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1 Introduction

Relativistic quantum mechanics (RQM) is the formulation of quantum mechanics that in-
corporates special relativity. This theory is applicable to particles that propagate with
velocities that are near the speed of light. If this particles are spin-1/2 fermions, the
equation that governs its dynamics is the Dirac equation. The motion that this equation
predicts for a free particle has an oscillating term; this oscillating movement is named
zitterbewegung (“trembling motion” in German). Although the zitterbewegung of a free
relativistic particle has never been observed, the physics related with the Dirac equation
have been simulated using an ion-trap quantum simulator.
A quantum simulator is a controllable quantum system that intends to imitate another
different quantum system (the simulated system). For that, the quantum simulator must
obey a physical model that is equivalent (mathematically) to the model associated to the
simulated system. The Dirac model and the models used in quantum optics, the theory
that studies the interaction between light and matter, have the same mathematical compo-
nents. This leads us to believe that, using quantum optics based technology -like trapped
ions-, it is possible to create a controllable quantum system whose Hamiltonian model is
equivalent to the Dirac Hamiltonian. In 2010, the quantum simulation of the Dirac equa-
tion and the reproduction of properties like the zitterbewegung was performed in trapped
ions, a non-relativistic quantum platform [1].

This Hamiltonian model equivalence has open a gate between quantum optics and relativis-
tic quantum mechanics; the objective of this work is to use that gate to export concepts
that are originally from quantum optics to the field of RQM and viceversa; then, explore
and analyse the different results that we could obtain and their meaning in each of these
two fields of physics.

The work is divided in two parts; chapters 2 and 3 contain the basic theoretical concepts
of RQM and trapped ions respectively, while chapter 4 explains how the model of the 1 + 1
dimensional Dirac equation is implemented in a single trapped ion. The chapters 5 and 6
contain the work that I have developed during the last months. More precisely, chapter 5
introduces a feasible method to implement, in a single trapped ion, the Foldy-Wouthuysen
transformation, which takes us to a representation where the Dirac Hamiltonian is diagonal
and the zitterbewegung disappears. In chapter 6 we do an analysis about how typical states
from quantum optics evolve under the 1 + 1 dimensional Dirac Hamiltonian; we also study
and try to understand the behaviour of the zitterbewegung produced by such states.



2 Relativistic quantum mechanics

Relativistic quantum mechanics (RQM) [2] is the mathematical formulation of quantum
mechanics applied in the context of special relativity; just like non-relativistic quantum
mechanics is formulated in the context of what is called Galilean relativity. RQM has
achieved the successful explanation of topics like antimatter or spin 1/2 particles. The
main equation from which this success emerges is the Dirac equation.
The subsections 2.1, 2.2 and 2.3 intend to do a theoretical approach to RQM from the
non-relativistic formulation and in subsection 2.4 we introduce one of the most surprising
results of the Dirac equation, the zitterbewegung.

2.1 Non-relativistic quantum mechanics

In non-relativistic quantum mechanics, to obtain the dynamical equation for a free particle
of mass m, we consider the classical energy momentum relation

E =
p2

2m
(1)

and substitute E and p by their respective differential operators

E → i~
∂

∂t
, p→ −i~∇. (2)

The resulting operator acts on a complex wavefunction ψ (x, t),

i~
∂ψ

∂t
+

~2

2m
∇2ψ = 0 (3)

where we interpret ρ = |ψ|2 as the probability distribution. Now we will calculate the
density flux of a beam of particles, j. From the conservation of probability law, the rate
at which the number of particles in a given volume decreases is equal to the total flux of
particles coming out of that volume, that is,

− ∂

∂t

∫
V
ρ dV =

∫
S
j · n̂ dS =

∫
V
∇ · j dV (4)

where the last equality is Gauss’s theorem. According to Eq. (4), the probability and the
flux densities are related by the “continuity” equation

∂ρ

∂t
+∇ · j = 0. (5)



To determine the flux, we start from the following expressions:

−iψ∗(i~∂ψ
∂t

+
~2

2m
∇2ψ = 0)

−iψ(i~
∂ψ

∂t
+

~2

2m
∇2ψ = 0)∗.

(6)

Combining this two equations and remembering that ∂ρ/∂t = ψ∗∂ψ/∂t + ψ∂ψ∗/∂t, we
obtain

∂ρ

∂t
− i~

2m
(ψ∗∇2ψ − ψ∇2ψ∗) = 0. (7)

Comparing this with Eq. (5) we identify the probability flux density as

j = − i~
2m

(ψ∗∇ψ − ψ∇ψ∗) = 0. (8)

If we take the following solution for Eq. (3)

ψ = Neip·x−iEt, (9)

which describes a free particle of energy E and momentum p, the probability density and
a flux density are

ρ = |N |2, j =
p

m
|N |2. (10)

2.2 The Klein-Gordon equation

In relativistic quantum mechanics the energy momentum relation for a free particle is given
by

E2 = p2 +m2 (11)

where m is the rest mass of the particle. Making the operator substitutions introduced in
Eq. (2), we obtain

−∂
2φ

∂t2
+∇2φ = m2φ. (12)

This equation is known as the Klein-Gordon equation. Multiplying the Klein-Gordon
equation by −iφ∗ and the complex conjugate equation by −iφ, and subtracting them, we
obtain the relativistic analogue of Eq. (7)

∂

∂t

[
i(φ∗

∂φ

∂t
− φ∂φ

∗

∂t
)

]
+∇ · [−i(φ∗∇φ− φ∇φ∗)] = 0. (13)

4



Comparing it with Eq. (5) we easily identify the probability and the flux densities

ρ = i(φ∗
∂φ

∂t
− φ∂φ

∗

∂t
)

j = −i(φ∗∇φ− φ∇φ∗).
(14)

For example, for a free particle of energy E and momentum p described by the following
solution of the Klein-Gordon equation

φ = Neip·x−iEt, (15)

we find from Eq. (14) that

ρ = 2E|N |2, j = 2p|N |2. (16)

Substitution of Eq. (15) into Eq. (12) gives the following eigenvalues for the Klein-Gordon
equation

E = ±(p2 +m2)1/2 (17)

We clearly have a problem here. E < 0 solutions are associated with a negative probability
density in Eq. (16).

2.3 The 1+1 dimensional Dirac equation

Dirac wanted to write an equation which was linear in ∂/∂t. In order to be covariant, it
must then also be linear in ∂/∂x and has therefore the general form

Hψ = (αpx + βm)ψ. (18)

The two coefficients α and β are determined by the requirement that a free particle must
satisfy the relativistic energy-momentum relation (11),

H2ψ =
(
p2x +m2

)
ψ, (19)

and from Eq. (18), we have that

H2ψ =
(
α2p2x + (αβ + βα)pxm+ β2m2

)
ψ. (20)

Comparing with Eq. (19), we see that α and β must anticommute. Also α2 = 1 and
β2 = 1. Since the coefficients do not commute, they cannot be simply numbers, and we are
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led to considering matrices operating on a wave vector Ψ, which is now a two component
column vector. Let us consider

α = σx =

(
0 1
1 0

)
β = σz =

(
1 0
0 −1

)
(21)

Multiplying Dirac equation(18) by β from the left, we obtain

iσz∂tΨ = −iσzσx∂xΨ +mΨ. (22)

Now, we are going to focus in obtaining a continuity equation of this matrix equation. For
that we consider the Hermitian conjugate of Eq. (18) ,

−i∂tΨ†σ†z = i∂xΨ†(σzσx)† +mΨ† (23)

We can easily prove that σ†z = σz and σ†z = σx, and thus that they must anticommute,
(σzσx)† = σxσz = −σzσx. Substituting these results we can rewrite the Eq. (23) to obtain

i∂tΨ
†σz = i∂xΨ†σzσx −mΨ† (24)

Multiplying Eq. (22) from the left by Ψ† and (24) from the right by Ψ and adding them,
we find that the two ∂x terms kill each other. Therefore, we need to correct our method,
by multiplying Eq. (22) from the left by Ψ†σz and (24) from the right by σzΨ, and adding
them. Now, we get the following equation

∂tΨ
†Ψ + Ψ†∂tΨ + ∂xΨ†σxΨ + Ψ†σx∂xΨ = 0. (25)

We may note that this equation can be rewritten as

∂t(Ψ
†Ψ) + ∂x(Ψ†σxΨ) = 0, (26)

which suggests that we should identify Ψ†Ψ and Ψ†αΨ as the probability density and the
flux, ρ and jx respectively. Now, the probability density

ρ ≡ Ψ†Ψ =
(
ψ∗1 ψ∗2

)(ψ1

ψ2

)
= |ψ1|2 + |ψ2|2 (27)

is positive definite. Avoiding the main drawback of the Klein-Gordon equation and pro-
viding a physically reasonable framework to describe relativistic quantum mechanics. This
final result was the one that motivated the work of Dirac.
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2.4 Zitterbewegung

Zitterbewegung [3] is one of the most counterintuitive results of the Dirac equation. The
basic idea is that the expectation value of the standard position operator x that is predicted
by the Dirac Hamiltonian for a free particle has an oscillating term, a “trembling motion”,
that is called Zitterbewegung. In principle we do not expect from a free particle to have
such an oscillatory motion, because in non-relativistic quantum and classical mechanics,
oscillating dynamics are related to forces; and not to free particles.
In the Heisenberg picture, states do not depend on time, but operators do. The evolution
of an operator A at time t in the Heisenberg picture is given by (~ = 1)

A(t) = eiHtAe−iHt (28)

where H is the Hamiltonian. In our case, the Hamiltonian is the 1 + 1 dimensional Dirac
Hamiltonian, which is

HD = cpσx +mc2σz, (29)

and according to Eq. (28), the evolution of the position operator is given by

x(t) = eiHDtxe−iHDt. (30)

In the Heisenberg picture any operator A obeys this relation

dA

dt
(t) = i[H,A(t)], (31)

so in our case the position operators time derivative at t = 0 is given by

dx

dt
(0) = i[HD, x] = cσx (32)

and its time evolution is given by

dx

dt
(t) = cσx(t) (33)

where σx(t) = eiHDtσxe
−iHDt. Equation (33) shows that cσx(t) can be understood as the

velocity operator, so we will call it the standard velocity operator.
We will call c2pH−1D the classical velocity operator, because of its similarity with the com-
mon expression for the velocity in the non-relativistic limit, v = c2p/E.
What we want is to find an analytical expression for the evolution of the position operator.
Let us define an operator F in the following way

F ≡ cσx − c2pH−1D (34)
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the time evolution of this operator is given by

F (t) = eiHDtFe−iHDt (35)

but, using that {HD, σx} = cp{σx, σx} = 2cp is easy to verify that F anticommutes with
HD (HDF = −FHD) and therefore Eq. (35) can be written as

F (t) = e2iHDtF . (36)

So, according to Eq. (34), the evolution of the standard velocity operator is

cσx(t) = F (t) + c2pH−1D , (37)

note that since [HD, c
2pH−1D ] = 0 the classical velocity operator is constant in time. Now

that we have the expression for the evolution of the standard velocity operator, we can
conclude that it has an oscillating part F (t) and a constant part c2pH−1D ; according to this,
it seems like the velocity oscillates around the expected value of the “classical velocity”.
This phenomena is called zitterbewegung.
The time evolution of the position operator is achieved by integrating cσx(t) in time between
0 and t

x(t) = x+

∫ t

0
dτcσx(τ). (38)

If we calculate the integral we arrive to the expression

x(t) = x+ c2pH−1D t+
1

2iHD
(e2iHDt − 1)F . (39)

Looking at Eq. (39) we can see that there is a “classical part” of the motion that evolves
linearly in time, and another part that oscillates, which is responsible for the “trembling
motion”. Note also that in the limit of m → ∞ the position operator goes to its initial
expression (x(t) = x).
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3 Single trapped ion

Trapped-ion systems [4] are one of the most promising technologies for quantum simula-
tions. It consist in trap the ion using for example a Paul trap -that uses time-dependent
electromagnetic fields- and cooling its vibrational degree of freedom to a quantum regime.
Then, lasers provide an interaction between the motional degree of freedom and the internal
electronic degree of freedom.

3.1 Introduction to single trapped ion physics

3.1.1 The two-level approximation

The internal electronic structure of an ion confined in a linear Paul trap can be approxi-
mated by a two-level system, being |g〉 and |e〉 the ground and excited states respectively,
and the energy difference ~ω0 = ~(ωe−ωg) [4]. According to that the two-level Hamiltonian
is

He = ~ωg|g〉〈g|+ ~ωe|e〉〈e|. (40)

This can be written also as

He =
~ω0

2
(|e〉〈e| − |g〉〈g|) + ~

ωe + ωg
2

(|e〉〈e|+ |g〉〈g|). (41)

Any operator connected to a two-level system can be expressed using the spin-1/2 algebra,
since the three Pauli matrices and I, the 2× 2 identity matrix, span the full vector space
of 2× 2 Hermitian matrices. In the particular case at hand the mapping is

|e〉〈e|+ |g〉〈g| −→ Iσ2 =

(
1 0
0 1

)
, |e〉〈g| −→ σ+ =

(
0 1
0 0

)
,

|g〉〈e| −→ σ− =

(
0 0
1 0

)
, |e〉〈e| − |g〉〈g| −→ σz =

(
1 0
0 −1

) (42)

where,

|e〉 →
(

1
0

)
|g〉 →

(
0
1

)
. (43)

With this mapping the two-level Hamiltonian is reexpressed as

He =
~ω0

2
σz, (44)

where the energy is rescaled by −~(ωe + ωg)/2 to suppress the state-independent energy
contribution in Eq. (41).



3.1.2 Total Hamiltonian and interaction Hamiltonian

The fundamental Hamiltonian describing the interaction of a two-level trapped ion, cooled
down to the motional quantum regime, is given by

H =
~ω0

2
σz + ~νa†a+ ~Ω(σ+ + σ−)(ei(kx−ωt+φ) + e−i(kx−ωt+φ)) (45)

where σ± and σz are Pauli operators associated to the two internal levels of the ion, a(a†) is
the annihilation(creation) operator of the motional degree of freedom, ω0 is the frequency
of the internal electronic transition, ν is the trap frequency, ω is the frequency of the driv-
ing laser field, k is the laser wave vector, φ is the laser phase, and Ω is the Rabi frequency
associated with the atom-laser coupling strength.

We have a Hamiltonian, such as

H = H0 + V (t) (46)

where we assume that energy eigenvalues En and eigenkets |n〉 of H0

H0|n〉 = En|n〉 (47)

are completely known.
The interaction ket is defined, as

|ψ〉I(t) ≡ e
iH0t
~ |ψ〉(t) (48)

and it’s time evolution is given by the equation

i~∂t|ψ〉I(t) = HI |ψ〉I(t) (49)

where the interaction Hamiltonian HI = e
iH0t
~ V (t)e

−iH0t
~ .

In our case, the transformed interaction Hamiltonian is

HI = ei(
ω0
2
σz+νa†a)t~Ω(σ+ + σ−)(ei(kx−ω0t+φ) + e−i(kx−ω0t+φ))e−i(

ω0
2
σz+νa†a)t. (50)

In order to simplify the expression obtained for the interaction Hamiltonian, we may
remove the operators in the exponentials. Let us start with the two-level operators.
Combining the very well known formula

eiGλAe−iGλ = A+ iλ[G,A] +
(iλ)2

2!
[G, [G,A]] + ... (51)
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with the commutation relations [σ+, σz] = −2σ+ and [σ−, σz] = 2σ− , we can easily prove
the following equality

ei
ω0t
2
σz(σ+ + σ−)e−i

ω0t
2
σz = σ+e

iω0t + σ−e
−iω0t. (52)

Using this, our Hamiltonian takes the form

HI = eiνa
†at~Ω(σ+e

iω0t + σ−e
−iω0t)(ei(kx−ωt+φ) + e−i(kx−ωt+φ))e−iνa

†at (53)

Multiplying the time-dependent factors in the above expression leads to terms like e±i(ω±ω0)t.
Two terms are rapidly oscillating because ω and ω0 add up, while the two other terms os-
cillate with frequency δ = ω − ω0 � ω0. It can be proved, if also the contition Ω � ω0

is fulfilled, that the contribution of the rapidly oscillating terms in the time evolution, are
neglectable. Therefore if the commented two conditions are fulfilled, we can neglect the
rapidly oscilating terms; doing so is called the optical rotating-wave approximation, and
leads to the following Hamiltonian,

HI = eiνa
†at~Ω(σ+e

i(kx−δt+φ) + σ−e
−i(kx−δt+φ))e−iνa

†at. (54)

Let us focus now on the motional operators. First we shall remember that x, the
position operator of the ion, is written in term of a and a† as

x =

√
~

2mν
(a+ a†). (55)

Using again the formula (51) now with the commutation relations [a†a, a†] = a† and
[a†a, a] = −a, we can prove that

eiνta
†axe−iνta

†a =

√
~

2mν
(a†eiνt + ae−iνt). (56)

We can continue calculating the same for xn. Here, it is useful to remaind that e−AeA = I
if A is a Hilbert space operator. Using the expression above, we can proceed

eiνta
†axne−iνta

†a = eiνta
†ax · x · x...e−iνta†a

= eiνta
†axe−iνta

†aeiνta
†axe−iνta

†aeiνta
†ax...e−iνta

†a

= (

√
~

2mν
)n(a†eiνt + ae−iνt)n.

(57)

In our Hamiltonian, the terms that concern us, are multiplied by e±ikx. However, the
already achieved expressions will be quite useful if we expand the exponential

eiνta
†ae±ikxe−iνta

†a = eiνta
†a
∞∑
m=0

(±ikx)m

m!
e−iνta

†a

=

∞∑
m=0

(±ik)m

m!
eiνta

†axme−iνta
†a =

∞∑
m=0

(±ik)m

m!
(

√
~

2mν
)m(a†eiνt + ae−iνt)m

(58)
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Introducing the Lamb-Dicke parameter η ≡ k
√

~
2mν , we finally get

eiνta
†ae±ikxe−iνta

†a = e±iη(e
iνta†+e−iνta) (59)

Using this last result, the interaction Hamiltonian takes the form

HI = ~Ωσ+e
i(η(eiνta†+e−iνta)−δt+φ) + H.c. (60)

where H.c. means the Hermitian Conjugate.

3.2 Lamb-Dicke regime: carrier, first blue, and red sidebands

The interaction Hamiltonian in Eq. (60) can be simplified if we consider the ion confined
on the Lamb-Dicke regime, where the condition η

√
〈(a+ a†)2〉 � 1 must hold for all times.

Once we have this condition we can expand the exponential to the lowest order in η,

HLD = ~Ωσ+{1 + iη(eiνta† + e−iνta)}ei(−δt+φ) + H.c.. (61)

3.2.1 The carrier interaction

Let us consider δ = 0. The Hamiltonian splits in three parts,

H = ~Ω{(σ+eiφ + σ−e
−iφ) + iη(a†σ+e

iφ + aσ−e
−iφ)eiνt + iη(aσ+e

iφ + a†σ−e
−iφ)e−iνt}

(62)

where two of the parts oscillate with ν and −ν respectively. However, the first part does
not have time dependence. When a part of the interaction Hamiltonian does not depend
on time, it is in resonance condition, and under a second Rotating wave approximation
(RWA),called vibrational RWA, we can neglect the two oscillating terms. So, the first
resonance for δ = 0 is called the carrier resonance and its effective interaction Hamiltonian
is

Hcar = ~Ω(σ+e
iφ + σ−e

−iφ). (63)

Let me go a little further here. If instead of δ = 0 we assume that δ = −ξ, were |ξ| � |ν|,
applying the vibrational RWA, the same two terms can be neglected. It is called vibrational
because the terms that are neglected are oscillating with frequency ν, that is the natural
frequency of the motional degree of freedom. This case were δ = −ξ is called the detuned
carrier interaction and its effective hamiltonian is

Hd/car = ~Ω(σ+e
iφeiξt + σ−e

−iφe−iξt). (64)
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Anyway, returning to the resonant carrier interaction, suppose that the initial state is,
for example |n, g〉 -where |n〉 is a Fock state and |g〉 is the ground state of the two-level
electronic structure. It can be proved that the evolution of this state is

|n, g〉 → cos (
Ωt

2
)|n, g〉+ eiϕ sin (

Ωt

2
)|n, e〉 (65)

Thus, we realize that the resonant carrier Hamiltonian give rise to transitions of the
type |n, g〉 ↔ |n, e〉 with a frequency frequency Ω, that is called Rabi frequency. But the
carrier does not affect to the motional state; to obtain an interaction that generates give
transitions simultaneously in the electronic and the motional state, we must excite other
sidebands.

3.2.2 First red sideband: Jaynes-Cummings (JC) model

If we bring back the Lamb-Dicke regime Hamiltonian of Eq. (61), and if, instead of
δ = 0, we choose δ = −ν, the resonant part is called first red sideband and the effective
Hamiltonian has the form

Hrsb = ~Ωiη(aσ+e
iφ − a†σ−e−iφ). (66)

In this case, together with the two-level operators, we have the motional creation and an-
nihilation operators. This Hamiltonian, is known as the Jaynes-Cummings Hamiltonian,
and is one of the main models in quantum optics.

If we have the initial state |g, n〉,it can be prove that the evolution is given by,

|n, g〉 → cos (
Ωt

2

√
n)|n, g〉+ eiφ sin (

Ωt

2

√
n)|n− 1, e〉 (67)

Looking to this evolution we can conclude that the first red sideband Hamiltonian gives
rise to transitions of the type |n, g〉 ↔ |n− 1, e〉, with Rabi frequency Ωn,n−1 = ηΩ

√
n. So,

if we measure the internal state of the ion, and if we get that it is on the excited state |e〉
we would know also that the motional state is |n−1〉. In other words, the motional state is
entangled with the ions internal state. This entanglement property of the JC Hamiltonian
makes the model one of the most appropriate to study the basic properties of the quantum
correlations (entanglement).

Finally, as we have done with the carrier interaction, here we can also choose δ = −ν−ξ,
where |ξ| � |ν|, and the effective Hamiltonian is the detuned red sideband

Hd/rsb = ~Ωiη(aσ+e
iφeiξt − a†σ−e−iφ

′
e−iξt). (68)
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3.2.3 First blue sideband: anti-Jaynes-Cummings (anti-JC) model

In the first red sideband we have taken δ = −ν. In contrast, for the first blue sideband we
take δ = ν. This, produces a different resonance on the Lamb-Dicke Hamiltonian (61), the
resultant effective Hamiltonian is

Hbsb = ~Ωiη(a†σ+e
iφ − aσ−e−iφ). (69)

This Hamiltonian is known as the anti-James-Cummings Hamiltonian (anti-JC). While the
JC Hamiltonian produces transitions of the type |n, g〉 ↔ |n−1, e〉, the anti-JC Hamiltonian
produces transitions of the type |n, g〉 ↔ |e, n+ 1〉. The exact expression for the evolution
of the initial state |n, g〉 is given by

|n, g〉 → cos (
Ωt

2

√
n+ 1)|n, g〉+ eiφ sin (

Ωt

2

√
n+ 1)|n+ 1, e〉 (70)

where the Rabi frequency is Ωn,n+1 = ηΩ
√
n+ 1. The anti-JC, of course also produces

entanglement between the motional and electronic states.
The detuned case of the anti-JC has the form

Hd/bsb = ~Ωiη(a†σ+e
iφeiξt − aσ−e−iφe−iξt). (71)
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4 Quantum simulation of the 1 + 1 dimensional Dirac equa-
tion in trapped ions

In subsection 3.2, we have learned the theoretical treatment of the generation of the Jaynes-
Cummings and the anti-Jaynes-Cummings Hamiltonians in trapped ions. Now we can
start thinking on how to generate a Hamiltonian equivalent to the 1 + 1 dimensional Dirac
Hamiltonian. Actually to generate the 1+1 Dirac Hamiltonian we need at least two lasers,
so we can excite more than one mode simultaneously.

4.1 Two lasers with a single ion

The theoretical approach for the problem is identical to the one of a single laser. Now,
the total Hamiltonian has one more term, that corresponds to the coupling between the
ion and the second laser. The treatment of the second coupling term, is strictly the same
as that of the first coupling term, as we are going to see. We start with the following
Hamiltonian

H =
~ω0

2
σz + ~νa†a+ ~Ω1(σ+ + σ−)[ei(k1x−ω1t+φ1) + e−i(k1x−ω1t+φ1)]

+~Ω2(σ+ + σ−)[ei(k2x−ω2t+φ2) + e−i(k2x−ω2t+φ2)]

(72)

In this case the interaction Hamiltonian is

HI = ei(
ω0
2
σz+νa†a)t~Ω1(σ+ + σ−)[ei(k1x−ω1t+φ1) + e−i(k1x−ω1t+φ1)]e−i(

ω0
2
σz+νa†a)t

+ei(
ω0
2
σz+νa†a)t~Ω2(σ+ + σ−)[ei(k2x−ω2t+φ2) + e−i(k2x−ω2t+φ2)]e−i(

ω0
2
σz+νa†a)t.

(73)

To simplify this expression, we just have to follow the same steps as for the single laser
case. Using the useful equality (52), we can rewrite the interaction Hamiltonian

HI = eiνa
†at~Ω1(σ+e

iω0t + σ−e
−iω0t)[ei(k1x−ω1t+φ1) + e−i(k1x−ω1t+φ1)]e−iνa

†at

+eiνa
†at~Ω2(σ+e

iω0t + σ−e
−iω0t)[ei(k2x−ω2t+φ2) + e−i(k2x−ω2t+φ2)]e−iνa

†at
(74)

The optical rotating-wave approximation can be applied (independently and in the same
way) in the two terms, giving rise to the following expression

HI = eiνa
†at~Ω1(σ+e

i(k1x−δ1t+φ1) + σ−e
−i(k1x−δ1t+φ1))e−iνa

†at

+eiνa
†at~Ω2(σ+e

i(k2x−δ2t+φ2) + σ−e
−i(k2x−δ2t+φ2))e−iνa

†at.
(75)



where δ1 = ω1 − ω0 � ω0 and δ2 = ω2 − ω0 � ω0. Introducing the Lamb-Dicke param-

eters η1 ≡ k1

√
~

2mν and η2 ≡ k2

√
~

2mν , and using the already proved equality (59), the

interaction Hamiltonian takes the form

HI = ~Ω1(σ+e
i(η1(eiνta†+e−iνta)−δ1t+φ1) + σ−e

−i(η1(eiνta†+e−iνta)−δ1t+φ1))

+~Ω2(σ+e
i(η2(eiνta†+e−iνta)−δ2t+φ2) + σ−e

−i(η2(eiνta†+e−iνta)−δ2t+φ2))
(76)

If the ion is confined to the Lamb-Dicke regime the expression above simplifies into this
one

HLD = ~Ω1σ+{1 + iη1(e
iνta† + e−iνta)}ei(−δ1t+φ1)

+~Ω2σ+{1 + iη2(e
iνta† + e−iνta)}ei(−δ2t+φ2)

+H.c.

(77)

At this point we can clearly see what the second laser provides us: the power to excite
simultaneously two sidebands instead of one.

4.2 Simultaneous JC and anti-JC interactions

In chapter 4.1 we have obtained the expression for the interaction Hamiltonian of a single
ion in the Lamb-Dicke regime excited by two lasers, Eq. (77). If we choose δ1 = −ν − ξ
and δ2 = ν − ξ, and suppose that Ω1 = Ω2 and η1 = η2, we would excite simultaneously
the first blue and red sidebands with a detuning ξ (−ν + δ1 = ξ = ν − δ2). If we suppose
that |ξ| � |ν|, we can apply the vibrational rotating wave approximation, and in such a
way the Hamiltonian that we get is the following one

Hd/rb = ~Ωiησ+(aeiφ1 + a†eiφ2)eiξt + H.c. (78)

that can be rewritten in a more comfortable way like this

Hd/rb = ~Ωησ+e
i(φ1+

π
2
)(a+ a†eiϕ)eiξt + H.c., (79)

where ϕ = φ2 − φ1. Now, if we choose φ1 = −π and ϕ = π, the resulting Hamiltonian is

Hd/rb = ~Ωη(σ+e
iξt + σ−e

−iξt)
a− a†

i
. (80)

The Hamiltonian (79) has some similarity with the 1 + 1 dimensional Dirac Hamiltonian,
except for the detuning ξ, but, actually this detuning is crucial, because it has a close
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relation with the mass term (mc2σz) of the Dirac Hamiltonian.
It can be probed without much work, that any Hamiltonian of the type

H = ~χ1(σ+e
iχ2t + σ−e

−iχ2t) (81)

where [χ1, σi] = 0 = [χ2, σi] for i = x, y, z. If we go to another picture defined by

|ψ′〉 = e−i
χ2
2
σzt|ψ〉, (82)

then, the Hamiltonian in the new picture is

H ′ = ~χ1(σ+ + σ−) +
~χ2

2
σz. (83)

In our problem, this means that if we go to the picture defined by

|ψ〉II ≡ e−i
ξ
2
σzt|ψ〉I (84)

the Hamiltonian (80) will become, in the new picture

HII = ~Ωη(σ+ + σ−)
a− a†

i
+

~ξ
2
σz. (85)

This Hamiltonian already looks quite similar to the 1 + 1 dimensional Dirac Hamiltonian,
but still we need to define the momentum and the position operators for the simulated
particle. We do it in the following way

x = ∆x(a+ a†) p =
~

2∆x

a− a†

i
, (86)

which fulfill the commutation relation [x, p] = i~.
Now, replacing σ+ + σ− = σx, we can rewrite the Hamiltonian in the following form

HII = 2η∆xΩ(σ+ + σ−)p+
~ξ
2
σz (87)

and compare it with the 1 + 1 dimensional Dirac Hamiltonian

HD = cpσx +mc2σz. (88)

We can the the two coefficients of Eq. (87) with the two of Eq. (88)

mc2 ≡ ~ξ
2

c ≡ 2η∆xΩ (89)

as the particles rests energy and the speed of light respectively. The evolution of |ψ〉II is
given by
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i~∂t|ψ〉II(t) = HII |ψ〉II(t) (90)

which is actually a 1+1 dimensional Dirac equation for a certain mass m and speed of light
c. So far, we have engineered the quantum simulation of the Dirac equation in trapped ions,
making it behave as if it was a relativistic particle. This has already been implemented in
the laboratory [1].
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5 Implementation of the Foldy-Wouthuysen transformation
in trapped ions

In chapter 2.3 we have already pointed out that one of the new concepts that the Dirac
equation brings us is the existence of negative energy eigenvalues, that is, particles with
negative energy. According to that, the Hilbert space of the Dirac Hamiltonian can be seen
as the orthogonal direct sum of two subspaces: the positive energies subspace and the neg-
ative energies subspace. In fact the zitterbewegung is a consequence of the “interference”
between this two subspaces; so if we take a state from one of this two subspaces, this state
does not show zitterbewegung.
Using what is called the Foldy-Wouthuysen transformation we are able to diagonalize the
Dirac Hamiltonian. Diagonalizing the Hamiltonian the “mixed” terms between the posi-
tive energy and negative energy subspaces vanish, and the transformed states do not show
zitterbewegung.

The objective of this chapter is the study of the implementation of this transformation
in trapped ions.

5.1 The Foldy-Wouthuysen transformation in 1+1 dimensions

The Foldy-Wouthuysen transformation in 1 + 1 dimensions is a unitary transformation of
the form

|ψ〉 → |ψ〉′ = WFW|ψ〉 (91)

where

WFW = eiσyθ = cos θ + iσy sin θ. (92)

If the transformation is applied tho the Dirac Hamiltonian,

H ′D ≡WFWHDW
−1
FW (93)

the transformed Hamiltonian has the form

H ′D = (cos θ + iσy sin θ)(cpσx +mc2σz)(cos θ − iσy sin θ). (94)

Using the anticommutation relation {σi, σj} = 2Iσ2δij and imposing that θ must commute
with p and σx,y,z Eq. (94) is rewritten as

H ′D = (cpσx +mc2σz)(cos θ − iσy sin θ)2 (95)



and using

(cos θ − iσy sin θ)2 = (e−iσyθ)2 = e−iσy2θ = cos 2θ − iσy sin 2θ (96)

the transformed Hamiltonian can be rewritten as

H ′D = σx[cp cos 2θ −mc2 sin 2θ] + σz[mc
2 cos 2θ + cp sin 2θ]. (97)

We can obtain a diagonalized H ′D, by choosing θ such that the σx term in (97) vanishes;
that corresponds to

tan 2θ ≡ p/m. (98)

With that particular choice, the transformed Hamiltonian becomes

H ′D =
√
p2c2 +m2c4 σz (99)

which is diagonal in the basis of eigenfunctions of σz

H ′D =

(√
p2c2 +m2c4 0

0 −
√
p2c2 +m2c4

)
. (100)

The Foldy-Wouthuysen transformation is the continuous transformation defined by (91),
for any θ. The specific choice in (98), takes us to the Newton-Wigner (NW) representation.

As we have done in subsection 2.4, we want to obtain the velocity operator, but now
we are in the Newton-Wigner representation. So the velocity operator is defined as

vNW ≡
dx

dt
= i[H ′D, x] = iσz[hD, x] (101)

where hD ≡
√
p2c2 +m2c4. Using that [h2D, x] = [p2, x]c2 = −2ipc2, we arrive at

[h2D, x] = hD[hD, x] + [hD, x]hD = −2ipc2. (102)

We need an expression for [hD, x] that satisfies (102). It is straightforward to verify that
the following,

[hD, x] = −ipc
2

hD
(103)

satisfies this relation. So, we obtain that the velocity operator in the Newton-Wigner
representation is

vNW =
pc2

hD
σz = c2p(H ′D)−1. (104)
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The evolution of the operator is given by

vNW(t) = eiH
′
DtvNWe

−iH′Dt (105)

and given that [H ′D, pσz/hD] = 0, we conclude that the operator remains constant in time.
As it is obvious, the Newton-Wigner velocity operator does not have any oscillating term,
which in Eq. (37) was the origin of the zitterbewegung. Integrating the velocity operator
we obtain the position operator at time t:

xNW(t) =

∫ t

0
dτvNW(τ) = vNW

t∫
0

dτ = xNW + c2p(H ′D)−1t. (106)

This operator, unlike the ordinary position operator in Eq. (39) does not show zitterbewe-
gung.

5.2 Implementation in trapped ions

What we have to do is to find a way to generate the unitary transformation WFW in trapped
ions,which has the form

WFW = eiσyθ = eiσy
1
2
arctan p

mc . (107)

Suppose for a moment that we knew how to engineer, in trapped ions, the dynamics that
corresponds to a Hamiltonian of the type

H = −~gσy
1

2
arctan

p

mc
. (108)

In this case, the time evolution operator would be given by

U(t) = e−i
Ht
~ = eiσy

1
2
arctan p

mc
gt. (109)

Letting the initial state evolve until t = 1
g or doing our Foldy-Wouthuysen transformation

is mathematically equivalent. Unfortunately we do not know how to implement a dynamic
that corresponds to the Hamiltonian (108). But we can make some approximations.
Suppose that 〈p〉 � mc, in this case it is rightful to make a Taylor expansion of the
arctangent function and neglect all terms except the first one,

arctan
p

mc
' p

mc
. (110)

So in the case in which the condition 〈p〉 � mc is fulfilled, our Foldy-Wouthuysen trans-
formation can be written as (we will call it the approximate Foldy-Wouthuysen transfor-
mation)

W ap
FW = eiσy

p
2mc . (111)
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This expression looks more familiar because the dynamics that corresponds to “σyp kind”
Hamiltonians are feasible in the trapped ions platforms. As we have learned in sub-
section 4.2, if we excite simultaneously the first red and blue sidebands, we combine a
James-Cummings Hamiltonian with an anti-Jaynes-Cummings Hamiltonian. But, unlike
in subsection 4.2, this time we are going to choose the resonant (ξ = 0) JC and anti-JC
interactions, with laser phases φ1 = π/2 and φ2 = −π/2. Making those substitutions in
the Lamb-Dicke Hamiltonian (77), we get

Hσyp = −2~Ωη∆xσyp. (112)

According tho this, to generate the unitary operation

Uσyp(t) = ei
2σypΩη∆xt

~ (113)

what we have to do is to generate the dynamics that corresponds to Hamiltonian (112) until
a time t and immediately stop dynamic. The question now is, what has to be the value
of t in order for this transformation to be equivalent to the proposed Foldy-Wouthuysen
transformation. The answer is given by this equation

2Ωη∆xt =
1

2mc
, (114)

where m and c are determined by the relations in Eq. (89). Substituting those relations
on the equation (115) we get

tFW =
1

ξ
. (115)

The discussion now may be if those times are feasible in trapped ions. On the one hand,
the ion has a quantum coherence time, and on the other hand we have the lasers, that they
need a minimum time to produce the excitation of the sidebands. Since the detuning ξ must
be comparable with the coupling constant of the interaction between the ion and the laser;
these frequencies are typically of 10− 100kHz. That means that tFW ∼ 10− 100µs. They
have been able to generate JC type dynamics in time scales of nanoseconds [5], and the
internal state coherence time for ions is ∼ ms [6]. So we can conclude that the generation
of such a dynamic during time tFW is feasible in trapped ions platform.
So, in the case that 〈p〉 � mc,

Uσyp(t =
1

ξ
) = W ap

FW. (116)

We also know that the measurement of the expected value of the position of the simulated
Dirac particle has been done [1]. Now, before doing the measurement we would have to
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apply the evolution that corresponds to the Hamiltonian (112) and stop it at t = 1
ξ . What

we would get it would be

|ψ〉′(t0) = Uσyp(t =
1

ξ
)|ψ〉(t0) = W ap

FW|ψ〉(t0) (117)

and now, if we measure the expectation value of this state we are actually measuring

〈ψ|(W ap
FW)−1xW ap

FW|ψ〉(t0) (118)

which is nothing but the expected value of the approximate Newton-Wigner position op-
erator at time t0

〈xapNW〉(t0) = 〈ψ|xapNW|ψ〉(t0). (119)

If we plot this quantity as a function of time, it should not show oscillations when 〈p〉 � mc.
In Figure 1, we have plot the expectation values of the position operator, the theoretical
Newton-Wigner position operator and the approximate Newton-Wigner position operator
for different masses as a function of time. As initial state we have chosen |0〉⊗ |+〉x, where
|0〉 is the n = 0 Fock state, and |+〉x is the eigenket of σx with positive eigenvalue. Instead
of the mass, we have define a variable R which is proportional to the mass but has no
dimensions. R is formally defined as

R ≡ mc

p0
(120)

where p = p0
(a−a†)

i , is the momentum of the simulated particle that we have defined in Eq.
(86). We have also considered instead of time the dimensionless parameter ηΩt.

We have plotted the theoretical expectation value of xNW only to compare it with our
approximation, and to see how bad it gets when the mass gets getting smaller. At R = 6
and R = 3 for example, the expectation value of the approximate Newton-Wigner position
operator is consistent with the theoretical curve; at R = 1 it gets a little worse, but still
is consistent with the theoretical curve; however at R = 0.5 the approximation is not good
anymore.
Another useful magnitude to evaluate the validity of the approximation is to define the
fidelity at a certain time t0 in the following way

Fi = 〈ψapFW|ψFW〉(t0) = 〈ψ|(W ap
FW)−1WFW|ψ〉(t0). (121)

The fidelity should get closer to 1 when the approximation gets better.

In figure 2, we have ploted the fidelity at a certain time, and we can clearly see clearly
that for R = 1 the fidelity is close to one. Also we can say that at R = 0.5 the approx-
imation is not good anymore. The curve shows a logarithmic behavior, that justifies the
approximation for any value of R greater than one.
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Figure 1: Left: Solid lines represent the expectation value of the approximate Newton-
Wigner position operator for the initial state |0〉 ⊗ |+〉x, as a function of time. Right:
Solid lines represent the expectation value of the theoretical Newton-Wigner operator for
the initial state |0〉 ⊗ |+〉x, as afunction of time. The dashed lines, in left and right,
represent the expectation value of the ordinary position operator as a function of time, for
the same initial state.

Figure 2: Fidelity as a function of R at time ηΩt = 1.85, with the initial state |0,+〉x.
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6 Zitterbewegung: initial state and evolution

In this chapter, we will analyze the behaviour of the expected value of the standard position
operator for different initial states. The framework in which we are, invites us to use typical
states from a quantum optics scenario and study their behavior with a Hamiltonian typical
from RQM. We will attempt to clarify what is the role of the motional part of the initial
wave function, independently of the spin part, and viceversa. Finally, we also consider
initial states where the motional and the spinorial degrees of freedom are entangled.

6.1 Fock states

Let us start analyzing the behaviour of 〈x〉(t) for different spinorial states. We have chosen
the eigenvalues of σz(|±〉), σx(|±〉x) and of σy(|±〉y), together with a Fock state (|n〉).
To obtain the plots of figure 3 what we have to compute numerically is the quantity

〈x〉(t) = 〈ψ0|eiHDtxe−iHDt|ψ0〉 (122)

where HD is the 1 + 1 Dirac Hamiltonian and ~ = 1.

At a first view, we clearly see the oscillations associated with the zitterbewegung. We
also observe that, in consistency with the theoretical expression in Eq. (39), when m→∞,
the expectation value, like the average velocity, goes to zero. We call average velocity to
the slope of the linear contribution of the expectation value of x(t) (39), around which the
position oscillates.
To give a deeper insight to figure 3 we need to extract information from the operator
x(t); we have already the theoretical expression in Eq. (39), but this expression does not
help us very much. In general, it is not easy to simplify the expression for the operator
x(t) = eiHDtxe−iHDt, since the expression of [(HD)n, x] becomes more complicated as n
increases. But, still we can extract some interesting information, and predict or explain
some of the behaviours shown in figure 3. First of all we shall remember that the Dirac
Hamiltonian fulfils the following (c = 1)

HD
2 = (p2 +m2)⊗ Iσ2 . (123)

That means that the even powers of HD do not affect on the spin state. If we define
hD as

hD =
√
p2 +m2 (124)



Figure 3: a: It is shown the expectation value of the standard position operator 〈x〉 versus
time, for the states |0,+〉x (up) and |0,−〉x (down), and for different masses. b:〈x〉 versus
time, for the states |0,−〉y (up) and |0,+〉y (down), and for different masses. c:〈x〉 versus
time, for the states |0,+〉 (up) and |0,−〉 (down), and for different masses.
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then the following is true for all integer n:

HD
2n = hD

2n ⊗ Iσ2 . (125)

Using the binomial theorem we can easily reach the expression for any even power of
hD and in consequence of HD

hD
2n = (p2 +m2)n =

n∑
k=0

(
n
k

)
m2kp2(n−k). (126)

Now let us consider the operator e−iHDt. We can separate in the following way the odd
and the even powers of the expansion

e−iHDt =
∞∑
k=0

(−1)n(t)2n

(2n)!
HD

2n − i
∞∑
k=0

(−1)n(t)2n+1

(2n+ 1)!
HD

2n+1, (127)

which is equivalent to

e−iHDt =

∞∑
k=0

(−1)n(t)2n

(2n)!
hD

2n ⊗ Iσ2 − i(
∞∑
k=0

(−1)n(t)2n+1

(2n+ 1)!
hD

2n ⊗ Iσ2 )HD, (128)

and defining Γ1 and Γ2 as

Γ1(p
2, t) ≡

∞∑
k=0

(−1)n(t)2n

(2n)!
hD

2n = coshDt

Γ2(p
2, t) ≡ −i

∞∑
k=0

(−1)n(t)2n+1

(2n+ 1)!
hD

2n = − i

hD
sinhDt

(129)

and rewriting the expression with them, we have

e−iHDt = Γ1 ⊗ Iσ2 + Γ2p⊗ σx + Γ2m⊗ σz. (130)

Of course Γ1 and Γ2 have nothing to do with spin, and are even functions in p (are invariant

under the transformation p → −p). It can easily be checked that Γ†1 = Γ1, Γ†2 = −Γ2 and
highlight this relation:

∂tΓ2 = −iΓ1. (131)

With this new expression of the evolution operator, where the motional and spinorial parts
can be treated separately, we will attempt to explain why in figure 3 the initial states with
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the spin part |±〉 give 〈x〉(t) = 0 for all times.
For the motional part, we choose a Fock state. The probability density |〈n|p〉|2 = |ψn(p)|2
is always symmetric; remember that in this case the expectation value of an operator A
odd in p, is zero:

〈ψ|A|ψ〉 = 0 if 〈n| − p〉 = ±〈n|p〉, 〈−p|A| − p〉 = −〈p|A|p〉. (132)

To calculate the evolution of the initial state |n〉⊗|+〉 , we must remember that σz|+〉 = |+〉
and σx|+〉 = |−〉,

|n,+〉 → e−iHDt|n,+〉 = (Γ1 +mΓ2)|n,+〉+ pΓ2|n,−〉 (133)

and so, as 〈+|−〉 = 0, the expectation value consists in evaluating this two terms

〈n|(Γ1 −mΓ2)x(Γ1 +mΓ2)|n〉 , 〈n|pΓ2xΓ2p)|n〉, (134)

that turn out to be zero both, because of this particular combination of odd and even
functions ( x = −i∂p is an odd function in p ). In the case of |n〉 ⊗ |−〉, we recover the
same. Furthermore, we can say that this happens not only for Fock states, but for any
motional state that has a symmetric probability density in p.

To have a more general vision of the dependence with respect to the spin state, we shall
calculate the expression for x(t) = eiHDtxe−iHDt, although the expression in essence is
complicated:

x(t) = (Γ1 ⊗ Iσ2 − Γ2p⊗ σx − Γ2m⊗ σz)x(Γ1 ⊗ Iσ2 + Γ2p⊗ σx + Γ2m⊗ σz) (135)

using σxσz = −iσy, we can say that the expression splits into this four spin parts,

x(t) = (Γ1xΓ1 −m2Γ2xΓ2 − pΓ2xpΓ2)Iσ2
+m(Γ1xΓ2 − Γ2xΓ1)σz + (Γ1xpΓ2 − Γ2pxΓ1)σx +m(Γ2)

2σy
(136)

For the commented symmetric motional states, the parts that go with Iσ2 and with σz are
zero, since Γ1xΓ1, Γ2xΓ2, pΓ2xpΓ2, Γ1xΓ2 and Γ2xΓ1 are odd functions in p. The ones that
go with σx and σy, are even functions, so they have a value, depending of course on time,
mass and in general on the form of the wavefunction ψ(p). Thus, we can see more clearly
why the initial states that were eigenfunctions of σx and the ones that were eigenfunctions
of σy did not gave null expected values. Moreover, the analytical expression for this two
functions are given by:

〈x〉x(t) = 〈n|Γ1xpΓ2 − Γ2pxΓ1|n〉
〈x〉y(t) = m〈n|Γ2

2|n〉
(137)
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Figure 4: The expectation value of the standard position operator versus time, for different
masses and for the initial state |α0〉 ⊗ |+〉 (where α0 = 0.5 + i)

6.2 Coherent states

A coherent state |α〉 is an eigenstate of the annihilation operator a

a|α〉 = α|α〉 (138)

with eigenvalue α. The eigenvalue will be in general complex α = |α|eiθ, since the annihi-
lation operator is not Hermitian. The coherent state can be written like a combination of
infinite Fock states:

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 (139)

In fact, a coherent state can be understood as a |0〉 Fock state displaced in the phase space.
While the |0〉 state is centred in the centre of the phase space (x, p) = (0, 0), the coherent
state |α〉 is centred in in the point (x, p) = (|α| cos θ, |α| sin θ).

The wavefunction of a coherent state, in general, has no symmetry with respect to p,
therefore we can not use the argument of symmetry like in the previous section; not at
least for a single coherent state. To probe that, in figure 4 we have plotted the expectation
value of the position for a certain coherent initial state with spin state |+〉.
As we expected, the function is not null for all times. This is because the wavefunction
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has no symmetry with respect to p anymore. But if we look at the behaviour of the curves,
there is another remarkable thing: in both limits m→ 0 and m→∞, the average velocity
goes to zero; that means that at certain mass (m = mmax), the average velocity module
is maximum. That is not what happens in the case of |±〉x; in this case the behaviour is
similar in both coherent or Fock state cases; in this case the maximum value of the average
velocity module (c) is reached at m = 0.
The result of mmax is very interesting because what it means in terms of a Dirac particle, is
that if we have a particle with such an initial state, the mass at which it is going to obtain
the maximum average velocity is not zero. Remember that the momentum is determined
by the initial state, so it would be logical that the fastest particle is the one that has the
smallest mass.
Let us write the analytical expression (136) for each spinorial initial state with a coherent
motional state:

〈x〉z(t) = f(t) +m〈α|Γ1xΓ2 − Γ2xΓ1|α〉
〈x〉x(t) = f(t) + 〈α|Γ1xpΓ2 − Γ2pxΓ1|α〉

〈x〉y(t) = f(t) +m〈α|Γ2
2|α〉

(140)

where f(t) = 〈α|Γ1xΓ1 −m2Γ2xΓ2 − pΓ2xpΓ2|α〉. The parts that go with σz, σx and σy
seem to be imperative in the determination of the behaviour of the initial state, because
f(t) is an evolution function shared by all, and the three cases are quite different. The
two cases that show the maximum average velocity in (m = mmax), that are in fact 〈x〉z(t)
and 〈x〉y(t), have both an m outside of the integral. This, is useful of course to understand
why the two cases give null expectation value when m→ 0, apart from m→∞.

Those analytic expressions however are not trivial, and we do not see how to find mmax

in a analytic way.

6.3 Entangled states

If a quantum system has more than one degree of freedom -like in our case, motional and
spinorial-, sometimes it is possible to write the whole state like the tensor product of two
states, each one associated only with one of the degrees of freedom, and therefore belonging
to different subspaces,

|ψ〉 = |ψx〉 ⊗ |θ〉σ. (141)

In |ψx〉, is all the information about the motional state and the information about the spin
is held entirely in |θ〉σ. It is said that a state is entangled, if it is not possible to express
it as a tensor product of two different vectors of different subspaces. All states that we
have consider were tensor products of motional and spin state; for example, |0〉 ⊗ |+〉 or
|1〉 ⊗ |−〉, thus are not entangled states. But the state
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|ψ〉 = |0〉|+〉+ |1〉|−〉 (142)

is an entangled state, because we can not write it as a single tensor product of the motional
and the spin parts. This kind of states will have new contributions in the expectation value
of x(t), because apart from the already discussed contributions |0〉|+〉 and |1〉|−〉, we have
some new terms such as

|ψ〉 = 〈0,+|x(t)|1,−〉. (143)

If we plot 〈x〉(t) for the initial state

|ψ〉 = |0,+〉+ |1,−〉 (144)

what we obtain is that the expected value is zero for all times. Let us write all the
contributions :

〈x(t)〉 = 〈0|Γ1xΓ1 −m2Γ2xΓ2 − pΓ2xpΓ2 +m(Γ1xΓ2 − Γ2xΓ1)|0〉
+ 〈1|Γ1xΓ1 −m2Γ2xΓ2 − pΓ2xpΓ2 −m(Γ1xΓ2 − Γ2xΓ1)|1〉

+ 〈1|Γ1xpΓ2 − Γ2pxΓ1 + im(Γ2)
2|0〉

+ 〈0|Γ1xpΓ2 − Γ2pxΓ1 − im(Γ2)
2|1〉

(145)

From the first section, we already know that the first two terms are zero because of
the symmetry of the wavefuntion. The analysis of the other two terms follows a similar
argument.
The wavefunction of the Fock state |0〉 is even in the p representation, while |1〉 is odd.
Although the operators are even functions in p, the presence of the odd state turns the
integrand odd and therefore the integral null.
This is not the case if we choose |0〉 and |2〉, or |1〉 and |3〉, instead of |0〉 and |1〉. Actually,
if we do not want this contribution to be zero, we have to choose two different symmetric
states or two different antisymmetric states.

In figure 5 we have plotted the expectation value of position operator for the initial
state

|ψ〉 = |0,+〉+ |2,−〉. (146)

Something similar happens for the initial state |1,+〉+ |3,−〉.

Now let us do something similar with coherent states. Figure 6 contains the plot of the
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Figure 5: The expectation value of the standard position operator versus time, for different
masses and for the initial state |0,+〉+ |2,−〉.

expectation value of position for |α1〉|+〉 (α1 = 1√
2

+ i) and for |α2〉|+〉 (α2 = − 1√
2

+ i).

Looks like the sum of the two curves should give zero. However if we consider an initial
state consisting in the superposition of these two states,

|ψ〉 = |α1,+〉+ |α2,−〉 (147)

the expectation value of the position operator consists in four terms,

x(t) = 〈α1|Γ1xΓ1 −m2Γ2xΓ2 − pΓ2xpΓ2 +m(Γ1xΓ2 − Γ2xΓ1)|α1〉
+ 〈α2|Γ1xΓ1 −m2Γ2xΓ2 − pΓ2xpΓ2 −m(Γ1xΓ2 − Γ2xΓ1)|α2〉

+ 〈α2|Γ1xpΓ2 − Γ2pxΓ1 + im(Γ2)
2|α1〉

+ 〈α1|Γ1xpΓ2 − Γ2pxΓ1 − im(Γ2)
2|α2〉

. (148)

The first two terms will kill each other, but there are still two other terms. In figure 7 we
can see a 3D plot of the function (148) versus time and R. It is obvious that the expectation
value of the position operator depends strongly in R. At R = 4 the function has the typical
behaviour that we have seen in figure 5, with a negative classical velocity in this case with
more attenuated oscillations. On the contrary, while R→ 0 the curve tends asymptotically
to a curve which has a classical velocity which is positive and which has no oscillations.
That the classical velocity asymptotically tends to a constat value is something familiar,
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Figure 6: The expectation value of the standard position operator versus time, for different
masses and for the initial states |α1〉|+〉 (α1 = 1√

2
+ i) (up) and for |α2〉|+〉 (α2 = − 1√

2
+ i)

(down).
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Figure 7: The expectation value of the position operator versus ηΩt and R with the initial
state |α1,+〉+ |α2,−〉 (where α1 = 1√

2
+ i and α2 = − 1√

2
+ i.)
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but in this case this constant value is not (c).
If the average velocity at R = 0 is positive and for R = 4 is negative, there must be an
R0 for which the average velocity is zero. That would mean that at this certain mass, the
particle would stay oscillating around the initial point (〈x〉(0) = 0 in this case); if instead
R0 we choose a little bigger R = R0 + ε the particle will acquire an average velocity in
negative direction. The acquired average velocity would be in the opposite direction if
R = R0 − ε.
The plot in figure 7 is got if the initial state is the one of Eq. (147). If we change the initial
state the behavior of function (148) would be different.
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7 Conclusions

The quantum simulation of relativistic quantum mechanics has created a framework where
concepts of quantum optics and from RQM coexists. The main objective of this work was
to use this framework to exchange concepts of both theories.

In chapter 5 we have proposed a way to implement the Foldy-Wouthuysen transformation
in trapped ions. We have concluded that the transformation is feasible with state-of-the-
art trapped ions technology, under certain approximations. Moveover, we have provided
numerical simulation to validate our proposal, and we have conclude that in a wide regime
of masses, the approximation holds and therefore that the zitterbewegung disappears.

In chapter 6 we have done a detailed analysis of the evolution and the zitterbewegung
of different initial states under the 1 + 1 dimensional Dirac Hamiltonian. We have selected
initial states from quantum optics -like coherent or entangled states-, which have been
poorly studied in the framework of RQM. We have realized that the mass in the Dirac
equation plays an important role in the evolution of this initial states. We have found that
the smallest mass particle is no always the fastest one. Indeed, we have found that certain
initial states will evolve in one direction or in the opposite depending on the value of the
mass. We have also provided a framework based in the symmetry of the wavefunctions of
initial states to predict some features of their evolution.

This works represent only an small step in the field opened by the quantum simulations of
RQM. Farther development in this line of research could included, for example, an analysis
of the feasibility of the implementation of the ideas developed in chapter 6. It could also
be interesting to obtain the exact solution for what we have called mmax; the value of the
mass for which the classical velocity is maximum for a given initial state.
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