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Introduction

Graph theory has a wide variety of research fields, such as in discrete math-
ematics, optimization or computer sciences. However, this work will be
focused on the algebraic branch of graph theory. Number and group theory
are necessary in order to develop this project whose aim is to give enough de-
tails and clarifications in order to fully understand the meaning and concept
of the automorphism group of a graph. Moreover, the specific automorphism
groups of some special families of graphs is developed, Kneser graphs and
generalized Petersen graphs, more precisely.

Every chapter in this document is based in a different book or paper. In
addition, each chapter is developed around one most relevant reference, but
we tried to find and read more related articles in order to combine, use and
refer to them for a complete and fully understandable vision of the analyzed
topic to the reader.

The first chapter, which is based in the book by C. Godsil and G. Royle
[6], contains the most theoretical part, including the definitions, lemmas and
theorems necessary for the smooth development of the next chapters. It is
used as an introduction in order to show the basic graph and group theory
needed.

The second chapter is already focused on a specific family of graphs,
Kneser graphs. The last exercise of the previous chapter, which implies find-
ing the automorphism group of a very famous Kneser graph, the so called
Petersen graph, gives us the clue of the description of the automorphism
groups of all Kneser graphs. Nevertheless, we need a very important result
on combinatorics, the Erdős-Ko-Rado theorem, in order to prove the result
in all generality. Moreover, the corresponding and complex proof of this
famous theorem in this chapter is mostly based in a preprint by P. Cameron
[3] although we combine it with the proof in the book by N. Alon and J.
Spencer [1, page 13]. In addition, we made some changes in the notation
and introduced some more lemmas and pictures in order to make it easier
to understand.
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In the third chapter we analyze an even more complex family of graphs,
the generalized Petersen graphs and their automorphism groups. This whole
chapter is related to the paper by R. Frunch, J. E. Graver and M.E. Watkins
[5] even if we try to explain everything in a deeper and more understandable
way with the aid of some pictures and examples. Although we give the de-
scription for almost all generalized Petersen graphs, there are 7 exceptional
cases in which the obtained result does not hold. These particular graphs
need a ocase-by-case analysis that would exceed the bounds of this project.
That is why we refer to the already cited paper [5], in which they give a
brief explanation of them and refer to other articles for a complete analysis
of each exceptional graph.

The fourth chapter represents my aim of showing an example of what
all this theory can be used for. After looking and reading different articles
about various applications of graph and group theory I found out the in-
teresting field of chemistry and reaction graphs and I saw it was directly
related with the topic. I would have liked to go deeper in this field and
prove some very interesting results as they do in [8] and [9], but doing so
would have required devoting a whole work only to that. However, I tried
to illustrate this kind of application by using an example in which we need
the automorphism group of a graph and the final result is a graph that we
already analyzed in the previous chapters.

We also include an Appendix with solved exercises. Some of them will
help with the development of the chapter while some other will be extra
interesting examples related to the topic.

Summarizing, the aim of this project was to learn more about algebraic
tools in graph theory analyzing interesting families of graphs with specific
properties which can be later on applied in a variety of fields, for instance,
the reaction graphs used in chemistry.



Chapter 1

Automorphisms of graphs

We will focus this chapter on the automorphisms of graphs, their definition,
properties and some examples.

1.1 Graphs

Definition 1. A graph Γ consists of a vertex set V (Γ) and an edge set E(Γ),
where an edge is an unordered pair of distinct vertices of Γ.

It is important to know when two graphs can be considered to be equal.
First of all, two vertices are said to be adjacent or neighbours if there exists
an edge between them, in addition, the number of adjacent vertices is called
the valency of a vertex. Moreover, a graph is said to be regular if all vertices
have the same valency. If x and y are two vertices in V (Γ) we denote the
edge which joins x and y as {x, y}. Now we can give the definition of two
isomorphic graphs.

Definition 2. Two graphs Γ1 and Γ2 are isomorphic if there is a bijection,
say ϕ, from V (Γ1) to V (Γ2) such that x and y are adjacent in Γ1 if and only
if ϕ(x) and ϕ(y) are adjacent in Γ2.

If Γ1 and Γ2 are isomorphic, then we write Γ1
∼= Γ2. Moreover, it is

normally appropriate to treat isomorphic graphs as if they were equal.

Example 1. Two isomorphic graphs:

A

B C

D B

D A

C

Definition 3. A graph is called complete if every pair of vertices are adja-
cent, and the complete graph on n vertices is denoted by Kn.

1



2 1.1. Graphs

Definition 4. A subgraph of a graph Γ is a graph Y such that V (Y ) ⊆ V (Γ)
and E(Y ) ⊆ E(Γ).

Definition 5. A clique is a subgraph that is complete. Conversely, an
independent set is a subgraph such that no two of its vertices are adjacent.

The following are some examples of different kinds of graphs, from some
general ones to more specific ones that we are going to use in the next
chapters.

Example 2. Consider the following graph:

A

B
C

D
E

The set of vertices V1 = {C,A,E} induce a clique and V2 = {B,D,E}
an independent set.

Example 3. The cyclic graph Cn is a connected graph with n vertices where
every vertex has exactly two neighbours.

Figure 1.1: The cyclic graph C6.

Example 4. The Kneser graph KG(4, 2) is defined as follows. Fix the set
Ω = {1, 2, 3, 4}. Then the vertices of KG(4, 2) are the subsets of Ω of size
2, i.e., V = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}, and two subsets are
adjacent if their intersection is empty. See Figure 1.2.

{1, 2}
{2, 3}

{2, 4}
{3, 4}

{1, 4}

{1, 3}

Figure 1.2: Kneser graph KG(4, 2)
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Example 5. Let Ω be a fixed set of size v, then the Kneser graph KG(v, k)
is defined as follows for 1 ≤ k ≤ v

2 . The vertices of KG(v, k) are the subsets
of Ω with size k, where two subsets are adjacent if their intersection is empty.
The Kneser graph KG(5, 2) is a very famous and important graph and it is
known as the Petersen graph.

{1, 2}

{3, 4}

{1, 5} {2, 3}

{4, 5}
{3, 5}

{2, 5}

{2, 4} {1, 4}

{1, 3}

Figure 1.3: Petersen graph KG(5, 2).

Definition 6. A path of length r from x to y in a graph is a sequence of r+1
distinct adjacent vertices starting with x and ending with y. The distance
d(x, y) between two vertices x and y in a graph is the length of the shortest
path from x to y.

1.2 Automorphisms

In this section we are going to define the automorphisms of a graph, analyze
their properties and give some interesting examples.

An automorphism is an isomorphism from a mathematical object to it-
self. The exact definition of an automorphism depends on the type of math-
ematical object in question an we have the following definition when talking
about graphs.

Definition 7. An automorphism of a graph Γ is a permutation of the ver-
tices of Γ which maintains the adjacency relation between vertices, i.e., two
vertices are adjacent if and only if their images are adjacent.

An automorphism permutes the vertices inducing a natural action onto
the edges, since they are just unordered pairs of vertices. Then we have the
following equivalent definition of an automorphism.



4 1.2. Automorphisms

Definition 8. An automorphism of a graph Γ is a permutation of the ver-
tices of Γ such that, if we consider the natural action it induces on the
unordered pairs of vertices, it maps edges to edges and non-edges to non-
edges.

Furthermore, let f be a permutation of the vertices of a graph Γ, then
we can define the graph f(Γ) induced by f as

V (f(Γ)) = V (Γ),

E(f(Γ)) = {{f(x), f(y)}|{x, y} ∈ E(Γ)}.

The description of f(Γ) is very useful in order to check when the permu-
tation f induces an automorphism graphically. Actually, we only need to
compare the visual representation of both Γ and f(Γ). If both graphs have
the same visual representation, then f is an automorphism, otherwise, it is
not.

Note that we can omit the last part of Definition 8 when talking about
finite graphs because mapping non-edges to non-edges would be a conse-
quence of mapping edges to edges. We can justify this using the pigeonhole
principle. Suppose that at least one non-edge is mapped to an edge by the
automorphism f , then, since f is a permutation, that edge can not be an
image of any other element again. As we have a finite amount of edges and
there is now one edge less in the possible images than the amount of edges
in the first graph, by the pigeonhole principle at least one edge would have
more than one preimage, which is a contradiction with f being a permuta-
tion.

We refer to the Appendix in order to show an example of an infinite
graph in which a permutation of the set of vertices of a graph is not an
automorphism even if its natural action maps edges onto edges.

Example 6. The easiest example of an automorphism is the identity.

Example 7. Let Γ be the Petersen graph mentioned before and f =
(13542). As f permutes the numbers which form the vertices of Γ, f also
induces a permutation of the vertices of Γ, which we still denote by f . It
is easy to check that, in the graph f(Γ), every vertex is connected to the
vertices as in Figure 1.3.
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{3, 1}

{5, 2}

{3, 4} {1, 5}

{2, 4}
{5, 4}

{1, 4}

{1, 2} {3, 2}

{3, 5}

Figure 1.4: After aplying f in Γ, i.e, f(Γ).

Example 8. Now let C5 be the graph with the vertex set V (Γ) = {1, 2, 3, 4, 5}
and the edge set E(Γ) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}} and let f be the
permutation f = (25). Note that f is not an automorphism of Γ since for
instance the vertices 2 and 3 are not adjacent any more in f(Γ).

1

2

3 4

5

1

5

3 4

2

Figure 1.5: The graphs Γ and f(Γ).

The set of all automorphisms of Γ is denoted by Aut Γ.

Proposition 1.2.1. The set of all automorphisms of Γ, Aut Γ, forms a
group under composition.

Proof. Let S be the group of all the permutations of the set V (Γ). We will
see that Aut Γ is a subgroup of S. For that we need to prove that if f1,
f2 ∈ Aut Γ, then f1f2 ∈ Aut Γ and if f ∈ Aut Γ then f−1 ∈ Aut Γ. For the
first statement we need that if x and y are adjacent in Γ, then f1f2(x) and
f1f2(y) must be adjacent in Γ and conversely, if x and y are not adjacent in
Γ, then f1f2(x) and f1f2(y) must not be adjacent in Γ. That is true since
f1f2(x) = f2(f1(x)) and f1f2(y) = f2(f1(y)) and as f1 is an automorphism
of Γ, we have that f1(x) and f1(y) keep the adjacency relation x and y had



6 1.2. Automorphisms

before. Moreover, f2 is an automorphism of Γ as well, so f2(f1(x)) and
f2(f1(y)) are adjacent in Γ if and only if x and y were adjacent in Γ. Hence
if f1, f2 ∈ Aut Γ, then f1f2 ∈ Aut Γ.

The second statement is also easy to prove. We know that f being an
automorphism of Γ means that f is a bijection that keeps the adjacency
relation between vertices. Hence there exists f−1. Moreover we have that
f(x) and f(y) are adjacent if and only if x and y are adjacent which is
the same as saying that f−1(f(x)) and f−1(f(y)) are adjacent if and only
if f(x) and f(y) are. Note that f(x) and f(y) could be any vertex in
f(V (Γ)) = V (Γ) since x and y are any vertex of Γ and f is a bijection. So
f−1 ∈ Aut Γ.

From now onwards we are going to use the following notation. The
image of an element x ∈ V (Γ) under a permutation f ∈ SV (Γ) will be

denoted by xf . In the same way, if f ∈ Aut Γ and Y is a subgraph of Γ,
then we define Y f to be the graph with V (Y f ) = {xf : x ∈ V (Y )} and
E(Y f ) = {{xf , yf} : {x, y} ∈ E(Y )}. Note that in the particular case
Y = Γ, we recover the definition of f(Γ) given before.

Lemma 1.2.2. If x is a vertex of the graph Γ and f is an automorphism of
Γ, then the vertex y = xf has the same valency as x.

Proof. Since f is an automorphism, by definition it is a permutation of the
vertices of Γ that maps edges to edges and non-edges to non-edges. Thus
y = xf has the same number of incident edges, or which is the same, the
same number of adjacent vertices as x.

Lemma 1.2.3. If x and y are vertices of Γ and f ∈ Aut Γ, then d(x, y) =
d(xf , yf ).

Proof. Let d(x, y) = n and let

P = {{x, v1}, {v1, v2}, ..., {vn−2, vn−1}, {vn−1, y}}

be a shortest path between them.

Take P ′ = {{xf , vf1}, {v
f
1 , v

f
2}, ..., {v

f
n−2, v

f
n−1}, {v

f
n−1, y

f}}, which is a
path from xf to yf since f is an automorphism and all the adjacent vertices
remain adjacent after applying f . This does not mean that P ′ is a shortest
path between them but we have that d(xf , yf ) ≤ |P ′| = n.

Now we are going to show by contradiction that d(xf , yf ) ≥ n. Suppose
that there exists a shortest path

Q = {{xf , w1}, {w1, w2}, ..., {wm−2, wm−1}, {wm−1, y
f}}

form xf to yf such that |Q| = m < |P ′| = n. Then as f is bijective and
maintains the adjacent vertices we would have a path Q′ from x to y of
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length m. But that is a contradiction since d(x, y) = n > m. So eventually
we have d(x, y) = d(xf , yf ).

Example 9. AutKn
∼= Sn. The set of vertices of the graph Kn is the finite

set V (Kn) = {1, ..., n} and all those vertices are adjacent to each other, so
the set of all automorphisms of the graph Kn consists of all the possible
permutations of the set {1, ..., n}, thus AutKn = Sn.

1.3 Actions of groups on sets and the Orbit-
Stabilizer Theorem

We are going to focus our attention on the Orbit-Stabilizer Theorem now.
First of all we need a few more definitions and explanations in order to make
the proof of the theorem understandable.

In this section we could explain and state all the theorems and lemmas
taking G to be a permutation group, but we are going to generalize a little
bit more since in some cases we have to manage with the following situation.
Suppose we have a set X and a group G, whose elements permute the ones in
X. This means that for each g ∈ G we have a corresponding permutation in
SX , but the problem arises since we can not assume that different elements
in G correspond to different permutations in SX . Due to this, in general,
although the elements of G permute the ones in X we cannot say that G is
a permutation group of X.

Example 10. Let G be a group and X = G. In this case when we conjugate
an element of X by one g ∈ G we get:

X = G −→ X = G

x 7−→ xg = g−1xg

which is a permutation of X. Now suppose that we have g ∈ Z(G) and
g 6= 1, let us see which is the permutation we get with this g.

X = G −→ X = G

x 7−→ xg = g−1xg = g−1gx = x.

This is the identity permutation so all the elements in the center of G
would give us the same permutation. That is the reason why we could not
say that G is a permutation group itself by conjugation. Here we introduce
a new concept in order to solve this terminology problem.

Definition 9. Let G be a group. A G-set is a pair (X, ρ) of a set X and a
homomorphism ρ from G into the symmetric group SX on X.
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Stabilizer Theorem

In this way we match each element of G with its correspondent permu-
tation in SX through a homomorphism so now we can work with the group
G even though it is not a permutation group. We also say that the group
G acts on the set X, ρ being the action. Here there are some clarifications
about the notation.

When a G-set (X, ρ) is given, the permutation on X that an element g
of G determines is ρ(g). For x ∈ X we write

xg = ρ(g)(x).

Moreover, we need to know how the composition works. Since ρ is a ho-
momorphism we have that the composition xgh = ρ(gh)(x) = ρ(g)ρ(h)(x) =
ρ(h)(ρ(g)(x)) = (xg)h where g, h ∈ G. In addition we need some properties
and characteristics of groups acting sets in order to work with them.

Definition 10. Let X be a finite set and G a group acting on X. We say
that G is transitive on X if given any two points x and y from X there is
an element g ∈ G such that xg = y.

Definition 11. Let X be a finite set and G a group acting on X. We say
that G is faithful on X if for any two different elements g and h from G
there is an element x ∈ X such that xg 6= xh.

In other words, G is faithful when the homomorphism ρ is injective.
Thus if G is faithful then G is a permutation group on X.

Example 11. Having the set X = {{1, 2}, {2, 3}, {5, 6}}, the group G rep-
resenting the natural action of S6 on X is not faithful since taking g and
e ∈ G where ρ(e) is the identity function and ρ(g) = (12)(34)(56) 6= 1 ∈ S6

we have that {1, 2}g = {1, 2}e, {2, 3}g = {2, 3}e and {5, 6}g = {5, 6}e. Thus
it is not faithful and so, G is not a permutation group on X.

Definition 12. A non-empty subset S of X is an orbit of G if G is transitive
on S and S is invariant under the action of G.

It is straightforward to check that for any x ∈ X the set xG = {xg : g ∈
G} is an orbit of G.

Proposition 1.3.1. Every orbit of G can be described as xG = {xg : g ∈ G}
for some x ∈ X.

Proof. As we said it is obvious that the set xG = {xg : g ∈ G} is an orbit of
G since G is transitive on it and it is invariant under the action of G.
Moreover suppose we have an orbit that can not be described as above. Let
us have S = {x1, ..., xn} where x1, ..., xn ∈ X. By definition of an orbit, G
must be transitive on it so for any pair of elements xi, xj ∈ S there exist
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some element g ∈ G such that xgi = xj . As a consequence we can get any
element of S using for instance x1, since xr1 = xi for some r ∈ G. Then
S ⊆ xG1 . Moreover, as S is an orbit it must be invariant under the action of
G, and consequently xG1 ⊆ S. Thus, we have xG1 = S.

Proposition 1.3.2. Let G be a group acting on a set X. Then G is tran-
sitive on X if and only if there is only one orbit in which all elements of X
are.

Proof. ⇒ If G is transitive, given any two points from X there is an element
in G which maps one point onto the other, hence it is obvious that taking
any element x ∈ X the orbit xG = X is the only orbit.

⇐ If there is only one orbit in which all elements of X are then S = X is
an orbit. By definition S is an orbit of G if S is invariant under the action
of G and G is transitive on S. Hence, G is transitive on X.

Definition 13. Let G be a group acting on a set X. For any x ∈ X the
stabilizer Gx of x is the set of all elements g ∈ G such that xg = x.

Lemma 1.3.3. The stabilizer Gx is a subgroup of G.

Proof. If g1 and g2 ∈ Gx then g1g2 ∈ Gx since xg1g2 = xg2 = x. Moreover,
if g ∈ Gx then g−1 ∈ Gx, since we can write xg

−1
= (xg)g

−1
which implies

xg
−1

= x, thus g−1 ∈ Gx.

Lemma 1.3.4. Let G be a group acting on a set X and let S be an orbit of
G. If x and y are elements of S, the set of permutations in X that map x
to y is a right coset of Gx. Conversely, all elements in a right coset of Gx
map x to the same point in S.

Proof. First of all remember that the right coset Gxg of Gx is defined by
Gxg = {hg : h ∈ Gx}. Now we must show that all the permutations that
map x to y form a right coset of Gx. Since both x and y are in the orbit
S there must exist an element, say g, such that xg = y. Now suppose that
there is some h ∈ G that maps x to y as well, i.e., xh = y. Thus xg = xh,
so (xg)g

−1
= (xh)g

−1
, and xhg

−1
= x. Hence hg−1 ∈ Gx and h ∈ Gxg.

Consequently, all elements mapping x to y belong to the coset Gxg.
Now we must show that every element of a coset of Gx maps x to the

same point. We know by the definition of a coset that every element in Gxg
has the form hg where h ∈ Gx. Now as xhg = (xh)g and since h ∈ Gx we
have (xh)g = xg. Therefore as h could be any element in Gx we conclude
that all the elements of Gxg map x to xg.

Theorem 1.3.5 (Orbit-Stabilizer Theorem). Let G be a group acting on
the finite set X and let x be a point in X. Then

|Gx||xG| = |G|.
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Proof. By the previous lemma we know that each element of the orbit xG

corresponds bijectively to a right coset of Gx and all elements in a right coset
of Gx map x to the same point, hence the elements of G can be partitioned
into |xG| cosets. Moreover, we know that the cardinality of a coset of Gx is
always |Gx|. Therefore, we have |G| = |xG||Gx|.

1.3.1 Actions on graphs

Note that we defined the action of G for the general case where G acts on
a set X, however we should require more conditions when we are talking
about actions on a set with some structure, in particular, graphs.

Definition 14. We say that a group G acts on a graph Γ if the group G
acts on the set V (Γ) and the homomorphism ρ goes from G into the group
Aut Γ. Thus, the action keeps the adjacency relation between the vertices
in the graph.

It is obvious that Aut Γ is a group that acts on the graph Γ. Moreover,
all the definitions and propositions above can be formulated for graphs with
X = V (Γ). However when the object is a graph we distinguish between two
different kinds of transitivity, vertex-transitivity and edge-transitivity.

Definition 15. Let Γ be a graph and G a group acting on V (Γ). We say
that G is vertex-transitive if given any two points x and y from V (Γ) there
is an element g ∈ G such that xg = y.

The same definition is valid for edge-transitivity if we replace V (Γ) by
E(Γ).

Example 12. Let C5 be the graph in Example 8 and G1 = {1, (123), (132)},
which can be considered as a subgroup of AutC5. Then, 1G1 = {1, 2, 3} =
2G1 = 3G1 , 4G1 = {4} and 5G1 = {5} are the orbits of G1. Thus, G1 is not
transitive on C5.

Example 13. Now let G2 be the symmetric group S5 acting on the same
graph. Then we have 1G2 = {1, 2, 3, 4, 5} = 2G2 = 3G2 = 4G2 = 5G2 , thus
we have only one orbit, i.e., G2 is transitive on C5.

1

2

3 4

5

1

2

3 4

5

Figure 1.6: The vertices with the same color represent the orbits of G1 on
C5 and the ones of G2 on C5 respectively.
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1.4 The automorphism group of a cyclic graph

We are interested in knowing the automorphism groups of different families
of graphs. In particular, in this section we are going to discuss the auto-
morphism groups of cyclic graphs. In order to do that we are going to use
the theory developed before, showing an application of the Orbit-Stabilizer
Theorem.

Example 14. Let C4 be the cyclic graph with 4 vertices as described in
the first section. Then the automorphism group G ⊆ S4 of this graph
is G = AutC4 = {1, (1234), (13)(24), (1432), (13), (24), (12)(34), (14)(23)}.
Note that |AutC4| = 8.

Theorem 1.4.1. The automorphism group of a cyclic graph Cn has car-
dinality 2n and AutCn ∼= D2n, where D2n is the dihedral group of order
2n.

Proof. Let us take the cyclic graph Cn with the vertex set {1, 2, ..., n} and
the edges of the form {x, x+ 1} with x ∈ {1, 2, ..., n}, x to be read modulo
n. First of all, as every Cn is isomorphic to an n-polygon let us represent
the graph Cn graphically projecting it into an n-polygon, each vertex and
edge of Cn corresponding to a vertex and edge in the polygon respectively.
Therefore, it is obvious that the dihedral group D2n, which by definition is
the group of symmetries of a regular polygon, is in AutCn.

Then, our aim now is to see that the cardinality of AutCn coincides
with that of D2n, i.e., |AutCn| = 2n. Let us denote G = AutCn. By the
previous argument, a rotation ρ ∈ D2n moving one vertex to the next one is
an automorphism of Cn, in addition all the possible rotations in a polygon
are in G. This means that we can map every vertex x ∈ V (Γ) to all other
vertices in V (Γ) by rotations. Therefore we have |xG| = n.

Now we are going to see which is the cardinality of the stabilizer Gx
of x. Let x be any vertex in V (Γ), let its neighbours be y and z, and
take f ∈ Gx. We know from Lemma 1.2.3 that if f ∈ G then d(x, y) =
d(xf , yf ). Moreover, as f ∈ Gx and x and y are neighbours we have that
d(xf , yf ) = d(x, yf ) = 1, but the only two vertices that are at distance 1
from x are y and z. Thus, we only have two options, either yf = y or yf = z.
Furthermore, we need to see that these two options lead us to two different
automorphisms. Obviously the only way of getting yf = y is by applying
the identity function. The second option yf = z, however, leads us to the
automorphism that switches the vertices that are at the same distance from
x, i.e., a reflection. This is true since if we apply yf = z and we look at
the vertices at distance two from x we will see that the only options for
them to remain being neighbors of y and z is to switch and so on with every
pair of vertices at the same distance from x. Thus |Gx| = 2. Applying now
the orbit-stabilizer theorem, |G| = |Gx||xG| = 2n. Hence, as D2n ⊆ G and
|D2n| = |G|, we conclude that D2n

∼= AutCn.
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We refer to the Appendix for the determination of some more automor-
phism groups of graphs applying the Orbit-Stabilizer Theorem. Starting
from the simplest one in Exercise 2 and going through more complex ones
in the following chapters, Exercise 3 and Exercise 6.



Chapter 2

Automorphism groups of
Kneser graphs

We will focus this section on the Kneser graphs and the determination of
the automorphism group of this important family of graphs.

2.1 Kneser graphs

Although we saw some examples in the previous chapter with the construc-
tion of Kneser graphs let us define this kind of graph in more detail. Let v
and k be fixed positive integers with k ≤ v/2; let Ω be a fixed set of size v;
then, the Kneser graph KG(v, k) has all subsets of Ω of size k as vertices,
where two of those subsets are adjacent if their intersection is empty.

Note that when k > v/2 the intersection of the k-subsets is always non
empty and thus, we do not have any edges and obviously those graphs are
not really interesting.

We know that a KG(v, k) has
(
v
k

)
vertices, moreover, it is a regular

graph with valency
(
v−k
k

)
. This is true since in order to determine all the

neighbours of a vertex corresponding to the subset S we need subsets of size
k that do not share any of the elements with that vertex. Thus we need all
the possible k-subsets of Ω \ S. Since |Ω \ S| = v − k we have always

(
v−k
k

)
adjacent vertices.

Moreover, in the special case of v = 2k, in which we have t =
(

2k
k

)
vertices, the Kneser graph KG(2k, 2) is nothing but the graph that joins
any k-subset of {1, ..., 2k} to its complement. This case will be mentioned
through the chapter because of its special characteristics.

13
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x1 x2
xt/2

xc1 xc2 xct/2

Figure 2.1: The bipartite graph KG(2k, k).

2.2 The automorphism group of all Kneser graphs

First of all, we refer to the first section of the Appendix in which we de-
velop as an exercise the automorphism group of the Petersen graph, without
knowing the general result for all Kneser graphs.

However, in this section we want to determine which is the automorphism
group of any Kneser graph. Let us take H as the group that the natural
action of Sv induces on the vertices of the graph KG(v, k). Note that this
a faithful action and H ⊆ AutKG(v, k), since the vertices of KG(v, k) are
k-sets of the set that Sv permutes, and therefore these sets will be naturally
permuted by H. Moreover as the permutations map different elements to
different images the intersection between the sets of every pair of vertices is
preserved and as a consequence the adjacency relation between vertices as
well. Thus, they really provide automorphisms. Our aim is to prove that
AutKG(v, k) = H ∼= Sv.

In order to reach that point first of all we need a very important result
in extremal combinatorics, the Erdős-Ko-Rado theorem.

2.2.1 The Erdős-Ko-Rado theorem

We have based this section on P. Cameron’s proof of the Erdős-Ko-Rado
theorem, [3].

From now onwards we will employ bracketed n to denote the integers 1
through n, i.e., [n] = {1, ..., n}. In the same way we use

([n]
k

)
to denote all

k-subsets of [n]. Note that |
([n]
k

)
| =

(
n
k

)
.

Definition 16. A family F of sets is intersecting if any two of its sets have
a non-empty intersection, i.e, if for all A,B ∈ F , we have A ∩B 6= ∅.

We want to know which is the largest intersecting family of k-subsets

of an n-set, F ⊆
(

[n]

k

)
. When n < 2k it is obvious that any two k-sets
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intersect and so the maximum size is

(
n

k

)
. The Erdős-Ko-Rado theorem

will give us the answer for the case n ≥ 2k. We start with the following
lemma.

Lemma 2.2.1. For n ≥ 2k and 0 ≤ s ≤ n−1 set As = {s, s+1, ..., s+k−1}
where addition is modulo n. Then an intersecting family can contain at most
k of the sets As.

Proof. Let F be an intersecting family. Suppose that for some t ∈ {0, ..., n−
1}, At ∈ F . Note that after choosing At ∈ F any other As ∈ F must
intersect with At and this is only possible when s ∈ {t− k+ 1, .., t+ k− 1}.
Now we distribute these sets into pairs such that the intersection of each pair
is empty. Thus, we get pairs of the form {At−i, At−i+k} where 1 ≤ i ≤ k−1.
Let us see that F contains at most one set of each pair {At−i, At−i+k}. Note
that At−i = {t − i, t − i + 1, ..., t − i + k − 1} and At−i+k = {t − i + k, t −
i+ k + 1, ..., t− i+ 2k − 1} and the last element of At−i is followed by the
first one in At−i+k. Therefore, as addition is modulo n and n ≥ 2k they are
disjoint sets, so we can only have one set of each pair in F .

0 t t+ k − 1 n− 1
At

At−(k−1) At+1

At−(k−2) At+2...

At−1 At−1+k
...

So if we have At ∈ F then we can only add to F one set of each pair
defined before, moreover, once one of a pair is chosen we must choose the
consecutive one in the following pair and so on, since otherwise they will
not intersect. Since there are k− 1 such pairs, we conclude that F contains
at most 1 + k − 1 = k of the sets As.

Now we need to prove a totally different lemma regarding graphs and
cliques in order to have the full result we need for proving the Erdős-Ko-
Rado Theorem.

Lemma 2.2.2. Let Γ be a vertex-transitive graph with vertex set V . Let
Y be a subset of V with the property that any clique in Y has size at most
|Y |/m. Then the same proportion holds for V and any clique in the graph
has size at most |V |/m. Moreover, a clique C meeting the bound satisfies
|Cg ∩ Y | = |Y |/m for all automorphisms g of Γ.

Proof. First of all, as we state in Proposition 1.3.2, Γ being vertex-transitive
means that there is only one orbit in which all vertices of Γ are. For given
x, y ∈ V the set of automorphisms satisfying xg = y is a coset of the stabilizer
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(Aut Γ)x as we proved in Lemma 1.3.4 and as all the cosets have the same
size as the set we can use the Orbit-Stabilizer Theorem, concluding that the
number of automorphisms satisfying xg = y is

|(Aut Γ)x| =
|Aut Γ|
|xAut Γ|

=
|Aut Γ|
|V |

.

Let C be a clique in Γ. Now we count the pairs x, g where x is a vertex in
C and g an automorphism of Γ such that xg ∈ Y . On the one hand we have

|C| choices for x, and
|Aut Γ|
|V |

choices of g satisfying xg = y for each y ∈ Y ,

as we saw before. Therefore, the number of possible pairs is
|C||Y ||Aut Γ|

|V |
.

On the other hand, as every g ∈ Aut Γ is an automorphism it must
maintain the adjacency relations between the vertices and as C is a clique
the images of all the points xg ∈ Y must continue being parts of a clique.
Any clique in Y has size at most |Y |/m, thus |Cg∩Y | ≤ |Y |/m and therefore

we have at most
|Y |
m
|Aut Γ| choices for the pairs we are counting.

Therefore,
|C||Y ||Aut Γ|

|V |
≤ |Y |

m
|Aut Γ|

and so

|C| ≤ |V |
m
.

Finally |Cg ∩Y | is the number of x ∈ C satisfying xg ∈ Y . In the second
counting we saw that |Cg ∩ Y | ≤ |Y |/m. Actually, the argument to get the

bound C = |V |
m shows that we must have |Cg ∩ Y | = |Y |/m.

Theorem 2.2.3 (Erdős-Ko-Rado). Let F ⊆
(

[n]

k

)
be an intersecting family

and n ≥ 2k. Then |F| ≤
(
n− 1

k − 1

)
.

Proof. Consider the graph Γ whose vertices are the k-subsets of an n-set,

V =

(
[n]

k

)
and they are joined if and only if their intersection is non-empty.

Note that F ⊆ V is an intersecting family if an only if F is a clique in Γ.

So we want to show that the size of a clique in Γ is at most

(
n− 1

k − 1

)
.

Consider the family Y = {As : 0 ≤ s ≤ n−1} in which As = {s, s+1, ..., s+
k − 1}, where addition is modulo n. We have |Y | = n and since n ≥ 2k we
know from Lemma 2.2.1 that any intersecting family in Y has size at most

k. Note that k = n/(
n

k
) = |Y |/(n

k
).
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The graph Γ is vertex-transitive since taking all the permutations of the
n-set, Sn, which are automorphisms of Γ, we can reach from one vertex any
other vertex in the graph. So we can apply Lemma 2.2.2 and conclude that
any clique in the graph has size at most

|V |/(n
k

) =

(
n

k

)
/(
n

k
) =

k

n

(
n

k

)
=

(
n− 1

k − 1

)
.

Moreover, in the case of n = 2k the family
([2k]
k

)
can be partitioned into

1

2

(
2k

k

)
=

(
2k − 1

k − 1

)
pairs having in each pair a k-subset and its complement.

It is obvious that the subsets in the same pair are disjoint and any two k-sets
of different pairs have always a non-empty intersection. So every intersecting
family will be composed by one set of each k-pair.

Note that every family of sets sharing a fixed point is obviously an inter-
secting family, since all of them intersect at least in one point. The following
theorem will show us that this kind of families are the extremal families if
n > 2k.

Theorem 2.2.4. If n > 2k, then any intersecting family F ⊆
(

[n]

k

)
of

cardinality |F| =

(
n− 1

k − 1

)
consists of all the k-sets containing some fixed

point.

Proof. Let F be an intersecting family of cardinality |F| =

(
n− 1

k − 1

)
. We

start with two observations.
First, suppose that there are two points x and y such that every k-set con-
taining x but not y belongs to F , i.e., if x ∈ K and y /∈ K, then K ∈ F .
Note also that the case of both x and y ∈ K does not necessarily imply
K ∈ F . We are going to prove by contradiction that F consists of all the
k-sets containing x.
Suppose that K ∈ F is a k-set not containing x. Since n > 2k there are at
least 2k points different from y. Thus we can choose a k-set L disjoint to K
which has the point x but not y, thus by assumption on F , we have L ∈ F .
Since K∩L = ∅, and L ∈ F and F is an intersecting family, K can not be in
F . Hence, the assumption is false and every set in F contains x. Moreover,
there are

(
n−1
k−1

)
k-sets containing x because we have to choose k − 1 points

from n − 1 to create the set. Therefore considering that the cardinality of

F is

(
n− 1

k − 1

)
we must have every such set in F . Hence F consists of all the

k-sets containing x.
Next we show that there are two k-sets, K and K ′, intersecting in k− 1

points, such that K ∈ F and K ′ /∈ F . We are going to prove this again
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by contradiction. Suppose that for each K ∈ F , every k-set meeting K in
k − 1 points is also in F . If we continue choosing K ′′ such that K ′ and K ′′

intersect in k − 1 points by assumption K ′′ must be in F , then if we keep
applying the same argument to every k-set, by induction every k-set is in F
which is impossible.

Now we are going to prove the theorem by contradiction. Suppose that
there exists a counterexample F , then considering our first observation, for
every x and y there is a k-set not in F containing x but not y.

Take K and K ′ as above and label the points in K\K ′ and K ′\K as 0 and
k respectively and all common points from 1 to k−1, i.e., K = {0, 1, ..., k−1}
and K ′ = {1, 2, ..., k − 1, k}. Note that these two sets can be denoted by
A0 and A1 respectively as defined in Lemma 2.2.1. Now as we supposed
that there exists a counterexample F such that for every x and y there is a
k-set not in F containing x but not y, we choose the set not in F containing
x = 0 and not y = k and we denote it as K ′′. Moreover, we know K ′′ and
A0 intersect at least in 0 so let A0 ∩ K ′′ = {0, ..., l − 1} where 1 ≤ l < k
and let us label the remaining points of K ′′ as {n − k + l, ..., n − 1}, this
labeling can be safely done, since n− k+ l > k. Hence we can write this set
as K ′′ = An−k+l = {n− k + l, ..., 0, ..., l − 1}.

0 l k n− 1

n− k + lK = A0

K ′ = A1

K ′′ = An−k+l

We know that any intersecting family in Y = {As : 0 ≤ s ≤ n − 1} in
which As = {s, s + 1, ..., s + k − 1} where addition is modulo n has size at
most k from Lemma 2.2.1. Moreover by Lemma 2.2.2, as F is meeting the

bound |F| =
(
n− 1

k − 1

)
, we have |Fg ∩ Y | = |Y |/m for all g ∈ Aut(Γ), where

m = n/k and Γ are as in the proof of Erdős-Ko-Rado Theorem. Taking
the identity automorphism we get |F ∩ Y | = |Y |/m = k. So F contains k
of these sets. From the proof of Lemma 2.2.1 F must contain apart from
A0 one of each pair {A0−i, A0−i+k} for all 1 ≤ i ≤ k − 1. Moreover, from
the proof of Lemma 2.2.1, these sets must be consecutive but we said that
A0 = {0, ..., k−1} ∈ F and A1 = {1, ..., k} 6∈ F , so the only remaining option
is to have F = {An−k+1, ..., An−k+l, ..., A0} but we know that An−k+l 6∈ F .

This contradiction proves the theorem.

We remark again the case of n = 2k for which this last result does not
hold. Note that it is true that every intersecting family consisting of all the
k-sets containing some fixed point has cardinality

(
n−1
k−1

)
. However, there

are some other families with this cardinality which are not as described
above. We can assure this since we said that we compose the intersecting
family chosen one k-set of each pair {A,B}, in which B is the complement
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of the k-set A. As we said before that there are
(

2k−1
k−1

)
of this pairs we have

2(2k−1
k−1 ) intersecting families meeting the bound, while the ones consisting

of all the k-sets containing some fixed points are just n = 2k. Therefore,

as 2(2k−1
k−1 ) > 2k for k > 1 there exists some intersecting family meeting the

bound which is not as described in Theorem 2.2.4.

2.2.2 The automorphism group of Kneser graphs

All this combinatorial theory was necessary in order to prove the final result
of this chapter, which is summarized in the following theorem. Let us take
H as we described at the beginning of Section 2.2, i.e., the group that the
natural action of Sv induces on the vertices of the graph KG(v, k).

Theorem 2.2.5. The automorphism group of any Kneser graph KG(v, k)
with v > 2k is equal to the group H and therefore isomorphic to the sym-
metric group Sv, i.e., AutKG(v, k) = H ∼= Sv.

Proof. By Theorem 2.2.4 any intersecting family F ⊆
(

[n]

k

)
of maximum

cardinality consists of all the k-sets containing some fixed point. In our
case n = v and Ω = [v] and an intersecting family of maximum car-
dinality corresponds to a maximal independent set of the Kneser graph.
Let us denote by αi the maximal independent set containing some fixed
point i ∈ Ω. Obviously, any automorphism f ∈ AutKG(v, k) permutes
the vertices of KG(v, k) and so it must permute the maximal independent
sets of KG(v, k) defined before, so we have an action of AutKG(v, k) on
{α1, ..., αv}. Thus, we have a homomorphism from AutKG(v, k) to Sv.
Now we need to show that the kernel of this action on {α1, ..., αv} is trivial.
Let us prove this by contradiction. Suppose the kernel is not trivial, then
we have f ∈ AutKG(v, k) such that f(αi) = αi for all i ∈ {1, ..., v} but
f 6= 1. Then there exists a vertex x corresponding to a k-set such that
f(x) 6= x. This implies that there must be an element i in x but not in
f(x). However, as i ∈ x we have x ∈ αi and by assumption f(x) ∈ αi,
since f(αi) = αi. But that means i ∈ f(x), which is a contradiction. As
a consequence of the trivial kernel we know that |AutKG(v, k)| ≤ |Sv| = v!.
However, H ⊆ AutKG(v, k) and |H| = v! which together with
|AutKG(v, k)| ≤ |Sv| = v! implies AutKG(v, k) = H ∼= Sv.

We refer to Exercise 4 in the Appendix in which we give a counterexample
to the last theorem for the case v = 2k.





Chapter 3

Automorphism groups of
generalized Petersen graphs

3.1 The generalized Petersen graphs

For integers n ≥ 3 and k with 1 ≤ k < n
2 , the generalized Petersen graph

G(n, k) is defined as follows. The vertex set is divided in two subsets, the
outer edges {u0, ..., un−1} and the inner edges {v0, ..., vn−1}, i.e.,

V (G(n, k)) = {u0, ..., un−1, v0, ..., vn−1}.

The edge set E(G(n, k)) consists of all edges of the form

{ui, ui+1}, {ui, vi}, {vi, vi+k}

where all the indices are to be read modulo n. The set of all the edges of
the first form is called Ω and the edges on it are called outer edges. We call
Σ the set of edges of the second form and we are going to refer to such edges
as spokes. Eventually, the edges of the third form are inner edges and the
set of them is I.

This class of graphs was first considered by H. S. M. Coxeter who wrote
for instance [4].

Note that one of the properties of this family of graphs is that every
graph has 2n vertices, and moreover, every vertex has three neighbours, i.e.,
G(n, k) is always a trivalent graph of order 2n.

Remark 1. We restrict to the case k < n
2 since G(n, k) and G(n, n−k) are

the same graph as we prove in Exercise 5 at the Appendix. Moreover we
do not take into account the case k = n/2 since we always have two edges
linking the same two vertices, and we do not get a trivalent graph because

21
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of this overlap, see Figure 3.1 and note that there are two edges between
every pair of vertices {vi, vi+3}.

v0

v1

v2

v3

v4

v5

u0

u1

u2

u3

u4

u5

Figure 3.1: The graph G(6, 3).

We can describe G(n, k) as a graph with two linked subgraphs: an outer
rim with n vertices and the edge set Ω which is isomorphic to a cyclic graph
Cn, and a subgraph generated by I with n vertices matched depending on
k. This two subgraphs are always linked naturally by the n-set Σ of edges.
From this, we can easily see that G(n, k) is always connected since the
connected outer rim’s vertices are linked one by one with a different vertex
of the interior subgraph generated by I. Thus, we can always find a path
from any vertex to another through the outer subgraph. Now that we know
that the outer rim and the whole graph G(n, k) are connected let us focus
our attention in the subgraph generated by I.

Lemma 3.1.1. Let d be the greatest common divisor of n and k. Then the
subgraph of G(n, k) induced by {v0, ..., vn−1} has d connected components,
each of which is a circuit of length n

d .

Proof. Two vertices vi and vj of the subgraph are in the same connected
component if and only if there exists l ∈ Z such that j = i+kl. Thus we will
have in the same component the vertices with the subindices in the following
set {i+ kl | l ∈ Z} ⊆ Z/nZ. The set Z/nZ together with addition forms a
group and {i+ kl | l ∈ Z} = i+ 〈k〉 is a coset of 〈k〉. Thus, |i+ 〈k〉| = |〈k〉|.
We can calculate the cardinality of the group generated by k using the result
o(gk) = o(g)

gcd(k,o(g)) from group theory.

|〈k〉| = o(1)

gcd(k, o(1))
=

n

gcd(k, n)
=
n

d
.

Therefore the components have n
d vertices, as a consequence we have

n
n/d = d connected components. However, we need to know how those
vertices are connected in order to conclude that the connected component
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are circuits. Note that in each component we have the set of vertices with the
subindices {i, i+k, i+2k, ..., i+(nd−1)k}, let us analyze when two subindices
i+ lk and i+mk are the same. As all the subindices are to be read modulo
n they will be the same if n divides (i+mk)− (i+ lk) = (m− l)k, or which
is the same n

d |(m− l)
k
d . It follows that as d is the greatest common divisor

of n and k this is true when n
d |m− l. Looking again at the subindices of the

same component we can easily see that this never happens since all the m
and l possibles are between 0 and n

d −1. Moreover, i+(nd −1)k+k = i+(nd )
and n

d |
n
d − 0, so the subindex that follows the last one is the same as the

first one, closing the loop without repetitions.

Example 15. The Petersen graph KG(5, 2) is also the generalized Petersen
graph G(5, 2). In this case d = 1 and so we have just one circuit of 5 edges.

u0

u1

u2 u3

u4

v0

v1

v2 v3

v4

Figure 3.2: Petersen graph KG(5, 2) = G(5, 2).

Example 16. In the case of the graph G(6, 2), we see that d = gcd(6, 2) = 2
so we have 2 disjoint 3-circuits which are {v0, v2, v4} and {v1, v3, v5}.

v0

v1

v2

v3

v4

v5

u0

u1

u2

u3

u4

u5

Figure 3.3: The graph G(6, 2).
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Example 17. In our last example G(10, 4) we have again 2 disjoint circuits
but this time they are of length 5.

v0
v1

v2

v3

v4
v5

v6

v7

v8

v9

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

Figure 3.4: The graph G(10, 4).

3.2 Automorphism groups of generalized Petersen
graphs

First of all, let us denote the group of automorphisms of G(n, k) by A(n, k).
Moreover, let us define an important subgroup ofA(n, k), denoted byB(n, k),
as the group of automorphisms of G(n, k) that fix Σ set-wise. In this way if
γ ∈ B(n, k) and the edge si ∈ Σ, then γ(si) ∈ Σ, or which is the same, all
spokes are mapped onto spokes. The following lemma is going to show us
the importance of the subgroup B(n, k).

Lemma 3.2.1. If γ ∈ A(n, k) fixes set-wise any of the sets Ω, Σ or I, then
it either fixes all three sets or fixes Σ set-wise and interchanges Ω and I.

Proof. First of all let us proof by contradiction that if γ ∈ A(n, k) fixes set-
wise any of the sets, it must fix Σ. Suppose that γ fixes set-wise Ω (or I) but
it does not fix Σ. Then there must exist a spoke si whose image is not in Σ,
i.e., γ(si) 6∈ Σ. We know from how we defined the edges of the graph G(n, k)
before, that a spoke is an edge that links a vertex in the outer rim generated
by Ω with a vertex in the inside subgraph generated by I. Thus one of the
vertices that corresponds to an end-point of a spoke is incident only to the
spoke and to two outer edges, while the other end-point is incident to the
spoke and to two inner edges. It follows that if γ maps a spoke si onto an
outer (inner) edge, as it must maintain the incident edges, the two incident
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outer edges must become an outer (inner) edge and a spoke, and the two
incident inner edges must become an outer (inner) edge and another spoke.
Thus, γ({ui, ui + 1}) 6∈ Ω for some i and γ({vj , vj + k}) 6∈ I for some j.
Hence, none of the sets is preserved, which is a contradiction. Therefore, if
γ fixes any of the sets set-wise, it must fix Σ.

Figure 3.5: Not fixing the set Σ implies the impossibility of fixing any of the
other sets Ω and I.

Now let us show that if γ fixes Σ set-wise, then Ω and I are either fixed as
well, or they are interchanged. When we remove the spokes the outer edges
compose a single connected component, and so as any automorphism must
maintain all those connections either it fixes the set Ω or it interchanges the
whole set with another one, in this case I.

Note that we said that if γ ∈ A(n, k) fixes set-wise any of the sets Ω, Σ
or I, it must fix Σ, therefore γ ∈ B(n, k). Let us analyze first this special
subgroup B(n, k) of A(n, k) and check afterwards which is the exact relation
between them.

3.2.1 The subgroup B(n, k)

From the previous lemma we know that if γ ∈ B(n, k) there are just two
possibilities, fixing all the sets or interchanging Ω and I. Now we are going
to analyze each case and try to determine the subgroup B(n, k).

First of all, it is easy to see that the group 〈ρ, σ〉 with

ρ(ui) = ui+1, ρ(vi) = vi+1 and

σ(ui) = u−i, σ(vi) = v−i, for all i

is a subgroup of B(n, k). This is true since the rotations ρ and the reflec-
tions σ are automorphisms of G(n, k) fixing the three edge sets Ω, Σ and I
set-wise. Clearly we have 〈ρ, σ〉 ∼= D2n.
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Now we are going to analyze the two cases we mentioned before. In order
to do that let us define the subgroup C(n, k) ⊆ B(n, k) to be the set of all
automorphisms that fix the three sets. Thus, this subgroup will represent
all the automorphisms mentioned as the first case.

C(n, k) = {γ ∈ A(n, k) | γ(Ω) = Ω, γ(Σ) = Σ, γ(I) = I}.

Let us prove the following lemma in order to find afterwards the represen-
tation of C(n, k).

Lemma 3.2.2. If γ1, γ2 ∈ A(n, k) coincide on Ω, then γ1 = γ2.

Proof. If γ1, γ2 ∈ A(n, k) coincide on Ω, then γ1(ui) = γ2(ui) and conse-
quently γ−1

1 γ2(ui) = ui for all i. Since γ−1
1 γ2(vi) is linked to γ−1

1 γ2(ui) and
it can not be a vertex in the outer rim, it follows that γ−1

1 γ2(vi) = vi, for all
i. Thus, γ−1

1 γ2 = 1 on G(n, k) and moreover, γ1 = γ2.

Theorem 3.2.3. C(n, k) = 〈ρ, σ〉.

Proof. Obviously, 〈ρ, σ〉 ⊆ C(n, k) since we said before that this group fixes
Ω, Σ and I set-wise.
By Lemma 3.2.2 every automorphism on G(n, k) is determined by its action
on Ω. Moreover, {γ|Ω | γ ∈ C(n, k)} must belong to the automorphism
group of an n-cyclic graph and we saw in Section 1.4 that this group was
isomorphic to the dihedral group of order 2n. It follows that |C(n, k)| ≤ 2n,
and consequently C(n, k) = 〈ρ, σ〉.

Now our two cases are, either all the sets Ω, I and Σ are fixed for all
γ ∈ B(n, k) so B(n, k) = C(n, k), or B(n, k) 6= C(n, k) and so there is some
automorphism that interchanges Ω and I.

Let us define the map α on V (G(n, k)) by,

α(ui) = vki, α(vi) = uki, for all i.

Note that α sends edges of Ω to I, and viceversa. One can check that α is
a bijection if and only if gcd(k, n) = 1. Now we want to see when α is an
automorphism of G(n, k). Observe that α maps the spoke {ui, vi} onto the
spoke {α(ui), α(vi)} = {uki, vki}, the outer edge {ui, ui+1} onto the inner
edge {vki, vki+k}, and the inner edge {vi, vi+k} onto the pair {uki, uki+k2}.
We said the pair {uki, uki+k2} because it is not always an edge of G(n, k),
the outer edges form a rim and two vertices are only adjacent to each
other if they are next to each other, ui−1 ∼ ui ∼ ui+1. Therefore, for
the pair {uki, uki+k2} to be an outer edge we have the necessary and suffi-
cient condition k2 ≡ ±1 (mod n). Thus, α ∈ A(n, k) if and only if k2 ≡ ±1
(mod n). Obviously as we said that the spokes are mapped onto spokes
when α ∈ A(n, k) then α ∈ B(n, k).
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Lemma 3.2.4. If B(n, k) 6= C(n, k), then B(n, k) = 〈ρ, σ, α〉 and this only
happens when k2 ≡ ±1 (mod n).

Proof. As B(n, k) 6= C(n, k), then there exists γ ∈ B(n, k) and not in
C(n, k) which fixes Σ set-wise and interchanges Ω and I. We are going
to compose γ with the appropriate rotations and reflections in order to get
the α defined before. First of all, we compose γ with an appropriate power
of ρ producing an automorphism which not only interchanges the mentioned
sets but interchanges u0 and v0 as well. Note that this is always possible
since γ ∈ B(n, k), then after applying γ the spoke {u0, v0} is mapped onto
another spoke, say {ut, vt} where t is an integer modulo n. We can see know
that as ρ ∈ B(n, k), we can always find an appropriate power of ρ that
maps that spoke onto the spoke {u0, v0}. Since γ interchanges Ω and I we
must have that our composed automorphism maps u0 onto v0 and v0 onto
u0. Furthermore, since we are composing automorphisms u1 is going to be
mapped onto one of the inner neighbours of v0, i.e., vk or v−k. Thus, we
can force u1 to be mapped onto vk by permitting the composition with σ in
case u1 is mapped onto v−k.

After fixing those images the images of all ui are determined since u2

could only be mapped to v0 or v2k but as v0 is the image of u0 we only have
the last option. The same happens if we go on with all the ui vertices, for
instance the image of u3 can not be vk so it must be v3k and so on. Thus
we have that ui is mapped onto vki for all i. Note that the automorphism
γ composed with the appropriate power of ρ and perhaps σ coincides with
α on Ω and by Lemma 3.2.2 they are the same automorphism. As we said
before this can only occur if k2 ≡ ±1 (mod n). When this condition holds
we can describe every γ ∈ B(n, k) as a combination of ρ, σ and α, hence
B(n, k) = 〈ρ, σ, α〉, and B(n, k) = C(n, k) otherwise.

Lemma 3.2.5. B(n, k) is vertex-transitive on G(n, k) if and only if there
exists α, i.e., k2 ≡ ±1 (mod n) and therefore B(n, k) 6= C(n, k).

Proof. ⇒ If B(n, k) is vertex-transitive, for every pair of vertices x and y in
V (G(n, k)) there exists γ ∈ B(n, k) such that γ(y) = x. Then there must
exist an automorphism that maps some ui to some vj and we know there are
no such automorphisms in C(n, k). Thus, B(n, k) 6= C(n, k) and by Lemma
3.2.4 B(n, k) = 〈ρ, σ, α〉.
⇐ If there exists α it is obvious that B(n, k) is vertex-transitive on

G(n, k) since using the powers of ρ ∈ B(n, k) we can go from every ui to
every uj and form every vi to any other vj , so as α maps one vertex of the
inner subgraph with one of the outer rim, composing α and the appropriate
power of ρ we can map any vertex to every vertex in G(n, k).

Now that we know how B(n, k) can be generated let us analyze its order
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and presentation. If k2 6≡ ±1 (mod n), then we have B(n, k) = C(n, k) with
order 2n.

If k2 ≡ ±1 (mod n) then B(n, k) 6= C(n, k), and we need to calculate
the index of C(n, k) in B(n, k). In order to do that let us apply the Orbit-
Stabilizer Theorem again

|B(n, k)| = |B(n, k)Ω||ΩB(n,k)|

Note that C(n, k) is the stabilizer of Ω, i.e. B(n, k)Ω = C(n, k) and then
the index:

|B(n, k) : C(n, k)| = |B(n, k)|
|C(n, k)|

= |ΩB(n,k)|.

But every element in B(n, k) fixes Σ and so it only acts in the sets
Ω and I, either fixing them or interchanging them. Therefore, |B(n, k) :
C(n, k)| = |ΩB(n,k)| ≤ 2. This leads to |B(n, k) : C(n, k)| = 2 since otherwise
B(n, k) = C(n, k). Hence,

|B(n, k)| = |B(n, k) : C(n, k)||C(n, k)| = 4n.

It remains to complete the possible exact presentations for B(n, k). For
that it is convenient to think of B(n, k) as acting on Σ:

ρ(si) = si+1, σ(si) = s−i, α(si) = ski,

for all i, where si is the spoke {ui, vi}.

Lemma 3.2.6. If k > 1 then B(n, k) acts faithfully on Σ. Thus if µ, φ ∈
B(n, k) and µ(si) = φ(si) for all i, then µ = φ.

Proof. The fact of B(n, k) not being faithful means that there exists µ ∈
B(n, k) such that µ(si) = si for every spoke si but that µ is not the identity
of B(n, k). Note that from our two options in Lemma 3.2.1 we have to
discard the first option, since the only way of fixing Ω and I set-wise and
fixing all spokes is applying the identity function. Thus µ must interchange
Ω and I while fixing the set Σ point-wise. Therefore, the only option for
that µ is to interchange each vertex in the outer rim with its neighbor in
the inner rim and thus µ(ui) = vi and µ(vi) = ui which is an automorphism
of G(n, k) if and only if k = 1.

Lemma 3.2.7. If k = 1, then B(n, 1) ∼= D2n × C2.

Proof. First of all, from Lemma 3.2.6, B(n, k) is not faithful on Σ and more-
over we have the automorphism µ(ui) = vi and µ(vi) = ui which corresponds
to the definition of α if and only if k = 1. Then in this case µ = α and it
commutes with both ρ and σ:

ρα(si) = ρ(si) = si+1 = α(si+1) = αρ(si)
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σα(si) = σ(si) = s−i = α(s−i) = ασ(si).

Due to this, we have that B(n, 1) = 〈ρ, σ, α〉 is the internal direct prod-
uct of C(n, 1) and 〈α〉. First of all, both subgroups are normal subgroups,
C(n, 1) is normal since it has index 2 and 〈α〉 is normal since it commutes
with every element in B(n, 1) and thus it belongs to the center of B(n, 1).
This implies that 〈ρ, σ, α〉 = 〈ρ, σ〉 × 〈α〉. Moreover, their intersection is
trivial since α 6∈ 〈ρ, σ〉. Thus B(n, 1) = 〈ρ, σ〉 × 〈α〉 and furthermore
B(n, 1) ∼= D2n × C2.

Theorem 3.2.8. (a) If k2 6≡ ±1 (mod n), then

B(n, k) = 〈ρ, σ| ρn = σ2 = 1, ρσ = ρ−1〉.

(b) If k2 ≡ 1 (mod n), then

B(n, k) = 〈ρ, σ, α| ρn = σ2 = α2 = 1, ρσ = ρ−1, ασ = σα, ρα = ρk〉.

(c) If k2 ≡ −1 (mod n), then

B(n, k) = 〈ρ, α| ρn = α4 = 1, ρα = ρ−k〉.

Proof. We already know generators of B(n, k) in each case and then we will
find their order and the conjugation relations between them. This will give
us enough information in order to get the presentation.

(a) It is well know that the presentation of the dihedral group is D2n =
〈ρ, σ| ρn = σ2 = 1, ρσ = ρ−1〉.

(b) Let k2 ≡ 1 (mod n). Assume that k > 1. Then B(n, k) acts faith-
fully on Σ. For any si ∈ Σ,

α2(si) = α(ski) = sk2i = si thus, α2 = 1,

σα(si) = ασα(si) = ασ(ski) = α(s−ki) = s−k2i = s−i = σ(si) thus, ασ = σα,

ρα(si) = αρα(si) = αρ(ski) = α(ski+1) = sk2i+k = si+k = ρk(si).

Note that the special case analyzed before B(n, 1) is also of this form. Hence,
if k2 ≡ 1 (mod n), then

B(n, k) = 〈ρ, σ, α| ρn = σ2 = α2 = 1, ρσ = ρ−1, ασ = σα, ρα = ρk〉.

(c) Let k2 ≡ −1 (mod n). First of all, note that for any si ∈ Σ,

α2(si) = α(ski) = sk2i = s−i = σ(si)
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and this implies α2 = σ, so in this case we do not need σ in our description.
Moreover it follows that α4 = 1, and α−1(si) = α3(si) = s−ki for all i. Then

ρα(si) = α−1ρα(si) = α−1ρ(ski) = α−1(ski+1) = s−k2i−k = si−k = ρ−k(si).

Therefore, if k2 ≡ −1 (mod n), then

B(n, k) = 〈ρ, α| ρn = α4 = 1, ρα = ρ−k〉.

3.2.2 The automorphism group A(n, k)

Now that we have the description of the subgroup B(n, k) of the automor-
phism group A(n, k) let us analyze the complete group and the relation
between B(n, k) and A(n, k).

First of all, let us start with the following lemma as a consequence of
the previous section.

Lemma 3.2.9. The following three statements are equivalent:
(1) G(n, k) is edge-transitive;
(2) There exists γ ∈ A(n, k) which maps some spoke onto an edge which is
not a spoke;
(3) B(n, k) is a proper subgroup of A(n, k).

Proof. (1)⇒(2). By definition of transitivity the group G(n, k) is edge-
transitive if given any two edges there is an element γ ∈ A(n, k) such that
it maps one edge onto the other. Since this is true for any pair of edges (2)
is proved.
(2)⇒(3). Since B(n, k) is the group of automorphisms that fix Σ set-wise,
the γ ∈ A(n, k) which maps some spoke onto an edge which is not spoke can
not be in B(n, k). Hence, B(n, k) is a proper subgroup of A(n, k).
(3)⇒(1). As we stated in Proposition 1.3.2, if G(n, k) is edge-transitive there
is only one orbit in which all the edges are. Suppose G(n, k) is not edge-
transitive, then A(n, k) must have at least two orbits of edges. Note that
B(n, k) has 2 or 3 edge-orbits, since all the edges of Ω, I and Σ are in the
same orbit respectively. This is true since we have the rotation ρ ∈ B(n, k)
whose powers allow us to move from any vertex to another if they are in the
same set. Then we have 2 orbits when there is γ ∈ B(n, k) that interchanges
Ω and I and 3 if not. Moreover, the edge-orbits of B(n, k) are subsets of
the edge-orbits of A(n, k) since B(n, k) ⊆ A(n, k). Then A(n, k) must fix Ω,
I or Σ. Thus, by Lemma 3.2.1 it must fix Σ and hence B(n, k) = A(n, k),
contrary to (3).

In order to determine when B(n, k) and A(n, k) are equal and when they
are not we must introduce some new notation about circuits. Let Z be an
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arbitrary circuit in G(n, k). Let us denote with r(Z), s(Z) and t(Z) the
number of outer edges, spokes and inner edges in Z, respectively. Moreover,
for the set Zj of j-circuits of G(n, k) let

Rj =
∑
Z∈Zj

r(Z),

Sj =
∑
Z∈Zj

s(Z),

Tj =
∑
Z∈Zj

t(Z).

Thus, Rj , Sj and Tj are the sum of all outer edges, spokes and inner edges
in all j-circuits, respectively.

Lemma 3.2.10. If B(n, k) 6= A(n, k), each edge of G(n, k) is contained in
the same number of j-circuits.

Proof. Since if B(n, k) 6= A(n, k), then B(n, k) is a proper subgroup of
A(n, k) by the previous lemma G(n, k) is edge-transitive and so for every pair
of edges we can find an automorphism that maps one onto another. Thus,
if an edge ei in G(n, k) is contained in c different j-circuits and we apply
the automorphism γ(ei) = e′i as all the relation between vertices remain
the same, and the automorphism maps the circuits onto circuits there must
be the same number c of j-circuits in which e′i is contained. As G(n, k) is
edge-transitive, we can map ei onto any other edge, concluding that every
edge of G(n, k) is contained in the same number of j-circuits.

Lemma 3.2.11. If B(n, k) 6= A(n, k), then Rj = Sj = Tj.

Proof. Note that Rj =
∑

Z∈Zj
r(Z) =

∑
e∈Ω cj(e), where cj(e) is the number

of j-circuits in which e is contained, and similarly for Sj and Tj . By the
previous lemma if B(n, k) 6= A(n, k), each edge of G(n, k) is contained in
the same number of j-circuits, let us say c, it follows that Rj = Sj = Tj =
nc.

Now, let us prove some particular cases using this characterization.

Lemma 3.2.12. If n 6= 4, B(n, 1) = A(n, 1).

Proof. Note that if n 6= 4, obviously we do not have a 4-circuit only con-
taining outer edges. Moreover, by Lemma 3.1.1 the subgraph containing the
inner edges has d circuits of length n/d. In this case k = 1, so d = 1, thus,
we have only 1 n-circuit. Hence, there is no 4-circuit only with inner edges.
Therefore the only option is having 2 spokes, 1 inner edge and 1 outer edge
in our circuit with the form {ui, ui+1, vi+1, vi} and obviously we have n of
those circuits. It follows that R4 = T4 = n while S4 = 2n. By the previous
lemma B(n, 1) = A(n, 1).
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Lemma 3.2.13. If n 6= 5 or 10, then B(n, 2) = A(n, 2).

Proof. As we did in the previous lemma note first that we do not have any
5-circuits containing just outer or inner edges since n 6= 5 or 10 and k = 2
so d = 1 or 2 and we can not have n/d = 5. Thus, we need again 2 spokes in
order to have a 5-circuit. Now we could have two outer edges and one inner
edge or two inner and one outer edge, however, the circuit having two inner
edges would be {ui, vi, vi+2, vi+4, ui+4} which is only a circuit if i+ 4 ≡ i+ 1
or i + 4 ≡ i − 1 modulo n, this is not possible since it means that 4 ≡ ±1
(mod n) which is only true when n = 3 or 5, but k = 2 > 3/2 and n 6= 5 by
hypothesis. Then we only have 5-circuits containing two outer edges, two
spokes and on inner edge of the form {ui, ui+1, ui+2, vi+2, vi}, and we have
n of these. It follows that R5 = S5 = 2n while T5 = n. By Lemma 3.2.11
B(n, 2) = A(n, 2).

In order to continue, we need a complete list of the 8-circuits in G(n, k),
where k > 2. Let us characterize them by saying that two 8-circuits in
G(n, k) are of the same type if one is mapped onto the other by some el-
ement in the subgroup C(n, k) = 〈ρ, σ〉 of A(n, k). Moreover, we will call
a representative Z to any circuit of one of the types after fixing a starting
vertex.

Lemma 3.2.14. If Z and Z ′ are of the same type, then r(Z) = r(Z ′),
s(Z) = s(Z ′) and t(Z) = t(Z ′).

Proof. If Z and Z ′ are of the same type, then by definition there exists some
element in the subgroup 〈ρ, σ〉 of A(n, k) which maps one onto the other.
Since every element in 〈ρ, σ〉 fixes Ω, I and Σ set-wise, i.e., outer edges are
mapped onto outer edges, spokes onto spokes and inner edges onto inner
edges, the number of each form of edge is going to be preserved.

Let us show now how can we find all the different types of 8-circuits for
k > 2. First of all, note that for having an 8-circuit we only have three
options when we refer to the number of spokes there are. It is easy to see
that the circuit can have either 0, 2 or 4 spokes.

Let us first find the 8-circuits with 2 spokes. In this case we need another
6 edges between outer and inner edges in order to complete the circuit, thus
we have 5 options: 1 outer (inner) edge and 5 inner (outer) edges, 2 outer
(inner) edge and 4 inner (outer) edges and 3 outer and 3 inner edges.

Type 1. Let s(Z) = 2, r(Z) = 5 and t(Z) = 1. The 8-circuit is then
of the form {ui, ui+1, ui+2, ui+3, ui+4, ui+5, vi+5, vi+5±k}, which only exists if
i+ 5± k ≡ i modulo n or which is the same 5± k ≡ 0 (mod n). Note that
if 5 − k ≡ 0 (mod n), since 1 ≤ k < n/2 the only options are k = 5 and
n = 5− k, but the last one only happens with n = 4 and k = 1 and we said
that k > 2. Then the remaining option when 5 + k ≡ 0 (mod n) for k is
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n = 5 + k, because when 5 + k = ln where l ∈ {2, 3, ...}, then k/2 > n. By
Lemma 3.2.10 every edge in the outer rim is going to have the same number
of 8-circuits, moreover, those circuits are going to be of the same type side
we can go from one to another by an automorphism, so start from the edge
{u0, u1} in order to give a representative Z = {u0, u1, u2, u3, u4, u5, v5, v0}.

Figure 3.6: An 8-circuit of type 1

Type 2. Let s(Z) = 2, r(Z) = 1 and t(Z) = 5. Let us take ui as a vertex
in the outer rim contained in the 8-circuit. Then as we have only one outer
edge, the spoke {ui, vi} must be in the circuit too. Note that for the 5 inner
edges we need them to link the vertices {vi, vi+k, vi+2k, vi+3k, vi+4k, vi+5k}
and then we have the spoke {vi+5k, ui+5k} linking the inner and outer edges.
Since we said that ui is in the circuit and we only have one outer edge
ui+5k must be a neighbor of ui. Thus ui+5k = ui−1 or ui+5k = ui+1, which
only happens if 5k + 1 ≡ 0 (mod n) or 5k − 1 ≡ 0 (mod n), respectively.
Therefore, we have two different circuits of type 2. If 5k + 1 = n or 2n
then we have {u1, v1, v1+k, v1+2k, v1+3k, v1+4k, v0, u0} as a representative Z
of type 2. If 5k − 1 = n or 2n then we have {u0, v0, vk, v2k, v3k, v4k, v1, u1}
as a representative Z of type 2’. Note that as in the previous case we only
choose equality with n or 2n because otherwise k/2 ≥ n.

Type 3. Let s(Z) = 2, r(Z) = 4 and t(Z) = 2. As in the previous case
take the vertex ui and the spoke {ui, vi}. We only have two inner edges
that must link the vertices {vi, vi+k, vi+2k}, it follows that the other spoke
is {vi+2k, ui+2k}. As we need to close the circuit and we must have 4 outer
edges, the only options are therefore ui+2k = ui−4 or ui+2k = ui+4. Note
that in the second case we need 2k ≡ 4 (mod n) but if 2k − 4 = 0 we have
k = 2 which is not possible and if 2k − 4 = ln where l > 0 the condition
k < n/2 does not hold. Then we only have the first option which starting
from the vertex u0 corresponds to {u0, u1, u2, u3, u4, v4, v4+k, v0} as a repre-
sentative Z of type 3.
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We can keep analyzing all remaining options with 2 spokes and con-
tinue with the cases in which there are 4 or 0 spokes in the same way. We
summarize those results in the following table from [8]:

Figure 3.7: Table 1

Now that we have all the possible 8-circuits and the conditions for them
to exist let us proof a more general result.

Lemma 3.2.15. If (n, k) is not the pair (8, 3), (10, 3), (12, 5), (13, 5), (24, 5)
or (26, 5), and if k > 2, then B(n, k) = A(n, k).

Proof. Since k > 2 and we excluded (8, 3) we assume n 6= 8. Note that
doing this we assure not having an 8-circuit of type 8.

Obviously G(n, k) can not simultaneously contain 8-circuits of types 2
and 2′, or 4 and 4′, or 5 and 5′, or 7 and 7′. Note that all these pairs have
the same number of spokes, inner and outer edges. Then let us define the
variable xi as follows:

xi = 1 if there are circuits of type i or i′ in G(n, k)

xi = 0 otherwise.

Now we can compute R8, S8 and T8 in the following way:

R8 =
∑
Z∈Z8

r(Z) = 5nx1 + nx2 + 4nx3 + 2nx4 + 3nx5 + nx6 + 2n,

S8 =
∑
Z∈Z8

s(Z) = 2nx1 + 2nx2 + 2nx3 + 2nx4 + 2nx5 + 2nx6 + 4n,

T8 =
∑
Z∈Z8

t(Z) = nx1 + 5nx2 + 2nx3 + 4nx4 + 3nx5 + nx6 + nx7 + 2n.
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Observe that we always have x9 = 1 and now let us prove the lemma by
contradiction. Suppose B(n, k) 6= A(n, k). Then by Lemma 3.2.11, we have
R8 = S8 = T8, which implies R8 − T8 = 0. Hence,

(5n− n)x1 + (n− 5n)x2 + (4n− 2n)x3 + (2n− 4n)x4 + (0− n)x7 = 0⇒

4x1 + 2x3 = 4x2 + 2x4 + x7.

Taking into account that xi = 0 or 1 the only possible solutions due to
parities would be x7 = 0, x1 = x2 and x3 = x4. Now x1 = x2 = 1 implies
that we have circuits of types 1 and 2. Looking at the conditions we need
k = 5, note that we can not have n−k = 5 since then none of the conditions
for a circuit of type 2 would hold. Moreover, for k = 5, circuits of type 2
exist only for n = 12, 13, 24 or 26. All the mentioned pairs are excluded
cases.

If x3 = x4 = 1 the only option for a pair (n, k) satisfying n = 2k + 4
and one of the conditions for having a circuit of type 4 or 4′ is k = 3 and
n = 10, which is another excluded case. We may therefore assume that
x1 = x2 = x3 = x4 = 0. We know that R8 − S8 = 0 as well so we have the
extra equation

3x1 − x2 + 2x3 + x5 − x6 − 2 = 0

and together with the assumption of x1 = x2 = x3 = x4 = 0 we have the
equation x5 − x6 = 2 which has no solution since x5 and x6 can only be 0
or 1. This contradiction proves the lemma.

There are only two graphs having the automorphism group equal to
B(n, k) that we have not already shown to have that property. These are
G(13, 5) and G(26, 5) as we prove in the following lemmas.

Lemma 3.2.16. B(13, 5) = A(13, 5).

Proof. Let us see how many 7-circuits of different type does G(n, k) have.
First of all, it does not have any 7-circuit with only outer or inner edges
since d = 1 and then, the inner edges are edges of a circuit of length 13.
Moreover, note that we can not have a 7-circuit with more than 2 spokes,
since even if we can have a path with 4 spokes that will never be a closed
circuit and thus, we must have exactly two spokes. It follows that we have
to analyze four cases, 4 outer edges and 1 inner edges, 1 outer edge and 4
inner edges, 2 outer and 3 inner edges and 3 outer and 2 inner edges.
The first case, where r(Z) = 4 and t(Z) = 1, is not possible since starting
from the vertex ui and the spoke {ui, vi}, the only inner edge, say {vi, vi+5}
must have its endpoint in either vi+4 or vi−4 in order to complete a circuit
with the four outer edges. This is not possible since i+ 5 6≡ i+ 4 and i− 4
(mod 13).
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In the second case, r(Z) = 1 and t(Z) = 4, if we start from the vertex ui
and the spoke {ui, vi} the inner edges must link {vi, vi+5, vi+10, vi+15, vi+20}
and i+ 20 must be i+ 1 or i− 1 modulo 13 which is not possible.

In the third case, r(Z) = 2 and t(Z) = 3, starting again from ui and
the spoke {ui, vi} the only option for inner edges is to link the vertex
{vi, vi+5, vi+10, vi+15} and since we have two outer edges we need one of
the conditions i+ 15 ≡ i+ 2 (mod 13) or i+ 15 ≡ i− 2 (mod 13) to hold.
Actually, i + 15 ≡ i + 2 (mod 13) since 15 − 2 = 13, and thus we have n
circuits of the form {ui, vi, vi+5, vi+10, vi+2, ui+2, ui+1}.

For the fourth case, r(Z) = 3 and t(Z) = 2, we must have a circuit of the
form {ui, ui+1, ui+2, ui+3, vi+3, vi+8, vi+13} which is obviously possible since
i+ 13 ≡ i (mod 13), and we have again n of these 7-circuits.

v0v1

v2

v3

v4

v5

v6 v7

v8

v9

v10

v11

v12

u0
u1

u2

u3

u4

u5

u6 u7

u8

u9

u10

u11

u12

Figure 3.8: G(13, 5) and a representation of each the two different types of
7-circuits.

Thus, as we have the circuits Z1 = {ui, vi, vi+5, vi+10, vi+2, ui+2, ui+1}
and Z2 = {ui, ui+1, ui+2, ui+3, vi+3, vi+8, vi+13}, counting the outer and in-
ner edges we get

R7 =
∑
Z∈Z7

r(Z) = nr(Z1) + nr(Z2) = 13(2 + 3) = 65 and

S7 =
∑
Z∈Z7

s(Z) = ns(Z1) + ns(Z2) = 13(2 + 2) = 52.

Hence, it follows from Lemma 3.2.11 that B(13, 5) = A(13, 5).

Lemma 3.2.17. B(26, 5) = A(26, 5).
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Proof. We are going to show that any γ ∈ A(26, 5) belongs to B(26, 5). By
Theorem 3.2.8 as we have k2 ≡ −1 (mod n), then B(26, 5) = 〈ρ, α| ρ26 =
α4 = 1, ρα = ρ−5〉 and by Lemma 3.2.5 B(26, 5) is vertex-transitive since
52 ≡ 1 (mod 16). Therefore, we can always find an automorphism β ∈
B(26, 5) such that βγ(u0) = u0. Now let us analyze the vertices that are
at distance 4 from u0. Since each vertex has three neighbors and we do
not allow the path to go through the same edge more than once we have
3×2×2×2 = 24 paths of length 4. However, some of these paths end up in
the same vertex. Analyzing these paths and vertices in the graph we get 14
different vertices and they fall into three classes depending on the number
of paths existing between u0 and the vertex under consideration:

(1) u10, u16, v7, v9, v17 and v19 are the vertices that can only be reached
through one path.

(2) u6, u20, v3, v11, v15 and v23 are the vertices that can be reached through
two different paths.

(3) u4 and u22 are the vertices that can be reached through three different
paths.

Since we chose β such that βγ fixes u0 and all the vertices must be
at the same distance after applying an automorphism, the three groups of
vertices are fixed set-wise by βγ. Thus, for the third class we only have two
possibilities when we refer to the image of u4 and u22, either βγ(u4) = u4

and βγ(u22) = u22 or βγ(u4) = u22 and βγ(u22) = u4. We know that
the reflection σ defined before also fixes u0 and interchanges u4 and u22,
therefore, if βγ does not fix them, the product σβγ will fix them.

Thus, we can always find an automorphism of the form φ = σtβγ such
that

φ(u0) = u0, φ(u4) = u4, φ(u22) = u22

where t = 0 or 1 depending on whether βγ fixes u4 and u22 or not. Note
that γ = (σtβ)−1φ and σ, β ∈ B(n, k). Then, we need to prove that φ must
be the identity function.

We will see that an automorphism satisfying just φ(u0) = u0 and φ(u4) =
u4 is the identity. In order to do that, consider the two vertices at distance
4 from u4 that can be reached by three different paths, u0 and u8. Since φ
fixes u0 it must fix u8 as well.

Repeating the same argument for u4 and u12, which are the two vertices
that can be reached from u8 through 3 paths of length 4, we see that φ(u12) =
u12 and so on we conclude that in general φ(ui) = ui for i even. But if every
vertex with even index is fixed, as the only vertex adjacent to both ui and
ui+2 is ui+1 it follows that this must be fixed, and by the same argument all
the remaining vertices with odd index as well. Hence, φ(ui) = ui for all i,
which obviously implies φ(vi) = vi for all i. Thus, φ is the identity function
and γ = (σtβ)−1φ ∈ B(26, 5).
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Theorem 3.2.18. B(n, k) = A(n, k) if and only if the ordered pair (n, k)
is not one of

(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5).

Proof. The sufficiency of the condition follows from lemmas we already
proved. The necessity follows from the study of the 7 exceptional cases,
which we are not going to analyze and we refer to the paper by Keith Loyd
E. and Gareth A. Jones [8]. However, we are going to develop in the Ap-
pendix the exceptional case G(10, 3).



Chapter 4

An application of graphs and
groups to reaction graphs

In this chapter we are going to show one example of the applications that
group and graph theory can have in real life. This precise case is related to
chemistry and more exactly to the rearrangements of chemical compounds,
i.e., chemical reactions. At first, all this chemical reactions were only inves-
tigated by chemists, without the use of extensive mathematical tools. G.A.
Jones and E.K. Lloyd, [7] were the pioneers giving a survey of different inves-
tigations of reaction graphs, written in terms of permutation group theory.
The paper by M. H. Klin., S. S. Tratch, and N. S. Zefirov [9] goes on with
that path of survey applying group theory to the investigation of chemical
reactions. However, Jones again together with Keith [8] give a more math-
ematical view of the problem and that is the reason for the paper [8] being
the most useful one in this chapter.

In order to understand how these two fields are related we need an in-
troduction about reaction graphs and some concepts in chemistry.

4.1 Molecular graphs and rearrangements

First of all, let us define two different chemical graphs: molecular and reac-
tion graphs. In chemistry, a compound is a substance formed when two or
more chemical elements are chemically bonded together. Moreover isomeric
compounds are compound which have the same chemical formula. However,
we do not have to confuse with the concept of isomorphic compounds, which
means that they have the same structural formula.

Mathematically, a compound can be represented as a molecular graph.

Definition 17. A molecular graph Γ = (V,E) represents a compound. Each
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vertex of the set V corresponds to an atom and they are joined by a multiset
E of edges vw (v, w ∈ V ).

In some cases it suffices to label the vertices with the names of the cor-
responding types of atoms (C,H,O) and add the edges corresponding to the
bonds between them in the chemical compound. However, in some other
cases, more detailed labeling is necessary and we take into account that
molecules have a three-dimensional structure. For a thorough understand-
ing of the theory we distinguish between the sites in which a vertex is and
the vertex itself, labeling the sites with the letters a, b, c, d, ... and the ver-
tices with 1,2,3,...(or some other specific names when more convenient).

Let us introduce now the chemical concept of a rearrangement.

Definition 18. A rearrangement is a special type of chemical reaction dur-
ing which a chemical compound transforms into an isomeric compound.

Although the compounds are isomeric, they do not need to be isomor-
phic. There are, however, cases in which the compounds are isomorphic, i.e.,
they have the same chemical structure. In these cases the chemical reaction
is called a degenerate rearrangement. In the simplest case of this form there
are just two different labeled forms of the compound, which are isomorphic,
and they interconvert by degenerate rearrangements. Besides, there are
other cases in which there are three or more differently labeled isomorphic
compounds in which conversion between some of them (not necessarily all)
is possible by degenerate rearrangements. Then, we have a highly degenerate
rearrangement.

Example 18. The Beckmann rearrangement in Figure 4.1 is a non-degenerate
rearrangement since even if both isomeric compounds have the same chemi-
cal formula they do not have the same structural formula, i.e., they are not
isomorphic.

Figure 4.1: The Beckmann rearrangement.

Example 19. Cope rearrangement of cyclohexa-1,5-diene. In this case we
have a degenerate rearrangement of the chemical compound since as we see
in Figure 4.2 both isomeric compounds have the same structural formula.
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Figure 4.2: Cope rearrangement of cyclohexa-1,5-diene.

Let us show how a degenerate rearrangement ρ acts mathematically in a
molecular graph. The degenerate rearrangement ρ maintains the vertices of
the molecular graph Γ = (V,E) changing the edge set. However, this change
leads to a new graph Γ′ = (V,E′) which must be isomorphic to Γ. Thus, one
or more edges are removed from Γ and an equal number of edges are added
to Γ. As the two graphs are isomorphic we can recover Γ by applying an
isomorphism π : Γ′ → Γ. Since we have the same structure in both graphs
it is enough to use a permutation π of V which takes E′ to E.

Example 20. Consider the following carbonium ion.

Figure 4.3: Carbonium ion.

Let us denote with a, b, c, d, e, f and g the possible sites in which there
is an atom. Now as we can see in Figure 4.4 the rearrangement ρ redefines
the edge set replacing the edge {a, d} by the new edge {a, e}. Then we get
the new graph Γ′ ∼= Γ. Now the isomorphism π : Γ′ → Γ defined by the
permutation π = (ed)(bf)(cg) gives us again the same graph we had before.

Now we define a labeling as λ : {a, b, c, ..} → {1, 2, 3, ..}, where a, b, c, ...
are the fixed names of the sites in which there is a vertex and 1, 2, 3, ... the
number assigned to each vertex that will move due to permutations in the
graph. As we require this function to be a bijection we generally have n!
labelings, where n = |V |. Let us see how a degenerate rearrangement acts
on labeled graphs.
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Figure 4.4: The graph Γ, the graph Γ′ after the rearrangement and the graph
Γ again after applying π.

Example 21. Returning again to Example 20, we now label our graph Γ
as follows.

λ =

(
abcdefg

3456712

)
and we see what happens now that our vertices are labeled and they move
from one site to another. Let us use the same rearrangement ρ and the same
isomorphism π = (ed)(bf)(cg) moving each vertex to the corresponding site,
for instance vertex 7 which is in site e moves to site d. Then as we see in
Figure 4.5 the initial graph specified by λ changes under ρ and π and we get
the new labeling

λ′ =

(
abcdefg

3127645

)
.

Figure 4.5: The labeling λ of the graph Γ, the graph Γ′ and the new labeling
λ′ of the graph Γ.

Furthermore, note that the vertices have therefore undergone the per-
mutation r = (14)(25)(67).

4.2 Reaction graphs

In order to continue and give the definition of a reaction graph we first
need to clarify when two labelings are equivalent. We regard two labelings
of a graph Γ as equivalent when they differ by an automophism of Γ of a
certain type. Thus, this will depend on the graph Γ and for different cases
we will have different equivalent labelings. We therefore choose some fixed
subgroup H of the group Aut Γ which will determine when two labelings
can be considered as equal.
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Definition 19. Two labelings of Γ are equivalent, with respect to H, if
some element of H converts one labeling into the other.

Remark 2. Note that the choice of H usually depends on chemical, rather
than mathematical criteria; we will often take H = Aut Γ, but it is some-
times more appropriate to choose a proper subgroup such as the isometry
group or the rotation group of Γ.

We said before we have n! labelings of a molecular graph. Now that
we determined which of them are equivalent we conclude that we have n!

|H|
different labelings of Γ. Let us define the set Ω as the set of equivalence
classes

Ω = {αi = [λi] : i = 1, ...,
n!

|H|
}.

Definition 20. A reaction graph R is a directed graph with the vertex-set
Ω and with an arc (directed edge) from a vertex αi to a vertex αj if and
only if some labeling in the class αj can be obtained from a labeling in the
class αi by a single application of a rearrangement.

Remark 3. In the cases in which each arc from αi to αj is paired with an
arc from αj to αi, we replace each such pair with a single undirected edge
between αi and αj . In this way we get an indirect graph which simplifies R
without changing such properties as automorphisms and connectivity.

However, usually the reaction graph is not connected, so it can be repre-
sented as the union of its connected components R. As we can see in both
papers [8] and [9] the two most intriguing questions related to this are :

(1) How large is the number of vertices in any connected component R
of a reaction graph R?

(2) What is the full automorphism group AutR of the connected com-
ponent R?

It is not easy to answer and prove the general solutions to these questions,
that is why we are going to analyze these questions in a specific example in
order to see how graph and group theory are related to this issue.

4.2.1 1,2-shift in the carbonium ion

As in Examples 20 and 21, let Γ be the carbonium ion. In this case we want
to analyze the reaction graph of the 1,2-shifts in the carbonium atom. This
rearrangement was first considered by A. T. Balaban [2].

In chemistry a 1,2-shift is an organic reaction in which one atom migrates
to the adjacent atom in a chemical compound, as in Figure 4.6.
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Figure 4.6: 1,2-shift in carbonium ion.

Let Γ be again the representation of the the carbonic ion. The carbon
atoms are the interior atoms while the hydrogen atoms are in the boundary.
We are going to determine how the 1,2-shift rearrangement acts on the
graph.

Figure 4.7: The representation graph Γ of the carbonium ion.

First of all, let us take H as the automorphism group of the graph Aut Γ,
which is isomorphic to S3 × S2 as calculated in Exercise 2 in the Appendix.
Note that under the action of H the vertices of Γ are divided into four or-
bits, {a, b, c}, {d}, {e} and {f, g}, which are indicated in Figure 4.8 by the
symbols 1, 2, 3 and 4 referring to the orbit in which each vertex is.

Figure 4.8: Γ and the orbits that H induces indicated with numbers. The
broken edge indicates the resulting edge after the rearrangement.

In a 1,2-shift one vertex of type 1 exchanges roles with a vertex of type
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2. One way to envisage this mechanism is that an edge joining a type 1
vertex to a type 3 vertex pivots about its end of type 1 so as to join it to
the type 4 vertex, see Figure 4.8.

If we take the labeling

λ1 =

(
abcdefg

3456712

)
which correspond to a vertex α1 of the reaction graph, and we apply all
possible rearrangements ρ corresponding to a 1,2-shift, it is easy to see that
we get these three different labelings of the carbonium ion, each of them
representing a vertex αi in the reaction graph.

Figure 4.9: λ1 and the three resulting different labelings λ2, λ3 and λ4 of Γ.

Taking H = Aut Γ means that two labelings are regarded as the same
if they differ by an automorphism of Γ. Thus, as |H| = 12 we consider 7!

12
different labelings of Γ. Then, the reaction graph R is the graph with the
vertex set Ω = {αi = [λi] : i = 1, ..., 420} each of the elements corresponding
to a different labeling of Γ. Note that in each αi = [λi] there are all the
labelings which correspond to the graph with exactly the same adjacency
relations, thus, the same graph. For simplicity of notation, when we refer
to the labeling of a vertex, we mean one of the equivalent labelings in αi.

It is obvious that R is not connected, for instance, we can not start from
the vertex α1 and reach the vertex αk with a labeling

λk =

(
abcdefg

6453712

)
since we can only apply 1,2-shifts and these never interchange the boundary
atoms and the interior atoms.
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Figure 4.10: The labelings λ1 and λk, we can not get one from another by
a 1,2-shift.

Thus, we are interested in the connected components of R. Let us ana-
lyze the connected component R which includes the vertex α1. As we said in
the previous paragraph, for this specific numbering we see that the carbon
atoms have a restricted set of numbers, they can only be 6 or 7, because a
1,2-shift does not interchange the interior atoms (carbon) with any bound-
ary atoms (hydrogen). Thus the vertices of R will be different labelings in
which all hydrogen atoms have numbers from the set {1, 2, 3, 4, 5}, so using
combinatorics we know that there are 2 5!

12 = 20 vertices in R.

Moreover, fixing for instance the carbon atom with number six, note
that every class of labelings αi can be determined by the subset of numbers
of hydrogen atoms which are adjacent to the the carbon atom having that
number. If we know this subset, which can be either of 2 or 3 hydrogen
atoms, we know the subset which is adjacent to the carbon atom having the
number seven, that is why the labeling is totally determined. Obviously, as
all the labelings in the same αi are isomorphic, they have the same subset of
numbers adjacent to 6. For instance, the class of labelings that correspond
to numberings in Figure 4.9 are determined by:

α1 ≡ {3, 4, 5},

α2 ≡ {3, 5},

α3 ≡ {4, 5},

α4 ≡ {3, 4}.

Then as we said we only need to fix the subset of {1, 2, 3, 4, 5} that
corresponds to the hydrogen atoms adjacent to the carbon atom with the
number 6. These are 2 or 3 element subsets of {1, 2, 3, 4, 5} and so we have(

5
3

)
+
(

5
2

)
= 20 such subsets, which implies again that R has 20 vertices.

Let us now analyze the adjacency relations between these vertices. Ob-
serving Figure 4.9 we see that {3, 4, 5} is only adjacent to {3, 5}, {4, 5} and
{3, 4}, which are the only vertices whose set is a proper subgroup of {3, 4, 5}.
Let us see that this holds for every vertex.
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First of all, in a 1,2-shift one of the atoms in the 3-element orbit moves
to the 2-element orbit, which means that if the carbon atom with number 6
has 3 adjacent atoms by the 1,2-shift it will end up having just two adjacent
atoms. Thus,a 3-element subset can only be adjacent to a 2-element one.
Moreover, as we said that one atom from the 3-element subset moves, the
remaining 2-element subset must be part of it. Summarizing, a 3-element
subset A is adjacent to a 2-element subset B if and only if B ⊂ A. This
means that an hydrogen atom adjacent to the carbon atom having number
6 becomes adjacent of the carbon atom having number 7. The result is the
Desargues graph KG(10, 3).

{1, 2}

{1, 2, 5}

{2, 5}

{2, 4, 5}

{4, 5}

{3, 4, 5}

{3, 4}

{1, 3, 4}

{1, 3}

{1, 2, 3}

{1, 2, 4}
{1, 5}

{2, 3, 5}

{2, 4}

{1, 4, 5}
{3, 5}

{2, 3, 4}

{1, 4}

{1, 3, 5}

{2, 3}

Figure 4.11: The connected component R of the reaction of of the 1,2-shift
of the carbonioum ion can be represented as the Desargues graph G(10, 3).

Therefore, we found a representation for the connected component R.
Moreover we know that its automorphisms group is isomorphic to S5 × C2,
since it is a exceptional case of the generalized Petersen graphs analyzed in
exercise 5 in the Appendix.
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This subsection and exercise 8 developed in the Appendix are just sim-
ple examples in order to illustrate how theoretical mathematics can help
understanding and investigating different fields as chemistry. We refer to
the paper written by G.A. Jones and E.K. Lloyd, Reaction Graphs [8] in
order to see deeper and more complex results from group and graph theory
applied in reaction graphs.



Appendix A

Solved exercises

A.1 Chapter 1

Exercise 1.

Definition 21. An automorphism of a graph Γ is a permutation of the
vertices of Γ such that, if we consider the natural action it induces on the
unordered pairs of vertices, it maps edges to edges and non-edges to non-
edges.

Show using an example that the definition above is not correct for all
graphs.

Solution. We are going to see an example that shows why the last part
of the definition is necessary if we refer to all kind of graphs. There is
no problem with the definition above when restricting our graphs to finite
graphs, but let us see what happens when the graph is infinite. Let Γ be the
infinite graph in Figure A.1 with the vertex set V (Γ) = Z and the edge set
E(Γ) = {{i, i+1} | i ∈ N}. Moreover, let the permutation f be f(i) = i+1.
Then, f induces the following action on edges:

f({i, i+ 1}) = {i+ 1, i+ 2}, for all i ∈ Z.

Note that all edges are mapped onto edges since for all i > 0 we have the
images {i+1, i+2} where i+1 ∈ N therefore they belong to E(Γ). However,
the non-edge {0, 1} has the image f({0, 1}) = {1, 2} ∈ E(Γ). Therefore, in
infinite graphs the fact that all edges are mapped onto edges does not imply
that all non-edges are mapped onto non-edges. This makes sense since after
mapping all the edges to edges as our graph is infinite we can always find
one more edge so that we can map a non-edge onto that edge. Moreover,
we can see in Figure A.1 and A.2 using the visual representation of Γ and
f(Γ) that they do not represent the same graph and hence f is not an
automorphism.
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0-1 1 2 3 4 5

Figure A.1: Infinite graph Γ.

0-1 1 2 3 4 5

Figure A.2: Infinite graph f(Γ).

Exercise 2. Let Γ be the graph in Figure A.3. Prove using the Orbit
Stabilizer Theorem that Aut Γ ∼= S3 × S2.

x6

x3

x4

x5

x7

x1

x2

Figure A.3: Γ.

Solution. First of all, note that the vertices x6 and x7 must be fixed by
any automorphism since they are the only vertices with 3 and 4 neighbours
respectively. Then, we can see that x3, x4, x5 are only adjacent to x6 and so
if we permute them we will keep the adjacency relations. Thus we have that
the permutations (x3x4), (x3x5), (x4x5), (x3x4x5), (x3x5x4) ∈ Aut Γ. We can
describe these permutations as the permutations in 〈(x3x4), (x3x4x5)〉 = H
obviously isomorphic to S3 = 〈(12), (123)〉. Moreover, if we look now at the
vertices adjacent to x7 we can see that the only permutation, besides the
identity, we can apply in order to maintain the adjacency relations is (x1x2),
and obviously K = 〈(x1x2)〉 ∼= S2. Hence, as K and H are subgroups of
Aut Γ, we know that 〈H,K〉 ⊆ Aut Γ, since it is the smallest subgroup con-
taining H and K. It is obvious that H∩K = {1} simply because (x1x2) 6∈ H.
Since (x3x4)(x1x2)(x3x4) = (x1x2) and (x3x5x4)(x1x2)(x3x4x5) = (x1x2),
we have that KEH and HEK. This implies that HK = KH and and HK
is a subgroup of Aut Γ. Moreover, |〈H,K〉| = |HK| = |H||K|

|H∩K| = 6× 2 = 12.

Now, if we prove that G = Aut Γ has at most the same cardinality as
the subgroup 〈H,K〉 we will complete the proof. In order to do that we are
going to use the Orbit-Stabilizer Theorem, which states |G| = |Gx||xG|. Let
us start from the vertex x3. It is easy to see that |xG3 | ≤ 3 since it can only
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be mapped either to itself or x4 or x5. Then,

|G| = |Gx3 ||xG3 | ≤ 3|Gx3 |

Taking now the vertex x1 and the x3-stabilizer, we see in the same way

that the orbit x
Gx3
1 can only contain x1 and x2, note that in this case it does

not affect fixing x3 or not, thus

|Gx3 | = |Gx3x1 ||x
Gx3
1 | ≤ 2|Gx3x1 | ⇒ |G| ≤ 6|Gx3x1 |.

Now, the orbit of x4 under the stabilizer of x1 and x3 is contained in
{x4, x5} and thus, applying the Orbit Stabilizer Theorem again,

|Gx3x1 | = |Gx3x1x4 ||x
Gx3x1
4 | ≤ 2|Gx3x1x4 | ⇒ |G| ≤ 12|Gx3x1x4 |

Finally, note that |Gx3x1x4 | = 1, since when we fix x1, also x2 is fixed
and when we fix x3 and x4 the same happens with x5 that must remain in
the same place. Hence,

|G| ≤ 12|Gx3x1x4 | ≤ 12,

and that together with 〈H,K〉 ⊆ G and |〈H,K〉| = 12 is enough to conclude
that

Aut Γ = 〈(x3x4), (x3x4x5)〉 × 〈(x1x2)〉 ∼= S3 × S2.

A.2 Chapter 2

Exercise 3. Find the automorphism group of the Petersen graph KG(5, 2)
without applying the result for all Kneser graphs proved on Chapter 2.

x1

x2

x3 x4

x5

x6

x7

x8 x9

x10

Figure A.4: Petersen graph KG(5, 2)
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Solution. As we saw in Example 5 in the first chapter the Petersen graph
is the Kneser graph KG(5, 2). Thus, it is a graph with the vertex set({1,2,3,4,5}

2

)
, where two vertices are adjacent if and only if their intersec-

tion is empty.
Let us show that the permutation group S5 induces all the automorphisms
of AutKG(5, 2). We said that two vertices are adjacent if their intersection
is empty, as the elements of S5 are permutations of the set {1, 2, 3, 4, 5},
two elements can not have the same image because different elements have
different images. Thus, after applying any permutation the vertices would
intersect in the same amount of elements as before. Therefore, an empty
intersection will remain empty and conversely. Summarizing, being {x, y}
and {z, w} any two vertices of KG(5, 2), if σ ∈ S5:

{x, y} ∼ {z, w} ⇐⇒ {x, y}∩{z, w} = Ø ⇐⇒ {σ(x), σ(y)}∩{σ(z), w} = Ø

⇐⇒ {σ(x), σ(y)} ∼ {σ(z), σ(w)}.

Thus, S5 ⊆ AutKG(5, 2) and so |AutKG(5, 2)| ≥ 120. What we want
to prove now is that actually |AutKG(5, 2)| = 5! = 120 and that S5 is the
full automorphism group of KG(5, 2).
For simplicity of notation, let us denote G = AutKG(5, 2). Consider the
vertex x1 = {1, 2} of the graph. As we said that S5 ⊆ G and S5 is obviously
a transitive subgroup, in particular we know that we can find an automor-
phism that moves x1 to any other vertex of the graph. Thus |xG1 | = 10.

x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.5: We see that the size of the orbit of x1 (in blue) is 10 since G is
transitive.

Using the Orbit-Stabilizer Theorem, in which we state that |Gx||xG| =
|G|:

|G| = |Gx1 ||xG1 | = 10|Gx1 |.
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Let us continue now by fixing x1 in order to find the order of Gx1 .
Consider now an adjacent vertex to x1, for instance x2 = {3, 4}. Now that
we have x1 fixed the only options for the image of x2 are x6 and x7 or x2

itself since it must remain being a neighbor of x1. Thus, x
Gx1
2 ⊆ {x2, x6, x5}.

x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.6: x1 fixed and the orbit of x2 under Gx1 is contained in {x2, x6, x5}
(in blue).

Applying the Orbit-Stabilizer Theorem again:

|Gx1 | = |Gx1x2 ||x
Gx1
2 | ⇒ |G| = 10|Gx1 | = 10|Gx1x2 ||x

Gx1
2 | ≤ 30|Gx1x2 |.

In order to continue with the same procedure we fix x2 as well and we
see which options we have for the image of x6 = {3, 5} ∼ x1 under Gx1x2 .

Now x
Gx1Gx2
6 ⊆ {x6, x5} since x1 and x2 are fixed and moreover any element

in x
Gx1Gx2
6 must remain being a neighbor of x1.

x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.7: x1 and x2 fixed and the orbit of x6 under Gx1x2 is contained in
{x6, x5} (in blue).

Thus,

|Gx1x2 | = |Gx1x2x6 ||x
Gx1x2
6 | ⇒ |G| ≤ 30|Gx1x2 | =
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= 30|Gx1x2x6 ||x
Gx1x2
6 | ≤ 60|Gx1x2x6 |.

Finally consider the vertex x3 = {1, 5} ∼ x2. Using the same procedure

as before we get x
Gx1x2x6
3 ⊆ {x3, x7}.

x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.8: x1, x2 and x6 fixed and the orbit of x3 under Gx1x2x6 is contained
in {x3, x7} (in blue).

Therefore,

|Gx1x2x6 | = |Gx1x2x6x3 ||x
Gx1x2x6
3 | ⇒ |G| ≤ 60|Gx1x2x6 | =

= 60|Gx1x2x6x3 ||x
Gx1x2x6
3 | ≤ 120|Gx1x2x6x3 |.

Now we only need to know |Gx1x2x6x3 |. Let us show that |Gx1x2x6x3 | = 1
since all the remaining vertices are fixed under Gx1x2x6x3 .
First of all, x8 is fixed since it is the only neighbour of both x6 and x3 which
are already fixed.

x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.9: x6 and x3 fixed and so x8 fixed.

Moreover x5 is fixed because all the other neighbours of x1 are fixed. By
the same argument we used for x8 we see that x10 and x4 are fixed.

From there the only two remaining vertices x7 and x9 are fixed as well,
we can argue in the same way we did for x8, x4 and x10.
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x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.10: x5 if fixed because the other two neighbors of x1 are fixed.

x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.11: x10 and x4 are fixed because they are common neighbors of
the pairs x5 and x8 and x5 and x3 respectively.

x6

x7

x8 x9

x10

x1

x2

x3 x4

x5

Figure A.12: x7 and x9 are fixed because they are common neighbors of the
pairs x2 and x10 and x6 and x4 respectively

Therefore, |G| ≤ 120 and since S3 ⊆ G and |S5| = 120, it follows that
G = S5.

Exercise 4. Find a counterexample in order to prove that Theorem 2.2.5
is not true when v = 2k.

Solution. Take t =
(
v
v/2

)
. Note that when v = 2k the Kneser graphKG(v, v/2)

corresponds to a bipartite graph in which the vertices are linked in pairs,
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see Figure A.13.

x1 x2
xt/2

y1 y2 yt/2

Figure A.13: The bipartite graph KG(v, v/2).

It is obvious that any automorphism f ∈ AutKG(v, v/2) is totally de-
termined by its action on xi for all i ∈ {1, .., t/2}, since the image of the yi
to which xi is linked is going to be the only adjacent vertex of f(xi). Let us
count how many options we have for choosing the images of each xi.
For x1 we have t options since it can be mapped to any other vertex. How-
ever, after the image of x1 is determined we only have t − 2 options for x2

since it can be mapped neither to the image of x1 nor to the adjacent vertex
of f(x1). So on x3 has t − 4 options and the last point xt/2 will have just
two options. Therefore we have

t(t− 2)(t− 4)...4 · 2

automorphisms. Now note that

t =

(
v

v/2

)
=

v!

(v/2)!(v/2)!
.

Let us show by induction t(t − 2)(t − 4)...4 · 2 > v! for v > 2. When v = 4
we have t =

(
4
2

)
= 6 and 6 · 4 · 2 = 48 > 4! = 26.

Suppose that it is true for v − 2 and t′ =
(

v−2
(v−2)/2

)
, and let us prove it for v

and t =
(
v
v/2

)
. We have

t(t− 2)...2 =

(
v

v/2

)[(
v

v/2

)
− 2

]
...2

Note that this product is divisible by t′(t′−2)...2 =
(

v−2
(v−2)/2

) [(
v−2

(v−2)/2

)
− 2
]
...2,

since all the factors in the latter appear in the former. More precisely,

t(t− 2)...2 =

(
v

v/2

)[(
v

v/2

)
− 2

]
...2 =

=

(
v

v/2

)[(
v

v/2

)
− 2

]
...

[(
v − 2

(v − 2)/2

)
+ 2

](
v − 2

(v − 2)/2

)[(
v − 2

(v − 2)/2

)
− 2

]
...2 >
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>

(
v

v/2

)[(
v

v/2

)
− 2

]
...t′(t′ − 2)...2 >

>

(
v

v/2

)[(
v

v/2

)
− 2

]
...

[(
v − 2

(v − 2)/2

)
+ 2

]
(v − 2)!,

by using the induction hypothesis. Now, taking into account that every
factor is even and (v−2)!

(v/2)!(v/2)! ≥ 1/2 for v > 2 we have(
v

v/2

)[(
v

v/2

)
− 2

]
...

[(
v − 2

(v − 2)/2

)
+ 2

]
=

= v(v − 1)
(v − 2)!

(v/2)!(v/2)!

[(
v

v/2

)
− 2

]
...

[(
v − 2

(v − 2)/2

)
+ 2

]
> v · (v − 1).

This leads us to

t(t− 2)...2 =

(
v

v/2

)[(
v

v/2

)
− 2

]
...2 > v!,

which completes the induction. Thus, except for v = 2, when we obtain that
v! = 2, for the case v = 2k we obtain that the cardinalities of AutKG(v, v/2)
and H or Sv differ and so they are not isomorphic.

A.3 Chapter 3

Exercise 5. Prove that G(n, k) = G(n, n− k).

Solution. Using the definition of the generalized Petersen graph we have the
vertex set

V (G(n, k)) = {u0, ..., un−1, v0, ..., vn−1}

for both graphs since it only depends on n. Let us see if the edge sets
coincide as well. Note that the edge set of G(n, k) consists of all edges of
the form

{ui, ui+1}, {ui, vi}, {vi, vi+k}

where all the indices are to be read modulo n, and the one for G(n, n− k):

{ui, ui+1}, {ui, vi}, {vi, vi+n−k}.

Obviously the outer edges and the spokes are the same in both cases.
Note that it is the same having edges of the form {vi, vi+k} or {vi, vi−k} and
therefore, as the indices are to be read modulo n we have that i−k ≡ i+n−k
mod n and then we have the same inner edges for both graphs. We conclude
that G(n, k) = G(n, n− k).
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v0
v1

v2

v3

v4
v5

v6

v7

v8

v9

u0

u1

u2
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u4

u5

u6

u7

u8

u9

Figure A.14: Desargues graph.

Exercise 6. (a) Prove that the automorphism group of the Desargues graph
is isomorphic to S5 × C2.

(b) Write B(n, k) as a direct product of the corresponding subgroups of
H and K where A(n, k) = H ×K .

Solution. The so-called Desargues graph is the generalized Petersen graph
G(10, 3). Thus we have an outer rim with 10 vertices and an inner subgraph
inducing a 10-circuit. In addition to this definition, we can describe the
Desargues graph using algebraic combinatorics as the graph with vertex set({1,2,3,4,5}

2

)
∪
({1,2,3,4,5}

3

)
and having an edge between them if and only if one

vertex is a subset of the other.
We want to prove that the automorphism group of the Desargues graph

is isomorphic to S5 × C2. First of all, note that the natural action of S5

on the set {1, 2, 3, 4, 5} induces an action of S5 on the graph G(10, 3) by
applying permutations to the elements that constitute each of the vertices.
Moreover, this action is faithful and preserves the link between vertices.
Thus, we obtain a subgroup H of AutG(n, k) which is isomorphic to S5.

In addition, let us take K = 〈ρ5〉, where ρ is the map defined in Chapter
3, i.e. ρ(ui) = ui+1 and ρ(vi) = vi+1 for all i. Observe that ρ5 maps every
vertex onto the one just opposite to it, one vertex corresponding to the
complement of the other one,

ρ5(ui) = ui+5 and ρ5(vi) = vi+5 for every i.

Note that ρ5 6= 1 and (ρ5)2 = 1 and so, K ∼= C2. Moreover, ρ5 ∈
AutG(10, 3) since all rotations maintain the links between vertices.
For simplicity, let us use G again in order to refer to the automorphism
group of G(10, 3), i.e., G = AutG(10, 3).
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{1, 2}

{1, 2, 5}

{2, 5}

{2, 4, 5}

{4, 5}

{3, 4, 5}

{3, 4}

{1, 3, 4}

{1, 3}

{1, 2, 3}

{1, 2, 4}
{1, 5}

{2, 3, 5}

{2, 4}

{1, 4, 5}
{3, 5}

{2, 3, 4}

{1, 4}

{1, 3, 5}

{2, 3}

Figure A.15: Desargues graph.

The intersection of the two subgroups H and K is trivial because ρ5 6∈ H
since it maps a vertex representing a two element subset onto one repre-
senting a three element subset, and that does not happen with any of the
permutations in H.

First of all we want to see that ρ5 commutes with every element in H.
Take any 2-element subset X = {i, j} ∈ V (G(10, 3)), and take any element
µ ∈ H. Then

ρ5µ({i, j}) = ρ5({µ(i), µ(j)}) = {1, 2, 3, 4, 5}\{µ(i), µ(j)} and,

µρ5({i, j}) = µ({1, 2, 3, 4, 5}\{i, j}) =

= {µ(1), µ(2), µ(3), µ(4), µ(5)}\{µ(i), µ(j)} = {1, 2, 3, 4, 5}\{µ(i), µ(j)}.
Exactly the same happens when we choose a 3-element subset. Thus,

ρ5µ = µρ5 for all µ ∈ H.
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Hence, K E 〈H,K〉 and as ρ5 is the only generator of K and all the
elements of H commute with it, H E 〈H,K〉 as well. This implies that
KH = HK andHK is a subgroup ofG. In addition as 〈H,K〉 is the smallest
subgroup of G which contains both H and K, we have 〈H,K〉 = HK. Thus,

|〈H,K〉| = |HK| = |H||K|
|H∩K| = 120×2 = 240, and 〈H,K〉 ∼= H×K ∼= S5×C2.

Note that H induces two orbits in G(10, 3): one with the 2-element sub-
set vertices, and another one with the 3-element subset vertices. Moreover,
〈ρ5〉 induces for each 2-element subset vertex the orbit with the vertex itself
and the 3-element subset vertex with the subset such that their intersection
is empty, and conversely. Therefore, G(10, 3) is vertex-transitive since S5

allows us to map any vertex with any other vertex corresponding to a subset
of the same size and ρ5 maps a 2-element subset vertex into a 3-element sub-
set vertex. Hence, we start in the same way as in the previous case, applying
the Orbit-Stabilizer Theorem and taking into account that the orbit of u0

is at most of size 20.

|G| = |Gu0 ||uG0 | ≤ 20|Gu0 |.

v0v1

v2

v3

v4 v5
v6

v7

v8

v9

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

Figure A.16: All the vertices can be in the orbit of u0.

Moreover if we do as we did before and we fix u0 in order to see the
possible orbits of u1 under Gu0 , we get,

|Gu0 | = |Gu0u1 ||u
Gu0
1 | ⇒ |G| ≤ 20|Gu0 | = 20|Gu0u1 ||u

Gu0
1 | ≤ 60|Gu0u1 |.
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v0v1
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Figure A.17: As u0 is fixed the orbit of u1 is contained in{u1, v0, u9}.

Continuing in the same way, we fix u1 and we see that the orbit of v0

under Gu0u1 is contained in {v0, u9}, so:

|G| ≤ 60|Gu0u1 | ≤ 120|Gu0u1v0 |.

v0v1

v2
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v4 v5
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u6

u7

u8

u9

Figure A.18: The orbit of v0 under Guou1 is contained in {v0, u9}.

Now fixing v0 as well we get that the orbit of u2 is a subset of {u2, v1}
and from the Orbit-Stabilizer Theorem again:

|G| ≤ 120|Gu0u1v0 | ≤ 240|Gu0u1v0u2 |.
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Figure A.19: The orbit u
Gu0u1v0
2 ⊆ {u2, v1}.

Let us show now that |Gu0u1v0u2 | = 1, or which is the same, that all the
remaining vertices are fixed.

Note that v1 and u9 are fixed since they are the only remaining neigh-
bours of u1 and u0 respectively. In addition, v9 is fixed because it is the only
vertex at distance 1 from u9 and 2 from u2, which are fixed, and distances
must remain the same. The same argument is valid for v2. Now, u8 and
u3 are fixed because they are the only neighbors of u9 and u2 respectively
that are not already fixed. Moreover, v8 is fixed for being the only common
neighbor of u8 and v1, and the same for v3. If we continue like this we can
see that u7 and u4 are fixed because all the other neighbors of u8 and u3 are
fixed, which implies that v7 is fixed since it is the only common neighbor of
u7 and v0. We can apply the same for v4. We can continue with the same
arguments until we conclude that all the vertices are fixed, after checking
that u0, u1, v0 and u2 are fixed.
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Figure A.20: v1 and u9 are fixed.
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Figure A.21: v9 and v2 are fixed.
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Figure A.22: u8 and u3 are fixed.
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Figure A.23: v8 and v3 are fixed.
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Figure A.24: u7 and u4 are fixed.
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Figure A.25: v7 and v4 are fixed.
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Figure A.26: u5 and u6 are fixed.
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Figure A.27: v5 and v6 are fixed.

Therefore, |G| ≤ 240 = |HK| and thus G = 〈H,K〉 ∼= H ×K ∼= S5×C2.

Now recall from Chapter 3 we defined B(n, k) for k2 ≡ −1 (mod n) as
B(n, k) = 〈ρ, α| ρn = α4 = 1, ρα = ρk〉, which in our case is

B(10, 3) = 〈ρ, α| ρ10 = α4 = 1, ρα = ρ−3〉.

Note that, as we said in Chapter 3, G(10, 3) is one of the 7 exceptional
cases in which A(n, k) 6= B(n, k), since |B(10, 3)| = 40 is not equal to
|A(10, 3)| = 240.

(b) Let us find the corresponding elements of the subgroup B(10, 3) in
the representation G = H ×K. In order to do that, let us see what parts of
our normal subgroups H and K lie in B(10, 3).

On the one hand, it is obvious that ρ5 ∈ B(10, 3) and therefore K is
fully contained in B(10, 3), i.e., K ⊆ B(10, 3). Due to this B(10, 3) =
(H ∩ B(10, 3)) × K so we only have to determine the intersection of H
with B(10, 3). Observe that since |B(10, 3)| = 40 and |K| = 2, we have
|H ∩B(10, 3)| = 20, remember that H ∩K = {1}.

Let us analyze then the intersection H ∩B(10, 3). Note that ρ 6∈ H since
it maps a vertex of a 2-element subset onto a a vertex of a 3-element subset
and none of the elements in H can do that. However we can recognize the
element ρ2 inB(10, 3) as the automorphism ofH induced by the permutation
(12543) ∈ S5.

We have a similar situation with α, it is not in H since it maps vertices
of some size to vertices of different size. Note that A(10, 3) = H × 〈ρ5〉 and

|A(10, 3) : H| = |A(10,3)|
|H| = 240

120 = 2. Since the index is 2 we only have two

right (left) cosets and moreover, A(10, 3) = H ∪Hg for some g 6∈ H. Since
ρ5 and α 6∈ H, we have

A(10, 3) = H ∪Hρ5,
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A(10, 3) = H ∪Hα,

from which we conclude that Hρ5 = Hα and this only happens when αρ−5 ∈
H or which is the same αρ5 ∈ H. This gives us the clue of the element that
will complete our description of H ∩B(10, 3). Looking at the graph we can
identify (1325) ∈ S5 as the permutation that induces the element αρ5, whose
order is 4 since (αρ5)2 = α2 6= 1, (αρ5)3 = α3ρ5 6= 1 and (αρ5)4 = α4 = 1.
Hence 〈ρ2, αρ5〉 ⊆ H ∩ B(10, 3). Moreover, 〈ρ2〉 ∩ 〈αρ5〉 = 1 and therefore
we have |〈ρ2, αρ5〉| ≥ |〈ρ2〉||〈αρ5〉| = 5 × 4 = 20. Since |H ∩ B(10, 3)| = 20
we can conclude that H ∩B(10, 3) = 〈ρ2, αρ5〉. Therefore,

B(10, 3) = 〈ρ2, αρ5〉 × 〈ρ5〉 ∼= 〈(12543), (1325)〉 × 〈ρ5〉.
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A.4 Chapter 4

Figure A.28: Γ

Exercise 7. Let us have the following molecular graph Γ. And let us have
the rearrangement ρ which redefines the edge set by replacing the edge
joining the vertices in sites d and e with a new edge joining the vertices
in sites a and b. Give the resulting graph Γ′ and see if ρ is a degenerate
rearrangement. If so, give the the permutation describing the isomorphism
π : Γ′ → Γ.

Solution. Let us show graphically how ρ acts on Γ.

Figure A.29: Γ and Γ′.

First of all, note that in both graphs all the vertices are connected to
each other except for one pair of vertices, thus they are isomorphic to a
complete graph K5 without an edge, and so Γ ≡ Γ′. This implies that ρ is
a degenerate rearrangement.
Now as they are isomorphic there must exist π : Γ′ → Γ such that we get
again the same representation as before. In this case this is given by the
permutation π = (aebd) as we can see in Figure A.30, in which, for example
a = dπ means that the vertex in site a is moved by π to the site d.
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Figure A.30: We get Γ again after applying π on Γ′.

Exercise 8. The Berry mechanism. Consider a molecule with a central
atom M linked to five atoms called ligands forming a triagonal bipyramid
with M at the center. Moreover, let us call the ligands on the top and
bottom, in Figure A.31 L1 and L2, axials and the other three forming the
triangle in the middle, L3, L4 and L5 in Figure A.31, equatorial. In the
Berry mechanism, one of the equatorial ligands is fixed, while all the other
ligands move. In order to illustrate it let us take for instance that L3 is the
fixed ligand. Then in the Berry mechanism L4 and L5 will move closer to
L3 while L1 and L2 will move further. Moreover, this happens in a way such
that the angles that each pair of ligands form with M changes always in the
same way. Each pairs of ligands, the one aproximating and the one going
further remain planar with L3 but the angle that L4 and L5 form with M
changes from 120◦ to 180◦ and conversely the angle that L1 and L2 form
with M changes from 180◦ to 120◦. Note that the result is again a triagonal
bypiramid, but now with L4 and L5 as axial and L1, L2 and L3 as equatorial.

Figure A.31: In these molecules with a central atom M the broken edges
represent edges that should be visualized behind the plan of the page, and
the thick edges in front of it.

(a) Find the graph representing the molecular graph and describe the
Berry mechanism on it using labelings.

(b) Find the reaction graph of the Berry mechanism and its automor-
phism group.

Solution. (a) First of all, let us choose a graph Γ that can be labelled in
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a way that represents our molecule and all its possible labelings. Note in
Figure A.31 that the bonds do not change, and M remains always in the
middle and with the same connections. Then, let us take Γ to be the graph
consisting of the vertices and edges of a triangular bipyramid. Then we refer
to Figure A.28 in Exercise 7 and choose the labeling

λ =

(
abcde

12345

)
,

each of the numbers representing one atom Li where i ∈ {1, ..., 5}. In this
way, keeping the natural edges of a triangular bipyramid we have that the
vertices i and j are adjacent if and only if the angle LiMLj is 90◦ or 120◦.
See the first graph in Figure A.32, which represents the first molecule in
Figure A.31. Note that in the previous Exercise 7 we have analyzed exactly
the same rearrangement ρ replacing the edge joining the vertices in sites c
and d by a new edge joining the vertices in sites a and b.

This last Figure A.32 represents the example of the Berry mechanism
described before, with the rearrangement ρ replacing the edge {4, 5} by the
edge {1, 2} and in order to have the same structure as before if we move
our labeled vertices applying π = (aebd), we get the last labelled graph in
Figure A.32 which corresponds to the labeling

λ′ =

(
abcde

45321

)
.

By comparing the first and the third graph in that figure, we se how the
Berry mechanism has transformed one labeling of Γ into another, to indicate
how the ligands have changed roles. Note also that the last graph represents
the second molecule in Figure A.31 if we look at the triangular bipyramid
from the bottom.

Figure A.32: The red broken edges represent the links with M and we can
see how those change under the rearrangement ρ and the permutation π.

(b) Let as take as H the automorphism group of the triagonal bipyramid,
in fact S2×S3. This is true since it is easy to see that for the graph labelled
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with λ we have Aut Γ = 〈(34), (345)〉×〈(12)〉 (we can prove this in the same
way we did for the graph in Exercise 2 since we have the same group G and
normal subgroups). Then, since H contains 12 elements we have that our
reaction graph has 5!/12 = 10 vertices.
Now we need to find a good notation for the vertices in the vertex set
Ω = {αi = [λi] : i ∈ 1, ..., 12} in order to determine the edges of the reaction
graph. Note that the automorphism group of the triangular bipyramid de-
termines when two labelings are the same. Actually, looking at the graph,
all the graphs with the same axial ligands are isomorphic, thus, the set of
axial ligands completely defines the class of labeling and in consequence, the
vertex. Hence, a vertex αk of R corresponds to an unordered pair of labels
{i, j} indicating that the axial ligands are Li and Lj .

Figure A.32 shows that there is an edge between the vertex {1, 2} and
{4, 5}. In general, when applying the rearrangement of the Berry mechanism
two of the equatorial ligands take the role of the two axial ligands, which end
up being equatorial ligands. Then, a rearrangement ρ of this type is only
going to occur between two labelings if and only if their pair of axial ligands
are completely different, thus their intersection is empty. Going back to our
reaction graph, each of our vertices is denoted by a 2-subset representing
the axial ligands, taking into account what we just said, two of this subsets
will be adjacent to each other if and only if their intersection is empty. This
leads to a reaction graph R with 10 vertices, which are subgroups of size 2
from the set {1, 2, 3, 4, 5} adjacent to each other when their intersection is
empty, thus KG(5, 2), the Petersen graph.

Hence we have found that our reaction graph R ∼= KG(5, 2) and from
Exercise 3 we know that the automorphism group of the Petersen graph is
isomorphic to S5, therefore AutR ∼= S5.
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{1, 2}

{3, 4}

{1, 5} {2, 3}

{4, 5}
{3, 5}

{2, 5}

{2, 4} {1, 4}

{1, 3}

Figure A.33: Petersen graph KG(5, 2) ∼= R.
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