2.1 (see also
Figure 2.7) extended with an initial CPLEX preprocessing of 1% optimality gap.

Table 2.12 shows the computing time (in sec) required for each fixing criterion
and variable ordering. The headings are as follows: nominal, variables ordered by
indexes; max to min difference, variables with largest difference between values at
LP relaxation and quasioptimal solution first; min to max difference, variables with
lowest difference between values at LP relaxation and quasioptimal solution first.

It can be observed that the stage ordering is significantly faster than the
group ordering. The fast execution of the stage ordering does not allow behaviour
conclusions to be extracted, regarding the variable order or the fixing criterion.
On the other hand, the group ordering shows that nominal variable ordering is
more efficient than the ones linked to the increasing and decreasing differences
between quasioptimal and LP relaxation solutions. Additionally, the fastest
executions correspond to fixing variables according to the quasioptimal or rounded
LP relaxation solution. However, as no branching criterion appears to significantly
outperform the others, further research and computational experience is analysed in
Chapter 5.

Table 2.12: Effect of the variable order and the fixing criterion

Elapsed time (in seconds)
Group-wise ordering Stage-wise ordering

FIXING nominal max to min min to max nominal max to min min to max
CRITERION difference difference difference difference

0 220 242 552 9 9 10
1 62 118 1001 7 9 8
Q 81 172 551 10 9 10

round(LR) 78 176 552 9 10 10

2.6 Outer parallelization paradigm

The Multipath Branch & Bound approach needs to analyse the whole variable tree in
order to ensure optimality. If larger scale problems are considered, this aspect turns
to be the main drawback and a significant obstacle to obtain the optimal solution in
an acceptable elapsed time. However, the parallel branching environment presented
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in this chapter is applicable to other branching algorithms that can deal with larger
problems; notably, parallel branching algorithm based on decomposition.

More generally, let us name outer parallelization paradigm to an environment
where simultaneous executions of algorithms are interconnected. As in the Multipath
Branch & Bound algorithm, each algorithm execution, or path, can have a different
initial condition and can search solutions in a different part of the feasibility region.
Communication among paths will allow each algorithm execution to take profit from
more information than the one locally obtained by the algorithm.

However, the enormous potential of the outer parallelization is based on the
possibility of having different nature serial algorithms co-working in parallel by
communication. The hybrid environments create a large research area where parallel-
conceived algorithms will profit from different paths working with a different role,
such as exact and heuristic combinations.

2.7 Conclusions

As the results of the preliminary testing have shown, the hardware environment
control is a key aspect in terms of obtaining satisfactory results. This control
can be summarized in three aspects. First, user selection of the involved threads,
trying to use architecturally close threads such as threads from the same computing
node. Second, the behaviour tests should increase the number of threads by power
of two, following the way threads are built to be used. Third, in order to avoid
chaotic simultaneous executions it is highly recommended to introduce intermediate
communication functions, used as synchronization phases.

Regarding the parallel execution of several mixed 0-1 optimization problems
the most important conclusion that we can withdraw is that distributed memory
parallelization by MPI is a very powerful tool for reducing the execution time. The
improvement is consistent when increasing the number of task threads in both COIN-
OR and CPLEX solvers that we have experimented with, as shown in Table 2.5 and
Table 2.6.

Furthermore, Table 2.8 reports that CPLEX is a significantly faster solver than
COIN-OR in the serial execution and has a better speedup and efficiency in parallel
environments. Consequently, from now on in this work problems will be solved by
CPLEX (from COIN-OR environment) and, then the use of COIN-OR as solver is
discarded.

The results showed in Table 2.8 for CPLEX are highly encouraging for further
research, since its scaling behaviour is highly significant in both computing time and
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elapsed time scales, achieving a speedup factor of 20.751 and an efficiency of 32.4 %
when using 64 threads.

Additionally, as previously reported in Figure 2.4, it is possible to combine user
computed distributed memory with solver internal shared memory parallelization
(i.e., CPLEX in the computational experience that has been reported). A group of
executions has been carried out and summarized in Table 2.7 by fixing in each case
the number of threads and varying the number of them associated to distributed and
shared memory. In this case we can conclude that it is more efficient to assign threads
to the distributed memory paradigm, i.e., task threads, rather than to combine it
with CPLEX internal share memory paradigm, i.e., auxiliary threads. However,
it is very important to underline that we are considering a group of small scale
optimization problems and consequently we cannot conclude that its behaviour will
be the same for large scale problems.

We can therefore conclude that an efficient way has been introduced for parallel
solving of several small scale mixed 0-1 optimization problems. Interestingly,
this environment can be used for parallel subproblem solving of decomposition
algorithms, i.e., an inner parallelization strategy; see Chapter 3 and Chapter 4 for
detailed implementations.

The outer parallelization strategy and logic differs from the inner parallelization
by changing the focus from the micro scale to the macro scale, particularly in our
context, from solving in parallel stochastic problems to branching the tree with
multiple paths. Based on an illustrative example of the 0-1 Knapsack problem
we have numerically presented the algorithm steps and diagram of the outer
parallelization of the Branch & Bound algorithm. From that example we can observe
that the Multipath B&B approach allows to reduce the elapsed time by visiting
nodes in parallel, gathering intermediate solutions and reassigning dead paths. The
use of that scheme seems really appropriate for small and medium scale B&B node
problems since it has a more intensive use of threads than the inner parallelization.

Additionally, we have analysed the effect of the variable ordering and fixing
criterion on the algorithm performance. The stage-wise variable ordering shows a
significantly faster behaviour but no clear branching criterion has been identified
from the preliminary computational experience.

In this chapter we have shown that parallel branching executions can be managed
in a coordinated way and it can profit from the problem structure. It seems
appropriate to go further in this analysis to try to solve larger problems, so the
coordinated branching and the break stage concepts will work in this direction for
the Branch-and-Fix Coordination algorithm considered in Chapter 3.
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Parallel Computing Branch-and-Fix

Coordination algorithm

Caminante, son tus huellas

el camino, y nada más;

caminante, no hay camino,

se hace camino al andar.

Wanderer, your footsteps are
the road, and nothing more;
wanderer, there is no road,
the road is made by walking.

Antonio Machado, Campos de Castilla.

3.1 Introduction

The aim of this chapter is to present the parallelized version of the Branch-and-Fix
Coordination multistage (BFC) algorithm, see Escudero et al. [2012a], referred to as
Parallel Branch-and-Fix Coordination multistage (P-BFC) procedure, so that the
reduction in the elapsed time in problem solving is analyzed. The parallelization is
performed at two levels. The inner level parallelizes the optimization of the Mixed
Integer Programming (MIP) submodels attached to the set of scenario clusters to
be generated by the modeler-defined break stage. The concept of break stage was
introduced in Escudero et al. [2012a] as a way of decomposing the original problem,
in which the nonanticipativity constraints (NAC) are partially relaxed from the
mixture of the splitting and compact representations of the DEM of the stochastic
problem. Several strategies are presented for analyzing the performance of using
inner parallel computing based on MPI strategies for solving scenario cluster based
subproblems versus the serial version of the BFC methodology. The outer level of
parallelization is based on the path concept, see Section 1.3. In this chapter a path is
defined by a main thread managing a serial Branch-and-Fix Coordination algorithm

39



Chapter 3 Parallel Branch-and-Fix Coordination

and the combinations of a set of 0-1 variables as initial condition, such that each
one can itself be internally optimized with the inner parallelization scheme.

The main results of a broad computational experience are reported to assess
whether the performance of the parallel computing approach compares favorably
to the serial one. The elapsed time required by outer-inner parallelization is very
frequently some orders of magnitude smaller than that of the serial version of the
algorithm, depending on the available computer resources . So, the larger the number
of paths and task threads (in addition to the number of auxiliary threads that the
MIP solver allows for itself), the smaller the elapsed time for problem solving.

The rest of the chapter is organized as follows: Section 3.2 presents the main
concepts of the break stage scenario clustering. Section 3.3 introduces the serial
version of the scenario cluster BFC algorithm introduced in Escudero et al. [2010b,
2012a], additionally, the Parallel Computing implementations of the BFC algorithm
are described, Inner (Section 3.4), Outer (Section 3.5) and combined Outer-Inner
(Section 3.6). Section 3.7 reports the main results of a broad computational
experience to assess the validity of the parallel version of the BFC algorithm versus
its serial version and the plain use of a state-of-the-art MIP solver. Section 3.8
summarizes the main conclusions.

3.2 Break stage scenario clustering

The Break stage scenario clustering methodology consists of breaking the stochastic
model in a set of independent scenario cluster subproblems with respect to a
fixed stage, which is so named the break stage, due to the relaxation of the
nonanticipativity constraints (NAC) up to that stage, see Escudero et al. [2012a].

It is clear that the explicit representation of the NAC xω
t − xω′

t = 0 and
yω

t − yω′

t = 0 in model (1.5) is not desirable for all pairs (ω, ω′) of scenarios in
order to reduce the model’s dimensions. So, we can represent implicitly the NAC
for some pairs of scenarios in order to gain computational efficiency. We decompose
the scenario tree into a set of scenario cluster subtrees, each one for a scenario cluster
in the set denoted as C= {1, ...,C} with C = |C|, see below the reason for it. Let
Ωc denote the set of scenarios that belongs to cluster c, such that Ωc

⋂
Ωc′ = ∅,

c, c′ ∈ C : c 6= c′ and Ω = ∪c∈CΩc.

We propose to choose the number of scenario clusters C as any value from the
subset {|G1|, |G2|, . . . , |GT |}, so, let us consider the following definitions.

Definition 3.1. A break stage t∗ is a stage t such that the number of scenario
clusters is C = |Gt∗+1|, where t∗+1 ∈ T . In this case, any cluster c ∈ C is induced by
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3.2 Break stage scenario clustering

a group g ∈ Gt∗+1 and contains all scenarios belonging to that group, i.e., Ωc = Ωg.

Without loss of generality, the break stage concept assumes that for multiperiod
stages, the scenario cluster decomposition is considered at the first period of the
corresponding stage.

Definition 3.2. The scenario cluster decomposition submodels are those that
result from the relaxation of the NAC until the break stage t∗ in model (1.5).

Notice that the choice of t∗ = 0 corresponds to the full DEM and t∗ = T − 1
corresponds to the scenario partitioning. The reason for the decomposition of the
scenario set into scenario clusters is based on the way in which the decomposition
algorithm BFC works, see Escudero et al. [2010b, 2012a,b]. It considers the explicit
NAC related to the stages t from 1 until t∗, since the NAC from its next stage are
implicitly considered while solving the scenario cluster MIP submodels.

Let us assume that we have broken down the scenario set into C scenario clusters.
Now, let us formulate the cluster submodels and the full DEM via a mixture of the
splitting variable and compact representations, see Section 1.7, so that the submodels
are linked by the explicit NAC up to stage t∗. For doing so, let us slightly abuse the
notation such that xc

t and yc
t denote the vectors of the 0-1 and continuous variables,

respectively, for scenario cluster c ∈ C and stage t ∈ T , ac
t and bc

t are the vectors of
the objective function coefficients of the variables vectors xc

t and yc
t , and nxc

t and
nyc

t denote the number of 0-1 and continuous variables, respectively, for the pair
(c, t). Similarly, let hc

t denote the new rhs. Additionally, let Gc⊆ G denote the set
of scenario groups for cluster c, such that Ωg ∩ Ωc 6= ∅ means that g ∈ Gc, and let
Gc

t = Gt ∩ Gc denote the set of scenario groups for cluster c ∈ C in stage t ∈ T .

For example, if we consider the break stage t∗ = 2 in Figure 3.1, we obtain
C = 4 clusters submodels, where for cluster c = 3, G3 = {1, 3, 6, 11, 12, 13},
G3

4 = {11, 12, 13} and Ω3 = {4, 5, 6}.

The set of constraints in model (1.5) for each scenario cluster can be split into two
blocks. The first one represents the constraints related to the vectors of variables
from stage t = 1 until stage t∗ + 1 (i.e., stages with explicit NAC), since those
variables must be linked with their own replicas in the appropriate clusters in set C.
The second block represents the constraints related to the vectors of variables from
stage t∗ + 2 until the last stage T (i.e., stages with implicit NAC). Accordingly, the
MIP submodel for cluster c ∈ C can be formulated as follows,
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Figure 3.1: Scenario clustering for t∗ = 0, t∗ = 1 and t∗ = 2

zc
t∗ = min

∑

t∈T

wc
t(a

c
tx

c
t + bc

ty
c
t)

s.t. cluster c constraint system (3.2)
xc

t ∈ {0, 1}nxc
t , yc

t ∈ R
+nyc

t ∀t ∈ T .

(3.1)

where the constraint system (3.2) is as follows:

∑

t′∈T t

(

At,c
t′ xc

t′ + +Bt,c
t′ yc

t′

)

= hc
t ∀t ∈ T : t ≤ t∗ + 1

∑

t′∈T t

(

[At
t′ ]

c
xc

t′ + [Bt
t′ ]

c
yc

t′

)

= hc
t ∀t ∈ T : t > t∗ + 1

(3.2)

See in Escudero et al. [2010b] the details for computing the weight parameter wc
t

for t ≤ t∗ + 1 and the weight vector wc
t for t∗ + 1 < t ≤ T . Additionally, the first

block of constraints matrices (At,c
t′ , Bt,c

t′ ) is related to the pair stage t and cluster c,
for t ≤ t∗ + 1. The second block represents the constraints for stages from t∗ + 2
until stage T , for c ∈ C. The constraints matrices [At

t′ ]
c

and [Bt
t′ ]

c
can be split into

the |Gc
t−1| and |Gc

t | submatrices related to the scenario groups in stage t for cluster
c, respectively; see Escudero et al. [2012a] for the details on a slight particular case.
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3.2 Break stage scenario clustering

Notice that the nonanticipativity principle is implicitly taken into account for the
stages from t∗ + 1 until stage T , since the submodel for each cluster is formulated
via a compact representation.

Let us split the set of stages T in two subsets, such that T = T1
⋃

T2, where
T1= {1, . . . , t∗}, and T2= {t∗ + 1, . . . , T }. For modeling the (explicit) NAC of the
scenario clusters for the stages up to the break stage t∗, let the following definition
of the NAC based cluster set.

Definition 3.3. The NAC based cluster set, say, Cg is the set of clusters that
have the scenario group g in common, for g ∈ Gt, t ≤ t∗.

Notice that clusters c and c′ belong to set Cg iff g ∈ Gc
t ∩ Gc′

t . The cluster
submodels (3.1) are linked by the NAC to be formulated as follows,

xc
t − xc′

t = 0 ∀c, c′ ∈ Cg, g ∈ Gt, t ∈ T1 (3.3)

yc
t − yc′

t = 0 ∀c, c′ ∈ Cg, g ∈ Gt, t ∈ T1. (3.4)

The full DEM can be represented by a mixture of the splitting variable
representation (for explicitly satisfying the NAC between the cluster submodels)
and the compact representation (for implicitly satisfying the NAC of each cluster
submodel, besides the other constraints in the submodel). So, the solution value
zDEM

t∗ of the full DEM can be obtained as the sum of the solution values of the
scenario cluster submodels, zc

t∗ (3.1) ∀c ∈ C plus the NAC (3.3)-(3.4) between the
clusters.

By using the previous elements, the full DEM can be formulated in a cluster
splitting-compact representation as follows,

zDEM
t∗ = min

∑

c∈C

∑

t∈T

wc
t(a

c
tx

c
t + bc

ty
c
t)

s.t. cluster c constraint system (3.2) ∀c ∈ C

xc
t = xc′

t ∀c, c′ ∈ Cg, g ∈ Gt, t ∈ T1

yc
t = yc′

t ∀c, c′ ∈ Cg, g ∈ Gt, t ∈ T1

xc
t ∈ {0, 1}nxc

t , yc
t ∈ R

+nyc
t ∀c ∈ C, t ∈ T .

(3.5)

For the previous example corresponding to break stage t∗ = 2 in Figure 1.2,
T1 = {1, 2} and T2 = {3, 4}. So, C1 = {1, 2, 3, 4, 5} = C, C2 = {1, 2}, C3 = {3} and
C4 = {4, 5}.

Definition 3.4. For a given t∗ ∈ {0, 1, ..., T − 1}, let C = C(t∗) = |Gt∗+1| denote
the number of scenario clusters, such that
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1. z0
t∗=

∑C(t∗)
c=1 zc

t∗ gives the lower bound of the solution value of the original
problem (3.5) based on the relaxation of the NAC for the stages t ∈ T1, i.e.,
the sum of the solution values zc

t∗ for each scenario cluster model (3.1).

2. GAP 0
t∗ = 100

∣
∣
∣
∣

zDEM−z0

t∗

z0

t∗

∣
∣
∣
∣ defines the optimality gap (in %) of the solution value

z0
t∗ .

Proposition 1. The following equalities and inequalities are satisfied in minimiza-
tion problems (and therefore, the opposite inequalities in maximization problems):

1. z0
0 ≥ z0

1 ≥ z0
2 ≥ . . . ≥ z0

T −1

2. For any t∗ ∈ {0, 1, 2, . . . , T − 1}, it results zDEM = zDEM
t∗ , zDEM = z0

0 and
z0

t∗ ≤ zDEM
t∗

3. So, GAP 0
0 ≤ GAP 0

1 ≤ GAP 0
2 ≤ . . . ≤ GAP 0

T −1

Proof 1. Notice that 1. is evident since two consecutive problems in the stages’
chain only differ on the additional relaxation of the NAC corresponding to the later
stage. 2. follows from definitions and the fact that the solution value zDEM

t∗ of the
full model (3.5) satisfies also the NAC for the stages in set T1. And 3. follows from
the previous ones.

So, the smaller the break stage t∗ is, the stronger the GAP 0
t∗ is. However,

the computational effort seems bigger for smaller t∗-decompositions. So, a
computational analysis of GAPs and their efficiency is required for estimating the
appropriate interval for the t∗-decomposition, see Section 3.7.2.

3.3 BFC decomposition algorithm

3.3.1 Basic definitions and auxiliary models

The main concepts of the BFC methodology were introduced in Alonso-Ayuso et al.
[2003a,b] and subsequently refined mainly in Escudero et al. [2010b], particularly:

Definition 3.5. A Branch-and-Fix tree (BFT ) associated with any scenario
cluster is the Branch-and-Bound (B&B) tree for optimizing the models (3.1) in a
coordinated way with the models of the other clusters, such that the related full DEM
(3.5) is solved up to optimality.

As an additional notation, let BFT c denote the B&B tree associated with
scenario cluster c, Qc be the set of active nodes in BFT c, I be the set of indices of
the variables in vector xc

t , and xc
ti be the ith variable in xc

t , for c ∈ C, t ∈ T , i ∈ I.
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Definition 3.6. Two variables, say, xc
ti and xc′

ti are said to be common variables
for the scenario clusters c and c′, if c, c′ ∈ Cg|c 6= c′, g ∈ Gt, t ∈ T , i ∈ I.

Notice that the common variables have nonzero elements in the NAC related to
a given scenario group.

Definition 3.7. Any two nodes, say, q ∈ Qc and q′ ∈ Qc′
are said to be twin nodes

if on the paths from the root node to each of them in their trees BFT c and BFT c′
,

the common variables xc
ti and xc′

ti, if any, have been branched on / fixed at the same
0-1 value, for c, c′ ∈ Cg|c 6= c′, g ∈ Gt, t ∈ T , i ∈ I.

Definition 3.8. A Twin Node Family (TNF) Jf Jf is a set of nodes such that
any node is a twin node to all the other node members in the family, for f ∈ F ,
where F is the set of the families.

Definition 3.9. A candidate TNF is a TNF whose members have not yet
branched on / fixed at all their common variables.

Definition 3.10. An integer TNF is a TNF where all x variables take integer
values and the NAC (3.3) are satisfied.

In each integer TNF the LP model (3.6) is solved to obtain a feasible solution for
the original DEM (3.5). Notice that all the x variables for the stages from set T1 in
the BFC algorithm are set up to 0-1 values in any integer TNF by either algorithmic
branching, fixing as branching implications or taking 0-1 variables in the submodels
(3.1). Additionally, model (3.6) defines the y variables for the stages in set T1 whose
NAC (3.4) are to be explicitly satisfied. In fact, model (3.6) results from fixing the x
variables for the all stages in set T at their 0-1 values in DEM (3.5). Let x denote the
0-1 vector for the values of vector x. The cluster splitting-compact representation
of the model is as follows:

zT NF
LP = min

∑

c∈C

∑

t∈T

wc
t(a

c
tx

c
t + bc

ty
c
t)

s.t. cluster c constraint system (3.2) ∀c ∈ C
xc

t = xc
t ∀c ∈ C, t ∈ T

yc
t = yc′

t ∀c, c′ ∈ Cg, g ∈ Gt, t ∈ T1

yc
t ∈ R

+nyc
t ∀c ∈ C, t ∈ T .

(3.6)

If the LP model (3.6) is feasible with solution (x, yT NF ), a new MIP auxiliary
submodel can be defined by fixing the variables xc

t and yc
t to the values xc

t and
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yc,T NF
t , respectively ∀c ∈ C, t ∈ T1 in order to obtain a better solution value of the

original DEM,

zT NF
f = min

∑

c∈C

∑

t∈T

wc
t(a

c
tx

c
t + bc

ty
c
t)

s.t. cluster c constraint system (3.2) ∀c ∈ C
xc

t = xc
t ∀c ∈ C, t ∈ T1

yc
t = yc,T NF

t ∀c ∈ C, t ∈ T1

xc
t ∈ {0, 1}nxc

t ∀c ∈ C, t ∈ T2

yc
t ∈ R

+nyc
t ∀c ∈ C, t ∈ T2,

(3.7)

from which the independent MIP submodels for scenario cluster c ∈ C can be
expressed

zT NF
fc = min

∑

t∈T1

wc
t(a

c
t xc

t + bc
ty

c,T NF
t ) +

∑

t∈T2

wc
t(a

c
t xc

t + bc
ty

c
t)

s.t. cluster c constraint system (3.2)
xc

t = xc
t ∀t ∈ T1

yc
t = yc,T NF

t ∀t ∈ T1

xc
t ∈ {0, 1}nxc

t ∀t ∈ T2

yc
t ∈ R

+nyc
t ∀t ∈ T2.

(3.8)

Notice that the NAC for x and y variables for the stages in T1 are satisfied for
the values xt and yt

T NF obtained by solving model (3.6). So, zT NF
f in model (3.7)

can be expressed as follows:
zT NF

f =
∑

c∈C

zT NF
fc . (3.9)

Let xc
ti

∀c ∈ Cg denote the last branched variable in the integer TNF under
consideration, g is the related branching scenario group in set Gt and t is the
branching stage from set T1 (obviously, 1 ≤ t ≤ t∗) and 1 ≤ i ≤ nxt. Additionally,
define MIP model (3.10), so that for the presentation of the model, let J1 denote
the set {j = 1, ..., nxc

t , 1 ≤ t < t and 1 ≤ j ≤ i for t = t}, and J2 is the set
{i < j ≤ nxc

t for t = t and j = 1, ..., nxc
t , t < t ≤ T }.

zT NF
MIP = min

∑

c∈C

∑

t∈T

wc
t(a

c
tx

c
t + bc

ty
c
t)

s.t. cluster c constraint system (3.2) ∀c ∈ C
xc

tj = xc
tj ∀c ∈ C, (tj) ∈ J1

yc
t = yc′

t ∀c, c′ ∈ Cg, g ∈ Gt, t ∈ T1

xc
tj ∈ {0, 1}nxc

t ∀c ∈ C, (tj) ∈ J2

yc
t ∈ R

+nyc
t ∀c ∈ C, t ∈ T ,

(3.10)
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3.3 BFC decomposition algorithm

where the bound zT NF
f is used as a cut-off to reduce the elapsed time of the solver.

It is straightforward to prove that there is no a better (in this case, smaller)
solution value in any descendant TNF integer model (3.10) from the current integer
TNF than the related value zT NF

MIP obtained at that TNF integer set in the branching
process presented below.

Proposition 2. In any TNF and for any breakstage t∗, where t∗ + 1 ∈ T , the
following inequalities are satisfied in minimization problems:

zDEM
t∗ ≤ zT NF

MIP ≤ zT NF
f ≤ zT NF

LP

Proof 2. The first inequality, zDEM
t∗ ≤ zT NF

MIP , holds because any feasible solution
of model (3.10) is also a solution of model (3.5), since the feasible region of the
former problem has one set of constraints more than the latter problem, namely,
the set where the 0 − 1 variables from J1 have been fixed. The second inequality,
zT NF

MIP ≤ zT NF
f , holds because any feasible solution of model (3.7) is also a solution of

model (3.10), since the feasible region of the former problem has one set of constraints
more than the latter problem, namely, the set where the continuous variables from J1

have been fixed. And the third inequality, zT NF
f ≤ zT NF

LP , holds because any feasible
solution of model (3.6) is also a solution of model (3.7), since the feasible region of
the former problem has one set of constraints more than the latter problem, namely,
the set where the 0 − 1 variables from J2 have been fixed.

So, the (3.5), (3.6) and (3.10) models are upper bounds on the solution value of
de DEM model (3.5), as it is used in Step 7 of the Algorithm 3.1.

Proposition 3. Let us denote zT NF
f,t∗ the solution value of model (3.7), where

T = T1 ∪ T2 partitioning is related to break stage t∗. In any TNF, the following
inequalities are satisfied in minimization problems:

zT NF
f,1 ≤ zT NF

f,2 ≤ . . . ≤ zT NF
f,t∗ ≤ . . . ≤ zT NF

f,T −1

Proof 3. zT NF
f,t∗ ≤ zT NF

f,t∗+1 follows because the feasible region of the former problem
has two set of constraints more than the latter problem, namely, the set where the
0 − 1 and continuous variables from t∗ + 1 have been fixed.

So, the earlier the breakstage t∗, the better the tightening of the upper bounds.

3.3.2 Procedure

The procedure of the serial Branch-and-Fix Coordination multistage (BFC) is
presented in Algorithm 3.1. It considers the submodels (3.8) ∀c ∈ C as the main
advantage over the serial version presented in Escudero et al. [2012a].
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The initialization phase in Step 0 starts by solving the LP relaxation of the
original DEM (3.5). If it is infeasible, therefore it is the given original model; on
the contrary, if the integer constraints of the DEM are satisfied then the optimal
solution has been found, in either case the execution stops. Otherwise the main
variables are initialize and the BFC algorithm starts.

The root node of the branch-and-fix tree, BFT , is analysed in Step 1. The MIP
submodels (3.1) are solved to obtain zc ∀c ∈ C and compute z0

t∗ =
∑

c∈C zc. If both
xc and yc satisfy NAC, (3.3) and (3.4), then the optimal solution has been found
and the execution ends. Otherwise, variable branching starts.

The forward branching phase is managed by Step 2 to Step 5, where the stage,
the scenario group and the binary variable indexes are controlled.

Whenever a binary variable is branched, the corresponding candidate TNF is
analysed in Step 6. As in Step 1, the MIP submodels (3.1) are solved in order
to compute a bound of the original problem; if the bound does not improve the
incumbent solution, then the branch is pruned in Step 9. Otherwise, if the xc

variables do not satisfy NAC (3.3), then the branching process continues. If xc

variables satisfy NAC (3.3) but the yc variables do not satisfy NAC (3.4), then the
integer TNF models are analysed. If both xc and yc satisfy NAC, (3.3) and (3.4),
then a feasible solution has been found and the branch is pruned in Step 8.

The integer TNF models (3.6), (3.8) and (3.10) are solved in Step 7 in order to
get a feasible solution of the original DEM (3.5) once the xc variables satisfy NAC
(3.3).

The backward branching and the branch pruning is managed is Step 8 to Step 11,
where the stage, the scenario group and the binary variable indexes are controlled.
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3.3 BFC decomposition algorithm

Algorithm 3.1: Serial BFC

Step 0: (Initializations)
Solve the LP relaxation of the original DEM (3.5) to obtain zLP .
If it is infeasible, therefore it is the given original model, then STOP.
If the integer constraints of the DEM are satisfied, then zDEM found, STOP.
Set zDEM := ∞, t := 0.

Step 1: (Root node)

Solve the MIP submodels (3.1) to obtain zc ∀c ∈ C and compute z0
t∗ =

∑

c∈C

zc

If xc variables do not satisfy NAC (3.3), then go to Step 2.
If yc variables do not satisfy NAC (3.4), then i := 0 and go to Step 7.
The optimal solution of the DEM (3.5) is found, then zDEM := z0

t∗ , STOP.
Step 2: (Next stage)

Reset t := t + 1 and i:= 0. If t > t∗, then go to Step 9.
Step 3: (Next scenario group)

Select g ∈ Gt. If all of its groups have been branched, then go to Step 2.
Reset i:=0.

Step 4: (Next node)
Reset i := i + 1. If i > nxt, then go to Step 3.

Step 5: (Branching)
Set xc

ti
:= 0 ∀c ∈ Cg.

Step 6: (Candidate TNF)

Solve the MIP submodels (3.1) to obtain zc ∀c ∈ Cg. Compute zt∗ =
∑

c∈Cg

zc.

If zt∗ ≥ zDEM , then go to Step 8.
If any xc

t for ∀t ∈ T1 does not satisfy NAC (3.3) ∀c ∈ C, then go to Step 4.
If all yc

t satisfy NAC (3.4) ∀t ∈ T1, c ∈ C, then zDEM := zt∗ . Go to Step 8.
Step 7: (Integer TNF)

Solve LP model (3.6).
If it is feasible, update zDEM := min{zT NF

LP , zDEM }.
Solve in parallel the submodels (3.8) to obtain zT NF

fc ∀c ∈ Cg.

If it is feasible, then zT NF
f =

∑

c∈Cg

zT NF
fc and zDEM := min{zT NF

f , zDEM }.

Solve MIP model (3.10) to obtain zT NF
MIP .

If it is feasible, update zDEM := min{zT NF
MIP , zDEM }.

Step 8: (Branch pruning)
If xc

ti
has been branched to 0 for any c ∈ Cg, then go to Step 11.

Step 9: (Backward to previous node)
Reset i := i − 1.
If i = 0 and t ≤ 1, then the solution value zDEM has been found, STOP.
If i = 0 and all groups in Gt have already been branched then t := t − 1 and

select the last group g ∈ Gt.
else if not all nodes have been branch, then select the previous group g ∈ Gt.

Step 10: (Prune checking)
If xc

ti
= 1 for any c ∈ Cg, then go to Step 9.

Step 11: (Opposite branching)
Reset xc

ti
:= 1 ∀c ∈ Cg and go to Step 6.
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Chapter 3 Parallel Branch-and-Fix Coordination

3.4 Inner parallelization of the BFC algorithm

In this section the main ideas of the parallelization of the submodels (3.1) in Step
1 and Step 6 and the submodels (3.8) in Step 7 are presented. If a set of threads is
considered in a computing node, the execution of the |C| scenario cluster submodels
(3.1) can be parallelized by using different strategies depending on the number of
task threads to be used in distributed memory (using MPI) and the number of
auxiliary threads to be used in shared memory (by the MIP solver of choice).

1 task thread with 8 auxiliary threads (1 × 8)
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Figure 3.2: Parallel computing strategies: task threads with auxiliary threads

As an example, assume that 8 threads are available for parallelizing the
optimization of the |C| independent submodels. Some strategy options are as follows:
(1) 8 task threads are used for solving the submodels (one per each thread) and
running the MIP solver in the same task thread (i.e., the MIP solver is not allowed
to use internal functions in parallel); (2) 4 task threads are used with 2 auxiliary
threads each; (3) 2 task threads and 4 auxiliary threads and (4) 1 task thread and
8 auxiliary threads, see Figure 3.2.
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3.4 Inner parallelization of the BFC algorithm

Additionally, let main thread be the thread where the non-parallelized
calculations are executed; so, it is the one that gathers the distributed information.
It can be denoted as thread 0, and correlatively the other task threads can be
denoted as 1, 2, . . . . Similarly, the auxiliary threads for each primary one can be
denoted as 0, 1 , 2, ..., such that i.j denotes the jth auxiliary thread for the ith task
one. Notice that each auxiliary thread is linked to a specific task thread.

The general scheme of the inner Parallel Branch-and Fix-Coordination (Inner
P-BFC) is presented in Algorithm 3.2 and illustrated in Figure 3.3 by using an
illustrative platform where there are 2 task threads and 4 auxiliary threads each.

First, the optimization variables related to the DEM (3.5) problem are declared,
as introduced in Escudero et al. [2012a]. Then the MPI variables are declared by
the task threads, see Pacheco [1996]; Snir et al. [1995] for the most frequent MPI
variables and Section A.1 in Appendix A.

Then, in order to have a point-to-point communication environment it is essential
to identify each task thread with a thread rank number, so that the sender and the
receiver can be easily specified. Additionally, the rank enables a Single Program
Multiple Data (SPMD) paradigm to be worked on, which implies that different
threads execute different tasks in the same program. Moreover, the tasks to be
executed are divided between thread groups.

When independent cluster MIP submodels (3.1) are solved, each task thread
starts a shared memory parallel programming environment with a chosen number
of auxiliary threads. Once finished the main thread gathers the solution and the
solution value of all submodels by using message-passing communication. In order
for the message to be successfully communicated, see Pacheco [1996], the system
must append some information to the data that the application program wishes to
transmit. The MPI library provides a rich variety of functions for message-passing
tasks. For further information see Snir et al. [1995] and Appendix A.

Finally, when the optimal solution is found the results are reported and the MPI
environment finishes; execution ends in all task threads.
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Global initializations
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Figure 3.3: Illustrative one-path (1 × 2 × 4) Inner P-BFC diagram
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Algorithm 3.2: Inner P-BFC

Global initialization: [All task and auxiliary threads]

Level a: Declaring optimization and MPI variables [All task threads]
The optimization variables are declared, see details in Section A.1
in Apendix A

Level b: Definition of the global environment. [All primary threads]
Identify the number of task threads and assign a thread rank number
to each one.

Step 0: Solve the LP relaxation of DEM (3.5). [Main thread]

Step 1: Solve the C submodels (3.1). [All task and auxiliary threads]
Each task thread solves the associated optimization models with a
chosen number of auxiliary threads.

Level c: Global MPI communication. [All task threads]
If the solution value of the original DEM (3.5), computed as
zDEM =

∑

c∈C zc, satisfies the NAC (3.3) and (3.4), the optimal solution
is found and, then, go to Level d.

Steps 2 to 5: Next stage t, next scenario group g ∈ Gt, next node i
and branching. [Main thread]
Follow the instructions given in Algorithm 3.1 to branch the next variable.

Step 6: Solve assigned C submodels (3.1). [All task and auxiliary threads]
Each auxiliary thread, with a chosen number of auxiliary threads,
solve the |Cg| independent cluster MIP submodels (3.1) with the appropriate
x- fixations in the branching phases of the coordinated cluster trees.

Level c: Global MPI communication. [All task threads]
The main thread gathers the solution and the solution value
of all submodels, such that z =

∑

c∈Cg zc is computed.

Steps 7: Solve TNF models. [Main thread]
The LP submodel (3.6), the parallelized MIP submodels (3.8) ∀c ∈ C
and the MIP submodel (3.10) are solved. If the optimal solution is found
Level c: Global MPI communication. [All task threads]

Report results and go to Level d.

Steps 9 to 11: Pruning and Backward mechanism. [Main thread]
Follow Algorithm 3.1 to prune and backward branching.

Level d: Execution ends in all threads. [All task threads]
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3.5 Outer parallelization of the BFC algorithm

The Outer P-BFC is an algorithm whose efficiency is based on parallel interconnected
executions of the BFC algorithm. The outer level of parallelization is managed
by the so-called paths. At the beginning, the procedure defines a set of k 0-1
variables, (x1, x2, . . . , xk), the combinations of whose 0-1 values allows to initiate
2k paths. Each path is implemented by a main thread and associated to a
dynamically reassigned subproblem of the unvisited Branch-and-Fix tree defined
by a path Branch-and-Fix tree, BFTpath, and its corresponding root node N path=
(x1, x2, . . . , xk), the BFC algorithm, a set of task and auxiliary threads and a MPI
communication environment with other main threads.

According with the thread assignation given in Section 1.3, an Outer P-BFC
execution is denoted as (a × 1 × h). When 32 threads are available, for instance
the (4 × 1 × 8) thread assignation means that 4 main threads are defined (they are
associated to a four-path outer scheme), a single task threads will solve clusters in
parallel (the main thread itself), by calling 8 CPLEX optimizer auxiliary threads.

A synchronization phase based on communication increases global efficiency
in two ways: main threads associated to paths exchange feasible solution values,
allowing an earlier prunning of branches; and the main threads associated to
paths with no more Branch-and-Fix nodes to visit reassign the path subproblem
by redefining the root node, N path, and the path Branch-and-Fix tree, BFTpath,
obtained by splitting the tree of an unfinished BFT part. The parallelization of the
set of paths reduces the number of Branch-and-Fix nodes to be visited and therefore
the execution time.

The Outer algorithm is illustrated in the Figure 3.4 for four paths. Therefore, it
starts by fixing two 0-1 variables, (x1, x2) to N 1 = (0, 0), N 2 = (0, 1), N 3 = (1, 0)
and N 4 = (1, 1), respectively, such that these combinations define the initializations
for 22 paths in simultaneous and interconnected executions, so, the algorithm starts
in 4 main threads simultaneously. When each path has obtained a new feasible
solution such that its values are not smaller than the global incumbent solution
zDEM or the BFTpath has been fully visited, then the synchronization phase begins.

The independent execution part corresponds to Steps 1 to Step 11 in Algorithm
3.3 when synchronization phase is not called and is illustrated with yellow boxes in
Figure 3.4. Each path follows the serial BFC algorithm steps described previously
in Algorithm 3.1 with two variations.

First, the initialization, step where the algorithm starts with a root node
N path = (x1, x2, . . . , xk) with k 0-1 variables fixed and its associated Branch-and-
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Algorithm 3.3: Outer P-BFC

Level a: (Declaring optimization and MPI variables) [All main threads].
GLOBAL START.

Level b: (Definition of the global environment) [All main threads].
Step 0: (Initializations)
Step 1: (Root node)
Step 2: (Next stage)
Step 3: (Next scenario group)
Step 4: (Next node)
Step 5: (Branching)
Step 6: (Candidate TNF)

If a feasible solution of DEM is obtained, then update zDEM
path .

Go to Synchronization phase.
Step 7: (Integer TNF)

At the end of Step 7, update zDEM
path , if all nodes have been visited

at the BFT path, then set deadpath = 1 (dead), else set deadpath = 0 (active).
Go to Synchronization phase.

Step 8: (Branch pruning)
Step 9: (Backward to previous node)

If all the nodes have been visited at the BFT path, then set deadpath = 1 (dead).
Go to Synchronization phase.

Step 10: (Prune checking)
Step 11: (Opposite branching)

Synchronization phase
Level c: (All paths gather zDEM

path and deadpath) [All main threads].

Set zDEM = min(zDEM , minpath{zDEM
path }).

If all deadpath = 1 (dead) then
Level d: (Finish MPI environmment) [All main threads].
GLOBAL END.

else
Level c: (Variable branching exchange) [All main threads].
Dead paths are reassigned by splitting active path BFT path.
All paths update root node N path.

Paths where deadpath = 0 continue branching, go to Step 8.
Paths where deadpath = 1 restart algorithm, go to Step 1.
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Figure 3.4: Illustrative four-path (4 × 1 × 1) Outer P-BFC diagram

Fix tree BFTpath for each path. And second, the path execution moves to an
interconnected synchronization phase when its branching situation can benefit other
paths, that is, whenever a new feasible solution has been found whose zDEM

path (in

Step 6 or Step 7) is smaller than the global incumbent value zDEM , or all the nodes
of the BFTpath have already been visited (checked in Step 9).

For the description of the synchronization phase, let us define the active path
and the dead path, where initially all paths are free (non-active and non-dead):
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• An active path, the BFC algorithm for the path has still nodes of the BFTpath

that have not yet been visited. Set deadpath = 0.

• A dead path, all nodes of the BFTpath have been visited or have been pruned.
Set deadpath = 1.

The interconnected synchronization phase, the bottom block of Algorithm 3.3
and illustrated with a dashed red box in Figure 3.4, starts; first, with all paths
gathering the last feasible solution obtained by each path, zDEM

path , and updating

the incumbent global value, zDEM , of the Deterministic Equivalent Model (DEM).
Second, dead/active path analysis starts and one of the following three situations
can happen:

• All paths are dead. So, all nodes of the BFTpath have been visited and,
therefore, the original Branch-and-Fix tree BFT have been fully visited and,
then, the execution ends in all paths, so, the Outer P-BFC algorithm stops,
and the optimal solution has been found (global end).

• All paths are active. So, each one will continue branching and fixing in its own
BFTpath, with the new zDEM updated.

• Otherwise, each dead path will match with an active path, let us denote path1

and path2, respectively. The next fixed variable xk+1 in the BFTpath2
will be

descended with root node N path2
= (x1, . . . , xk), the initial root node for path2

is updated in its (k + 1)th index, for example, to N path2
= (x1, . . . , xk, 0) and

the dead path path1 will restart the BFC algorithm with the initial root node
N path1

= (x1, . . . , xk, 1) and its associated new BFTpath1
, while the active path

path2 will continue branching in its updated BFTpath2
.

Figure 3.5 and Table 3.1 show an illustrative example of the Outer P-BFC solving
instance P3 using two paths, where nodes of Path 1 and Path 2 are in blue and green,
respectively. When two paths are available only one 0-1 variable can be fixed for
defining the path, let it x1; so, Path 1 starts the BFC algorithm with root node
N 1 : (x1) = (0) and Path 2 with N 2 : (x1) = (1). The synchronization phase is
reached four times during the global solving, the process is as follows.

The first synchronization phase, denoted Sync.1 in Figure 3.5, takes place when
Path 1 obtains a feasible solution (for the original problem, that is, all x-variables
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Figure 3.5: Two-path Outer P-BFC performance for instance P3

take 0-1 values), at node 06, where zDEM
1 = −291665, and as it is still active, so

dead1 := 0; while Path 2 obtains a feasible solution at node 01, zDEM
2 = −290398,

and therefore the branch is pruned and, then, BFT2 is fully visited, so, dead2 := 1.
After the path solutions comparison, as zDEM

1 < zDEM
2 and zDEM

1 < zDEM , then
zDEM := zDEM

1 . As Path 2 is dead, let us descend to fix one binary variable, i.e.,
x2 by sharing Path 1 Branch-and-Fix tree. The root node for Path 1 is updated to
N 1 : (x1, x2) = (0, 0) and will continue branching; while Path 2 will give up the
previous tree and be engaged to the root node N 2 : (x1, x2) = (0, 1) and will restart
the BFC to solve the new path Branch-and-Fix tree BFT2. Note that root nodes
are indicated with doublelined circles in Figure 3.5.

The second synchronization phase, denoted Sync.2, takes place when Path 1
obtains a feasible solution in node 07 (whose solution value is smaller than the global
incumbent value zDEM ) being zDEM

1 = −291709 and it is still active. On the other
hand, Path 2 branches in nodes 02 to 04, such that a feasible solution is obtained,
being zDEM

2 = −291988 (smaller than the global incumbent value) and it is still
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Path 1 Path 2
Root/Node zc

1 zDEM
1 Root/Node zc

2 zDEM
2

Root (0) Root (1)
Node 01 −292117 Node 01 −290404 −290398
Node 02 −291839
Node 03 −291826
Node 04 −291759
Node 05 −291741
Node 06 −291678 −291665
Step 7 solved, dead1 = 0 Step 7 solved and all nodes branched, dead2 = 1

Synchronization phase 1: zDEM = −291665
goto Step 8 (continue branching) goto Step 1 (restart algorithm)

Root (0, 0) Root (0, 1)
Node 07 −291718 −291709 Node 02 −292116

Node 03 −292061
Node 04 −291996 −291988

Step 7 solved, dead1 = 0 Step 7 solved, dead2 = 0

Synchronization phase 2: zDEM = −291988
goto Step 8 (continue branching) goto Step 8 (continue branching)

Root (0, 0) Root (0, 1)
Node 08 −291652 Node 05 −292027 −292022
Node 09 −291826
Node 10 −291803 ∞
all nodes branched, dead1 = 1 Step 7 solved, dead2 = 0

Synchronization phase 3: zDEM = −292022
goto Step 1 (restart algorithm) goto Step 8 (continue branching)

Root (0, 1, 1) Root (0, 1, 0)
Node 11 −292075 −292070 Node 06 −291733

Node 07 −292114 −292109
Step 7 solved and all nodes branched, dead1 = 1 Step 7 solved and all nodes branched, dead2 = 1

Synchronization phase 4: zDEM = −292109
GLOBAL END

Table 3.1: Two-path Outer P-BFC performance for instance P3

active. After the path solutions comparison, as zDEM
1 > zDEM

2 and zDEM
2 < zDEM ,

then zDEM := zDEM
2 , nodes 07 and 04 are pruned in Path 1 and Path 2, respectively.

As dead1 := 0 and dead2 := 0, root nodes do not need to be updated and both paths
continue branching.

The third synchronization phase, denoted Sync.3 takes place when Path 1
branches on nodes 08 to 10 and stops because it has finished branching its own tree
rooted at (0, 0). On the other hand, Path 2 branches on node 05 where a feasible
solution is obtained, being zDEM

2 = −292022 (smaller than the global incumbent
value). After the path solutions comparison, as zDEM

1 > zDEM
2 and zDEM

2 < zDEM ,
then zDEM := zDEM

2 . Node 10 of Path 1 is pruned and the path is dead, dead1 := 1,
since Path 2 is still active, dead2 := 0. Path 1 has finished its own tree, therefore,
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let us descend to fix one binary variable, i.e., x3. Path 1 will give up the previous
tree and be engaged to root node N 1 : (x1, x2, x3) = (0, 1, 1) and the root node for
Path 2 is updated to N 2 : (x1, x2, x3) = (0, 1, 0).

Finally, the last synchronization phase, denoted Sync.4 takes place when Path
1 branches on node 11, a feasible solution is obtained, being zDEM

1 = −292070
(smaller than the global incumbent solution). On the other hand, Path 2 branches
on nodes 06 and 07, so that Step 7 is executed obtaining a feasible solution, being
zDEM

2 = −292109 (smaller than the global incumbent value). After the path
solutions comparison, as zDEM

1 > zDEM
2 and zDEM

2 < zDEM , then zDEM := zDEM
2 .

Node 11 of Path 1 is pruned. And additionally, both paths are dead, dead1 := 1 and
dead2 := 1, since all nodes at the path trees BFT1 and BFT2 have been branched.
Therefore, Outer P-BFC algorithm has finished, and the incumbent solution found
is zDEM = −292109.

3.6 Outer-Inner parallelization of the BFC algorithm

Observe that the independent BFC execution of each path in Algorithm 3.3 can be
internally optimized by performing the Inner P-BFC described in Algorithm 3.2. The
hybrid Outer-Inner BFC allows to use the computational resources in the approach
where the marginal effect on the elapsed time is bigger. The inner approach should
be reinforced when the scenario cluster submodels (3.1) represent a significant part
of the total elapsed time and/or the number of binary variables to be branched is
small. On the other hand, the outer approach should be reinforced when the integer
TNF model solving, (3.6), (3.8) and (3.10) represent a significant part of the total
elapsed time and/or the number of binary variables to be branched is large.

According to the thread assignation given in Section 1.3, a joint Outer-Inner P-
BFC execution is denoted as (a×b×h). When 64 threads are available, for instance
the (2 × 4 × 8) thread assignation means that 2 main threads are defined (they are
associated to a two-path outer scheme), 4 task threads will solve clusters in parallel
(they are used in inner scheme inside each path), by calling 8 CPLEX optimizer
auxiliary threads.

The procedure of the hybrid Outer-Inner BFC is described in Algorithm 3.4.
The main structure corresponds to Algorithm 3.3, where inner parallelization
of Algorithm 3.2 has been added. Therefore, after solving the scenario cluster
submodels (3.1) in Step 1 and Step 6, a secondary MPI communication is performed
within the task group, so that each main thread gathers the solution and solution
values of the associated task threads. Notice that the declaring of MPI variables
and the finish of the MPI environment is performed by all task threads.
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Algorithm 3.4: Outer-Inner P-BFC

Level a: (Declaring optimization and MPI variables) [All task threads].
GLOBAL START.

Level b: (Definition of the global environment) [All main threads].
Step 0: (Initializations)
Step 1: (Root node)

Level c: Secondary MPI communication. [All task threads]
The main thread gathers the solution and the solution value
of all submodels.

Step 2: (Next stage)
Step 3: (Next scenario group)
Step 4: (Next node)
Step 5: (Branching)
Step 6: (Candidate TNF)

Level c: Secondary MPI communication. [All task threads]
The main thread gathers the solution and the solution value
of all submodels.
If a feasible solution of DEM is obtained, then update zDEM

path .

Go to Synchronization phase.
Step 7: (Integer TNF)

At the end of Step 7, update zDEM
path , if all nodes have been visited

at the BFT path, then set deadpath = 1 (dead), else set deadpath = 0 (active).
Go to Synchronization phase.

Step 8: (Branch pruning)
Step 9: (Backward to previous node)

If all the nodes have been visited at the BFT path, then set deadpath = 1 (dead).
Go to Synchronization phase.

Step 10: (Prune checking)
Step 11: (Opposite branching)

Synchronization phase
Level c: (All paths gather zDEM

path and deadpath) [All main threads].

Set zDEM = min(zDEM , minpath{zDEM
path }).

If all deadpath = 1 (dead) then
Level d: (Finish MPI environmment) [All task threads].
GLOBAL END.

else
Level c: (Variable branching exchange) [All main threads].
Dead paths are reassigned by splitting active path BFT path.
All paths update root node N path.

Paths where deadpath = 0 continue branching, go to Step 8.
Paths where deadpath = 1 restart algorithm, go to Step 1.

61



Chapter 3 Parallel Branch-and-Fix Coordination

3.7 Computational experience

The computational experiments were conducted in the ARINA computational cluster
at SGI/IZO-SGIker from UPV/EHU (see Section 1.5). For this computational
experiment, 16 Intel Xeon type computing nodes have been used, consisting of
8 cores with 48Gb of RAM. The P-BFC algorithm has been implemented in a
C++ experimental code which uses the state-of-the-art optimization LP/MIP solver
CPLEX V12.2 (called from COIN-OR V1.3.1). The optimizer is used by the
algorithm to solve the LP relaxation of the original DEM (3.5), the MIP submodels
(3.1) for the set of scenario clusters C in different steps, LP submodel (3.6), the MIP
submodels (3.8) for the set of scenario clusters C and MIP model (3.10).

The computational experience is reported as follows: Section 3.7.1 presents the
dimensions of the testbed we have experimented with. Section 3.7.2 gives the
solution value of the original DEM (3.5) and strong lower bounds via scenario
clustering. Section 3.7.3 introduces the analysis of the parallel solving of the
testbed root nodes. Sections 3.7.4 and 3.7.5 report the results of the comparison
performed with different inner and outer P-BFC strategies versus plain use of
CPLEX, respectively. Finally, Section 3.7.6 reports the results of the comparison
performed with different Outer-Inner P-BFC strategies versus plain use of CPLEX.

3.7.1 Testbed dimensions

The instances P1-P14, denoted Testbed 2, of the computational experimentation are
taken from Escudero et al. [2012a]. The dimensions of the original DEM (3.5) and
the set Q of numbers C of scenario cluster submodels (3.1) for each potential break
stage t∗ = 0, 1, . . . , T − 1 are given in Table 3.2. The other headings of the table
are as follows: m, number of constraints; nx, number of 0-1 variables; ny, number
of continuous variables; nel, number of nonzero coefficients in the constraint matrix;
dens, constraint matrix density (in %); |Ω|, number of scenarios; |G|, number of
scenario groups; and T , number of stages.

3.7.2 Scenario clustering solution value and related GAPs

Table 3.3 reports the performance of the break stages t∗ = 1 and t∗ = 2 for obtaining
strong lower bounds of the solution value of the original DEM (3.5), by comparing

the LP optimality gap GAPLP = zDEM−zLP

zLP
(%) and the gap based on the break

stages defined as GAP 0
t∗ =

zDEM−z0

t∗

z0

t∗
(%). The other headings are as follows: zDEM

and zLP , solution values of the original DEM and its LP relaxation, respectively; C,
number of clusters that have been considered; z0

t∗ =
∑

c∈C

zc, where zc is the solution

value of the MIP model (3.1) for scenario cluster c.
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Table 3.2: Dimensions of DEM, compact representation. Testbed 2.

Instance m nx ny nel dens |Ω| |G| T Q
P1 2114 453 1359 44040 1.15 113 151 4 {1, 8, 29, 113}
P2 2544 530 1590 88465 1.64 74 106 4 {1, 7, 24, 74}
P3 7072 1632 4896 295577 0.64 217 272 4 {1, 10, 44, 217}
P4 9248 2176 6528 515768 0.64 217 272 4 {1, 10, 44, 217}
P5 2002 429 1287 41861 1.22 80 143 5 {1, 6, 16, 40, 80}
P6 12766 2946 8838 534563 0.35 340 491 5 {1, 8, 29, 113, 340}
P7 14400 3456 10368 1206875 0.60 182 288 5 {1, 7, 24, 74, 182}
P8 17380 3950 11850 606173 0.22 574 790 5 {1, 9, 39, 167, 574}
P9 24552 5580 16740 856121 0.16 844 1116 5 {1, 10, 44, 217, 844}
P10 2010 402 1206 28064 0.87 104 201 6 {1, 5, 13, 26, 52, 104}
P11 2814 603 1809 59256 0.87 104 201 6 {1, 5, 13, 26, 52, 104}
P12 4545 909 2727 93918 0.57 160 303 6 {1, 6, 16, 40, 80, 160}
P13 11824 2217 6651 249021 0.24 451 739 6 {1, 7, 24, 74, 182, 451}
P14 45216 8478 25434 951759 0.06 2036 2826 6 {1, 9, 39, 167, 574, 2036}

Table 3.3: Stochastic solution values and GAPs. Testbed 2.

DEM t∗ = 1 t∗ = 2
Instance zLP zDEM GAPLP C z0

t∗ GAP 0

t∗ C z0

t∗ GAP 0

t∗

P1 -157109 -156324 0.5 8 -156324 0.0 29 -157060 0.5
P2 -6483.55 -6146.04 5.2 7 -6175.99 0.5 74 -6254.76 1.7
P3 -293677 -292109 0.5 10 -292118 0.0 44 -293086 0.3
P4 -285706 -283938 0.6 10 -284151 0.1 44 -285441 0.5

P5 -6309.89 -6067.51 3.8 6 -6067.51 0.0 16 -6166.96 1.6
P6 -36302.8 -35959.9 0.9 8 -35960.3 0.0 29 -36008.3 0.1
P7 -270222 -269441 0.3 7 -269447 0.0 24 -269880 0.2
P8 -155077 -154814 0.2 9 -154814 0.0 39 -154902 0.1
P9 -226377 -225754 0.3 10 -225754 0.0 44 -225863 0.0

P10 37343.6 38156.6 2.2 5 38156.6 0.0 13 38118.3 0.1
P11 39364 39805.7 1.1 5 39797.5 0.0 13 39773.9 0.1
P12 40892 41502.3 1.5 6 41475.5 0.1 16 41445.8 0.1
P13 40522.3 41337.4 2.0 7 41337 0.0 24 41302.6 0.1
P14 41254.1 41783.5 1.3 9 41744.6 0.1 39 41701.7 0.2

In general, both GAPs are small, but GAP 0
t∗ for break stage t∗ = 1 is the smallest

one for the testbed, as it is zero in almost all the instances. This does not necessarily
mean that the NAC are satisfied by the solution whose value is z0

t∗ . The GAP 0
t∗ for

break stage t∗ = 2 is also very good for many instances in Testbed 2.
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3.7.3 Preliminary analysis: Parallel solving of root node

Let us begin the parallel computation experience by analysing the elapsed time of
solving the root node of the instances in Tested 2. The root node solution z0

t∗ is
obtained by solving the cluster subproblems related to the chosen break stage; as
shown in Table 3.3, the smaller the break stage, t∗, the better bound. When we
decompose the original problem with an early break stage, the number of cluster
subproblems is low but their scale is large; alternatively a later break stage creates
more, but smaller scaled, subproblems. In this section the effect of the break stage
on the best parallel strategy (task threads and auxiliary threads) is analysed.

Table 3.4 for instances P1-P4, Table 3.5 for instances P5-P9 and Table 3.6 for
instances P10-P14 show the elapsed time (in seconds) required for solving up to
optimality the root node cluster suproblems for different combinations of break
stages and the 16 (task and auxiliary) threads available in our computational
experimentation, based on the fact that CPLEX cannot use more than 8 (auxiliary
threads) in the academic version.

Let us describe how these C submodels can be solved in parallel in order to
obtain the solution values (of the optimal solutions) of each cluster submodel c called
z1

t∗ , z2
t∗ , . . . , zC

t∗ , and let us present the study of the real time vs (task × auxiliary)
threads strategies. Notice that a single main thread is considered.

Table 3.4 for P1-P4, Table 3.5 for P5-P9 and Table 3.6 for P10-P14 show in bold
the (task × auxiliary) threads combinations with the smallest elapsed time as well
as the characteristics of the related parallel computing strategies that have been
used for obtaining those elapsed times. The identifiers of each strategy for a given
set of threads means are as follows: Pure distributed (PD), the greater number of
task threads, the smaller elapsed time; Sharing (SH), the greater number of task
threads, the larger elapsed time; Quasidistributed (QD) the greater number of task
threads, the smaller elapsed time except for a single case; and, Undefined (UD) the
number of task threads versus auxiliary threads does not have a clear impact on the
greater/smaller elapsed time.

We can observe in Table (3.4) that the pure distributed strategy is the best one
for the instances P1-P4. For t∗ = 1 there is not a clear best (task × auxiliary)
combination, being all of them very good ones for P1-P3. It is worth to point out
that for the biggest instance of this serie, i.e., P4, the best combination is (2 × 8)
being pure shared the best strategy. On the other hand, the best combination is
(16 × 1) pure distributed for t∗ = 2 and t∗ = 3.

We can observe in Tables (3.5) and Table (3.6) (larger scale instances) the
same pattern observed in Tables (3.4), that is the combination (16 × 1) for
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Table 3.4: Elapsed time for solving the root node of instances P1-P4

Case task × auxiliary t∗ = 1 t∗ = 2 t∗ = 3

P1 2 × 8 0.549 1.225 3.556
4 × 4 0.246 0.305 0.888
8 × 2 0.168 0.160 0.381
16 × 1 0.177 0.109 0.185

best case QD PD PD

P2 2 × 8 2.417 1.408 2.459
4 × 4 0.584 0.375 0.743
8 × 2 0.588 0.204 0.385
16 × 1 0.832 0.210 0.234

best case UD QD PD

P3 2 × 8 7.928 3.258 12.0678
4 × 4 7.916 1.099 3.487
8 × 2 10.676 0.662 1.404
16 × 1 10.883 0.444 0.789

best case UD PD PD

P4 2 × 8 117.773 4.370 13.891
4 × 4 185.580 1.826 4.657
8 × 2 256.956 1.129 2.227
16 × 1 594.424 0.943 1.340

best case SH PD PD

(task × auxiliary) is almost always the best one; being the pure distributed the
best strategy for t∗ > 1. On the contrary, the best (task × auxiliary) combination
as well as the best strategy for t∗ = 1 are not clear. In any case, it seems clear
that the best elapsed time usually is obtained for the combination (16 × 1), the best
strategy is the pure distributed one and the best break stage is t∗ > 1.

Tables 3.7 and 3.8 show the elapsed time (in seconds) that is required for
obtaining the lower bounds of the solution value of DEM (3.5) for break stages
t∗ =1 and t∗ =2, respectively, for different strategies on using 16 (task and auxiliary)
threads available for our computational experimentation. Notice that CPLEX
cannot use more than 8 (auxiliary threads) in its academic version. The smallest
elapsed time of the four strategies for each instance in any of the two tables is
expressed in bold numbers.

Observe in Table 3.7 that there is not a clear best strategy (task × auxiliary)
for break stage t∗ = 1. It is worth to point out that (1 × 2 × 8) is the best strategy
for one of the hardest instance of our testbed, i.e. P4. Additionally, notice that for
this instance (where some MIP cluster submodels are very hard to solve), it is useful
the assignment of the 8 threads to CPLEX.

On the other hand, observe in Table 3.8 that (16× 1) is the best strategy for
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Table 3.5: Elapsed time for solving the root node of instances P5-P9

Instance task × auxiliary t∗ = 1 t∗ = 2 t∗ = 3 t∗ = 4

P5 2 × 8 0.687 0.986 1.803 2.746
4 × 4 0.679 0.385 0.426 0.766
8 × 2 0.490 0.163 0.184 0.360
16 × 1 0.681 0.130 0.132 0.220

best case QD PD PD PD

P6 2 × 8 24.823 4.463 7.079 20.633
4 × 4 18.075 2.118 2.845 5.939
8 × 2 17.720 1.240 1.417 2.633
16 × 1 20.717 0.992 0.855 1.452

best case QD PD PD PD

P7 2 × 8 14.216 9.043 11.825 22.437
4 × 4 11.070 4.745 5.984 10.378
8 × 2 8.135 2.523 3.081 5.542
16 × 1 8.136 2.932 2.445 3.792

best case QD QD PD PD

P8 2 × 8 12.248 4.757 7.408 20.633
4 × 4 8.628 2.435 2.611 5.939
8 × 2 14.472 1.853 1.295 2.633
16 × 1 12.530 1.502 0.769 1.452

best case UD PD PD PD

P9 2 × 8 102.835 7.776 10.830 36.961
4 × 4 41.4875 4.102 3.616 11.850
8 × 2 42.998 3.175 1.635 4.543
16 × 1 54.801 3.325 1.040 2.566

best case UD QD PD PD

t∗ = 2. Notice the remarkable small elapsed time that is required for obtaining
the lower bounds in all instances, mainly when they are compared with the times
reported in Table 3.7, (where t∗ = 1). On the other hand the best strategy is (16×1)
for t∗ > 2; the elapsed times are not reported since they are very similar compared
with these other ones.

3.7.4 Inner P-BFC strategies versus plain use of CPLEX

Table 3.9 reports the elapsed time for one-path and several task threads (i.e., inner
parallelization) that are obtained by P-BFC with t∗ = 1 versus plain use of CPLEX,
considering 8 auxiliary threads in both cases. The algorithm has also been executed
for break stages t∗ ≥ 2, but no advantage was obtained (except for instances P6 and
P12), probably, due to the fact that the instances were not large enough to consider
more cluster submodels and more 0-1 variables to branch even in a parallelized
scheme. The additional headings are as follows: nn, number of twin nodes explored
in the BFT phase of the algorithm; nT NF , number of integer TNF encountered
by the algorithm whose associated submodels are solved in Step 7; and tDEM , total
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Table 3.6: Elapsed time for solving the root node of instances P10-P14

Instance task × auxiliary t∗ = 1 t∗ = 2 t∗ = 3 t∗ = 4 t∗ = 5

P10 2 × 8 1.098 0.788 0.636 1.121 2.236
4 × 4 0.415 0.300 0.366 0.504 0.814
8 × 2 0.317 0.172 0.192 0.266 0.396
16 × 1 0.433 0.132 0.156 0.152 0.273

best case QD PD PD PD PD

P11 2 × 8 1.199 1.056 1.501 2.104 3.617
4 × 4 0.652 0.423 0.453 0.730 1.021
8 × 2 0.618 0.320 0.269 0.336 0.553
16 × 1 0.813 0.195 0.213 0.230 0.364

best case QD PD PD PD PD

P12 2 × 8 7.102 1.787 1.591 2.579 4.417
4 × 4 4.627 0.885 0.712 0.995 1.830
8 × 2 5.055 0.474 0.379 0.497 0.810
16 × 1 5.617 0.279 0.304 0.303 0.426

best case UD PD PD PD PD

P13 2 × 8 4.405 3.207 3.537 5.103 11.222
4 × 4 2.894 1.710 1.533 2.263 4.907
8 × 2 2.677 0.890 0.904 1.208 2.461
16 × 1 3.694 0.582 0.485 0.726 1.269

best case QD PD PD PD PD

P14 2 × 8 12.647 6.637 9.646 25.780 79.719
4 × 4 8.733 3.686 3.962 7.719 21.759
8 × 2 7.150 2.136 2.121 3.324 9.492
16 × 1 7.807 1.482 1.139 1.791 6.336

best case QD PD PD PD PD

Table 3.7: Elapsed time for solving the root node in Testbed 2. Summary for t∗ = 1

Instance C (1 × 16 × 1) (1 × 8 × 2) (1 × 4 × 4) (1 × 2 × 8)

P1 8 0.177 0.168 0.246 0.549
P2 7 0.832 0.588 0.584 2.417
P3 10 10.883 10.676 7.916 7.928
P4 10 594.424 256.956 185.580 117.773

P5 6 0.681 0.490 0.679 0.687
P6 8 20.717 17.720 18.0875 24.823
P7 7 8.136 8.135 11.070 14.216
P8 9 12.530 14.472 8.628 12.248
P9 10 54.801 42.998 41.487 102.835

P10 5 0.433 0.317 0.415 1.098
P11 5 0.813 0.618 0.652 1.199
P12 6 5.617 5.055 4.627 7.102
P13 7 3.694 2.677 2.894 4.405
P14 9 7.807 7.150 8.733 12.647

elapsed time (in seconds) for solving DEM (3.5) using different strategies; the elapsed
time for strategy (1 × 1 × 8) is also reported for plain use of CPLEX.
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Table 3.8: Elapsed time for solving the root node in Testbed 2. Summary for t∗ = 2

Instance C (1 × 16 × 1) (1 × 8 × 2) (1 × 4 × 4) (1 × 2 × 8)

P1 29 0.109 0.160 0.305 1.225
P2 24 0.210 0.204 0.375 1.408
P3 44 0.444 0.662 1.099 3.258
P4 44 0.943 1.129 1.826 4.370

P5 16 0.130 0.163 0.385 0.986
P6 29 0.992 1.240 2.118 4.463
P7 24 2.932 2.523 4.745 9.043
P8 39 1.502 1.853 2.435 4.757
P9 44 3.325 3.175 4.102 7.776

P10 13 0.132 0.172 0.300 0.788
P11 13 0.195 0.320 0.423 1.056
P12 16 0.279 0.474 0.885 1.787
P13 24 0.582 0.890 1.710 3.207
P14 39 1.482 2.136 3.686 6.637

Notice that the combination (1 × 1 × 8) is the serial version. The performance
of P-BFC is remarkable. Observe also that plain use of CPLEX cannot provide a
solution for instances P3, P4, P5, P8, P9 and P12. By contrast, P-BFC requires a
very small elapsed time, even for the hardest instance P4 in the testbed.

Table 3.9: Inner P-BFC for t∗ = 1 versus plain use of CPLEX. Testbed 2.

Nonsymmetric P-BFC Plain Use of
with CPLEX from COIN-OR (main × task × auxiliary) threads CPLEX

tDEM tDEM

Instance nn nT NF (1 × 1 × 8) (1 × 2 × 8) (1 × 4 × 8) (1 × 8 × 8) (1 × 16 × 8) (1 × 1 × 8)

P1 1 0 1 2 2 3 5 23
P2 3 1 45 45 37 37 42 3049
P3 24 6 332 239 228 216 214 —
P4 12 6 1727 1628 1515 1457 1438 —

P5 1 0 1 1 1 2 3 —
P6 3 2 88 69 56 50 44 4239
P7 3 2 115 74 68 60 60 461
P8 1 0 26 20 29 23 21 —
P9 1 0 109 68 54 41 44 —

P10 1 0 1 1 1 2 2 25
P11 3 2 10 6 5 5 5 530
P12 3 2 47 36 25 24 24 —
P13 3 2 40 25 24 24 23 1187
P14 3 2 119 97 97 92 92 509

—: Out of memory (48Gb) or time limit exceeded (6h)

3.7.5 Outer P-BFC strategies versus plain use of CPLEX

Table 3.10 reports the elapsed time required for solving the hardest instances in
the testbed, i.e., P3 and P4, using P-BFC, alternatively, with several-paths and one
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task thread (i.e., outer parallelization) versus one-path and several task threads (i.e.,
inner parallelization) for t∗ = 1.

A constant number of 8 threads is considered for the optimizer (in both cases,
inner and outer versions of the algorithm). The additional headings are Sth, speedup,

defined as Sth =
tDEM
serial

tDEM
inner

and Eth%, efficiency, defined as Eth% = 100 · Sth

th
, where th

is the total number of computing nodes (8 threads each) used by the corresponding
P-BFC. It can be observed that the greater number of paths, the smaller elapsed
time to obtain the optimal solution. The savings in elapsed time obtained by using
16 paths rather than a single one in P3 and P4 are 71.99% and 61.49%, respectively.
This is a remarkable time reduction. Additionally, notice that plain use of CPLEX
cannot solve the instances, see Table 3.9, due to either running out of memory (48Gb)
or exceeding the 6 hours time limit.

Table 3.10: Inner and Outer P-BFC scalability for t∗ = 1 in P3 and P4

Inner P-BFC
Strategy P3 P4

(1 × b × 8) tDEM Sb Eb% tDEM Sb Eb%
(1 × 1 × 8) 332 1.00 100 1727 1.00 100
(1 × 2 × 8) 239 1.39 69.46 1628 1.06 53.04
(1 × 4 × 8) 228 1.46 36.40 1515 1.14 28.50
(1 × 8 × 8) 216 1.54 19.21 1457 1.19 14.82

(1 × 16 × 8) 214 1.55 9.70 1438 1.20 7.51

Outer P-BFC
Strategy P3 P4

(a × 1 × 8) tDEM Sa Ea% tDEM Sa Ea%
(1 × 1 × 8) 332 1.00 100 1727 1.00 100
(2 × 1 × 8) 193 1.72 86.01 1168 1.48 73.93
(4 × 1 × 8) 131 2.53 63.36 945 1.83 45.69
(8 × 1 × 8) 99 3.35 41.91 702 2.46 30.75

(16 × 1 × 8) 93 3.57 22.30 665 2.60 16.23

Figure 3.6 depicts the comparison in speed up and efficiency for instance P3 of
the strategies of the algorithm with one-path and different task threads (1 × b × 8)
(i.e., inner parallelization alone), and the strategies with several paths and one task
thread (a × 1 × 8) (i.e., outer parallelization alone), where a, b = 1, 2, 4, 8, 16.

Table 3.11 reports the elapsed time for all the instances in the testbed for t∗ = 1
using several paths in P-BFC. The time reduction is remarkable. The computational
experimentation with t∗ = 2 does not show any improvement over t∗ = 1, except for
P6 and P12.

The inner and outer parallelization strategies perform better than plain use of
CPLEX even on the hardest instances, since CPLEX cannot solve them. Notice
that the parallelization strategies obtain the solution value for all the instances in
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Figure 3.6: Scalability of instance P3. Outer P-BFC versus Inner P-BFC

Table 3.11: Outer P-BFC for t∗ = 1 versus plain use of CPLEX. Testbed 2.

Nonsymmetric P-BFC Plain Use of
with COIN-OR/CPLEX (main × task × auxiliary) thread CPLEX

(1 × 1 × 8) (2 × 1 × 8) (4 × 1 × 8) (8 × 1 × 8) (16 × 1 × 8) (1 × 1 × 8)
Instance nn tDEM nn tDEM nn tDEM nn tDEM nn tDEM tDEM

P1 1 1 1 1 1 3 1 6 1 14 23
P2 3 45 1 47 1 14 1 21 1 26 3049
P3 24 332 11 193 9 131 5 99 4 93 —
P4 12 1727 7 1168 5 945 4 702 4 665 —

P5 1 1 1 2 1 2 1 6 1 9 —
P6 3 88 1 36 1 48 1 46 1 75 4239
P7 3 115 1 61 1 75 1 96 1 64 461
P8 1 26 1 35 1 50 1 51 1 62 —
P9 1 109 1 135 1 123 1 128 1 258 —

P10 1 1 1 2 1 4 1 33 1 36 25
P11 3 10 1 4 1 4 1 8 1 14 530
P12 3 47 1 20 1 23 1 27 1 34 —
P13 3 40 1 25 1 71 1 85 1 100 1187
P14 3 119 1 82 1 106 1 84 1 81 509

—: Out of memory (48Gb) or time limit exceeded (6h).

the testbed. However, outer parallelization generally requires less elapsed time than
inner parallelization, see the results reported in Table 3.9 and Table 3.11. This
is mainly because the great advantage that the synchronization phase of the outer
parallelization strategy has in reducing the number of nodes visited. It is due to
the bound updating and the dynamic allocation of the active paths, thus, assuring
better use of computer resources.
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3.7.6 Outer-Inner P-BFC strategies versus plain use of CPLEX

The computational results of the instances of the testbed for the joint outer-inner
parallelization strategy are reported in Table 3.12 in line with the best elapsed time
obtained by outer parallelization alone. The best ones are obtained with break stage
t∗ = 1 for all instances, but P6 and P12 whose results are obtained with t∗ = 2. Five
blocks of thread assignments are considered in the table.

Table 3.12: Outer-Inner P-BFC versus plain use of CPLEX. Testbed 2.

Nonsymmetric P-BFC Plain Use of
with CPLEX from COIN-OR (main × task × auxiliary) threads CPLEX

8 threads 16 threads 32 threads 64 threads 128 threads 8 threads
Instance t∗ nn tDEM nn tDEM nn tDEM nn tDEM nn tDEM tDEM

Strategy (1 × 1 × 8) (1 × 2 × 8) (1 × 4 × 8) (1 × 8 × 8) (1 × 16 × 8) (1 × 1 × 8)

P1 1 1 1 1 2 1 2 1 3 1 5 23
P5 1 1 1 1 1 1 1 1 2 1 3 —
P8 1 1 26 1 20 1 29 1 23 1 21 —
P9 1 1 109 1 68 1 54 1 41 1 44 —
P10 1 1 1 1 1 1 1 1 2 1 2 25

Strategy (1 × 1 × 8) (2 × 1 × 8) (2 × 2 × 8) (2 × 4 × 8) (2 × 8 × 8) (1 × 1 × 8)

P2 1 3 45 1 47 1 41 1 49 1 52 3049
P7 1 3 115 1 61 1 49 1 65 1 64 461
P11 1 3 10 1 4 1 4 1 8 1 8 530
P13 1 3 40 1 25 1 20 1 18 1 35 1187
P14 1 3 119 1 82 1 75 1 69 1 90 509

Strategy (1 × 1 × 8) (2 × 1 × 8) (4 × 1 × 8) (8 × 1 × 8) (8 × 2 × 8) (1 × 1 × 8)

P3 1 24 332 11 193 9 131 5 99 5 114 —

Strategy (1 × 1 × 8) (2 × 1 × 8) (4 × 1 × 8) (4 × 2 × 8) (4 × 4 × 8) (1 × 1 × 8)

P4 1 12 1727 7 1168 5 945 5 879 5 789 —

Strategy (1 × 1 × 8) (2 × 1 × 8) (2 × 2 × 8) (2 × 4 × 8) (2 × 8 × 8) (1 × 1 × 8)

P6 2 3 38 1 21 1 26 1 22 1 50 4239

P12 2 3 15 14 24 14 19 14 21 14 29 —

—: Out of memory (48Gb) or time limit exceeded (6h).

Table 3.12 shows the behaviour of the joint Outer-Inner P-BFC strategy. The
first block comprises instances P1, P5, P8, P9 and P10 whose optimization is
obtained in one node, only one-path and an increased number of task threads is
considered. Observe that the marginal effect of the Inner P-BFC is always higher
than when using the Outer P-BFC, that is, the most efficient parallel strategy
corresponds to pure Inner P-BFC. Since just one node is visited on the serial BFC
no gain is obtained by adding paths. The second block comprises instances P2, P7,
P11, P13 and P14, where initially the marginal effect of the Outer P-BFC is higher
reducing the visited nodes to one for strategy (2× 1 × 8). It is again more efficient to
increase threads in inner paradigm for strategies with two paths. More interestingly,
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instances P3, P4, P6 and P12 show that depending on the ratio of number/scale of
nodes, inner or outer can present a higher marginal effect, taking into account that
the maximum number of available threads is 128. The third block comprises only
instance P3, where the number of paths is up to 8 and the number of task threads
is small. The fourth block comprises only instance P4, with up to 4 paths, where
there is a mixture of paths and task threads. The fifth block comprises instances P6
and P12. Up to two paths are considered for P6, since it is the outer strategy that
provides the best results for the instance. The best strategy for P12 does not require
outer parallelization. Every time a new group of 8 threads is added the related
higher marginal effect can balance from one paradigm to other. Consequently, we
find parallel executions (with outer, inner and outer-inner strategies) to be the most
efficient ones for these instances.

In brief, the outer paradigm reduces the number of visited twin nodes, whereas
the inner paradigm reduces the computing time of each node (remember that model
(3.10) is currently not subdivided and therefore serially executed). Additionally, the
break stage selection has a major impact on the marginal effect balance since a
higher break stage implies more visited but smaller scaled nodes.

Table 3.13: Best P-BFC strategies summary. Testbed 2.

Nonsymmetric P-BFC CPLEX
Instance t∗ best strategy nn tDEM sratio (%) tDEM

P1 1 (1 × 1 × 8) 1 1 0 23
P2 1 (4 × 1 × 8) 1 14 68.89 3049
P3 1 (16 × 1 × 8) 4 93 71.99 —
P4 1 (16 × 1 × 8) 4 665 61.49 —

P5 1 (1 × 1 × 8) 1 1 0 —
P6 2 (2 × 1 × 8) 2 21 76.14 4239
P7 1 (2 × 2 × 8) 1 49 57.39 461
P8 1 (1 × 4 × 4) 1 16 38.46 —
P9 1 (1 × 8 × 8) 1 41 62.39 —

P10 1 (1 × 1 × 8) 1 1 0 25
P11 1 (2 × 1 × 8) 1 4 60 530
P12 2 (1 × 1 × 8) 3 15 68.09 —
P13 1 (2 × 4 × 8) 1 18 55 1187
P14 1 (2 × 4 × 8) 1 69 42.02 509

—: Out of memory (48Gb) or time limit exceeded (6h).

Observe that the instances P3 and P4 are the hardest ones in the testbed, but
they are solved efficiently. It is worth pointing out the performance of the outer-
inner parallelization versus the serial one, since the elapsed time of the latter is 332
(secs) for P3 and 1727 (secs) for P4, while the elapsed time for the former is 114 and
789, respectively.
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Figure 3.7 and Table 3.13 summarize the best strategy for each instance in the
testbed. The additional headings are as follows: best strategy, (a × b × h) with the
smallest elapsed time; and sratio (%), saving ratio of the elapsed time of the best
strategy and the time of the serial one (1 × 1 × 8). It can be observed that the
elapsed time of the parallelization strategy is substantially smaller than that of the
serial one in 11 of the 14 instances of the testbed. In all cases, both types of versions
solve all the instances in a time that is more than one order of magnitude smaller
than the time required by plain use of CPLEX. Based on those results, the break
stage of choice is t∗ = 1 if the computer resources available allows it. Otherwise, the
value should be increased.
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Figure 3.7: Elapsed time comparison for P-BFC, serial BFC and CPLEX

3.8 Conclusions

The elapsed time for obtaining the optimal solution is much more smaller in the
serial version of the decomposition algorithm BFC than in the plain use of a state-
of-the-art MIP solver, being always reliable, something that in the plain use of the
MIP solver is frequently not.

Several parallelization strategies have been introduced into the BFC methodology
for obtaining faster risk neutral optimal solutions to medium-scale and large-
scale multistage stochastic mixed 0-1 problems, where (exogenous) uncertainty is
represented by nonsymmetric scenario trees. The parallel computing version of the
algorithm is referred to as P-BFC.

Parallelization is performed in two levels. The inner level parallelizes the
optimization of MIP submodels attached to the set of scenario clusters created
by the modeler-defined break stage, say t∗. Based on this stage the model is
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represented by a mixture of the splitting variable and compact representations, such
that the non-anticipativity constraints (NAC) up to stage t∗ are explicitly stated.
The scenario clusters MIP submodels from stage t∗ + 1 (one for each scenario group
in the stage) implicitly satisfy the NAC for the scenario groups that belong to any
stage t > t∗ + 1. Since the cluster submodels are independent, they are optimized
in parallel in Step 1 of the algorithm to obtain a strong lower bound of the solution
value of the original stochastic problem, in Step 6 while iterating the Branch-and-
Fix Coordination approach of the algorithm until the break stage and, finally, in
Step 7 to be executed at each integer TNF to satisfy the explicit NAC. Based on an
extensive computational experience to assess the validity of the proposed approach,
the results of the inner parallelization are remarkable in the broad testbed used for
the experiment. Compared to the serial version even in the case where the CPLEX
solver is allocated the maximum number of threads (8, in the academic version),
the results basically depend on the number of task threads that are allocated for
parallel optimization of the cluster submodels. Notice that the elapsed time usually
is one order of magnitude smaller than the time required by plain use of CPLEX.
Additionally, the optimizer alone very frequently fails to solve the problem. The
elapsed time can be improved still further if the parallelization of the execution of
model (3.10) in Step 7 of the Inner P-BFC is performed, by decomposing it via the
iterative dualization of its NAC of the y- variables. For this purpose, the Clustering
Lagrangian Decomposition approach can be used, see Escudero et al. [2013a] for the
two-stage case. Its adaptation to P-BFC provides a direction for future work.

The outer level of parallelization is based on the path concept. In this chapter
a path is defined by a main thread managing a serial Branch-and-Fix Coordination
algorithm and the combinations of a set of 0-1 variables as initial condition, such
that each one can itself be internally optimized with the inner parallelization scheme
(multiple task threads) or without it (single task thread). The results of using the
outer parallelization alone are very good, so that the larger the number of paths,
the smaller the elapsed time to obtain the optimal solution.

However, the full parallelization of the algorithm which consists of using inner
parallelization on the paths resulting from outer parallelization provides the optimal
solution to the original stochastic problem in an astonishingly small elapsed time.
That time can be several orders of magnitude smaller than the time required by
the serial version of the algorithm, specially for break stage t∗ = 1 if the computer
resources allow it. Otherwise, the break stage value should be increased, but the
results are still remarkable.
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Chapter 4

Parallel Stochastic Dynamic

Programming

Arrange whatever pieces come your way.

Virginia Woolf

4.1 Introduction

The main objective of this chapter consists of presenting inner and outer
parallelization versions of the Stochastic Dynamic Programming (SDP) algorithm,
referred to as P-SDP, so that the solution quality improvement and elapsed time
reduction in problem solving are analyzed. The inner version parallelizes the
optimization of the MIP subproblems attached to the set of subtrees that have
been created by the modeler-defined stages. A strategy is presented for analyzing
the performance when using parallel computing based on a message-passing scheme
for solving the stage subtrees based MIP subproblems versus the serial version of
the SDP algorithm. The outer version of P-SDP optimizes the problem solving from
paths, which are solved in parallel at the threads and where each path execution
depends on the results obtained by the other ones along the algorithm. The main
results of a broad computational experience are reported to assess whether the
performance of the parallel computing approach compares favorably to the serial
one. The elapsed time required by the inner parallelization is up to one order of
magnitude smaller than that of the serial version of the algorithm, where efficiency
is up to 90% when using 12 threads, and the performance depends on computer
resources availability. Therefore, the larger the number of task threads, the smaller
the elapsed time required for problem solving. Additionally, the Outer P-SDP can
improve the solution quality versus the serial one, even for instances where the state-
of-the-art engine of choice, CPLEX, cannot even provide a feasible solution. As
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an illustrative example of the computational performance of the new approach for
solving a realistic production planning problem under uncertainty, for a large-scale
instance whose dimensions are 5.56 million constraints, 1.41 million 0-1 variables
and 3.49 million continuous variables, Inner P-SDP and SDP give a solution value
with a 0.16% gap versus plain use of CPLEX V.12.5 requiring an elapsed time of
978 seconds for Inner P-SDP and 7220 for SDP, while CPLEX is stopped since it
was running out of memory (35Gb) after 8274 seconds whose solution value has a
0.78% quasi-optimality gap at that time instant. On the other hand, plain use of
CPLEX was stopped running out of memory after 3003 seconds while solving the
LP relaxation of the largest instance in the testbed that we have experimented with,
whose dimensions are 57.8 million constraints, 15.4 million 0-1 variables and 38.5
million continuous variables. For that instance, Inner P-SDP and SDP required 2446
and 26180 seconds, respectively, to provide a solution whose value is the same but,
obviously, its quality could not be assessed, see Aldasoro et al. [2014].

The rest of the chapter is organized as follows: Section 4.2 presents the serial
version of the SDP algorithm to be parallelized. Section 4.3 introduces the Parallel
Stochastic Dynamic Programming (P-SDP) schemes. Section 4.4 reports the main
results of a broad computational experience to assess the validity of the parallel
versions of the SDP algorithm versus its serial one and plain use of CPLEX. Section
4.5 summarizes the main conclusions.

4.2 SDP decomposition algorithm

The section presents the SDP algorithm for solving multiperiod stochastic mixed
0-1 programs whose versions for particular problems have been introduced in
Cristobal et al. [2009]; Escudero et al. [2013b]. Section 4.2.1 decomposes the time
horizon into stages. The algorithmic framework is presented in Section 4.2.2. The
crucial ingredient of the algorithm, the so-named Expected Future Value (EFV)
curve, is explained in detail in Section 4.2.3.

4.2.1 Breaking the time horizon into stages

The SDP algorithm combines consecutive time periods into stages, as shown in
Figure 4.1. The following additional notation for the stages is used throughout the
chapter:

P, set of periods along the time horizon.

a(g), immediate ancestor node of node g, for g ∈ G.

t(g), stage to which scenario group g belongs, therefore, g ∈ Gt(g).
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Rt, set of nodes (i.e, scenario groups) in the earliest period of stage t, for t ∈ T ,
therefore, Rt is the set of root nodes of the subtrees in the scenario tree related
to stage t, for t ∈ T .

Mr⊆ Gt, set of nodes in the subtree rooted at node r ∈ Rt included in stage t, for
t ∈ T .

Lr, set of leaf nodes from Mr in the subtree whose root node is r, for r ∈ Rt, t ∈ T .

Sℓ, set of immediate successor scenario groups to scenario group ℓ, for ℓ ∈ Lr, r ∈
Rt, t ∈ T . Note that Sℓ = ∅ for ℓ ∈ GT . Also note that

⋃

r′∈Sℓ
Mr′ is the node

set in the scenario subtrees related to those immediate successor subproblems
of node ℓ.

Ãℓ, set consisting of leaf node ℓ ∈ Lr and its ancestor nodes in Aℓ, such that their
variables have nonzero elements in constraints associated with the nodes in the
immediate successor subproblems to node ℓ, for ℓ ∈ Lr, r ∈ Rt, t ∈ T \{|T |}.

The splitting of time horizon P into the set of stages T and, then, the decision
of the modeler defined composition should take into account the dimensions of the
constraint systems for the sets Mr ∀r ∈ Rt as well as the cardinality of set Aℓ for
ℓ ∈ Lr.

Once the time horizon has been split into stages, the DEM can be divided into
subproblems, which are connected by the linking variables. For each r ∈ Rt, t ∈ T ,
let us associate a subproblem with the subtree defined by node set Mr, being r its
root node. In Figure 4.1, M5 = {5, 8, 9} defines a subtree (to whom a subproblem
is attached) in stage t = 2 with node 5 as its root. In this example, there are in
total eleven subtrees/subproblems (they are marked by dashed boxes).

The subproblem defined by node set Mr′ , r′ ∈ Rt−1, t ∈ T \ {1} can be written
as follows,

F
′

r′(V a(r′)) := min
∑

ℓ∈Lr′

wℓ

( ∑

g∈Aℓ

(agxg + bgyg) + λℓ(·)
)

s.t.
∑

q∈Ag

(Ag
qxq + Bg

q yq) = hg ∀g ∈ Mr′

xg ∈ {0, 1}nx(g), 0 ≤ yg ≤ ŷg ∀g ∈ Aℓ, ℓ ∈ Lr′

xg = xg, yg = yg ∀g ∈ Aa(r′),

(4.1)

where V g = (xg, yg), such that xg and yg are the solution of the variables
in vectors xg and yg, respectively, Va(r′) is the vector of x- and y-variables of
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Front-to-Back (FtB)

Back-to-Front (BtF)
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T = {1, 2, 3}

P = {1, . . . , 7}

ω = 1 : nodes {1, 2, 3, 4, 6, 10, 18}

t(6) = 5

a(6) = 4
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G2 = {4, 5, 6, 7, 8, 9}

R2 = {4, 5}

M4 = {4, 6, 7}

L1 = {3}

Figure 4.1: An example of multiperiod scenario tree

the ancestor scenario groups g to root node r′ (without including itself) that
have nonzero elements in the constraints of the scenario groups in set Mr′ (i.e,
Va(r′) = {xg, yg ∀g ∈ Ãa(r′)}), and λℓ(·) λℓ(·) (assumed to be convex) gives the
expected solution value of the immediate successor subproblems of leaf node ℓ. Note
that function λℓ(·) depends upon the values of x- and y-variables whose vectors
belong to set Ãℓ. Finally, F

′

r′(V a(r′)) is the solution value of model (4.1).

Figure 4.2 shows an example of function λℓ(·) and its approximation (EFV curve)
for node ℓ. Two straightforward observations need to be made here. First, no
decisions are taken prior to the root node r′ = 1. And, second, no EFV curves are

78



4.2 SDP decomposition algorithm

present in the subproblems in the last stage since the time horizon ends there.

Functions λℓ(·) for ℓ ∈ Lr′ , r′ ∈ Rt−1, t ∈ T \{1} and F
′

r(·) for r ∈ Sℓ are closely
related. The immediate successor subproblems of node ℓ (i.e., successor subproblems
in stage t) are given by the node sets Mr, ∀r ∈ Sℓ. We can express λℓ(·) as the
weighted sum of the optimal objective function value of those subproblems:

λℓ(·) =
∑

r∈Sℓ

wrF
′

r(·). (4.2)

4.2.2 SDP decomposition algorithm

Since the λ(·) curves are generally difficult to compute, the SDP decomposition
algorithm proposes to approximate them by piecewise linear convex functions. For
that purpose, let a set of reference levels for subproblem r′ such that the zzth
reference level is included by parameter µz

ℓ and parameter vector πz
ℓ to define the

piecewise linear function. Figure 4.2 depicts an example of the λℓ(·) curve as well
as its approximation EFV.
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Figure 4.2: An example of λℓ(·) curve and its approximation EFV

The approximation of subproblem (4.1) can be expressed

Fr′(V a(r′)) := min
∑

ℓ∈Lr′

wℓ

( ∑

g∈Aℓ

(agxg + bgyg) + λℓ

)

s.t.
∑

q∈Ag

(Ag
qxq + Bg

q yq) = hg ∀g ∈ Mr′

xg = xg, yg = yg ∀g ∈ Aa(r′)

xg ∈ {0, 1}nx(g), 0 ≤ yg ≤ ŷg ∀g ∈ Aℓ, ℓ ∈ Lr′

λℓ ≥ µz
ℓ + πz

ℓ Vℓ ∀z ∈ Zℓ, ℓ ∈ Lr′ .

(4.3)
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We will refer hereafter to the last constraints in (4.3) as the EFV curve
constraints, where Zℓ Zℓ is the set of indices of currently active reference levels
defining EFV curve constraints. It is trivial to see that a better approximation
of function λℓ(·) is obtained increasing |Zℓ|, provided that any new reference level
defines an active constraint.

The SDP algorithm adopts an approach where the EFV curves are refined
iteratively using recursion. See other approaches in Pereira and Pinto [1991]; Ross
[1995]; Shapiro et al. [2013]; Piazza and Pagnoncelli [2014]. Each iteration of the
decomposition algorithm consists of a Front-to-Back (FtB) scheme followed by a
Back-to-Front (BtF) scheme, see Figure 4.1. The FtB scheme is aimed at building
a feasible solution (x = x, y = y) for the problem and checking whether it improves
the incumbent solution, say (x∗, y∗). Subproblems in stage t = 1 to stage t = |T | are
serially solved, passing the values of linking variables (vector V ℓ, ℓ ∈ Lr′ , r′ ∈ Rt−1)
for stage t > 1 onto the immediate successor subproblems rooted at node r for all
r ∈ Sℓ for refining the EFV curves of subproblem rooted at node r′. The refinement
consists of creating a new reference level for each leaf node ℓ where ℓ ∈ Lr′ , so that
a new EFV point defining constraint is appended to the subproblem. Note: Non-
active EFV curve defining constraints could be deleted at this point and the sets Zℓ

are updated at every, say, nitek iterations.

The BtF scheme is aimed at refining the EFV curves around the partial feasible
solutions Vℓ (obtained for each subproblem in the FtB scheme executed at past
iterations), by serially solving the subproblems r for r ∈ Rt in the last stage t = |T |
to stage t = 2 and passing the refinement of the EFV curves onto the subproblems
in the previous stages. The refinement consists of creating a new reference level for
each active level in Zℓ for each leaf node ℓ = a(r) where ℓ ∈ Lr′ at each subproblem
r′ ∈ Rt−1, t ∈ T \ {1} once all subproblems rooted at nodes r ∈ Sℓ have been solved
(see below). Note that |Zℓ| is doubled at the end of the execution of the scheme for
each iteration as it is the number of new points defining EFV curve constraints for
each leaf node ℓ that are appended to the subproblems.

The stopping criteria for the algorithm at the end of the FtB scheme in any
iteration, say iter is as follows:

1. The relative absolute difference between the solution value that has been
obtained in the iteration, say F =

∑

g∈G wg(agxg + cgyg), and the incumbent
one of the original problem (1.4), say F ∗ =

∑

g∈G wg(agx∗
g + cgy∗

g), is below a
given tolerance parameter, say ǫ1 > 0 and additionally the relative absolute
difference between the solution values F at two consecutive iterations (i.e.,
iter − 1 and iter) is below a given tolerance parameter, say ǫ2 > 0.
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4.2 SDP decomposition algorithm

2. An upper bound on the number of iterations, say miter, is reached.

3. The allowed elapsed time is reached or the algorithm is running out of memory.

A detailed procedure of the serial SDP decomposition algorithm is presented in
Algorithm 4.1, including the initialization and both the FtB and the BtF schemes in
which each iteration is split. In the next section, the refinement of the EFV curves
is discussed in detail, i.e., how to obtain the set of new reference levels included by
the parameters giving the new linear piecewise functions to improve the EFV curves
approximation of the λ(·) curves

4.2.3 λ(·) curves approximation

This section explains how the EFV approximation of λℓ(·) is refined at each iteration
for ℓ ∈ Lr′ , r′ ∈ Rt, t ∈ T \ {1}.

Let Fr(V
z
ℓ ) denote the solution value of model (4.3) obtained for a given reference

level numbered as z, where V
z
ℓ is the fixed value of vector V z

ℓ in the constraint system
xg = xg, yg = yg ∀g ∈ Ãℓ.

Let z′ be the identification of the new reference level to be created, such that
z′ = z whenever it is created in the FtB scheme of the given iteration, and it is
z′ = |Zℓ| + z if it is created in the BtF scheme, where the z-th reference level was
created either in the FtB scheme of the same iteration or in any of both schemes in
any previous iteration (see procedure SDP below).

The z′-th reference level is included by parameter µz′

ℓ and parameter vector πz′

ℓ

that are obtained using an ad-hoc sensitivity analysis of solution value Fr(V
z
ℓ ) on a

small perturbation, say ξz′

r ξz′

r , performed on the linking constraint system V z
ℓ = V

z
ℓ

in the subproblems for all r ∈ Sℓ, such that let πz′

r be the dual vector of those
constraints. The i-th element of vector ξz′

r , say (ξz′

r )i can be computed as follows:

(ξz′

r )i = ranz′
/f(iter),

such that 0 ≤ (ranz′
)i ≤ f for (xg)i-variable and 0 ≤ (ranz′

)i ≤ f × (ŷg)i for
(yg)i-variable is the randomly generated i-th element of vector ranz′

, where (xg)i

and (yg)i are the x- and y- variables that correspond to the i-th element of vector
Vℓ, f is a multiplicative factor such that f ∈ (0, 1] and f(iter) is a monotonically
non-decreasing function on the current iteration number iter. Therefore, it results

Fr(V
z′

ℓ + ξz′

r ) ≈ Fr(V
z′

ℓ ) + πz′

r ξz′

r = µz′

r + πz′

r × (V
z′

ℓ + ξz′

r )

where
µz′

r = Fr(V
z′

ℓ ) − πz′

r V
z′

ℓ . (4.4)
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Note that due to the assumed convexity of function λℓ(·), it results

F
′

r(V
z′

ℓ + ξz′

r ) ≤ Fr(V
z′

ℓ + ξz′

r ).

The µ− and π− expected values for scenario group ℓ over the related values of
its immediate successor subproblems (and, therefore, rooted at nodes r ∈ Sℓ for the
node sets Mr) can be expressed

µz′

ℓ =
∑

r∈Sℓ

wrµz′

r (4.5)

πz′

ℓ =
∑

r∈Sℓ

wrπz′

r . (4.6)

The SDP algorithm for chosen set of stages T and maximum number of iterations
miter is described in Algorithm 4.1.

4.3 On parallelizing the SDP decomposition algorithm

4.3.1 P-SDP parallelization strategies

The SDP algorithm can be parallelized in different ways, depending on the goal to be
achieved, i.e., reducing the execution time or improving the incumbent solution value.
The first paradigm consists of sharing, when possible, the subproblems solving steps
among threads, see Section 4.3.2. The resulting parallel algorithm is so-named Inner
P-SDP. On the other hand, the second paradigm performs simultaneous executions
of the SDP algorithm, referred to as paths as above, so that a wider feasibility
area is explored. Communication among paths is carried out several times per
iteration targeting two effects: convergence when finding an incumbent solution
and divergence towards new search directions. The corresponding algorithm is so-
named Outer P-SDP, see Section 4.3.3. The parallel computing concepts that will
be considered in the parallelization strategies are defined in Section 1.3. Notably,
the task thread subgroup and coordinator task thread concepts will be used in order
to allow an asynchronized execution.

4.3.2 Inner P-SDP parallelization strategy

The main parallelization activities of the Inner P-SDP algorithm are performed at:

• FtB scheme: Step 2 for solving the |Rt| subproblems for stage t : 1 < t ≤ |T |,
and Step 3 for generating and appending the corresponding EFV-ℓz in defining
constraints to the leaf nodes ℓ of each of the |Rt−1| subproblems for stage t−1,
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4.3 On parallelizing the SDP decomposition algorithm

Algorithm 4.1: Serial SDP

Step 0: (Initialization)
Set F ∗ := ∞, iter := 0, z := 1.

Set Zℓ := {1}, Z
′

ℓ := ∅ ∀ℓ ∈ Lr, r ∈ Rt, t ∈ T \ {|T |}.
Step 1: (FtB scheme: Solve subproblem (4.3) for stage t = 1)

Set iter := iter + 1.
Solve the subproblem for obtaining F1(∅).
Set (x1

g, y1
g)g∈M1

to its optimal solution vector.

Set t := 2.
Step 2: (Solve subproblem (4.3) rooted at node r, ∀r ∈ Rt)

Set ℓ := a(r).

Solve the subproblem for obtaining Fr(V
z
a(r)).

Set (xz
g, yz

g)g∈Mr to its optimal solution vector.

Set πz
r as the dual vector of the linking constraint system V z

ℓ =V
z
ℓ .

Compute µz
r (4.4).

If iter ≡ 0 (mod niterk) for iter > 1 then: Delete any non-active EFV-ℓz

defining constraint from subproblem (4.3) and reset z = 0 in set Zℓ for ℓ ∈ Lr.
Step 3: (Generate and append the EFV-ℓ defining constraint to

subproblem (4.3) rooted at node r′, ∀ℓ ∈ Lr′, r′ ∈ Rt−1)
Compute µz

ℓ (4.5) and πz
ℓ (4.6).

Append constraint λℓ≥ µz
ℓ + πz

ℓ Vℓ to the subproblem.
Step 4: (Forward to next stage t + 1)

If t < |T | then reset t := t + 1 and go to Step 2.
Step 5: (Compute solution value for original model (1.4) and

check stopping criteria)

F
iter

=
∑

g∈G wg(agxz
g + cgyz

g).

If |F
iter

−F ∗|
|F ∗| ≤ ǫ1 and |F

iter
−F

iter−1
|

|F iter−1|
≤ ǫ2 then STOP.

If iter = 1 or F
iter

< F ∗ then x∗ := xz, y∗ := yz and F ∗ := F
iter

.
If iter = miter then STOP.

Step 6: (BtF scheme: Compute dual vector of subproblem (4.3) rooted
at node r ∀z ∈ Za(r) : z > 0, r ∈ Rt, t > 1)

Set ℓ := a(r).

Solve the subproblem for obtaining Fr(V
z
ℓ ).

Set z′ := |Zℓ| + z and enlarge Z
′

ℓ := Z
′

ℓ ∪ {z′}.

Set πz′

r as the dual vector of the linking constraint system V z
ℓ = V

z
ℓ .

Compute µz′

r (4.4).
Step 7: (Generate and append the EFV-ℓ defining constraints in

subproblem (4.3) rooted at node r′, ∀ℓ ∈ Lr′, r′ ∈ Rt−1)

Compute µz′

ℓ (4.5) and πz′

ℓ (4.6) ∀z′ ∈ Z
′

ℓ.

Append constraint λℓ ≥ µz′

ℓ + πz′

ℓ Vℓ ∀z′ ∈ Z
′

ℓ to the subproblem.

Reset Zℓ := Zℓ ∪ Z
′

ℓ, Z
′

ℓ := 0.
Step 8: (Backward to previous stage t − 1)

Reset t := t − 1. If t > 1 then go to Step 6.
Reset z := |Zℓ| + 1 and go to Step 1.
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such that all subproblems rooted at node r for r ∈ Sℓ contribute to the EFV
definition. It is worthy to point out that the serial algorithm SDP does not
solve a subproblem of stage t for Step 2 (res. stage t − 1 for Step 3) until
all subproblems of the previous stage t − 1 (res. successor stages) have been
optimized, i.e. synchronized FtB execution. At the Inner P-SDP strategy
there is no need to wait until all those subproblems in the previous stage are
solved in Step 2 (res. successor stage in Step 3) to continue the execution
of the FtB scheme, i.e. the execution can be asynchronized. In fact, the
optimization of any subproblem must only wait until the optimization of its
immediate ancestor subproblem is over for Step 2 (res. all successor ancestor
subproblems for Step 3 are over) and the solutions are gathered.

• BtF scheme: Step 6 for solving the |Rt| subproblems for each of the |Za(r)|
reference levels (if they are active) for stage t : 1 < t ≤ |T |, let r be the root
node of any of those subproblems. And Step 7 for generating and appending
the |Z

′

ℓ| EFV-ℓz′
curve defining constraints ∀ℓ ∈ Lr′ in the |Rt−1| subproblems,

let r′ be the root node of any of those subproblems, for the given stage t such
that t : 1 < t ≤ |T | and all subproblems rooted at node r for r ∈ Sℓ contribute
to the EFV definition. Note that the BtF scheme can also be asynchronized
for Step 6 and Step 7 since a thread can work on solving any subproblem,
say, rooted at node r after solving all of its immediate successor subproblems.
Then, Step 7 for generating and appending the EFV-λℓ defining constraint in
its immediate ancestor subproblem rooted by node, say r′ (i.e., ℓ = a(r) for
ℓ ∈ Lr′) waits until the subproblems rooted by all the successor nodes of node ℓ
(i.e., nodes in set Sℓ) are solved in Step 6. Once the EFV-λℓ defining constraints
for all leaf nodes ℓ (therefore, all nodes in set Lr′) have been generated and
appended to the subproblem rooted by node r′, then it can be solved in Step
6.

• Communication and Synchronisation phase: Threads need to exchange
information in order to reproduce the serial version behaviour. Firstly, |Rt|
task thread subgroups will be declared, where t = 2, such that the scenario
subtrees rooted at nodes r for r ∈ R2 will be assigned to the coordinator
task threads; these threads manage the secondary communication environment.
If more threads are available, they will work as subordinated task thread,
i.e., each follows a coordinator task thread and splits the solving tasks. A
tertiary communication layer handles the interaction between a coordinator
task thread and its potential subordinated task threads. The frequency of
the communication between the secondary and tertiary layers (i.e., the part of
the algorithm that can be executed in an asynchronized way) depends on the
model characteristics, i.e., the nature of the linking variables.
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4.3 On parallelizing the SDP decomposition algorithm

Note that once the stages are further and further forward in the FtB scheme, the
number of usable threads is substantially increased until the last stage |T | where as
many threads as the number of scenarios |Ω| can be used. Additionally, note that
subproblems that belong to different stages and one is not ancestor of the other can
also be optimized simultaneously in the asynchronized version of the Inner P-SDP
algorithm.
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Figure 4.3: Inner parallelization scheme with 8 task threads (2 coordinator and 6
subordinated)

In Figure 4.3, the inner parallelization strategy is illustrated for the scenario tree
shown in Figure 4.1. Assume there are 8 available threads. As there are |R2| = 2
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branches for the second stage, two coordinator task threads are considered (therefore
two task thread subgroups), th 1 in green and th 2 in blue (threads 3 to 5 are
subordinated task threads of coordinator th 1 and threads 6 to 8 are subordinated
task threads of coordinator th 2). The root nodes {r} for the subproblems (4.3)
that are solved in the FtB scheme are detailed in set RF tB

th = {r, r ∈ Rt, t ∈ T } for
coordinator task threads and set RBtF

th = {r, r ∈ Rt, 2 < t ≤ T } for subordinated
task threads. The subproblems (4.3) solved in the BtF scheme are detailed in set
RBtF

th = {r, r ∈ Rt, t ∈ T \ {1}} for coordinator and subordinated task threads.
Notice that the subproblem rooted at node r = 1 is iteratively solved only in the
FtB scheme by the first coordinator task thread, th 1. For the FtB scheme in
the example the coordinator task thread th 1 solves the subproblems rooted at
nodes 1, 4 and 10, while the subproblems rooted at nodes 11, 12 and 13 are solved
by the subordinated task threads 3, 4 and 5, respectively. In the same way, the
coordinator task thread th 2 solves the subproblems rooted at nodes 5 and 14,
while the subproblems rooted at nodes 15, 16 and 17 are solved by the subordinated
task threads 6, 7 and 8, respectively. However, the subproblems from last stage |T |
to stage 2 are distributed among all available task threads in the BtF scheme and
observe that each subproblem is solved in intermediate stages (2 ≤ t ≤ |T | − 1) in
an increasing number of computing time due to adding reference levels.

4.3.3 Outer P-SDP parallelization strategy

The Outer P-SDP paradigm is based on the path concept, a link between
simultaneously SDP algorithm execution and main thread management. Notice
that a single task thread is considered in each path. It uses the solution pool option
offered by the state-of-the-art MIP engine for optimizing stage t = 1 subproblem
alone, which allows not only one optimal solution of a problem but also multiple
ones, referred as alternative solutions, to be stored. The scheme is as follows.

• Global solution pool: This phase aims to direct each path to a different starting
search direction that consists of a solution drawn from the solution pool. It
will be executed at the beginning of Step 1 for iter = 1. Every path executes
the solution pool option and, thus, picks up an alternative solution, see below.

• Communication and synchronization: This phase is performed at the end of
Step 5 in the FtB scheme, see Figure 4.4 and detail at Figure 4.5. The main
threads gather the (feasible) solution obtained at each path and store the best
among them as the global solution at the given iteration. If the stopping
criteria is fulfilled then all main threads stop execution; otherwise it is checked
if the global iteration solution value improves the global incumbent one, zDEM .
If it does, then zDEM is updated and it is passed to all paths. Otherwise, each
path checks if its current solution value improves its own incumbent solution
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value, zDEM
path . If it does not, a warning message of non-improved solution is

stored. In any case, the execution will start the BtF scheme.

• Path perturbation seed at Step 6: In order to mantain the divergence between
the different paths, each one has its proper seed for perturbing the current
solution in order to generate reference levels.

• Alternative solution from path pool: It is executed at the beginning of Step 1
for iter > 1 and for the path where a warning message is issued at the previous
iteration. A solution for stage t = 1 is chosen from the pool following a given
selection criterion, which is problem depending, for instance, a solution whose
value is the smallest one in the pool, etc.

4.4 Computational experience

The algorithm has been implemented in a C experimental code and uses the state-of-
the-art CPLEX V12.5 optimization engine for solving the MIP subproblems (4.3).
The computational experiments were conducted in the ARINA computational cluster
at SGI/IZO-SGIker, Universidad del País Vasco, UPV/EHU, see Section 1.5. For the
reported experiments, 8 Intel Xeon type computing nodes have been used, consisting
of 12 cores with 48Gb of RAM, see Table 1.1.

4.4.1 Serial implementation overview

The SDP algorithm presented in Algorithm 4.1 has been implemented for
solving the realistic production planning problem under uncertainty introduced in
Cristobal et al. [2009]. As it frequently happens in tactical multistage planning
problems, in our case only continuous variables in a period have nonzero coefficients
in the constraints of the next one. Therefore the linking variables between stages only
occur between the leaf nodes {ℓ} of the subproblems rooted at node, say, r′ in a given
stage t−1, and the root nodes r of the successor subproblems in the next stage, such
that r ∈ Sℓ, if any. (In our case, Vℓ = {yg, g ∈ Ãℓ} for ℓ ∈ Lr′ , r′ ∈ Rt−1, t ∈ T \{1},
such that (yg)i denotes the stock of product i in set I related to scenario group g).
Therefore, those continuous variables are the only ones to be iteratively perturbed.
The perturbation has been performed as follows: ξ = ran/f(iter), where f(iter) = k
being k a constant. Given the relatively small number of iterations performed and
the large-scale of the instances, the algorithm cannot ensure the goodness of a unique
searching direction, consequently, a constant factor k has been chosen in order to
preserve a wide search. However, the value of parameter k changes depending
on the value of the variable to be perturbed, such that small perturbations for
small values and big perturbation for big values are generated, looking for a relative
homogeneous change. Additionally, a single new reference level is generated at the
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BtF scheme. We observed in our computational experimentation with the type of
problem under consideration that multiple perturbations of the same solution will
lead to similar reference levels that, then, significantly increase the elapsed time.
Finally, all reference levels are kept active.

Throughout the numerical experiments that are reported, the stopping criteria
parameters are set up to ǫ1 = 0.001 and ǫ2 = 0.0001, niterk = miter+1, miter = 15
iterations, time limit of 8 hours and 35 Gb of memory limit.

4.4.2 Inner parallel implementation overview

The Inner P-SDP maintains the algorithmic structure of the SDP algorithm; i.e.
models, linking variables perturbation, reference level management and stopping
criteria parameters. Note that if the time limit is reached at a SDP execution, the
Inner P-SDP execution can be allowed continue to iterate and stop afterwards, see
below.

As only the variables in a period have nonzero coefficients in the constraints of the
following one, the implemented Inner P-SDP algorithm comprehends asynchronized
execution parts. Thus, stage t = 1 is managed by th1, stage t = 2 by coordinator
task threads and subsequent stages by both coordinator and subordinated task
threads. Therefore, secondary communication is needed between stages 1 and 2;
and tertiary communication will be performed between consecutive pair of stages
from 2 to |T | whenever needed. Global synchronization is achieved when gathering
the EFV curves at the end of FtB and BtF schemes. The procedure for Inner P-SDP
mainly follows the structure of the SDP algorithm detailed in Algorithm 4.1 being
Algorithm 4.2 its adaptation for the parallelization.

4.4.3 Outer parallel implementation overview

Let inisize, inigap, nthread, pathsize and pathgap be pilot case-driven parameters
taken as input for the execution of the outer parallelization. The global solution
pool generation phase stores up to inisize alternative solutions, chosing them from
subproblem (4.3) solved at stage t = 1 for iter = 1 with the smallest optimality gap
among those whose gap is lower than inigap. Then, the nthread most diverge
solutions among them are chosen from the pool and assigned to threads. The
selection criterion is as follows: The candidate solution in the pool with the highest
euclidean distance of the vector of the values of the linking variables (at stage t = 1)
with respect to the optimal solution is the first candidate; then the solution with
the highest distance with respect to the optimal plus the distance with respect to
the first candidate is the second candidate, and so on.

The alternative solution path selection phase (at stage t = 1 for iter > 1) stores

89



Chapter 4 Parallel Stochastic Dynamic Programming

Algorithm 4.2: Inner P-SDP

Step 0: (Initialization)
Step 1: (FtB scheme: Solve subproblem (4.3) for stage t = 1)

The subproblem is solved by coordinator task thread th1.
Secondary communication: The coordinators gather the solution from
th1. They then follow an asynchronized execution until the end of the
FtB scheme, since no secondary communication is needed in-between.
Set stage t := 2.

Step 2: (Solve subproblem (4.3) rooted at node r, ∀r ∈ Rt)
Each task thread solves its corresponding subproblems rooted at
node r ∈ RF tB

th and all task threads solve their own subproblems
simultaneously. Note that for stage t > 2 all task threads
are used, otherwise only the coordinator task threads are used.

Step 3: (Generate and append the EFV-ℓ defining constraint to
subproblem (4.3) rooted at node r′, ∀ℓ ∈ Lr′, r′ ∈ Rt−1)
Tertiary communication: Performed only for stage t = 2.
Subordinated task threads gather the solution from their corresponding
coordinator task thread so that they can follow an asynchronized
execution until the end of the FtB scheme.

Step 4: (Forward to next stage t + 1)
Synchronization: If stage t = |T | all task threads gather
solution and EFV curves.

Step 5: (Compute solution value for original model (1.4) and check
stopping criteria)

Step 6: (BtF scheme: Compute dual vector of subproblem (4.3) rooted
at node r, ∀r ∈ Rt, t > 1)
The subproblem rooted at r ∈ RBtF

th is solved by its corresponding thread.
Finally, if stage t = 2 then the results of solving each
subproblem rooted at r ∈ RBtF

th by a coordinator task thread
are shared with its corresponding subordinated task threads.
Tertiary communication: Each coordinator and its subordinated task
threads gather solution and follow a synchronized execution among
them but their execution is asynchronized with respect to other
task thread groups.

Step 7: (Generate and append the EFV-ℓ defining constraints in
subproblem (4.3) rooted at node r′, ∀ℓ ∈ Lr′, r′ ∈ Rt−1)
Synchronization: In case stage t = 1 all task threads gather
solution and EFV curves.

Step 8: (Backward to previous stage t − 1)
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up to pathsize candidates with an optimality gap lower than pathgap and takes the
one with the highest above euclidean distance from the optimal solution for stage
t = 1.

The stopping criteria parameters are set up to the same values used at the SDP
and Inner P-SDP. The procedure for Outer P-SDP is described in Algorithm 4.3

Algorithm 4.3: Outer P-SDP

Step 0: (Initialization)
Step 1: (FtB scheme: Solve subproblem (4.3) for t = 1)

Generate the global solution pool for iteration iter = 1 from the set
of optimal and quasi-optimal solutions from solving the subproblem
as described above.
For iter > 1 and those paths that have issued a warning message on
“non-improved path solution” at the end of the FtB scheme (Step 5)
of the previous iteration, an alternative solution is picked up from
the pool, according to the criterion presented above.

Step 2: (Solve subproblem (4.3) rooted at node r, ∀r ∈ Rt, t ≥ 2)
Step 3: (Generate and append the EFV-ℓ defining constraint to

subproblem (4.3) rooted at node r′, ∀ℓ ∈ Lr′, r′ ∈ Rt−1)
Step 4: (Forward to next stage t + 1)
Step 5: (Compute solution value for original model (1.4) and check

stopping criteria)
The communication and synchronization phase is executed, see
Subsection 4.3.3 and Figure 4.5. Compute global iteration solution
and check stopping criteria. If global incumbent solution has been
updated, all task threads gather the corresponding solution; if global
incumbent solution and path incumbent solution have not been
updated, the warning message “non-improved path solution” is
issued for the appropiate path.

Step 6: (BtF scheme: Compute dual vector of subproblem (4.3)
rooted at node r, r ∈ Rt, t > 1)
Path reference levels: Generate new reference levels using the path
criteria for random values.

Step 7: (Generate and append the EFV-ℓ defining constraints in
subproblem (4.3) rooted at node r′, ∀ℓ ∈ Lr′, r′ ∈ Rt−1)

Step 8: (Backward to previous stage t − 1)
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4.4.4 Testbed problem: Production planning under uncertainty

The problem consists of deciding how much production and, how much loss in
product demand can be expected at each period along a time horizon. Production
capacity constraints, product stock limitations, some logistic constraints related to
the production lot sizing, and product demand requirements should be satisfied at
a minimum cost. There is a vast amount of literature on the deterministic version
of the problem. See the seminal paper of Wagner and Whitin [1958] for considering
only continuous variables. See Belvaux and Wolsey [2001]; Dillenberger et al. [1994];
Krarup and Bilde [1977]; Miller et al. [2000]; Pochet and Wolsey [1991]; Shapiro
[1993]; Sousa and Wolsey [1992]; Wolsey [1997]; Zipkin [1986], among others, for
considering lot sizing limitations and other logical constraints (and, then, considering
0-1 variables).

However, very frequently the production decisions must be made in the presence
of uncertainty in several important parameters, such as production cost, product
demand and resource availability along a multi-period time horizon, see Ahmed et al.
[2003].

Production planning stochastic model

We present below a model for production planning taken from Alonso-Ayuso et al.
[2007], where the uncertainty is treated via a scenario tree based scheme, such that
the occurrence of the events is represented by a multi-period scenario tree. The
following notation for the sets and parameters is used in the tactical production
planning model.

Sets:

J , set of products.

R, set of resources.

Deterministic parameters:

N̂ , maximum number of products to be produced in a single time period.

Xjt,Xj, conditional minimum and maximum volume of product j that can be
produced at time period t, respectively, if any, for j ∈ J , t ∈ T .

Sj, maximum volume of product j that can be in stock at any time period, for
j ∈ J .

orj, unit capacity consumption of resource r by product j, for r ∈ R, j ∈ J .
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hj, unit holding cost of product j at any time period, for j ∈ J .

pj, unit lost demand penalty for product j, for j ∈ J .

fj, fixed cost to be incurred for producing product j at any time period, for j ∈ J .

Uncertain parameters under scenario group g, for g ∈ G :

Og
r , available capacity of resource r at time period t(g), for r ∈ R.

Dg
j , demand of product j, for j ∈ J .

cg
j , unit processing cost of product, for j ∈ J .

Variables under scenario group g for product j, for g ∈ G , j ∈ J :

δg
j , 0-1 variable such that its value is 1 if product j is produced under scenario group

g, and 0 otherwise.

xg
j , production volume of product j under scenario group g.

sg
j , stock volume of product j under scenario group g.

yg
j , lost demand of product j at time period t(g) under scenario group g.

Determine the production and stock management policy to minimize the
expected production and stock cost and the lost demand penalty plus the production
fixed cost over the scenarios along the time horizon, subject to constraints (4.8)-
(4.14).

min
∑

g∈G

wg
∑

j∈J

[

cg
j xg

j + hjsg
j + pjy

g
j + fjδ

g
j

]

(4.7)

subject to
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∑

j∈J

orjx
g
j ≤ Og

r ∀r ∈ R, g ∈ G (4.8)

Xj,t(g)δ
g
j ≤ xg

j ≤ Xjδg
j ∀j ∈ J , g ∈ G (4.9)

∑

j∈J

δg
j ≤ N̂ ∀g ∈ G (4.10)

s
a(g)
j + xg

j = Dg
j + sg

j − yg
j ∀j ∈ J , g ∈ G (4.11)

0 ≤ sg
j ≤ Sj ∀j ∈ J , g ∈ G (4.12)

yg
j ≥ 0 ∀j ∈ J , g ∈ G (4.13)

δg
j ∈ {0, 1} ∀j ∈ J , g ∈ G (4.14)

The knapsack constraints (4.8) ensure that the consumption of the resources does
not exceed the capacity. Constraints (4.9) define the semi-continuous character of the
production volume. The cover induced constraints (4.10) do not allow to produce
more products in a single time period than the maximum allowed. Constraints
(4.11) define the demand balance equations, such that the demand deficit is lost.
Bounds (4.12) give the upper bounds of the product stock. For example, see in
Nemhauser and Wolsey [1988] the deterministic version of the problem.

4.4.5 Testbed dimensions

Table 4.1 and Table 4.5 give the dimensions of the instances and the related models
included in Testbed 3 and Testbed 4 that we here experiment with, respectively, for
the realistic stochastic production planning problem under consideration. Testbed
3 includes the most difficult problems in Cristobal et al. [2009]. Testbed 4 includes
new instances which are between two and ten times larger-scale than those from
Testbed 3. The headings are as follows: Case, instance identification; |J |, number
of products; |R|, number of resources; |P|, number of periods; |G|, number of nodes
(i.e., scenario groups); and |Ω|, number of scenarios; m, number of constraints; nx,
number of 0-1 variables: ny, number of continuous variables; nel, number of nonzero
elements in the constraint matrix; and dens%, constraint matrix density, defined as
dens% = 100 · nel

n×m
, where n is the number of variables, n = nx + ny.

Tables 4.2 and 4.6 give the scenario tree structuring and the dimensions of
the smallest and largest subproblems solved by the SDP algorithm for Testbed 3
and Testbed 4, respectively. The Scenario tree is a predefined structure of the
multistage symmetric scenario tree, where each node is related to a period, such

that the structure has the form AB1

1 AB2

2 . . . A
B|T |

|T | , where, to start with,
∑

t∈T Be is
the number of periods in the time horizon, Be denotes the number of consecutive
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periods in stage t and where the number of immediate successor nodes is the same at
each node, and Ae is the number of these successor nodes for each node in Be, t ∈ T .
For instance, the structure 162332 means the tree has 11 periods distributed in
three stages (6, 3, and 2 periods for stage 1, 2 and 3, respectively), such that the
first 6 periods have only one node each, the next three periods have two successor
nodes for each node, and the last two periods have three successor nodes for each
node. The headings are as follows: |T |, smallest number of stages for obtaining a
feasible solution in allowed time (8h) for SDP; nprob, number of subproblems in
which the DEM is decomposed in total for the |T | stages; {|Rt|}t∈T , set of number
of subproblems for set of stages t; and for the smallest and largest subproblems:
m, number of constraints; nx, number of 0-1 variables: ny, number of continuous
variables.

Table 4.1: Problem dimensions. Testbed 3

Case |J | |R| |P| |G| |Ω| m nx ny nel dens%
c43 50 15 13 855 432 163080 42750 106650 892975 0.0037
c44 50 20 13 855 432 167355 42750 106650 1072525 0.0043
c45 100 20 13 660 432 234660 66000 154800 1635440 0.0032
c46 100 30 13 660 432 241260 66000 154800 2142320 0.0040
c47 100 20 13 855 432 316755 85500 213300 2134790 0.0023
c48 100 30 13 855 432 325305 85500 213300 2798270 0.0029
c49 10 2 14 1956 1296 71148 19560 45720 200966 0.0043
c50 10 4 14 1956 1296 75060 19560 45720 226394 0.0046
c51 10 2 14 2556 1296 96948 25560 63720 262898 0.0030
c52 10 4 14 2556 1296 102060 25560 63720 311462 0.0034
c53 10 2 16 10332 5184 392436 103320 258120 1115486 0.0008
c54 10 4 16 10332 5184 413100 103320 258120 1239470 0.0008
c55 10 4 16 11684 7776 448020 116840 272760 1340022 0.0008
c56 10 2 16 11684 7776 424652 116840 272760 1199814 0.0007
c57 100 20 14 1956 1296 693876 195600 457200 4775444 0.0011
c58 100 40 14 1956 1296 732996 195600 457200 7903088 0.0017
c59 100 20 14 2556 1296 946476 255600 637200 6411860 0.0008
c60 100 40 14 2556 1296 997596 255600 637200 10555136 0.0012
c61 100 20 16 10332 5184 3831372 1033200 2581200 26001944 0.0002
c62 100 30 16 10332 5184 3934692 1033200 2581200 34277876 0.0002
c63 100 20 16 11684 7776 4141364 1168400 2727600 28507632 0.0002
c64 100 30 16 11684 7776 4258204 1168400 2727600 38497452 0.0002

Tables 4.3 and 4.7 show the results obtained by plain use of CPLEX in the
optimization of DEM (1.4) for Testbed 3 and Testbed 4, respectively. The headings
are as follows: zLP and tLP , solution value of the LP relaxation of DEM and elapsed
time (secs) for obtaining it; zDEM and tDEM , solution value of DEM and related
elapsed time (secs); and OG%, optimality gap achieved for the MIP problem. Note:
CPLEX uses up to 8 threads, maximum of the academic version.

The CPLEX results reported in Cristobal et al. [2009] for Testbed 3 whose
instances have the dimensions shown in Table 4.1 are such that the optimal solution
is only obtained for instances c49 and c50. Table 4.3 shows that the optimal
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Table 4.2: Smallest and largest subproblem dimensions. Testbed 3

Scenario Smallest subproblem Largest subproblem
Case tree |T | nprob {|Rt|}t∈T m nx ny m nx ny

c43 163324 3 58 {1, 3, 54} 1296 300 900 2840 750 1850
c44 163324 3 58 {1, 3, 54} 1326 300 900 2915 750 1850
c45 162433 3 51 {1, 2, 48} 2526 600 1800 6315 1500 4500
c46 162433 3 51 {1, 2, 48} 2586 600 1800 6465 1500 4500
c47 163324 3 58 {1, 3, 54} 2526 600 1800 5515 1500 3700
c48 163324 3 58 {1, 3, 54} 2586 600 1800 5665 1500 3700
c49 162434 3 51 {1, 2, 48} 258 60 180 1450 400 930
c50 162434 3 51 {1, 2, 48} 270 60 180 1530 400 930
c51 163424 3 166 {1, 3, 162} 258 60 180 1720 400 1200
c52 163424 3 166 {1, 3, 162} 270 60 180 1800 400 1200
c53 163426 3 166 {1, 3, 162} 258 60 180 2389 630 1570
c54 163426 3 166 {1, 3, 162} 270 60 180 2515 630 1570
c55 162535 3 99 {1, 2, 96} 270 60 180 4635 1210 2820
c56 162535 3 99 {1, 2, 96} 258 60 180 4393 1210 2820
c57 162434 3 51 {1, 2, 48} 2526 600 1800 14140 4000 9300
c58 162434 3 51 {1, 2, 48} 2646 600 1800 14940 4000 9300
c59 163424 3 166 {1, 3, 162} 2526 600 1800 16840 4000 12000
c60 163424 3 166 {1, 3, 162} 2646 600 1800 17640 4000 12000
c61 163426 3 166 {1, 3, 162} 2526 600 1800 23323 6300 15700
c62 163426 3 166 {1, 3, 162} 2586 600 1800 23953 6300 15700
c63 162535 3 99 {1, 2, 96} 2526 600 1800 42841 12100 28200
c64 162535 3 99 {1, 2, 96} 2586 600 1800 44051 12100 28200

solution has now also been obtained for instances c45, c46, c51, c52 and c56. This
improvement is mainly due to better software/hardware platform (CPLEX version
was updated from V9.1 to V12.5, among others). For the other instances, CPLEX
stops in Cristobal et al. [2009] due to running out of memory. For the last four
instances, c61 to c64 CPLEX V9.1 did not even find the LP optimal solution. Now,
CPLEX V12.5 solves the LP problem for the four instances and their optimality
gap for the original DEM (1.4) varies between 0.19% and 1.80%. It is worthy to
point out the difficulty of the instances in Testbed 3; the big difference between the
solution values zLP and zDEM gives an indication of the weakness of the MIP model.

4.4.6 Serial SDP and parallel SDP

Tables 4.4 and 4.8 show the results for the SDP and Inner P-SDP algorithms for
Testbed 3 and Testbed 4. The headings for SDP and Inner P-SDP are as follows:
zDEM , solution value of DEM; GG%, goodness gap of the incumbent solution,

defined as GG% = 100·
zDEM

serial
−zDEM

cpx

zDEM
cpx

, where cpx means plain use of CPLEX and serial

means SDP; niter, number of full iterations; nz, number of generated reference
levels; and nprob, number of solved MIP subproblems. The aditional headings are
as follows: tDEM

serial and tDEM
inner , related elapsed time (secs) required by SDP and Inner

P-SDP for niter iterations, respectively; the scalability parameters: Sth, speedup,

defined as Sth =
tDEM
serial

tDEM
inner

and Eth%, efficiency, defined as Eth% = 100 · Sth

th
, where th
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Table 4.3: Plain use of CPLEX. Solution value and elapsed time. Testbed 3

Case zLP tLP zDEM tDEM OG%

c43 93258 2 3498249b 16212 0.06
c44 87761 3 4211366b 24252 0.03
c45 196912 4 8036004 37 ∗
c46 187742 4 8087808 375 ∗
c47 192924 4 7151251b 9421 0.09
c48 176461 5 6594167b 9007 0.12
c49 14094 1 993334 1 ∗
c50 16666 1 1005119 2 ∗
c51 18402 1 772567 16 ∗
c52 20511 1 862754 20 ∗
c53 19224 4 670234b 15091 0.32
c54 21403 3 769236b 16938 0.19
c55 21940 3 1163290b 8948 0.07
c56 23775 3 1126270 43 ∗
c57 190641 10 7174215b 10064 0.06
c58 179749 15 8753936b 23991 0.02
c59 183144 14 8200795b 15974 0.08
c60 186600 20 8582624b 17757 0.13
c61 219479 25 9407495b 3432 0.19
c62 216297 29 8685992b 3422 1.61
c63 241836 24 7913950b 6555 1.11
c64 235090 77 7514260b 5926 1.80
Note: solved with CPLEX v12.5 using 8 threads
b Stop. Out of memory (35Gb)
∗ Default optimality gap achieved: 10−4%

is the total number of threads used by Inner P-SDP.

Note that GG% can be negative indicating that the related decomposition
algorithm obtains a better solution value than plain use of CPLEX in DEM within
the time allowed. It is worthy to point out the limit on the elapsed time and memory
availability. The results reported for Testbed 3 and Testbed 4 by using SDP and P-
SDP consider a single reference level per subproblem and iteration, as stated above.
The addition of more reference levels, see Step 6 in the general SDP scheme presented
in Algorithm 4.1, implies higher elapsed time and the improvement is not remarkable
for those instances of the production planning problem under uncertainty which we
have experimented with. Only one auxiliary thread per task thread has been used in
CPLEX to optimize the MIP subproblems (4.3) whose results have been reported in
the tables. The elapsed time is smaller than the one for the platform where several
auxiliary threads are used in almost all instances of the testbeds, due to the small
dimensions of the subproblems.

The heading niter shows the number of full iterations at which SDP satisfies any
of the stopping criteria (observe that symbol a means the stopping has been due to
time limit exceeded). The results of Inner P-SDP correspond to the same number of
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iterations niter as SDP (and, then, both strategies obtain the same solution value of
the original problem (4.7)-(4.14)). In this way, the elapsed time for both strategies
can be fairly compared in Tables 4.4 and 4.8. It is also worth to point out that
the interpretation of the scalability parameters S12 and E12% is more accurate. See
results in Table 4.8 in blue for the instances where Inner P-SDP is stopped by its
own criteria, independently of the stopping reasons for SDP.

However, the aim of the outer parallelization consists of (exclusively) improving
the solution value over the one obtained by the serial or inner parallelization versions.
Notice that Inner P-SDP requires smaller elapsed time than SDP. On the contrary,
since Outer P-SDP is looking for a better solution value it may require more elapsed
time than any of the other two strategies, since it may perform more iterations or
greater excess time may be required for handling the pool, see below.

Table 4.4: SDP and Inner P-SDP. Solution value and elapsed time. Testbed 3

SDP Algorithmic behaviour SDP P-SDP Scalability

Case Scenario tree zDEM GG% niter nz nprob tDEM
serial

tDEM
inner

S12 E12%
c43 163324 3539594 1.18 5 9 566 33 5 6.60 55.00
c44 163324 4249979 0.92 15 29 2256 145 19 7.63 63.60
c45 162433 8123167 1.08 4 7 372 28 5 5.60 46.67
c46 162433 8139108 0.63 5 9 487 51 8 6.38 53.13
c47 163324 7227178 1.06 15 29 2256 433 58 7.47 62.21
c48 163324 6660629 1.01 6 11 708 108 16 6.75 56.25
c49 162434 1004692 1.14 15 29 1857 23 3 7.67 63.89
c50 162434 1006477 0.14 3 5 261 4 1 6.67 55.56
c51 163424 775933 0.44 4 7 1186 14 3 4.67 38.89
c52 163424 870090 0.85 5 9 1538 18 3 6.00 50.00
c53 163426 685613 2.29 4 7 1186 59 7 8.43 70.24
c54 163426 776389 0.93 15 29 5806 486 51 9.53 79.41
c55 162535 1165132 0.16 5 9 919 73 9 8.11 67.59
c56 162535 1128968 0.24 3 5 501 20 3 8.33 69.44
c57 162434 7256183 1.14 4 7 372 91 13 7.00 58.33
c58 162434 8803020 0.56 7 13 729 200 26 7.69 64.10
c59 163424 8251017 0.61 3 5 840 171 30 5.70 47.50
c60 163424 8640233 0.67 4 7 1186 473 106 4.46 37.19
c61 163426 9442635 0.37 4 7 1186 1220 224 5.45 45.39
c62 163426 8630797a -0.64 14 27 4976 27006 4505 5.99 49.96
c63 162535 7938162 0.31 5 9 919 2237 309 7.24 60.33
c64 162535 7484868 -0.39 15 29 3249 22167 3442 6.44 53.67
P-SDP under 12 threads. Subproblems solved by CPLEX V12.5 with 1 thread in both SDP and P-SDP
a Time limit exceeded (8h)

It is worthy to point out that the solution values reported in Table 4.4 are
smaller (remember that our problem is a minimization one) than those reported in
Cristobal et al. [2009] for all instances in Testbed 3 but c43, c47, c54, c55 and c56,
due to some refinements in common features introduced in SDP and the differences in
the random numbers for obtaining reference levels. Moreover, the largest instances
c49 to c64 already solved in Cristobal et al. [2009] with five stages, now can be
solved with three stages and, it happens that the solution values are smaller. The
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goodness gap varies between −0.64% and 2.29% with an average of 0.67%, in spite
of the large-scale instances in the testbed whose dimensions are up to m = 4.2 M
constraints, nx = 1.1 M 0-1 variables and ny = 2.7 M continuous variables. On
the other hand, SDP also obtains the incumbent solution in relatively small elapsed
time confirming the validity of the SDP approaches.

Observe in Table 4.4 that Inner P-SDP obtains the same solution value with
intentionally the same number of iterations as SDP (as we pointed out above) but
faster. Additionally, notice that the execution of all instances finishes before reaching
the time limit, except for instance c62. In any case, its performance can also be
measured by the scalability (speedup and efficiency) parameters; observe that for
Inner P-SDP the speedup average is 6.81 and varies between 4.46 an 9.53 (therefore,
elapsed time is between 4 and 10 times smaller than for the serial version, i.e., up
to one order of magnitude time reduction) and efficiency varies between 37.19% and
79.41% with average is 56.74%. Note: One computing node with 12 threads has
been used for P-SDP.

Table 4.5: Problem dimensions. Testbed 4

Case |J | |R| |P| |G| |Ω| m nx ny nel dens%
c65 200 40 13 855 432 632655 171000 426600 7039780 0.0019
c66 200 100 13 660 432 508260 132000 309600 11756500 0.0052
c67 300 80 13 855 432 965655 256500 639900 18789045 0.0022
c68 300 140 14 1956 1296 2234196 586800 1371600 70936884 0.0016
c69 400 180 13 855 432 1349955 342000 853200 52443410 0.0033
c70 400 250 13 660 432 1048860 264000 619200 54941540 0.0059
c71 500 200 13 855 432 1665855 427500 1066500 72404095 0.0029
c72 500 300 14 1316 864 2596116 658000 1542000 163900016 0.0029
c73 600 200 14 2556 1296 5870556 1533600 3823200 258504420 0.0008
c74 600 400 13 660 432 1589460 396000 928800 130359000 0.0062
c75 700 250 13 855 432 2306205 598500 1493100 125338565 0.0026
c76 700 350 14 1316 864 3541916 921200 2158800 265882428 0.0024
c77 800 300 13 855 432 2647755 684000 1706400 170273800 0.0027
c78 800 450 16 11684 7776 36437484 9347200 21820800 3443801640 0.0003
c79 900 400 13 855 432 3032055 769500 1919700 253365120 0.0031
c80 900 500 13 660 432 2317860 594000 1393200 242906700 0.0053
c81 1000 300 13 855 432 3245355 855000 2133000 213003845 0.0022
c82 1000 400 13 1827 972 7068627 1827000 4509000 600774992 0.0013
c83 1000 550 14 1956 1296 7605756 1956000 4572000 875756624 0.0018
c84 1000 350 14 2556 1296 9825156 2556000 6372000 738204812 0.0008
c85 1000 250 16 15435 7776 57838185 15435000 38529000 3228837695 0.0001
c86 1000 600 16 11684 7776 45982084 11684000 27276000 1417735964 0.0001
c87 250 100 13 2280 1152 2222280 570000 1422000 50472950 0.0011
c88 450 200 11 1452 972 2468052 653400 1522800 110580270 0.0021
c89 650 300 11 2178 1152 5569578 1415700 3498300 351951946 0.0013
c90 900 600 10 1890 1296 6773490 1701000 3936600 830320920 0.0022

The dimensions of the instances and their models for Testbed 4 are much larger
than those for Testbed 3; compare Tables 4.5 and 4.1, and 4.6 and 4.2. Note the very
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Table 4.6: Smallest and largest subproblem dimensions. Testbed 4

Scenario Smallest subproblem Largest subproblem
Case tree |T | nprob {|Rt|}t∈T m nx ny m nx ny

c65 163324 3 58 {1, 3, 54} 5046 1200 3600 10815 3000 7200
c66 162433 3 51 {1, 2, 48} 5406 1200 3600 13515 3000 9000
c67 163324 3 58 {1, 3, 54} 7686 1800 5400 16815 4500 11100
c68 162434 3 51 {1, 2, 48} 8046 1800 5400 45540 12000 27900
c69 163324 3 58 {1, 3, 54} 10686 2400 7200 23515 6000 14800
c70 162433 3 51 {1, 2, 48} 11106 2400 7200 27765 6000 18000
c71 163324 3 58 {1, 3, 54} 13206 3000 9000 29015 7500 18500
c72 162533 3 99 {1, 2, 96} 13806 3000 9000 71331 15500 46500
c73 163424 3 166 {1, 3, 162} 15606 3600 10800 104040 24000 72000
c74 162433 3 51 {1, 2, 48} 16806 3600 10800 42015 9000 27000
c75 163324 3 58 {1, 3, 54} 18306 4200 12600 40165 10500 25900
c76 162533 3 99 {1, 2, 96} 18906 4200 12600 97681 21700 65100
c77 163324 3 58 {1, 3, 54} 21006 4800 14400 46115 12000 29600
c78 1622233233 5 971 {1, 2, 8, 96, 864} 10953 2400 7200 40263 10400 24000
c79 163324 3 58 {1, 3, 54} 24006 5400 16200 52815 13500 33300
c80 162433 3 51 {1, 2, 48} 24606 5400 16200 61515 13500 40500
c81 163324 3 58 {1, 3, 54} 25806 6000 18000 55515 15000 36000
c82 16323322 4 517 {1, 3, 27, 486} 11203 3000 7000 57213 13000 39000
c83 162434 3 51 {1, 2, 48} 27306 6000 18000 155040 40000 93000
c84 16323224 4 193 {1, 3, 27, 162} 17404 4000 12000 62265 15000 42000
c85 16323325 4 517 {1, 3, 27, 486} 17004 4000 12000 128781 31000 90000
c86 1622233233 5 971 {1, 2, 8, 96, 864} 13803 3000 9000 57813 13000 37000
c87 166225 3 79 {1, 6, 72} 6606 1500 4500 30131 7750 19250
c88 166233 3 115 {1, 6, 108} 12006 2700 8100 21963 5850 13500
c89 1612223 3 301 {1, 12, 288} 17406 3900 11700 37713 8450 25350
c90 1612232 3 445 {1, 12, 432} 14104 3600 8100 54613 11700 35100

large dimensions of the instances, the largest one has m = 57.8 million constraints,
nx = 15.4 million 0-1 variables and ny = 38.5 million continuous variables.

Testbed 4 has been experimented with for assessing the performance of the
decomposition algorithms SDP and P-SDP for instances where CPLEX cannot
provide/prove the optimal solution due to either reaching time allowed (8h) or
running out of memory (35Gb), see Table 4.7. Plain use of CPLEX V12.5 cannot
even obtain the LP solution value in 9 out of the 13 last (and largest) instances in
the testbed. The DEMs of the whole testbed are very weak, see in Table 4.7 the
big difference between zLP and zDEM for those instances where plain use of CPLEX
can provide a solution; it shows the high difficulty of problem solving.

Observe in Table 4.8 that the elapsed time limit (8h) is sometimes reached before
the other stopping criteria are satisfied but no memory restriction occurs for the SDP
and Inner P-SDP algorithms. Remember that niter = 1 means that only one feasible
solution has been obtained. In comparison with plain use of CPLEX, the instances
c79, c80, c81 and c83 can now be solved by the decomposition algorithms, and the
elapsed time for the Inner P-SDP is remarkable. For five of the largest instances,
namely, c78, c82, c84, c85 and c86, three stages are not enough for obtaining a
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Table 4.7: Plain use of CPLEX. Solution value and elapsed time. Testbed 4

Case zLP tLP zDEM tDEM OG%

c65 346937 13 14663331b 13721 0.10
c66 363024 19 15219357a 8h 0.00
c67 595663 34 18610023b 14740 0.15
c68 626680 137 22958504b 20487 0.07
c69 757870 101 28992651b 16139 0.16
c70 766174 102 28295702b 14223 0.02
c71 950456 166 35163637b 16322 0.15
c72 1008738 172 34942146b 22726 0.07
c73 1254355 885 44974691b 4537 1.00
c74 1130106 302 43052882b 15307 0.05
c75 1318378 584 51159243b 13039 0.15
c76 1428993 538 54165785b 20446 0.11
c77 4333228 8295 56382236b 15777 0.80
c78 −b 15968 −b 15968 −
c79 −a 8h −a 8h −
c80 15213652 26160 64781037a 8h 0.08
c81 −a 8h −a 8h −
c82 −b 2626 −b 2626 −
c83 −b 1601 −b 1601 −
c84 −b 2227 −b 2227 −
c85 −b 3003 −b 3003 −
c86 −b 4546 −b 4546 −
c87 506035 95 16695042b 9849 1.16
c88 742359 226 27472791a 8h 0.12
c89 1033449 1446 38932000b 8274 0.78
c90 − a 8h − a 8h −
Note: solved with CPLEX v12.5 using 8 threads
a Time limit exceeded (8h)
b Stop. Out of memory (35Gb)

solution value by using SDP, due to exceeding the time allowed. Four stages are
needed for instances c82, c84 and c85. Using five stages, all the instances can be
solved (i.e., the running of the algorithm have only been stopped by the satisfaction
of any of the algorithmic stopping criteria), including the largest ones c78 and c86.
Note that the smaller the number of stages, the better feasible solution that can
be obtained. The goodness gap with respect to plain use of CPLEX varies between
0.23% and 1.27% with average 0.79% (and improving the CPLEX solution value of
instance c87 in GG% = −0.19). The scalability parameters are that the speedup
varies between 2.27 and 10.70 (average is 5.89) and the efficiency varies between
18.93% and 89.19% (average is 49.10%). Observe that SDP usually requires smaller
elapsed time than plain use of CPLEX (for the instances where it can provide a
solution).

Table 4.8 shows in blue the results obtained by Inner P-SDP for some of
the instances, in particular the largest ones c85 and c86 in Testbed 4, where
more iterations are performed than with SDP, which was stopped because of time
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Table 4.8: SDP and Inner P-SDP. Solution value and elapsed time. Testbed 4

SDP Algorithmic behaviour SDP P-SDP scalability

Case Scenario tree zDEM GG% niter nz nprob tDEM
serial

tDEM
inner S12 E12%

c65 163324 14743592 0.55 5 9 566 199 28 7.11 59.23
c66 162433 15314501 0.63 6 11 606 271 44 6.16 51.33
c67 163324 18794916 0.99 5 9 566 589 97 6.07 50.60
c68 162434 23158260 0.87 3 5 261 713 111 6.42 53.53
c69 163324 29231009 0.82 4 7 430 735 122 6.02 50.20
c70 162433 28580107 1.01 5 9 487 1490 278 5.36 44.66
c71 163324 35500155 0.96 5 9 566 2280 370 6.16 51.35
c72 162533 35386874 1.27 3 5 501 7740 3051 2.54 21.14
c73 163424 45151032a 0.39 1 1 166 480 55 8.73 72.73
c74 162433 43412879 0.84 5 9 487 3706 634 5.85 48.71
c75 163324 51689710 1.04 5 9 566 3612 595 6.07 50.59
c76 162533 54634660a 0.87 2 3 298 16891 7436 2.27 18.93
c77 163324 56511745 0.23 3 5 300 2364 415 5.70 47.47
c78 1622233233 68678909a − 2 3 3018 26437 3388 7.8 65.03
c79 163324 61360087 − 6 11 708 14473 2850 5.08 42.32
c80 162433 65211203 0.66 5 9 487 10442 1994 5.24 43.64
c81 163324 68722477 − 4 7 430 9351 2081 4.49 37.45
c82 16323322 69093005a − 4 7 3886 22837 3777 6.05 50.39
c83 162434 72865478a − 3 5 261 21988 8181 2.69 22.40
c84 16323224 73706161 − 4 7 1618 10645 1787 5.96 49.64
c85 16323225 83305369a − 1 1 517 26180 2446 10.7 89.19

82942217a − 3 5 2703 − 16283 (IGinner% 0.44)
c86 1622233233 87573333a − 1 1 971 18201 2537 7.17 59.79

87015342a − 6 11 13326 − 26170 (IGinner% 0.64)
c87 166225 16663432 -0.19 5 9 803 1151 129 8.92 74.35
c88 166233 27685724 0.78 5 9 1127 2078 259 8.02 66.86
c89 1612223 38995640 0.16 5 9 2897 7220 978 7.38 61.52
c90 1612232 52246689 − 5 9 4193 16574 2266 7.31 60.95
P-SDP under 12 threads. Subproblems solved by CPLEX v12.5 with 1 thread in both SDP and P-SDP
a Time limit exceeded (8h)

limitation. Therefore, the execution of Inner P-SDP for obtaining the new results
is stopped when any of its own stopping criteria is satisfied, in this case also time
limitation. The table then shows the comparison of the solution values obtained
by using both strategies SDP and Inner P-SDP. The new heading is as follows:
IGinner%, improvement gap of the solution value obtained by Inner P-SDP with

respect to SDP, defined as IGinner%= 100 ·
zDEM

serial
−zDEM

inner

zDEM
inner

. It can be observed that

the parallel algorithm obtains a better feasible solution than the serial one for those
two instances. Therefore, the inner parallelization can obtain not only faster but
also better solutions than the serial version.

Table 4.9 shows the results of the Outer P-SDP versus the SDP for the instances
for which the improvement gap is greater than 0.01%. The additional headings
are: npool, number of iterations in which one path, at least, picks up a solution
for subproblem in stage t = 1 from the solution pool for Outer P-SDP; IGouter%,
improvement gap of the solution value obtained by Outer P-SDP with respect to
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SDP, defined as IGouter% = 100 ·
zDEM

serial
−zDEM

outer

zDEM
outer

; and ∆zDEM , absolute difference

between the incumbent values obtained by Outer P-SDP and SDP.

Table 4.9: SDP and Outer P-SDP. Comparing solution value and elapsed time

SDP Outer P-SDP
Case zDEM tDEM niter zDEM tDEM niter npool nz nprob GG% IGouter% ∆zDEM

c43 3539594 33 5 3538641 19 3 1 5 300 1.15 0.03 953
c45 8123167 28 4 8099878 237 12 9 23 1404 0.79 0.29 23289
c47 7227178 433 15 7225961 65 4 3 7 430 1.04 0.02 1217
c48 6660629 108 6 6659199 82 4 2 7 430 0.99 0.02 1430
c51 775933 14 4 775566 17 4 2 7 1186 0.39 0.05 367
c52 870090 18 5 869150 20 5 2 9 1538 0.74 0.11 940
c53 685613 59 4 675583 592 15 13 29 5388 0.80 1.48 10030
c54 776389 486 15 775311 305 8 4 15 2630 0.79 0.14 1078
c58 8803020 200 7 8801307 236 6 4 11 1857 0.54 0.02 1713
c59 8251017 171 3 8246290 1328 5 3 9 840 0.55 0.06 4727
c60 8640233 473 4 8638060 1026 4 1 7 840 0.65 0.03 2173
c61 9442635 1220 4 9427891 8867 4 1 7 1186 0.22 0.16 14744
c63 7938162 2237 5 7918829 6444 5 1 9 919 0.06 0.24 19333
c64 7484868 22167 15 7472057a 27385 7 5 13 1353 -0.56 0.17 12811
c65 14743592 199 5 14735966 175 4 2 7 430 0.50 0.05 7626
c66 15314501 271 6 15310143 304 5 3 9 487 0.60 0.03 4358
c67 18794916 589 5 18783416 1003 5 1 10 566 0.93 0.06 11500
c68 23158260 713 3 23136233 1187 3 1 5 261 0.77 0.10 22027
c70 28580107 1490 5 28560443 2918 6 3 11 606 0.94 0.07 19664
c71 35500155 2280 5 35486229 3258 5 3 9 566 0.92 0.04 13926
c74 43412879 3706 5 43388332 3540 4 2 7 372 0.78 0.06 24547
c77 56511745 2364 3 56499091 9038 5 1 9 430 0.21 0.02 12654
c80 65211203 10442 5 65179230 20455 6 3 11 606 0.61 0.05 31973
c81 68722477 9351 4 68686527 21739 4 1 7 430 − 0.05 35950
c82 69093005 22837 4 69034837a 19572 3 1 5 2703 − 0.08 58168
c87 16663432 1151 5 16655454 1999 4 2 7 604 -0.24 0.05 7978
c88 27685724 2078 5 27675741 2044 4 1 7 856 0.74 0.04 9983
P-SDP under 12 threads. Subproblems solved by CPLEX v12.5 with 1 thread in both SDP and P-SDP
a Time limit exceeded (8h)

We can observe in Table 4.9 that in most of the instances Outer P-SDP requires
more elapsed time than SDP (and the time is one order of magnitude higher than
the time reported in Tables 4.4 and 4.8 for Inner P-SDP). However, the incumbent
value obtained by Outer P-SDP is smaller than the value obtained by SDP and
Inner P-SDP. In relative terms (IGouter%) the difference is not very high, but in
absolute terms (∆zDEM ) the difference can be significative. See in Section 5.7 some
concluding remarks about the applicability of the outer parallelization for other
types of algorithms.

Table 4.10 and Figure 4.6 show the results in terms of elapsed time, speedup
and efficiency for instances c85 and c86 when using 12, 24, 48 and 96 threads for
Inner P-SDP versus SDP (execution using only one auxiliary thread for CPLEX).

The new headings are as follows: Stop
th , top speedup defined as Stop

th =
tDEM
serial

t
top

th

and

Etop
th %, top efficiency defined as Etop

th % = 100 ·
S

top

th

th
, where ttop

th =
∑

t∈T
tserial
e

min(th,|Rt||Z|)

and tserial
e is the elapsed time for stage t in SDP such that tDEM

serial =
∑

t∈T tserial
e .
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The concepts Stop
th and Etop

th consider the top speedup and top efficiency that
could be achieved, respectively, given the specifications of the SDP algorithm and
its Inner P-SDP parallelization under ideal conditions (as if time is not lost by
communication and synchronisation). For example, in instance c85 tDEM

serial = 26180 =
59 + 10 + 8987 + 17125 = t1 + t2 + t3 + t4 and {Rt} = {1, 3, 27, 486}; therefore,
with 48 threads, ttop

48 = 59
1 + 10

3 + 8987
27 + 17125

48 = 752, Stop
48 = 26180

752 = 34.81 and

Etop
48 = 100 · 34.81

48 = 72.53%.

Table 4.10: Inner P-SDP scalability for instances c85 and c86

c85 c86

th tDEM Sth Eth% S
top

th
E

top

th
% tDEM Sth Eth% S

top

th
E

top

th
%

1 26180 1 100 1 100 18201 1 100 1 100
12 2446 10.70 89.19 11.69 97.44 2537 7.17 59.79 10.48 87.37
24 1320 19.83 82.64 22.75 94.77 1372 13.27 55.28 18.29 76.22
48 756 34.63 72.15 34.81 72.53 685 26.57 55.36 29.17 60.77
96 590 44.37 46.22 45.61 47.51 539 33.77 35.18 41.55 43.29
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Figure 4.6: Scalability of instances c85 and c86

Observe in Table 4.10 and Figure 4.6 the remarkable scalability of the Inner
P-SDP algorithm. The speedup increases almost linearly with up to 48 threads and
the elapsed time with 96 threads is 44 and 34 times faster than for the serial version
in instances c85 and c86, respectively. When comparing the efficiency and the top
efficiency, we can observe that time lost by communication and synchronization is
not significant in the implementation of Inner P-SDP for instance c85 and is quite
small for instance c86.
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4.5 Conclusions

The so-named inner and outer parallelization strategies have been introduced
as an extension of the SDP methodology presented in Cristobal et al. [2009];
Escudero et al. [2013b] as well as some refinements in the algorithm, for obtaining
fast quasi-optimal solutions to large-scale multistage stochastic mixed 0-1 problems,
where the (exogenous) uncertainty is represented by nonsymmetric scenario trees.
The parallel computing versions of the algorithm are referred to as Inner P-SDP and
Outer P-SDP. The inner strategy parallelizes several variations of the optimization
of MIP subproblems attached to the set of subtrees for each stage modeler-driven
generated by defining the set of consecutive time periods to be included in each stage.
The variations are due to generations by recursion of so-named references levels for
the multistage linking variables among periods of immediate successor stages. Since
the variations of the subproblems for each stage are independent from each other,
they are optimized in parallel. Based on an extensive computational experience to
assess the validity of the proposed approach, the results of the parallelization are
remarkable in the testbeds we have experimented with. They basically depend on
the number of threads that are allocated for parallel optimization of the subproblems
in synchronized/asynchronized executions.

The outer parallelization strategy executes simultaneously as many versions of
the serial algorithm as the number of so-named paths (each path managed by a
main thread). The paths interchange information about the incumbent solution
at the end of each FtB execution. This parallelization strategy obtains a slightly
better solution value than SDP/Inner P-SDP (i.e., the serial or inner version of the
algorithm), but at the price of a sometimes higher computing time, in the testbeds
we have experimented with. The main advantage of the outer parallelization strategy
is that it can be used in many other environments, where one of its main potential
applications being the parallelization of heuristic algorithms while solving very large-
scale instances.

The plain use of the state-of-the-art MIP solver of choice, CPLEX, cannot very
frequently provide the optimal solution due to running out of memory or exceeding
time limitation time, but it provides solutions with e.g. 0.78% quasi-optimality
tolerance for an instance whose dimensions are 5.56 million constraints, 1.41 million
0-1 variables and 3.49 million continuous variables being stopped due to running out
of memory at 8274 second instant time. For that instance, Inner P-SDP provides
a solution value with a 0.16% gap versus the CPLEX solution value, requiring an
elapsed time that is one order of magnitude smaller than CPLEX time, in particular,
978 and 7220 seconds of elapsed time where required by Inner P-SDP and SDP,
respectively.
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For the largest instances (up to 57.8 million constraints, 15.4 million 0-1 variables
and 38.5 million continuous variables), CPLEX could not provide a solution before
running out of memory while solving the LP relaxation, but Inner P-SDP and SDP
got a feasible solution in up to 2446 and 26180 seconds of elapsed time, respectively,
until reaching the allowed time; the solution quality, obviously, could not be assessed.

As a result of our computational experience with the inner parallelization of the
SDP algorithm, we can withdraw the conclusion that the P-SDP scheme is highly
efficient on parallelizable (usually, decomposition) algorithms, reaching a value up
to 90% for 12 threads and, in any case, reducing the elapsed time of the SDP up
to one order of magnitude with 12 threads, and while using 96 threads the time
reduction is up to 44 times of the serial one.
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Chapter 5

Perspectives on solving

large-scale problems

It does not matter how slowly you go as long as you do not stop.

Confucius (attributed)

5.1 Introduction

The chapter aims to present several strategies in order to improve decomposition
algorithms for solving large-scale problems. We describe an adaptation of the serial
Branch-and-Fix Coordination algorithm presented in Chapter 3 to obtain an exact
solution of larger-scale problems and faster solutions in medium-scale problems.
Additionally, a series of matheuristic algorithms based on the improved BFC
algorithm are proposed. These algorithms have the advantage of being applicable to
any stochastic mixed 0-1 optimization problem without the high model dependence,
as in the Stochastic Dynamic Programming presented in Chapter 4. However,
the so-named Dynamically-guided and stage-ordered Branch-and-Fix Coordination
(D-BFC) and its derived matHeuristic BFCs (H-BFC) are not yet able to solve very
large-scale problems solved by the SDP algorithm, since the lower decomposition
capabilities lead to memory limit issues.

The rest of the chapter is organized as follows: Section 5.2 presents the
model ordering and node branching improvements of the Dynamically-guided and
stage-ordered Branch-and-Fix Coordination (D-BFC). Section 5.3 introduces the
objective and perspective of the matheuristic algorithms based on the D-BFC,
referred to as H-BFCs. Section 5.4 details the D-BFC and H-BFCs procedure
and illustrates each case with a branching tree figure. Section 5.5 reports the
main results of a computational experience to assess the validity of the D-BFC
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to solve medium-scale problems and H-BFCs to solve large-scale problems. Section
5.6 describes an improved Outer-Inner parallelization perspective of the H-BFC
algorithms for solving very large-scale problems. Finally, Section 5.7 summarizes
the main conclusions.

5.2 D-BFC decomposition algorithm

Large-scale multistage mixed 0-1 optimization problems are very difficult to solve,
mainly due to the number of constraints and the number of 0-1 variables. In order to
improve the performance of the BFC algorithm presented in Section 3.3 for solving
large-scale problems, let us analyse the conclusions of the P-BFC performance
described in Section 3.8. On one hand, the inner parallelization reduces the execution
time in each node by solving several subproblems in parallel whenever possible. On
the other hand, the outer parallelization reduces the number of nodes to be visited
by splitting the branching tree and by obtaining tight bounds earlier.

Let us incorporate the benefits shown in the parallel implementation to a
new serial algorithm called Dynamically-guided and stage-ordered Branch-and-Fix
Coordination (D-BFC). The two key aspects of the improvement are stage-wise
model ordering and dynamic node branching.

5.2.1 Stage-wise model ordering

Let us extend the stage perspective of the problem structure, already used in the
break stage scenario clustering, see Section 3.2, by an stage-wise variable ordering
in the model and submodels used throughout the algorithm. First, stage-ordered
models are expected to be, in general, faster to solve by using an optimization
engine than group-ordered models, see Table 5.4 for a computational experience
in Testbed 2. The reason is that problem structure information in a stage-ordered
model is given to the optimization engine by time-wise variable dependency ordering.
Therefore, the time needed to solve the problem or/and subproblems related to each
node is expected to be smaller. Second, a stage-wise model ordering simplifies the
variable control in BFC, see Algorithm 3.1, since a scenario-group control is no
longer needed in D-BFC, see Algorithm 5.2. This aspect is likewise very useful in
implementation terms, moreover when considering complex environment such as the
outer parallelization.

The following model ordering procedure has been considered:
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Figure 5.1: Group-wise ordering

t = 1

1

x1

1 y1

1

V01 V16

t = 2

x1

2 y1

2

V02 V17

3
x3

2 y3

2

V03 V18

2

t = 3

7
x7

3 y7

3

V07 V22

6
x5

3 y5

3

V06 V21

5
x3

3 y3

3

V05 V20

4
x1

3 y1

3

V04 V19

t = 4

15
x8

4 y8

4

V15 V30

14
x7

4 y7

4

V14 V29

13
x6

4 y6

4

V13 V28

12
x5

4 y5

4

V12 V27

11
x4

4 y4

4

V11 V26

10
x3

4 y3

4

V10 V25

9
x2

4 y2

4

V09 V24

8
x1

4 y1

4

V08 V23

Figure 5.2: Stage-wise ordering

If in the original DEM the variables are not stage-wise ordered, then they will
be ordered as follows: first the binary variables and second the continuous ones. An
example is shown in Figure 5.1 and Figure 5.2 where the first shows the scenario
group-wise ordering while the other shows the described stage-wise ordering. That
is, the constraint system

∑

t′∈T t [A, B][x, y] = h is variable ordered from (xi, yi) to
(xρx(i), yρy(i)), where ρx : Ix → Ix and ρy : Iy → Iy are bijections from the set
of indices of x− and y− variables, respectively, that order them in terms of stages.
Note that Ix Ix = {1, . . . , nx} and Iy Iy = {1, . . . , ny}, where nx =

∑

t∈T nxt and
ny =

∑

t∈T nyt. See Aldasoro et al. [2013b] and Table 5.4 for a brief computational
experience.

The stage-ordered DEM is broken in stage-ordered scenario cluster submodels,
see Algorithm 5.1. It considers an original DEM (3.5) in mps format (Total.mps),
and after ordering it obtains the Output.mps file and the cluster partitioning with
Clusterc.mps, corresponding to models (3.1), for each c ∈ C. Note that R denotes
the scenario tree, and o(x, y) denotes the order of variables. See Aldasoro et al.
[2013b] for a detailed implementation.

5.2.2 Dynamic node branching

Let us improve the static node branching strategy, so far used in the previous BFC,
see Algorithm 3.1, by implementing a dynamic node branching scheme. Note that
in Chapter 3 the following criterion has been used: fixing first to 0 for minimization
and to 1 for maximization, where opposite branching is considered in the already
branched nodes. See more strategies in Escudero et al. [2009a] for guided static
branching related to root node.

A dynamic node branching based on the binary variable values of cluster
submodel solutions is presented. Tight feasible solutions are thus found earlier,
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Algorithm 5.1: Model ordering

Step 1: Input file: read full model Total.mps with original variable order
Input data: read t∗, T , Gt, R, nxt, nyt, wω, o(x, y).

Step 2: Calculate additional vectors.
Step 3: Reorder objective function coefficients a and b

Reorder columns of constraints matrices A′, A, B′, and B
Reorder bounds of the continuous variables x and y
according to the order of variables vector.

Step 4: Generate the stage-ordered full model Output.mps.
Step 5: Link full model variables with the corresponding cluster using

the cluster tree matrix.
Step 6: Link rows to clusters. By default all are assigned.

For i = 1 to nelements do.
For j = 1 to C cluster submodel do.

If Column of element i does not belong to Cluster j then.
Unlink row of element i from Cluster j.

Step 7: Renumber cluster rows.
Reorder the right-hand-side vector.
Renumber the element vector and update corresponding row index.

Step 8: Generate stage-ordered Clusterc.mps files

so that fewer nodes are visited during the algorithm execution. In addition to
the serial implementation improvement, this criterion has significant potential in
outer parallelization schemes, since simultaneous dynamic node branching paths are
executed.

The following node branching procedure has been considered:

• At a node, if the next x− variables satisfy NAC, then the branching jumps to
the first variable that does not satisfy NAC.

• Then, Dynamically-Guided branching is a potentially powerful strategy, let us
use DG branching strategy to denote it. It considers the following criteria:
start branching to σi parameter for variable xi of DEM that corresponds to
variable xc

〈i〉 in the related scenario cluster submodel (3.1), being 〈i〉 the index
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of variable xi in the current cluster submodel c, where

σi =







0, if
∑

c∈Ci

xc
〈i〉 ≤ |Ci| −

∑

c∈Ci

xc
〈i〉

1, otherwise

and Ci⊆ C is the set of cluster submodels that have variable xi in common.
That is, the first branching is stated at the more frequent variable solution
value under the set of scenario cluster models of that variable i in the previous
iteration (where node xi−1 is fixed).

• The cluster submodels (3.1) where some x− variables have been branched are
just solved once in the Branch-and-Fix tree and stored for future needs. Only
the cluster submodels where a new variable is branched are solved and only for
the first time of the sequence of branched variables appear. This improvement
expects a remarkable elapsed time improvement for instances with a large
number or quite difficult submodels, in exchange of a remarkable storage to
effort.

Table 5.1 and Table 5.2 show the performance differences between a static
branching criterion (always to 0) and the Dynamically-Guided branching (DG).
Let us take an example a problem with six clusters (C1, C2, C3, C4, C5, C6) when
applying a t∗ = 1 partitioning and has five binary variables (x1, x2, x3, x4, x5) in
stage t = 1. The headings are as follows: N counts the number of nodes that have
been visited and C1, C2, C3, C4, C5 and C6 indicate the values of the binary
variables in stage t = 1 obtained under the given branching fixations. Note that in
the examples only the results related to the cluster submodels (3.1) of the last node
are stored in memory.

Table 5.1 describes the variable branching performance applied in BFC, see
Chapter 3 and Algorithm 3.1, i.e., static branching criterion (always to 0). After
solving N = 1, variable x1 already satisfies the NAC and it is value is equal to
the branching criterion, therefore x1 = 0 is fixed and the next variable is branched,
x2 = 0. As none of the clusters has already x2 = 1 at the solution, all need to
be resolved. Once N = 2 is solved, cluster C1 is found infeasible, therefore the
branch must be pruned and go backwards. Now, as has been previously visited, x2

is branched to the opposite direction, i.e., x2 = 1. Later, N = 3 is visited and
x3 does not satisfy the NAC, therefore it is branched following the static criterion,
x3 = 1. The algorithm execution continues in this way until all nodes have been
visited.

Table 5.2 describes the variable branching performance applied in D-BFC, i.e.,
Dynamically-Guided branching (DG). After solving N = 1, variables x1 and x2

111



Chapter 5 Perspectives on solving large-scale problems

already satisfy the NAC, their values are taken as new branching criterion. Therefore
x1 = 0 and x2 = 1 are fixed and the next variable is branched to the most frequent
value at the solutions, x3 = 1, since it appears in four cluster solutions. Only the
clusters where x3 = 1 does not appear in the solution need to be resolved. Once
N = 2 is solved, variable x4 does not satisfy the NAC so it is fixed to the most
frequent value, i.e., x4 = 0. Only cluster C6 needs to be resolved. Now, N = 3 is
solved and x5 satisfies the NAC; being the last binary variable in stage t∗ = 1, the
solution is feasible and the branch is pruned. Going backwards, variable x4 is fixed
to the opposite direction, i.e., x4 = 1. The algorithm execution continues this way
until all nodes have been visited.

Table 5.1: BFC variable branching performance, example

N C1 C2 C3 C4 C5 C6

1 {0, 1, 0, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 0, 0, 0}
Fix x1 = 0 . Branch x2 = 0 . Resolve C1 , C2 , C3 , C4 , C5 , C6 .

2 infeasible {0, 0, 1, 0, 0} {0, 0, 1, 0, 0} {0, 0, 1, 0, 0} {0, 0, 1, 0, 0} {0, 0, 1, 0, 0}
C1 infeasible: prune and go backwards. Branch x2 = 1 . Resolve C1 , C2 , C3 , C4 , C5 , C6 .

3 {0, 1, 0, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 0, 0, 0}
Branch x3 = 0 . Resolve C2 , C3 , C4 , C5 .

...

Static branching criterion, always to 0.

Table 5.2: D-BFC variable branching performance, example

N C1 C2 C3 C4 C5 C6

1 {0, 1, 0, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 0, 0, 0}
Fix x1 = 0 and x2 = 1 . Branch x3 = 1 . Resolve C1 , C6 .

2 {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 1, 0}
Branch x4 = 0 . Resolve C6 .

3 {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 0, 0} {0, 1, 1, 1, 0} {0, 1, 1, 0, 0}
NAC satisfied: prune and go backwards. Branch x4 = 1 . Resolve C1 , C2 , C3 , C4 , C5 , C6 .

...

Dynamically-Guided branching, DG.

5.3 H-BFCs, D-BFC based matheuristic algorithms

Let us consider several matheuristic versions of the D-BFC algorithm, see Section
5.2, based on the relaxation of some steps in order to solve large and very large-scale
problems.

The first algorithm, named H1-BFC, takes into account that the integer TNF
model (3.10), zT NF

MIP , is often the main bottleneck of the algorithm for large-scale
problems, and considers not solving it. Therefore, the certainty of optimality is
lost but knowing that earlier breakstages are recommendable for a better quality
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solution and smaller Branch-and-Fix tree, BFT , tight bounds can be achieved even
in large-scale problems, see Proposition 1 and Proposition 3.

The second algorithm, named H2-BFC, aims to solve very large-scale problems
by adding features to H1-BFC. When solving models with a large number of 0-
1 variables until the break stage, the breadth of the branch-and-fix tree, BFT ,
becomes an algorithmic bottleneck. A strategy for cutting short the tree is
implemented during the backward branching, with the following criterion: the
backward branching is performed just in the previously branched variables, i.e., the
variables that were jumped because they satisfied the NAC during the branching
down, are again jumped during the backward branching. Additionally, the scenario
cluster submodels could be quite large and then, the relaxation of (3.8) submodels,
desirable.

The H3-BFC procedure conserves the characteristics of H2-BFC and considers
stopping the branch-and-fix tree at the first feasible solution, let us denote it as the
SF branching strategy.

In summary, the characteristics of BFC, D-BFC and H-BFCs are given in Table
5.3. The headings are as follows: Algorithm(d) the Branch-and-Fix Coordination
algorithm version later used in Algorithm 5.2; Stage ordering whether the model is
stage-wise ordered; DG, if the variable branching is dynamically decided; IB, if an
incomplete backward branching is applied; SF , whether the algorithm execution is
stopped at the first feasible solution found; zT NF

LP , if model (3.6) is solved in Step
5; zT NF

f , if (3.8) models are solved in Step 5; and finally, zT NF
MIP , if model (3.10) is

solved in Step 5.

Table 5.3: D-BFC and H-BFC algorithms

Algorithm (d) Stage Branching Integer TNF models

ordering DG IB SF zT NF
LP zT NF

f zT NF
MIP

BFC no no no no yes yes yes

D-BFC (0) yes yes no no yes yes yes
H1-BFC (1) yes yes no no yes yes no
H2-BFC (2) yes yes yes no yes no no
H3-BFC (3) yes yes yes yes yes no no

DG : Dynamically-Guided branching

IB : Incomplete Backward branching

SF : Stop at First feasible solution.
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5.4 D-BFC and H-BFC procedures

Based on Algorithm 3.1 and the improvements described in Section 5.2, the
Dynamically-guided and stage-ordered Branch-and-Fix Coordination (D-BFC) pro-
cedure is detailed in Algorithm 5.2. The initialization phase in Step 0 allows the
user to select the desired algorithm to be used, since variable d defines the difficulty
level according to Table 5.3, i.e., whether D-BFC, H1-BFC, H2-BFC or H3-BFC is
used. Therefore, Algorithm 5.2 summarizes the procedures of all cases.

Broadly speaking, the main differences between Algorithm 3.1 and Algorithm
5.2 are as follows: the stage-wise model ordering allows control not to be kept of the
current scenario group that is being branched; the Dynamically-Guided branching,
DG, stores the cluster binary variable solutions and selects the branching direction,
as opposed to the static branching criteria and, finally, some steps of the procedure
are relaxed depending on the chosen algorithm type (d).

The initialization phase in Step 0 does not solve the LP relaxation of the DEM
(3.5) to obtain a lower bound, as it is done in Algorithm 3.1, since for large and
very large-scale problems, significant elapsed time and memory use are expected.
Additionally, the algorithm type is set, d, and a boolean variable controlling if the
first feasible solution has been found is initialized, firstfeas := 0.

The root node analysis in Step 1 remains the same, with the only difference being
the storing of the variable branching criteria in σ, based on the binary variable values
of the cluster submodel solutions.

The branching down procedure, Step 2 and Step 3, is significantly simpler than
before (previous Step 2 to Step 5), since the stage-scenario group-variable control
is no longer needed. Instead, controlling the binary variable number allowed by
the stage-wise variable ordering, is enough to activate the backward branching. As
previously described, the variable branching direction is chosen depending on the σ
value.

The candidate TNF analysis in Step 4 by solving the scenario cluster MIP
submodels (3.1), includes the update of the σ values, according to Section 5.2.2,
and the set of boolean variable firstfeas to 1 if a feasible solution is found.

The integer TNF models in Step 5 include a series of solving processes that
depend on the chosen algorithm type. Thus, the submodels (3.8) to obtain zT NF

fc

are only solved by D-BFC and H1-BFC algorithms, and the MIP model (3.10) to
obtain zT NF

MIP is only solved by the D-BFC algorithm (therefore D-BFC is the only
exact algorithm). In addition, after every solving process the feasibility is checked
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Algorithm 5.2: Serial D-BFC and H-BFCs

Step 0: (Initializations)
Set algorithm type by d ∈ {0, 1, 2, 3}, see Table 5.3.
Set zDEM := ∞, i := 0, firstfeas := 0.

Step 1: (Root node)
Solve the scenario cluster MIP submodels (3.1) to obtain zc ∀c ∈ C.
Compute z0

t∗ =
∑

c∈C zc and (σi)i∈Ix .
If xc variables do not satisfy NAC (3.3), then go to Step 2.
If yc variables do not satisfy NAC (3.4), then go to Step 5.
Otherwise, zDEM := z0

t∗ is the optimal solution of DEM (3.5), STOP.
Step 2: (Next node)

Reset i := i + 1. If i >
∑

t∈T1
nxt, then go to Step 7.

Step 3: (Branching)
Set xc

〈i〉 := σi ∀c ∈ Ci.

Step 4: (Candidate TNF)
Solve the scenario cluster MIP submodels (3.1) to obtain zc ∀c ∈ C,
Compute z =

∑

c∈C zc and (σi)i∈Ix .
If z ≥ zDEM , then go to Step 6.
If any variable xc does not satisfy NAC (3.3) ∀t ∈ T1, c ∈ C, then update i
according to the first variable that do not satisfy NAC and go to Step 2.
If all variables in yc

t do satisfy NAC (3.4) ∀t ∈ T1, c ∈ C,
then update zDEM := z, firstfeas = 1 and go to Step 6.

Step 5: (Integer TNF models)
Solve LP model (3.6) to obtain zT NF

LP .
If it is feasible, update zDEM := min{zT NF

LP , zDEM }, firstfeas = 1.
If d ≤ 1, then solve the submodels (3.8) to obtain zT NF

fc ∀c ∈ C.

If it is feasible, compute zT NF
f =

∑

c∈C zT NF
fc and

update zDEM := min{zT NF
f , zDEM }, firstfeas = 1.

If d = 0, then solve MIP model (3.10) to obtain zT NF
MIP .

If it is feasible, update zDEM := min{zT NF
MIP , zDEM }.

Step 6: (Branch pruning).
If d = 3 and firstfeas = 1, then update i := 1 and go to Step 7.
If xc

〈i〉 has been branched to σi for any c ∈ Ci, then go to Step 9.

Step 7: (Backward to previous node)
Reset i := i − 1.
If d ≥ 2, update i according to the explicitly branched down variables.
If i = 0, then the solution value zDEM has been found, STOP.

Step 8: (Prune checking)
If xc

〈i〉 = 1 − σi for any c ∈ Ci, then go to Step 7.

Step 9: (Opposite branching)
Reset xc

〈i〉 := 1 − σi ∀c ∈ Ci and go to Step 4.
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in order to update the incumbent solution zDEM and the boolean variable firstfeas.

The branch pruning in Step 6 includes the relaxation related to H3-BFC (d = 3),
i.e., if a feasible solution has been already found, firstfeas = 1, then the variable
index i is set to 1 and the execution is redirected to Step 7, where it stops.

The backward branching in Step 7 is decided by checking the variable index i,
stage and scenario group control are no longer needed. Additionally, the variable
index i in H2-BFC and H3-BFC is updated according to explicitly branched down
variables.

Finally the prune checking and the opposite branching direction, Step 8 and Step
9, are performed according to the σ values, and not according to a static branching
criteria as in BFC, see Algorithm 3.1.

5.4.1 Solving performance example of BFC, D-BFC and H-BFCs

Let us compare in an illustrative way the performance of algorithms BFC, D-BFC
and H-BFCs in order to visually analyse the differences, benefits and performance
relaxations, see Figure 5.3, Figure 5.4, Figure 5.5 and Figure 5.6. The chosen
problem corresponds to instance P3 of Testbed 2, see dimensions in Table 3.2, where
break stage t∗ = 1 is applied. Therefore, ten scenario cluster subproblems are created
and the Branch-and-Fix tree, BFT , has six binary variables.

Figure 5.3 illustrates the BFC resolution of instance P3 according to Algorithm
3.1, note that the performance of the Outer P-BFC is described in Figure 3.5; in
this serial case one-path is considered so the algorithm root node is situated at the
Branch-and-Fix tree root node (see node 1 double-lined). The resolution visits 24
nodes before ensuring optimality, where the deepest level of the Branch-and-Fix
tree is reached six times (nodes 7, 8, 11, 12, 19 and 20). Only three nodes are
jumped due to satisfying NAC and having a value equal to the static branching
criterion (between nodes 10 and 11, 17 and 18, 18 and 19) which indicates that a
dynamic branching criterion could improve the performance. Six feasible solutions,
z, are found during the execution, and in all cases the incumbent solution, zDEM , is
updated (nodes 7, 8, 11, 19, 20 and 22). Note that node 22 is the only node where a
feasible solution is found and is not situated in the last level, showing that with the
current branching criterion the execution cannot easily find early feasible solutions.
The nodes where a red prune label is displayed, indicate that the bound obtained
by MIP submodels (3.1) is larger than the incumbent solution, zDEM , therefore the
branch is pruned.
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Figure 5.3: BFC performance for instance P3

Figure 5.4 illustrates the D-BFC and H1-BFC resolution of instance P3 according
to Algorithm 5.2, being d = 0 and d = 1 respectively. Note that in this case both
performances are equal since the integer TNF solution is found when obtaining the
zT NF

f bound, and no better solution is obtained by solving the MIP model (3.10) (by
definition never solved by H1-BFC). The resolution visits 6 nodes before ensuring
optimality, where the deepest level of the Branch-and-Fix tree is never reached.
Three nodes are jumped after solving the root node (between nodes 1 and 2) due to
satisfying NAC. Note that in this case no static branching criteria is fixed and the
resolution dynamically decides the branch to take. This leads to a feasible solution
being found at node 2, which is significantly earlier than BFC, see Figure 5.3, both in
node number and tree depth terms. The tight incumbent solution, zDEM , allows the
successive visited nodes to be pruned since the bounds obtained by MIP submodels
(3.1) are larger than the incumbent solution. Additionally, the pruned nodes are
situated in upper levels so few backward branching movements are needed. All
aspects considered, the D-BFC and H1-BFC algorithm show a significantly more
efficient analysis of the Branch-and-Fix tree, BFT .
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Figure 5.4: D-BFC and H1-BFC performance for instance P3

Figure 5.5 illustrates the H2-BFC resolution of instance P3 according to
Algorithm 5.2, being d = 2. Note that H2-BFC is based on H1-BFC and the
additional features are: only already visited variables are branched in the backward
branching and no bound zT NF

f by the MIP subproblems (3.8) are calculated. The
resolution visits 3 nodes before finishing (without ensuring optimality), where the
deepest level of the Branch-and-Fix tree is never reached. As in D-BFC and H1-
BFC, the dynamic branching criterion results in a feasible solution being obtained
at node 2. After pruning, the backward branching phase starts and as H2-BFC only
opposite branches the variables already branched, in this case only x4 is considered.
Therefore, x4 is opposite branched and pruned due to the bound obtained by MIP
submodels (3.1) is larger than the incumbent solution. As all previously branched
variables have been opposite branched, execution ends. The example shows that H2-
BFC is intended to solve very large-scale problems by reducing the number of visited
nodes with respect to H1-BFC; the dynamic branching criterion allows only the a
priori most influential binary variables to be branched in the backward branching.

Figure 5.6 illustrates the H3-BFC resolution of instance P3 according to
Algorithm 5.2, being d = 3. Note that H3-BFC is based on H2-BFC and the
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additional features is that the execution stops when finding a feasible solution. The
resolution visits 2 nodes before finishing (without ensuring optimality), where the
deepest level of the Branch-and-Fix tree is never reached. As in D-BFC, H1-BFC
and H2-BFC, the dynamic branching criterion leads to a feasible solution being
obtained at node 2. Consequently algorithm stops being the incumbent solution,
zDEM , the first feasible solution, z, is obtained. Figure 5.6 shows that H3-BFC
aims to solve very large scale problems and reduce the execution. This feature is
desirable when dealing with very large-scale problems and when big size data is
stored, since memory overloads may appear and unexpectedly abort the execution.
The example of solving the medium-scale instance P3 returns the same solution,
which is optimal, in all considered cases. As shown in the computational experience
reported in Section 5.5, in general the larger difficult level chosen, d, the larger the
obtained optimality gap. On the other hand, larger difficulty level lead to obtain a
tight bound for larger-scale problems.

01

02

x1 = 0

05

04

x3 = 0

05

x4 = 0

06

x5 = 0

07

x6 = 0

08

x6 = 1

09

x5 = 1

73 74

10

x4 = 1

63

11

x6 = 0

12

x6 = 1

13

x5 = 1

77 78

14

x3 = 1

15

x4 = 0

65

79 70

66

71 72

16

x4 = 1

67

73 74

68

75 76

17

x2 = 1

03

x3 = 0

03

x4 = 0

prune
END
03

19 20

21

73 74

02

x4 = 1

prune
z

zDEM
61

75 76

62

77 78

04

57

63

79 70

64

71 72

58

65

73 74

66

75 76

06

33

45

59

61

71

46

34

47 48

56

66

76

Figure 5.5: H2-BFC performance for
instance P3
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Figure 5.6: H3-BFC performance for
instance P3

5.5 Computational experience

The computational experiments were conducted at the ARINA computational
cluster at SGI/IZO-SGIker from UPV/EHU, see Section 1.5. For the reported
experiments, a Intel Xeon type computing node was used, consisting of 8 cores
with 48Gb of RAM.

The D-BFC and H-BFC algorithms were implemented in a C++ experimental
code which uses the state-of-the-art optimization LP/MIP solver CPLEX V12.5
called from the open source library COIN-OR V1.6.0 . The optimizer is used by the
algorithm to solve the LP relaxation of the original DEM (3.5), the MIP submodels
(3.1) for the set of scenario clusters C in different steps, the LP submodel (3.6), the
MIP submodels (3.8) for the set of scenario clusters C and the MIP model (3.10).

119



Chapter 5 Perspectives on solving large-scale problems

The computational experience is reported as follows: Section 5.5.1 and Section
5.5.2 set out the performance of the D-BFC and H-BFC algorithms, respectively.

5.5.1 D-BFC compared to BFC in medium-scale problems

Let us see the influence of the stage-wise problem ordering, see Algorithm 5.1,
compared to the group-wise ordering on Testbed 2. Additionally the use of CPLEX
under COIN-OR and the plain use of interactive CPLEX are reported in order
to compare the optimization engine influence (MIPgap %10−4 in both cases). Note
that the stage-wise ordering is faster for all instances when using interactive CPLEX
executions; the use of CPLEX under COIN-OR shows that stage-wise ordering is
faster in 9 out of 10 instances where the optimal solution has been found. Comparing
interactive CPLEX to CPLEX under COIN-OR for stage-wise ordered problems, the
results show that the first is faster in 5 instances and the second in 4 instances.
However, note the difference in instances P5 and P12 (only solved by CPLEX
under COIN-OR). The influence of the optimization engine of choice is shown to be
significant. Finally, let us compare the performance of the new CPLEX V12.5 and
COIN-OR V1.6.0 with respect to CPLEX V12.2 and COIN-OR V1.3.1 by analysing
the last column of Table 3.9. Now, the optimal solution of instances P5 and P12 is
obtained within the defined time limit.

Table 5.4: Effect of model ordering in elapsed time. Testbed 2

Instance CPLEX under COIN interactive CPLEX
by groups by stages by groups by stages

P1 21 16 3 3
P2 1690 991 21 18
P3 −a −a −a −a

P4 −a −a −a −a

P5 3256 4767 4 2
P6 4315 4160 3842 1603
P7 677 492 530 420
P8 −a −a −a −a

P9 −a −a −a −a

P10 12 8 187 102
P11 253 141 190 186
P12 17338 14435 −a −a

P13 1277 739 2220 1203
P14 923 498 1678 1039
a: Time limit (6h) exceeded

Table 5.5 shows the performance of D-BFC with respect to the previous BFC
algorithm, described in Chapter 3, and CPLEX for Testbed 2, see Table 3.2 and
Table 3.3. Note that both BFC and D-BFC require a smaller elapsed time than
CPLEX in all cases. The D-BFC algorithm is faster than BFC in 8 of 14 instances,
including the most difficult ones, P3 and P4. The obtained solution value, zDEM , is
optimal in all instances; P8 and P9 show a small difference (lower than the optimality
gap 0.01%) due to the different model variable ordering, the optimization engine
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obtains the optimality gap in different points. Fewer integer TNF models, nT NF ,
are solved by D-BFC whereas in instances P6 and P7 the total number of visited
nodes, nn, is higher. Note that the number of clusters submodels solved nc per
visited node nn is significantly lower by avoiding unnecessary resolves.

Table 5.5: D-BFC performance. Testbed 2.

CPLEX BFC D-BFC
zDEM OG% tDEM nn nT NF nc zDEM GG% tDEM nn nT NF nc zDEM GG% tDEM

P1 -156324 ∗ 23 1 0 8 -156324 * 1 1 0 8 -156324 * 2
P2 -6146.04 ∗ 3049 3 1 21 -6146.04 * 45 3 1 15 -6146.04 * 299
P3 -292102a 0.11 – 24 6 240 -292109 * 332 6 1 51 -292109 * 41
P4 -283915a 0.30 – 12 6 120 -283938 -0.01 1727 11 5 92 -283938 -0.01 786
P5 -6067.3 0.27 – 1 0 6 -6067.51 * 1 1 0 6 -6067.51 * 1
P6 -35959.9 ∗ 4239 3 2 24 -35959.9 * 88 7 1 56 -35959.9 * 102
P7 -269441 ∗ 461 3 2 21 -269441 * 115 13 1 25 -269441 * 108
P8 -154798a 0.04 – 1 0 9 -154814 -0.01 26 1 0 9 -154798 * 18
P9 -225746a 0.10 – 1 0 10 -225754 * 109 1 0 10 -225784 -0.02 65
P10 38156.6 ∗ 25 1 0 5 38156.6 * 1 1 0 5 38156.6 * 1
P11 39805.7 ∗ 530 3 2 15 39805.7 * 10 4 1 20 39805.7 * 11
P12 41502.3a 0.03 – 3 2 18 41502.3 * 47 4 1 24 41502.3 * 17
P13 41337.4 ∗ 1187 3 2 21 41337.4 * 40 4 1 22 41337.4 * 30
P14 41783.5 ∗ 509 3 2 27 41783.5 * 119 4 1 12 41783.4 * 54

*: Optimality gap achieved (< 0.01%)
a: Time limit (6h) exceeded

5.5.2 H-BFCs compared to SDP in large-scale problems

Table 5.6 shows the performance of H2-BFC with respect to the previous BFC
algorithm described in Chapter 3 and CPLEX for Testbed 2, medium-scale problems.
As shown in Table 5.5 the number of visited integer TNF models, nT NF , is already
low when using D-BFC, therefore, the H1-BFC performance is almost equivalent.
Table 5.6 shows that H2-BFC significantly reduces the number of visited nodes,
nn, the number of integer TNF models, nT NF , and the number of solved cluster
submodels nc. However the obtained solution value, zDEM , remains the same,
showing that the dynamic guided variable branching efficiently directs the branching
to a tight bound and allows the incomplete backward branching.

Table 5.7 shows the performance of H2-BFC and H3-BFC with respect to the
previous SDP algorithm described in Chapter 4 and CPLEX for Testbed 3, large-
scale problems, introduced in Table 4.1 and Table 4.2.

Table 5.7 shows that the H-BFC obtains better solutions, in general, than the
previous SDP algorithm for Testbed 3, and the elapsed time is competitive with
respect to CPLEX for 12 out of 18 instances. We have seen that in general, the
larger the breakstage, the quality of the solution and the elapsed time is worst but
larger problems can be solved.
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Table 5.6: H-BFC performance. Testbed 2

CPLEX BFC H2-BFC
zDEM OG% tDEM nn nT NF nc zDEM GG% tDEM nn nT NF nc zDEM GG% tDEM

P1 -156324 ∗ 23 1 0 8 -156324 * 1 1 0 8 -156324 * 1
P2 -6146.04 ∗ 3049 3 1 21 -6146.04 * 45 3 1 15 -6146.04 * 4
P3 -292102a 0.11 – 24 6 240 -292109 * 332 3 1 21 -292109 * 13
P4 -283915a 0.30 – 12 6 120 -283938 -0.01 1727 5 2 32 -283938 -0.01 379
P5 -6067.3 0.27 – 1 0 6 -6067.51 * 1 1 0 6 -6067.51 * 1
P6 -35959.9 ∗ 4239 3 2 24 -35959.9 * 88 1 1 8 -35959.9 * 13
P7 -269441 ∗ 461 3 2 21 -269441 * 115 1 1 7 -269441 * 39
P8 -154798a 0.04 – 1 0 9 -154814 -0.01 26 1 0 9 -154798 * 19
P9 -225746a 0.09 – 1 0 10 -225754 * 109 1 0 10 -225784 -0.02 65
P10 38156.6 ∗ 25 1 0 5 38156.6 * 1 1 0 5 38156.6 * 2
P11 39805.7 ∗ 530 3 2 15 39805.7 * 10 1 1 5 39805.68 * 2
P12 41502.3a 0.03 – 3 2 18 41502.3 * 47 1 1 6 41502.27 * 4
P13 41337.4 ∗ 1187 3 2 21 41337.4 * 40 1 1 7 41337.42 * 8
P14 41783.5 ∗ 509 3 2 27 41783.5 * 119 1 1 9 41783.5 * 31

*: Optimality or goodness gap achieved (< 0.01%)
a: Time limit (6h) exceeded

Table 5.7: H-BFC performance. Testbed 3

CPLEX SDP H-BFC
zDEM OG% tDEM n iter n prob zDEM GG% tDEM H t∗ C nn nT NF nc zDEM GG% tDEM

c43 3498249b 0.06 16212 5 566 3539594 1.18 33 H3 1 3 19 1 0 3508437 0.29 578
c44 4211366b 0.03 24252 15 2256 4249979 0.92 145 H2 1 3 15 8 31 4233786 0.53 333
c45 8036004 ∗ 37 4 372 8123167 1.08 28 H3 1 2 18 1 0 8127716 1.14 238
c46 8087808 ∗ 375 5 487 8139108 0.63 51 H2 1 2 51 14 75 8093652 0.07 1131
c47 7151251b 0.09 9421 15 2256 7227178 1.06 433 H3 2 9 39 1 0 7187715 0.51 259
c48 6594167b 0.12 9007 6 708 6660629 1.01 108 H3 2 9 31 1 0 6632095 0.58 310
c49 993334 ∗ 1 15 1857 1004692 1.14 23 H2 1 2 1 1 2 993433 0.01 6
c50 1005119 ∗ 2 3 261 1006477 0.14 4 H2 1 2 11 0 15 1005119 0.00 14
c51 772567 ∗ 16 4 1186 775933 0.44 14 H2 1 3 7 1 13 772573 0.00 29
c52 862754 ∗ 20 5 1538 870090 0.85 18 H2 1 3 3 2 7 864033 0.15 24
c53 670234b 0.32 15091 4 1186 685613 2.29 59 H3 7 648 532 1 0 694772 3.66 805
c54 769236b 0.19 16938 15 5806 776389 0.93 486 H2 4 81 219 110 829 784165 1.94 963
c55 1163290b 0.07 8948 5 919 1165132 0.16 73 H2 4 16 9 5 30 1164946 0.14 145
c56 1126270 ∗ 43 3 501 1128968 0.24 20 H2 1 2 1 1 2 1129249 0.26 64
c57 7174215b 0.06 10064 4 372 7256183 1.14 91 H3 3 8 36 1 0 7213330 0.55 1347
c58 8753936b 0.02 23991 7 729 8803020 0.56 200 H3 3 8 62 1 0 8915326 1.84 2141
c59 8200795b 0.08 15974 3 840 8251017 0.61 171 H3 3 27 92 1 0 8262957 0.76 1297
c60 8582624b 0.13 17757 4 1186 8640233 0.67 473 H3 3 27 117 1 0 8636077 0.62 1501

∗ Optimality gap or goodness gap achieved (< 0.01%)
b Out of memory (35Gb)

5.6 Perspectives on parallelizing the H-BFC

decomposition algorithm

The solution based dynamic branching paradigm that improved the performance of
D-BFC with respect to BFC can be also applied to the parallel H-BFC algorithms.
Thus, the outer-inner parallelization of the serial BFC algorithm, see Section 3.6, is
extended to a solution based dynamic path assignment Outer-Inner PH-BFC.

The Outer-Inner PH-BFC algorithm defines the path root nodes based on the
binary variables that do not verify the NAC. As opposed to the static path root node
definition in the Outer-Inner P-BFC described in Algorithm 3.4, the dynamic path
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assignment branches the most influential variables, allowing feasible solutions and
more balanced path work loads (therefore lower waiting time for a synchronization
phase) to be obtained earlier. The algorithm is particularly suitable for H2-BFC
and H3-BFC based Outer-Inner PH-BFC algorithm when solving very large scale
problems, since both the path root nodes and the branching direction are dynamic
and a feasible solution is more likely to be found in parallel.

Algorithm 5.3 describes the dynamic path assignment Outer Inner PH-BFC
procedure. The serial D-BFC and H-BFC procedure in Algorithm 5.2 is reduced
to only consider the H2-BFC and H3-BFC cases, as shown in Step 0. The general
scheme of the Outer-Inner parallelization corresponds to the implementation in
Chapter 3. This includes the dead/active path control and the synchronization
phase in Step 5, Step 8 and Step 9 that are related to the outer parallelization
approach; additionally, Step 1 and Step 4 solve the scenario cluster subproblems in
parallel following an inner parallelization approach. However, the main contribution
of the current procedure is path splitting phase. The execution thread assignation,
see Section 1.3 , is set by the modeler in Level b, but the path root nodes are not
defined in a static way (as opposed to the previous Outer-Inner BFC in Algorithm
3.4). The procedure starts by defining a pure inner execution, then if the number
of current paths is lower than the number chosen by the modeler, each path is split
when branching a binary variable. Thus, the path root node definition is based on
the scenario cluster submodel solution, so it is every path reassignment.

Figure 5.7 shows an example of the Outer-Inner PH-BFC dynamic path
assignment, where four threads are available and the user decides to use four
execution paths. The root node is solved by four task threads in an inner
parallelization strategy, i.e. (1 × 4 × 1), supposing a single auxiliary thread per
optimization engine call. Variables that already satisfy the NAC are jumped, x1 = 0,
x2 = 1 and x3 = 0, and the branching of variable x4 is split in two paths by
reassigning root node coordinates, therefore, an Outer-Inner PH-BFC environment
is created, (2× 2× 1). Then, if variable x5 does not satisfy the NAC, both paths are
again split to define a total number of four paths executing a pure outer strategy
(4 × 1 × 1). The four paths are already defined based on the obtained solutions and
follow the steps described in Figure 3.4.
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Figure 5.7: Outer-Inner PH-BFC with dynamic four-path assignment example

5.7 Conclusions

The conclusions drawn from the parallelization of the BFC algorithm provide
a better understanding of the algorithm performance. This Parallel Computing
based additional knowledge can be applied to improve the serial BFC in Stochastic
Optimization terms. Therefore, the interaction between both scientific areas creates
a constant feedback that can again help to improve the parallelization.

The Dynamically-guided and stage-ordered Branch-and-Fix Coordination (D-
BFC) and its derived matheuristics (H-BFCs) improve the serial Branch-and-Fix
Coordination algorithm to obtain an exact solution of larger scale problems and
faster solutions in medium-scale problems.

The improvement is based on two aspects: stage-wise model ordering and
dynamic node branching. The first is drawn from the inner parallelization
conclusions, where the execution time in each node is reduced by solving several
subproblems in parallel; the stage perspective model ordering provides structural

124



5.7 Conclusions

Algorithm 5.3: Dynamic path assignment Outer-Inner PH-BFC

Level a: (Declaring optimization and MPI variables) [All task threads].
Set execution thread distribution (a × b × c) GLOBAL START.

Level b: (Definition of the global environment) [All task threads].
Begin a pure inner parallel execution (1 × (a · b) × c). Set numberpaths = 1

Step 0: (Initializations)
Set algorithm type by d ∈ {2, 3}, see Table 5.3.

Step 1: (Root node)
Level c: Secondary MPI communication. [All task threads]
The main thread gathers the solution and the solution value
of all submodels.

Steps 2 and 3: (Next node) and (Branching)

Path splitting phase
If numberpaths < a, then split the current path and update
numberpaths := 2 · numberpaths. Previous main thread continues
execution and one task thread becomes main thread and goes to Step 0.
Level c: All paths gather numberpaths. [All main threads]

Step 4: (Candidate TNF)
Level c: Secondary MPI communication. [All task threads]
The main thread gathers the solution and the solution value
of all submodels.
If a feasible solution of DEM is obtained, then update zDEM

path .

Go to Synchronization phase.
Step 5: (Integer TNF models)

At the end of Step 5, update zDEM
path , if all nodes have been visited

at the BFT path, then set deadpath = 1 (dead), else set deadpath = 0 (active).
Go to Synchronization phase.

Step 6: (Branch pruning).
Step 7: (Backward to previous node)

If all the nodes have been visited at the BFT path, then set deadpath = 1 (dead).
Go to Synchronization phase.

Steps 8 and 9: (Prune checking) and (Opposite branching)

Synchronization phase
Level c: (All paths gather zDEM

path and deadpath) [All main threads].

Set zDEM = min(zDEM , minpath{zDEM
path }).

If all deadpath = 1 (dead) then
Level d: (Finish MPI environmment) [All task threads].
GLOBAL END.

else
Level c: (Variable branching exchange) [All main threads].
Dead paths are reassigned by splitting active path BFT path.
All paths update root node N path.

Paths where deadpath = 0 continue branching, go to Step 8.
Paths where deadpath = 1 restart algorithm, go to Step 1.
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information to the optimization engine by time-wise dependency ordering. The
second is drawn from the outer parallelization conclusions, where the number of
visited nodes is reduced by splitting the branching tree and by obtaining early
tight bounds; the dynamic node branching guides the executions towards a feasible
solution based on cluster submodel solutions as opposed to the static branching
criterion presented in BFC.

A series of D-BFC based matheuristics are presented, namely H1-BFC, H2-BFC
and H3-BFC, based on the relaxation of some steps of the serial algorithm in order
to solve large and very large-scale problems. The matheuristic to be used is related
to the problem size by increasingly relaxing exact algorithm steps but at the same
time facilitating feasible solution being obtained. Algorithm H1-BFC is based on the
exact D-BFC algorithm but does not solve the MIP model (3.10) to obtain zT NF

MIP ,
therefore it is not an exact algorithm and is intended to solve large-scale problems.
Algorithm H2-BFC additionally relaxes the solving of the submodels (3.8) to obtain
zT NF

fc and, more importantly, performs an incomplete backward branching, i.e., only
previously branched variables are opposite-branched, in order to solve very large-
scale problems. Algorithm H3-BFC is intended to prevent memory overflows in very
large-scale problems and big data by stopping the execution at the first feasible
solution found.

The computational experience first analyses the effect of the stage-wise variable
ordering, where both algorithms obtain the optimal solution for the medium-scale
problems included in Testbed 2. The low optimality gap and small elapsed time
obtained by the matheuristic H2-BFC when solving the medium scale problems in
Testbed 2 is significant. Finally, the large-scale problems included in Testbed 3 are
solved by the H2-BFC and H3-BFC matheuristic algorithms and compared with the
results obtained by the SDP algorithm, showing that the H-BFC algorithms obtain
better solutions than the SDP algorithm and for 12 out of 18 of the instances the
elapsed time is competitive with respect to CPLEX.

Finally, a new perspective for the combined Outer-Inner parallelization of the
matheuristic H2-BFC algorithm is described. The new paradigm is based on the
dynamic branching improvement presented by D-BFC that enables the dynamic path
assignment Outer-Inner PH-BFC, where the path root nodes are cluster solution
based. The new scheme is intended to obtain a feasible solution for very large-scale
problems.
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Chapter 6

Conclusions and future research

Σα βγεις στον πηγαιμό για την ΙΘάκη,

να εύχεσαι νάναι μακρύς ο δρόμος,

γεμάτος περιπέτειες, γεμάτος γνώσεις.

When you set sail for Ithaca,
wish for the road to be long,
full of adventures, full of knowledge.

Constantine P. Cavafy, an extract of the Ithaca poem.

6.1 Conclusions

This work studies the potential of the joint conception of Parallel Computing
and Stochastic Optimization, where decomposition algorithms provide a suitable
common environment. Parallel Computing not only allows a serial algorithm to
be executed in parallel, but also hybrid algorithms can be designed where different
aspects are simultaneously analysed. Thus, by working in parallel the knowledge of
the algorithm behaviour is significantly deeper and Stochastic Optimization based
improvements can be added to the serial algorithm. Simultaneously, research on
Stochastic Optimization improves the Parallel Computing efficiency by rethinking
the model, by decomposing the model based on mathematical optimization
properties and by dividing the tasks among threads in a model based way. The
most important conclusions of the work are as summarized below.

Distributed memory parallelization by MPI is a very powerful tool for reducing
the execution time when solving several mixed 0-1 optimization problems. In order
to increase the parallel computing performance, measured by the speed-up and the
efficiency, a balanced work-load among threads and a reduced communication are
the two key aspects.

Additionally, it is possible to combine the modeller-defined distributed memory
parallelization with the optimization engine internal shared memory parallelization.
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A broad computational experience has been performed to analyse the marginal effect
of each parallelization when using CPLEX as an optimization engine. The results
show that the best thread assignation depends on the number and the size of the
testbed problems. Optimization engine level parallelization is preferred, in general,
when solving medium or large-scale problems. However, the marginal effect of adding
more auxiliary threads to CPLEX are shown to be decreasing and, therefore, after
a certain amount it is preferable to solve more problems simultaneously by using
distributed memory parallelization. The most efficient combination is testbed and
available computational resources dependent.

All things considered, an efficient way has been introduced for parallel solving
of several small and medium-scale mixed 0-1 optimization problems. Interestingly,
this environment can be used for parallel subproblem solving of decomposition
algorithms, i.e., a inner parallelization strategy.

The Multipath Branch & Bound algorithm is intended to solve medium-
scale problems by adding parallel computing features to the Branch & Bound
algorithm. For that purpose, the B&B tree is branched in parallel by using multiple
paths, allowing nodes to be visited simultaneously, earlier pruning of branches
by gathering intermediate path solutions and reassigning dead paths. In general,
this simultaneous executions can be used for creating hybrid environments where
parallel-conceived algorithm paths work with different roles or tasks, i.e., a outer
parallelization strategy.

The Multipath Branch & Bound algorithm reduces the elapsed time of the
corresponding serial version of the Branch & Bound algorithm but it is only capable
of solving small-scale problems, since the amount of nodes that are needed to be
visited significantly increases when considering more binary variables. In summary,
parallel computing alone is not capable of compensating the size enlargement.
Consequently, Mathematical Optimization based improvements are needed, in
cooperation with Parallel Computing, in order to solve large and very large-scale
problems.

The BFC methodology obtains risk neutral optimal solutions to medium-
scale and large-scale multistage stochastic mixed 0-1 problems, where (exogenous)
uncertainty is represented by nonsymmetric scenario trees. The superiority of the
serial version of the decomposition algorithm BFC over plain use of a state-of-the-
art MIP solver, is based on the stage perspective of the problem structure by the
break stage scenario clustering and the coordinated branching of the subproblems.
Parallel computing versions of the BFC algorithm are presented, referred to as P-
BFC algorithms.
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The inner level parallelization of the BFC algorithm, i.e. Inner P-BFC, performs,
when possible, steps of an BFC execution in parallel, and therefore it is internal
parallelization. MIP submodels attached to the set of scenario clusters are created by
the modeler-defined break stage, say t∗. Since the cluster submodels are independent,
they are optimized in parallel, as well as the integer TNF submodels to satisfy the
explicit NAC. An extensive computational experience shows that the elapsed time
is usually one order of magnitude smaller than the time required by plain use of
CPLEX, even where the optimizer alone fails to solve the problem. The savings
in elapsed time obtained by using 16 paths rather than a single one in P3 and P4
are 71.99% and 61.49%, respectively. Additionally, the most efficient configuration
of break stage, t∗, number of task threads and number of auxiliary threads for the
optimization engine internal parallelization, is problem dependent.

The outer level parallelization of the BFC algorithm, i.e. Outer P-BFC, defines
a path as combinations of a set of 0-1 variables as initial condition and an iterative
execution status gathering by global communication. The results of using the outer
parallelization show a significant reduction of the elapsed time that is consistent
when increasing the number of available threads.

Comparing the Inner P-BFC and the Outer P-BFC algorithms, we can conclude
that the first is more efficient when solving problems that visit few nodes and/or the
parallelizable subproblem solving consumes the major part of an iteration time. On
the other hand, the Outer P-BFC is more intensive in thread use and, therefore, more
efficient when the number of nodes to be visited is large or the non-parallelizable
problem solving is very significant in elapsed time terms. Additionally, the number
of task threads to be used in the inner approach is bounded by the number of cluster
subproblems, whereas in the outer approach that number is bounded by the number
of binary variables to be branched, which is very frequently much larger than the
number of cluster subproblems.

However, the most efficient parallelization of the BFC algorithm consists of using
inner parallelization on the paths resulting from outer parallelization, i.e. a hybrid
parallel algorithm referred to as Outer-Inner BFC. The computational experience
show that the marginal effect of adding more threads to the inner or the outer
approach is model dependent and varies with the number of available threads. The
elapsed time can be several orders of magnitude smaller than the time required by
the serial version of the algorithm, specially for break stage t∗ = 1 if the computer
resources allow it.

An extension of the SDP methodology has been presented including some
refinements in the algorithm to solve the production planning problem used as a
testbed. The SDP obtains fast quasi-optimal solutions for large and very large-
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scale multistage stochastic mixed 0-1 problems, where the (exogenous) uncertainty
is represented by nonsymmetric scenario trees.

The inner level parallelization of the SDP algorithm, i.e. Inner P-SDP, solves
the variations of the optimization of MIP subproblems in parallel, which are
attached to the set of subtrees for each modeler-driven stage. Since the variations
of the subproblems for each stage are independent from each other, they are
optimized in parallel following a synchronized/asynchronized depending on the
linking variable dependences. Based on an extensive computational experience the
proposed approach obtains quasi-optimal solutions for large and very large-scale
problems. The elapsed time required by the inner parallelization is up to one order
of magnitude smaller than that of the serial version of the algorithm, where efficiency
is up to 90% when using 12 threads, and the performance depends on computer
resources availability.

The outer level parallelization of the SDP algorithm, i.e. Outer P-SDP, defines a
path as a combination of alternative solutions of the first stage of the Front-to-Back
and a different perturbation performed during the Back-to-Front phase. Additionally
paths interchange information about the incumbent solution at the end of each Front-
to-Back execution. Regarding the large-scale and very large-scale problems included
in the testbed, the Outer P-SDP obtains a slightly better solution value than the
serial SDP/Inner P-SDP, but at the price of a sometimes higher computing time.

The Parallel Computing based additional knowledge of the BFC algorithm can be
used to improve the serial BFC in stochastic optimization terms. The Dynamically-
guided and stage-ordered Branch-and-Fix Coordination (D-BFC) and its derived
matHeuristics (H-BFCs) obtain an exact solution of larger scale problems and faster
solutions in medium-scale problems. The improvements are based on stage-wise
model ordering and dynamic node branching. The first is drawn from the Inner P-
BFC conclusions, where the gain is obtained by reducing the execution time of each
node subproblem solving. The second is drawn from the Outer P-BFC conclusions,
where the gain is obtained by obtaining early tight bounds.

A series of D-BFC based matheuristics are presented, namely H1-BFC, H2-BFC
and H3-BFC, by increasingly relaxing exact algorithm steps but at the same time
facilitating the intention of a feasible solution. The computational experience shows
the large-scale problems included in Testbed 3 are solved by the H2-BFC and H3-
BFC matheuristic algorithms. Compared to the serial SDP algorithm, the H-BFC
algorithms obtain better solutions than the SDP algorithm and for 12 out of 18 of
the instances the elapsed time is competitive with respect to CPLEX.

Finally, a new scheme to obtain a feasible solution for very large-scale problems is
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presented. Based on the dynamic branching improvement of the D-BFC algorithm, a
dynamic path assignment Outer-Inner PH-BFC is proposed. The main contribution
corresponds to a dynamic definition and reassignment of paths according to cluster
subproblem solutions.

6.2 Future research

The parallelization of the PD-BFC and PH-BFCs could lead to very large scale
problems being solved in case of the outer parallelization and an additional
performance improvement when considering the combined outer-inner version.

Moreover, a key aspect for future research corresponds to the decomposition of
model (3.10), botteleneck step of PD-BFC, which could be achieved by using Nested
Benders, Nested BFC, Lagrangian Decomposition among other decomposition
algorithms, including their corresponding inner or outer parallel implementations.

Hybrid environment based on the algorithms presented in this memoir could also
lead very large scale problems being solved. Among them, the following algorithms
are in order: SDP inside BFC for getting an initial tight bound, BFC inside SDP
for solving medium scale subproblems and, more interestingly, an Outer SDP-BFC
parallelization where some paths can be oriented to branch the binary variable tree
and other paths to search for a better solutions perturbing the obtained incumbent.

Other parallel hardware infrastructures could open new research directions, such
as Graphic Processing Units (GPUs) where the parallelization can be massive by
using a significantly larger number of threads. On the other hand, each of these
units has a significantly lower calculation capability than the corresponding CPUs.
Therefore, the design of massively decomposition algorithms is needed to exploit the
GPU paralellization capabilities.

As a further direction for future research we are planning to extend the parallel
versions of the SDP and BFC algorithms to consider risk averse strategies as opposed
to the risk neutral one already considered in this work. An effective expansion of
these algorithms consists of allowing risk averse strategies that require cross scenarios
constraints is not a trivial task, see in Rockafellar and Uryasev [2000], Fabian et al.
[2010], Aranburu et al. [2012], Shapiro et al. [2013], Escudero et al. [2014], among
others, some types of risk averse strategies that does not require cross scenario
constraints and, then, it is easier to be implemented in decomposition algorithms.
However, we favour the strategy introduced in Escudero et al. [2014] for the reasons
that there have been presented. An additional piece of research consists of expanding
the algorithms to allow a mixture of exogenous and endogenous uncertainties in the
main parameters.
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A final piece of research consists of applying inner and outer parallelization
paradigms to solve nonlinear stochastic problems, particularly in energy planning as
a key industrial sector.
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Appendix A

Message Passing Interface syntax

The following sections will describe the layout groups described in Section 2.2 of a
general message-passing parallel program by using Message Passing Interface (MPI).

Section A.1 describes the MPI variable declaration. Section A.2 introduces the
starting functions of the MPI environment. Section A.3 presents the thread grouping
functions. Section A.4 describes the message-passing communication possibilities
and functions. Section A.5 presents the finishing functions of the MPI environment.
Section A.6 introduces a specific example code.

A.1 Declaring MPI variables

The content of this section may not appear in every MPI code since a big part of its
functions have as input or output common C++ variables.

MPI_Group and MPI_Comm are among the most frequent MPI variables. The first
one creates groups of thread whereas the second one creates communicators, that is,
a group of threads plus a context of communication, in other words, a collection of
threads that can send messages to each other.

By default, a communicator called MPI_COMM_WORLD is created at the beginning
of each program; it consists of all the threads at the execution environment. It is
very useful for global communications but sometimes it is necessary to consider also
the communication among threads of a subgroup. That is the case of the code that
we have developed.

As it is shown in Section A.6 the following MPI variables are declared:

MPI_Group orig_group,new_group;
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MPI_Comm new_comm;

For other MPI variables see Pacheco [1996] and Snir et al. [1995]

A.2 Beginning of a MPI environment

MPI_Init corresponds to the first MPI function that must be executed on a
program. It allows the system to use the MPI library and therefore its features.
It must be called just once and no MPI functions can be called before this.

MPI_Init(&argc,&argv);

A.3 Identifying and grouping threads

In order to have a functional point-to-point communication environment it is
essential to identify each thread with a rank number, so that the sender and the
receiver can be easily identified. Additionally, the rank allows to work on a Single
Program Multiple Data (SPMD) paradigm; it implies the execution of different tasks
in different threads with a single program. Schematically:

if (rank == 0) DO X

else if (rank == 1) DO Y

To do so, the MPI library provides the MPI_Comm_rank function:

MPI_Comm_rank(MPI_COMM_WORLD,&original_rank);

The first argument defines the communicator and the corresponding rank of
the thread is stored on the second argument. Note that in general a thread has a
different rank for each communicator that is involved on.

Frequently, the tasks to be executed are divided among the available threads.
Function MPI_Comm_size allows to determine the number of threads in a
communicator (stored on the second argument):

MPI_Comm_size(MPI_COMM_WORLD,&original_size);

These sentences are the key to perform global communication. However, the
parallelization strategy presented in Section 2.4 needs to consider subgroups of
threads. For that purpose, let us consider the case where the number of threads
is bigger than the number of submodels to solve, that is nmodel < original_size

in Section A.6. It would mean that some threads would not actually solve any
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subproblem. In order to simplify the thread of gathering the final solutions, a new
group can be created by considering only the active threads. The steps are as follows:

Extract handle of global group from MPI_COMM_WORLD using MPI_Comm_group.
The handle is stored on the second argument.

MPI_Comm_group(MPI_COMM_WORLD, &orig_group);

Form a new group as a subset of global group using MPI_Group_incl.

if (nmodel < original_size) {

MPI_Group_incl(orig_group, nmodel, ranks1, &new_group);

} else {

MPI_Group_incl(orig_group, original_size, ranks2, &new_group);

}

Where ranks1 is an array of nmodel elements containing the ranks of the threads
to be part of the new group. The handle of the new group is stored on &new_group.
On the other hand, ranks2 contains the ranks of the MPI_COMM_WORLD, so notice
that if nmodel ≥ original_size the new group will correspond to the existing
MPI_COMM_WORLD group.

Let us create a new communicator for the new group using MPI_Comm_create,
so that the new communicator &new_comm is created with the threads new_group

extracted from communicator MPI_COMM_WORLD.

MPI_Comm_create(MPI_COMM_WORLD, new_group, &new_comm);

A.4 Communication functions

Message-passing communication is the core of a MPI environment. The basic
functions to develop such an exchange correspond to point-to-point communication
are: MPI_Send and MPI_Recv. The first function sends a message to a designated
thread, whereas the second receives a message from a thread. As pointed out in
Pacheco [1996], in order for the message to be successfully communicated, the system
must append some information to the data that the application program wishes to
transmit. This information is called the envelope of a MPI message. It will
contain the following basic information:

• The rank of the receiver

• The rank of the sender

135



Appendix A Message Passing Interface syntax

• A tag

• A communicator

Every message-passing function defines as arguments the previous aspects. In
this context global communication functions transfer information among threads
inside a communicator. As example let us consider the specific functions used in
Section A.6 code: MPI_Gatherv and MPI_Allgatherv.

Observe that each submodel is assigned to a thread in the parallel computing
strategy. After the solving task is performed, the value of the objective function
is gathered at the submodel ranked 0. The corresponding function is defined as
follows:

MPI_Gatherv(&zq_loc[0], assignment[pid], MPI_INT,

&zq[0],assignment, inicial, MPI_INT, 0, new_comm);

where MPI_Gatherv is used to gather information of type vector in a specific
thread (for scalar values, use MPI_Gather). The first three arguments define
the vector to be sent, that is, a vector stored from &zq_loc[0] of length
assignment[pid] and of type MPI_INT (in other words, a vector of integer values).
The thread ranked 0 at the new_comm communicator receives a vector of type
MPI_INT from each thread of the same communicator. The size of the vectors is
defined at the vector assignment and their position at the new vector &zq[0] is
established by the vector inicial.

Additionally, if the application demands all threads to have access to a gathered
information, MPI_Allgatherv should be used. This function is an extension of
MPI_Gatherv, since the same structure is repeated for every thread (in other words,
the gather vector will be stored in every thread). Notice that the only difference at
argument level is that this function does not ask to define the receiver rank. This
extension to all group threads by using the All prefix is valid for practically every
communication function (for specific information see Snir et al. [1995]). Applied to
the previous example the corresponding piece of code would be (not included in
Section A.6):

MPI_Allgatherv(&zq_loc[0], assignment[pid], MPI_INT,

&zq[0],assignment, inicial, MPI_INT, new_comm);

Finally, a useful group of functions allows the user to simultaneously communi-
cate and operate with the variables under consideration. This family of functions
is packed at MPI_Reduce and combines values from all threads. In this particular
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case, all threads (therefore MPI_Allreduce) store at the ncols variable the value
obtained by taking the maximum value (MPI_MAX) among the local ncols_max_loc

variables.

MPI_Allreduce(&ncols_max_loc,&ncols, 1, MPI_INT, MPI_MAX,new_comm);

Additional operations can be executed with MPI_Reduce, see Table A.1.

Table A.1: Operation options of the Reduce function

C function Function purpose

MPI_MAX Maximum
MPI_MIN Minimum
MPI_SUM Sum
MPI_PROD Product
MPI_LAND Logical AND
MPI_LOR Logical OR
MPI_MAXLOC Maximum and location
MPI_MINLOC Minimum and location

It is important to notice that the global communication functions (in this
case MPI_Gatherv and MPI_Reduce) have a blocking nature (in other words, the
program execution will be suspended until the message buffer is safe in every thread
involved at the communication). It means that these functions can be used for both
transferring data and for synchronising processes. Observe that in the proposed
implementation it could have a negative bottleneck effect since if the work-load is
not balanced a thread can be waiting until the slowest one finishes the execution of
assigned tasks. On the other hand, it allows not to overwrite solutions before being
sent to the coordinator thread.

Additionally the user can force a global synchronization phase on a specific point
by including function MPI_Barrier(comm), so that it is blocked until every thread
at the communicator comm has executed it.

The MPI library provides a rich variety of functions for message-passing tasks,
such as MPI_Broadcast for sending a variable from a root node to the rest of the
communicator, or MPI_Scatter that sends a part of a vector at every member of the
communicator, the opposite of MPI_Gather . For further information, see Snir et al.
[1995].
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A.5 Finishing the MPI environment

MPI_Finalize is the last MPI function that must be executed on a program. It
cleans up unfinished tasks and closes the interaction with the MPI library. It must
be called just once and no MPI functions can be called after this.

MPI_Finalize();

A.6 Example code

The example_mpi.cpp code, see below, is an example code that includes a general
layout of a message-passing parallel program by using Message Passing Interface
(MPI), for a complete program that can be compiled and linked see Aldasoro et al.
[2012]. (C++ keywords are shown in blue, comments in green and MPI elements in
red).

1 i n t main ( i n t argc , char ∗∗ argv ) {
// DECLARING GLOBAL AND MPI VARIABLES

3 i n t imod , i , j , loc , pid , npr , ncols , ncols_max_lo c =0;
i n t assignment [ nmodel ] , i n i c i a l [ nmodel ] , nmodel=44,

5 assignmentX0 [ nmodel ] , in iX0 [ nmodel ] , threadsCplex=2;
double zq [ nmodel ] ;

7 MPI_Group orig_group , new_group ; //MPI groups
MPI_Comm new_comm; //MPI communicator

9
// DEFINITION OF THE GLOBAL ENVIRONMENT

11 MPI_I n i t (&argc ,&argv ) ;
MPI_Comm_size(MPI_COMM_WORLD,& o r i g i n a l _ s i z e ) ; // Num. threads

13 MPI_Comm_rank(MPI_COMM_WORLD,& or ig ina l_rank ) ; // Who am I ?

15 //NEW COMMUNICATOR FOR ACTIVE THREADS
i n t ranks1 [ nmodel ] ; i n t ∗ ranks2 ; ranks2=new i n t [ o r i g i n a l _ s i z e ] ;

17 f o r ( i =0; i<nmodel ; i++) { ranks1 [ i ]= i ; }
f o r ( i =0; i<o r i g i n a l _ s i z e ; i++) { ranks2 [ i ]= i ; }

19 MPI_Comm_group(MPI_COMM_WORLD, &orig_group ) ;
i f ( nmodel < o r i g i n a l _ s i z e ) {

21 MPI_Group_incl ( orig_group , nmodel , ranks1 , &new_group ) ;
} e l s e {

23 MPI_Group_incl ( orig_group , o r i g i n a l _ s i z e , ranks2 , &new_group ) ; }
MPI_Comm_create (MPI_COMM_WORLD, new_group , &new_comm) ;

25 MPI_Group_rank ( new_group , &pid ) ;
MPI_Group_size ( new_group , &npr ) ;

27
// ASSIGNING WORK LOAD

29 f o r ( i =0; i<npr ; i++) assignment [ i ]= i n t ( nmodel/npr ) ;
f o r ( i =0; i <(nmodel−npr∗ i n t ( nmodel/npr ) ) ; i++)

31 assignment [ i ]= assignment [ i ]+1; i n i c i a l [ 0 ] = 0 ;
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f o r ( i =1; i<npr ; i++) i n i c i a l [ i ]= i n i c i a l [ i −1]+assignment [ i −1] ;
33

// CREATING THE COIN−OR/CPLEX MODELS
35 Os iCpx So lv e r In t e r face ∗ s o l 1 ;

s o l 1=new Os iCpx So lv e r In t e r face [ assignment [ pid ] ] ;
37 f o r ( l o c =0; loc <assignment [ pid ] ; l o c++){

CPXENVptr env = s o l 1 [ l o c ] . getEnvironmentPtr ( ) ;
39 CPXsetintparam ( env , CPX_PARAM_THREADS, threadsCplex ) ; }

f o r ( l o c =0; loc <assignment [ pid ] ; l o c++) {
41 imod=i n i c i a l [ p id ]+l o c ; const char ∗ f i n a l ;

f i n a l=" " ; char b u f f e r [ 3 3 ] ; f i n a l=i t o a ( imod+1, bu f f e r , 1 0 ) ;
43 char model [ 8 0 ] ; s t r cpy ( model , " C lu s t e r " ) ;

s t r c a t ( model , f i n a l ) ; puts ( model ) ;
45 s o l 1 [ l o c ] . setObjSense (1) ; s o l 1 [ l o c ] . readMps ( model ) ;

i f ( s o l 1 [ l o c ] . getNumCols ( ) > ncols_max_lo c )
47 ncols_max_lo c = s o l 1 [ l o c ] . getNumCols ( ) ; }

49 // DECLARING LOCAL VARIABLES
MPI_Al l r educe(&ncols_max_loc ,& ncols , 1 ,MPI_INT,MPI_MAX, new_comm) ;

51 double ∗zq _lo c ; zq _lo c=new double [ assignment [ pid ] ] ;
double ∗∗x0 ; x0=new double ∗ [ nmodel ] ;

53 f o r ( i =0; i<nmodel ; i++) x0 [ i ]=new double [ n c o l s ] ;
double ∗x0_lo c ; x0_lo c=new double [ assignment [ pid ] ∗ n c o l s ] ;

55 double ∗ x0vector ; x0vector=new double [ nmodel∗ n c o l s ] ;
f o r ( i =0; i<npr ; i++) { iniX0 [ i ]= i n i c i a l [ i ]∗ n c o l s ;

57 assignmentX0 [ i ]= assignment [ i ] ∗ n c o l s ; }

59 // SOLVE ASSIGNED MODELS
f o r ( l o c =0; loc <assignment [ pid ] ; l o c++){

61 imod=i n i c i a l [ p id ]+l o c ;
s o l 1 [ l o c ] . branchAndBound ( ) ; zq_lo c [ l o c ]=s o l 1 [ l o c ] . getObjValue ( ) ;

63 f o r ( j =0; j<s o l 1 [ l o c ] . getNumCols ( ) ; j++)
x0_lo c [ l o c ∗ n c o l s+j ]=s o l 1 [ l o c ] . ge tCo lSo lu t ion ( ) [ j ] ; }

65
// GLOBAL MPI COMMUNICATION (GATHERING SOLVE INFORMATION)

67 MPI_Gatherv(&zq_loc [ 0 ] , assignment [ pid ] ,MPI_DOUBLE,&zq [ 0 ] ,
assignment , i n i c i a l ,MPI_DOUBLE, 0 ,new_comm) ;

69 MPI_Gatherv ( x0_loc , assignmentX0 [ pid ] ,MPI_DOUBLE, x0vector ,
assignmentX0 , iniX0 ,MPI_DOUBLE, 0 ,new_comm) ;

71
MPI_F i n a l i z e ( ) ; // EXECUTION ENDS IN ALL PROCESSORS

73 re tu rn 0 ;}

example_mpi.cpp
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P-BFC programming codes

This appendix describes the C++ programming codes included in the attached CD
and used in the computational experience of Chapter 3.

Common program files:

BBcutsCplex.cpp, external function that solves the scenario cluster submodels
(3.1) and (3.8).

BBcutsCplexzf.cpp, external function that solves the integer TNF model
(3.10).

bintotal.cpp, external function that tests if binary relaxed variables satisfy
integrality constraints.

itoa.h, header file created by Lukás Chmela that converts integers to ASCII
code.

nabin.cpp, external function that tests if binary variables of cluster problems
satisfy integrality and non-anticipativity constraints.

nacont.cpp, external function that tests if continuous variables of cluster
problems satisfy non-anticipativity constraints.

nirea.cpp, external function that creates random variables using a non computer
dependent seed.

param3asim.cpp, external function that builds the full DEM in compact
representation.
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param4asim.cpp, external function that builds the DEM for each scenario
cluster submodel.

pm.h, header file that includes the necessary header files of COIN-OR and
CPLEX optimization engines.

vectors.cpp, external function that builds the necessary auxiliary dimensional
vectors for creating the full DEM.

vectorsasim.cpp, external function that builds the necessary auxiliary dimen-
sional vectors for creating the full DEM when the scenario tree is non symmetric.

Serial BFC:

maintotalCplex.cpp, main program that executes the serial Branch-and-Fix
Coordination algorithm.

Inner P-BFC:

mainbfcmpi.cpp main program that executes the Inner Parallel Branch-and-
Fix Coordination algorithm.

Outer-Inner P-BFC:

cabecera.cpp, external function that prints the execution configuration.

hilos.cpp, external function that manages the synchronization phase of the
Outer P-BFC algorithm.

mainbfcmpipath.cpp main program that executes the combined Outer-Inner
Parallel Branch-and-Fix Coordination algorithm.
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P-SDP programming codes

This appendix describes the C programming codes included in the attached CD and
used in the computational experience of Chapter 4.

Common program files:

backtofront_central.c, external function that performs the Back-to-Front
phase in an intermediate stage.

backtofront_final.c, external function that performs the Back-to-Front phase
in the last stage.

fronttoback.c, external function that performs the Front-to-Back phase in any
stage.

generar_parametros_inciertos.c, external function that creates the random
variables and problem dimension vectors.

initial_solve.c, external function that performs the Front-to-Back phase in any
stage of the initial iteration.

itoa.h, header file created by Lukás Chmela that converts integers to ASCII
code.

nirea.c, external function that creates random variables using a non computer
dependent seed.

reference_levels.c, external function that perturbs the solution obtained in
the Front-to-Back phase in order to create new reference levels.
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sdp.h, header file that defines the global variables.

Serial SDP files:

parametros_serie.c, external function that defines the variable values needed
to define a serial SDP execution.

results_fronttoback_serial.c, external function that stores and prints the
solution obtained at the end of an Front-to-Back phase.

results_initial_solve_serial.c, external function that stores and prints the
solution obtained at the end of an Front-to-Back phase in the initial iteration.

sdp.c, main program that executes the serial version of the SDP algorithm.

Inner P-SDP files:

gather_mupi_global.c, external function that gathers the µ and π vectors
using MPI.

gather_stock.c, external function that gathers the subproblem solutions
obtained in a Front-to-Back phase using MPI.

gth_btf_central_i.c, external function that gathers the subproblem solutions
obtained in a central stage of a Back-to-Front phase using MPI.

gth_btf_final_i.c, external function that gathers the subproblem solutions
obtained in the last stage of a Back-to-Front phase using MPI.

gth_mu_pi.c, external function that gathers the µ and π vectors inside a task
thread subgroup using MPI.

inner.h, header file that defines the global variables related to the inner
paradigm implementation.

mainsdp_inner.c, main program that executes the inner version of the SDP
algorithm.

parametros_i.c, external function that defines the variable values needed to
define an inner SDP execution.

res_ftb_i.c, external function that gathers using MPI the solution obtained at
the end of an Front-to-Back phase.
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res_initial_i.c, external function that gathers using MPI the solution obtained
at the end of an Front-to-Back phase in the initial iteration.

Outer P-SDP files:

gather_btf_final_outer.c, external function that gathers the subproblem
solutions obtained in the last stage of a Back-to-Front phase using MPI.

gather_ultima_solucion.c, external function that gathers the subproblem
solutions obtained in a Front-to-Back phase using MPI.

mainsdp_outer.c, main program that executes the outer version of the SDP
algorithm.

outer.h, header file that defines the global variables related to the outer
paradigm implementation.

parametros_outer.c, external function that defines the variable values needed
to define an outer SDP execution.

results_fronttoback_outer.c, external function that gathers using MPI the
solution obtained at the end of an Front-to-Back phase.

results_initial_solve_outer.c, external function that gathers using MPI the
solution obtained at the end of an Front-to-Back phase in the initial iteration.

solution_pool_outer.c, external function that executes the solution pool at
the initial iteration and scatters the corresponding results to each main thread.

solution_pool_outer_ftb.c, external function that executes the solution
pool at the end of the Front-to-Back phase and chooses the solution to be taken.
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Predoctoral training and visibility

The fulfilled predoctoral training in Operations Research and Parallel Computing
comprehends master program courses, workshops and an international visiting
research student fellowship:

• Visiting research student fellowship. University of Edinburgh & Edin-
burgh Parallel Computing Center. September-December 2013. (Supervisor:
Prof. Jacek Gondzio).

• Master in Statistics and Operations Research. Universitat Politècnica
de Catalunya & Universitat de Barcelona. 2011. (Full program).

• Master in Advanced Computer Systems. University of the Basque
Country UPV/EHU. 2012. (Fulfilled course: Programming Parallel Systems).

• Master in Mathematical Modelling, Statistics and Computing.
University of the Basque Country UPV/EHU. 2012. (Fulfilled course: Models
in Logistics).

• Master in High Performance Computing. University of Edinburgh
& Edinburgh Parallel Computing Center. 2013. (Courses attended as
auditing student: HPC Architectures, Message-Passing Programming, Parallel
Numerical Algorithms, Parallel Programming Languages, Programming Skills,
Threaded Programming).

• Summer School in Programming and Tuning Massively Parallel
Systems. Barcelona Supercomputing Center. July 2014.

Throughout the detailed training process several supercomputer facilities have
been used as practical environments:
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• ARINA, from University of the Basque Country, UPV/EHU. Used for
distributed programming and threaded programming training as well as the
computational experience of this work and related publications.

• HECToR, from Edinburgh Parallel Computing Centre (EPCC), British
academic national supercomputer. Used for distributed programming,
threaded programming, debugging tools and profiling tools training.

• MinoTauro, from Barcelona Supercomputing Center, BSC. Used for GPU
programming training.

Certain main results of this memory have lead to several publications:

Scientific papers:

• U. Aldasoro, L.F. Escudero, M. Merino, J.F. Monge and G. Pérez. On
parallelization of a Stochastic Dynamic Programming algorithm for solving
large-scale mixed 0-1 problems under uncertainty Submitted, 2014.

• U. Aldasoro, L.F. Escudero, M. Merino and G. Pérez. An algorithmic
framework for solving large-scale multistage stochastic mixed 0-1 problems
with nonsymmetric scenario trees. Part II: Parallelization Computers and
Operations Research (COR) 40:2950-2960, 2013.

Working papers:

• U. Aldasoro, M.A. Garín, M. Merino and G. Pérez. Generating clus-
ter submodels from a multistage stochastic mixed integer optimization
model using break stage Working paper series Biltoki DT.2013.02.
https://addi.ehu.es/handle/10810/10446

• U. Aldasoro, M.A. Garín, M. Merino and G. Pérez. MPI parallel programming
of mixed integer optimization problems using CPLEX within COIN-OR
Working paper series Biltoki DT.2012.01.
https://addi.ehu.es/handle/10810/7274

Furthermore, the main results of this memory have also been presented in several
national and international meetings:

148

https://addi.ehu.es/handle/10810/10446
https://addi.ehu.es/handle/10810/7274


Appendix D Predoctoral training and visibility

• Euro Mini Conference on Stochastic Programming and Energy Ap-
plications (ECSP2014). P-SDP, a parallel stochastic dynamic programming
algorithm for solving large-scale mixed 0-1 problems under uncertainty. (U. Al-
dasoro, L. F. Escudero, M. Merino and G. Pérez). Paris (France). September
2014.

• 20th Conference of the International Federation of Operation
Research Societies (IFORS 2014). On parallelizing decomposition
algorithms for solving stochastic multistage mixed 0-1 problems. (U. Aldasoro,
L. F. Escudero, M. Merino and G. Pérez). Barcelona (Spain). July 2014.

• Society for Industrial and Applied Mathematics (SIAM 2014).
Parallelized Branch-and-Fix-Coordination algorithm (P-BFC) for solving
large-scale multistage stochastic mixed 0-1 problems (L. F. Escudero, U.
Aldasoro, M. Merino and G. Pérez). San Diego, California (USA). May 2014.

• Computational Management Science Conference (CMS2014). P-
BFC, Parallelized Branch-and-Fix Coordination algorithm for solving large-
scale multistage mixed 0-1 problems . (G. Pérez, U. Aldasoro, L. F. Escudero
and M. Merino). Lisboa (Portugal). May 2014.

• IV Jornadas de Investigación de la Facultad de Ciencia y Tecnología
UPV/EHU. Stochastic optimization and parallelization (Poster) (U. Alda-
soro, L. Aranburu, L. F. Escudero, M.A. Garín, M. Merino, G. Pérez, C.
Pizarro and A. Unzueta). Leioa (Spain). February 2014.

• Computational Linear Algebra and Optimization for the Digital
Economy. Parallel stochastic optimization (Poster). (U. Aldasoro, L.
Aranburu, L. F. Escudero, M.A. Garín, M. Merino, G. Pérez, C. Pizarro and
A. Unzueta). International Center of Mathematical Sciences, Edinburgh (UK).
November 2013.

• XXXIV Congreso Nacional de Estadística e Investigación Operativa
(SEIO). On parallelizing BFC: An exact algorithm for solving large-scale
stochastic multistage mixed 0-1 optimization problems. (G. Pérez, U. Aldasoro,
L. F. Escudero and M. Merino). Castellón (Spain). September 2013.

• XIII International Conference on Stochastic Programming (ICSP2013).
Parallelized Branch-and-Fix Coordination (P-BFC) for solving large-scale mul-
tistage mixed 0-1 problems. (G. Pérez, M. Merino, L. F. Escudero, M.A. Garín
and U. Aldasoro). University of Bergamo (Italy). July 2013.

• 25th European Conference on Operational Research (Euro XXV).
Parallel computing via break stage scenario clustering for multistage stochastic
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programming. (G. Pérez, M. Merino, L. F. Escudero, M.A. Garín and U.
Aldasoro). Vilnius (Lithuania). July 2012.

• Seminars on Optimization under Uncertainty and Risk Management.
Nonsymmetric decomposition algorithm BFC for multistage stochastic MPI 0-1
models. (G. Pérez, U. Aldasoro, L. F. Escudero, M.A. Garín and M. Merino).
URJC, Móstoles (Spain). June 2012.

• XXXIII Congreso Nacional de Estadística e Investigación Operativa
(SEIO). MPI parallel programming for solving a large number of mixed integer
optimization problems using CPLEX within COIN-OR. (U. Aldasoro, L. F.
Escudero, M. Merino and G. Pérez). Madrid (Spain). April 2012.

• Computational Management Science Conference (CMS2012). Paral-
lel algorithm for solving multistage stochastic mixed 0-1 problems using BFC-
MS with CPLEX within COIN-OR and MPI. (G. Pérez, U. Aldasoro, L. F.
Escudero and M. Merino). London (United Kingdom). April 2012.

• III Jornadas de Investigación de la Facultad de Ciencia y Tecnología
UPV/EHU. Mixed integer stochastic optimization: algorithms and applica-
tions (Poster) (U. Aldasoro, L. Aranburu, L. F. Escudero, M.A. Garín, M.
Merino, G. Pérez and A. Unzueta). Leioa (Spain). February 2012.
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Glossary

active path 28
asynchronized execution 5
auxiliary thread 4
bandwidth 7
Branch-and-Fix tree 44
break stage 40
candidate TNF 45
common variables 45
compact representation 12
coordinator task thread 5
CPU time 23
dead path 28
efficiency 24
elapsed time 23
global communication 5
inner parallelization 26
integer TNF 45
latency 7
linking variables 13
main thread 4
matheuristic 1
NAC based cluster set 43
non-anticipativity constraints 9

outer parallelization 37

path 4

primary communication 5

reference level 79

scenario 10

scenario cluster decomposition 41

scenario group 11

secondary communication 5

solution pool 86

speedup 24

splitting variable representation 13

stage 10

subordinated task thread 5

synchronized execution 5

task thread 4

task thread subgroup 5

tertiary communication 5

thread 4

thread assignation 4

thread rank 16

Twin Node Family 45

twin nodes 45
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Nomenclature

〈i〉 index of variable i in the current cluster. 110
Ag set of scenario group g and its ancestors. 11

Ãℓ set consisting of nodes in Aℓ, such that their
variables have nonzero elements in constraints
associated with the nodes in the immediate
successor subproblems to leaf node ℓ. 77

A constraint matrix of the 0-1 variables. 13
a vector of the objective function coefficients of

the 0-1 variables. 13
a(g) immediate ancestor node of node g. 76
BFT B&B tree for optimizing the scenario cluster

submodels in a coordinated way. 44
BFT c B&B tree associated with scenario cluster c.

44
BFTpath B&B tree associated with the corresponding

path. 54
B constraint matrix of the continuous variables.

13
b vector of the objective function coefficients of

the continuous variables. 13
C set of scenario clusters. 40
Cg set of cluster that have scenario group g in

common. 43
Ci set of cluster that have variable xi in common.

111
C number of scenario clusters. 40
c scenario cluster index. 40
dens constraint matrix density (in %). 23
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Nomenclature

d Branch-and-Fix Coordination algorithm ver-
sion. 113

Eth% efficiency of the execution when using th
threads, in percentage. 24

Etop
th % top efficiency that could be achieved given the

model scenario tree using th threads. 103
F set of families. 45

Fr(V
z
a(r)) solution value of the subproblem related to

root node r and linking variable values V
z
a(r)

in reference level z. 83
G set of scenario groups. 11
Gc set of scenario groups in cluster c. 41
Gt set of scenario groups in stage t. 11
Gc

t set of scenario groups for cluster c ∈ C in stage
t ∈ T . 41

g scenario group index. 11
GAP 0

t∗ optimality gap (in %) of the solution value z0
t∗ .

44
GAPLP optimality gap (in %) of the LP relaxation

solution value zLP . 62
GG% optimality gap (in %) of the incumbent solu-

tion value with respect to the MIP solver solu-
tion value. 96

h vector of rhs coefficients. 12
I set of indices of the variables in vector xc

t , for
c ∈ C, t ∈ T . 44

Ix set of indices of the x variables. 109
Iy set of indices of the y variables. 109
IGinner% improvement gap (in %) of the inner para-

llelization solution value with respect to the
serial solution value. 102

IGouter% improvement gap (in %) of the outer para-
llelization solution value with respect to the
serial solution value. 102

i variable index. 49
Jf Twin Node Family. 45
Lr set of leaf nodes in the subtree whose root node

is r. 77
ℓ leaf node index. 77
λℓ(·) convex curve that gives the expected solution

value of the immediate successor subproblems
of leaf node ℓ. 78
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Nomenclature

λℓ piecewise linear EFV approximation of λℓ(·).
83

Mr set of nodes in the subtree rooted at node r. 77
m total number of constraints. 23
µz

ℓ parameter to define the piecewise linear func-
tion for leaf node ℓ and reference level z. 79

N path root node of the corresponding path. 54
n total number of variables. 94
nx total number of binary variables. 23
ny total number of continuous variables. 23
nel number of nonzero coefficients in the constraint

matrix. 23
niter number of full iterations performed. 96
nprob number of subproblems in which the DEM is

decomposed. 95
nz number of generated reference levels. 96
nn number of twin nodes explored. 66
nT NF number of integer TNF encountered by the

algorithm. 66
nc number of cluster submodels solved. 121
Ω set of scenarios. 11
Ωg set of scenarios in scenario group g. 11
Ωc set of scenarios in cluster c. 40
ω scenario index. 11
OG% optimality gap (in %) achieved for the MIP

problem. 95
P set of periods along the time horizon. 76
p period index. 78
πz

ℓ parameter vector to define the piecewise linear
function for leaf node ℓ and reference level z.
79

Qc set of active nodes in BFT c for cluster c. 44
Rt set of root nodes of the subtrees related to stage

t. 77
RF tB

th set of root nodes of the subtrees related to
thread th in the FtB scheme. 86

RBtF
th set of root nodes of the subtrees related to

thread th in the BtF scheme. 86
(rhs) right hand side vector. 8
r root node index. 77
Sℓ set of immediate successor nodes to leaf node

ℓ. 77
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Nomenclature

Sth speedup of the execution when using th
threads. 24

Stop
th top speedup that could be achieved given the

model scenario tree using th threads. 103
σi more frequent binary solution for variable i.

110
T set of stages along the time horizon. 11
T1 set of ancestor stages to break stage t∗ (inclu-

ding itself). 43
T2 set of sucessor stages to break stage t∗, i.e.,

T2 = T − T1. 43
T t set of ancestor stages to stage t (including

itself) whose variables have nonzero elements
in the constraints of stage t ∈ T . 11

T last stage in the time horizon, such that T =
|T |. 11

t(g) stage to which scenario group g belongs. 76
t stage index. 11
t∗ break stage. 40
tDEM elapsed time for obtaining the solution value of

the original DEM. 66
tLP elapsed time for obtaining the solution value of

the LP relaxation of the original DEM. 95
th thread index. 25

V
z
ℓ solution of the variables in vectors x− and y−

related to ancestor scenario groups to leaf node
ℓ and reference level z. 83

wω likelihood associated to scenario ω. 12
wg likelihood associated with scenario group g. 12

ξz′

r perturbation on the linking constraint system
related to root node r and reference level z′. 81

x vector of binary variables. 12
y vector of continuous variables. 12
ŷ upper bound vector of variables in vector y. 12
zDEM solution value of the original DEM. 62
zDEM

path solution value of the original DEM obtained in
the corresponding path. 57

zLP solution value of the LP relaxation of the
original DEM. 62

z0
t∗ lower bound of the solution value of the original

DEM obtained at the root node for break stage
t∗. 44
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Nomenclature

Zℓ set of indices of currently active reference levels
related to leaf node ℓ. 80

z reference level index. 79
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Acronyms

B&B Branch & Bound algorithm. 15
BD Benders Decomposition. 8
BFC Branch-and-Fix Coordination multistage algo-

rithm. 39
BtF Back-to-Front scheme in the SDP algorithm.

80
COIN-OR COmputational INfrastructure for Operations

Research. 7
CPU Central Processing Unit. 3
D-BFC Dynamically-guided and stage-ordered Branch-

and-Fix Coordination. 107
DEM Deterministic Equivalent Mode. 8
DG Dynamically-Guided branching. 110
EFV Expected Future Value. 76
FtB Front-to-Back scheme in the SDP algorithm.

80
GPU Graphic Processing Unit. 3
H-BFC D-BFC based matheuristic algorithms. 107
IB Incomplete Backward branching. 113
LP Linear Programming. 7
MIP Mixed Integer Programming. 39
MPI Message Passing Interface. 7
MPP Massively Parallel multiProcessor. 6
NAC Non-Anticipativity Constraints. 9
P-BFC Parallel Branch-and-Fix Coordination. 39
P-SDP Parallel Stochastic Dynamic Programming. 75
PC Parallel Computing. 1
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Acronyms

PH-BFC Parallel H-BFC matheuristic algorithm. 122
RAM Random-Access Memory. 7
SDP Stochastic Dynamic Programming. 75
SF Stop at First feasible solution. 113
SIO Stochastic Integer Optimization. 8
SO Stochastic Optimization. 1
SPMD Single Program Multiple Data. 16
UPV/EHU Universidad del País Vasco/Euskal Herriko

Unibertsitatea. 7
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