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Introduction

Hydrogen is the only atom for which the Schrödinger equation is solvable. Consisting
only of a proton and an electron, hydrogen is the lightest element and, nevertheless, is
far from being simple. Under ambient conditions, it forms diatomic molecules H2 in gas
phase, but different temperature and pressures lead to a complex phase diagram, which
is not completely known yet. Solid hydrogen was first documented in 1899 [1] and was
found to be isolating. At higher pressures, however, hydrogen can be metallized. In 1935
Wigner and Huntington predicted that the metallization pressure would be 25 GPa [2],
where molecules would disociate to form a monoatomic metal, as alkali metals that lie
below hydrogen in the periodic table. The prediction of the metallization pressure turned
out to be wrong: metallic hydrogen has not been found yet, even under a pressure as
high as 320 GPa. Nevertheless, extrapolations based on optical measurements suggest
that a metallic phase may be attained at 450 GPa [3].

The interest of material scientist in metallic hydrogen can be attributed, at least to a
great extent, to Ashcroft, who in 1968 suggested that such a system could be a high-
temperature superconductor [4]. The temperature at which this material would exhibit a
transition from a superconducting to a non-superconducting state (Tc) was estimated to
be around room temperature. The implications of such a statement are very interesting
in the field of astrophysics: in planets that contain a big quantity of hydrogen and
whose temperature is below Tc, superconducting hydrogen may be found, specially at the
center, where the gravitational pressure is high. This might be the case of Jupiter, whose
proportion of hydrogen is about 90%. There are also speculations suggesting that the
high magnetic field of Jupiter is due to persistent currents related to the superconducting
phase [5]. Metallization and superconductivity of hydrogen has puzzled scientists for
decades, and the community is trying to answer several questions. For instance, what
is the structure of hydrogen at very high pressures? Or a more general one: what is the
maximum Tc a phonon-mediated superconductor can have [6]?

A great experimental effort has been carried out pursuing metallic hydrogen and trying
to answer the questions above; however, the characterization of solid phases of hydrogen
is a hard task. Achieving the high pressures needed to get the sought phases requires
advanced technologies. Diamond anvil cells (DAC) are commonly used devices. These
devices consist of two diamonds with a tip of small area; for this reason, when a force is
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4 Introduction

applied, the pressure exerted is very big. This pressure is uniaxial, but it can be turned
into hydrostatic pressure using transmitting media. Nowadays, this method makes it
possible to reach pressures higher than 300 GPa, but even at this pressure hydrogen does
not show metallic properties. A recently developed technique that is an improvement
of DAC can reach pressures as high as 600 GPa [7], so it is a promising step forward in
high pressure physics. Another drawback is that the electronic density of the structures
is so low that X-ray diffraction patterns have low resolution. For these reasons, ab
initio studies are an important source of knowledge in this field, within their limitations.
When treating hydrogen, there are many subtleties in the calculations: as the atoms
are so light, the ions forming the crystalline lattice have significant displacements even
when temperatures are very low, and even at T=0 K, due to Heisenberg’s uncertainty
principle. Thus, the energy corresponding to this zero-point (ZP) motion is significant
and has to be included in an accurate determination of the most stable phase. This has
been done including ZP vibrational energies within the harmonic approximation for a
range of pressures and at T=0 K, giving rise to a series of structures that are stable in
their respective pressure ranges [8]. Very recently, a treatment of the phases of hydrogen
that includes anharmonicity in ZP energies has suggested that relative stability of the
phases may change with respect to the calculations within the harmonic approximation
[9].

Many of the proposed structures for solid hydrogen have been investigated. Particularly,
the Cmca-4 structure, which was found to be the stable one from 385-490 GPa [8], is
metallic. Calculations for this structure, within the harmonic approximation for the
ionic motion, predict a Tc up to 242 K at 450 GPa [10]. Nonetheless, due to the big
ionic displacements, the harmonic approximation may not suffice to describe correctly
the system. The aim of this work is to apply a recently developed method to treat
anharmonicity, the stochastic self-consistent harmonic approximation (SSCHA) [11], to
Cmca-4 metallic hydrogen. This way, we will be able to study the effects of anharmonic-
ity in the phonon spectrum and to try to understand the changes it may provoque in
the value of Tc.

The work is structured as follows. First we present the theoretical basis of the calcula-
tions: Density Functional Theory (DFT) for the electronic calculations, phonons in the
harmonic approximation and the SSCHA. Then we apply these methods to Cmca-4 hy-
drogen and we discuss the results obtained. In the last chapter we draw some conclusions
and propose possible future work.



Chapter 1

Theory

The description of a crystalline solid is a hard task due to the many-body nature of the
problem. The formalism that applies in this case is Quantum Mechanics: in principle,
one should solve the Schrödinger equation for the N electrons and the M ions present
in the solid:

HΨj(r1, ..., rN ,R1, ...,RM ) = EjΨj(r1, ..., rN ,R1, ...,RM ). (1.1)

The wave function Ψj(r1, ..., rN ,R1, ...,RM ) is an eigenfunction of the Hamiltonian of
the system with eigenvalue Ej and has all the information about the electrons and the
ions. In the nonrelativistic case, which is the one we shall restrict to, the Hamiltonian
governing the interactions in the solid is the following one (in Gaussian units):

H = −
N∑
i

~2

2me
∇2
i −

M∑
j

~2

2mj
∇2
j −

N∑
i

M∑
j

Zje
2

|ri −Rj |

+
N∑
i 6=j

1

2

e2

|ri − rj |
+

M∑
i 6=j

1

2

ZiZje
2

|Ri −Rj |

= Te + TI + Ve,I + Ve,e + VI,I . (1.2)

Here me is the mass of the electron, mj the mass of the jth ion, and Zi and Zj the atomic
number of the ith and jth ions respectively. Te and TI are the electronic and ionic kinetic
energy, respectively, and Ve,I , Ve,e and VI,I are the electron-ion, electron-electron and
ion-ion potential energy. Solving the eigenvalue problem for this Hamiltonian would
provide us with an accurate description of the solid; nevertheless, we are handling a
differential equation of 3(N+M) coupled degrees of freedom which is not exactly solvable.
Even a numerical approach is out of reach, as the number of particles involved is of the
order of Avogadro’s number NA (N,M ∼ 1023).

5



6 Chapter 1. Theory

1.1 Born-Oppenheimer approximation

The first approximation that is usually made to simplify the problem is the so-called
Born-Oppenheimer approximation, which is based on the fact that the electrons are
much lighter than the ions1. So as to say, the movement of the electrons is much faster
than that of the ions and thus their wave function can accomodate to the positions of
the ions instantaneously. This allows us to uncouple the electronic and ionic degrees of
freedom:

Ψ(r1, ..., rN ,R1, ...,RM ) = ψ(r1, ..., rN ; R1, ...,RM )φ(R1, ...,RM ). (1.3)

ψ is the electronic wave function and φ is the ionic one. The semicolon that separates the
electronic and ionic coordinates in the electronic wave function denotes that, following
the arguments made, ionic positions can be treated as parameters and not as variables
when the motion of the electrons is being studied. The equation satisfied by ψ for a
given set of ionic positions {R1, ...,RM} is:

Heψ(r1, ..., rN ; R1, ...,RM ) = Ee(R1, ...,RM )ψ(r1, ..., rN ; R1, ...,RM ), (1.4)

with
He = Te + Ve,e + Ve,I (1.5)

.

For the ionic motion, the equation satisfied by φ is:

HIφ(R1, ...,RM ) = EIφ(R1, ...,RM ), (1.6)

with
HI = TI + VI,I + Ee(R1, ...,RM ). (1.7)

It should be noted that the electronic energy enters the equation satisfied by the ionic
wave function. Thus, if our aim is to study the ionic motion, the first step consists
in the analysis of the electronic problem. Nonetheless, the electronic problem is still
intractable, as it consists of 3N degrees of freedom coupled by the the electron-electron
Coulomb interaction Ve,e: the problem has to be subject to further simplifications.

1.2 Density Functional Theory (DFT)

We now focus on the electronic problem, described by ψ. One of the most popular
methods in ab initio electronic structure calculations, and the one used throughout this

1mions ∼ 103me.



1.2 Density Functional Theory (DFT) 7

work, is the so-called Density Functional Theory (DFT), introduced by Hohenberg and
Kohn in 1964 [12]. In this formalism, the electronic density emerges as the key variable:

n(r) = 〈ψ|
N∑
i

δ(r− ri) |ψ〉

=N

∫
dr2...drNψ

∗(r, r2, ..., rN )ψ(r, r2, ..., rN ).

(1.8)

If we integrate the density, we get the number of electrons: N =
∫

drn(r).

We will see in the next section that the ground state electronic density of a system
determines all its electronic properties, so in principle any physical observable may be
written in terms of n. The advantage is clear: we have passed from a complex function
of 3N variables (the wave function ψ) to the density, a real function of just 3 variables.

1.2.1 Hohenberg-Kohn theorems

In their 1964 paper Hohenberg and Kohn proved the following theorems [12]:

• 1st theorem: For any system of interacting particles in an external potential
Vext(r), the potential Vext(r) is determined uniquely (except for an additive con-
stant) by the ground state density of the system n0(r)2.

- 1st corolary: Due to the one-to-one relationship between the external po-
tential and the ground state density, the Hamiltonian is completely determined (up
to an additive constant) by the ground state density. And as the Hamiltonian of
a system completely determines its properties, any electronic property p is a func-
tional of n0(r). The drawback is that the expressions for p[n0(r)] are unknown,
except for a few properties.

• 2nd theorem: The total energy of the system can be written as a functional of the
density (E[n]) for any external potential Vext(r). The exact ground state energy
is the global minimum of this functional, and the density that minimizes it is the
exact ground state density n0(r). The functional can be written as

E[n] = F [n] +

∫
drVextn(r), (1.9)

where F [n] is a universal functional depending only on the kinetic energy and the
internal potential energy of the interacting particles.

2The proof proceeds in two steps and by reductio ad absurdum [12], [14]: first it is shown that
two different potentials cannot produce the same ground state wave function, as they satisfy different
Schrödinger equations; second, it is shown that two different wave functions lead to different ground
state densities.
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- 2nd corolary: The E[n] functional alone suffices to determine the ground
state energy and density.

We stress that in the specific problem of the electronic structure of a solid, the external
potential is Ve,I and the electron-electron interaction is the Coulomb energy Ve,e.

1.2.2 Kohn-Sham formulation

Once the Hohenberg-Kohn theorems have been presented, a practical scheme for their
applicability is provided by the Kohn-Sham formulation [13].

For a better understanding of what follows, let us consider for a moment a system of
noninteracting electrons. For such system (1.9) reads:

Eni[n] = Tni[n] +

∫
drVni(r)n(r), (1.10)

where Tni[n] denotes the noninteracting kinetic energy and Vni is the external potential.
That is, the F [n] universal functional in (1.9) is just Tni[n] in the particular case of a
system of noninteracting particles. There is no closed expression for Tni[n], but as we
shall see, we do not need it, as it can be treated exactly if single-particle orbitals are
introduced.

To minimize the energy with respect to the density, we take the functional derivative
with respect to n in (1.10) and we introduce a Lagrange multiplier µ to ensure that the
number of particles N remains constant. Proceeding this way, we get the equation:

δ

δn(r)

(
Eni[n]− µ

∫
drn(r)

)
=
δTni[n]

δn(r)
+ Vni(r)− µ = 0. (1.11)

But on the other hand, we do know how to solve a system of noninteracting electrons.
First, we have to solve the Schrödinger equation for a single particle and get the single-
particle orbitals φj : (

− ~2

2me
∇2
j + Vni(r)

)
φj(r) = εjφj(r). (1.12)

Second, the total wave function has to be constructed with a Slater determinant out of
the single-particle orbitals, because electrons are fermions, so the total wave function
has to be antisymmetric under the exchange of any two fermions.

ψ(r1, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) ... φ1(rN )
φ2(r1) φ2(r2) ... φ2(rN )
. . ... .
. . ... .

φN (r1) φN (r2) ... φN (rN )
.

∣∣∣∣∣∣∣∣∣∣∣∣
(1.13)
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It can be shown that the density (1.8) can be written as

n0(r) = 2

No∑
j

|φj(r)|2, (1.14)

where No denotes the number of complete orbitals, each of them doubly occupied due
to the spin degeneracy. So we can get the density out of the orbitals that are solutions
of (1.12) with no need to treat explicitly Tni[n].

In order to implement DFT as an efficient method, Kohn and Sham [13] proposed to
take advantage of the single-particle picture. The idea is simple: we compare a system of
interacting electrons (the one we want to solve), which has a given ground state density
n0(r), with an auxiliary system of noninteracting electrons that gives rise to the same
density.

For an interacting system of electrons (1.9) reads:

E[n] = T [n] + Ve,e[n] +

∫
drVextn(r). (1.15)

If we define the exchange-correlation energy as

Exc[n] = E[n]− Tni[n]− EH [n]−
∫
drVextn(r), (1.16)

where EH [n] is the Hartree energy

EH [n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
, (1.17)

E[n] takes the form, just by addition and substraction, of:

E[n] = Tni[n] + EH [n] + Exc[n] +

∫
drVextn(r). (1.18)

The Hartree energy in (1.17) captures the classical part of the Coulomb interaction
between electrons and, to our benefit, is the biggest of the contributions of the internal
potential energy. We take advantage of the fact that it has an explicit form as a density
functional to separate its contribution3. Everything that is unknown is put into the
exchange-correlation energy. Note that Tni[n] has been separated, because if the single-
particle orbital picture is retained, it can be treated as before. Exc[n] is the big unknown
in DFT. If it were known all many-electron problems could be solved exactly. Not

3Note that a self-interaction energy has been added in order to be able to write it as a density
functional: according to (1.17)each electron would interact with itself, and in principle, the exchange-
correlation energy should suppress this effect.
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everything is lost, though: the smallness of this term compared to the rest of the terms
in (1.18) makes it feasible to pursue an approximative approach4.

Once E[n] has been rewritten as in (1.18), we proceed to minimize it with respect to n
and get the analog of (1.11) for the interacting case:

δ

δn(r)

(
E[n]− µ

∫
drn(r)

)
=
δTni[n]

δn(r)
+Vext(r)+

∫
dr′

n(r′)

|r− r′|
+
δExc
δn(r)

−µ = 0. (1.19)

If we compare (1.11) and (1.19) we may identify

Vni(r)←→ Vext(r) +

∫
dr′

n(r′)

|r− r′|
+
δExc[n]

δn(r)
≡ VKS [n](r). (1.20)

Once this identification has been made, the ground state density of the interacting
system, is obtained by solving the single-particle Schrödinger equation(

− ~2

2me
∇2 + VKS(r)

)
φj(r) = εjφj(r) (1.21)

and constructing the density as in (1.14). The change with respect to the noninteracting
case is that the potential now depends on the electronic density, so the equation has to
be solved self-consistently, as we shall explain below (see Fig. 1.1).

It should be pointed out that DFT is formally exact, but the lack of knowledge of the
Exc[n] functional makes it necessary to approximate it. The following section will briefly
summarize the approximation we have used, the Local Density Approximation (LDA).

The Local Density Approximation

The Local Density Approximation (LDA) lies on the assumption that Exc is a functional
of the density n at each point of space. LDA expresses the Exc of an inhomogeneous
system as the integral over the exchange-correlation energy density of a homogeneous
electron gas (HEG) evaluated at the local density:

ELDAxc [n] =

∫
drn(r)εHEGxc [n(r)]. (1.22)

εHEGxc [n(r)] is parametrized as follows [15]:

εLDAxc [n(r)] = εHEGx [n(r)] + εHEGc [n(r)], (1.23)

4Nevertheless, it turns out that Exc contributes significantly to the binding energy of matter, so
finding good approximations is extremely important.
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where εHEGx has the analytical form [16]:

εHEGx [n(r)] = −3

4

(
3

π

)1/3

n1/3. (1.24)

Still, there is no general analytical expression for εHEGc , except for the high and low
density limits, and these limiting values are combined with Monte Carlo simulations
for the intermediate values of the density, giving rise to various parametrizations. The
parametrization we have used is Perdew-Wang [17]:

εx = −2c0(1 + α1rs) ln

1 +
1

2c0

(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2

s

)
 , (1.25)

where rs =
(

3
4πn

)1/3
and c0, β1, β2, β3 and β4 are got from Monte Carlo calculations.

Let us finally say that LDA suffers from certain general pathologies, namely the over-
estimation of binding energy, implying shorter bonds between atoms. The results are
better for systems that resemble the HEG, but overall results are acceptable.

1.3 Method for electronic calculations

We use the software Quantum Espresso [18], which uses a plane wave basis to solve the
Kohn-Sham equations (1.21) and takes advantage of Bloch’s theorem.

1.3.1 Bloch’s theorem and the plane wave basis

An ideal crystalline solid is a periodic structure with a period given by its unit cell. This
makes VKS(r) to be periodic as well:

VKS(r) = VKS(r + T) (1.26)

with T any lattice vector. Any lattice vector can be written as a linear combination
with integer coefficients of the basis vectors a1, a2 and a3: T = m1a1 +m2a2 +m3a3.

Bloch’s theorem states that the eigenstates of the Hamiltonian of a single electron subject
to a periodic potential as (1.26) can be chosen to be of the form [15]:

φnk(r) = eik·runk(r)

with

unk(r + T) = unk(r).

(1.27)
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Here n denotes the band number and k is a wave vector laying in the first Brillouin
zone (1ZB). k is restricted to the following values when Born-von Karman (periodic)
boundary conditions are imposed (φnk(r + T) = φnk(r)):

k =
3∑
i

mi

Ni
bi, (1.28)

where Ni is the number of unit cells in the ith direction5, bi are the reciprocal lattice
basis vectors and mi ∈ [1, Ni].

The Fourier series expansion of the periodic potential (with period T) only contains k’s
that are reciprocal lattice vectors G6. When a plane wave basis is used, the Hamiltonian
is block-diagonal: the potential only couples plane waves whose k’s differ in a reciprocal
lattice vector G. Each block corresponding to a k-point is a square matrix with as much
columns (and rows) as the number of G vectors, which for an infinite solid is infinite.
The eigenstates can be written as

φnk(r) =
1√
V

∑
G

c
(n)
k-Ge

i(k-G)·r, (1.29)

where we see that only k’s that differ in a reciprocal lattice vector are coupled. These
eigenstates are readily proven to be of the form (1.27).

Following these arguments, one should in principle diagonalize the Hamiltonian in every
k point in the 1BZ, but in practice the diagonalization is made in a mesh of k-points,
which has to be big enough to ensure convergence of the physical properties we are
interested in. Plus, in (1.29) the sum runs over all G vectors. This sum has to be
truncated for practical reasons and a cutoff energy Ecut is defined for this purpose:

~2

2me
| k+G |2< Ecut (1.30)

so that only G’s satisfying this inequality are taken into account.

Pseudopotentials

Bloch functions tend to be very oscillating close to the nuclei, where the potential is
strong. In this region, they cannot be described unless a huge cutoff energy is chosen,
but this would be computationally very expensive. Instead, pseudopotentials are used.

5Ni ∼ NA.
6The definition of reciprocal lattice vectors is eiG·T = 1. Any reciprocal lattice vector can be written

as G = m1b1 +m2b2 +m3b3, where b1, b2 and b3 are reciprocal lattice basis vectors.
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A pseudopotential is an appropiate form for the Ve,I external potential such that the
wave functions do not oscillate in the proximity of the ion cores. Around each ion, the
wave function reproduces the physical result outside a certain cutoff radius, but inside
it, the wave function is not meaningful and is a mere artifact. We assume that this
change in the wave functions inside those cutoff radii does not affect the description of
our solid. Pseudopotentials pick the number of valence electrons that have to be taken
into account in the calculations: the rest of the electrons are part of the core and move
with the cations. In our case of study, the pseudopotential is not of a great interest, as
we are dealing with a single-electron atom.

1.3.2 Calculation process. Self-consistency

 

Self-consistent ? 

Calculate density 

𝑛 𝒓 =   2

1𝐵𝑍

𝐤

𝑓𝑛𝐤   𝜙𝑛𝐤  𝒓  2

𝑛

 

Initial guess 

𝑛 𝒓  

Calculate effective potential 

𝑉𝐾𝑆 𝒓 = 𝑉𝑒𝑥𝑡 𝒓 + 𝑉𝐻 𝒓 + 𝑉𝑋𝐶 𝒓  

Solve Kohn-Sham equation 

 −
ℏ2

2𝑚𝑒
𝛻2 + 𝑉𝐾𝑆 𝜙𝑛𝐤 = 𝜖𝑛𝐤𝜙𝑛𝐤 

No 

Yes 

Outputs 

𝑛 𝒓  
𝑉𝐾𝑆 , {𝜖𝑛𝐤}, {𝜙𝑛𝐤} 

Figure 1.1: Selfconsistent loop for solving the Kohn-Sham equations. The subscript j becomes n,k
when Bloch’s theorem is used: each single-particle state is now identified by a k in the 1BZ and a band
index n.
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The steps followed by the pw.x package in Quantum Espresso to solve the Kohn-Sham
equations are sketched in Fig. (1.1). First of all, an initial guess is made for the density,
typically a superposition of atomic densities, out of which the first estimate of VKS [n]
(1.20) is calculated. Then the Kohn-Sham equations (1.21) are solved in a plane-wave
basis for the selected mesh of k-points. Note the change in the notation: εj → εnk,
the eigenvalues of the Kohn-Sham Hamiltonian are now identified by the band index n
and the wave vector k. Once the single-particle orbitals are known, the new density is
calculated using (1.14) and is compared to the input density. With the notation of Bloch
functions φnk, the density is calculated as:

n(r) =
∑
n

1BZ∑
k

2fnk|φnk(r)|2 (1.31)

where the occupation of the states is given by the Fermi-Dirac distribution fnk and the
factor 2 is due to the spin degeneracy of the Kohn-Sham states.

The loop is continued until selfconsistency is reached, using the output density to recal-
culate VKS [n] for the next step. We say that the solution is selfconsistent when the total
energy does not vary beyond a desired threshold from one iteration to another.

1.4 Ionic motion

So far we have only paid attention to the electronic part of our problem, which has
been properly separated from the ionic degrees of freedom using the Born-Oppenheimer
approximation introduced in section (1.1). Electronic degrees of freedom are, nonethe-
less, insufficient for the description of many phenomena such as the observed specific
heat of the solids, or superconductivity, which arises from the electron-phonon coupling.
To account for these phenomena, ionic degrees of freedom have to be included in the
analysis.

As stated in (1.6) and (1.7) the Schrödinger equation for the ions does depend on the
electronic solution and is thus necessary to first solve the electronic problem. From (1.7)
we see that the ionic potential is U(R1, ...,RM ) ≡ VI,I + Ee(R1, ...,RM ). The ionic
positions are not fixed anymore. Ions oscillate around their equilibrium lattice sites so
that the position of the sth ion in the nth unit cell is

Rns = Tn + τs + uns, (1.32)

where Tn is a lattice vector (from the origin to the origin of the nth cell), τs is a
basis vector that denotes the position of the sth atom inside the nth cell and uns is the
displacement of this atom from the equilibrium position. When displacements are much
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smaller than the interatomic distance, a low-order Taylor expansion of the potential is
a valid approximation.

1.4.1 The harmonic approximation

The first approximation is made retaining only terms up to second order in the displace-
ments [19]:

U = U0 +
∑
nsα

Φα
s (Tn)uαs (Tn) +

1

2

∑
nsα

∑
n′s′α′

Φαα′
ss′ (Tn,Tn′)u

α
s (Tn)uα

′
s′ (Tn′), (1.33)

where Φα
s (Tn) ≡ ∂U

∂uαs (Tn)

∣∣∣∣
eq

is identically zero by definition of the equilibrium and

Φαα′
ss′ (Tn,Tn′) ≡

∂2U

∂uαs (Tn)∂uα
′
s′ (Tn′)

∣∣∣∣
eq

(1.34)

are the atomic force constants. α and α′ are labels for the cartesian coordinates x, y
and z. The U0 term in (1.33) yields the ground state energy of the crystal including the
ion-ion contribution and the first order term is zero. The classical equations of motion

msü
α
s (Tn) =

∑
n′s′α′

Φαα′
ss′ (Tn,Tn′)u

α′
s′ (Tn′) (1.35)

can be solved if we seek a solution of the form

uαs (Tn) = εαs (q)e[i(q·(Tn+τs)−ω(q))]. (1.36)

The problem is thus reduced to the diagonalization of the dynamical matrix

Dαα′
ss′ (q) =

∑
n

e−iq·(Tn+τs−Tn′−τs′ )Φαα′
ss′ (Tn,Tn′), (1.37)

so that the normal modes with frequency ων(q) and polarization vector εsν(q) are found
by solving

ω2
ν(q)εαsν(q) =

∑
s′α′

Dαα′
ss′ (q)
√
msms′

εα
′
s′ν(q). (1.38)

Here ν is the branch index (there are as many branches as degrees of freedom in a unit
cell, i.e., three times the number of atoms per unit cell), and q is a wave-vector in the
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1BZ (there are as many q’s as unit cells in the crystal). In total, there are as many
normal modes as degrees of freedom in the whole crystal, as expected.

In classical mechanics, solving (1.38) gives the normal modes of the ions. When these
normal modes are quantized, independent harmonic oscillators arise. As it is known
from quantum mechanics, the eigenvalues of an harmonic oscillator corresponding to the
branch ν and with wave vector q are Eνq = (1

2 + nνq)~ων(q). The equivalence between
normal modes and phonons is the following: a harmonic oscillator corresponding to a
mode identified by a given ν and q that is in the nth excited state is equivalent to having
n phonons of that mode.

For a numerical treatment of the problem we use Density Functional Perturbation Theory
(DFPT) as implemented in the ph.x package in Quantum Espresso. For this purpose we
need second order derivatives of U with respect to the ionic positions. Using the chain
rule, most of the expressions that appear in these derivatives are analytical, we only
need to calculate the first derivative of the density with respect to the ionic positions.
To get it, first order perturbation theory is used (linear response). The calculation has
to be done self-consistently and is computationally demanding [20].

1.5 Anharmonicity

The harmonic approximation does not account for several phenomena as thermal expan-
sion of the solids or finite thermal conductivity, and it cannot explain the temperature
dependence of the phonon frequencies either. The breakdown of the harmonic approxi-
mation happens when the ionic displacements with respect to the equilibrium positions
cannot be considered small anymore, and thus one is forced to include terms beyond the
quadratic displacements for a correct description of the potential. This can be the case
when the temperature is high or the atoms present in the crystal are very light, as is our
case. When this happens, anharmonicity has to be taken into account.

Anharmonicity can be treated perturbatively, but perturbation theory is only valid in
the regime where the harmonic potential is much larger than higher-order terms. When
higher-order terms are as important as the second-order term, a nonperturbative method
is desirable. The self-consistent harmonic approximation (SCHA) [22] is one of such
methods, and is variational instead of perturbative. Our work is based on a stochastic
implementation of the SCHA, the so-called stochastic self-consistent harmonic approxi-
mation (SSCHA)[11].

1.5.1 The stochastic self-consistent harmonic approximation (SSCHA)

In the SSCHA the free energy of the system is minimized with respect to the phonon
frequencies, polarization vectors and ionic equilibrium positions. Given the ionic Hamil-
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tonian H = TI +U in (1.7), the partition function is ZH = tr
[
e−βH

]
and the Helmholtz

free energy is:

FH = − 1

β
lnZH = tr (ρHH) +

1

β
tr (ρH ln ρH) , (1.39)

where ρH is the density matrix and β = 1
kBT

.

A variational principle may be stablished for the free energy. For any trial ρH the free
energy FH(H) = tr (ρHH) + 1

β tr (ρH ln ρH) satisfies the Gibbs-Bogoliubov inequality

FH ≤ FH(H). (1.40)

We can also define FH = tr (ρHH) + 1
β tr (ρH ln ρH), which is the exact free energy that

corresponds to a Hamiltonian H. By addition and substraction of tr (ρHH) we get

FH(H) = FH + tr [ρH (U − U)] , (1.41)

which is the function that has to be minimized with respect to a trial Hamiltonian H.

In the SSCHA the trial potential U of the trial Hamiltonian H is restricted to a harmonic
one, so H takes the form:

H =
∑
s

∑
α

(Pαs )2

2ms
+

1

2

∑
ss′

∑
αα′

uαs Φ̃αα′
ss′ u

α′
s′ (1.42)

with the advantage that the term FH in (1.41) and the density matrix ρH can be ex-
pressed in a closed form in terms of the phonon frequencies and polarizations, which
facilitates the calculations.

At this point it should be stressed that the trial force-constants matrix Φ̃αα′
ss′ is not

necessarily (and will not in general be) the same as the force-constants matrix Φαα′
ss′

associated to the second order term in the Taylor expansion of the ionic potential U (see
Eq (1.34)); it is the one that minimizes FH(H). A simple analogy might be helpful here.
Suppose that we have the black curve in Fig. 1.2 and we want to fit a harmonic function
to it. If the Taylor expansion around the minimum is truncated in the second order,
we have the red curve. So as to speak, this is what the harmonic approximation does.
However, even if the profile we have drawn is clearly not harmonic, if we try to find the
best harmonic fit, it turns out to be the blue curve, which is shifted to the right. This is
an oversimplification of what SSCHA does, because for SSCHA not all the points have
the same importance: they are weighted by the density matrix. However, this intuitive
idea may help.
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Figure 1.2: Analogy of the idea behind SSCHA. The actual curve is the black (full) one, the fitting
around the minimum is the red (dashed) one and the best harmonic fitting to all the curve is the blue
(dotted) line.

FH(H) is to be minimized with respect to Φ̃ but also with respect to Req, the equilibrium
positions of the ions7. The minimization is carried out in a subspace of the parameters
that preserves crystal symmetries: Φ̃ and Req are written on a symmetrized vector basis
and what are minimized are the coefficients of such basis vectors. We call Np the number
of independent coefficients. The minimization is perfomed using a conjugate-gradient
method. The expressions for FH(H) and its gradients are as follows:

FH(H) = FH +

∫
dR [U(R)− U(R)] ρH(R) (1.43)

∇ReqFH(H) = −
∫

dR [f(R)− fH(R)] ρH(R) (1.44)

∇
Φ̃
FH(H) = −

∑
ss′αα′ν

√
ms′

ms
(εαsνH∇Φ̃

ln aνH + ∇
Φ̃
εαsνH)εα

′
s′νH

×
∫

dR[fαs (R)− fαsH(R)](Rα
′
s′ −Rα

′
s′eq)ρH(R). (1.45)

In these expressions R ≡ {R1, ...RM} is a general ionic configuration. ρH(R) is the
probability to find the system described by H in a general ionic configuration R, which

in normal coordinates is a product of gaussians. aνH =
√

~coth(β~ων(H)/2)(2ων(H))

is called the normal length8 of mode ν and is the standard deviation of the gaussians.

7Implicitly, it is minimized with respect to phonon frequencies and polarizations, as the diagonaliza-
tion of the force constant matrices Φ̃ gives rise to ων(H)and εαsν(H).

8Even if it has dimensions of length times square root of mass.
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Finally, f(R) is the vector formed by all the atomic forces for the ionic configuration
R and fH(R) are the harmonic forces. The only nonanalytic terms in equations (1.43)
- (1.45) are the integrals. The usual approach for their evaluation involves the calcu-

lation of higher order Φα,α′,...,α(n)

s,s′,...,s(n)
coefficients, which is a difficult task. In the SSCHA

method, however, these integrals are evaluated stochastically. To calculate the gradient,
we therefore need to calculate the forces f(R).

For the stochastic evaluation we use the relationship

∫
dRO(R)ρ(R) ' 1

Nc

Nc∑
I=1

O(RI) ≡ 〈O〉, (1.46)

where the set of RI configurations is created according to the distribution ρ(R). O is
any operator and Nc is the number of configurations. The expression is exact in the
limit of Nc →∞. Being an stochastic procedure, there always exists a statistical error,
which scales as 1/

√
Nc.

The calculation flowchart in Fig. 1.3 summarizes the minimization process. An initial
guess Hj0 (in the first step j0 = 0) is made for the trial Hamiltonian. This trial Hamil-
tonian is used to create Nc ionic configurations according to ρHj0(R). The energy and
atomic forces in each of the configurations are calculated in supercells because, when
the atomic force constant matrices are calculated in supercells, the Fourier transform
provides the dynamical matrices in a q-mesh of the same size as the supercell. These
calculations are performed using the pw.x package in Quantum Espresso. The obtained
data are used to evaluate the integrals in (1.43) - (1.45). Then a conjugate gradient step
is made, and the Req and Φ̃ parameters are updated so a new Hj is got.

At this point, new configurations should be created, following ρHj . However, this would
be very inefficient as it would imply the calculation in supercells again. What is done
instead is to use a reweighting technique, and as long as 〈

ρHj
ρHj0
〉 does not deviate substan-

tially from unity, the configurations created with Hj0 can be reused9. If the deviation is
larger than a fixed parameter η new configurations have to be created out of Hj .

Otherwise, when a coefficient satisfies one of the following conditions:

(a) the coefficient has a gradient smaller than a fixed convergence criterium or

(b) the error is bigger than the value of the coefficient,

this coefficient is kept fixed in the subsequent conjugate gradient steps. When all the
coefficients satisfy either (a) or (b) the minimization stops. One can always add extra

9We have a correction to (1.46):
∫
dRO(R)ρ(R) ' 1

Nc

Nc∑
I=1

O(RI)
ρHj

ρHj0

which is still accurate in the

condition mentioned above is satisfied.
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configurations to reduce the statistical error and acquire the desired precision 10.
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Figure 1.3: Calculation flowchart for the SSCHA. The step marked in black, the calculation of forces
in supercells, is the most time-demanding, and the program is optimized to call it as little as possible.

10i.e., to reduce the number of coefficients that satisfy (b) and increase the ones that satisfy (a).



Chapter 2

Results and discussion

2.1 The Cmca-4 structure: relaxing the structure

The system we consider is Cmca-4 hydrogen under a pressure of 414 GPa and at T=0
K. This structure has been found to be metallic, and stable at pressures in the range
385-490 GPa [8], so we pick an intermediate value to perform the analysis.

The crystal structure consists of a base centered orthorhombic conventional unit cell,
with atoms in 8f Wyckoff positions. To find the cell parameters and the equilibrium
positions of the atoms at the pressure we are interested in, which is crucial to have a
good description of the electronic and vibrational properties of the system, the crys-
tal structure has to be relaxed. We use the ’vc-relax’ tool from the pw.x package in
Quantum Espresso. The program performs an iterative process to minimize the forces
between atoms and changes the cell parameters in order to reach the inposed target
pressure. Initial atomic position and cell parameters have been taken from the supple-
mentary material of Ref. [8], which provides these data at 300 GPa. In this process, the
convergence threshold for the atomic forces was set to 10−4Ry/a.u. 1, as values of the
forces below that are necessary for a good accuracy in phonon calculations.

As we are dealing with a metallic solid and the mesh of k-points is finite in practice (see
Section 1.3.1), a new parameter has to be introduced in the calculations, the so-called
smearing. This numerical artifact creates a distribution of the occupation of the orbitals,
as if the system were at a finite, nonzero, temperature. This is useful because as in a
metal the Fermi level lies in a half-filled band, at T=0 K the k-points that are occupied
or unoccupied change abruptly. This is not problematic when the number of k-points is
very large, as the grid is very dense and the points are very close to each other; however,
when the mesh of k-points has been reduced for practical reasons, the points are more
spaced and it is too drastic to keep some states near the Fermi level occupied, and some

11 Ry = 13.605 eV; 1 a.u. = 0.529 Å.
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(a) (b) (c)

Figure 2.1: (a) Primitive cell of the Cmca-4 structure. There are 4 atoms per primitive cell. (b)
Conventional unit cell. Base centered orthorhombic containing 8 atoms. (c) Projection of the structure
on the YZ plane. The two types of dimers can be appreciated, tilted to left and right.

others unoccupied. The smearing parameter allows to weight the k-points around the
Fermi level. At T=0 the occupation versus the energy should be a step function, but the
broadening of the occupation can be controlled, and this is used to perform the integrals
in the Brillouin zone. The smearing we have used is the Methfessel-Paxton one [21].

We have perfomed a study of the convergence of the Ecut, smearing broadening and num-
ber of k-points and we have found a convergence of 3 meV per atom for Ecut = 65 Ry, a
broadening of 0.01 Ry and a 16× 16× 16 mesh. We use exchange-correlation potentials
within the local density approximation and a norm-conserving pseudopotential.

After relaxing the structure, the values of the cell parameters are found to be: a = 1.553
Å, b = 2.718 Å and c = 2.367 Å. Atoms are in Wyckoff positions 8f with fractional
coordinates y = 0.368 and z = 0.430. The structure can be visualized in Fig. 2.1. In
this structure dimers persist and we find that the intramolecular bond lenght is of 0.793
Å for both kind of molecules (tilted to the left and right in Fig. 2.1(c)).

2.2 Electronic band structure

Once the structure is relaxed, we proceed to calculate the band structure of the solid.
At this point it should be noted that the eigenvalues of the Kohn-Sham orbitals (the
solutions of (1.21)) are the energies of a ficticious noninteracting system, and in principle
cannot be adscribed to the energies of the electrons. There is quite a lot of literature that
treats this issue but given the agreement of these eigenvalues and the experimentally
measured band structures, these eigenvalues are taken to be equal to the electronic
energies. This hypothesis being made, the Kohn-Sham equations have to be solved self-
consistently for the k points in the above mentioned 16 × 16 × 16 mesh. When VKS
is known, a non self-consistent calculation can be performed along a path of selected
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Figure 2.2: First Brillouin zone of space group Cmca-4 and high symmetry lines along which bands
and phonon branches are plotted. The path is Z − Γ ; Γ− Y 2; Y − Γ ; Γ− S ; S −R ; R− Z ; Z − T .
Y2 and Y are equivalent points, so the jump is justified.

k-points, usually the high symmetry lines of the Brillouin zone. The selected path for
the representation of the bands (and later on for the phonons) is displayed in Fig. 2.2.

Fig. 2.3 shows the bands along the selected path. The Fermi level, the highest occupied
energy, is set to zero. We can see that the material is metallic, as bands cross the Fermi
level in the Γ− Y line.

As the solid is formed by molecules we can interpret the bands starting from a picture
of bonding and antibonding molecular orbitals in the two H2 molecules. We would
have intramolecular bonding and antibonding states, as well as intermolecular bonding
and antibonding ones. The lowest band is the one correspondig to intramolecular and
intermolecular bonding, and the second occupied band corresponds to intramolecular
bonding, but intermolecular antibonding. Then, as energy goes up, we have the bands
that correspond to intramolecular antibonding, but these are unoccupied.

2.3 Phonons

After the electronic bands have been calculated, we proceed to calculate the phonon
spectrum of the Cmca-4 hydrogen at T=0 K. Even if in classical physics absolute zero
implies no motion, in quantum physics this statement is incorrect. Due to Heisenberg’s
uncertainty principle, one cannot exactly determine the position of an ion and its mo-
mentum at the same time: the smaller the uncertainty is in the position, the bigger it is
in the momentum, so there always exists, even at T=0 K, a zero point motion. To put
it in another way, if the ionic positions were completely fixed, their wave function would
be a Dirac delta and the uncertainty in the position would be zero; but this way, its
Fourier transform, which gives the distribution of the values the momentum can take,
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Figure 2.3: Electronic band structure.

would be constant, meaning that any value for the momentum is equally probable: the
uncertainty in the momentum would be infinite.

When the ionic Hamiltonian in the harmonic approximation is written in normal co-
ordinates, independent harmonic oscillators emerge (Section 1.4.1). What happens at
T=0 K is that all these oscillators are in the ground state: all the normal modes have
a zero point motion. Moreover, if even at absoute zero the displacements of the ions
are considerably large, due to, for example, the lightness of the atoms implied, as in
this case hydrogen, the harmonic approximation may not suffice to describe the system
correctly.

First of all, we study the system with the harmonic approximation, using the density
functional perturbation theory (DFPT) and we perform some extra analyses that show
that a method that treats anharmonicity has to be included. Then, we apply the SSCHA
and get the phonon dispersion that includes anharmonicity within this approximation,
to draw some conclusions about the role of the anharmonic effects on Cmca-4 hydrogen.

2.3.1 Harmonic approximation

Following the procedure of section (1.4.1) and using the ph.x package in Quantum
Espresso, we have calculated the harmonic phonon spectrum in the same path as the
bands (Fig. 2.2). To do so, the software has to calculate the dynamical matrix in a
mesh of q-points and diagonalize it in order to get the frequencies and polarization vec-
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Figure 2.4: Phonon dispersion. Frequency in cm−1; 1 cm−1 = 0.03 THz

tors. The size of the mesh used is 6 × 6 × 62, which leads to 52 dynamical matrices
that are independent once the symmetries of the crystal have been taken into account.
Then an interpolation scheme is applied: force constant matrices in real space are got
by Fourier-transforming the dynamical matrices and then dynamical matrices at new
q’ points are computed and diagonalized. This interpolation has been used to get the
phonon frequencies along the path in Fig. 2.2.

In Fig. 2.4 twelve branches can be observed, corresponding to the three degrees of
freedom of each of the four atoms in the primitive unit cell. Three of the branches,
the acoustic ones, have a zero frequency at the Γ point and correspond to the three
translational degrees of freedom of the crystal. The other nine are optical branches: the
atoms within a primitive cell do not move together. At the Γ point all the cells move
in the same way, at the rest of q-points there is a eq·T phase factor between the cells.
We can also see that two of the branches are on top of the others and never get crossed
with them. As we shall see, these branches are the vibrons, and correspond to the
vibrational modes of the molecules, where, as their binding is stronger, the frequency is
higher. If there were no interaction between the molecules of different cells, there would
be no dispersion in the branches, i.e., they would be plane. However, the dispersion is
quite big, so the molecules belonging to different cells interact substantially. This can
be associated to an intramolecular binding that is not very tight. Plus, the fact that the
vibrons are not mixed with the rest of the branches implies that the vibration modes
of the molecules are independent from the rest of the ionic movements3. However, the

2This mesh is smaller than the one for electronic calculations, as calculating the dynamical matrices
is computationally very demanding.

3When two modes are degenerate (have the same frequency), one can make linear combinations of
the polarization vectors that are still eigenvectors of the dynamical matrix, so the movements are not
independent anymore.



26 Chapter 2. Results and discussion

frequencies of the vibrons are not very high even if the pressure is as high as 414 GPa.
This may seem counterintuitive, one could expect that increasing pressure would get the
molecules closer and increase the vibration frequency. This is true, indeed, but only in
a certain range of pressures. Starting from zero pressure, the frequency of the vibrons
increases until we get to about 80 GPa. Then, it starts to go down. As we will see later,
when anharmonicity is included, the frequency of the vibrons is lowered and they get
mixed with lower branches.

2.3.2 Vibrational modes at the Γ point

To get a first intuition of the ionic motion we sketch the vibrational modes at the Γ
point. The advantage of studying this point is that, as mentioned above, at Γ all unit
cells move in phase: the displacement of an ion is the same as the displacement of the
equivalent ion in the neighboring cell. Quantum Espresso returns us the polarization
vectors of each mode, so we know how the atoms move for each of them inside the unit
cell. In Fig. 2.5 we depict the ionic displacements of the 9 optical modes of the structure.
It can be observed that in (b), (c), (d) and (f) the molecules rotate (rotons), in (a), (e)
and (g) they move translationally and in (h) and (i), with the highest frequency, they
vibrate (vibrons).

Energy profiles and harmonic frozen phonon calculation

Displacing the atoms according to the polarization vectors of each mode takes the system
out of equilibrium. Consequently, its energy increases. We work at the Γ point still,
where we only have to fix our attention in one primitive cell, as all the rest move in
phase. We displace the atoms with different amplitudes according to the polarization
vector of each mode and we calculate the energy of the primitive unit cell for each of
the positions. The profiles have been plotted in Fig. 2.6.

We must stress that this approach only gives us information about the interaction of a
mode with itself, but anharmonic effects also include the interaction between modes, so
it should be clear that this kind of calculation only provides a first feeling. We observe
that the profiles are not harmonic (although some of them deviate only slightly from
the quadratic behavior) and, even if as warned this kind of calculation only takes into
account the interaction of the mode with itself, it can already be seen that anharmonic
effects may be important to describe the ionic motion of the system.

In the harmonic approximation modes are independent, so the frequency that the soft-
ware Quantum Espresso has computed has to be compatible with the one extracted
from the second order derivative around zero4 of the energy profiles in Fig. 2.6. Table

4mω2 = k, where k is the second derivative of the potential energy. We perform this derivative
numerically: k = U(x+h)−2U(x)+U(x−h)

h2 .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5: Displacement of the atoms at the point Γ according to the nine optical modes, in ascending
order of frequency.

2.1 compares both of them. The two methods for calculating the phonon frequencies
are valid but the procedure is completely different, hence the small differences in the
frequencies, that come on the one hand from the finitness of the step h in the numerical
derivative and on the other hand from the approximations made in the DFPT.

If we look at the forms of the profiles in Fig. 2.6, two of them, (b) and (i), are clearly
non-symmetric. The latter is a vibron and the potential takes the form that is expected
for an independent molecule. However, even if (h) also corresponds to a vibron, the
profile is symmetric. This can be understood if we look at Fig. 2.5(h): here, the two
types of molecules (the ones tilted to the left and the ones tilted to the right) move in
opposite phase, when the molecules tilted to the left contract, the others expand, and
vice versa. This produces a positive displacement and a negative one to be equivalent:
when they are separating from a certain atom, they are at the same time getting close
to another. This is not the case for the (i) vibron: here the two molecules move in phase
so the potential is different when they are contracted or expanded, as their distance to
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Mode (Fig. 2.6) Quantum Espresso (QE) 2nd deriv. profile (DP) Difference (%)

(a) 24.55 24.45 -0.41

(b) 28.91 29.23 1.11

(c) 32.23 32.09 -0.43

(d) 34.04 34.46 1.23

(e) 36.80 36.64 -0.43

(f) 51.63 51.27 -0.70

(g) 75.64 75.75 0.15

(h) 83.23 83.17 -0.07

(i) 87.13 86.75 -0.44

Table 2.1: Comparison between the frequency obtained by Quantum Espresso (by means of DFPT)
and the one obtained out of the 2nd order derivative of the profile (harmonic frozen phonon, HFP), in
THz. The last column is the relative difference HFP−DFPT

DFPT
.

neighboring atoms varies.

The next thing we do is to solve numerically the Schrödinger equation for an ion subject
to the fitted potential energies (a)-(i):

(
− ~2

2mH

d2

d(∆x)2
+ U(∆x)

)
ϕ(∆x) = εϕ(∆x). (2.1)

Here mH is the mass of an hydrogen ion and U(∆x) is the potential energy, a fitting of the
curves (a)-(i) in Fig. 2.6. If the potential is harmonic, the energy quantum is constant
(the eigenvalues equispaced). Nonetheless, when it is not harmonic, the distance between
subsequent energies varies, so to define the phonon frequency we take the difference
between the first excited state and the ground state, which is the transition that is
measured in low temperature experiments. This value, together with the frequency
computed within the harmonic approximation and the one obtained when applying the
SSCHA can be seen in Table 2.2.

We can observe some features looking at the wave functions in Fig. 2.6. For instance,
in the case of the non-symmetric wells the displacement of the wave function becomes
evident. We compute the mean value of the displacement, 〈∆x〉 for the cases (b) and
(i). ∫

d (∆x) ∆x
∣∣ϕanharm−(b) (∆x)

∣∣2 = −0.049 Å (2.2)∫
d (∆x) ∆x

∣∣ϕanharm−(i) (∆x)
∣∣2 = 0.031 Å (2.3)

whereas in the harmonic case it is zero. Here we see that, apart from a change in the
frequency, the mean position of the ions also varies when anharmonicity is included. In
the frozen phonon approach we are taking, 〈∆x〉 6= 0 implies that the mean position of
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Figure 2.6: Profiles of the potential energy per cell (U(∆x)) for each of the optical modes, in increasing
order of the frequency. The mode displacement ∆x, in Å, is the distance that multiplies the corresponding
polarization vectors for each mode. Dots represent the computed values, full red lines the quadratic fitting
around the minimum and full black lines higher-order polynomial fittings of the computed data. Red
(black) horizontal lines represent the ground state energy in the harmonic (anharmonic) case and red
(black) dashed lines correspond to the harmonic (anharmonic) ground state wave functions.

the atoms is displaced a distance 〈∆x〉 times the polarization vector of the corresponding
mode. Another feature that can be pointed out is the spreading of the wave function
compared with the harmonic one when the potential energy curve is wider than the
quadratic fitting around the minimum. This is specially evident for the profile (c), and
by calculating 〈(∆x)2〉 we confirm it (as the potential energy curve is symmetric we have
〈∆x〉 = 0). ∫

d (∆x) (∆x)2
∣∣ϕharm−(c) (∆x)

∣∣2 = 0.016 Å2 (2.4)∫
d (∆x) (∆x)2

∣∣ϕanharm−(c) (∆x)
∣∣2 = 0.027 Å2 (2.5)

In the rest of the cases, the wave function obtained by solving the Schrödinger equation
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for the fitted potential energy does not differ markedly from the harmonic case.

To finish with this section, let us remark once again that this kind of calculations do not
treat the interaction among modes, which is an important part of the anharmonicity.
However, we have seen that including the SSCHA treatment of anharmonicity is clearly
justified by the characteristics of the obtained potential energy profiles.

2.3.3 Stochastic self-consistent harmonic approximation applied to Cmca-
4 hydrogen

Now we have seen that anharmonic effects can be important in this system, we are ready
to apply the formalism explained in section 1.5.1. The initial guess we have used for the
dynamical matrices are the ones calculated by Quantum Espresso in a 2× 2× 2 mesh of
q points5. Thus, the size of the supercell in which forces have to be computed is 2×2×2
as well. We could have used the dynamical matrices computed in the 6 × 6 × 6 mesh,
that have been computed and stored (see Section 2.3.1), but this would considerably
increase the computer time because the size of the supercell would be also 6 × 6 × 6,
implying calculations on 864 atoms. Nonetheless, one can take advantege of having the
6× 6× 6 harmonic dynamical matrices computed. Assuming that

D̃ 2×2×2(q) ≡ D 2×2×2
SSCHA(q)−D 2×2×2

harm (q) (2.6)

is slowly varying in the reciprocal space (which means that the differences between the
SSCHA and the harmonic force constant matrices are very localized in the real space)
we can interpolate D̃ 2×2×2(q) to get D̃ 6×6×6(q), and knowing D 6×6×6

harm (q) as we do,
we can readily obtain D 6×6×6

SSCHA(q).

We have started the calculation with a first population of Nc = 50 configurations. The
number of coefficients that have to be minimized is 47: 45 correspond to the force
constant matrices, and 2 to the free parameters of the 8f Wyckoff position, namely y

and z. The first minimization has stopped because

∣∣∣∣ ρHjρHj0
− 1

∣∣∣∣ < η ≡ 0.3, so the initial

sampling is not valid anymore. The output of the program gives 6 dynamical matrices
and the new equilibrium positions of the ions. New configurations are created using
as an starting point the output values of the previous step. This process is continued
until we reach a fourth population. Here, the statistical sampling is good and and the
minimization is finished because all the coefficients satisfy either condition (a) or (b)
from Section 1.5.1 . We increase the number of configurations to reduce the statistical
error and get the phonon spectrum converged. The desired convergence is obtained for
Nc = 1500 configurations. The outputs are the final equilibrium positions of the atoms
in the primitive cell and the 6 dynamical matrices in the 2× 2× 2 mesh. With (2.6) and

5There are 6 independent dynamical matrices on such a mesh, as symmetry operations make some
matrices be equivalent.
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the exposed interpolation procedure, SSCHA dynamical matrices on a 6 × 6 × 6 mesh
are obtained, a total of 52 independent matrices.

Knowing D 6×6×6
SSCHA(q) the same process to get Fig. 2.4 is followed: we get by interpola-

tion the values of the frequency for q’ along the symmetry lines. The obtained phonon
dispersion is depicted in Fig. 2.7. The most remarkable feature of the phonon spectrum
obtained with the SSCHA is the fact that the two branches with highest frequencies,
the vibrons, are significantly affected and the frequencies are lowered. Reciprocally, the
branch right below the vibrons has higher values for the frequency around the Γ point
and near it, vibrons even stand below this branch.
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Figure 2.7: (a) Obtained phonon branches with SSCHA method. (b) Comparison of phonon spectrum
obtained within the harmonic approximation (black) and the ones obtained with the SSCHA (red).

In Table 2.2 we focus on the changes that have happened at the Γ point, and we com-
pare the values of the frequencies that have been obtained with DFPT in the harmonic
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Mode (Fig. 2.3.2) DFPT Frozen phonon SSCHA Difference (%)

(a) 24.55 30.00 21.01 -14.44

(b) 28.91 29.93 29.14 0.80

(c) 32.23 18.21 24.47 -24.08

(d) 34.04 32.59 38.92 14.34

(e) 36.80 35.07 34.55 -6.11

(f) 51.62 55.30 48.75 -5.56

(g) 75.64 78.11 77.88 2.96

(h) 83.23 89.62 74.61 -10.36

(i) 87.13 73.00 69.62 -20.10

Table 2.2: Obtained frequencies for each of the optical modes at the Γ point, in THz, for the three
approximations (DFPT, anharmonic frozen phonon and SSCHA). In the last column, relative difference:
SSCHA−DFPT

DPFT
.

approximation, the values obtained from the anharmonic frozen phonon calculation in
Section 2.3.2 and the ones obtained with the SSCHA. We can see that the frozen phonon
calculations and the SSCHA do not provide the same values for the frequencies and, what
is more, some cases in which the frozen phonon approach foresees an increase of the fre-
quency, the SSCHA does the contrary. This is specially noticeable in the case of (h).
SSCHA is, of course, only an approximation, but it takes into account the interaction
between modes, whereas the frozen phonon approach does not. We can conclude from
Fig. 2.7 and from Table 2.2, where relative differences of the frequencies can be as big as
20% depending on the inclusion or not of anharmonicity, that anharmonic effects are of
great importance in this system. Therefore, in an accurate ab initio study of this phase
of hydrogen anharmonicity should be properly treated.

The effect of anharmonicity that can be observed in Fig. 2.7 is an overall lowering of
the frequencies. We try to draw some conclusions about the behavior of Tc by means of
a rough estimate based on McMillan’s expression [23]:

Tc =
ΘD

1.45
e
− 1.04(1+λ)
λ−µ∗(1+0.62λ) . (2.7)

In this equation ΘD is the Debye temperature of the solid, and is related to the typical
frequencies of the system. µ∗ is an unknown parameter that accounts for the electronic
screening, usually of the order of 0.1. Finally, λ is a dimensionless electron-phonon
coupling constant defined as

λ = 2

∫ ∞
0

dω

ω
α2(ω)F (ω) , (2.8)

where α2(ω)F (ω) is the Eliashberg function. From Ref. [10] we see that the value for
λ, computed within the harmonic approximation for phonons, is around unity, and can
even reach 2 with increasing pressure. In this range of values, an increase in λ produces
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an increase in the exponential of equation (2.7). Assuming that Tc is governed by the
exponential, we see from (2.8) that, in general, lowering the vibrational frequencies
of the solid favors superconductivity. Of course, the effect of α2(ω)F (ω) on λ has to
be included, but this is beyond the scope of the work. Our calculations show that
anharmonicity lowers the phonon frequencies, so it is feasible that Tc gets even higher
than the values got in [10].

The fact that vibron frequencies are lowered is also a signal of the tendency to the
disociation of the molecules, which can be related to a phase transition. In this sense,
anharmonic effects would lower the value of the pressure that is necessary to achieve
a monoatomic phase of hydrogen. Apart from the effect in the frequencies, ions can
also change their position due to anharmonicity: remember that in SSCHA the free
energy is also minimized with respect to the ionic positions. The symmetry of the
crystal is respected, and in the end the atoms are also in 8f Wyckoff positions, but
now the fractional coordinates are y = 0.365 and z = 0.414. The new positions yield
an intramolecular distance for both types of molecules of 0.837 Å, versus the 0.793 Å
value previous to the SSCHA treatment. This change in the intermolecular distance is
consistent with the above-mentioned disociation effect.

With the hydrogen ions in the new positions, we perform a calculation of the electronic
bands (Fig. 2.8) and observe that they cross the Fermi level at more points of the high
symmetry lines, giving rise to electron and hole pockets that did not exist before. So, even
if the relative change in the ionic positions is only a few percent, the Fermi surface has
changed (see Fig. 2.9). Following the identification of bonding and antibonding states
of Section 2.2 we now see that the band corresponding to intramolecular antibonding
and intermolecular bonding is starting to be occupied.

The fact that varying the ionic positions creates such a significant change in the Fermi
surface means that non-adiabatic effects may be important in this system, and that
the range of validity of the Born-Oppenheimer approximation (Section 1.1) may be re-
stricted. These non-adiabatic effects are related to the electron-phonon coupling, which is
also responsible for the superconductivity. Systems with a high electron-phonon coupling
are more prone to exhibit superconductivity but, concomitantly, are worse described by
the Born-Oppenheimer approximation that we have assumed correct throughout the
work. Escaping this vicious circle would imply the treatment of non-adiabatic effects, a
problem that is nowadays very difficult to face. The modification of the Fermi surface
will cause a change in the electron-phonon coupling and consequently in Tc, so the way
is open to a calculation of the electron-phonon coupling that includes anharmonicity, to
estimate a more accurate value of Tc.
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Figure 2.8: Electronic band structure before (after) SSCHA minimization in black (dashed red) lines.
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Figure 2.9: (a) Fermi surface before applying the SSCHA. (b) Fermi surface after applying the SSCHA,
with the new ionic positions. The most remarkable feature is that there is an electron pocket around Γ.
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Conclusions

This work has been devoted to the study of the Cmca-4 phase of hydrogen at high
pressure, which, confirming previous works, has been found to be metallic. In this
phase hydrogen still appears in molecules oriented in two directions. The molecular
structure can be interpreted in the electronic bands (Section 2.2), and also in the phonon
spectrum (Section 2.3.1). The study of the phonons within the harmonic approximation
as implemented in Quantum Espresso shows two vibron branches that always have higher
frequencies than any other branch, and with a significant dispersion, which is an indicator
of interaction between molecules of different cells.

We have justified the necessity to treat anharmonicity with a previous analysis of the
modes and we have performed anharmonic frozen phonon calculations. In some cases,
this kind of calculations predict behaviors that do not coincide with SSCHA calcula-
tions, which in principle is more accurate because it also includes the interaction between
modes, although it is restricted to harmonic trial Hamiltonians. The inclusion of an-
harmonicity by means of the stochastic self-sonsistent harmonic approximation modifies
the phonon spectrum significantly. The most strongly renormalized branches are found
to be the vibrons. A general perspective of the renormalized spectrum shows that the
frequencies are overall reduced. Furthermore, the atomic positions vary in a manner that
produce new features in the Fermi surface, such as electron pockets around the point
Γ. The conclusions that can be drawn from the calculations we have performed can be
summarized as follows:

• Anharmonic effects are important. The phonon spectrum is significantly mod-
ified when anharmonicity is included. Accurate studies of this phase of hydrogen
should include anharmonic terms in the treatment of ionic vibrations.

• Feasibility of an increase in Tc. Rough arguments following equations (2.7)
and (2.8) that do not take into account the effect of the Eliashberg function, lead
to the conclusion that lowering phonon frequencies increases Tc.

35
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• Anharmonic effects tend to lower the pressure necessary to disociate the
molecules. The lowering of the vibron branches and the increased intramolecular
distance after the SSCHA treatment point to a structure with less tightly bound
molecules. The disociation pressure can be lowered if anharmonicity is included in
the calculations.

• Non-adiabatic and electron-phonon coupling effects may be important.
We have seen that a small variation in the ionic positions causes a considerable
change in the Fermi surface, so the ionic movement induces a change in the elec-
tronic structure. In such a case, Born-Oppenheimer approximation becomes less
valid. On the other hand, the electron-phonon coupling varies when anharmonicity
is included, so a new calculation of the Eliashberg function including it is desirable.

A problem that was posed so many decades ago, the metallization and superconductivity
in hydrogen, is still nowadays extremely interesting. The increase of computational
power and the development in experimental devices bring us closer to the answer, but
there is still a lot to do.
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