

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA

INDUSTRIAL DE BILBAO

GRADO EN INGENIERÍA MECÁNICA

Trabajo Fin de Grado 2014 / 2015

CARACTERIZACIÓN A IMPACTO DE CAUCHO RECICLADO MEDIANTE Elementos Finitos

ANEXO 1: HIPERELASTICIDAD

DATOS DE LA ALUMNA O DEL ALUMNO	DATOS DEL DIRECTOR O DE LA DIRECTORA					
Nombre: Ane	Nombre: Irantzu					
Apellidos: Escribano Castro	Apellidos: Uriarte Gallastegi					
	Departamento: Ingeniería Mecánica					
FDO.:	FDO.:					
Fecha: 10-02-2015	FECHA: 10-02-2015					

(c)2015, Ane Escribano Castro

Contenido

Capítulo 1. Introducción	1
Capítulo 2. Ajuste de Mínimos Cuadrados	2
2.1. Desarrollo para Neo-Hooke	2
2.1.1. Resultados para Neo-Hooke	
2.2. Desarrollo para Mooney-Rivlin	
2.2.1. Resultados para Mooney-Rivlin	
Capítulo 3. Curve Fitting	
3.1. Desarrollo para Neo-Hooke	
3.1.1. Resultados para Neo-Hooke	20
3.2. Mooney-Rivlin	
3.2.1. Resultados para Mooney-Rivlin	
Capítulo 4. Resumen de resultados	41
4.1. Ajuste mínimos cuadrados (MATLAB)	
4.1.1. Neo-Hooke	41
4.1.2. Mooney-Rivlin	42
4.2. Curve fitting (ANSYS)	
4.2.1. Neo-Hooke	42
4.2.2. Mooney-Rivlin	43

Índice de tablas

Tabla 1: Constante hiperelástica para probetas grandes obtenidas mediante ajuste de mínimos cuadrados para modelo Neo Hooke	41
Tabla 2: Constante hiperelástica para probetas pequeñas obtenidas mediante ajuste de mínimos cuadrados para modelo Neo Hooke	41
Tabla 3: Constantes hiperelásticas para probetas grandes obtenidas mediante ajuste de mínimos cuadrados para modelo Mooney Rivlin.	42
Tabla 4: Constantes hiperelásticas para probetas pequeñas obtenidas mediante ajuste de mínimos cuadrados para modelo Mooney Rivlin.	42
Tabla 5: Constante hiperelástica para probetas grandes (modelo Neo Hooke) obtenidas mediante Curve-fitting.	42
Tabla 6: Constante hiperelástica para probetas pequeñas (modelo Neo Hooke) obtenidas mediante Curve-fitting.	43
Tabla 7: Constantes hiperelásticas para probetas grandes (modelo Mooney Rivlin) obtenidas mediante Curve-fitting.	43
Tabla 8: Constantes hiperelásticas para probetas pequeñas (modelo Mooney Rivlin) obtenidas mediante Curve-fitting.	43

Índice de figuras

Fig. 1. Diagrama tensión-alargamiento para densidad 0.7 g/cm ³ para probetas grandes.	4
Fig. 2. Diagrama tensión-alargamiento para densidad 0.8 g/cm ³ para probetas grandes.	5
Fig. 3. Diagrama tensión-alargamiento para densidad 0.9 g/cm ³ para probetas grandes.	5
Fig. 4. Diagrama tensión-alargamiento para densidad 1 g/cm³ para probetas grandes.	6
Fig. 5. Diagrama tensión-alargamiento para densidad 0.7 g/cm ³ para probetas pequeñas.	6
Fig. 6. Diagrama tensión-alargamiento para densidad 0.9 g/cm ³ para probetas pequeñas.	7
Fig. 7. Diagrama tensión-alargamiento para densidad 1 g/cm³ para probetas pequeñas.	7
Fig. 8. Obtención de parámetros para densidad 0.7 g/cm ³ para probetas grandes.	10
Fig. 9. Diagrama tensión-alargamiento para densidad 0.7 g/cm ³ para probetas grandes.	10
Fig. 10. Obtención de parámetros para densidad 0.8 g/cm ³ para probetas grandes.	11
Fig. 11. Diagrama tensión-alargamiento para densidad 0.8 g/cm ³ para probetas grandes.	11
Fig. 12. Obtención de parámetros para densidad 0.9 g/cm ³ para probetas grandes	12
Fig. 13. Diagrama tensión-alargamiento para densidad 0.9 g/cm ³ para probetas grandes.	13
Fig. 14. Obtención de parámetros para densidad 1 g/cm ³ para probetas grandes.	13
Fig. 15. Diagrama tensión-alargamiento para densidad 1 g/cm ³ para probetas grandes.	14
Fig. 16. Obtención de parámetros para densidad 0.7 g/cm ³ para probetas pequeñas	14
Fig. 17. Diagrama tensión-alargamiento para densidad 0.7 g/cm ³ para probetas pequeñas.	15

Fig. 18. Obtención de parámetros para densidad 0.9 g/cm³ para probetas pequeñas.	15
Fig. 19. Diagrama tensión-alargamiento para densidad 0.9 g/cm³ para probetas pequeñas.	16
Fig. 20. Obtención de parámetros para densidad 1 g/cm³ para probetas pequeñas.	16
Fig. 21. Diagrama tensión-alargamiento para densidad 1 g/cm³ para probetas pequeñas.	17
Fig. 22. Obtención de parámetros para Neo Hooke con densidad 0.73 g/cm ³ para probetas grandes mediante curve fitting.	20
Fig. 23. Diagrama tensión-deformación para densidad 0.73 g/cm³ (Probetas grandes).	21
Fig. 24. Obtención de parámetros para Neo Hooke con densidad 0.82 g/cm³ para probetas grandes mediante curve fitting.	21
Fig. 25. Diagrama tensión-deformación para densidad 0.82 g/cm³ (Probetas grandes).	21
Fig. 26. Obtención de parámetros para Neo Hooke con densidad 0.83 g/cm³ para probetas grandes mediante curve fitting.	22
Fig. 27. Diagrama tensión-deformación para densidad 0.83 g/cm³ (Probetas grandes).	22
Fig. 28. Obtención de parámetros para Neo Hooke con densidad 0.92 g/cm³ para probetas grandes mediante curve fitting.	22
Fig. 29. Diagrama tensión-deformación para densidad 0.92 g/cm³ (Probetas grandes).	23
Fig. 30. Obtención de parámetros para Neo Hooke con densidad 0.93 g/cm ³ para probetas grandes mediante curve fitting.	23
Fig. 31. Diagrama tensión-deformación para densidad 0.93 g/cm³ (Probetas grandes).	23
Fig. 32. Obtención de parámetros para Neo Hooke con densidad 1.01 g/cm ³ para probetas grandes mediante curve fitting.	24
Fig. 33. Diagrama tensión-deformación para densidad 1.01 g/cm³ (Probetas grandes).	24
Fig. 34. Obtención de parámetros para Neo Hooke con densidad 1.03 g/cm ³	24

para probetas grandes mediante curve fitting.

Fig. 35. Diagrama tensión-deformación para densidad 1.03 g/cm³ (Probetas grandes).	25
Fig. 36. Obtención de parámetros para Neo Hooke con densidad 0.68 g/cm³ para probetas pequeñas mediante curve fitting.	25
Fig. 37. Diagrama tensión-deformación para densidad 0.68 g/cm³ (Probetas pequeñas).	25
Fig. 38. Obtención de parámetros para Neo Hooke con densidad 0.71 g/cm³ para probetas pequeñas mediante curve fitting.	26
Fig. 39. Diagrama tensión-deformación para densidad 0.71 g/cm³ (Probetas pequeñas).	26
Fig. 40. Obtención de parámetros para Neo Hooke con densidad 0.89 g/cm ³ para probetas pequeñas mediante curve fitting.	26
Fig. 41. Diagrama tensión-deformación para densidad 0.89 g/cm³ (Probetas pequeñas).	27
Fig. 42. Obtención de parámetros para Neo Hooke con densidad 0.91 g/cm ³ para probetas pequeñas mediante curve fitting.	27
Fig. 43. Diagrama tensión-deformación para densidad 0.91 g/cm³ (Probetas pequeñas).	27
Fig. 44. Obtención de parámetros para Neo Hooke con densidad 0.97 g/cm ³ para probetas pequeñas mediante curve fitting.	28
Fig. 45. Diagrama tensión-deformación para densidad 0.97 g/cm ³ (Probetas pequeñas).	28
Fig. 46. Obtención de parámetros para Neo Hooke con densidad 0.99 g/cm ³ para probetas pequeñas mediante curve fitting.	28
Fig. 47. Diagrama tensión-deformación para densidad 0.99 g/cm³ (Probetas pequeñas).	29
Fig. 48. Obtención de parámetros para Mooney Rivlin con densidad 0.73 g/cm ³ para probetas grandes mediante curve fitting.	31
Fig. 49. Diagrama tensión-deformación para densidad 0.73 g/cm³ (Probetas grandes).	32
Fig. 50. Obtención de parámetros para Mooney Rivlin con densidad 0.82 g/cm ³ para probetas grandes mediante curve fitting.	32

Fig. 51. Diagrama tensión-deformación para densidad 0.82 g/cm³ (Probetas grandes).	32
Fig. 52. Obtención de parámetros para Mooney Rivlin con densidad 0.83 g/cm ³ para probetas grandes mediante curve fitting.	33
Fig. 53. Diagrama tensión-deformación para densidad 0.83 g/cm³ (Probetas grandes).	33
Fig. 54. Obtención de parámetros para Mooney Rivlin con densidad 0.92 g/cm ³ para probetas grandes mediante curve fitting.	33
Fig. 55. Diagrama tensión-deformación para densidad 0.92 g/cm³ (Probetas grandes).	34
Fig. 56. Obtención de parámetros para Mooney Rivlin con densidad 0.93 g/cm ³ para probetas grandes mediante curve fitting.	34
Fig. 57. Diagrama tensión-deformación para densidad 0.93 g/cm³ (Probetas grandes)	34
Fig. 58. Obtención de parámetros para Mooney Rivlin con densidad 1.01 g/cm ³ para probetas grandes mediante curve fitting.	35
Fig. 59. Diagrama tensión-deformación para densidad 1.01 g/cm³ (Probetas grandes).	35
Fig. 60. Obtención de parámetros para Mooney Rivlin con densidad 1.03 g/cm ³ para probetas grandes mediante curve fitting.	35
Fig. 61. Diagrama tensión-deformación para densidad 1.03 g/cm³ (Probetas grandes).	36
Fig. 62. Obtención de parámetros para Mooney Rivlin con densidad 0.68 g/cm ³ para probetas pequeñas mediante curve fitting.	36
Fig. 63. Diagrama tensión-deformación para densidad 0.68 g/cm³ (Probetas pequeñas).	37
Fig. 64. Obtención de parámetros para Mooney Rivlin con densidad 0.71 g/cm³ para probetas pequeñas mediante curve fitting.	37
Fig. 65. Diagrama tensión-deformación para densidad 0.71 g/cm³ (Probetas pequeñas).	37
Fig. 66. Obtención de parámetros para Mooney Rivlin con densidad 0.89 g/cm ³ para probetas pequeñas mediante curve fitting	38
Fig. 67. Diagrama tensión-deformación para densidad 0.89 g/cm ³ (Probetas	38

pequeñas).

Fig. 68. Obtención de parámetros para Mooney Rivlin con densidad 0.91 g/cm ³ para probetas pequeñas mediante curve fitting.	38
Fig. 69. Diagrama tensión-deformación para densidad 0.91 g/cm ³ (Probetas pequeñas).	39
Fig. 70. Obtención de parámetros para Mooney Rivlin con densidad 0.97 g/cm ³ para probetas pequeñas mediante curve fitting.	39
Fig. 71. Diagrama tensión-deformación para densidad 0.97 g/cm ³ (Probetas pequeñas).	39
Fig. 72. Obtención de parámetros para Mooney Rivlin con densidad 0.99 g/cm ³ para probetas pequeñas mediante curve fitting.	40
Fig. 73. Diagrama tensión-deformación para densidad 0.99 g/cm ³ (Probetas pequeñas).	40

Capítulo 1. Introducción

Tal y como se ha mencionado en la memoria de este estudio, se ha realizado la obtención de parámetros de la parte hiperelástica mediante dos métodos:

- Ajuste de Mínimos Cuadrados.
- Curve fitting.

Para ambos métodos se usan dos tipos de modelos para caracterizar el material y ver cuál de ellos se ajusta mejor a las características del mismo. Dichos modelos son:

- Neo-Hooke: Se obtiene un parámetro de material.
- Mooney-Rivlin: Se obtienen 3 parámetros de material.

A continuación se exponen los ensayos realizados para la obtención de los parámetros hiperelásticos.

Capítulo 2. Ajuste de Mínimos Cuadrados.

2.1. Desarrollo para Neo-Hooke

Primero se ha obtenido el parámetro de material C₁ mediante el software informático MATLAB. Para ello se ha utilizado un ajuste de Mínimos Cuadrados, el cual es el método de ajuste que intenta encontrar una función continua dentro de un conjunto de pares ordenados.

A continuación se expone un ejemplo de ajuste que se ha utilizado, el de la probeta pequeña con densidad 0.7 g/cm³. (P_0.004_0.68 y P_0.004_0.71). Con este ejemplo se muestra el proceso utilizado para obtener el parámetro:

Se llama al conjunto de datos de Excel que necesitemos usar para la obtención de los parámetros. Ellos son Tiempo, Lambda y Cauchy. Como tenemos dos ensayos para cada densidad y velocidad hiperelástica (v=0.004m/s), se usan ambos:

```
lambda1=p0004068AS4(:,2);
sigma1=p0004068AS4(:,3);
lambda2=p0004071AS4(:,2);
sigma2=p0004071AS4(:,3);
```

Se procede a la utilización de la siguiente ecuación que se basa en la matriz de observaciones:

$$Col1 = 2\left(\lambda_1 - \frac{1}{\lambda_1^2}\right)$$

```
col11=2*(lambda1-(1./lambda1.^2))
col12=2*(lambda2-(1./lambda2.^2))
```

Función PHI: calcula la función de Euler φ del argumento n. En este caso calcula el número de números más pequeño que col1.

```
PHI1=[col11];
Coptimos1=inv(PHI1'*PHI1)*PHI1'*sigma1;
PHI2=[col12];
Coptimos2=inv(PHI2'*PHI2)*PHI2'*sigma2;
```

Se obtiene la gráfica con λ en el eje X y σ en el eje Y con sus valores apróximados:

```
figure
plot(lambda1, sigma1, 'k', 'linewidth', 1)
grid on
xlabel('Stretch (\lambda)')
ylabel('True stress (\sigma) [Pa]')
hold on
plot(lambda2, sigma2, '-ok', 'linewidth', 1.5, 'MarkerSize', 4)
hold on
sigmasestimados1=PHI1*Coptimos1;
plot(lambda1, sigmasestimados1, '+k', 'LineWidth', 1)
sigmasestimados2=PHI2*Coptimos2;
plot(lambda2,sigmasestimados2,':k','LineWidth', 1.5)
h=legend('Experimental values for 0.68A','Experimental values
for 0.71A', 'Estimated values for 0.68A', 'Estimated values for
0.71A');
set(h);
```

Se obtienen los coeficientes óptimos para los dos casos de densidades que se tiene para la densidad 0.7 g/cm³:

```
C10_068=Coptimos1(1)
C10_071=Coptimos2(1)
```

Se obtiene el error del ajuste realizado mediante el coeficiente de determinación:

```
a1=sum((sigma1-sigmasestimados1).^2);
b1=sum((sigma1-mean(sigma1)).^2);
R21=1-a1/b1;
a2=sum((sigma2-sigmasestimados2).^2);
b2=sum((sigma2-mean(sigma2)).^2);
R22=1-a2/b2;
```

2.1.1. Resultados para Neo-Hooke

A continuación, se exponen todos los resultados obtenidos mediante la utilización de este método:

Probetas grandes

Para probetas grandes, en función de los tipos de densidad:

1- 0.7 g/cm³

$C10_073 = 2.4421e+05$

Fig. 1. Diagrama tensión-alargamiento para densidad 0.7 g/cm³ para probetas grandes.

2-0.8g/cm³

C10_082 = 2.3920e+05

C10_083 = 2.2625e+05

Fig. 2. Diagrama tensión-alargamiento para densidad 0.8 g/cm³ para probetas grandes.

3- 0.9 g/cm³

C10_092 =4.6515e+05

 $C10_{093} = 4.4623e+05$

Fig. 3. Diagrama tensión-alargamiento para densidad 0.9 g/cm³ para probetas grandes.

4- 1 g/cm³

 $C10_{101} = 3.8515e+05$

C10_103 = 5.7061e+05

Fig. 4. Diagrama tensión-alargamiento para densidad 1 g/cm³ para probetas grandes.

Probetas pequeñas:

1- 0.7 g/cm³

C10_068 =1.5115e+05

C10_071 =1.6934e+05

Fig. 5. Diagrama tensión-alargamiento para densidad 0.7 g/cm³ para probetas pequeñas.

2- 0.9 g/cm³

 $C10_{089} = 2.7681e+05$

C10_091 = 3.4536e+05

Fig. 6. Diagrama tensión-alargamiento para densidad 0.9 g/cm³ para probetas pequeñas.

3-1 g/cm³

 $C10_{097} = 3.0254e + 05$

 $C10_{099} = 4.4347e + 05$

Fig. 7. Diagrama tensión-alargamiento para densidad 1 g/cm³ para probetas pequeñas.

2.2. Desarrollo para Mooney-Rivlin

Para este caso, el procedimiento es el mismo que para Neo-Hooke, a excepción de que con Mooney-Rivlin se obtienen 3 parámetros, que son C_{01} , C_{10} y C_{11} . Se expone a continuación un ejemplo de ajuste para Mooney-Rivlin.

Para probetas pequeñas y densidad 0.7 g/cm^3 (P_0.004_0.68 y P_0.004_0.71):

Se llama al conjunto de datos de Excel que necesitemos usar para la obtención de los parámetros. Ellos son Tiempo, Lambda y Cauchy. Como tenemos dos ensayos para cada densidad y velocidad hiperelástica (v=0.004m/s), se usan ambos:

```
lambda1=p0004068AS4(:,2);
sigma1=p0004068AS4(:,3);
lambda2=p0004071AS4(:,2);
sigma2=p0004071AS4(:,3);
```

Se procede a la utilización de las siguientes ecuaciones que se basan en la matriz de observaciones:

$$Col1 = 2(\lambda^2 - \frac{1}{\lambda})$$
$$Col2 = 2(\lambda - \frac{1}{\lambda^2})$$
$$Col3 = 6(\lambda^3 - \lambda^2 - \lambda + \frac{1}{\lambda} + \frac{1}{\lambda^2} + \frac{1}{\lambda^3})$$

```
col11=2*((lambda1.^2) - (1./lambda1))
col21=2*(lambda1-(1./(lambda1.^2)))
col31=6*(lambda1.^3-lambda1.^2-
lambda1+(1./lambda1)+(1./(lambda1.^2)) - (1./(lambda1.^3)))
col12=2*((lambda2.^2) - (1./lambda2))
col22=2*(lambda2-(1./(lambda2.^2)))
col32=6*(lambda2.^3-lambda2.^2-
lambda2+(1./lambda2)+(1./(lambda2.^2)) - (1./(lambda2.^3)))
```

Función PHI: calcula la función de Euler φ del argumento n. En este caso calcula el número de números más pequeño que col1, col2 y col3.

```
PHI1=[col11, col21, col31];
Coptimos1=inv(PHI1'*PHI1)*PHI1'*sigma1;
```

```
PHI2=[col12, col22, col32];
Coptimos2=inv(PHI2'*PHI2)*PHI2'*sigma2;
```

Se obtiene la gráfica con λ en el eje X y σ en el eje Y con sus valores aproximados:

```
figure
plot(lambda1, sigma1, 'k', 'linewidth', 1)
grid on
xlabel('Stretch (\lambda)')
ylabel('True stress (\sigma) [Pa]')
hold on
plot(lambda2, sigma2, '-ok', 'linewidth', 1.5, 'MarkerSize', 4)
hold on
sigmasestimados1=PHI1*Coptimos1;
plot(lambda1, sigmasestimados1, '+k', 'LineWidth', 1)
sigmasestimados2=PHI2*Coptimos2;
plot(lambda2, sigmasestimados2, ':k', 'LineWidth', 1.5)
h=legend('Experimental values for 0.68A','Experimental values
for 0.71A', 'Estimated values for 0.68A', 'Estimated values for
0.71A');
set(h);
```

Se obtienen los coeficientes óptimos para los dos casos de densidades que se tiene para la densidad 0.7 g/cm³:

```
C10_068=Coptimos1(1)
C01_068=Coptimos1(2)
C11_068=Coptimos1(3)
C10_071=Coptimos2(1)
C01_071=Coptimos2(2)
C11_071=Coptimos2(3)
```

Se calcula el error matemática del ajuste mediante el coeficiente de determinación:

```
a1=sum((sigma1-sigmasestimados1).^2);
b1=sum((sigma1-mean(sigma1)).^2);
R21=1-a1/b1;
a2=sum((sigma2-sigmasestimados2).^2);
b2=sum((sigma2-mean(sigma2)).^2);
R22=1-a2/b2;
```

2.2.1. Resultados para Mooney-Rivlin

A continuación, se exponen todos los resultados obtenidos mediante la utilización de este método:

Probetas grandes:

Para probetas grandes, en función de los tipos de densidad:

1- 0.7 g/cm³

Current Folder 💿	🖻 Editor - C:\Users\USUARIO\Desktop\DATOS ENSAYOS BUENOS\Grandes\0.7 g\p07hiper_G.m	⊙ ×	Workspace	۲
🗋 Name 💌	1 - lambda1=G0004073B(:,2);	^	Name 🔺	√alue
魡 p07hiper_G.m	<pre>2 - sigma1=G0004073B(:,3);</pre>		- C01 073 -	5.9578e+05
G_4_0.73A_Cauchy.xls	3		C10_073 1	.2097e+06
G_0_004_0_73B_Cauchy_NOV.xls	4		🕂 C11_073 7	.6552e+04
G_0_004_0.73_NOV.txt	5 %Ajuste por minimos recurrentes	=	Coptimos1 [1.2097e+06;-5.9578e
G_0.4_0.73A_Cauchy.xls	6 %Matriz de observaciones	_	G0004073B 3	1206x3 double ≡
G_0.04_0.72B_Cauchy.xls	7 - coll1=2*((lambda1.^2)-(1./lambda1))		PHD 3	1206x3 double
G_0.04_0.72A_Cauchy.xis	8 - col21=2*(lambda1-(1./(lambda1.^2)))		R21 0	.9875
G_0.4_0.72A_Cauchy.xis	9 - col31=6*(lambda1.^3-lambda1.^2-lambda1+(1./lambda1)+(1./(lambda1.^2))-(1./(l	am	al 3	.8098e+13
	10		ans 1	.x1 struct
	11		b1 3	.0393e+15
	12 - PHI1=[col11,col21,col31];		COILI 3	1200x1 double
	<pre>13 - Coptimosl=inv(PHI1'*PHI1)*PHI1'*sigmal;</pre>	=	coi21 3	1200x1 double
	14			4200x1 00001e +
	15			
	16 - figure		Command History	
	<pre>17 - plot(lambdal,sigmal,'k','linewidth',1)</pre>		8 27/11/2014	0.06 8
	18 - gria on	Ψ.	27/11/2014	21.50
		•	07/11/2014	21:30
	p1hiper.m × p07hiper_G.m × +		8 2//11/2014	22:10*
Details ¥	Command Window		* 27/11/2014	22:29*
	001_070		-% 02/12/2014	6:20%
			-p07hiper	
	-5.9578e+05		· · · · · · · · · · · · · · · · · · ·	6:29%
			p09hiper	
Select a file to view details				6:41%
Select a file to view details	C11_073 =		plhiper	
			02/12/2014	7:16*
	7.65526+04		B-8 02/12/2014	7.18*
	fran		n07hiner G	
		•	potnipci_0	
	script		1	.n 3 Col 1 🤃

Fig. 8. Obtención de parámetros para densidad 0.7 g/cm³ para probetas grandes.

Fig. 9. Diagrama tensión-alargamiento para densidad 0.7 g/cm 3 para probetas grandes.

C10_073 = 1.2097e+06

 $C01_073 = -5.9578e+05$

C11_073 = 7.6552e+04

2- 0.8 g/cm³

Current Folder 💿	Editor - C:\Users\USUARIO\Desktop\DATOS ENSAYOS BUENOS\Grandes\0.8 g\p08Ghiper.m	⊙×	Workspace	(
🗋 Name 🔻	1 %0JO, CARGAR/IMPORTAR FICHEROS!	× -	Name 🔺	Value
1 p08Ghiper.m	2		H C01 082	-5.4043e+05
G_4_0.83_A_retocado.xls	3 - lambda1=g0004082A(:,2);	=	C01 083	-1.2656e+05
G_0_004_0_83A_Cauchy_NOV.xls	4 - sigma1=g0004082A(:,3);	Ξ	C10 082	1.1524e+06
G_0_004_0_82A_Cauchy_NOV.xls	5		C10_083	5.9335e+05
G_0.004_0.83_NOV.txt	6 - lambda2=g0004083A(:,2);	=	C11_082	6.6743e+04
G_0.04_0.83_B_retocado_NOV.xls	7 - sigma2=g0004083A(:,3);		C11_083	1.2996e+03
G_0.04_0.83_A_retocado_NOV.xls	8		E Coptimos1	[1.1524e+06;-5.4043e
G_0.4_0.83_A_retocado_NOV.xls	9 %Ajuste por minimos recurrentes		E Coptimos2	[5.9335e+05;-1.2656e
G_0.004_0.83_A_retocado.xls	10 %Matriz de observaciones		HI1 PHI1	31960x3 double
G_0.004_0.82_NOV.bt	11 - coll1=2*((lambda1.^2)-(1./lambda1))		PHI2	32014x3 double
G_0.4_0.82_A_retocado_NOV.xis	12 - col21=2*(lambda1-(1./(lambda1.^2)))		H R21	0.9923
G_0.004_0.62_A_retocado.xis	13 - col31_6*(lambda1.^3-lambda1.^2-lambda1+(1./lambda1)+(1./(lambda1.^2))-(1./(l	am 📃	H R22	0.9977
	14	\equiv	<u> </u>	2.8758e+13
	15 - col12=2*((lambda2.^2)-(1./lambda2))		•	
	16 - col22=2*(lambda2-(1./(lambda2.^2)))		Command History	(
	17 - col32_6*(lambda2.^3-lambda2.^2-lambda2+(1./lambda2)+(1./(lambda2.^2))-(1./(l	am	1.1	
	18	-	p07hiper	
	<	F .	-% 02/12/20	14 6:29%
	p08Ghiper.m × +		p09hiper	
Detaile ¥		0	8 02/12/20	14 6:41%
Details	Command Window	•	p1hiper	
		^	\$ 02/12/20	14 7:16%
	-1.2656e+05		8 02/12/20	14 7:18%
			p07hiper_G	
Select a file to view details			p09hiper	
Sciect a file to view details	C11_083 =		B-% 02/12/20	14 16:20%
	1 2006-102		plhiper	
	1.23500703		B-8 02/12/20	14 16:28%
	fx >>	+	p08Ghiper	
.	script			Ln 7 Col 15

Fig. 10. Obtención de parámetros para densidad 0.8 g/cm³ para probetas grandes.

Fig. 11. Diagrama tensión-alargamiento para densidad 0.8 g/cm³ para probetas grandes.

- $C10_{082} = 1.1524e+06$
- C01_082 =-5.4043e+05
- $C11_{082} = 6.6743e+04$

 $C10_{083} = 5.9335e+05$

 $C01_{083} = -1.2656e + 05$

 $C11_{083} = 1.2996e+03$

3- 0.9 g/cm^3

Fig. 12. Obtención de parámetros para densidad 0.9 g/cm³ para probetas grandes.

Fig. 13. Diagrama tensión-alargamiento para densidad 0.9 g/cm³ para probetas grandes.

- $C10_{092} = 2.7114e+06$
- $C01_{092} = -1.4865e+06$
- $C11_{092} = 2.2075e+05$
- $C10_{093} = 2.6453e+06$
- $C01_{093} = -1.4620e+06$
- C11_093 = 2.1685e+05

4- 1 g/cm³

Fig. 14. Obtención de parámetros para densidad 1 g/cm³ para probetas grandes.

Fig. 15. Diagrama tensión-alargamiento para densidad 1 g/cm³ para probetas grandes.

- $C10_{101} = 1.0517e+06$
- $C01_{101} = -2.2443e+05$
- C11_101 = 3.2245e+03
- $C10_{103} = 2.6112e+06$
- $C01_{103} = -1.2001e+06$
- $C11_{103} = 1.4218e+05$

Probetas pequeñas

1- 0.7 g/cm³

Current Folder	🖻 Editor - C:\Users\USUARIO\Documents\MATLAB\p07hiper.m	⊙×	Workspace	
🗋 Name 💌	1 - lambda1=p0004068AS4(:,2);	×	Name 🔺	Value
Η todaslassigmas_09.mat	<pre>2 - sigmal=p0004068AS4(:,3);</pre>	—	C01 068	-2.7544e+05
🕙 p07hiper.m	3	_	C01 071	-3.3508e+05
HIPER_0_7.mat	4 - lambda2=p0004071AS4(:,2);	= =	C10 068	6.0666e+05
DatosHistoricos_09.mat	5 - sigma2=p0004071AS4(:,3);		G10_071	7.1609e+05
	6	_	H C11_068	4.1912e+04
	7 %Ajuste por minimos recurrentes	_	E C11_071	5.0068e+04
	8 %Matriz de observaciones		Coptimos1	[6.0666e+05;-2.7544e
	9 - coll1=2*((lambda1.^2)-(1./lambda1))		🗄 Coptimos2	[7.1609e+05;-3.3508e
	10 - col21=2*(lambda1-(1./(lambda1.^2)))		HI1 PHI1	17104x3 double
	11 - col31=6*(lambda1.^3-lambda1.^2-lambda1+(1./lambda1)+(1./(lambda1.^2))-(1./(la	m	HI2	28995x3 double
	12		🛨 R21	0.9990
	$13 - coll2 = 2 \times ((lambda2.^2) - (1./lambda2))$	\equiv	🛨 R22	0.9987
	14 - col22=2*(lambda2-(1./(lambda2.^2)))		📥 a1	6.9398e+11
	15 - col32=6*(lambda2.^3-lambda2.^2-lambda2+(1./lambda2)+(1./(lambda2.^2))-(1./(la	m	< III	Þ

Fig. 16. Obtención de parámetros para densidad 0.7 g/cm³ para probetas pequeñas.

Fig. 17. Diagrama tensión-alargamiento para densidad 0.7 g/cm³ para probetas pequeñas.

- $C10_{068} = 6.0666e+05$
- $C01_{068} = -2.7544e + 05$
- $C11_068 = 4.1912e+04$
- C10_071 =7.1609e+05
- $C01_071 = -3.3508e+05$
- C11_071 = 5.0068e+04
- 2- 0.9 g/cm³

Current Folder 💿	📝 Editor	- C:\Users\USUARIO\Desktop\DATOS ENSAYOS BUENOS\pequeñas\0.9\hiper 0.9\p09hiper.m	Θ×		Workspace	1
🗋 Name 🔻	1	BOJO, CARGAR/IMPORTAR FICHEROS!	<u> </u>		Name 🔺	Value
魡 p09hipergrafica.fig	2				C01 089	-2.5594e+05
魡 p09hiper.m	3 -	lambda1=p0004089A(:,2);			C01 091	-5.8733e+05
	4 -	sigma1=p0004089A(:,3);	=	- 6	C10 089	9.4323e+05
	5				C10 091	1.4034e+06
	6 -	lambda2=p0004091A(:,2);			C11_089	1.1989e+04
	7 -	sigma2=p0004091A(:,3);			C11_091	6.8839e+04
	8				Coptimos1	[9.4323e+05;-2.5594e
	9	%Ajuste por minimos recurrentes			Coptimos2	[1.4034e+06;-5.8733e
	10	%Matriz de observaciones			E PHI1	20500x3 double
	11 -	coll1=2*((lambda1.^2)-(1./lambda1))			PHI2	18139x3 double
	12 -	col21=2*(lambda1-(1./(lambda1.^2)))			R21	0.9959
	13 -	col31=6*(lambda1.^3-lambda1.^2-lambda1+(1./lambda1)+(1./(lambda1.^2))-(1./(lambda1))	am 🗧		R22	0.9976
	14	-			a 1	2.4481e+13
	15 -	coll2=2*//lambda2_^2)-/1_/lambda2))			<	4

Fig. 18. Obtención de parámetros para densidad 0.9 g/cm³ para probetas pequeñas.

Fig. 19. Diagrama tensión-alargamiento para densidad 0.9 g/cm³ para probetas pequeñas.

- $C10_{089} = 9.4323e+05$
- $C01_{089} = -2.5594e + 05$
- $C11_{089} = 1.1989e+04$
- $C10_{091} = 1.4034e+06$
- $C01_091 = -5.8733e+05$
- $C11_091 = 6.8839e+04$
- 3- 1 g/cm³

Current Folder	🕤 📝 Edito	or - C:\Users\USUARIO\Desktop\DATOS ENSAYOS BUENOS\pequeñas\1\hiper 1\p1hiper.m) x	Workspace	1
🗋 Name 💌	1	<pre>BOJO, CARGAR/IMPORTAR FICHEROS!</pre>	•	Name 🔺	Value
魡 p1hipergrafica.fig	2				7.1294e+04
魡 p1hiper.m	3 -	lambda1=p0004097A(:,2);		C01 099	-6.5408e+05
	4 -	sigma1=p0004097A(:,3);	=	C10 097	5.8751e+05
	5			C10_099	1.5768e+06
	6 -	lambda2=p0004099A(:,2);	15	C11_097	-3.0880e+04
	7 -	sigma2=p0004099A(:,3);		C11_099	8.3956e+04
	8			E Coptimos1	[5.8751e+05;7.1294e+
	9	%Ajuste por minimos recurrentes		E Coptimos2	[1.5768e+06;-6.5408e
	10	%Matriz de observaciones		E PHI	21411x3 double
	11 -	coll1=2*((lambda1.^2)-(1./lambda1))		HI2	27551x3 double
	12 -	col21=2*(lambda1-(1./(lambda1.^2)))		H R21	0.9921
	13 -	col31=6*(lambda1.^3-lambda1.^2-lambda1+(1./lambda1)+(1./(lambda1.^2))-(1./(lam	Ξ	🛨 R22	0.9967
	14	· · · · · · · · · · · · · · · · · · ·	=	📩 a1	8.7661e+13
	15 -	col12=2*((lambda2.^2)-(1./lambda2))		<Ⅲ	•

Fig. 20. Obtención de parámetros para densidad 1 g/cm³ para probetas pequeñas.

Fig. 21. Diagrama tensión-alargamiento para densidad 1 g/cm³ para probetas pequeñas.

- $C10_{097} = 5.8751e+05$
- $C01_097 = 7.1294e+04$
- $C11_{097} = -3.0880e+04$
- $C10_{099} = 1.5768e+06$
- C01_099 = -6.5408e+05
- C11_099 = 8.3956e+04

Capítulo 3. Curve Fitting

Para este segundo método empleado, se utiliza el software informático ANSYS. El curve fitting se basa en un ajuste de curvas. Al igual que para la técnica anteriormente aplicada, se obtienen resultados para dos modelos:

- Neo-Hooke: Con el que aparece un parámetro de material.
- Mooney-Rivlin: Caracteriza al material con 3 parámetros de modelo.

Se comienza explicando brevemente los pasos a usar para la obtención de los parámetros deseados, primero para el modelo Neo-Hookeano y seguido para el de Mooney-Rivlin.

3.1. Desarrollo para Neo-Hooke

Para obtener el parámetro C_{10} para cada ensayo de cada densidad, se debe realizar el siguiente proceso:

Para explicar dicho proceso, se expone un ejemplo de Log File extraído de ANSYS. Este caso es: P_0.004_0.68

/input, menust, tmp, '' /GRA, POWER /GST, ON /PL0, INF0, 3 /GRO, CURL, ON /CPLANE, 1 /REPLOT, RESIZE WPSTYLE, , , , , , , , 0 !* /NOPR KEYW, PR SET, 1 KEYW, PR_STRUC, 1 KEYW, PR THERM, O KEYW, PR_FLUID, 0 KEYW, PR_ELMAG, 0 KEYW, MAGNOD, 0

KEYW, MAGEDG, 0 KEYW, MAGHFE, 0 KEYW, MAGELC, 0 KEYW, PR_MULTI, 0 KEYW, PR_CFD, 0 KEYW, LSDYNA, 0 KEYW, PR_DYNA, O /G0 ۱* /COM. /COM, Preferences for GUI filtering have been set to display: /COM, Structural ۱* /PREP7 1* /com, Curve Fitting Experimental Data Written To Geom_UNIA_1.exp TBFT, EADD, 1, UNIA, Geom_UNIA_1. exp TBFT, FADD, 1, HYPER, NEO, TBFT, SOLVE, 1, HYPER, NEO, , 1

Lo que interesa del Log File son los últimos pasos, en los cuales se definen las características de nuestro material y lo que se desea obtener. En la ayuda del programa ANSYS vienen explicados correctamente cada paso:

TBFT, EADD, 1, UNIA, Geom_UNIA_1. exp

TBFT, EADD, ID, Option1, Option2, Option3, Option4 ! Se introducen los datos experimentales.

Dónde:

ID = Índice que corresponde al número de material

Option1 = UNIA, BIAX, SHEA, SSHE or VOLU (nuestro caso uniaxial = 1)

Option2 = Nombre del archive que contiene los datos experimentales

Option3 = Extensión del archivo

Option4 = Directorio del archivo

TBFT, FADD, 1, HYPER, NEO,

TBFT, FADD, ID, HYPER, Option2, Option3 ! Se introducen las opciones del modelo del material.

Dónde:

ID = Índice que corresponde al número de material

Option2 = Nombre del modelo (en este caso Neo Hooke)

Option3 = Orden o número de coeficientes. (Cómo es Neo hooke sólo es un parámetro)

TBFT, SOLVE, 1, HYPER, NEO, , 1

TBFT,SOLVE,ID,HYPER,Option2,Option3,Option4, ..., Option7 ! Establece los parámetros de control y lo resuelve.

Donde:

ID = Indice que corresponde al número de material

Option2 = Nombre del modelo (Este caso es Neo Hooke)

Option3 = Orden o número de coeficientes (Neo Hooke = 1)

Option4 = Procedimiento de curve fitting

- 0= Mínimos cuadrados no normalizados
- 1= Mínimos cuadrados normalizados (este caso es normalizado)

Option5 = Número máximo de iteraciones.

Option6 = Tolerancia de cambios residuales.

Option7 = Tolerancia de cambios en los coeficientes.

3.1.1. Resultados para Neo-Hooke

Los resultados obtenidos para el ajuste por Curve fitting para el modelo de Neo-Hooke son los siguientes:

Probetas grandes

1- 0.73 g/cm³

Ī	Curve Fitting Date Experiments Exp:1 Un Curve Fits	Hyperelastic Mooney Ogden Neo-Hookean	1	Coeff Index	Coeff Name mu d	Coeff Value 873932.590853 0	Fix
	Surverna Neo-Hoo	Polynomial Arruda-Boyce Gent Gent Yeoh Blatz-Ko (Foam) Gat Hyper Foam(Ogden Foar Extended Tube Model		Calculated Use Normali Temperature I ReferenceTe	Residual ized Error Dependency mperature	1627.70804868 マ	•

Fig. 22. Obtención de parámetros para Neo-Hooke con densidad 0.73 g/cm³ para probetas grandes mediante curve fitting.

Fig. 23. Diagrama tensión-deformación para densidad 0.73 g/cm³ (Probetas grandes).

2- 0.82 g/cm³

Material Models Defined	- Solve for the Following Function		Sol	ution Data			
Curve Fitting Data	角 Hyperelastic	^		Coeff Index	Coeff Name	Coeff Value	Fix
Experiments	Mooney		1		mu	839830.9464	41 🗆
Secure Etc	Ogden		2		d	0	
 Securve Fills Neo-Hoo 	Polynomial			Calculated	Residual	2245.06258892	
	Arruda-Boyce			Use Normal	ized Error		
	 Gent Yeoh 			Temperature [Dependency		

Fig. 24. Obtención de parámetros para Neo-Hooke con densidad 0.82 g/cm³ para probetas grandes mediante curve fitting.

Fig. 25. Diagrama tensión-deformación para densidad 0.82 g/cm³ (Probetas grandes).

3- 0.83 g/cm³

Fig. 26. Obtención de parámetros para Neo-Hooke con densidad 0.83 g/cm³ para probetas grandes mediante curve fitting.

Fig. 27. Diagrama tensión-deformación para densidad 0.83 g/cm³ (Probetas grandes).

4- 0.92 g/cm³

Material Models Defined	- Solve for the Following Function -	S	olution Data			
Curve Fitting Data Experiments Exp:1 Un Curve Fits	Hyperelastic Mooney GOden Neo-Hookean	1	Coeff Index	Coeff Name mu d	Coeff Value 1585526.56157 0	Fix
Neo-Hoo	Polynomial Arruda-Boyce Cort		Calculate Use Norm	d Residual alized Error	2456.45559618	

Fig. 28. Obtención de parámetros para Neo-Hooke con densidad 0.92 g/cm³ para probetas grandes mediante curve fitting.

Fig. 29. Diagrama tensión-deformación para densidad 0.92 g/cm³ (Probetas grandes).

5- 0.93 g/cm³

Material Models Defined	Solve for the Following Function		Solution Data			
Curve Fitting Data	A Hyperelastic	-	Coeff Index	Coeff Name	Coeff Value	Fix
B Experiments	Mooney		1	mu	1593086.86101	
Sector	🙀 Ogden		2	d	0	_
🗯 Curve Fits	Neo-Hookean		2	u	lo	1
8 Neo-Hoo	Polynomial		Calculate	ed Residual	1656.24646293	
	Arruda-Boyce		Use Norm	nalized Error	v	

Fig. 30. Obtención de parámetros para Neo-Hooke con densidad 0.93 g/cm³ para probetas grandes mediante curve fitting.

Fig. 31. Diagrama tensión-deformación para densidad 0.93 g/cm³ (Probetas grandes).

6- 1.01 g/cm³

Material Models Defined	Solve for the Following Function	S	olution Data			
A Curve Fitting Data	🗀 Hyperelastic		Coeff Index	Coeff Name	Coeff Value	Fix
Between Experiments	Mooney	1		mu	667205.695813	
⊗ Exp:1 Un p Curve Fits	Boolean Boolean	2		d	0	
8 Neo-Hoo	Polynomial		Calculated	Residual	13733.1344772	
	Arruda-Boyce		Use Normal	ized Error	V	
	8 Gent Reph		Temperature [Dependency		

Fig. 32. Obtención de parámetros para Neo-Hooke con densidad 1.01 g/cm³ para probetas grandes mediante curve fitting.

Fig. 33. Diagrama tensión-deformación para densidad 1.01 g/cm³ (Probetas grandes).

7- 1.03 g/cm³

Curve Fitting Data Experiments Exp:1 Un Curve Fits	Hyperelastic Mooney Ogden Neo-Hookean	1 2	Coeff Index n d	Coeff Name	Coeff Value 432796.01458 0	Fix
Neo-Hoo	 Polynomial Arruda-Boyce Gent 		Calculated R Use Normaliz	esidual ed Error	22033.5424066 🔽	

Fig. 34. Obtención de parámetros para Neo-Hooke con densidad 1.03 g/cm³ para probetas grandes mediante curve fitting.

Fig. 35. Diagrama tensión-deformación para densidad 1.03 g/cm³ (Probetas grandes).

Probetas pequeñas

1- 0.68 g/cm³

Fig. 36. Obtención de parámetros para Neo-Hooke con densidad 0.68 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 37. Diagrama tensión-deformación para densidad 0.68 g/cm³ (Probetas pequeñas).

2-0.71 g/cm³

Material Models Defined	Solve for the Following Function	Sol	ution Data					
A Curve Fitting Data	Byperelastic		Coeff Index	Coeff Name		Coeff Value	Fix	
B Experiments	🙀 Mooney	1	mu			561076 599316	г	
Exp:1 Un	📷 Ogden					001010.000010		
🔗 Curve Fits	Neo-Hookean	2		a	μ			
Neo-Hoo	Polynomial		Calculated	Residual	387.	622425296		
	Arruda-Boyce		Use Normal	ized Error		$\overline{\mathbf{v}}$		

Fig. 38. Obtención de parámetros para Neo-Hooke con densidad 0.71 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 39. Diagrama tensión-deformación para densidad 0.71 g/cm³ (Probetas pequeñas).

3- 0.89 g/cm³

Fig. 40. Obtención de parámetros para Neo-Hooke con densidad 0.89 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 41. Diagrama tensión-deformación para densidad 0.89 g/cm³ (Probetas pequeñas).

4- 0.91 g/cm³

Material Models Defined	Solve for the Following Function	Solu	tion Data			
A Curve Fitting Data	Byperelastic		Coeff Index	Coeff Name	Coeff Value	Fix
B Experiments	Mooney	1		mu	890228 302707	
Exp:1 Un	🙀 Ogden	2		d	0	
🔒 Curve Fits	😣 Neo-Hookean	~		u	þ	1
8 Neo-Hoo	Polynomial		Calculate	ed Residual	2272.0746204	
	Arruda-Boyce		Use Norm	nalized Error		

Fig. 42. Obtención de parámetros para Neo-Hooke con densidad 0.91 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 43. Diagrama tensión-deformación para densidad 0.91 g/cm³ (Probetas pequeñas).

5- 0.97 g/cm³

Curve Fitting Data	relastic 🔄 🖄 Mooney Ogden	1	Coeff Index n	Coeff Name	Coeff Value 684485.086169	Fix
Curve Fits Second Sec	leo-Hookean Polynomial Arruda-Boyce		Calculated R Use Normaliz	esidual ed Error	6096.45985451 R	

Fig. 44. Obtención de parámetros para Neo-Hooke con densidad 0.97 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 45. Diagrama tensión-deformación para densidad 0.97 g/cm³ (Probetas pequeñas).

6- 0.99 g/cm³

Curve Fitting Data Experiments Exp:1 Un Curve Fits	Hyperelastic Mooney Goden Neo Hookean	Á	C 1 2	Coeff Index	Coeff Name nu	Coeff 7862 0	Value 47.492275	Fix □
Neo-Hoo	Polynomial			Calculated F	Residual	7147.9053	7742	
	Arruda-Boyce			Use Normaliz	ed Error		$\overline{\mathbf{v}}$	

Fig. 46. Obtención de parámetros para Neo-Hooke con densidad 0.99 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 47. Diagrama tensión-deformación para densidad 0.99 g/cm³ (Probetas pequeñas).

3.2. Mooney-Rivlin

Para el caso de Mooney-Rivlin, el proceso es el mismo que para Neo-Hooke, a diferencia de que para Mooney-Rivlin, los parámetros a obtener son 3.

El procedimiento, por lo tanto sería:

/input, menust, tmp, '' /GRA, POWER /GST, ON /PL0, INF0, 3 /GRO, CURL, ON /CPLANE, 1 /REPLOT, RESIZE WPSTYLE, , , , , , , , 0 !* /NOPR KEYW, PR_SET, 1 KEYW, PR_STRUC, 1 KEYW, PR_THERM, 0 KEYW, PR_FLUID, 0 KEYW, PR_ELMAG, O KEYW, MAGNOD, O KEYW, MAGEDG, O KEYW, MAGHFE, 0 KEYW, MAGELC, 0 KEYW, PR_MULTI, 0 KEYW, PR_CFD, 0 KEYW, LSDYNA, O KEYW, PR_DYNA, O /G0

```
!*
/COM,
/COM, Preferences for GUI filtering have been set to display:
/COM, Structural
!*
/PREP7
!*
/com, Curve Fitting Experimental Data Written To Geom_UNIA_1.exp
TBFT, EADD, 1, UNIA, Geom_UNIA_1.exp
TBFT, FADD, 1, HYPER, MOON, 3
TBFT, SOLVE, 1, HYPER, MOON, 3, 1
```

Lo que interesa del Log File son los últimos pasos, en los cuales se definen las características de nuestro material y lo que se desea obtener. En la ayuda del programa ANSYS vienen explicados correctamente cada paso:

TBFT, EADD, 1, UNIA, Geom_UNIA_1. exp

TBFT, EADD, ID, Option1, Option2, Option3, Option4 ! Se introducen los datos experimentales.

Dónde:

ID = Índice que corresponde al número de material

Option1 = UNIA, BIAX, SHEA, SSHE or VOLU (nuestro caso uniaxial = 1)

Option2 = Nombre del archive que contiene los datos experimentales

Option3 = Extensión del archivo

Option4 = Directorio del archivo

TBFT, FADD, 1, HYPER, MOON, 3

TBFT, FADD, ID, HYPER, Option2, Option3 ! Se introducen las opciones del modelo del material.

Dónde:

ID = Índice que corresponde al número de material

Option2 = Nombre del modelo (en este caso Mooney-Rivlin)

Option3 = Orden o número de coeficientes. (Cómo es Mooney-Rivlin se eligen 3 parámetros)

TBFT, SOLVE, 1, HYPER, MOON, 3, 1

TBFT,SOLVE,ID,HYPER,Option2,Option3,Option4, ..., Option7 ! Establece los parámetros de control y lo resuelve.

Donde:

ID = Indice que corresponde al número de material

Option2 = Nombre del modelo (Este caso es Mooney-Rivlin)

Option3 = Orden o número de coeficientes (Mooney-Rivlin = 3)

Option4 = Procedimiento de curve fitting

- 0= Mínimos cuadrados no normalizados
- 1= Mínimos cuadrados normalizados (este caso es normalizado)

Option5 = Número máximo de iteraciones.

Option6 = Tolerancia de cambios residuales.

Option7 = Tolerancia de cambios en los coeficientes.

3.2.1. Resultados para Mooney-Rivlin

Probetas grandes

1- 0.73 g/cm³

Curve Fitting Data	B Hyperelastic	<u>^</u>		Coeff Index Coe	ff Name	Coeff Value	Fix
Experiments	Mooney		1	C10		1367349.65604	
Curve Fits	Sector 2 Parameter		2	C01		-728456.496231	
8 Mooney (§ 5 Parameter		3	C11		104344.114078	
	8 9 Parameter		4	d		0	
	🔯 Ogden			Calculated Residual	4	6 2205132298	

Fig. 48. Obtención de parámetros para Mooney-Rivlin con densidad 0.73 g/cm³ para probetas grandes mediante curve fitting.

Fig. 49. Diagrama tensión-deformación para densidad 0.73 g/cm³ (Probetas grandes).

2- 0.82 g/cm³

B Curve Fitting Data	Byperelastic	*		Coeff Index Coeff Name	Coeff Value	Fix
Experiments	Mooney		1	C10	1333993.4345	
Section 4 Sectio	 2 Parameter 3 Parameter 		2	C01	-689364.700754	
8 Mooney (S Parameter		3	C11	95102.9161446	
	9 Parameter		4	d	0	
	Cadon					

Fig. 50. Obtención de parámetros para Mooney-Rivlin con densidad 0.82 g/cm³ para probetas grandes mediante curve fitting.

Fig. 51. Diagrama tensión-deformación para densidad 0.82 g/cm³ (Probetas grandes).

3- 0.83 g/cm³

Hyperelastic	<u>_</u>	Coeff Index	Coeff Name	Coeff Value	Fix
American Mooney		1	C10	696931.807633	
2 Parameter		2	C01	-209113.581721	
 S Parameter S Parameter 		3	C11	15872.1159812	
9 Parameter		4	d	0	Г

Fig. 52. Obtención de parámetros para Mooney-Rivlin con densidad 0.83 g/cm³ para probetas grandes mediante curve fitting.

Fig. 53. Diagrama tensión-deformación para densidad 0.83 g/cm³ (Probetas grandes).

4- 0.92 g/cm³

B Curve Fitting Data	B Hyperelastic	<u>^</u>	Coeff Index	Coeff Name	Coeff Value	Fix
Experiments	Mooney	1		C10	2917028.23344	
Curve Fits	Sector 2 Parameter	2		C01	-1661292.32359	
8 Mooney (S Parameter	3		C11	259048.120789	
	8 9 Parameter	4		d	0	
	📓 Ogden		Calculated	Residual	25.4437552013	

Fig. 54. Obtención de parámetros para Mooney-Rivlin con densidad 0.92 g/cm³ para probetas grandes mediante curve fitting.

Fig. 55. Diagrama tensión-deformación para densidad 0.92 g/cm³ (Probetas grandes).

5- 0.93 g/cm³

Avperelastic	-	Coeff Index	Coeff Name	Coeff Value	Fix
A Mooney		1	C10	2795290.80601	
2 Parameter		2	C01	-1591790.35674	
S Parameter		3	C11	246502.477935	Γ
9 Parameter		4	d	0	Γ

Fig. 56. Obtención de parámetros para Mooney-Rivlin con densidad 0.93 g/cm³ para probetas grandes mediante curve fitting.

Fig. 57. Diagrama tensión-deformación para densidad 0.93 g/cm³ (Probetas grandes).

6- 1.01 g/cm³

B Hyperelastic	<u> </u>	Coeff Index	Coeff Name	Coeff Value	Fix
Mooney	1		C10	1217507.6194	
3 Parameter	2		C01	-353354.596622	
S Parameter	3		C11	24149.0401038	
8 9 Parameter	4		d	0	

Fig. 58. Obtención de parámetros para Mooney-Rivlin con densidad 1.01 g/cm³ para probetas grandes mediante curve fitting.

Fig. 59. Diagrama tensión-deformación para densidad 1.01 g/cm³ (Probetas grandes).

7- 1.03 g/cm³

Byperelastic	<u>^</u>	Coeff Index	Coeff Name	Coeff Value	Fix
Mooney		1	C10	3032341.43926	
2 Parameter		2	C01	-1542665.66347	
§ 5 Parameter		3	C11	207616.075316	
9 Parameter 0 - data		4	d	0	

Fig. 60. Obtención de parámetros para Mooney-Rivlin con densidad 1.03 g/cm³ para probetas grandes mediante curve fitting.

Fig. 61. Diagrama tensión-deformación para densidad 1.03 g/cm³ (Probetas grandes).

Probetas pequeñas

1- 0.68 g/cm³

Solve for the Following Funct	ion	Solution Data			
Apperelastic	<u>^</u>	Coeff Index	Coeff Name	Coeff Value	Fix
Mooney		1	C10	610621.28416	
2 Parameter		2	C01	-275280.619905	
S Parameter		3	C11	38227.102636	
8 9 Parameter		4	d	0	
Co Oadan					

Fig. 62. Obtención de parámetros para Mooney-Rivlin con densidad 0.68 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 63. Diagrama tensión-deformación para densidad 0.68 g/cm³ (Probetas pequeñas).

2- 0.71 g/cm³

🝰 Hyperelastic 🔶		Coeff Index	Coeff Name	Coeff Value	Fix
Mooney	1		C10	592026.084538	
3 Parameter	2		C01	-224560.529552	
S Parameter	3		C11	19341.1688009	
9 Parameter	4		d	0	

Fig. 64. Obtención de parámetros para Mooney-Rivlin con densidad 0.71 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 65. Diagrama tensión-deformación para densidad 0.71 g/cm³ (Probetas pequeñas).

3- 0.89 g/cm³

Material Models Defined	Solve for the Following Function	 ⊢ Sc	olution Data				
Curve Fitting Date	🔗 Hyperelastic		Coeff Index	Coeff Name	Coeff Value	Fix	
Experiments	Mooney	1		C10	1103389.31777		
⊗ Exp. Fon	 2 Parameter 8 3 Parameter 	2		C01	-378282.6045		
8 Mooney (S Parameter	3		C11	30162.7045227		
	8 9 Parameter	4		d	0		
	🙀 Oaden						

Fig. 66. Obtención de parámetros para Mooney-Rivlin con densidad 0.89 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 67. Diagrama tensión-deformación para densidad 0.89 g/cm³ (Probetas pequeñas).

4- 0.91 g/cm³

Material Models Defined	Solve for the Following Functio	۱— I	Solu	tion Data			
Curve Fitting Data	B Hyperelastic	<u>_</u>		Coeff Index	Coeff Name	Coeff Value	Fix
B Experiments	Mooney		1		C10	1421566.97566	
⊗ Exp:1 Un	2 Parameter		2		C01	-590727 538051	г
Mooney (S Parameter		3		C11	60978 1723	
 Wooney (9 Parameter		4		d	0	
	Orden			Onlaulate	(Desident)	0.05040070007	

Fig. 68. Obtención de parámetros para Mooney-Rivlin con densidad 0.91 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 69. Diagrama tensión-deformación para densidad 0.91 g/cm³ (Probetas pequeñas).

5-0.97 g/cm³

Curve Fitting Data	Hyperelastic Mooney	-	1	Coeff Index Coeff Nam	ie	Coeff Value	Fix
⊗ Exp:1 Un ﷺ Curve Fits ⊗ Mooney (2 Parameter 3 Parameter 5 Parameter 9 Parameter 		2	C01 C11	-	421844.025912 -81909.9824272	
	Coden		-	ŭ	ľ	0	1

Fig. 70. Obtención de parámetros para Mooney-Rivlin con densidad 0.97 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 71. Diagrama tensión-deformación para densidad 0.97 g/cm³ (Probetas pequeñas).

6- 0.99 g/cm³

Material Models Defined	Solve for the Following Function	Solu	tion Data —			
Curve Fitting Data	A Hyperelastic		Coeff Index	Coeff Name	Coeff Value	Fix
B Experiments	A Mooney	1		C10	1282337 20805	Г
8 Exp:1 Un	8 2 Parameter	2		C01	207124 601755	_
🔒 Curve Fits	8 3 Parameter	2		COT	-307124.001733	
8 Mooney (8 5 Parameter	3		C11	9962.26593006	
	9 Parameter	4		d	0	

Fig. 72. Obtención de parámetros para Mooney-Rivlin con densidad 0.99 g/cm³ para probetas pequeñas mediante curve fitting.

Fig. 73. Diagrama tensión-deformación para densidad 0.99 g/cm³ (Probetas pequeñas).

Capítulo 4. Resumen de resultados

A continuación, a modo de resumen, se exponen mediante tablas los resultados obtenidos para cada método empleado y cada densidad:

4.1. Ajuste mínimos cuadrados (MATLAB)

4.1.1. Neo-Hooke

	PROBETAS GRANDES							
	d = 0.7 g/cm ³	d = 0.8 g/cm ³		d = 0.9 g/cm ³		d = 1 g/cm ³		
Ра	0.73	0.82A	0.83A	0.92A	0.93A	1.01A	1.03A	
C ₁₀	2.4421e+05	2.3920e+05	2.2625e+05	4.6515e+05	4.4623e+05	3.8515e+05	5.7061e+05	

Tabla 1: Constante hiperelástica para probetas grandes obtenidas mediante ajuste de mínimos cuadrados para modelo Neo-Hooke.

	PROBETAS PEQUEÑAS								
	d = 0.7 g/cm ³		d = 0.9	d = 0.9 g/cm ³		g/cm ³			
Ра	0.68	0.71	0.89A	0.91A	0.97A	0.99A			
C ₁₀	1.5115e+05	1.6934e+05	2.7681e+05	3.4536e+05	3.0254e+05	4.4347e+05			

Tabla 2: Constante hiperelástica para probetas pequeñas obtenidas mediante ajuste de mínimos cuadrados para modelo Neo-Hooke.

4.1.2. Mooney-Rivlin

PROBETAS GRANDES									
	d = 0.7 g/cm ³	d = 0.8 g/cm ³		d = 0.9 g/cm ³		d = 1 g/cm ³			
	0.73B	0.82A	0.83A	0.92A	0.93A	1.01A	1.03A		
C ₁₀ (Pa)	1.21E+06	1.15E+06	5.93E+05	2.71E+06	2.65E+06	1.05E+06	2.61E+06		
C ₀₁ (Pa)	-5.96E+05	-5.40E+05	-1.27E+05	-1.49E+06	-1.46E+06	- 2.24E+05	-1.20E+06		
C ₁₁ (Pa)	7.66E+04	6.67E+04	1.29E+03	2.21E+05	2.17E+05	3.22E+03	1.42E+05		

Tabla 3: Constantes hiperelásticas para probetas grandes obtenidas mediante ajuste de

mínimos cuadrados para modelo Mooney-Rivlin.

PROBETAS PEQUEÑAS									
	d = 0.7 g/cm ³		d = 0.9 g/cm ³		d = 1 g/cm ³				
	0.68A	0.71A	0.89A	0.91A	0.97A	0.99A			
C ₁₀ (Pa)	6.07E+05	7.16E+05	9.43E+05	1.4E+06	5.87E+05	1.58E+06			
С ₀₁ (Ра)	-2.75E+05	-3.35E+05	-2.56E+05	-5.87E+05	7.13E+04	-6.54E+05			
C ₁₁ (Pa)	4.19E+04	5.01E+04	1.2E+04	6.88E+04	-3.09E+04	8.39E+04			

Tabla 4: Constantes hiperelásticas para probetas pequeñas obtenidas mediante ajuste de mínimos cuadrados para modelo Mooney-Rivlin.

4.2. Curve fitting (ANSYS)

4.2.1. Neo-Hooke

	PROBETAS GRANDES								
	d = 0.7 g/cm ³	d = 0.8 g/cm ³		d = 0.9 g/cm ³		d = 1 g/cm ³			
Pa	0.73	0.82A	0.83A	0.92A	0.93A	1.01A	1.03A		
C ₁₀	8.7392e+05	8.3983e+05	5.7422e+05	1.5855e+06	1.5930e+06	6.6721e+05	4.3279e+05		

Tabla 5: Constante hiperelástica para probetas grandes (modelo Neo-Hooke) obtenidas mediante Curve-fitting.

	PROBETAS PEQUEÑAS								
	d = 0.7 g/cm ³		$d = 0.9 \text{ g/cm}^3$		$d = 1 g/cm^3$				
Ра	0.68	0.71	0.89A	0.91A	0.97A	0.99A			
C ₁₀	5.1704e+05	5.6107e+05	9.0608e+05	8.9022e+05	6.8448e+05	7.8624e+05			

Tabla 6: Constante hiperelástica para probetas pequeñas (modelo Neo-Hooke) obtenidas mediante Curve-fitting.

4.2.2. Mooney-Rivlin

PROBETAS GRANDES									
	d = 0.7 g/cm ³	d = 0.8	d = 0.9 g/cm ³		d = 1 g/cm ³				
	0.73	0.82A	0.83A	0.92A	0.93A	1.01A	1.03A		
C ₁₀ (Pa)	1.37E+06	1.33E+06	6.97E05	2.91E+06	2.79E+06	1.21E+06	3.03E+06		
С ₀₁ (Ра)	-7.28E+05	-6.89E+05	-2.09E+05	-1,66E+06	-1.59E+06	-3.5E+05	-1.54E+06		
C ₁₁ (Pa)	1.04E+05	9.51E+04	1.58E+04	2.59E+05	2.46E+05	2.41E+04	2.08E+05		

Tabla 7: Constantes hiperelásticas para probetas grandes (modelo Mooney-Rivlin) obtenidas

mediante Curve-fitting.

PROBETAS PEQUEÑAS									
	d = 0.7 g/cm ³		d = 0.9 g/cm ³		d = 1 g/cm ³				
	0.68A	0.71A	0.89A	0.91A	0.97A	0.99A			
C ₁₀ (Pa)	6.11E+05	5.92E+05	1.1E+06	1.42E+06	1.31E+05	1.28E+06			
C ₀₁ (Pa)	-2.75E+05	-2.24E+05	-3.78E+05	-5.91E+05	4.21E+05	-3.87E+05			
C ₁₁ (Pa)	3.82E+04	1.93E+04	3.02E+04	6.1E+04	-8.19E+04	9.96E+03			

Tabla 8: Constantes hiperelásticas para probetas pequeñas (modelo Mooney Rivlin) obtenidasmediante Curve-fitting.