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All of science is nothing more than the refinement of everyday thinking.

Albert Einstein





Abstract

Controlled quantum platforms have become in the last years a major tool for the

implementation of quantum information protocols of increasing complexity. At the

same time, the technology needed to control and scale up these devices is becoming

more demanding, and the physics behind this progress is limited by deep fundamental

constraints. Some decades ago, the experimental di�culties to build better quantum

platforms, on one hand, and the intellectual e↵orts to develop more e�cient and so-

phisticated quantum protocols, on the other hand, were two roads that did not cross

frequently.

Nowadays, we have realized that a profound understanding of both the current

technology and fundamental physical processes has to be combined with an increased

flexibility in designing quantum information processes. In this context, quantum simu-

lations play a special role: they have been proposed as a first application of quantum

computers, and it is believed that they will soon bring new results that are unaccessible

by classical computers.

In this Thesis, we propose a series of quantum information and simulation proto-

cols, analyzing their feasibility using current technology, in both trapped-ion and circuit

quantum electrodynamics platforms. We find that the proposed protocols have to be

adapted to the advantages and drawbacks of specific platforms. For example, we prove

that a protected qubit, based on a dual representation of the topological fermionic

chain, can be encoded in an ion-trap system due to its specific properties. We analyze

the quantum simulation of fermions, finding an increased e�ciency due to collective

gates that are realizable with ion-trap technology. Within this spirit, we benchmark the

possibilities of circuit quantum electrodynamics setups in hosting quantum simulations

of spins, fermionic and fermionic-bosonic systems. Finally, we extend these concepts

to the quantum simulation of classical dynamical systems, finding that a simulation

of lattice-Boltzmann dynamics can be encoded in coupled pseudospin-bosonic systems.

These are the first steps to unravel the unexplored area of simulations of fluid dynamics

on a quantum computer.

We believe that this Thesis will contribute to enforce the connections between com-

plex systems in quantum information and their direct experimental implementations in

quantum technologies.
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En! esta! Tesis,! se! considera! la! realización! práctica! de! varios! protocolos! de!

información! cuántica! en! diferentes! plataformas! cuánticas,! considerando!

principalmente! experimentos! basados! en! iones! atrapados! y! arquitecturas!

superconductoras.! Los! límites! de! tiempos! de! coherencia,! control! cuántico,!

fuentes!de!errores,!y!los!tipos!de!interacciones!cuánticas!son!analizados!en!cada!

plataforma! cuántica! específica.! Las! distintas! ideas! presentadas! en! el! texto! son!

propuestas!para!plataforma!experimentales!específicas,!explotando!cada!vez!los!

recursos!disponibles.!

Creemos!que!los!resultados!aquí!obtenidos!servirán!para!fortalecer!la!conexión!

entre!la!física!teórica!y!experimental,!orientada!a!la!información!cuántica,!cuando!

se! trata! de! aplicaciones! prácticas.! Se! espera! que! el! trabajo! aquí! realizado!

contribuya,!en!un!futuro!próximo,!a!traer!nuevos!conocimientos!en!el!campo!de!

la! materia! condensada,! física! de! alta! energía,! química! cuántica! y! dinámica! de!

fluidos! clásicos,! dependiendo! de! como! como! las! plataformas! cuánticas!

disponibles!vayan!escalando!en!términos!de!tamaño!y!de!control.!

En! el! Capítulo! 2,! hemos! demostrado! que! cadenas! de! iones! atrapados! pueden!

albergar!un!qubit!protegido,!basado!en!una!representación!dual!de!una!cadena!!

fermiónica! topológica.! Nos! enfrentamos! al! problema! desde! un! enfoque! de!

primeros! principios,! preguntándonos! cual! es! el! conjunto!mínimo!de! requisitos!

experimentales!para!construir,!en!un!sistema!de!iones!atrapados,!un!qubit!lógico,!

incluyendo!con!control!cuántico,!y!con!tiempos!de!coherencia!superiores!a!las!de!

un! qubit! físico.! Hemos! predicho! que! el! qubit! propuesto! puede! superar! la!

coherencia!estándar!de!los!qubit!basados!en!iones!atrapados!en!más!de!un!orden!

de! magnitud,! produciendo! una! memoria! cuántica! eficiente.! Rotaciones! locales!

lógicas!sobre!el!qubit!se!pueden!realizar!por!medio!de! interacciones!globales!y!

locales! sobre! los! iones.! Por! otra! parte,! una! interfaz! cuántica! con! estados!



fotónicos! se! puede! implementar,! para! la! realización! de! puertas! de! dos! qubits!

entre! diferentes! qubits! protegidos.! Estos! qubits! de! paridad! representan! un!

primer! ejemplo! práctico,! realizable! con! los! recursos! mínimos! cuántica,! de! un!

qubit!lógico!con!puertas!lógicas!asociadas.!

En! los! Capítulos! 3,! 4! y! 5! hemos! desarrollado! un! protocolo! para! la! simulación!

cuántica!digital!de!sistemas!acoplados!de!fermiones!y!bosones,!en!plataformas!de!

iones! atrapados.! Este! protocolo! ha! sido! aplicado! primero! a! la! simulación! de!

modelos! fermionicos! interactuantes.! Hemos! propuesto! que! las! interacciones!

colectivas!entre!un!conjunto!de!muchos!iones!pueden!implementar!interacciones!

fermionicas! eficientemente,! hasta! altos! ordenes! en! las! interacciones.! Estas!

puertas!colectivas!también!dan!cuenta!de!una!mayor!eficiencia!en!la!simulación!

de! sistemas! fermiónicos! en! dos! y! tres! dimensiones,! en! comparación! con! los!

protocolos!de!simulación!basados!en!puertas!de!dos!qubits!locales.!La!dinámica!

total!del!modelo!fermiónico!simulado!se!recupera!a!continuación!por!medio!de!

una! digitalización! y! mapeo! de! JordanOWigner.! Con! la! tecnología! de! iones!

atrapados!actuales,!más!de!100!puertas!se!han!realizado!en!un!solo!experimento.!

De!hecho,! sin! corrección!de! errores,! uno!esperaría! la! realización!de! cientos!de!

puertas! en! tiempos! más! cortos! que! el! tiempo! de! decoherencia! de! 30! ms.! El!

simulador!puede!ser!útil!en!la!realización!de!una!amplia!gama!de!cálculos!de!la!

materia! condensada,! incluidos! los! relacionados! con! la! interacción! de! muchos!

cuerpos!como!la!de!los!modelos!de!Kondo,!FermiOHubbard,!o!Fröhlich.!Además,!

las! simulaciones! cuánticas! nos! permitirán! reproducir! la! dinámica! completa! de!

estos! sistemas,! evitando! aproximaciones! de! campo! medio! como! HartreeOFock!

para!simplificar!las!interacciones!no!lineales.!La!velocidad!a!la!que!los!sistemas!

de! ionOtrap! realmente! mejorar,! combinada! con! el! aumento! de! la! eficiencia! de!

nuestra!propuesta,!hacen!que!estos!resultados!son!relevantes,!por!ejemplo,!para!

las!simulaciones!cuánticas!de!sistemas!de!materia!condensada,!o!para!sondear!la!

física!de!alta!energía!en!no!regímenes!non!perturbativos.!

En! el! Capítulo! 4,! hemos! extendido! el! protocolo! simulación! presentada! en! el!

Capítulo!3!a!sistemas!acoplados!de!bosónes!y!fermióne,!explicando!en!detalle!la!

forma! en! que! se! puede! realizar! el!modelo! de!Holstein.! La! simulación! de! estos!



sistemas! tiene! una!mayor! complejidad! con! respecto! a! los! sistemas! puramente!

fermionicos,! debido! al! crecimiento! rápido! del! espacio! de! Hilbert,! con! el!

crecimiento! de! la! población! bosonica.! Vale! la! pena! mencionar! que! nuestra!

simulación!cuántica!superaría!los!límites!de!los!ordenadores!clásicos!solo!con!10!

iones!y!5!fonones!por!ion.!Esto!permitirías!estudiar!la!formación!de!polarones!en!

un! régimen! de! parámetros! muy! amplio.! Los! futuros! experimentos! que!

involucran! 20! a! 30! iones! permitirán! abordar! el! estudio! de! dinámica! más!

complejas,!incluyendo!correlaciones!electrónOelectrón!mediadas!por!fonones.!!

En!el!Capítulo!5,!utilizando!el!modelo!desarrollado!para!los!sistemas!fermiónicos,!

hemos!propuesto!un!protocolo!de! simulación! cuántica! híbrido!para! la! química!

cuántica,! realizable! con! iones! atrapados.! Este! paradigma! en! las! simulaciones!

cuánticas! tiene! varias! ventajas:! una! simulación! eficiente! electrónica,! la!

posibilidad! de! simular! interacciones! entre! grados! libres! electrónicos! y!

vibracionales,! y! la! escalabilidad! creciente! que! ofrecen! los! sistemas! de! iones!

atrapados.! Este! enfoque! para! la! solución! de! problemas! de! química! cuántica!

pretende! combinar! lo! mejor! de! la! computación! clásica! y! cuántica,! para! una!

mayor!eficiencia!computacional.!

En! los! Capítulos! 6,! 7! y! 8,! nos! hemos! ocupado! de! los! sistemas! de! circuitos!

superconductores.! A! través! de! circuitos! superconductores! se! pueden! realizar!

átomos!artificiales,!que!pueden!ser!acoplados!a!los!resonadores!de!microondas.!

Un! acoplamiento! dispersivo! de! los! resonadores! permite! realizar! lectura! de!

qubits!superconductores.!Además,!puertas!qubit!individuales!se!pueden!realizar!

con! las! señales! de! microondas! enviados! a! través! de! los! resonadores.!

Configuraciones! con! qubit! transmon! estándar! acoplados! a! resonadores! de!

microondas!pueden!tener!tiempos!de!coherencia!de!decenas!de!microsegundos,!

mientras!que! las!puertas!cuánticas!pueden!tener! tiempos!de!ejecución!de!unos!

pocos! a! decenas! de! nanosegundos,! en! el! caso! de! las! rotaciones! individuales,! y!

decenas!a!cientos!de!nanosegundos!para!operaciones!entre!dos!qubits.!

En!el!Capítulo!6,!hemos!propuesto!una!simulación!cuántica!digital!de!los!modelos!

de! cadenas! de! espines! en! los! circuitos! superconductores.! Hemos! considerado!

modelos! prototípicos! como! Heisenberg! y! Ising! con! frustración.! Hemos!



demostrado!la!viabilidad!de!la!simulación!con!la!tecnología!de!transmon!qubits!

acoplados!a!resonadores!de!microondas.!Los!tres!elementos!básicos!de!los!cuales!

están! hechos! los! átomos! artificiales! superconductivos,! es! decir,! inductancias,!

capacitancias! y! uniones! Josephson,! pueden! ser! fabricados! y! utilizados! en!

diferentes!regímenes!de!parámetros!para!obtener!diferentes!comportamientos.!

Los!tipos!básicos!de!qubits! !superconductores!son!qubit!de!carga,!de! flujo!y!de!

fase.!Una!modificación!de!las!capacidades!en!el!diseño!original!de! los!qubits!de!

carga! ha! originado! los! transmon! qubits,! que! utilizamos! en! larga! parte! de! esta!

Tesis.!!

Los!modelos! propuestos! se! han! realizado! por! el!Quantum'Device'Lab! del! Prof.!

Andreas!Wallraff!en!la!universidad!ETH!Zürich!en!Suiza.!Estos!protocolos!pueden!

extenderse! a! modelos! de! espines! entre! muchos! qubits,! hasta! la! simulación!

cuántica!universal!de!la!dinámica!de!espines.!!

En!el!Capítulo!7,!hemos!demostrado!que!una!plataforma!!hecha!de!qubits!de!tres!

islas! superconductoras,! con! acoplamiento! ajustable! a! una! guía! de!microondas!

coplanario,! puede! generar! de! forma! efectiva! puertas! colectivas! e! interacciones!

de! muchos! cuerpos! entre! los! qubits.! Hemos! mostrado! que! actuando!

dinámicamente! con! flujos! magneticos! sobre! dos! SQUIDs! presentes! ! en! los!

dispositivos! de! tres! islas,! es! posible! llevar! a! cabo! las! transiciones! red! y! blue'

sidebands! simultáneas! sobre! muchos! qubits.! Esto! conduce! a! las! puertas! de!

entrelazamiento! colectivas! que! se! pueden! utilizar! para! obtener! de! manera!

eficiente!los!operadores!de!muchas!partículas.!Se!demuestra!que!el!tercer!nivel!

de! los! qubits! se! puede! descartar! de! la! dinámica.! Validamos! la! propuesta! con!

simulaciones! numéricas! de! la! dinámica! del! sistema,! teniendo! en! cuenta! un!

modelo! de! decoherencia! realista.! Estas! interacciones,! similares! a! aquellas!

analizadas!en!el!Capítulo!3!para!sistemas!de! iones!atrapados,!pueden!utilizarse!

para! implementar! códigos! topológicos! y! simular! eficientemente! dinámica!

fermionica.!!

En!el!Capítulo!8,! hemos!demostrado!que! la!dinámica!de! los!modelos! cuánticos!

Rabi! y! Dicke! pueden! ser! codificados! en! circuitos! superconductores! utilizando!

tecnicas! digitalOanalógicas.! Mostramos! cómo! las! contribuciones! de! rotación! y!



contraOrotación!de!un!modelo!JaynesOCummings!pueden!simular!digitalmente!un!

modelo! de! Rabi.! En! concreto,!mediante! la! aplicación! intercalada! de! rotaciónes!

locales! y! interaciones! de! los! qubits! con! un!modo! bosonico,! la! dinámica! de! los!

modelos!cuánticos!Rabi!y!Dicke!pueden!ser!simulada!para! todos! los!regímenes!

de! parámetros! con! error! despreciable.! Por! último,! se! muestra! cómo! una!

dinámica!relativista!de!Dirac!se!puede!recuperar!en!el!límite!donde!se!cancela!la!

frecuencia! del! modo! bosonico.! Estas! simulaciones! cuánticas! contribuirán! a! la!

observación! de! la! dinámica! cuántica! de! estos! modelos,! en! regímenes! no!

accesibles!en!los!experimentos!actuales.!

En!la!última!parte!de!esta!Tesis!hemos!analizado!simulaciones!cuánticas!para!los!

sistemas! clásicos.! En! el! Capítulo! 9,! se! ha! desarrollado! un! protocolo! para!

reproducir! la! dinámica! de! los! fenómenos! de! transporte! de! fluidos! en! un!

experimento!de!mecánica!cuántica,!utilizando!pseudo!espines!acoplados!a!modos!

bosónicos,!que!se!pueden! implementar!en!diferentes!plataformas!cuántica.!Nos!

acercamos! a! la! simulación! de! dinámica! de! fluidos! utilizando! un! simulador!

cuántico,! adecuado! para! la! codificación! de! problemas! de! dinámica! de! fluidos!

dentro! de! un! formalismo! cinético! de! Boltzmann.! Este! simulador! cuántico! se!

obtiene! por! la! explotación! de! las! analogías! entre! la! ecuación! de! Dirac! y! las!

ecuaciones!discretas!de!Boltzmann.!Se!muestra!que!tanto!la!transmisión!como!la!

colisión!de! los!procesos!de!dinámica!de!Boltzmann!pueden! implementarse!con!

operaciones!cuántica!controladas,!utilizando!un!protocolo!cuántico!con!un!qubit!

auxiliar! para! codificar! los! procesos! de! dispersión! no! unitarios.! El! simulador!

propuesto! es! realizable! en! plataformas! cuántica! controladas,! como! los!

ordenadores! cuánticos! de! iones! atrapados! o! procesadores! basados! en!

superconductores.! Esta! propuesta! abre! el! camino! a! la! simulación! cuántica! y! la!

recuperación! de! la! dinámica! de! fluidos! clásica! complejos! en! los! sistemas!

cuánticos! controladas.! Evoluciones! de! este! trabajo! incluirán! la! posibilidad! de!

simular!el!comportamiento!no! lineal,!y!modelos!mas!complejos!de!dinámica!de!

fluidos.!

En! las! Apéndices,! se! presenta! el!material! complementario! a! los! Capítulos,! que!

ayuda!a!una!mejor!comprensión!de!los!resultados!que!se!muestran!en!esta!Tesis.!



!
Creemos! que! los! resultados! científicos! presentados! en! esta! Tesis! representan!
una! contribución! importante! para! el! éxito! y! el! desarrollo! de! la! tecnología!
cuántica!en!un!futuro!próximo.!
!
!
!
!
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Chapter 1

Introduction

1.1 Complexity in quantum technologies

Since its early days, the theory of quantum mechanics has been successfully used to

explain a large variety of phenomena at very di↵erent energy scales. The theoretical

predictions based on the present theory of quantum mechanics have been able to ex-

plain experiments in very di↵erent contexts, ranging from molecular to solid state and

high energy physics. The complementary developments in understanding quantum me-

chanics, on both theoretical and experimental sides, have led to a set of sophisticated

controlled quantum platforms, which are able to host and control quantum mechanical

e↵ects with increasing e↵ectiveness. This increased ability to control quantum mechani-

cal e↵ects led in turn to the idea that quantum mechanics can be used to assist convenient

tasks, which otherwise would be very hard to perform with classical devices.

In the second half of the twentieth century, scientists started to realize that two

of the most successful theoretical machineries been known at that time, namely quan-

tum mechanics and the theory of information processing, could be combined together.

Richard Feynman was the first to envision in 1960 the computational power of nanoscale

quantum systems in his speech “There’s Plenty of Room at the Bottom” [1] and then

finally defined the idea of a quantum computer in 1982 [2, 3], a device that makes explicit

use of its quantum mechanical nature to carry out computations that can be used for

external purposes. His first proposal for such devices was the quantum simulation of

quantum mechanical problems. Standard numerical methods have intrinsic di�culties

when it comes to compute e�ciently quantum many-body problems, while a quantum

device with controllable parameters could give insights on the behaviour of many-body

hard problems in an e�cient way. Therefore, the first version of a quantum computer

was indeed closer to the idea of a quantum simulator. Nowadays we define a quantum

1
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simulator as a quantum device with strong control on a set of quantum degrees of free-

dom, which can be used to intentionally recover the unaccessible dynamics of another,

less controllable, quantum system.

Motivations oriented towards quantum computing and quantum simulations have

started a race to the realization of diverse experimental versions of controllable quantum

platforms. These platforms must possess great control over a set of manipulable quantum

parameters, scalability to large sizes, and isolation to the external environment, in order

to address and solve quantum information problems. The search for a quantum platform

with all these features has generated complex experimental and theoretical challenges.

Such challenges do neither belong to the exploration of the most fundamental aspects

of quantum mechanics, nor to the basic mechanisms of a particular working quantum

platform. They rather resemble complex engineering and technological design problems,

and their advances can be considered as Quantum Technology. On the other hand,

once the challenges to scalability and controllability have been solved, the attention is

conveyed to the set of problems that can be encoded in actual quantum devices, in order

to unravel all their computational power.

To date, the most advanced experimental setups, in terms of controllability and

scalability to large sizes, are trapped-ion setups, optical lattices made of cold atoms,

photonic devices, and superconducting circuit architectures. These systems can host

interesting quantum simulation experiments at current stage of technology [4–7].

1.1.1 Trapped ions

Experimental setups based on trapped ions have reached a level of control that makes

them to be considered as one of the most promising technologies for hosting quantum

information protocols. In general, atomic systems such as ion traps have the advantage

of long coherence times, because it is easy to isolate them from the environment. Fur-

thermore, their properties (e.g. atomic transition frequencies) are stable and defined by

nature.

Typical qubits are encoded into hyperfine or Zeeman states [8]. The sensitivity

and quantum coherence of ion-trap qubits depend strongly on the coupling mechanisms

of the qubit ground-excited transition with the external electromagnetic noise, ranging

from milliseconds up to seconds. Quantum operations between these levels are driven

with lasers, whose intensity controls the Rabi frequency of the qubit transition. Qubit

readout is performed through fluorescence measurements [9], in which one of the two

states of the qubit is coupled to an excited level that decays fast. Two-point correlation

functions between distant qubits can be obtained by spatially resolved fluorescence.
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The ions are trapped via electromagnetic fields, and the residual motional modes that

survive the trapping can be cooled down with sideband cooling [10, 11]. The idea

to realize two-qubit gates for quantum computing between di↵erent ions came up in

1995 [12], and was later improved in di↵erent manners, including one insensitive to

motional temperature [13]. In these works, it was anticipated that the quantum degrees

of freedom of the motional modes of the ion chain could be used as a quantum bus to

transport information between distant ions. This approach, combined with single ion

laser addressing, can in principle generate any nonlocal two-qubit gate between any pair

of ions in a Paul trap. The quantum control in state preparation, readout and single

and two-qubit gates has reached nowadays impressive levels [14, 15].

The toolbox of interactions available in ion-trap experiments allows for a variety of

quantum simulation experiments that have shown already a great complexity. Quantum

Ising Hamiltonians have been generated following an adiabatic protocol between two

ions [16]. In these protocols, a pair of counter-propagating laser beams detuned to

red and blue sideband transitions can take into account the simulation of the spin-spin

interaction, while another laser beam is used to simulate the magnetic field. These ideas

have been implemented in Penning traps, up to hundreds of ions [17]. These kinds of

quantum simulation experiments may challenge classical computers, if long-range and

arbitrary spin-spin interactions are implemented [18]. The versatility of the ion-trap

quantum simulator has been used to make internal ion levels behave like relativistic

particles [19–21], by coupling a motional mode to four internal levels of a single ion

with red and blue sideband transitions and Stark shifts obtained by laser detuning. The

free relativistic model can be complemented with the addition of linear and quadratic

potentials [22], giving the possibility of simulating purely relativistic e↵ects such as Klein

tunnelling [23].

The ability of generating high fidelity quantum gates in a consecutive way has

allowed for the realization of a reliable digital quantum simulator [24, 25]. The ion-

trap digital simulator works for a variety of time-independent and time-dependent Ising

spin models, being able to implement many-body terms up to six-qubit interactions.

The ion-trap quantum computer at the state-of-the-art quantum technology has

been proved to be a extraordinary and reliable platform, and future challenges are in

the scalability and adressability at the single-ion level of these devices. The race to

scalability of atomic devices has to face the flexibility and the engineering possibilities of

the artificial atoms of circuit quantum electrodynamics, which will be briefly introduced

in the next section.
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1.1.2 Circuit quantum electrodynamics

The advent of circuit quantum electrodynamics (cQED) has changed the previous com-

mon belief that solid-state macroscopic devices cannot host quantum computational

purposes. Superconducting quantum circuits are devices based mainly on LC oscillators

and Josephson junctions. They work at cryogenic temperatures below their supercon-

ducting transition of the material, which is usually aluminium.

The three basic elements of which superconducting artificial atoms are made of, i.e.

inductances, capacitances and Josephson junctions, can be manufactured and used in

di↵erent parameter regimes to obtain di↵erent behaviors. The basic types of supercon-

ducting qubits were originally the charge [26, 27], flux [28] and phase [29] qubits. A

modification to the capacitances in the original design of the charge qubits has brought

to the so called transmon qubits [30]. In fact, one of the main drawbacks of using a

charge qubit for quantum information protocols is its sensitivity with respect to exter-

nal electromagnetic fluctuations. This is due to the quantum spectrum of this device,

which is very sensitive to charge fluctuations. In a transmon qubit, the dephasing noise

due to charge fluctuations is suppressed because of the flattened charge dispersion re-

lation, obtained with an increased shunt capacitance. In this Thesis, we will mostly

deal with charge-based qubits, being the type of qubit used at the present time in most

cQED labs.

These artificial atoms made of superconducting circuits can be coupled to microwave

resonators [31, 32]. A dispersive coupling with the resonators allows to perform non-

demolition readout of superconducting qubits. Furthermore, single qubit gates can be

performed with microwave signals sent through the resonators. Standard transmon

qubit setups coupled to microwave resonators can have coherence times of about tens

of microseconds, while quantum gates can have execution times from few to tens of

nanoseconds, in the case of single qubit rotations, and tens to hundreds of nanoseconds

for two-qubit operations. This allows for hundreds of operations within the coherence

time of the device [33]. These long coherence times are the current expression of the

Moore law for the scaling of coherence in superconducting devices [34]. The hope that

this law will stand in the future, due to technological improvements and better circuit

designs, makes cQED architectures strong candidates for encoding complex quantum

protocols.

Lattices of microwave resonators coupled to on-site qubits can simulate arrays of

coupled bosonic systems. The fabrication of such arrays is indeed not a hard task [7],

and these systems may predict new discoveries in strongly correlated bosonic systems.

The easiness of the fabrication of these devices, due to the lithographical techniques,
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could allow for scaling these lattices to many sites and recover, for example, a superfluid

to Mott insulator transition [35]. The presence of photonic losses in these setups can

be viewed both as a drawback when trying to simulate unitary dynamics and as an

advantage when the simulation of open quantum systems is considered.

Summarizing, cQED stand as one of the most reliable and promising platforms

for quantum information processing, and by far the system that has shown the fastest

progress in the last years.

1.2 Quantum simulations

The prediction of the behavior of quantum mechanical systems is one of the hardest

known problems. Understanding and solving quantum systems has profound implica-

tions in both fundamental knowledge and applied technology, ranging from high-energy

physics to material science, from chemistry to computer science. Unfortunately, this

challenge is hard, due to problems that cannot in general be addressed by standard

mathematical and numerical techniques. To overcome this fundamental adversity, Feyn-

man proposed to use directly a quantum simulator to make predictions on quantum

systems [2, 3]. The idea to use such devices to predict the behavior of quantum systems

was later formalized into the concept of a universal quantum simulator [24].

Nowadays quantum simulators are well known to the physics community [36]. They

can be classified into two main families, analog and digital quantum simulators.

1.2.1 Analog quantum simulators

An analog quantum simulator is a device that can continuously mimic the quantum

dynamics of another quantum system. The unitary dynamics of a closed quantum system

S can be encoded in its quantum state | (t)i, and determined at all times by specifying a

Hamiltonian H and the state at t = 0, | (0)i. An analog quantum simulator is a device

that can predict total or partial information about | (t)i, by performing measurements

on a quantum system S0, whose state dynamics is represented by | 0(t)i and regulated

by a Hamiltonian H 0. The predictions on S are given by defining a mapping M between

the two quantum dynamics. In most cases this mapping is the identity, i.e. M(H) = H 0,

M(| (t)i) = | 0(t)i, and the quantum systems have the same representation. Indeed,

the controllability and readability of S0 allow for reliable and non-trivial predictions

over S. Typically, S can be a high-energy or condensed matter system, whose behavior

is unknown, while S0 stands for a controlled quantum platform, such as cold atom or

trapped-ion setups.
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Due to the natural presence of the interaction Hamiltonian H 0 at all times t, analog

quantum simulations are most suitable to encode ground state searching problems, and

obtain phase diagrams. In general, analog simulators are quantum devices with large

sizes, with few degrees of freedom and quantum control [7, 16, 17, 37, 38]. The reduced

flexibility of the interactions that may be implemented, together with the di�culties

in state preparation, make this class of simulators less suitable for encoding and re-

trieving dynamical quantities. Usually the e↵orts in simulating real-time dynamics in

these devices go in the direction of quenching a few system parameters, and observing

interesting properties of the physical system, like relaxation times, response functions

and thermalization. These quantities may be very hard to simulate classically, and some

analog quantum simulators are already at the frontier of the classical computational

devices [39].

One of the main open challenges of analog quantum simulators is to certify their

predictions, i.e. to give error bars on the measurements produced. Ideally, a quantum

simulator is a device that makes predictions that are very hard to retrieve classically.

Therefore, certifying the output of such experiments is a tough problem. This drawback

may be overcome by a digital approach to quantum simulations, in that in this case one

can implement error corrected simulations, at the expense of simulation e�ciency. In

fact, in an analog approach time e�ciency of the simulation is maximized, because one

has to prepare the initial state of the simulation and wait for a certain evolution time t.

On the other hand, in a digital approach, the total dynamics is decomposed into a set of

quantum gates: while time e�ciency may be worse, a digital protocol can be universal,

and is more suitable for quantum error correction protocols.

1.2.2 Digital quantum simulators

While in analog simulations one establishs a direct mapping between two quantum dy-

namics, in the digital approach the dynamics of the simulated system is decomposed in

a set of quantum interactions. These interactions are typically easier to implement in a

specific quantum platform with respect to the total dynamics H 0. In this case, one can

approximate the simulated dynamics as a series of m quantum gates

e�iHt ⇡
m
Y

i=1

e�ihi⌧i . (1.1)

Usually one considers that H =
Pm

i=1 Hi, and uses Suzuki-Lie-Trotter decomposi-

tions [40]. The basic instance of a Suzuki-Lie-Trotter decomposition is the Trotter
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approximation [41],

e�iHt =
⇣

e�iH1t/l · · · e�iHmt/l
⌘l

+
X

i<j

[Hi, Hj ]t2

2l
+

1
X

k=3

E(k), (1.2)

where l||Ht/l||ksup/k! � ||E(k)||sup is an upper bound on the higher order approximant.

In this kind of approximations the exact dynamics e�iHt is exactly recovered as the

number of repetitions l increases. Any unitary operator U = eiHt can be in principle

written in terms of a universal set of quantum gates: this fact makes the digital quantum

simulator universal [24]. Furthermore, the possibility of performing error correction

protocols on the single gates can be taken into account for the problem of certifying

the simulation. On the other hand, finding the exact sequence of approximants as in

Eq. (1.1) can be a hard task [42]. Also, the number of quantum gates required to retrieve

the simulation with good accuracy for long times can be very high, requiring quantum

devices with very large coherence times and high gate fidelities.

The prediction of any digital quantum simulator will be a↵ected by errors associated

to each quantum gate. Typically, by using more gates one reduces the digital error on

the simulated dynamics. On the other hand, using many quantum gates will a↵ect

the fidelity of the simulation. Therefore, one has to employ a tradeo↵ between the

improved fidelity obtained by using large sequences of approximants and the accumulated

experimental error coming from a large sequence of gates. Recent experiments [33, 43]

have proved that the total error in a digital quantum simulation accumulates linearly,

certifying that any e↵ort to improve gate fidelity will be rewarded with a linear gain

on the total simulation fidelity. To avoid the error accumulation, a quantum simulator

based on error-corrected gates may override this tradeo↵ in the future.

1.3 This Thesis

In this Thesis, we consider the practical realization of several quantum protocols in

di↵erent quantum platforms, mostly trapped-ion setups and cQED architectures. We

are particularly concerned with the limits of each specific quantum platform, being in

coherence times, scalability, sources of errors, and types of quantum interactions. We

justify how each of the ideas presented here can be best adapted to a certain experimental

platform, exploiting specific tasks.

Quantum simulations are the most natural tasks for a quantum architecture, being

straightforward to think in correspondences between two quantum systems: the simu-

lating and the simulated one, respectively. In this sense, mapping a quantum dynamics
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onto a non-quantum problem (e.g. factoring of large numbers) is indeed less natural and

cumbersome. A quantum simulation requires great control over the quantum degrees of

freedom of a certain device, but this is not always possible. Carefully benchmarking of

the realistic possibilities and drawbacks of each specific quantum platform is mandatory,

in order to study the simulation complexity addressable in an experiment. The analysis

of this complexity is the leitmotiv of this Thesis.

For example, besides benchmarking several quantum simulation protocols versus

current state-of-the-art technology, in the first part of the Thesis we propose the im-

plementation of a protected qubit [44], made up of internal levels of several ions. This

can be viewed as a quantum simulation of a topologically protected Kitaev chain, which

hosts Majorana fermions. The simulation, besides implementing a mapping between

two quantum models, also conserves some properties beyond state dynamics, such as

the protection of the ground state versus local errors. In the quantum simulation of

fermionic, coupled bosonic-fermionic, and quantum chemistry systems a particular em-

phasis is given on the e�ciency of the protocols. We prove that by using collective

gates such systems can be simulated more e�ciently. The use of the collective gates,

being only available to ion-trap systems, is a paradigmatic example of a quantum pro-

tocol specifically designed for a certain quantum platform that cannot be reproduced

elsewhere. We believe that this approach to quantum information and simulation is

paradigmatic, and systematic study of each experimental device is mandatory in order

to design more e�cient protocols.

This Thesis contains an introductory Chapter 1, followed by three Parts, each of

them containing several Chapters, with links to various Appendices at the end of the

Thesis:

I Trapped ions

In the first part of this Thesis, we address various ideas of using high-end quan-

tum information protocols, specifically designed for current state-of-the-art ion-

trap setups. In Chapter 2, we present a minimal instance of a passively protected

qubit that can be encoded in actual ion-trap platform. The parity-based protected

qubit is based on a spin-dual representation of unpaired Majorana fermions in a

topological fermionic wire. In Chapter 3, we consider the simulation of fermionic

models in trapped ion devices, and find that high-order fermionic operators could

be e�ciently implemented in current experiments, by means of collective entan-

gling gates. The use of this gates reduces drastically the quantum resources for

the simulation of fermionic dynamics in previous algorithms. In Chapter 4 we

will present a digital quantum simulation of a coupled bosonic-fermionic model,
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namely the Holstein model. We analyze to which extent current ion-trap technol-

ogy allows for the simulation of this model. Finally, in Chapter 5 we present a

hybrid classical-quantum simulator for quantum chemistry problems in a ion-trap

platform. The simulator uses quantum resources to perform a phase estimation

algorithm that can allow for the retrieval of molecular energies.

II Superconducting circuits

In the second part of the Thesis, we will focus on superconducting circuits, and the

possibility of hosting complex dynamics with current chip designs. In Chapter 6,

a universal digital quantum simulator for generic spin dynamics is presented. By

using standard dispersive two-qubit interactions between pairs of transmon qubits

and single qubit rotations, we demonstrate that a variety of interacting spin dy-

namics can be simulated, including paradigmatic Heisenberg and Ising interactions.

In Chapter 7, we show that many-body operators can be dynamically encoded in

a cQED setup, by using sequences of collective gates and single-qubit rotations.

The collective gates are realized by fast driving of two SQUID loops embedded in

three-island transmon qubits. This dynamics is equivalent to a collective gate in

ion-trap systems [13] obtained by simultaneous red and blue detuned sidebands

upon the ions. The Chapter 8 is dedicated to the proposal of the simulation of

a quantum Rabi interaction in cQED setup. The interaction is simulated digi-

tally by using Jaynes-Cummings and anti Jaynes-Cummings digital steps. The

anti Jaynes-Cummings step is simulated with local rotations and the standard

qubit-resonator interacions.

III Quantum simulation of classical systems

In the last part of this Thesis, Chapter 9, we describe how quantum simulators are

devices capable of solving complex classical problems. As an example, we consider

the simulation of transport phenomena in fluid flows. The quantum simulation of

such phenomena is encoded in a generic coupled pseudospin-bosonic system. The

fluid dynamics is first described in a kinetic lattice formalism. Then, once the

problem is set within a lattice Boltzmann approach, we show how a properly en-

coded wavefunction, which lives in a Hilbert space composed of a set of discretized

energy levels and bossing fields, can describe the state of the Boltzmann lattice.

We explicitly explore this possibility with an enlightening example on a four-speed

advection-di↵usion problem.

IV Appendix

The Appendices contained in this Thesis provide with additional numerical and

analytical calculations to support the main results. In Appendix A we explicitly

compute an upper bound for the norm of the Holstein Hamiltonian, which serves to
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demonstrate the e�ciency of the quantum simulation protocol presented in Chap-

ter 4. In Appendix B we analytically compute non nearest neighbour interactions,

which arise when one tries to implement an Ising interaction in a multiple laser

beam approach on a set of trapped ions. Appendix C deals with the derivation

of the e↵ective collective interaction between many tunable-coupling transmon

qubits. In Appendix D we derive many body operators, obtained with a sequence

of collective and single qubit gates, in a cQED architecture.



Part I

Complex systems in trapped ions

11





Chapter 2

Protected Majorana parity qubits

in trapped ions

2.1 Introduction

In this Chapter, we propose the implementation of a protected logical qubit in trapped-

ion systems. Topologically protected systems o↵er promising properties for the building

of a fault-tolerant quantum memory [45]. However, the realization of topological quan-

tum memories up to now represents a challenging open problem. Here we face the

problem from a bottom-up approach, by asking what is the minimal set of experimental

requirements to build, on a trapped-ion system, a working logical qubit with quantum

control, provided with coherence times superior to the ones of the physical qubit.

The discrete quantum wire model by A. Kitaev is one of the simplest systems sup-

porting topological phases [46]. In this model, the signature for the topological nontriv-

ial phase is the presence of unpaired Majorana fermions. Among their properties, these

fermions coincide with their own antiparticles and support non-Abelian statistics [47].

Since its appearance, the model has attracted much interest, with diverse proposals

for physical implementations, including superconducting heterostructures [48, 49] and

optical lattices [50, 51]. Signatures of these particles have been recently measured [52].

However, a clear way to use the fault-tolerant properties of Majorana modes has not been

experimentally achieved. In general, building a qubit made out of Majorana fermions

requires exceptional system control.

Trapped ions are highly controllable quantum systems [8]. They can be cooled down

to form crystals, easily initialized by optical pumping, manipulated with lasers, and ef-

ficiently measured. They o↵er one of the most reliable and scalable implementations

13
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for a quantum simulator [2, 24]. Some examples are spin systems [16, 25, 53–56], rel-

ativistic quantum mechanics [19–23, 57], quantum field theories [58, 59], and fermionic

systems [60]. A proposal for realizing another topological system, i.e., Kitaev honeycomb

model, was put forward in Ref. [61]. However, the complexity of the honeycomb model,

requiring three di↵erent kinds of interactions, XX, Y Y , and ZZ, is much higher than

the one of the wire model, that only requires an XX interaction. Another proposal for

topological systems in trapped ions [62], not involving Majorana fermions, makes use of

a highly nonlocal Hamiltonian.

We propose the implementation of Kitaev wire model [46] in a linear chain of trapped

ions. By a mapping the Kitaev Hamiltonian onto a spin model, we show that this

system can be realized in a trapped-ion chain with current technology, and a Majorana-

fermion (MF) qubit can be encoded. This qubit will be topologically protected against

major sources of decoherence for longer times, constituting an e�cient quantum memory.

The proposed implementation, already valid for 3 ions, allows for the straightforward

realization of local operations on the MF qubit and for an e�cient readout of its state.

We also show that a quantum interface between highly entangled incoming photonic

states and MF qubits can be implemented by grouping many of these basic units. To

this end, we suggest the use of an array of ion chains inside a set of cavities as a possible

experimental realization.

2.2 Trapped-ion implementation

We begin by considering the Kitaev Hamiltonian [46] made up of N spinless fermionic

sites (~ = 1),

H =
N�1
X

j=1

[�w(a†jaj+1 + a†j+1aj) +�ajaj+1 +�⇤a†j+1a
†
j ]� µ

N
X

j=1

✓

a†jaj �
1

2

◆

, (2.1)

where the operators ai(a
†
i ) are the annihilation (creation) operators of spinless fermions

on the site i, satisfying {ai, a
†
j} = �ij , w is the hopping energy, µ is a chemical potential

and � is the order parameter of the pairing term, which mimics a p-wave spinless

superconductivity. Given that � = |�|ei�, one can define a set of 2N Majorana fermions

c2j�1 = ei
�
2 aj + e�i�

2 a†j , c2j = �iei
�
2 aj + ie�i�

2 a†j , and the Hamiltonian becomes

HM =
i

2
{�

N
X

j=1

µc2j�1c2j +
N�1
X

j=1

[(w + |�|)c2jc2j+1

+(�w + |�|)c2j�1c2j+2]}. (2.2)
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Under the parameter regime µ = 0, |�| = w > 0 the Majorana fermions c1 and c2N

disappear, and HM becomes diagonal in the basis ãj = 1
2(c2j + ic2j+1), j = 1, ..., N � 1.

One can pair the two outer Majorana fermions into an additional complex fermion

a†M = (c1 + ic2N )/2. The ground state is two-fold degenerate, and is spanned by the

states | 0i and | 1i defined by ãi| 0,1i = 0, 8i = 1, 2, ..., N � 1 and aM | 0i = 0,

| 1i = a†M | 0i. This ground state is separated by a gap 2w from the higher-energy

excitations of the system. It was proved [46] that these states survive in the regime

|µ|⌧ 2w. Under this regime one has a nontrivial value for the topological invariant Z2,

that labels the two di↵erent topological phases of the ground state.

In order to implement the Kitaev model in an ion string, we take into account that

Hamiltonian in Eq. (2.1), for the parameter regime � = 0, which does not reduce the

generality of the model, and |�| = w > 0, can be mapped onto the transverse field Ising

model by using a Jordan-Wigner transformation [63, 64],

Hs = �J
N�1
X

j=1

�xj �
x
j+1 � hz

N
X

j=1

�zj , (2.3)

where J = w is the exchange coupling and hz = �µ/2 is a transverse magnetic field.

The mapping of the Majorana fermions onto the spins is c2j =
Qj�1

k=1 �
z
k�

y
j , c2j�1 =

Qj�1
k=1 �

z
k�

x
j . The definitions of aM , ãi, and | 0,1i change accordingly. The two ground

states | 0,1i of Hs in Eq. (2.3) consequently span a subspace that is protected from

higher-level excitations by the energy gap 2w = 2J .

Hamiltonian (2.3) can be implemented with standard trapped-ion technology [8].

We consider a 1D string of N two-level ions coupled through the joint motional modes

by means of external lasers. One possibility is to apply Raman lasers for the spin-spin

interaction and for the magnetic field at the same time [53, 54, 65]. By locally addressing

each ion with di↵erent Raman beatnotes, in a multiple Mølmer-Sørensen configuration,

one can achieve the
PN�1

j=1 �xj �
x
j+1 interaction with open boundary conditions in Eq.

(2.3), while a single laser can implement the
P

j �
z
j part [65].

Here, we are interested in the pure Majorana regime in which J � |hz|. The aim

is to achieve this regime in the always-on interaction, such that the degenerate ground

state of Hamiltonian (2.3) encodes the topologically protected subspace. This degenerate

ground state is composed of two Greenberger-Horne-Zeilinger (GHZ)-like states in the X

basis, that are highly entangled, | 0i = (|   ...  i � | !! ... !i)/p2, and | 1i =

(|   ...  i + | !! ... !i)/p2. These states have di↵erent parity P = �Qi �
z
i ,

P | 0,1i = ±| 0,1i, which is a conserved quantity with respect to Hamiltonian (2.3). On

the other hand, they can also be easily achieved using an adiabatic evolution [66] from

the opposite regime in which J ⌧ |hz|. The ground state of the Hamiltonian �hz
P

j �
z
j
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Figure 2.1: (a) Array of 1D ion crystals inside K optical cavities for the quantum
interface between a multiqubit entangled photonic state and a MF qubit multipartite
state. The shaded region denotes a single MF qubit. (b) Fidelity loss 1 � F = 1 �
|h 0| (t)i|2 for the evolved state | (t)i from the initial state | init

0 i using the adiabatic
transfer protocol with H

s

in Eq. (2.3), for N = 3. The diabatic error for the ideal
protocol (black solid line) is plotted against the diabatic error (red dotted line), obtained
including a constant magnetic field in the Z direction of magnitude �h

z

= 10�3J [14], a
1% error on the relative coupling magnitude J12/J23 and a NNN coupling J13 = J12/8
.

for hz < 0, | init
0 i = |## ... #i is mapped adiabatically onto the ground state | 0i of the

Hamiltonian �J
PN�1

j=1 �xj �
x
j+1 for odd N , and to | 1i for even N . In turn, one specific

linear combination of the first excited states of �hz
P

j �
z
j , | init

1 i =
P

i ci| ## ... "i ... #i,
is mapped onto the other ground state. For instance, for N = 3, c1 = c3 = 1/2,

and c2 = 1/
p

2. Notice, in addition, that the two states will not be mixed during the

adiabatic evolution due to their di↵erent parity. Despite the closure of the energy gap

between the ground and the first excited states, parity commutes with the Hamiltonian

at all times during the protocol, such that the dynamics will not mix the two states.

This is the reason for the small diabatic error, plotted as a function of time in Fig. 2.1b.

Moreover, for three qubits, and for adiabatic enough protocol, the first excited state is

not mixed with other single-excitation states, giving similar fidelities than for the ground

state, with an adiabatic protocol time similar to the one shown in Fig. 2.1b.

In order to create state | init
0 i one may just apply standard optical pumping. In order

to create | init
1 i one may apply an inhomogeneous Tavis-Cummings Hamiltonian [67]

with appropriate couplings, engineered with an inhomogeneous red-sideband interaction

upon the ions, using the center-of-mass mode (e.g., with displaced equilibrium positions

in the trap by a tailored potential [68]). An important point here is that the Hamiltonian

in the topological regime has to be turned on all the time to guarantee the topological

protection against local noise, as we will explain in the following.
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2.3 Quantum Interface

Besides state initialization, the adiabatic mapping can be also used to transfer an arbi-

trary qubit state that comes into the system, e.g., a photonic qubit, to the MF qubit.

One can begin with a photonic incoming state, ↵|0i+�|1i, where |0i, |1i are Fock states:

by using a quantum interface with a cavity, state |0i can be mapped to | init
0 i and |1i

to | init
1 i, by a collective excitation and an intermediate phonon state [69]. We point

out that in order to get high fidelities in the coupling to the incoming photon, chains

of around 20 ions at least should be employed [69], though for the MF qubit itself, as

we will show, 3 ions are enough. Subsequently, the adiabatic transfer will produce the

same qubit superposition ↵| 0i + �| 1i in the MF qubit. An extension could be con-

sidered with K copies of this system, with a highly-entangled incoming photonic state,
P

ci1...iK |i1...iKi. Here each photonic qubit is mapped similarly to the corresponding

MF qubit, giving
P

ci1...iK | i1 ... iK i, i.e., an arbitrarily entangled state of nonlocal

Majorana-fermion qubits. This could be used as an e�cient quantum memory. In Fig.

2.1a we show a scheme of the proposed setup.

2.4 Local operations and measurement

One can e�ciently implement local operations upon the MF qubits. In general, these

local operations upon the nonlocal MF qubits translate into nonlocal operations upon

the physical qubits, i.e., the trapped ions. The complete set of local operations, i.e.

Pauli matrices, upon the nonlocal MF qubit, �xMFQ, �yMFQ, and �zMFQ, can be related to

the single-ion Pauli operators {�x,y,zi }i=1,..,N through the expressions

�xMFQ ⌘ a†M + aM = I ⌦ I ⌦ ...⌦ I ⌦ �x1 ,

�yMFQ ⌘ �i(a†M � aM ) = ��yN ⌦ �zN�1 ⌦ ...⌦ �z1 , (2.4)

�zMFQ ⌘ a†MaM � aMa†M = �yN ⌦ �zN�1 ⌦ ...⌦ �z2 ⌦ �y1 .

As can be appreciated, �y,zMFQ are highly nonlocal operations upon the ions. Nerverthe-

less, they can be implemented e�ciently with a reduced number of lasers as recently

shown both theoretically [60, 70], and experimentally [56], using sequences of Mølmer-

Sørensen and local gates. Thus, with the proposed setup, we have a fully controllable

Majorana-fermion qubit.

The topological qubit readout can be also implemented. A projective measure-

ment upon the basis {| 0i, | 1i}, which is equivalent to detecting the parity operator

P = �Qi �
z
i , amounts to one local measurement of �z operator per ion. This is the



Chapter 2. Protected Majorana parity qubits in trapped ions 18

easiest detection performed in trapped ions and can be done, with standard resonance

fluorescence, with fidelities larger than 0.99 [8]. Combined with the local operations

exposed above, this allows one for the full tomographic reconstruction of the MF qubit.

2.5 Errors and decoherence protection

The proposed implementation, as has been shown above, contains a degenerate ground

state, {| 0i, | 1i}, which is protected by a gap from higher-level excitations. A con-

sequence of this is that local operations �y,zi , which couple {| 0i, | 1i} with higher

energy states, are topologically supressed. Thus, magnetic field fluctuations along these

directions will not have an e↵ect upon the system. On the other hand, local �xi opera-

tions realize swap gates between the | 0i and | 1i states [64]. In a trapped-ion setup,

random ambient magnetic fields along X direction rotate fast in the interaction picture

with respect to the trapped-ion qubit energy in which Eq. (3) is computed [65] , such

that their contribution to decoherence will be negligible. This is because this spuri-

ous interaction is far o↵-resonant and will not induce transitions. For example, using a

quadrupole transition between the two levels |D5/2,3/2i and |S1/2,�1/2i of 40Ca+, with an

energy separation of about !0 = 411THz, an X error of magnitude J · 10�3, e.g. around

6Hz, will rotate in the interaction picture, taking the form J · 10�3(�+ei!0t + ��e�i!0t),

resulting in an e↵ective unintended excitation probability of about 10�28. In general

this will also happen with the Y -direction ambient magnetic fields, such that these will

be doubly protected: by the topological Hamiltonian and by the single-ion qubit energy

transition. Conversely, local rotations in Eq. (2.4) are realized in interaction picture

with respect to the ion energy and commute with the Hamiltonian in the topological

regime, also in the presence of non-next-neighbour (NNN) couplings, i.e. they can be

realized e�ciently.

A qubit encoded in the Kitaev wire model [46] is usually considered robust in the

large N limit, for the parameter range |µ| ⌧ 2w. On the other hand, for finite N , the

degree of imperfection in the protocol depends on how much the system deviates from

the parameter regime w = |�|, µ = 0. Indeed, the appearing energy splitting � between

| 0i and | 1i, which breaks the ground-state degeneracy and qubit coherence [46], is

of the order of � / exp(�N/n0), where n�1
0 = min{| ln |x+||, | ln |x�||}, and x± =

(�µ ± p

µ2 � 4w2 + 4|�|2)/[2(w + |�|)]. We consider J/2⇡ ⇠ 6 kHz for the 3 ion

case. For realistic imperfections in the Rabi frequencies of the lasers of 1%, that induce

the same order of imperfection in w = |�| = J , and magnetic field fluctuations in

�hz = 10�3J [14], we have n0 ' 0.14. The splitting computed numerically as a function

of the number of sites is plotted in Fig. (2.2). This makes the implementation of the wire
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Figure 2.2: (a) Energy splitting � between | 0i and | 1i as a function of number of
sites N , in units of J = 1, computed numerically for �h

z

= 10�3J and 1% error on the
relative magnitude J12/J23. (b) Survival probability F = |h 0| (t)i|2 for the evolved
state | (t)i from | 0i under the dynamics of Hamiltonian (2.3) (with h

z

= 0) (solid)
or without it, i.e. free evolution of the state (dashed), plus constant local operators of
modulus 10�3J , proportional to �z

i

, for N = 3. The topological Hamiltonian provides
protection against the �z

i

noise.

model and Majorana fermions in trapped ions a real possibility with current technology.

We show below that considering a linear chain of just N = 3 ions, one may encode a

topologically-protected qubit subspace with very low decoherence.

In order to test the feasibility of the implementation with realistic trapped-ion sys-

tems, we have realized numerical simulations with di↵erent kinds of imperfections. With

respect to the adiabatic protocol with Hs in Eq. (2.3), we have computed the fidelity

loss 1�F (t) = 1� |h 0| (t)i|2 for the evolved state | (t)i from | init
0 i, making the evo-

lution |hz|/J � 1 ! |hz|/J ⌧ 1, for N = 3, see Fig. 2.1b. We consider the ideal case

with no ambient magnetic field and coupling errors, and the case with a �hz = 10�3J

constant magnetic field in the Z direction, a NNN coupling J13 = J12/8 and a 1% error

on the relative magnitude J12/J23. The diabatic error in both cases is of the order 10�3.

We plot in Fig. 2.2 (a) the energy splitting � between | 0i and | 1i as a function of

N , in units of J = 1, computed numerically for �hz = 10�3J and a 1% error on the

relative magnitude J12/J23. The scaling is exponential, as expected. For N = 3, we

have � ' 2⇥ 10�9J , i.e., a negligible dephasing error. Thus, the qubit encoding will in

principle work already for 3 ions, which is feasible with current technology.

We remark that the presence of a NNN coupling does not a↵ect the protocol for a 3

ion setup. A spurious coupling J13 between the first and the third ions does not modify

the protocol in terms of ground subspace (the ground subspace span{| 0i, | 1i} stays

the same), in terms of splitting � (in presence of a J13 the energies of | 0i and | 1i
only show a coherent down shift) and in terms of local operations upon the qubit. Thus

even by addressing the three ions with one bichromatic laser is su�cient to implement

the model [65]. Nevertheless, the Hamiltonian free of NNN coupling for three sites can

be obtained by using di↵erent detuned lasers, as shown in [71].
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To show the subspace topological protection of the degenerate ground state {| 0i,
| 1i} with respect to coupling to outer states, we plot in Fig. 6.2 (b) the survival

probability |h 0| (t)i|2 for the evolved state | (t)i from | 0i under the dynamics of

Hamiltonian (2.3) (solid) or without it (dashed) with a constant magnetic field �hz ⇠
10�3J along the Z axis for N = 3. This is the kind of local operators that couple

span{| 0i, | 1i} with outer states. It is clearly appreciated that the survival probability

inside the subspace is significantly increased upon evolution with (2.3). We remark

that this is the main fundamental decoherence source in most experimental trapped

ion setups [14], with coherence lifetimes of about 30 ms. We have that states | 0i,
| 1i will couple to each other or to outer states only through higher-order processes

in perturbation theory. The largest contribution to decoherence is at most of order

⇠ �h2
z/�g. Here �hz is the average local magnetic field perturbation, that we take, as in

the numerical simulation, to be 10�3J , and �g = 2J is the gap between the topological

ground states | 0i, | 1i and the excited states. For this we have assumed that these

spurious magnetic fields change in time much more slowly than the frequency of the gap.

Accordingly, the e↵ective Rabi frequency of the error is about 5⇥ 10�4�hz, i.e., several

orders of magnitude reduced with respect to the case without topological protection

[without evolution by (2.3)], that is of order �hz. We point out that, in the long time

limit, other sources of error will dominate on the decoherence of the system. The choice

for the optimal size of the ion array, in which one encodes the topological qubit, will

depend on the type of errors and parameter control of the particular experimental setup.

Indeed, while for shorter chains one has less errors due to spontaneous emission, for

longer chains the realistic ground state energy splitting between the qubit basis states

will be smaller. For a three-ion array, considering that motional heating rates in trapped

ions can be of a few phonons per second and spontaneous emission lifetimes of more than

one second [39], with this proposal one may improve coherence lifetimes by more than

one order of magnitude with current technology.



Chapter 3

Interacting fermion lattice models

in trapped ions

3.1 Introduction

In this Chapter, we propose a quantum algorithm for the simulation of the dynamics of

fermionic systems, specifically designed for trapped-ion systems. The use of collective

ion gates allows for the e�ciency of the method presented here with respect to single and

two-qubit gates protocols. The numerical simulation of fermionic systems is, in general,

a hard problem due to the huge increase of the Hilbert space dimension with the num-

ber of modes [2, 72]. Using customized numerical methods as quantum Monte Carlo is

not always possible due to the well-known sign problem [73, 74]. Quantum simulations

appear as a tool that will allow us to compute the time evolution of free and interact-

ing fermion lattice theories with minimal experimental resources. This will be helpful

in performing a wide range of condensed matter calculations, including those related

with many-body interactions as the Kondo [75], Fermi-Hubbard [76], or Fröhlich [77]

Hamiltonians. Furthermore, quantum simulations will allow us to reproduce the com-

plete dynamics of these systems, avoiding mean field approximations as Hartree-Fock to

simplify nonlinear interactions [78].

In this Chapter, we propose a method of realizing the quantum simulation of many-

body fermionic lattice models for N fermionic modes in trapped ions. Our method can

be described in three steps. Firstly, we map the set of N fermionic modes, via the

Jordan-Wigner transformation [63], to a set of N nonlocal spin operators. The second

step consists in decomposing the total unitary evolution via Trotter expansion [24, 79,

80] in terms of a product of exponentials associated to each nonlocal spin operator

appearing in the Hamiltonian. Finally, we implement each of these exponentials in

21
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polynomial time on a set of N two-level trapped ions with a reduced number of laser

pulses [56, 70]. These three steps yield an e�cient protocol that employs only polynomial

resources. Our method can simulate highly nonlinear and long-range interactions in

arbitrary spatial dimensions, applying the Jordan-Wigner transformation without the

usual restriction of a reduced number of neighbors, and without the need of auxiliary

virtual Majorana fermions [81]. This is due to the fact that the dynamics associated

with the nonlocal spin operators, containing a large number of Pauli matrices, can still

be e�ciently implemented. The proposed protocol opens the possibility to simulate a

wide range of interesting condensed-matter and high-energy physics fermionic systems

for a large number of particles. This includes the calculation of time evolutions and

ground state computations. For a number of particles above ⇠ 30, which is foreseeable

in the near future, one could already simulate fermionic systems that are intractable for

classical computers.

3.2 Digital quantum simulation of fermionic dynamics

We consider the quantum simulation of the dynamics associated with the general

Hamiltonian

H =
↵
X

n=2

 N
X

i1...in=1

gi1...inci1 · · · cin + H.c.

�

, (3.1)

where cik has to be chosen as one of the fermionic operators bik , b†ik , that obey the

anticommutation rule {bik , b
†
ik0

} = �ik,ik0 , N is the number of fermionic modes, and ↵ is

the highest order of the many-body interaction.

Our protocol consists of three steps, gathering techniques that have not been pre-

viously considered for quantum simulators of fermionic lattice models.

i) Jordan-Wigner mapping.– This technique establishes a correspondence between a

set of fermionic operators and a set of spin operators, transforming a local Hamiltonian

of fermions onto a nonlocal Hamiltonian of spins. Only in one spatial dimension, and for

couplings extended to a reduced number of neighbors, the correspondence is from a local

model to a similar one [63]. The operators bik , b
†
ik

can always be mapped to products

of Pauli matrices, i.e., nonlocal spin operators, using the Jordan-Wigner transformation

b†k = IN ⌦ IN�1 ⌦ ...⌦ �+k ⌦ �zk�1 ⌦ ...⌦ �z1 , and bk = (b†k)
†.

ii) Trotter decomposition of the total Hamiltonian.– Our second step consists in

using standard Trotter techniques to decompose the total evolution operator in terms

of a product of evolution operators associated to each nonlocal spin operator. We prove

below that these evolution operators can be implemented e�ciently.
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iii) Implementation of nonlocal spin operators in trapped ions.– The exponentials

of each nonlocal spin operator are e�ciently implementable, given that their exponents

consist of tensor products of k Pauli matrices. Each of these exponentials can be imple-

mented, for arbitrary k and up to local rotations, with a Mølmer-Sørensen gate [13] upon

k ions, one local gate upon one of the ions, and the inverse Mølmer-Sørensen gate [70].

This step can be summarized as

U = UMS(�⇡/2, 0)U�z(�)UMS(⇡/2, 0)

= exp
⇥

i� �z1 ⌦ �x2 ⌦ �x3 ⌦ · · ·⌦ �xk
⇤

, (3.2)

where UMS(✓,�) = exp[�i✓(cos�Sx + sin�Sy)2/4], Sx,y =
Pk

i=1 �
x,y
i and U�z(�) =

exp(i�0�z1) for odd k, where �0 = � for k = 4n + 1, and �0 = �� for k = 4n � 1, with

positive integer n. For even k, U�z(�) would be substituted by U�y(�) = exp(i�0�y1),

where �0 = � for k = 4n, and �0 = �� for k = 4n � 2, with positive integer n. In

order to obtain directly a coupling composed of �y matrices times a �z, one may apply

a similar approach with di↵erent Mølmer-Sørensen gates according to

U = UMS(�⇡/2,⇡/2)U�(�)UMS(⇡/2,⇡/2)

= exp
⇥

i� �z1 ⌦ �y2 ⌦ �y3 ⌦ · · ·⌦ �yk
⇤

, (3.3)

where the local U�(�) gate is exp(i�0�z1) for odd k, where �0 = � for k = 4n + 1, and

�0 = �� for k = 4n� 1, with positive integer n. For even k, the local gate is exp(i�0�x1 )

where �0 = � for k = 4n� 2, and �0 = �� for k = 4n, with positive integer n. Note that

local rotations acting on each ion give rise to any tensor product of Pauli matrices �x,y,zk .

The coupling constant in each nonlocal spin term of the simulated Hamiltonian (3.1)

will be related to � through � = �gt, where g is a generic coupling strength and t is the

corresponding gate time.

The three steps of our protocol amounts to an e�cient method for simulating

fermionic models with long-range couplings in arbitrary dimensions with trapped ions.

Note that for bounded Hamiltonians, the Trotter expansion associated with the

exponential of the polynomial sum of e�ciently implementable nonlocal terms is also

e�cient [24, 79, 80], i.e., it only requires polynomial resources 1 . This includes most

fermionic models in condensed-matter and high-energy physics, some of which we con-

sider below. This includes most fermionic models in condensed-matter and high-energy

physics, some of which we consider below.

1
See Section 3.6 in this Chapter.
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3.3 Fermionic models in condensed matter

Kondo model.– The long debated Kondo Hamiltonian provides a variety of interesting

features in di↵erent systems, as the minimum in the resistivity at low temperatures [82].

With the proposed method, we can simulate Kondo Hamiltonians [75], modelling the

interaction of a Fermi sea of electrons with several magnetic impurities at positions Rj ,

H =
X

p�

✏pb
†
p�bp� � J

X

pp0j

eiRj ·(p�p0)[(b†p"bp0" � b†p#bp0#)�
z
j

+b†p"bp0#�
�
j + b†p#bp0"�

+
j ]. (3.4)

Here, � =", # is the spin of the electron, bp,p0"(b
†
p,p0") is the annihilation(creation)

operator for an electron with respective momentum p or p0 and spin up, �+j (��j ) is

the impurity raising(lowering) spin operator, ✏p is the energy of the kinetic electronic

Hamiltonian and J is the electron-impurity coupling. Notice that, e.g., the operators

b†p"bp0#�
�
j can be now mapped to a sum of products of Pauli matrices, leading to an

e�cient implementation.

Fermi-Hubbard model.– The Fermi-Hubbard Hamiltonian [76] takes into account a

range of e↵ects in condensed-matter physics, as the Mott transition, and is also believed

to be relevant in high-Tc superconductivity. It takes the form

H = w
X

�i�

b†i�bi+�� + U
X

j

b†j"bj"b
†
j#bj#, (3.5)

where the first fermionic operator subindex refers to the lattice site and the second to the

spin, w is the hopping energy, U is the onsite Coulomb repulsion and one usually makes

the tight-binding approximation � = ±1. Notice that our method is general and extends

the hopping terms to arbitrarily distant pairs of electrons. The last term contains the

product of four fermionic operators, allowing for e�cient implementation.

We could as well implement the coupling of arbitrary products of fermionic opera-

tors, similarly to Eq. (3.1), to linear sum of bosonic operators,

H =
↵
X

n=2

 N
X

i1...in=1

gi1...inci1 · · · cin
X

j

gj(aj + a†j) + H.c.

�

. (3.6)

The bosonic operators aj can be implemented with the vibrational modes of the ion

chain. One would now consider the same gate sequence as in Eq. (3.2) but replacing
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U�z(�) = exp(i�0�z) with U�z ,a(�) = exp[i�0�z
P

j gj(aj +a†j)]. The latter can be imple-

mented by using a red and a blue sideband interactions for each of the aj modes in the

context of standard trapped-ion technology [8].

Fröhlich model.– The Fröhlich Hamiltonian [77] models the interaction of electrons

with phonons,

H =
X

p

p2

2m
b†pbp + !0

X

q

a†qaq +
X

qp

M(q)b†p+qbp(aq + a†�q), (3.7)

with M(q) being the electron-phonon coupling. Here, bp is the electron annihilation

operator that destroys an electron with momentum p, aq is the phonon annihilation

operator with momentum q, !0 is the phonon frequency, and m is the electron mass. The

last term contains the product b†p+qbp(aq+a†q), whose dynamics can be implemented with

our technique above according to Eq. (3.6). We can simulate this kind of Hamiltonians

in order to recover the polaron physics, a critical open issue for the deep understanding

of correlated electrons in solids [83].

3.4 The n-dimensional case

One of the main appeals of our method is that the e�cient encoding of fermionic

models in a lattice with arbitrarily long-range couplings is feasible. This also means that

we can apply the Jordan-Wigner transformation for two and three spatial dimensions,

not just for one, without employing additional virtual Majorana fermions [81]. All this

is due to the fact that the fermionic operators are encoded in nonlocal spin operators

whose dynamics are e�ciently implementable. Thus, the mapped spin Hamiltonians are

highly nonlocal but their evolution is e�ciently realizable.

In order to show this, we plot in Fig. 6.1 the mapping of a solid-state 3D fermionic

system onto an ion string. As opposite to the nearest-neighbor tunneling coupling be-

tween fermions 1 and 2, which is local, the couplings between 1 and 4, and between

1 and 10, are nonlocal due to the Jordan-Wigner transformation, see yellow lines in

Fig. 6.1a. Nevertheless, we can implement them in an e�cient way. In Fig. 6.1b we

show the set of quantum gates needed to the implementation of the tunneling coupling

b†1b10+b†10b1 = �x1⌦�z2⌦�z3⌦...⌦�z9⌦�x10+�y1⌦�z2⌦�z3⌦...⌦�z9⌦�y10 in trapped ions. This

highly nonlocal coupling is a global unitary of 210⇥ 210 dimensions. In the general case,

it would require a number of elementary gates of 220 ' 106 [24]. With our method, the

number of gates can be as small as 10 per Trotter step, consisting of Mølmer-Sørensen
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Figure 3.1: (a) Mapping of a fermionic Hamiltonian onto an ion string. The couplings
between fermions 1 and 4 (resp., 1 and 10) are nonlocal when applying the Jordan-
Wigner transformation. (b) E�cient mapping of the tunneling coupling b†

1b10 +b†
10b1 in

trapped ions. This highly nonlocal coupling can be implemented with Mølmer-Sørensen
gates (dark blue and green), local exp(i�0�y

2 ) gates (red), exp[±i(⇡/4)
P

i

�y

i

] (yellow)
and exp[±i(⇡/4)

P

i

�x

i

] (cyan) gates.

gates (dark blue and green), local exp(i�0�y2) gates (red), exp[±i(⇡/4)
P

i �
y
i ] (yellow)

and exp[±i(⇡/4)
P

i �
x
i ] (cyan) gates 2.

3.5 Numerical simulations

In order to compare the e�ciency of the Trotter decomposition with the exact case,

we have realized numerical simulations of the Fermi-Hubbard Hamiltonian, Eq. (3.5),

for di↵erent levels of Trotter expansion and for the exact diagonalization case. We have

considered the case of three lattice sites, with six modes (two spins per site), to be

simulated with six two-level trapped ions. The resulting Hamiltonian is

H = w(b†1"b2" + b†1#b2# + b†2"b3" + b†2#b3# + H.c.)

+U(b†1"b1"b
†
1#b1# + b†2"b2"b

†
2#b2# + b†3"b3"b

†
3#b3#). (3.8)

Notice that the number of terms to be implemented scales linearly with the number of

modes, 5N/2�4 (11 in this case, for N = 6). At the same time, the nonlocal gates upon

several ions are e�ciently implementable with few lasers, such that the number of gates

in each term of the Hamiltonian is, in the worst case, linear in the number of modes,

and in many cases just constant. In this particular example the total number of gates

per Trotter step is of 33, i.e., on average 3 gates per Hamiltonian term, which is very

2
See Appendix ?? for more detailed example
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Figure 3.2: (a) hb†
2#b2#i(t) (dashed, blue), and hb†

3"b3"i(t) (solid, red) as a function

of Ut, for a number of Trotter steps n
T

= 15, and (b) fidelity |h (t
F

)| (t
F

)
T

i|2 as a
function of n

T

, for Ut
F

= 10, where | (t)i is the state evolved with exact diagonal-
ization, and | (t)

T

i is the Trotter-evolved state, for | (0)i = | 
T

(0)i = b†
1"b

†
1#|0i,

for |w|/U = 0.1. (c) hb†
2#b2#i(t) (dashed, blue), and hb†

3"b3"i(t) (solid, red), for

n
T

= 15, and (d) fidelity |h (t
F

)| (t
F

)
T

i|2, for Ut
F

= 2.5, where | (t)i is the
state evolved with exact diagonalization, and | (t)

T

i is the Trotter-evolved state, for
| (0)i = | 

T

(0)i = b†
1"b

†
1#|0i, for |w|/U = 4. In (a) and (c), the lines are obtained with

exact diagonalization and the dots with Trotter expansion.

e�cient. This is due to the specific structure of this Hamiltonian, that avoids the need

to apply additional local rotations.

In Figs. 6.2a and 6.2c, we plot the average number of excitations for mode b2#

(dashed, blue) and b3" (solid, red) for di↵erent parameters, showing the good convergence

of the Trotter method. Here, the lines are obtained with exact diagonalization and

the dots with Trotter expansion. For additional figures with larger number of Trotter

steps, see Section 3.6 in this Chapter. In Figs. 6.2b and 6.2d, we include the fidelity

|h (tF )| (tF )T i|2 as a function of the number of Trotter steps nT , where | (t)i is the

state evolved with exact diagonalization, and | (t)T i is the Trotter-evolved state, for

| (0)i = | T (0)i = b†1"b
†
1#|0i, and for di↵erent parameters. Notice that the fidelity of

the Trotter expansion goes to 1 with the number of Trotter steps nT , and for nT = 10

it is 0.99 and 0.97, respectively.

With current technology, more than 100 gates have been realized in a single exper-

iment [25]. Indeed, without error correction, one would expect the realization of more

than thousand gates in the near future [84]. This will allow, for nT = 10 Trotter steps,

the implementation of hundreds of gates per step, giving us the possibility to simulate
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a wide variety of fermionic models. In a possible experiment, one could consider, e.g.,

strings of Ca+ ions controlled with lasers. The spin degrees of freedom can be encoded in

long-lived electronic states of the ions [16, 23, 25, 54–56, 85]. Optimal state initialization

via optical pumping and high-fidelity detection through resonance fluorescence can be

easily performed.

3.6 Analysis of Trotter errors

In this Section, we show that the resources needed in our protocol, including number

of elementary gates and time scaling, are polynomial on the Trotter error, the total time

simulated, and the total size of the system, in terms of the number of fermionic modes.

The Trotter expansion is a useful tool to express the evolution operator of a Hamil-

tonian that can be written as a sum of e�ciently-implementable Hamiltonians, in terms

of a certain product of the operators associated to each of these individual Hamiltonians.

More specifically, if the Hamiltonian H can be written as a sum of m terms, where m is

polynomial in N , H =
Pm

j=1 Hj , then the standard Trotter expansion reads [24, 79, 80],

e�iHt = (
m
Y

j=1

e�iHjt/nT )nT + O[1/nT ]. (3.9)

Accordingly, by making nT very large, the error can be made as small as possible.

There are more sophisticated, higher order expansions so called Lie-Trotter-Suzuki

methods [86–88], that have a better scaling of the errors. Here, we will focus on time-

independent Hamiltonians whose evolution operator is expanded in terms of a k-th

order Lie-Trotter-Suzuki integrator. We will follow the formalism and error analysis of

Ref. [80]. In this reference it is shown that decompositions of U = exp(�iHt), where

H =
Pm

j=1 Hj , can be carried out in the general form

Ũ =
Ne
Y

l=1

e�iHjl
tl , (3.10)

with error ||U � Ũ || < ✏. Here, the total number of gates needed, Ne, scales in the error

✏, the total evolution time t, and the norm of the Hamiltonian H, ||H||, where ||.|| is the

2-norm, in the form [80]

Ne  m52k(m||H||t)1+1/2k/✏1/2k, (3.11)

provided ✏  1  2m5k�1||H||t.
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Figure 3.3: We plot hb†
2#b2#i(t) (dashed, blue), and hb†

3"b3"i(t) (solid, red) as a function

of Ut, for | (0)i = | 
T

(0)i = b†
1"b

†
1#|0i, |w|/U = 4, and a number of Trotter steps

n
T

= 30 (a), 45 (b), and 60 (c). In (a), (b), and (c) the lines are obtained with exact
diagonalization and the dots are obtained with Trotter expansion. We also plot (d)
the fidelity |h (t

F

)| (t
F

)
T

i|2 as a function of n
T

, for Ut
F

= 2.5, where | (t)i is the
state evolved with exact diagonalization, and | (t)

T

i is the Trotter-evolved state, for
| (0)i = | 

T

(0)i = b†
1"b

†
1#|0i, and for |w|/U = 4. We show the numerical results with

Trotter (dots) and a fit to the function 1� C/n2
T

(line), where C is a free parameter.

Notice that in all fermionic Hamiltonians we are considering, we have i) a polynomial

number of nonlocal spin operators, i.e., m is polynomial in N , the total number of

fermionic modes. ii) each Hj is always of the form of a product of arbitrary number of

Pauli matrices times a coupling hj , such that its norm ||Hj || = hj , given that the 2-norm

of a product of arbitrary number of Pauli matrices is always 1. iii) the total norm of

H is bounded by ||H|| Pm
j=1 ||Hj || =

Pm
j=1 hj  mhmax

j , where hmax
j is the maximum

among all h0
js. Thus, ||H|| is polynomial in m, and in consecuence, also in N .

Accordingly, we have shown that the scaling of the number of elementary gates

needed in our expansion, is polynomial (more specifically, a power law) in ✏, t, and N ,

such that our method for implementing arbitrary fermionic Hamiltonians that occur in

nature is e�cient.

We plot Figs. 3.3a, b, and c, in order to analyze the convergence of Trotter methods

to the exact diagonalization case when increasing the number of Trotter steps nT , and

comparing with Fig. 6.2 in the previous Section (for which nT = 15). These three figures

clearly show the fast convergence for a linear increase in nT .
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In Fig. 3.3d, we plot the fidelity |h (tF )| (tF )T i|2 as a function of nT , for UtF = 2.5,

where | (t)i is the state evolved with exact diagonalization, and | (t)T i is the Trotter-

evolved state, for | (0)i = | T (0)i = b†1"b
†
1#|0i, and for |w|/U = 4. We show the

numerical results with Trotter (dots) and a fit to the function 1 � C/n2
T (line), where

C is a free parameter. This curve has a perfect agreement with the Trotter numerics.

Thus, the error goes to zero polynomially in nT , as expected.



Chapter 4

Quantum simulation of the

Holstein model

4.1 Introduction

In this Chapter, we will extend the protocol presented in Chapter 3, in order to deal with

the digital simulation of coupled bosonic-fermionic systems. These systems are naturally

described by unbounded Hamiltonians and, as we will show, the quantum simulation of

such systems may have some subtleties in the convergence of the digital approximation,

which are not usually addressed in the literature of quantum simulation protocols.

Strongly correlated quantum many body systems represent a challenge to both com-

putational and analytic methods. Among them, correlated fermionic-bosonic models are

of critical relevance. The importance of correlation between electrons and ion vibrations

has been proven for a large number of condensed-matter systems [89]. Their role in

high-temperature superconductors, as fullerides and cuprates, is still debated [90–92].

In solid state systems, the correlation between the presence of electrons in a lattice and

deformations of the latter can result in the formation of polarons: electrons and phonons

can no longer be considered as stand-alone particles. Depending on the strength of the

electron-phonon couplings, the cloud of lattice displacements surrounding the electron

can have di↵erent sizes. For strong couplings, the electrons can be trapped, with re-

markable changes of global properties [93]. The Holstein model [94] has been proved to

naturally describe the strong coupling case. This model has been recently addressed by

heavy numerical simulations [95] and classical analog simulations for a reduced number

of sites [96]. Perturbation methods based on the Lang-Firsov approximations [97], valid

in the strong coupling limit, are known since long times. The dimensionality of the un-

derlying lattice also raises critical features [98]. While involving a lot of e↵orts, the full

31
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and complete comprehension of the electron-phonon correlations is still an open problem.

From a quantum mechanics point of view, when considering creation of phonons, even

with few electron sites, the size of the simulated Hilbert space can dramatically grow.

The quantum simulation of such a complex dynamics could represent an important step

forward in the description of condensed matter systems.

Trapped-ion systems are among the most controllable quantum systems. They o↵er

remarkable computational power to perform quantum simulations exponentially faster

than their classical counterparts [4, 16, 17, 19–23, 53–55, 57, 58, 99–101].

We propose the implementation of the Holstein Hamiltonian in a chain of trapped

ions, using digital-analog approximation methods, in which the fermionic part is dig-

itized and the bosonic part is analog and provided naturally by the phonons. First,

we address the problem of simulating unbounded Hamiltonians with digital-analog pro-

tocols. Then, we provide a convenient decomposition of the Holstein Hamiltonian, in

that each step can be implemented in a trapped-ion setup. We discuss a possible ex-

perimental implementation, testing the whole protocol with numerical integrations of

the Schrödinger equation. We show how critical observables, as electron-phonon cor-

relations, can be retrieved from the trapped ion setup, leading to an estimation of the

polaron size.

4.2 Trotter decomposition

It is known that the dynamics of a quantum state under the action of a Hamiltonian H

can be recovered by using combined fractal-stroboscopic symmetric decompositions [40,

80]. In most practical cases, one can assume a fractal depth of one. This will be the case

through all the rest of our analysis. With these techniques, the target Hamiltonian H

is decomposed in a set of m terms: H =
Pm

i=1 Hi. Then, the symmetric decomposition

for the unitary operator encoding the dynamics of Hamiltonian H reads

Ur(t) =

 

m
Y

i=1

e�
iHit

2r

1
Y

i=m

e�
iHit

2r

!r

. (4.1)

Here r is the degree of approximation in terms of Trotter steps. It has been shown [80]

that, using symmetric Suzuki fractal decompositions, the number of gates needed to

approximate the exact time evolution of the quantum state grows with the norm of

the simulated Hamiltonian. Therefore, it is a natural problem to think of a quantum

simulation involving particle generation, in particular of bosons, whose number can

grow, in principle, indefinitely. However, in the standard approach to these problems,

the dynamics of a bosonic Hilbert space can be recovered by truncating at a certain
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point of the number of possible bosonic excitations, see Appendix A. Thus, the number

of gates needed to achieve a certain fidelity for the simulated quantum state grows as

more bosonic excitations are created.

The Holstein Hamiltonian [94], of a chain of N sites (in the following ~ = 1), reads

H = �h
N�1
X

i=1

(c†ici+1 + h.c.) + g
N
X

i=1

(bi + b†i )ni + !0

N
X

i=1

b†ibi. (4.2)

Here, ci(c
†
i ) is the annihilation (creation) operator in the electron site i, and bi(b

†
i ) is

the phonon annihilation (creation) operator on the site i; ni = c†ici is the electronic

occupation number operator. The parameters h, g and !0 stand respectively for a

nearest-neighbor (NN) site hopping for the electrons, electron-phonon coupling and free

energy of the phonons. To encode the model in a trapped-ion chain, we first map the

fermionic operators through the Jordan-Wigner transformation, ci !
Qi�1

j=1 �
z
j�

�
i to

tensor products of Pauli matrices. The mapped Hamiltonian describes now a coupled

spin-boson system

H = h
N�1
X

i=1

(�+i �
�
i+1 + h.c.) +

+g
N
X

i=1

(bi + b†i )
(�zi + 1)

2
+ !0

N
X

i=1

b†ibi. (4.3)

The first term can be rewritten as h
2

PN
i=1(�

x
i �

x
i+1 + �yi �

y
i+1). We now decompose the

Hamiltonian into three parts, H = H1 + H2 + H3. The single steps read

H1 =
N�1
X

i=1

h

2
�xi �

x
i+1 +

!0

3

N
X

i=1

b†ibi,

H2 =
N�1
X

i=1

h

2
�yi �

y
i+1 +

!0

3

N
X

i=1

b†ibi, (4.4)

H3 =
N
X

i=1

g(bi + b†i )
(�zi + 1)

2
+
!0

3

N
X

i=1

b†ibi.

According to Ref. [80], one can upper bound the number of gates Ng needed to achieve

a simulation error smaller that ✏, by giving an upper bound for the norm of H,

Ng  3 · 52k[3(|h|(N � 1) + 2|g|NpM � 1

+!0NM)t]1+
1
2k /✏1/2k. (4.5)

As mentioned before, the fractal depth k [40] can be set to one in most applications.

Here, we show the dependence of the number of gates in the number of fermionic sites N ,
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Figure 4.1: (a) Behavior of the fidelity loss 1 � F (t) = 1 � |h 
E

(t)| 
S

(t)i|2, for
a two site configuration, as a function of the electron-phonon coupling strength g,
for !0 = h/4. As the coupling g increases, more phonons are created, the Hilbert
space describing the dynamics enlarges and the fidelity decreases for a fixed number of
approximant gates (r = 10 here). (b) Dependence of the fidelity loss in the number of
sites. Here g = 0.3 h, !0 = 0.5 h, and ten symmetric steps are considered (r = 10).
The initial state of both plots corresponds to a configuration in which an electron is
injected in the site N/2 (N even) or (N + 1)/2 (N odd), and there are no phonons.

and on the truncation in the number of bosons M . As the number of created phonons

increases, one needs a higher-level truncation, and a larger Hamiltonian norm. Never-

theless, this shows that we can e�ciently simulate a 2N ⇥ (M + 1)N Hilbert space, i.e.,

with a number of gates that grows at most polynomially in N and M . To show the

scaling of fidelities with the parameters considered, we plot in Fig. 4.1 the time depen-

dence of the fidelity loss 1� F (t) = 1� |h E(t)| S(t)i|2 of the simulated wavefunction

| S(t)i versus the exact one | E(t)i as a function of coupling g and of number of sites

N . The particular decomposition has been chosen so that all terms in Eq. (4.4) can be

implemented in a linear chain of trapped ions.

4.3 Proposal for ion-trap systems

We consider a set of N + 1 trapped ions in a chain, in order to simulate N fermionic

sites provided with Holstein interactions. The ions are bounded strongly in the radial

direction, and confined longitudinally within a harmonic potential [102]. We define

⌫i, i = 1, 2, ...N + 1, as the frequencies of the axial normal modes. We relate the

ion normal mode energies with the dispersionless phonon energies in Eq. (4.2) via

�i = ⌫i� !0
3 . The three Hamiltonian steps H1, H2 and H3 are derived in the interaction

picture with respect to

H0 =
N+1
X

i=1

!

2
�zi +

N
X

i=1

�ib
†
ibi + ⌫N+1b

†
N+1bN+1, (4.6)
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Figure 4.2: Dynamics for the 3 + 1 ions configuration of the NN XX Hamiltonian.
Dotted curves stand for h�i

z

i
E

for the exact dynamics, and solid curves stand for h�i

z

i
I

for realistic ion interactions (i = 1, 2, 3 for the first, second and third ion). The pa-
rameters are chosen in order to have maxima in the fidelity F (t) = |h 

E

(t)| 
I

(t)i|2 of
⇠ 0.995 (top black curve) at time steps of ⇠ 333 ⌫1t. These time steps can be chosen
as Trotter steps.

where ! is the excitation energy of the individual ion taken as a two-level system, i.e.,

the carrier frequency. In this way, the free energies of N normal modes do not disappear

in the interaction picture, and a flattered part of them is still present in order to recover

the dispersionless phononic spectrum.

To simulate the dynamics associated to H1 and H2 of Eq. (4.4), one has to achieve a

NN Ising coupling. The possibility of obtaining an Ising field in linear chains of trapped

ions has been proposed and realized [16, 65]. However, in implementing NN interactions

between more than two ions, one must be careful in designing an appropriate set of lasers

and detunings in order to minimize the spurious non-nearest-neighbor (NNN) e↵ects.

To this extent, we have realized numerical simulations for a 3+1 ions setup, using one

set of two pairs of counterpropagating lasers detuned close to the shifted center of mass

(COM) shifted mode of frequency �1 = ⌫1 � !0/3 to drive the first two ions (detunings

±�1), and another set of lasers detuned close to a second mode of frequency �2, that in

the case of 3+1 ions can be chosen as the breathing mode, addressing the second and

the third ion (detunings ±�2). For a generic number of ions, Rabi frequencies ⌦i of the

lasers driving the i-th and the i + 1-th ions are chosen to achieve the desired strength

in the Ising coupling, according to [65],

HNN =
N�1
X

i=1

⌦2
i

" 

N
X

m=1

⌘i,m⌘i+1,m�m

�2i ��2
m

!

+
⌘i,N+1⌘i+1,N+1⌫N+1

�2i � ⌫2N+1

#

�xi �
x
i+1. (4.7)
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In Fig. 4.2, the first and second ion are driven with two pairs of counterpropagating

lasers with detuning close to the shifted COM mode (�1 = 1.0187 ⌫1 for !0 = h/4).

The Rabi frequencies are chosen properly in order to reach a NN interaction of h/2 =

0.001 ⌫1. Lasers driving the second and the third ions are detuned close to the shifted

breathing mode at ⌫2 = 1.731 ⌫1 [102], with parameters �2 = 1.71196 ⌫1. Detunings

are chosen to have a dynamics decoupled with respect to the phonons at time steps

⇠ 333 ⌫t and a negligible NNN interaction. At these times, the ion spins match the

exact value, phonons are detached from spins and the fidelity oscillation (top black

curve) F (t) = |h E(t)| I(t)i|2 reaches maxima, with peaks of ⇠ 0.995.

The initial state, as in all our numerical simulations, except where specified, is

chosen to mimic a configuration in which one electron is injected at the center of a one

dimensional lattice provided with Holstein interactions. To this extent, all the spins are

initialized in the opposite Z direction, except the one in site N/2, in case of even N ,

or (N + 1)/2 in case of odd N . The spin of the last ion has to be initialized along the

Z direction in order to be a passive ion with respect to the dynamics, according to the

protocol for the implementation of H3 given below. The vibrational modes are assumed

to be initially cooled down to the ground state with resolved sideband cooling [8].

Notice that one can always implement a perfect NN coupling by using more strobo-

scopic steps. A possibility is to decompose the global NN into nearest-neighbor pairwise

interactions. Another possibility is to design a counter, non-nearest-neighbor interaction

step between pairs of non-nearest neighbor ions in order to eliminate the spurious NNN

imperfections. Given that one has an unwanted hi,j�ix�
j
x, one can add more Trotter

steps to the protocol of the form �hi,j�ix�
j
x in order to have an Hamiltonian free of

NNN couplings. The dynamics associated to the step with H2 is implemented similarly

to the one of H1, with a di↵erent choice of the initial phases of the lasers, in order to

achieve a YY interaction.

The Hamiltonian H3 is realized as a combination of 2N red and blue detuned lasers

with appropriate initial phases in order to recover a coupling of the i-th ion (i = 1, ...N)

with the mi-th normal (shifted) mode ⌘i,mi⌦i�ix(b
†
mi + bmi). The i-th ion is driven with

red and blue detuned lasers to the mi-th mode, establishing a one-to-one correspondence

between the first N ions and the first N normal modes. Moreover, the last ion of the

chain is driven by 2N lasers detuned in order to be coupled with the same modes of the

ions in the chain. Two additional rotations of the spins of all ions around the Y axis

are applied before and after coupling the spins to the phonons. They can be obtained

by acting two times with a global beam upon all the N + 1 ions at the same time. The
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Hamiltonian describing this process is,

He�p =
N
X

i=1

(⌦i⌘i,mi�
i
z + ⌦N+1,i⌘N+1,mi�

N+1
z )(bmi + b†mi

). (4.8)

The Rabi frequencies of the lasers must be chosen according to ⌦i = g/2⌘i,mi , ⌦N+1,i =

g/2⌘N+1,mi . If the last ion is initialized with the spin aligned along the Z axis and not

addressed by spin flip gates during the simulation, the previous described gates result

in the e↵ective Hamiltonian on the first N ions subspace,

He�p,N =
N
X

i=1

g
(�iz + 1)

2
(bmi + b†mi

). (4.9)

4.4 Digital quantum simulation analysis

In general, digital protocols are much sensitive to the state fidelity that one can achieve

at the end of the digital step. According to the mathematical theory, increasing the

number of steps will result in an increased fidelity on the final simulated state. However,

if one has an error on a single step, increasing the number of gates will result in the

accumulation of these errors. Thus on one hand the use of more accurate single gates is

required, on the other hand one has to get a compromise between the increased fidelity

due to the increased number of steps and the fidelity loss due to the accumulated single

gate error.

To have a quantitative estimation of the fidelity loss with the dynamics of the full ion

Hamiltonian, we have realized numerical integrations for the Schrödinger equation for

N = 2+1 and N = 3+1 ion setups. We point out that we consider this reduced number

of ions because of numerical computation restrictions, and to prove the feasibility of our

model. In general our formalism may be straightforwardly extended to several ions. In

Fig.4.3, a simulation for r = 2 and r = 3 symmetric Trotter steps is realized. The fidelity

loss 1 � |h E(t)| S(t)i|2 for the Trotter protocol with perfect gates, i.e., associated to

Hamiltonians H1, H2 and H3, is plotted against points of fidelity loss 1�|h E(t)| I(t)i|2
obtained with realistic trapped-ion gates including the full laser interactions are plotted

at various times. As can be appreciated, the fidelity loss for the ion gates is only slightly

larger than for the exact Trotter gates, showing the feasibility of the protocol with

realistic trapped-ion interactions. The total simulation time has been chosen in order

to remain under the decoherence time for the ions [14]. The frequency of the center of

mass mode can be assumed to be ⌫1 ' 2⇡⇥1 MHz. The global rotation for the ion spins

can be assumed to be done in 7 µs [25]. The number of global rotations is 4r. The step

for the red and blue sideband Hamiltonian can be performed in the same time as the
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Figure 4.3: Fidelity loss for 3+1 ion configuration, involving Trotter simulation with
perfect gates and realistic ion interactions, for two and three symmetric Trotter steps.

step for the NN XX gate (or even faster). Provided with these parameters, for a final

simulated time of 2000/⌫1 ⇠ 318 µs, the time spent for the simulation can be taken of

⇠ 1 ms. Given that typical heating rates in trapped ion experiments [25] are of about 1

phonon/s, we can assume that for the time of the proposed simulation heating will not

be significant.

Tuning the coupling strength g by setting the Rabi frequencies of the red and blue

detuned lasers to various values, one can measure the di↵erent correlations between

electron and phonon displacement at distant sites,

�(i, j) = h (t)|c†ici(b†j + bj)| (t)i. (4.10)

This will amounts to a signature of the polaron size [93]. Ranging from small to large g

will lead to a measure of the crossover between large/small polaron. Notice that these

correlations are mapped in our ion setup onto

�(i, j) = h (t)|(bmj + b†mj
)
(�zi + 1)

2
| (t)i, (4.11)

which can be measured by mapping the motional onto the internal state of the auxiliary

N + 1-th ion, and then detecting resonance fluorescence of ions N + 1 and i [20, 23].

We notice that with our setup the possibility of simulating a 2D and 3D Holstein model

is provided, by encoding two and three dimensional interactions into a linear chain by

addressing distant ions with nonlocal gates [60].

Currently, more than 100 gates have been implemented in a trapped-ion quantum

simulation experiment with Trotter methods [25]. In the near future, it should be

possible to achieve hundreds or even thousands of gates per experiment, allowing our
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proposal to reach about ten qubits. It is noteworthy to mention that our proposed digital

quantum simulation will already overcome the limits of classical computers with 10 ions

and 5 phonons per ion. This will allow to study the formation of small polarons under

these conditions. Future experiments involving 20 to 30 ions will permit to address

the study of more complex dynamics, including electron-electron correlations mediated

by phonons. In this manner, the trapped-ion quantum simulator will prove to be a

remarkable tool for simulating fermions coupled to bosons and related condensed-matter

or high-energy physics scenarios.

4.5 Numerical simulations

In this section, we provide additional numeric plots and further discussions for our

simulation protocol for a 2+1 and 3+1 ion configuration. First of all, in all our numerical

simulations, we have fixed the total simulated time to a maximum of 2000/⌫1, in units

of the center of mass (COM) mode frequency ⌫1. Assuming ⌫1 ⇠ 2⇡ ⇥ 1 MHz, this

gives a total simulated time of ⇠ 318 µs. We choose Trotter steps equally extended

within a time ⌧ = t/2, where t is the total simulated time. With these assumptions,

to compute the total e↵ective simulation time, one has to multiply the simulated time

by the number of terms in the decomposition of the simulated dynamics, i.e. 3 in our

case. Then we have to add the time contribution for the global ⇡/4 rotations along the

Y axis, necessary to achieve the Z-like coupling to the phonons, that can be estimated

to be around ⇠ 7 µs each [25]. Considering four global rotations per symmetric Trotter

step, this gives a total simulation time of the order ⇠ 1 ms for the r = 1 and r = 2 case.

This is well below the typical decoherence times for a trapped-ion setup [14]. Notice

that we have made assumptions on the time extension for the Trotter steps, but nothing

prevents to set the duration for the Trotter step to shorter times, as long as one can

adjust properly the Rabi frequencies of the lasers used [25]. This paves the way to the

scalability of the protocol.

The dynamics described by Hamiltonians H1 and H2 can be achieved by using two

pairs of counterpropagating lasers with opposite detunings ±�i [65], driving the i-th

and the i + 1-th ions. One can switch between a nearest neighbor (NN) XX/YY Ising

interactions by taking appropriate initial phases for the lasers. The e↵ective spin-spin

coupling generated by this kind of laser drivings has the form of Eq. (7) in the main

text.

In order to have negligible phonon displacements at the Trotter step time ⌧ , one

has to choose the detuning �i = ±2⇡/⌧ + �m close to one of the modes of (shifted)

frequencies �m (thus |�i � �m| ⌧ |�m|, |�i|). We point out again here that in our



Chapter 4. Quantum simulation of the Holstein model 40

0 500 1000 1500 2000−1

−0.5

0

0.5

1

 

 

1

h�2
z

i
I

h�2
z

i
E

hn
�2iI

hn
�1iI

h�1
z

i
E

⌘ h�3
z

i
E

h�3
z

i
I

h�1
z

i
I

⌫1thn�1iE

Fidelity Loss

1

h�2
z

i
I

h�2
z

i
E

hn
�2iI

hn
�1iI

h�1
z

i
E

⌘ h�3
z

i
E

h�3
z

i
I

h�1
z

i
I

⌫1thn�1iE

Fidelity Loss

1

h�2
z

i
I

h�2
z

i
E

hn
�2iI

hn
�1iI

h�1
z

i
E

⌘ h�3
z

i
E

h�3
z

i
I

h�1
z

i
I

⌫1thn�1iE

Fidelity Loss

1

h�2
z

i
I

h�2
z

i
E

hn
�2iI

hn
�1iI

h�1
z

i
E

⌘ h�3
z

i
E

h�3
z

i
I

h�1
z

i
I

⌫1thn�1iE

Fidelity Loss 1

h�2
z

i
I

h�2
z

i
E

hn
�2iI

hn
�1iI

h�1
z

i
E

⌘ h�3
z

i
E

h�3
z

i
I

h�1
z

i
I

⌫1thn�1iE

Fidelity Loss

1

h�2
z

i
I

h�2
z

i
E

hn
�2iI

hn
�1iI

h�1
z

i
E

⌘ h�3
z

i
E

h�3
z

i
I

h�1
z

i
I

⌫1thn�1iE

Fidelity Loss

1

h�2
z

i
I

h�2
z

i
E

hn
�2iI

hn
�1iI

h�1
z

i
E

⌘ h�3
z

i
E

h�3
z

i
I

h�1
z

i
I

⌫1thn�1iE

Fidelity Loss F (t)

0 500 1000 1500 20000

0.05

0.1

0.15

0.2

 

 

exact gates r=1
exact gates r=2
ion gates r=1
ion gates r=2

0 500 1000 1500 20000

0.05

0.1

0.15

0.2

 

 

exact gates r=1
exact gates r=2
ion gates r=1
ion gates r=2

0 500 1000 1500 20000

0.05

0.1

0.15

0.2

 

 

exact gates r=1
exact gates r=2
ion gates r=1
ion gates r=2

0 500 1000 1500 20000

0.05

0.1

0.15

0.2

 

 

exact gates r=1
exact gates r=2
ion gates r=1
ion gates r=2

0 500 1000 1500 2000−1

−0.5

0

0.5

1

 

 

0 500 1000 1500 2000−1

−0.5

0

0.5

1

 

 

0 500 1000 1500 2000−1

−0.5

0

0.5

1

 

 

0 500 1000 1500 2000−1

−0.5

0

0.5

1

 

 

0 500 1000 1500 2000−1

−0.5

0

0.5

1

 

 

0 500 1000 1500 2000−1

−0.5

0

0.5

1

 

 

Figure 4.4: Dynamics for the 2+1 ions configuration of the NN XX Ising Hamiltonian.
Dotted curves stand for h�i

z

i
E

for the exact dynamics, and solid curves stand for h�i

z

i
I

for realistic ion interactions (i = 1, 2 for the first and second ion). The parameters are
chosen in order to have fidelity losses of 1 � F (t) = 1 � |h 

E

(t)| 
I

(t)i|2 ⇠ 10�4 (top
black curve) at time steps of ⇠ 500/⌫1.

protocol we deal with shifted frequencies, to take into account the desired dispersionless

energies of the Holstein phonons. The ± sign in the choice of �i can be used to change

the relative sign of the spin-spin interaction, depending on sgn[⌘i,m⌘i+1,m]. We assume

in our simulations a relative Lamb-Dicke parameter distribution for ions and modes as

in [102], with an overall magnitude of 0.1. If one chooses m = 1 for the 2+1 ions setup,

i.e. a detuning close to the COM mode, it must be set to � = 2⇡/⌧ +�1, to obtain a

positive h/2 coupling in the Ising NN interaction, because sgn[⌘1,1⌘2,1] = + .

In Fig. 4.4, we show the numerical integration for the dynamics of the NN XX Ising

interaction for a 2+1 ions configuration. The simulated strength for the Ising coupling

is h/2 = 0.001 ⌫1. For !0 = h/4, one has a shifted frequency for the COM mode

of �1 = ⌫1 � 0.0005⌫1/3. By choosing ⌧ = 500/⌫1, the detuning used in this case is

� = 2⇡⌫1/500 +�1 = 1.0124 ⌫1, i.e. for ⌫1 ' 2⇡ ⇥ 1 MHz, a frequency di↵erence with

the mode of � � ⌫1 = 2⇡ ⇥ 12.4 KHz. The Rabi frequencies of the lasers are chosen in

order to recover the desired strength for the Ising coupling.

To have an idea of how real ion interactions a↵ect the protocol for a 2+1 ion setup,

we make a plot of the errors on the simulated state with perfect gates and with ion

gates in Fig. 4.5. One clearly sees that the higher fidelities obtained by using the ion

gates with respect to the 3+1 ion setup are due to the higher single gate fidelity for the

2+1 setup, which permits to explore better fidelity regimes. The simulated parameters

here are g = h/10, !0 = h/4, h = 0.002 ⌫1. We remark that in the simulations we have

used a small g/h ratio to reduce the complexity of the simulation (i.e., the necessary

truncation for the Fock space is small). Nevertheless, in a trapped-ion experiment, big
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Figure 4.5: Fidelity loss for a 2+1 ions configuration as a function of time and Trotter
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Figure 4.6: Mean number of phonons inside a Trotter protocol for a 2+1 ions config-
uration, for the Hamiltonian H = H1 +H3, where H1 is a spin spin XX interaction and
H3 is a spin-phonon coupling interaction. The phonons are excited within the time for
the H3 steps (solid black line), and excited and released to their initial value within the
H1 interactions (dotted red lines), with the typical oscillations for this kind of gates.

g/h ratios with large freedom for the choice of !0 can be explored, thus recovering the

typical self trapping line for the formation of small polarons [93]. The time points for

the simulation range from t = 1000/⌫1 to t = 2000/⌫1. For r = 1 this gives Trotter steps

ranging from ⌧ = 500/⌫1 to ⌧ = 1000/⌫1. The detuning for the NN interaction has to

be set accordingly at each point, ranging from 1.0124 ⌫1 to 1.0061 ⌫1.

To obtain the plot of Fig. 3 in the main paper, with the same simulated parameter

g = h/10, !0 = h/4, h = 0.002 ⌫1, we have used two simultaneous NN XX interactions

as described above. One involves the first two ions with a detuning close to the COM

mode, and another one driving the second and the third ion with a detuning close to the
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breathing mode, of frequency ⌫2 = 1.731 ⌫1 [102]. To obtain an Ising interaction with

the proper sign for the second and the third ion, we have to set the detuning for the

second laser below the shifted frequency �2. This is because for a 3+1 configuration

(i.e., four ions in a linear trap), one has sgn[⌘1,1⌘2,1] 6= sgn[⌘2,2⌘3,2] [102]. The detuning

for the second set of lasers is therefore chosen to be � = �2⇡/⌧ + �2. For example,

for the simulation point at t = 1000/⌫1, corresponding to ⌧ = 250/⌫1 for r = 2, one

has �1 = 1.025 ⌫1 and �2 = 1.7057 ⌫1. Using these parameters, it turns out that the

non-nearest-neighbor coupling between the first and the third ion is negligible.

To get an insight of what happens to the phonon population of the COM mode

inside a Trotter protocol, one can have a look to Fig. 4.6. Here, it is shown the mean

number of phonons for a 2+1 ion setup using a symmetric decomposition at r = 1 of

the Hamiltonian H = H1 + H3, where H1 is a XX Ising interaction obtained with a

detuning close to �1 and H3 is a Z-like coupling to phonons. The decomposed evolution

operator has the form U2(t) = e�iH1t/2e�iH3t/2e�iH3t/2e�iH1t/2. We see that, in the first

and the last step, the two Ising interactions create phonons, while relaxing them at the

end of the step, because the laser detuning and Rabi frequencies are chosen to obtain

detachment from the phonons at the end of the Trotter step. In the two middle steps,

the phonons are excited according to the H3 Hamiltonian. The final mean value for the

phonon number is recovered with respect to the dashed line value, which is the numerical

value according to the exact evolution operator e�iHt, with an error of ⇠ 1%. Notice

that since the decomposition involves symmetric Trotter steps, and each one is chosen

to be of the same duration, the total simulation time is doubled.



Chapter 5

Quantum-classical simulator for

quantum chemistry

5.1 Introduction

In this Chapter, we propose the implementation of a hybrid quantum-classical algorithm

for the simulation of quantum chemistry problems. We show how quantum simulation

steps can be inserted into the complex bottleneck parts of a simulation protocol, in order

to retrieve molecular energy levels. We find that trapped-ion system are ideal systems

for these kind of protocols, given the possibility of simulating fermionic interactions with

collective gates.

Quantum chemistry represents one of the most successful applications of quantum

mechanics. It provides an excellent platform for understanding matter from atomic to

molecular scales, and involves heavy interplay of experimental and theoretical methods.

In 1929, shortly after the completion of the basic structure of the quantum theory, Dirac

speculated [103] that the fundamental laws for chemistry were completely known, but the

application of the fundamental laws led to equations that were too complex to be solved.

About ninety years later, with the help of transistor-based digital computers, the devel-

opment of quantum chemistry continues to flourish, and many powerful methods, such

as Hartree-Fock, configuration interaction, density functional theory, coupled-cluster,

and quantum Monte Carlo, have been developed to tackle the complex equations of

quantum chemistry (see e.g. [104] for a historical review). However, as the system size

scales up, all of the methods known so far su↵er from limitations that make them fail

to maintain accuracy with a finite amount of resources [105]. In other words, quantum

chemistry remains a hard problem to be solved by the current computer technology.

43



Chapter 5. A trapped-ion quantum simulator for quantum chemistry 44

Figure 5.1: Simulating quantum chemistry with trapped ions. (a) Scheme of a
trapped-ion setup for quantum simulation, which contains a linear chain of trapped
ions confined by a harmonic potential, and external lasers that couple the motional and
internal degrees of freedom. (b) Transitions between internal and motional degrees of
freedom of the ions in the trap. (c) The normal modes of the trapped ions can simulate
the vibrational degrees of freedom of molecules. (d) The internal states of two ions can
simulate all four possible configurations of a molecular orbital.

As envisioned by Feynman [2], one should be able to e�ciently solve problems of

quantum systems with a quantum computer. Instead of solving the complex equations,

this approach, known as quantum simulation (see the recent reviews in Refs. [6, 106,

107]), aims to solve the problems by simulating target systems with another controllable

quantum system, or qubits. Indeed, simulating many-body systems beyond classical

resources will be a cornerstone of quantum computers. Quantum simulation is a very

active field of study and various methods have been developed. Quantum simulation

methods have been proposed for preparing specific states such as ground [108–113] and

thermal states, simulating time evolution [24, 25, 60, 114, 115], and the measurement of

physical observables [116].

Trapped-ion systems (see Fig. 5.1) are currently one of the most sophisticated tech-

nologies developed for quantum information processing [14]. These systems o↵er an

unprecedented level of quantum control, which opens new possibilities for obtaining

physico-chemical information about quantum chemical problems. The power of trapped

ions for quantum simulation is manifested by the high-precision control over both the

internal degrees of freedom of the individual ions and the phonon degrees of freedom

of the collective motions of the trapped ions, and the high-fidelity initialization and

measurement [8, 14]. Up to 100 quantum logic gates have been realized for six qubits

with trapped ions [25], and quantum simulators involving 300 ions have been demon-

strated [17].

In this work, we present an e�cient toolkit for solving quantum chemistry prob-

lems based on the state-of-the-art in trapped-ion technologies. The toolkit comprises

two components i) First, we present a hybrid quantum-classical variational optimization
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Figure 5.2: Outline of the quantum-assisted optimization method. (a) The key steps
for quantum assisted optimization, which starts from classical solutions. For each new
set of parameters �’s, determined by a classical optimization algorithm, the expectation
value hHi is calculated. The potential energy surface is then obtained by quantum phase
estimation. (b) Quantum measurements are performed for the individual terms in H,
and the sum is obtained classically. (c) The same procedure is applied for each nuclear
configuration R to probe the energy surface.

method, called quantum-assisted optimization, for approximating both ground-state en-

ergies and the ground-state eigenvectors for electronic problems. The optimized eigen-

vector can then be taken as an input for the phase estimation algorithm to project out

the exact eigenstates and hence the potential-energy surfaces (see Fig. 5.2). Further-

more, we extend the application of the unitary coupled-cluster method [117]. This allows

for the application of a method developed for classical numerical computations in the

quantum domain. ii) The second main component of our toolkit is the optimized use

of trapped-ion phonon degrees of freedom not only for quantum-gate construction, but

also for simulating molecular vibrations, representing a mixed digital-analog quantum

simulation. The phonon degrees of freedom in trapped-ion systems provide a natural

platform for addressing spin-boson or fermion-boson-type problems through quantum

simulation [19, 20, 57, 60, 70, 71]. It is noteworthy to mention that, contrary to the

continuous of modes required for full-fledged quantum field theories, quantum simula-

tions of quantum chemistry problems could reach realistic conditions for finite bosonic

and fermionic mode numbers. Consequently, trapped ions can be exploited to solve dy-

namical problems involving linearly or non-linearly coupled oscillators, e.g., spin-boson

models [118], that are di�cult to solve either analytically or numerically with a classical

computer. Furthermore, we have also developed a novel protocol to measure correlation

functions of observables in trapped ions that will be crucial for the quantum simulation

of quantum chemistry.
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5.2 Trapped ions for quantum chemistry

Quantum chemistry deals with the many-body problem involving electrons and nuclei.

Thus, it is very well suited for being simulated with trapped-ion systems, as we will

show below. The full quantum chemistry Hamiltonian, H = Te + Ve + TN + VN +

VeN , is a sum of the kinetic energies of the electrons Te ⌘ � ~2
2m

P

ir2
e,i and nuclei

TN ⌘ �
P

i
~2
2Mi
r2

N,i, and the electron-electron Ve ⌘
P

j>i e
2/ |ri � rj |, nuclei-nuclei

VN ⌘
P

j>i ZiZje2/ |Ri �Rj |, and electron-nuclei VeN ⌘ �
P

i,j Zje2/ |ri �Rj | poten-

tial energies, where r and R respectively refer to the electronic and nuclear coordinates.

In many cases, it is more convenient to work on the second-quantization representa-

tion for quantum chemistry. The advantage is that one can choose a good fermionic basis

set of molecular orbitals, |pi = c†p |vaci, which can compactly capture the low-energy sec-

tor of the chemical system. This kind of second quantized fermionic Hamiltonians are

e�ciently simulatable in trapped ions [60]. To be more specific, we will choose first

M > N orbitals for an N -electron system. Denote �p (r) ⌘ hr| pi as the single-particle

wavefunction corresponding to mode p. The electronic part, He(R) ⌘ Te+VeN (R)+Ve,

of the Hamiltonian H can be expressed as follows:

He(R) =
X

pq

hpqc
†
pcq +

1

2

X

pqrs

hpqrsc
†
pc

†
qcrcs, (5.1)

where hpq is obtained from the single-electron integral hpq ⌘ �
R

dr�⇤p (r) (Te + VeN )�q (r),

and hpqrs comes from the electron-electron Coulomb interaction,

hpqrs ⌘
Z

dr1dr2�
⇤
p (r1)�

⇤
q (r2) Ve (|r1 � r2|)�r (r2)�s (r1) . (5.2)

We note that the total number of terms in He is O(M4); typically M is of the same

order as N . Therefore, the number of terms in He scales polynomially in N , and

the integrals {hpq, hpqrs} can be numerically calculated by a classical computer with

polynomial resources [109].

To implement the dynamics associated with the electronic Hamiltonian in Eq. (5.1)

with a trapped-ion quantum simulator, one should take into account the fermionic na-

ture of the operators cp and c†q. We invoke the Jordan-Wigner transformation (JWT),

which is a method for mapping the occupation representation to the spin (or qubit)

representation [119]. Specifically, for each fermionic mode p, an unoccupied state |0ip
is represented by the spin-down state |#ip, and an occupied state |1ip is represented

by the spin-up state |"ip. The exchange symmetry is enforced by the Jordan-Wigner

transformation: c†p = (
Q

m<p �
z
m)�+p and cp = (

Q

m<p �
z
m)��p , where �± ⌘ (�x ± i�y) /2.

Consequently, the electronic Hamiltonian in Eq. (5.1) becomes highly nonlocal in terms
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of the Pauli operators {�x,�y,�z}, i.e.,

He �!
JWT

X

i,j,k...2{x,y,z}

gijk...
⇣

�i1 ⌦ �j2 ⌦ �k3 ...
⌘

. (5.3)

Nevertheless, the simulation can still be made e�cient with trapped ions, as we shall

discuss below.

In trapped-ion physics two metastable internal levels of an ion are typically employed

as a qubit. Ions can be confined either in Penning traps or radio frequency Paul traps [8],

and cooled down to form crystals. Through sideband cooling the ions motional degrees

of freedom can reach the ground state of the quantum Harmonic oscillator, that can

be used as a quantum bus to perform gates among the di↵erent ions. Using resonance

fluorescence with a cycling transition quantum non demolition measurements of the

qubit can be performed. The fidelities of state preparation, single- and two-qubit gates,

and detection, are all above 99% [14].

The basic interaction of a two-level trapped ion with a single-mode laser is given

by [14], H = ~⌦�+e�i(�t��) exp(i⌘[ae�i!tt + a†ei!tt]) + H.c., where �± are the atomic

raising and lowering operators, a (a†) is the annihilation (creation) operator of the

considered motional mode, and ⌦ is the Rabi frequency associated to the laser strength.

⌘ = kz0 is the Lamb-Dicke parameter, with k the wave vector of the laser and z0 =
p

~/(2m!t) the ground state width of the motional mode. � is a controllable laser

phase and � the laser-atom detuning.

In the Lamb-Dicke regime where ⌘
p

h(a + a†)2i ⌧ 1, the basic interaction of a

two-level trapped ion with a laser can be rewritten as

H = ~⌦[�+e�i(�t��) + i⌘�+e�i(�t��)(ae�i!tt + a†ei!tt) + H.c.] (5.4)

By adjusting the laser detuning �, one can generate the three basic ion-phonon

interactions, namely: the carrier interaction (� = 0), Hc = ~⌦(�+ei� + ��e�i�), the

red sideband interaction, (� = �!t), Hr = i~⌘⌦(�+aei� � ��a†e�i�), and the blue

sideband interaction, (� = !t), Hb = i~⌘⌦(�+a†ei� � ��ae�i�). By combining detuned

red and blue sideband interactions, one obtains the Mølmer-Sørensen gate [13], which

is the basic building block for our methods. With combinations of this kind of gates,

one can obtain dynamics as the associated one to He in Eq. (5.3), that will allow one

to simulate arbitrary quantum chemistry systems.
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5.3 Quantum-assisted optimization

Quantum-assisted optimization [120] (see also Fig. 5.2) for obtaining ground-state en-

ergies aims to optimize the use of quantum coherence by breaking down the quantum

simulation through the use of both quantum and classical processors; the quantum pro-

cessor is strategically employed for expensive tasks only.

To be more specific, the first step of quantum-assisted optimization is to prepare a

set of quantum states {| �i} that are characterized by a set of parameters {�}. After

the state is prepared, the expectation value E� ⌘ h �| H | �i of the Hamiltonian H

will be measured directly, without any quantum evolution in between. Practically, the

quantum resources for the measurements can be significantly reduced when we divide the

measurement of the Hamiltonian H =
P

i Hi into a polynomial number of small pieces

hHii (cf Eq. (5.3)). These measurements can be performed in a parallel fashion, and

no quantum coherence is needed to maintain between the measurements (see Fig. 5.2a

and 5.2b). Then, once a data point of E� is obtained, the whole procedure is repeated

for a new state {| 0
�i} with another set of parameters {�0}. The choice of the new

parameters is determined by a classical optimization algorithm that aims to minimize

E� (see Methods). The optimization procedure is terminated after the value of E�

converges to some fixed value.

Finally, for electronic Hamiltonians He(R), the optimized state can then be sent

to a quantum circuit of phase estimation algorithm to produce a set of data point for

some R on the potential energy surfaces (Fig. 5.2c shows the 1D case). After locating

the local minima of the ground and excited states, vibronic coupling for the electronic

structure can be further studied (see Supplementary Material).

The performance of quantum-assisted optimization depends crucially on (a) the

choice of the variational states, and (b) e�cient measurement methods. We found

that the unitary coupled-cluster (UCC) states [117] are particularly suitable for being

the input state for quantum-assisted optimization, where each quantum state | �i can

be prepared e�ciently with standard techniques in trapped ions. Furthermore, e�cient

measurement methods for He are also available for trapped ion systems. We shall discuss

these results in detail in the following sections.

5.4 Unitary coupled-cluster (UCC) ansatz

The unitary coupled-cluster (UCC) ansatz [117] assumes electronic states | i have the

following form, | i = eT�T † |�i, where |�i is a reference state, which can be, e.g., a



Chapter 5. A trapped-ion quantum simulator for quantum chemistry 49

Slater determinant constructed from Hartree-Fock molecular orbitals. The particle-hole

excitation operator, or cluster operator T , creates a linear combination of excited Slater

determinants from |�i. Usually, T is divided into subgroups based on the particle-hole

rank. More precisely, T = T1 + T2 + T3 + ... + TN for an N -electron system, where

T1 =
P

i,a tai c
†
aci, T2 =

P

i,j,a,b tabij c†ac
†
bcjci, and so on.

Here c†a creates an electron in the orbital a. The indices a, b label unoccupied

orbitals in the reference state |�i, and i, j label occupied orbitals. The energy obtained

from UCC, namely E = h�| eT †�THeT�T † |�i is a variational upper bound of the exact

ground-state energy.

The key challenge for implementing UCC on a classical computer is that the com-

putational resource grows exponentially. It is because, in principle, one has to expand

the expression H̃ ⌘ eT
†�THeT�T †

into an infinity series, using the Baker-Campbell-

Hausdor↵ expansion. Naturally, one has to rely on approximate methods [117] to trun-

cate the series and keep track of finite numbers of terms. Therefore, in order to make

good approximations by perturbative methods, i.e., assuming T is small, one implicitly

assumes that the reference state |�i is a good solution to the problem. However, in

many cases, such an assumption is not valid and the use of approximate UCC breaks

down. We explain below how implementing UCC on a trapped-ion quantum computer

can overcome this problem.

We can generate the UCC state by simulating a pseudo time evolution through

Suzuki-Trotter expansion on the evolution operator eT�T †
[24]. To proceed, we consider

an N -electron system with M , where M > N , molecular orbitals (including spins). We

need totally M qubits; the reference state is the Hartree-Fock state where N orbitals

are filled, and M � N orbitals are empty, i.e, |�i = |000...0111...1i. We also define an

e↵ective Hamiltonian K ⌘ i
�

T � T †�, which means that we should prepare the state

e�iK |�i .

We decompose K into subgroups K = K1 + K2 + K3 + ... + KP , where P  N ,

and Ki ⌘ i(Ti � T †
i ). We now write e�iK =

�

e�iK�
�1/�

for some dimensionless con-

stant �. For small �, we have e�iK� ⇡ e�iKP �...e�iK2�e�iK1�. Since each Kj contains

N j(M �N)j terms of the creation c† and annihilation c operators, we will need to indi-

vidually simulate each term separately, e.g., e
�i

⇣
tc†aci�t⇤c†i ca

⌘

and e
�i

⇣
tc†ac

†
bcjci�t⇤c†i c

†
jcbca

⌘

,

which can be implemented by transforming into spin operators through Jordan-Wigner

transformation. The time evolution for each term can be simulated with a quantum

circuit involving many nonlocal controlled gates, which can be e�ciently implemented

with trapped ions as we shall see below.
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5.5 Implementation issues of UCC with trapped-ions

Our protocol for implementing the UCC ansatz requires the simulation of the small-

time t/n evolution of non-local product of Pauli matrices of the form: e�iHlt/n, where

Hl = gl�i1�
j
2�

k
3 · · · for i, j, k 2 {x, y, z}. Note that for any N -spin interaction, the e�iHlt/n

terms are equivalent to ei��
z
1�

x
2�

x
3 ···�x

N through local spin rotations, which are simple to im-

plement on trapped ions. Such a non-local operator can be implemented using the multi-

particle Mølmer-Sørensen gate [60, 70]: UMS(✓,') ⌘ exp
⇥�i✓(cos'Sx + sin'Sy)2/4

⇤

,

where Sx,y ⌘
P

i �
x,y
i is a collective spin operator. Explicitly,

ei��
z
1�

x
2�

x
3 ···�x

N = UMS

��⇡
2 , 0

�

RN (�)UMS

�

⇡
2 , 0

�

. (5.5)

Here RN (�) is defined as follows: for any m 2 N, RN (�) = e±i��z
1 for N = 4m ± 1, and

(ii) RN (�) = ei��
y
1 for N = 4m, and (iii) RN (�) = e�i��y

1 for N = 4m� 2.

It is remarkable that the standard quantum-circuit treatment for implementing each

e�iHlt/n involves as many as 2N two-qubit gates for simulating N fermionic modes; in

our protocol one needs only two Mølmer-Sørensen gates, which are straightforwardly

implementable with current trapped-ion technology. Furthermore, the local rotation

RN (�) can also include motional degrees of freedom of the ions for simulating arbitrary

fermionic Hamiltonians coupled linearly to bosonic operators ak and a†k.

5.6 Measurement of arbitrarily-nonlocal spin operators

For any given state | i, we show how to encode expectation value of products of Pauli

matrices h�i1 ⌦ �j2 ⌦ �k3 ⌦ · · · i ⌘ h |�i1 ⌦ �j2 ⌦ �k3 ⌦ · · · | i, where i, j, k 2 {x, y, z}, onto

an expectation value of a single qubit. The idea is to first apply the unitary evolution

of the form: e�i✓(�i
1⌦�j

2⌦··· ), which as we have seen (cf Eq. 5.5) can be generated by

trapped ions e�ciently, to the state | i before the measurement. For example, defining

| ✓i ⌘ e�i✓(�x
1⌦�x

2⌦···) | i, we have the relation

h ✓|�z1 | ✓i = cos(2✓) h�z1i+ sin(2✓) h�y1 ⌦ �x2 ⌦ · · ·i , (5.6)

which equals h |(�y1 ⌦�x2 ⌦ ...)| i for ✓ = ⇡/4. Note that the application of this method

requires the measurement of one qubit only, making this technique especially suited for

trapped ion systems where the fidelity of the measurement of one qubit is 99.99%.

This method can be further extended to include bosonic operators in the resulting

expectation values. For example, re-define | ✓i ⌘ e�i✓(�i
1⌦�j

2⌦··· )⌦(a+a†) | i and consider
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✓ ! ✓
�

a + a†
�

in Eq. (5.6). We can obtain the desired correlation through the deriva-

tive of the single-qubit measurement: @✓ h ✓|�z1 | ✓i|✓=0 = �2h(�y1 ⌦ �x2 ⌦ · · ·) (a + a†)i.
Note that the evolution operator of the form e�i✓(�i

1⌦�j
2⌦··· )⌦(a+a†) can be generated by

replacing the local operation RN (�) in Eq. 5.5 with e±i��i
1(a+a†). This technique allows

us to obtain a diverse range of correlations between bosonic and internal degrees of

freedom.

In the Born-Oppenheimer (BO) picture, the potential energy surface Ek (R)+VN (R)

associated with each electronic eigenstate |�ki is obtained by scanning the eigenvalues

Ek (R) for each configurations of the nuclear coordinates {R}. Of course, we can apply

the standard quantum phase estimation algorithm [121] that allows us to extract the

eigenvalues. However, this can require many ancilla qubits. In fact, locating these

eigenvalues can be achieved by the phase estimation method utilizing one extra ancilla

qubit [112] corresponding, in our case, to one additional ion.

This method works as follows: suppose we are given a certain quantum state | i
(which may be obtained from classical solutions with quantum-assisted optimization)

and an electronic Hamiltonian He(R) (cf. Eq. (5.1)). Expanding the input state, | i =
P

k ↵k |�ki, by the eigenstate vectors |�ki of He(R), where He (R) |�ki = Ek (R) |�ki,
then for the input state |0i | i, the quantum circuit of the quantum phase estimation

produces the following output state,
�

1/
p

2
�

P

k ↵k

�|0i+ e�i!kt |1i� |�ki, where !k =

Ek/~. The corresponding reduced density matrix,

1

2

 

1
P

k |↵k|2ei!kt

P

k |↵k|2e�i!kt 1

!

, (5.7)

of the ancilla qubit contains the information about the weight (amplitude-square) |↵k|2 of

the eigenvectors |�ki in | i and the associated eigenvalues !k in the o↵-diagonal matrix

elements. All |↵k|2’s and !k’s can be extracted by repeating the quantum circuit for a

range of values of t and performing a (classical) Fourier transform to the measurement

results. The potential energy surface is obtained by repeating the procedure for di↵erent

values of the nuclear coordinates {R}.

5.7 Numerical analysis

In order to show the feasibility of our protocol, we can estimate the trapped-ion resources

needed to simulate, e.g., the prototypical electronic Hamiltonian He =
P

hpqa
†
paq +

(1/2)
P

hpqrsa
†
pa

†
qaras as described in Eq. (5.1), for the specific case of the H2 molecule

in a minimal STO-3G basis. This is a two-electron system represented in a basis of four
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Figure 5.3: Digital error 1�F (curves) along with the accumulated gate error (hori-
zontal lines) versus time in h11 energy units, for n = 1, 2, 3 Trotter steps in each plot,
considering a protocol with an error per Trotter step of ✏ = 10�3 (a), ✏ = 10�4 (b)
and ✏ = 10�5 (c). The initial state considered is |""##i, in the qubit representation of
the Hartree-Fock state in a molecular orbital basis with one electron on the first and
second orbital. Vertical lines and arrows define the time domain in which the dominant
part of the error is due to the digital approximation. d) Energy of the system, in h11

units, for the initial state | ""##i for the exact dynamics, versus the digitized one. For
a protocol with three Trotter steps the energy is recovered up to a negligible error.

spin-orbitals. The hydrogen atoms were separated by 0.75 Å, near the equilibrium bond

distance of the molecule. The Hamiltonian is made up of 12 terms, that include 4 local

ion operations and 8 non-local interactions. Therefore, to implement the dynamics, one

needs 16 MS gates per Trotter step and a certain number of local rotations upon the

ions. Since ⇡/2 MS gates can be done in ⇠ 50µs, and local rotations can be performed

in negligible times (⇠ 1µs) [14, 25], the total simulation time can be assumed of about

800 µs for the n = 1 protocol, 1.6 ms and 2.4 ms for the n = 2 and n = 3 protocols.

Thus total simulation times are within the decoherence times for trapped-ion setups,

of about 30 ms [14]. In a digital protocol performed on real quantum systems, each

gate is a↵ected by an error. Thus, increasing the number of Trotter steps leads to an

accumulation of the single gate error. To implement an e↵ective quantum simulation, on

one hand one has to increase the number of steps to reduce the error due to the digital

approximation, on the other hand one is limited by the accumulation of the single gate

error. We plot in Fig. 5.3a, 5.3b, 5.3c, the fidelity loss 1� |h S | Ei|2 of the simulated

state | Si versus the exact one | Ei, for the hydrogen Hamiltonian, starting from the

initial state with two electrons in the first two orbitals. We plot, along with the digital

error, three horizontal lines representing the accumulated gate error, for n = 1, 2, 3 in
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each plot, considering a protocol with an error per Trotter step of ✏ = 10�3 (a), ✏ = 10�4

(b) and ✏ = 10�5 (c). To achieve a reasonable fidelity, one has to find a number of steps

that fits the simulation at a specific time. The vertical lines and arrows in the figure

mark the time regions in which the error starts to be dominated by the digital error.

Trapped-ion two-qubit gates are predicted to achieve in the near future fidelities of 10�4,

thus making the use of these protocols feasible. In Fig. 5.3d we plot the behavior of

the energy of the system for the initial state | ""##i for the exact dynamics, versus the

digitized one. Again, one can observe how the energy can be retrieved with a small error

within a reduced number of digital steps.

To implement the optimization with the UCC wavefunction ansatz on a trapped-

ion quantum simulator, our proposal is to first employ classical algorithms to obtain

approximate solutions [117]. Then, we can further improve the quality of the solution

by searching for the true minima with an ion trap. The idea is as follows: first we create a

UCC ansatz by the Suzuki-Trotter method described in the previous section. Denote this

choice of the cluster operator as T (0), and other choices as T (k) with k = 1, 2, 3, .... The

corresponding energy E0 = h�| eT (0)†�T (0)
HeT

(0)�T (0)† |�i of the initial state is obtained

by a classical computer.

Next, we choose another set of cluster operator T (1) with is a perturbation around

T (0). Define the new probe state |�ki ⌘ eT
(k)�T (k)† |�i. Then, the expectation value of

the energy E1 = h�|eT (1)†�T (1)
HeT

(1)�T (1)† |�i = h�1| H |�1i can be obtained by measur-

ing components of the second quantized Hamiltonian,

h�1| H |�1i =
X

pqrs
h̃pqrs h�1|c†pc†qcrcs |�1i . (5.8)

Recall that the coe�cients h̃pqrs are all precomputed and known.

In order to obtain measurement results for the operators h�1| c†pc†qcrcs |�1i, we will

first convert the fermion operators into spin operators via Jordan-Wigner transforma-

tion; the same procedure is applied for creating the state |�1i. The quantum measure-

ment for the resulting products of Pauli matrices can be achieved e�ciently with trapped

ions, using the method we described.

The following steps are determined through a classical optimization algorithm.

There can be many choices for such an algorithm, for example gradient descent method,

Nelder-Mead method, or quasi-Newton methods. For completeness, we summarize below

the application of gradient descent method to our optimization problem.

First we define the vector T(k) = (ta(k)i , tab(k)ij , ...)T to contain all coe�cients in

the cluster operator T (k) at the k-th step. We can also write the expectation value
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E
�

T(k)
� ⌘ h�k| H |�ki for each step as a function of T(k). The main idea of the gradient

descent method is that E
�

T(k)
�

decreases fastest along the direction of the negative

gradient of E
�

T(k)
�

, �rE
�

T(k)
�

. Therefore, the (k + 1)-th step is determined by the

following relation:

T(k+1) = T(k) � akrE(T(k)), (5.9)

where ak is an adjustable parameter; it can be di↵erent for each step. To obtain values

of the gradient rE
�

T(k)
�

, one may use the finite-di↵erence method to approximate the

gradient. However, numerical gradient techniques are often susceptible to numerical

instability. Alternatively, we can invoke the Hellman-Feynman theorem and get, e.g.,

(@/@tai ) E(T(k)) = h�k|[H, c†aci] |�ki, which can be obtained with a method similar to

that for obtaining E(T(k)).

Finally, as a valid assumption for general cases, we assume our parametrization of

UCC gives a smooth function for E
�

T(k)
�

. Thus, it follows that E
�

T(0)
� � E

�

T(1)
� �

E
�

T(2)
� � · · · , and eventually E

�

T(k)
�

converges to a minimum value for large k.

Finally, we can also obtain the optimized UCC quantum state.
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Chapter 6

Interacting spin models using

superconducting circuits

6.1 Introduction

The quantum coherent control of superconducting qubits has improved dramatically

in the last years [34]. In this sense, circuit quantum electrodynamics (cQED) [31] is

considered as a potential scalable platform for quantum computing. Basic quantum

algorithms [122] and tests of fundamentals in quantum mechanics [123] have been already

realized. Moreover, superconducting circuits have reached su�cient complexity and

potential scalability to be considered as quantum simulators. In this Chapter, we propose

a series of simulation protocols for interacting spin systems, amenable to realization

in a cQED architecture. We find that trough the use of natural two-qubit dispersive

interactions present in this system, a universal simulation of spin dynamics can be

dynamically built within a set of charge-like qubits.

A quantum simulator is a platform that allows to reproduce the behavior of an-

other quantum system. The original idea of quantum simulation can be traced back

to Feynman [2], while the first mathematical formulation using local interactions was

proposed some years later [24]. So far, initial steps for quantum simulations in circuit

QED have been taken, where a few analog quantum simulators have been proposed

in superconducting qubits. On the other hand, an experiment of discrete-time gate

sequences to reproduce the dynamics of a given spin Hamiltonian has been recently

realized in ion-trap [25] and photonic [111] systems, together with proposals for the em-

ulation of interacting fermionic-bosonic models [60, 71]. The digital decomposition of

Hamiltonians and their implementation using short-time gates has been demonstrated

to be e�cient [40, 80]. Accordingly, it is timely to address the issue of digital quantum

57
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simulators with superconducting circuits. The quantum simulation of spin models can

shed light onto a variety of open problems, such as quantum phase transitions [124],

correlated one-dimensional systems [125], and high-Tc superconductivity [126].

We investigate the possible implementation of digital quantum simulations of spin

Hamiltonians in a superconducting setup, consisting of several superconducting qubits,

coupled to a coplanar waveguide resonator. Although our proposal is valid for every

superconductor-based qubit with long enough coherence time, we focus on a transmon

qubit setup. Superconducting transmon qubits are one of the most used superconducting

qubits due to their low sensitivity to o↵set charge fluctuations [30], that makes them the

best candidates for quantum simulations. First, we show that a variety of spin dynamics

can be retrieved by a digital decomposition in a generic quantum simulator. Then, we

consider prototypical spin models, simulation times, and fidelities with current circuit

QED technology, showing the computational power of superconducting qubits in terms

of digital quantum simulations. In this way, we analyze the resources that are required

to implement, in a realistic setup, a multipurpose quantum simulator of spin dynamics

capable of emulating a general many-qubit spin Hamiltonian.

Most physical Hamiltonians can be written as a sum of local terms, H =
PN

k=1 Hk,

where each Hk acts on a local Hilbert space. The dynamics of a generic Hamiltonian

H can be approximated by discrete stepwise unitaries, up to arbitrary small errors,

according to the formula (~ = 1 here and in the following) [24],

e�iHt =
⇣

e�iH1t/l · · · e�iHN t/l
⌘l

+
X

i<j

[Hi, Hj ]t2

2l
+

1
X

k=3

E(k), (6.1)

with l||Ht/l||ksup/k! � ||E(k)||sup being an upper bound on the higher order error terms.

In the trivial case, when [Hi, Hj ] = 0 for every {i, j}, the error made in the digital

approximation is zero. To approximate e�iHt to arbitrary precision, one can divide the

simulated time t into l time intervals of size t/l, and apply sequentially the evolution

operator of each local term for every time interval. Repeating the sequence l times,

the error can be made as small as desired just by increasing l. However, in a realistic

quantum simulator, there will be a limit to the number of local e�iHkt/l gates, due to

accumulated gate errors. Accordingly, one has to optimize the number of steps l to get

the best possible result.
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6.2 Heisenberg interaction with digital methods

Digital methods can be used to simulate the Heisenberg spin model with available re-

sources in superconducting circuits. We consider a setup made of several transmon

qubits coupled to a single coplanar microwave resonator [30],

HT =
N
X

i=1

4EC,i(ni � ng,i)
2 � EJ,i cos�i

+!ra
†a + 2�ieVrmsni(a + a†). (6.2)

Here, ni, ng,i and �i stand respectively for the quantized charge on the superconducting

island, the o↵set charge and the quantized flux of the i-th transmon qubit. The operators

a(a†) act on the resonator field, whose first mode has frequency !r. EC,i is the charging

energy of the superconducting island, while EJ,i = Emax
J,i | cos(⇡�i/�0)| is the Josephson

energy of the dc-SQUID loop embedded in the i-th qubit. The latter can be tuned from

small values up to Emax
J,i by changing the ratio of the external magnetic flux �i, that

threads the loop, with the elementary flux quantum �0. Here �i are renormalization

coe�cients of the couplings due to circuit capacitances, Vrms is the root mean square

voltage of the resonator, and e is the electron charge. Typical transmon regimes consider

ratios of Josephson versus charging energy starting from EJ/EC & 20.

Notice that cavity and circuit QED platforms do not feature the Heisenberg inter-

action from first principles. Nevertheless, one can consider a digital simulation of the

model. We show that the coupled transmon-resonator system, governed by the Hamil-

tonian in Eq. (6.2), can simulate Heisenberg interactions of N qubits, which in the case

of homogeneous couplings reads

HH =
N�1
X

i=1

J
�

�xi �
x
i+1 + �yi �

y
i+1 + �zi �

z
i+1

�

. (6.3)

Here the Pauli matrices �ji , j 2 {x, y, z} refer to the subspace spanned by the first

two levels of the i-th transmon qubit. We begin by considering the simplest case,

in which two qubits are involved. The XY exchange interaction can be directly re-

produced by dispersively coupling two transmon qubits to the same resonator [32],

Hxy
12 = J

�

�+1 �
�
2 + ��1 �

+
2

�

= J/2 (�x1�
x
2 + �y1�

y
2). The XY exchange interaction can be

transformed via local rotations of the single qubits to get the e↵ective Hamiltonian Hxz
12 =

Rx
12(⇡/4)Hxy

12 Rx†
12(⇡/4) = J/2 (�x1�

x
2 + �z1�

z
2). Here, Rx(y)

12 (⇡/4) = exp[�i⇡/4(�x(y)1 +

�x(y)2 )] represents a local rotation of the first and second transmon qubits along the x(y)

axis. The XYZ exchange Hamiltonian Hxyz
12 can therefore be implemented according to

the protocol shown in Fig. 6.1a with the following steps. Step 1.– The qubits interact
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Figure 6.1: Protocols for digital quantum simulations with transmon qubits. a)
Heisenberg model of two qubits. b) Heisenberg model of three qubits. c) Frustrated
Ising model of three qubits. Here R

x(y) ⌘ Rx(y)(⇡/4) and R
x

⌘ Rx(⇡/2).

for a time t according to the XY Hamiltonian Hxy
12 . Step 2.– Application of single qubit

rotations Rx
12(⇡/4) to both qubits. Step 3.– The qubits interact for a time t with Hxy

12

Hamiltonian. Step 4.– Application of single qubit rotation Rx†
12(⇡/4) to both qubits.

Step 5.– Application of single qubit rotation Ry
12(⇡/4) to both qubits. Step 6.– The

qubits interact for a time t according to the Hxy
12 Hamiltonian. Step 7.– Application of

single qubit rotation Ry†
12(⇡/4) to both qubits. Consequently, the total unitary evolution

reads

UH
12(t) = e�iHxy

12 te�iHxz
12 te�iHyz

12 t = e�iHH
12t. (6.4)

This evolution operator simulates the dynamics of Eq. (6.3) for two qubits. Arbitrary

inhomogeneites of the couplings can be achieved by implementing di↵erent simulated

phases for di↵erent digital steps. Notice that, in this case, just one Trotter step is

needed to achieve a simulation without digital errors, due to the commutativity of Hxy
12 ,

Hxz
12 , and Hyz

12 . Thus, from a practical point of view, the only source of errors will come

from accumulated gate errors. One can assume two-qubit gates with an error of about

5% and eight ⇡/4 single qubit rotations with errors of 1%. This will give a total fidelity

of the protocol around 77%. Moreover, the total execution time for the protocol for a

⇡/4 simulated XYZ phase will be of about 0.10 µs.

Now, we consider a digital protocol for the simulation of the Heisenberg interaction

for a chain of three spins. When considering more than two spins, one has to take

into account noncommuting Hamiltonian steps, involving digital errors. This three-spin



Chapter 6. Interacting spin models using superconducting circuits 61

0 Pi/80

0.02

0.04

0.06

0 Pi/80

0.1

0.2

0 Pi/80
0.01

0.03

0.05

0.07

0 Pi/80

0.1

0.2

✓ ✓

⇡/8 ⇡/8

⇡/8⇡/8

⇡/4 ⇡/4

0.06

0.04

0.02

0.2

0.1

0.2

0.1

⇡/4 ⇡/4

0 0

0 0
0.01

0.03

0.05

0.07

0 0

0 0

1
�

F
1

�
F

d)

a) b)

c)

Figure 6.2: Fidelity loss for simulated Hamiltonians for three qubits, in the interval
✓ = [0,⇡/4], ✓ ⌘ Jt. Curved lines show digital errors, while horizontal lines show the
accumulated error due to a single step error of ✏. Red solid (black dotted) lines stand for
higher (lower) digital approximations l. a) Heisenberg model, with ✏ = 10�2, l = 3, 5,
and b) ✏ = 5 ⇥ 10�2, l = 2, 3. c) Transverse field Ising model, with ✏ = 10�2, l = 3, 5
and d) ✏ = 5⇥ 10�2, l = 2, 3.

case is directly extendable to arbitrary numbers of spins. We follow a digital approach

for its implementation, as shown in Fig. 6.1b. Step 1.– Qubits 1 and 2 interact for a

time t/l with XY Hamiltonian. Step 2.– Qubits 2 and 3 interact for a time t/l with

XY Hamiltonian. Step 3.– Application of Rx
12(⇡/4) to each qubit. Step 4.– Qubits 1

and 2 interact for a time t/l with XY Hamiltonian. Step 5.– Qubits 2 and 3 interact

for a time t/l with XY Hamiltonian. Step 6.– Application of Rx†
12(⇡/4) to each qubit.

Step 7.– Application of Ry
12(⇡/4) to each qubit. Step 8.– Qubits 1 and 2 interact for

a time t/l with XY Hamiltonian. Step 9.– Qubits 2 and 3 interact for a time t/l with

XY Hamiltonian. Step 10.– Application of Ry†
12(⇡/4) to each qubit. Therefore, the total

unitary evolution per step reads

UH
123(t/l) = e�iHxy

12 t/le�iHxy
23 t/le�iHxz

12 t/le�iHxz
23 t/l

⇥e�iHyz
12 t/le�iHyz

23 t/l. (6.5)

In this case, the protocol has to be repeated l times according to Eq. (6.1), to

approximate the dynamics of Eq. (6.3) for three qubits. Each Trotter step involves four

single qubit gates at di↵erent times and six two qubit gates, producing a step-time of

about 0.16 µs, which is well below standard coherence times for transmon qubits [127].

In Fig. 6.2a and 2b, we plot the digital error of the simulated Heisenberg model for three
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Table 6.1: Execution times and error bounds for the Heisenberg and Ising models
with open and periodic boundary conditions for N qubits. Here ✓ ⌘ Jt, J/2 and g

�

are respectively the coupling strenght of the XY and single-qubit gates, and ⌧
s

is the
pulse raising time for a single qubit rotation.

Execution time Error bound
Ho 4l⌧s + 6(N � 1)✓/J 24(N � 2)(Jt)2/l
Hp 4l⌧s + 6N✓/J 24N(Jt)2/l
Io 2(N � 1)l⌧s + ✓/g� + 4(N � 1)✓/J 2(N � 1)(Jt)2/l
Ip 2Nl⌧s + ✓/g� + 4N✓/J 2N(Jt)2/l

qubits, along with horizontal lines, that show the error of the imperfect gates multiplied

by the number of Trotter steps, i.e., the total accumulated gate error. In this way, one

can distinguish time domains dominated by the digital error and time domains in which

the largest part of the error in the quantum simulation is due to experimental gate

errors. One can consider interactions with open and closed boundary conditions, adding

an extra term coupling the first and last spin. Extending this protocol to N qubits with

open or periodic boundary conditions, we compute an upper bound on the second order

Trotter error Eopen = 48(N � 2)(Jt)2/2l and Eperiodic = 48N(Jt)2/2l.

6.3 Ising interaction with digital methods

We consider now a generic N qubit Ising interaction J
P

i �
x
i �

x
i+1, with periodic bound-

ary conditions. Considering a three site model is su�cient to show the e↵ect of frustra-

tion in the system. The antiferromagnetic interaction is ine�ciently solvable in a classical

computer, while it is e�cient for a quantum simulator [128]. We consider the isotropic

antiferromagnetic case between three sites , HI
123 = J

P

i<j �
x
i �

x
j , with i, j = 1, 2, 3 and

J > 0. In order to simulate this Hamiltonian, one can apply a ⇡/2 rotation to one of

the qubits. This will result in an e↵ective stepwise elimination of the YY component of

interaction,

Hx�y
12 = Rx

1(⇡/2)Hxy
12 Rx†

1 (⇡/2) = J (�x1�
x
2 � �y1�y2) . (6.6)

The protocol for the simulation is shown in Fig. 6.1c. As the terms of the Ising Hamil-

tonian commute, there is no error from the Trotter expansion. We obtain a fidelity of

the protocol of about 64%. The time for the execution of all gates is of 0.18 µs.

One can also add a transverse magnetic field, that leads to the Hamiltonian HIT
123 =

J
P

i<j �
x
i �

x
j + B

P

i �
y
i . In this case, the terms of the Hamiltonian do not commute, so

we need to apply more than one Trotter step to achieve adequate fidelities. The unitary
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evolution per Trotter step in this case is given by,

U(t/l) = e�iHxy
12 t/le�iHx�y

12 t/le�iHxy
13 t/le�iHx�y

13 t/l

⇥ e�iHxy
23 t/le�iHx�y

23 t/le�iBt/l(�y
1+�y

2+�y
3 ) (6.7)

= e�i2Jt/l(�x
1�

x
2+�x

1�
x
3+�x

2�
x
3 )e�iBt/l(�y

1+�y
2+�y

3 ).

In Fig. 6.2c and 2d, we plot the fidelity loss for di↵erent number of Trotter steps, in the

3-qubit frustrated Ising model with transverse magnetic field, considering a certain error

for each step due to the imperfect gates. The protocol can also be extended to N qubits

with open and periodic boundary conditions, where we compute an upper bound to the

second order error in Jt/l of Eopen = 4(N � 1)(Jt)2/2l and Eperiodic = 4N(Jt)2/2l.

We report in Table 8.1 execution times and error bounds for the models proposed, for

N qubits.

6.4 Feasibility in current architectures

In order to estimate the feasibility of the protocols in a superconducting circuit setup,

we perform a numerical simulation for the Heisenberg interaction between two transmon

qubits coupled to a coplanar waveguide resonator. We compute the e↵ect on the protocol

of a realistic XY interaction, given as an e↵ective second order Hamiltonian, obtained

from the first order Hamiltonian

Ht =
2
X

i=0

2
X

j=1

⇣

!j
i |i, ji hi, j|

⌘

+ !ra
†a

+
2
X

i=0

2
X

j=1

gi,i+1(|i, ji hi + 1, j| + H.c.)(a + a†). (6.8)

Here, !j
i is the transition energy of the i-th level, with respect to the ground state,

of the j-th qubit, and !r is the transition frequency of the resonator. We consider

the first three levels for each transmon qubit, and a relative anharmonicity factor of

↵r = (!j
2 � 2!j

1)/!
j
1 = �0.1, typical for the transmon regime [30]. We assume identical

transmon devices, with transition frequencies !1,2
1 ⌘ !1 = 2⇡ ⇥ 5 GHz. The resonator

frequency is set to !r = 2⇡ ⇥ 7.5 GHz. We consider gi,i+1 =
p

i + 1g0, where g0 =

2�eVrms = 2⇡⇥200 MHz. The resonator-transmon coupling Hamiltonian, in interaction

picture with the free energy
P

i,j !
j
i |i, ji hi, j| + !ra†a, results in an e↵ective coupling

between the first two levels of the two transmon qubits He↵ = [g201!1/(!2
1 � !2

r )] ⇥
(�x1�

x
2 + �y1�

y
2), where we have considered negligible cavity population ha†ai ⇡ 0 and

renormalization of the qubit frequencies to cancel Lamb shifts. Here we have defined a



Chapter 6. Interacting spin models using superconducting circuits 64

set of Pauli matrices for the subspace spanned by the first two levels of each transmon,

e.g. �x1(2) ⌘ |0, 1(2)i h1, 1(2)| + H.c. In order to estimate the e↵ect of decoherence in a

realistic setup, we consider the master equation dynamics,

⇢̇ = �i[Ht, ⇢] + L(a)⇢+
2
X

i=1

�

��L(�zi )⇢+ ��L(��i )⇢
�

, (6.9)

where we have defined the Lindblad superoperators L(Â)⇢ = (2Â⇢Â†�Â†Â⇢�⇢Â†Â)/2.

We have set a decay rate for the resonator of  = 2⇡ ⇥ 10 kHz, and a dephasing and

decay rate for the single transmon qubit of �� = �� = 2⇡ ⇥ 20 kHz. We perform

a numerical simulation for the Heisenberg protocol for two transmon qubits, following

the steps as in Fig. 6.1a, using for the XY interaction steps the result of the dynamics

obtained by solving Eq. (6.9), and ideal single-qubit rotations. The result is plotted

in Fig. 6.3. The evolution for the density matrix ⇢, that encodes the dynamics of the

two transmon qubits, is compared to the exact quantum evolution | iI , that evolves

according to the Hamiltonian in Eq. (6.3), with J = g201!1/(!2
1 � !2

r ) ⇡ 2⇡ ⇥ 6 MHz.

One can observe that good simulation fidelities F = Tr(⇢| Iih I |) are achieved for a

nontrivial dynamics. Notice that the action of the Heisenberg Hamiltonian on an initial

state, which is also an eigenstate of the �z1�
z
2 operator, would be equivalent to the one

of the XY exchange interaction. To show signatures of the Heisenberg interaction, we

choose in our simulation an initial state which has not this property. One can also notice

the typical small time-scale fidelity oscillations due to the first order part of the dispersive

exchange interaction. By further detuning of the qubits with respect to the resonator,

one can reduce the contribution from the non-dispersive part of the interaction, and

increase the global fidelity of the protocol.

In conclusion, we have proposed a digital quantum simulation of spin chain models

in superconducting circuits. We have considered prototypical models as the Heisenberg

and frustrated Ising interactions. Furthermore, we have shown the feasibility of the

simulation with state-of-the-art technology of transmon qubits coupled to microwave

resonators. In the near future, these protocols may be extended to many-qubit spin

models, paving the way towards universal quantum simulation of spin dynamics in circuit

QED setups. The latter may be relevant for understanding the behavior of highly

correlated quantum systems.
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Chapter 7

Collective gates and many-body

interactions in circuit QED

7.1 Introduction

In this Chapter, we present the implementation of a many-qubit interaction in a super-

conducting circuit device. We study a set of charge-like qubits provided with tunable

coupling to a single microwave waveguide, and analyze their collective behavior under

the action of fast flux threading of SQUID loops embedded into them. Among super-

conducting qubits, transmon qubits are currently the most robust and reliable. They

are designed in order to suppress o↵set charge noise to negligible values [30]. Protocols

of quantum information have been implemented, such as error correction up to three

qubits [129] and experimental tests of fundamental quantum mechanics [123]. Implemen-

tations of quantum simulators of spin and coupled spin-boson systems have been recently

proposed [130, 131]. Complex entangled states encoded in superconducting transmon

qubits have already been proposed and realized experimentally [132–134]. However,

state-of-the-art realizations of many-qubit entangled states still rely on complex se-

quences of gates, and implementations of e↵ective many-body interactions represent a

tough challenge.

The introduction of collective entangling operations in superconducting devices can

ease several tasks of quantum information processing. They have been proposed theoret-

ically [13] and realized experimentally in ion traps up to fourteen qubits [135]. By means

of collective gates, one can drive the generic many-qubit transition |00 · · · 0i ! |11 · · · 1i
and prepare multipartite Greenberger-Horne-Zeilinger states with a single operation.

67
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The transition can be obtained with e↵ective simultaneous red and blue sidebands act-

ing upon the ions. The latter have been also demonstrated in a variety of superconduct-

ing setups [136–138]. Sequences of collective gates, together with local qubit rotations,

can i andmplement stabilizer operators [70, 139], that can allow for the implementation

of topological codes [140]. Recently it has been shown that collective qubit interac-

tions allow for e�cient simulation of fermionic dynamics and coupled fermionic-bosonic

systems [60, 71].

We propose the implementation of e↵ective many-body interactions among several

tunable-coupling transmons inside a microwave cavity. We consider three-island super-

conducting devices [141, 142], addressed as tunable-coupling transmon qubits (TCQs),

coupled to a coplanar microwave resonator. Then, we show that dynamically sweep-

ing flux biases, acting on two SQUID loops embedded in the three-island devices, it

is possible to perform simultaneous red and blue-sideband transitions of many qubits.

This leads to e↵ective collective entangling gates that can be used to e�ciently obtain

many-particle operators. We demonstrate that the third level of the single TCQ can be

ruled out of the dynamics. Finally, we validate the proposal with numerical simulations

of the system dynamics taking into account a realistic decoherence model.

7.2 Three-island devices for many-body interactions

We start by considering a setup made of a resonator coupled to several TCQs, as in

Fig. 7.1a. We show that under specific conditions, the TCQs in the setup behave as two

level systems and the e↵ective interaction among them is given by the Hamiltonian

HIe↵ = �⇠
X

i<j

�↵i �
↵
j . (7.1)

Here, ⇠ is the interaction strength that sets the speed of the transition and the Pauli

matrix �↵i , with either ↵ = x or ↵ = y, refers to the subspace spanned by the two lowest

energy levels of the i-th TCQ. A single device is composed of three superconducting

islands: the upper and lower islands are connected to a central one by means of two

SQUID loops. Their e↵ective Josephson couplings EJ±(�±) can be tuned by threading

the respective superconducting loops with external magnetic fluxes �±. In the symmetric

limit for the two Josephson junctions of the loops, one has EJ± = EM
J±

cos(⇡�±/�0),

where EM
J±

is the total Josephson energy of the junctions, �0 being the fundamental flux

quantum. The Hamiltonian of the individual TCQ, neglecting the interaction with the

resonator, reads HT =
P

± 4EC±(n±�n0
g±)2�P± EJ± cos(�±)+4EIn+n�. Here, �± are

the gauge invariant phase di↵erences on the upper and lower SQUID loops, n± the charge
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associated, with the o↵set charge due to gate voltage bias n0
g± . The charging energies

of the upper and lower islands are labeled by EC± , while EI stands for the interaction

energy between them. In the limit EJ± � EC± , the charge dispersion of the device is

negligible [30]. One can expand to fourth order the cosine potentials associated with

the Josephson energies and write the Hamiltonian as a coupled anharmonic oscillator

model, HTe↵
=

P

±[!± + �±(b†±b± � 1)/2]b†±b± + J(b+b†� + b†+b�). Here, and in the

following, we have set ~ = 1. The anharmonicity factors depend on the charging energies

�± = �EC± and the parameters !±, �± and J are defined in terms of the two external

flux biases �± [141].

We consider here that the two external fluxes are changed in time, with some time-

dependent functions �±(t). While the fluxes change in time, the parameters in the

Hamiltonian HTe↵
follow accordingly. We apply to HTe↵

the time-dependent unitary

T (t) = e�(t)(b+b†��b†+b�), where the phase �(t) is defined instantaneously as a function

of the parameters of the time-dependent Hamiltonian HTe↵
. The resulting transformed

Hamiltonian H̃Td
= T †(t)HTe↵

T (t)� iT †(t)Ṫ (t) reads

H̃Td
=
X

±

"

!̃± +
�̃±
2

(b̃†±b̃± � 1)

#

b̃†±b̃±+

�̃cb̃
†
+b̃+b̃†�b̃� + i�̇(t)(b̃†+b̃� � b̃+b̃†�). (7.2)

One can recognize in the above Hamiltonian a diagonal part and an o↵-diagonal term

that results in a small renormalization of the energy levels. The diagonal part reads

H̃0 =
X

±

h

!̃± + �̃±/2(b̃†±b̃± � 1)
i

b̃†±b̃± + �̃cb̃
†
+b̃+b̃†�b̃�. (7.3)

The first two excited levels of H̃0 are defined by the occupation of the two modes b̃†±

and have energies !̃±. When the two external magnetic fluxes {�+(t),��(t)} are driven

in time, the first two excited levels of the Hamiltonian H̃0 are continuously sweeping

between di↵erent states in the original basis, as |0̃1i = b̃†+|00i = cos(�)|01i+ sin(�)|10i,
|1̃0i = b̃†�|00i = cos(�)|01i � sin(�)|10i. One can use the two levels |0i ⌘ |00i and

|1i ⌘ |0̃1i as a qubit, see Fig. 7.1b.

7.3 Collective dynamics

We focus now on the interaction term between a single TCQ and the resonator, when

the flux biases are varied in time. The TCQs are capacitively coupled to a coplanar

resonator, of frequency !r. Their interaction can be modeled as HI = 2eVrms(�+n+ +

��n�)(�ia† + ia), where the a, a† operators act on the resonator field. The coupling
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Figure 7.1: a) Scheme of a setup composed of four TCQs capacitively coupled to
a coplanar resonator. The SQUID loops labeled with + and � can be threaded by
external magnetic fluxes. b) Generation of many-particle operator �y

1�
y

2�
y

3�
y

4 , between
the first, second, third and fourth qubits, see Appendix B. Selectivity is obtained by
setting the coupling of the other qubits to the resonator to zero. The qubit logical levels
|0i and |1i are the first levels of the TCQ, |00i and |0̃1i.

prefactors �± are defined by the circuit capacitances, while Vrms stands for the root

mean square voltage of the resonator. We consider identical capacitances for the upper

and lower islands (�± = �). Non-symmetric capacitance configurations do not change

the nature of the problem and result in small deviations in the numerical analysis [141].

The interaction can be expressed in the frame of T (t),

H̃I =
X

±
g±(t)(b̃†± � b̃±)(a† � a). (7.4)

We introduce a two-tone driving of the coupling g+(t) ⌘ 2eVrms�h1|n̂|0i, with n̂ =

n+ + n�, between the first two levels of the TCQ and prove later that it can be realized

by proper flux drivings,

g+(t) ⌘ gs+ + gd+[cos(!gt) + cos(!0
gt)]. (7.5)

Here, we have defined a static contribution gs+ and a dynamical part, where gd+ sets the

strength of the two-tone !g,!0
g modulation. The frequencies of the coupling are chosen

to be detuned by � with respect to the qubit-resonator sidebands, !g = !r + !̃+� � and

!0
g = !r � !̃+ � �. Namely, in interaction picture with H̃0, the e↵ective TCQ-resonator

Hamiltonian can be written as (see Appendix B for details)

H̃I = H̃IJC + H̃I+ + H̃I� . (7.6)
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The first term of this Hamiltonian is a Jaynes-Cummings interaction due to the static

contributions to the couplings g±(t), H̃IJC = �P± gs±(b̃±a† + b̃†±a), which results in an

e↵ective interaction of coupling strength (gs±)2/�±, where �± = !̃±�!r is the detuning

of the first two TCQ levels from the resonator frequency. The second and third terms of

the right side of Eq. (7.6) H̃I± involve the dynamical contribution to the coupling terms,

proportional to gd±. The term acting on the first two levels, imposing the condition of

Eq. (7.5), reads

H̃I+ = gd+
⇥

cos(!gt) + cos(!0
gt)

⇤

(b̃†+ � b̃+)(a† � a). (7.7)

Neglecting fast oscillating terms, Eq. (7.7) reduces to H̃I+ ⇡ i(gd+/2)

✓

a†ei�t�ae�i�t

◆

�y,

where �y is a Pauli matrix acting on the Hilbert space spanned first the two levels of

the device. The third contribution to the dynamics, H̃I� in Eq. (7.6), has several

terms oscillating at di↵erent frequencies. If none of them is close to the third level

sidebands, contribution from H̃I� will be negligible and leakage to the third level will be

suppressed. In fact, when the dynamical detuning is much smaller than qubit-resonator

one, (gs±)2/�± ⌧ (gd+)2/4�, the dynamics will be dominated by H̃I+ . A small Stark-

Lamb shift term
P

j [(g
s
+)2/�+]�zj (

1
2 + a†a), can be considered negligible, taking into

account small cavity population and renormalization of the qubit frequencies. Provided

with TCQ-resonator interactions as in Eq. (7.6), one can build multi-qubit setups, where

the e↵ective total Hamiltonian reads

H̃Ie↵ =
X

j

i
gb
2

✓

a†ei�t � ae�i�t

◆

�yj , (7.8)

where �yj refers to the first two levels of the j-th TCQ. The evolution operator associated

with the global Hamiltonian in Eq. (7.8) can be exactly solved, computing a Magnus

expansion at second order, see Appendix B. The qubit dynamics gets entangled with

the photons in the resonator, and at times ⌧n = 2⇡n/�, with integer n, the dynamics

is detached from the photons and it follows the Hamiltonian in Eq. (7.1). The global

interaction in Eq. (7.1) is a collective entangling operation between many two level

systems. It can be used to obtain many-qubit GHZ states at specific times, starting from

a configuration in which all the qubits are initialized in the lowest level [13]. By choosing

appropriate initial phases, one can map the dynamics onto HIe↵ = �⇠Pi<j �
x
i �

x
j . In

general, one can retrieve the dynamics of many-body operators of the form �i1�
j
2 · · ·�kN ,

with {i, j, ...k} 2 {x, y, z} [70], up to local qubit rotations. The selectivity upon a

generic set of qubits is obtained by setting the coupling between the first two levels

to g+ = 0. The corresponding third level static coupling g� = gs� will not contribute

to the dynamics due to the large detuning between the third level and the resonator

frequencies.
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7.4 Analysis of parameters of circuit QED

One can tune in time the coupling, as in Eq. (7.5), by modulating the external magnetic

fluxes �±. In general, this will also have an influence on the energy of the first two excited

levels. To retain a proper coherent dynamics, one can choose appropriate time-dependent

flux drivings such that the coupling has the desired strength, while the qubit transition

frequency !̃+ is constant. To give an example, we choose EC± = 500 MHz, EI =

350 MHz and EJ± = 25 GHz and plot numerically in Fig 7.2a and 7.2b, respectively,

transition frequencies between the first two levels and the first and the third one, as a

function of the flux biases {�+,��}. For the same parameters, in Fig. 7.2c, is plotted

the matrix element h1|n̂|0i. Along the curve �, approximated by the segment at constant

�� = 0.4�0 and �+ 2 [0, 0.4]�0, the transition frequencies are constant, while h1|n̂|0i
ranges between a maximum value at h1|n̂|0iM ' 0.45 at �+ = 0 and a minimum at

h1|n̂|0im = 0 at �+ = 0.4�0, as in Fig. 7.2d. The coupling range between h1|n̂|0iM and

h1|n̂|0im can be used to encode the time dependent coupling behavior as in Eq. (7.5).

One can design an overall capacitance prefactor � such that, e.g., 2eVrms�h1|n̂|0iM =

gM+ = 80 MHz. Then one can set gs+ ⌘ (gM+ + gm+ )/2 = 40 MHz (gm+ = 0) and gd+ ⌘
(gM+ �gm+ )/4 = 20 MHz. By changing �+(t) along the curve in time, one can encode the

proper time-dependence of the coupling. Notice that the range in which one can drive

the magnetic flux is limited by the validity of the negligible charge dispersion regime

and by the coupled anharmonic oscillator model, used to describe the TCQ. In fact,

large magnetic fluxes will decrease the e↵ective Josephson energies of the SQUID loops,

breaking the regime EJ± � EC± .

Along �, one has !̃+ = 4.5 GHz and !̃� = 7 GHz. Furthermore, one can choose

� = 50 MHz and consider a resonator frequency of 10 GHz. The magnetic signal �+(t)

that gives the coupling in Eq. (7.5) is obtained by inverting the function in Fig 7.2d,

for every time t. The coupling, for a sample time interval, is plotted in Fig. 7.2e. We

then decompose the signal �+(t) in its Fourier components. Applying the magnetic

signal �+(t), also the coupling between the first and the third level g�(t) undergoes fast

oscillations. We obtain numerically the time dependence of g�(t), when the flux �+(t)

is plugged into the system. Considering gs+ = 40 MHz, one has a static contribution for

g�(t) of gs� = 60 MHz. The power spectra of g+(t) and g�(t) are plotted in Fig 7.3b

and 7.3c. As expected, g+(t) has only two Fourier components around !g = 14.45 GHz,

!0
g = 5.45 GHz, detuned by � from the qubit-resonator sidebands. On the other hand,

g�(t) has no Fourier component close to the resonator-third level sidebands, at 3 GHz

and 17 GHz. Thus, leakage to the third level of the TCQ will not a↵ect the dynamics.

The setup can therefore be regarded as an e↵ective two-level system that undergoes
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red-detuned and blue-detuned sideband interactions. Furthermore, one can prove that

standard Jaynes-Cummings interactions do not a↵ect in a relevant way the dynamics.

Considering that one can maximize the dynamical interaction and choose gs+ =

2gd+, the condition for neglecting HIJC in Eq. (7.6), (gs+)2/�+ ⌧ (gd+)2/4�, can be

formulated in terms of the ratio �+/� � 16. Thus, using higher frequency transitions

will improve the fidelity of the gate. To prove this, we perform numerical simulation of

the dynamics driven by the interaction Hamiltonian in Eq. (7.6), in interaction picture

with H̃0. We consider the first three levels for each TCQ. We integrate numerically a

Lindblad master equation for the dynamics of four TCQs and resonator, ⇢̇ = �i[HIe↵ , ⇢]+

L(a)⇢+
P4

i=1[��L(�zi )⇢+��L(��i )⇢], adding Lindblad superoperators for the i-th qubit

��L(�zi )⇢, ��L(��i )⇢ to take into account dephasing and relaxation rates and L(a)⇢

to take into account resonator losses. Here, L(A)⇢ = (2A⇢A† � A†A⇢ � ⇢A†A)/2. We

set  = 100 KHz, ��,�� = 20 KHz. We use the time-dependent couplings g+(t), g�(t)

as obtained in Fig. 7.3. The overall magnitude of the qubit-resonator interaction is set

to gd+ = 20 MHz, gs+ = 40 MHz, gs� = 60 MHz. We choose � = 50 MHz. The transition

frequencies for the first two levels of the TCQ are !̃+ = 4.5 GHz and !̃� = 7 GHz. The

diagonalizing phase �(t) has a fast oscillating contribution. Its e↵ect can be estimated

in a small renormalization of the qubit frequency. In fact, the last term in Eq. (7.2) will

result, in interaction picture with respect to H̃0 and neglecting first-order fast-oscillating

contribution, into an e↵ective second-order small renormalization of the free energies,

leading to !̃R
± = !̃± + !̃±�, where !̃±� = �2d!

2
� · (!̃+ � !̃�)/2[(!̃+ � !̃�)2 � !2

�] and !�

is a frequency of the diagonalizing parameter �(t). The detuning ratio is approximately

�+/� ⇠ 100. Fig. 7.4a shows the fidelity peaks at ⌧n = 2⇡n/� for the simulated

density matrix ⇢ versus the ideal qubit dynamics, | Ii, that follows the Hamiltonian in

Eq. (7.1), with ⇠ = (gd+)2/4�. In Fig. 7.4b, the same dynamics is integrated considering

two di↵erent resonator frequencies. One can notice that, as the qubit-resonator detuning

increases, the fidelity peaks get higher as the Jaynes-Cummings part of Eq. (7.6) is better

suppressed.

To perform readout, one can fix g+(t) = gs+ and implement standard dispersive

measurement with a resonator pull of ±(gs+)2/�+ depending on the state of the single

TCQ [32]. For the practical implementation of this interaction, specific designed flux

drivings can take into account inhomogeneous qubit transition frequencies and couplings,

by choosing di↵erent flux driving trajectories.

In conclusion, we have shown that a setup made out of several superconducting

three-island devices, provided with tunable coupling to a coplanar waveguide resonator,

may realize collective gates and many-body interactions among superconducting qubits.
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, is compared with the TCQ one hJ
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.
b) Fidelities for di↵erent resonator frequencies. The fidelity improves as the qubit-
resonator detuning increases. The first two peaks have values F ⇡ 0.97, 0.93.

These interactions can be used to implement topological codes and e�ciently simulate

fermionic dynamics in circuit QED setups.





Chapter 8

Quantum Rabi and Dicke models

in superconducting circuits

8.1 Introduction

In this Chapter, we propose the Digital-analog quantum simulation of the quantum

Rabi and Dicke models using cQED. We find that all physical regimes, in particular

those which are impossible to realize in typical cavity QED setups, can be simulated

via unitary decomposition into digital steps. The simplest, most fundamental inter-

action of quantum light and quantum matter can be described by the quantum Rabi

model, consisting of the dipolar coupling of a two-level system with a single radiation

mode [143]. The Dicke model [144] was later introduced to generalize this interaction to

an ensemble of N two-level systems. Typically, the coupling strength is small compared

to the transition frequencies of the two-level system and the radiation mode, leading

to e↵ective Jaynes-Cummings and Tavis-Cummings interactions, respectively, after per-

forming a rotating-wave approximation (RWA). This introduces a U(1) symmetry and

integrability to the model for any N [145, 146]. Recently, analytical solutions for the

generic quantum Rabi and Dicke model for N = 3 were found [147, 148]. However, the

general case for arbitrary N is still unsolved, while its direct study in a physical system

remains an outstanding challenge.

A variety of quantum platforms, such as cavity QED, trapped ions, and circuit QED,

provides a natural implementation of the Jaynes-Cummings and Tavis-Cummings mod-

els, due to the weak qubit-mode coupling strength. When the latter is a fraction or

comparable to the mode frequency, the model is said to be in the ultrastrong cou-

pling (USC) regime. Experimental evidence of this regime has been observed in the

optical [149] and microwave domains [150, 151]. Coupling strengths larger than the

77
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Figure 8.1: Frequency scheme of the stepwise implementation for the quantum Rabi
Hamiltonian. A transmon qubit of frequency !

q

is interacting with a microwave res-
onator, whose transition frequency is !

r

. The interactions H1,2 in Eq. (8.3) are simu-
lated respectively with a Jaynes-Cummings interaction (step 1), and another one with
di↵erent detuning, anticipated and followed by ⇡ pulses (step 2).

mode frequency mark the transition towards the recently introduced deep-strong cou-

pling (DSC) regime [152]. An experimental observation of the full quantum Rabi and

Dicke models in all parameter regimes has not yet been realized. In particular, the

quantum simulation [2] of the Dicke Hamiltonian could outperform analytical and nu-

merical methods, while enabling the simulation of engineered super-radiant phase transi-

tions [153–155]. Recently, technological improvements of controlled quantum platforms

have increased the interest in quantum simulations [4–6, 36]. A digital approach to

quantum simulations was put forward in Ref. [24]. In this sense, it has been analyzed

how suitable versions of digital quantum simulators can be implemented with available

quantum platforms [25, 60, 71, 130]. Standard digital quantum simulations focus on the

e�cient decomposition of the quantum system dynamics in terms of elementary gates.

In order to maximize the e�ciency of the simulation, one may analyze which is the

decomposition of the dynamics in its largest realizable parts, and reduce the number of

elementary interactions in the simulation. This approach can be labeled as digital-analog

quantum simulation and corresponds to finding some terms in the simulated system that

can be implemented in an analog way, e.g., to employ a harmonic oscillator to simulate

a bosonic field, while others will be carried out with a digital decomposition.

We propose the digital-analog quantum simulation of the quantum Rabi and Dicke

models in a circuit QED setup, provided only with Jaynes-Cummings and Tavis-Cummings

interactions, respectively. We show how the rotating and counter-rotating contributions

to the corresponding dynamics can be e↵ectively realized with digital techniques. By

interleaved implementation of rotating and counter-rotating steps, the dynamics of the

quantum Rabi and Dicke models can be simulated for all parameter regimes with neg-

ligible error. Lastly, we show how a relativistic Dirac dynamics can be retrieved in the

limit where the mode frequency cancels.
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Table 8.1: Simulated quantum Rabi dynamics parameters versus frequencies of the
system. For all entries in the right column, the resonator frequency is fixed to !

r

/2⇡ =
7.5 GHz, and the coupling gR/2⇡ = 100 MHz. Frequencies are shown up to a 2⇡ factor.

gR = !R
q /2 = !R

r /2 !̃ = 7.4 GHz, !1
q � !2

q = 200 MHz
gR = !R

q = !R
r !̃ = 7.45 GHz, !1

q � !2
q = 100 MHz

gR = 2!R
q = !R

r !̃ = 7.475 GHz, !1
q � !2

q = 100 MHz

8.2 Digital-analog decomposition of the Rabi model

We start by considering a generic circuit QED setup consisting of a charge-like qubit, e.g.

a transmon qubit [30], coupled to a microwave resonator. The setup is well described

by the Hamiltonian (~ = 1) [32]

H = !ra
†a +

!q

2
�z + g(a†�� + a�+), (8.1)

where !r and !q are the resonator and qubit transition frequencies, g is the resonator-

qubit coupling strength, a†(a) is the creation(annihilation) operator for the resonator

mode, and �± raise and lower excitations on the qubit. The capacitive interaction in

Eq. (8.1) excludes excitations of the higher levels of the qubit device, because typically

the coupling g is much smaller than other transition frequencies of the system. By

trying to design setups with larger capacitive couplings, pushing them above dispersive

regimes, one starts to populate the higher levels of the transmons, producing unwanted

leakage. Here, we show that the dynamics of the quantum Rabi Hamiltonian

HR = !R
r a†a +

!R
q

2
�z + gR�x(a† + a) (8.2)

can be encoded in a superconducting setup provided with a Jaynes-Cummings interac-

tion, as in Eq. (8.1), using a digital expansion.

The quantum Rabi Hamiltonian in Eq. (8.2) can be decomposed into two parts,

HR = H1 + H2, where

H1 =
!R
r

2
a†a +

!1
q

2
�z + g(a†�� + a�+),

H2 =
!R
r

2
a†a� !2

q

2
�z + g(a†�+ + a��), (8.3)

and we have defined the qubit transition frequency in the two steps such that !1
q �!2

q =

!R
q . These two interactions can be simulated in a typical circuit QED device with fast

control of the qubit transition frequency. Starting from the qubit-resonator Hamiltonian

in Eq. (8.1), one can define a frame rotating at frequency !̃, in which the e↵ective
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Figure 8.2: A transmon qubit and microwave resonator simulating the quantum Rabi
Hamiltonian in the regime gR = !R

r

, !R

q

= 0. The ideal dynamics, plotted in the
inset, shows collapses and revivals of the photon and qubit population. The latter
are recovered via sequential qubit-resonator interactions and qubit flips. The photon
population is pumped to the expected value at the time marked by the arrow. Note
that the simulating time t̃ is di↵erent from the simulated time t.

interaction Hamiltonian becomes

H̃ = �̃ra
†a + �̃q�

z + g(a†�� + a�+), (8.4)

with �̃r = (!r � !̃) and �̃q = (!q � !̃) /2. Therefore, Eq. (8.4) is equivalent to H1,

following a proper redefinition of the coe�cients. The counter-rotating term H2 can be

simulated by applying a local qubit rotation to H̃ and a di↵erent detuning for the qubit

transition frequency,

e�i⇡�x/2H̃ei⇡�
x/2 = �̃ra

†a� �̃q�
z + g(a†�+ + a��). (8.5)

By choosing di↵erent qubit-resonator detuning for the two steps, �̃1
q for the first one

and �̃2
q for the rotated step, one is able to simulate the quantum Rabi Hamiltonian,

Eq. (8.2), via digital decomposition [24], by interleaving the simulated interactions.

The frequency scheme of the protocol is shown in Fig. 8.1. Standard resonant Jaynes-

Cummings interaction parts with di↵erent qubit transition frequencies are interrupted

by microwave pulses, in order to perform customary qubit flips. This sequence can be

repeated according to the digital simulation scheme to obtain a better approximation of

the quantum Rabi dynamics.
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8.3 Circuit QED implementation

The simulated Rabi parameters can be obtained as a function of the physical parameters

of the setup by inverting the derivation presented above. In this way, one has that

the simulated bosonic frequency is related to the resonator detuning !R
r = 2�̃r, the

two-level transition frequency is related to the transmon frequency in the two steps,

!R
q = �̃1

q��̃2
q , and the coupling to the resonator remains the same, gR = g. Notice that

even if the simulated two-level frequency !R
q depends only on the frequency di↵erence,

large detunings �̃1(2)
q will a↵ect the total fidelity of the simulation. In fact, since the

digital error depends on the magnitude of individual commutators between the di↵erent

interaction steps, using larger detunings linearly increases the latter, which results in

fidelity loss of the simulation. To minimize this loss, one can choose, for example,

the transmon frequency in the second step to be tuned to the rotating frame, such

that �̃2
q = 0. Nevertheless, to avoid sweeping the qubit frequency across the resonator

frequency, one may choose larger detunings. To estimate the loss of fidelity due to

the digital approximation of the simulated dynamics, we consider a protocol performed

with typical transmon qubit parameters [30]. We estimate a resonator frequency of

!r/2⇡ = 7.5 GHz, and a transmon-resonator coupling of g/2⇡ = 100 MHz. The qubit

frequency !q and the frequency of the rotating frame !̃ are varied to reach di↵erent

parameter regimes.

To perform the simulation for the quantum Rabi model with gR/2⇡ = !R
q /2⇡ =

!R
r /2⇡ = 100 MHz, for example, one can set !1

q/2⇡ = 7.55 GHz, !2
q/2⇡ = 7.45 GHz. In

this way, one can define an interaction picture rotating at !̃/2⇡ = 7.45 GHz to encode the

dynamics of the quantum Rabi model with minimal fidelity loss. Considering that single-

qubit rotations take approximately ⇠ 10 ns, tens of Trotter steps could be comfortably

performed within the coherence time. Notice that, in performing the protocol, one

has to avoid populating the third level of the transmon qubit. Considering transmon

anharmonicities of about ↵ = �0.1, for example, in this case one has third level transition

frequencies of 6.795 GHz and 6.705 GHz. Therefore, given the large detuning with the

resonator, it will not be populated. Similarly, by choosing di↵erent qubit detunings and

rotating frames, one can simulate a variety of parameter regimes, e.g. see Table 8.1.

8.4 Numerical analysis

In order to capture the physical realization of the simulation, we plot in Fig. 8.2 the

behavior of the transmon-resonator system during the simulation protocol. We numeri-

cally integrate a master equation, alternating steps of Jaynes-Cummings interaction with
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Figure 8.3: Time evolution of the fidelity F = |h 
S

| 
R

i|2 of state | 
S

i evolving
according to the digitized protocol, to the ideal state | 

R

i evolving according to the
quantum Rabi dynamics, with a) gR = !R

r

/2 = !R

q

/2, b) gR = !R

r

= !R

q

, c) gR =
2!R

r

= !R

q

, and d) gR = 2!R

r

= 1.5!R

q

. The simulation is performed for di↵erent
number n of Trotter steps. Black curves in the insets show the overlap of the ideal
evolved state with the one at time t = 0, |h 

R

| 0i|2, initialized with a fully excited
qubit and the resonator in the vacuum state.

single-qubit flip pulses. We consider ⇢̇ = �i[H, ⇢]+L(a)⇢+��L(�z)⇢+��L(��)⇢, with

Jaynes-Cummings terms H̃ = �̃ra†a+ �̃q�z +g(a†�� +a�+), alternated with qubit-flip

operations Hf = f(t)�x, where f(t) is a smooth function such that
R Tf

0 f(t)dt = ⇡/2, Tf

being the qubit bit-flip time. The quantum dynamics is a↵ected by Lindblad superop-

erators ��L(�z)⇢, ��L(��)⇢, and L(a)⇢ modelling qubit dephasing, qubit relaxation

and resonator losses. We have defined L(A)⇢ = (2A⇢A† � A†A⇢ � ⇢A†A)/2. We set

a resonator-qubit coupling of g/2⇡ = 80 MHz, and a frame rotating at the qubit fre-

quency, �̃q = 0, �̃r/2⇡ = 40 MHz. We consider ��/2⇡ = 30 kHz, ��/2⇡ = 60 kHz,

and /2⇡ = 100 kHz. The inset of Fig. 8.2 shows collapses and revivals of both the

photon and spin dynamics, which are typical signatures of the regimes of the quantum

Rabi dynamics dominated by the coupling strength. We consider prototypical DSC dy-

namics, with !R
q = 0, and gR = !R

r . Notice that to encode the dynamics corresponding

to a certain simulated time t, one needs the quantum simulator to run for a simulating

time t̃, that depends on the specific gate times of the experiment. We choose to set

the simulation at the time marked by the black arrow, close to the photon population

peak in the inset. A simulation with 15 digital steps is then performed. The time for a

single qubit flip pulse is set to Tf = 10 ns. Periodic collapses and revivals of the bosonic

population of the quantum Rabi model ha†aiR are shown as a function of time, in the

inset. The ideal spin and bosonic populations h�ziR and ha†aiR, evolving according to
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the quantum Rabi Hamiltonian, are shown to be in good agreement with the simulated

ones, h�zi and ha†ai, at the final simulated time. In fact, during the Jaynes-Cummings

interaction parts, photons are pumped into the resonator. Afterwards, before the photon

population starts to decrease due to excitation exchanges with the transmon qubit, a

qubit flip further enhances the photon production.

The simulation protocol can be performed for every time of the dynamics, with the

number of digital steps tuned to reach a satisfactory simulation fidelity. We plot in

Fig. 8.3 the fidelity F = |h S | Ri|2 as a function of time of the simulated wavefunction

 S , including resonator and spin degrees of freedom, versus the ideal one  R, evolving

according to HR, as defined in Eq. (8.2). The fidelity is plotted for di↵erent parameters

and iteration steps. Increasing the number of steps, the fidelity grows as expected from

standard Suzuki-Lie-Trotter expansions [40]. In principle, the whole protocol can accu-

rately access non-analytical regimes of these models, including USC and DSC regimes.

8.5 Dicke model and furher developments

By adding several transmon qubits to the architecture, the presented method can be

extended to simulate the Dicke Hamiltonian

HD = !R
r a†a +

N
X

j=1

!R
q

2
�zj +

N
X

j=1

gR�xj (a† + a). (8.6)

This simulation can be e�ciently implemented by means of collective qubit rotations. In

fact, only collective Tavis-Cummings interactions and global qubit rotations are involved.

In this way, the total time for the simulation does not scale with the size of the system N .

The Dicke model can be investigated provided enough coherence and low-enough gate

errors. Notice that this kind of quantum simulation is well suited for superconducting

circuits, since simultaneous single-qubit addressing is possible. Making use of the results

in Ref. [80], we demonstrate that the quantum resources needed to approximate the Dicke

Hamiltonian with an error less than ✏ scale e�ciently with the number of spins N and

of excitations allowed in the bosonic mode M . In a Dicke model simulation, one can

bound the number of gates N✏ necessary to achieve a certain error ✏ in a time t by

N✏ 
2 · 52k

�

2t[!R
r M + N(!R

q + 2|gR|pM + 1)]
 1+1/2k

✏1/2k
. (8.7)

Here, we have used an upper bound for the norm of the Dicke Hamiltonian, ||HR|| 
!R
r M + N(!R

q + 2|gR|pM + 1), where M is a truncation on the number of bosonic
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excitations involved in the dynamics. The fractal depth is set to k = 1 in the stan-

dard Trotter approximations. Using higher orders of fractal decompositions would be

a more involved task for implementation of digital approximations in realistic devices,

due to the sign inversion that appears [40]. Nevertheless, unitary approximants with

arbitrarily high fidelity can be obtained even when k = 1. The formula in Eq. (8.7)

gives an upper bound to the scaling of quantum resources and experimental errors in a

simulation involving several qubits. In fact, if one considers a small error for each gate,

the accumulated gate error grows linearly with the number of gates.

Notice that the quantum dynamics of the Dirac Hamiltonian emerges as a specific

case of the quantum Rabi dynamics. For the 1+1 dimensional case the algebra of the

Dirac spinors | i corresponds to that of Pauli matrices, and the Dirac equation in the

standard representation can be written

i
d

dt
| i = (mc2�z + cp�x) | i , (8.8)

where m is the mass of the particle, c is the speed of light and p / (a � a†)/i is

the one-dimensional momentum operator. The Dirac Hamiltonian in Eq. (8.8), HD =

mc2�z + cp�x, shows the same mathematical structure as the quantum Rabi Hamilto-

nian, Eq. (8.2), when !R
r = 0. This condition can be achieved by choosing !̃ = !r.

The analogy is complete by relating mc2 to !R
q /2, c to gR, and the momentum to the

quadrature of the microwave field, which can be measured with current microwave tech-

nology. Choosing an initial state with components in both positive and negative parts of

the Dirac spectrum will allow the measurement of the Zitterbewegung [19]. By retrieving

di↵erent quadratures of the microwave field, one can detect this oscillatory motion of the

simulated particle in the absence of forces, and the Klein paradox, where a relativistic

particle can tunnel through high-energy barriers. To detect such e↵ects, one will be

interested in measuring either the position or the momentum of the particle, standing

for di↵erent quadratures of the microwave field.
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Chapter 9

A quantum simulator for fluid

dynamics

9.1 Introduction

The quantum simulation of classical dynamics is a rather unexplored field. Encoding a

classical dynamics into a quantum one is a non-trivial task. In this Chapter, we approach

the simulation of fluid dynamics using a quantum simulator, by proposing a quantum

simulator based on pseudospin-boson quantum systems, which is suitable for encoding

fluid dynamics problems within a lattice kinetic formalism. This quantum simulator is

obtained by exploiting the analogies between Dirac and lattice Boltzmann equations. It

is shown that both the streaming and collision processes of lattice Boltzmann dynamics

can be implemented with controlled quantum operations, using a heralded quantum

protocol to encode non-unitary scattering processes. The proposed simulator is amenable

to realization in controlled quantum platforms, such as ion-trap quantum computers or

circuit quantum electrodynamics processors.

Transport phenomena in fluid flows play a crucial role for many applications in

science and engineering. Indeed, a large variety of natural and industrial processes

depend critically on the transport of mass, momentum and energy of chemical species

by means of fluid flows across material media of assorted nature [156]. The numerical

simulation of such transport phenomena still presents a major challenge to modern

computational fluid dynamics. Among the reasons for this complexity stand out the

presence of strong heterogeneities and huge scale separation in the basic mechanisms,

namely advection, di↵usion and chemical reactions [157, 158]. In the last two decades,

a novel concept for the solution of transport phenomena in fluid flows has emerged in

the form of a minimal lattice Boltzmann (LB) kinetic equation. This approach is based
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on the statistical viewpoint typical of kinetic theory [159, 160]. LB is currently used

across a broad range of problems in fluid dynamics, from fully developed turbulence in

complex geometries to micro and nanofluidics [161], all the way down to quark-gluon

applications [162].

Recent improvements in ion trap and superconducting circuit experiments make

these platforms ideal for challenging quantum information and simulation tasks. On the

one hand, trapped-ion experiments have demonstrated quantum information and simu-

lation capabilities [25, 163, 164], including the quantum simulation of highly correlated

fermionic systems [60], fermionic-bosonic models [71] and lattice gauge theories [165].

On the other hand, circuit quantum electrodynamics (QED) setups can host nowadays

top-end quantum information protocols, such as quantum teleportation [166] and topo-

logical phase transitions [167]. These quantum devices are approaching the complexity

required to simulate both classical and quantum nontrivial problems, as proposed by

Feynman some decades ago [2]. E↵orts in designing quantum algorithms for the im-

plementation of fluid dynamics make use of quantum computer networks [168, 169].

In contrast, systems described by pseudospins coupled to bosonic modes, such as the

aforementioned ion-trap and circuit QED platforms, have advantages with respect to

pure-qubit quantum computers in simulating fluids.

We propose a quantum simulation of lattice Boltzmann dynamics, using coupled

pseudospin-boson quantum platforms. Based on previously established analogies be-

tween Dirac and LB equations, we define here a full quantum mapping of transport

equations in fluid flows. The LB dynamics is simulated sequentially by performing par-

ticle streaming and collision steps. The non-unitary collision process can be implemented

with an heralded protocol, by sequential collapses of an ancillary qubit. The proposed

mapping is amenable to realization in trapped-ion and circuit QED platforms.

9.2 Lattice Boltzmann equation

The lattice Boltzmann equation is a minimally discretized version of the original Boltz-

mann’s kinetic equation, in which the fluid is modeled as an ensemble of particles that

move and collide within a uniform lattice. The lattice Boltzmann dynamics is described

by the equation

(@t + vbirb)fi(~x, t) = �Aij [fj(~x, t)� f eq
j (~x, t)]. (9.1)

Here, fi(~x, t) is the ith component of the particle fluid density associated with the

lattice site ~x at the time t, and with discrete velocity ~vi. The macroscopic fluid density

at the site ~x is retrieved as ⇢(~x, t) =
P

i fi(~x, t), while the fluid velocity is defined as
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Figure 9.1: (a) The distribution of the fluid density on a 2-dimensional lattice can
be simulated, for example, via normal motional modes and internal levels of a set of
trapped ions (b). (c) Superposition of two motional modes entangled with pseudo spin
states can encode velocity distributions in di↵erent lattice directions.

the weighted sum of the discrete velocities, ~u(~x, t) = 1/⇢
P

i fi(~x, t)~vi. The velocity

components fi~vi, with i = 1, 2, ...Q, satisfy mass-momentum-energy conservation laws

and rotational symmetry. Typical lattices are D2Q9 or D3Q15 models, for the case of

two dimensions with 9 speeds, and three dimensions with 15 speeds, respectively [170].

Collisional properties are here expressed in scattering-relaxation form, making use of

the local equilibrium distribution f eq
i (~x, t). The LB approach to compute the dynamics

associated with Eq. (9.1) uses sequential computational steps. One initially performs a

displacement (free-streaming) of each distribution component fi(~x) towards the nearest-

neighbor lattice site pointed at by the discrete velocity ~vi. From there, the equilibrium

distribution function f eq
i (~x, t) is computed and the outcome of the collisional process is

retrieved. Further iterations of these calculations allow the propagation of the lattice

dynamics in time. We address the question of whether all these steps can be performed

in a quantum simulator with practical quantum computing protocols.

The formal analogy between the Dirac and LB equations was first highlighted in [159,

171], where the velocity distribution of the particle is treated in a similar fashion as a

relativistic spinor. This analogy is further exploited in the Majorana representation of

the Dirac equation, by using real spinors [172]. The Dirac (Majorana) equation reads

(~ = 1 here and in the following)

i(@t + ↵b
ijrb) i = �ij i, (9.2)
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where we have defined the Dirac (Majorana) streaming matrices ↵b
ij , mass term �ij , and

the imaginary prefactor i proper of quantum and mechanical evolution.

Notice that the streaming matrices of the LB equation are diagonal, while the ↵ij ,

which generate a Cli↵ord algebra, cannot be simultaneously diagonalized. Additionally,

the mass matrix �ij is Hermitian, while standard collision matrices come in real sym-

metric form in the LB equation. Therefore, a complete codification of the LB scheme

in quantum language requires the implementation of diagonal streaming matrices and

of purely imaginary symmetric scattering matrices.

The components of the fluid density distribution function fi(~x, t) can be encoded in

a set of quantum states | ii defined on a proper Fock space. For example, in two dimen-

sions, the distribution of the fluid density over the two coordinates can be described by a

real quantum wavefunction that encodes the state of two bosonic modes, as depicted in

Fig. 9.1. In the x-quadrature representation, it reads | ii =
R

dx1dx2fi(x1, x2) |x1i |x2i,
where fi(x1, x2) is a real distribution and

�

�x1(2)

↵

the eigenstate of the quadrature of the

first (second) bosonic mode. Several quantum distributions | ii can be used by entan-

gling the bosonic state to a multi-level system, such as a set of pseudospins, therefore the

state of the complete system is given by | i =
P

i ⌘i |ii⌦ | ii. The sole use of dynamics,

generated by purely imaginary interaction matrices, guarantees that | i holds real and

it can therefore be identified with a fluid density distribution function.

9.3 Streaming and collision dynamics in a quantum simu-

lator

The quantum simulation of the Dirac equation was originally proposed [19] and af-

terwards realized in a trapped-ion experiment [20]. In general, streaming interactions

involving matrices in the Dirac or Majorana representation ↵b
ijrb can be implemented

by using a pair of pseudospins coupled to one or more bosonic modes. In terms of cre-

ation and annihilation operators ab(a
†
b) for the bth bosonic mode, one can then consider

pb = irb = i(ab � a†b) and write Eq. (9.2) on the pseudospin-bosonic Hilbert space of

| i,
i@t | (t)i = Kb↵

bi(ab � a†b) | (t)i+ � | (t)i , (9.3)

where Kb stands for the pseudospin-boson coupling and ↵b act upon the pseudospin

degrees of freedom.

Thus, the three streaming matrices ↵b
ij are written in the Dirac representation as

↵b = ��x1 ⌦�b2, in a pseudospin representation and the diagonal mass term as � = �z1I2.
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Figure 9.2: (a) Probability of success P
s

per time step of simulating real symmet-
ric random matrices as a function of the number of ancillary measurements N (solid
lines), together with accumulated probabilities for the whole protocol (dashed lines)
(b) Probability of succes of a single step as a function of �/�0, when N = 10.

These streaming matrices are diagonalized via the operators Sb = 1/
p

2(� + ↵b) [172],

which have to be physically implemented as quantum gates. Defining Sb = exp(�iHbt),

the associated generators read Hb = A�z1 ⌦ I2 + B�x1 ⌦ �b2, with A =
p
2⇡
4 and B = ⇡

2
p
2
.

In this way, a purely imaginary streaming step i�rb can be built, which mimics the

diagonal streaming of the LB equation. The total wavefunction after the streaming

steps can be retrieved with a sequential implementation, following the operator splitting

method [171]. For example, in a 2-dimensional lattice, one has

| (tn+1)i = (S�1
y DySy)(S

�1
x DxSx)C | (tn)i . (9.4)

The last collision step C, which scrambles particle distributions in di↵erent directions,

is discussed below.

Standard collision operators in LB theory are represented by real symmetric matrices

associated with non-unitary evolution operators. On the other hand, typical controlled

quantum mechanics experiments produce unitary dynamics. Nevertheless, one can prob-

abilistically encode non-unitary dynamics in a quantum device with a heralded protocol.

We consider a purely imaginary symmetric scattering matrix ⌦, whose quantum evo-

lution equation reads i@t i = ⌦ij j , providing a non-unitary evolution operator that

describes lattice collisions C = exp(�i⌦�t).

The collision operator can be decomposed in a weighted sum of two commuting

unitary operators, C = U↵ + �U� , with the constraint ||C||  1 + �, assuming without

loss of generality that � > 0. Given a specific diagonalizable collision operator C and

weight �, one can then find its decomposition in terms of unitaries. In order to find

a decomposition in terms of unitaries, C must first be diagonalized as C = V DV †.
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This reduces the problem of finding U↵ and U� down to an eigenvalue equation, �i =

↵i+��i, with �i, ↵i and �i being the ith eigenvalues of the collision and unitary operators

respectively. Notice that, due to the properties of the scattering matrix, �i 2 R+. Taking

into account the normalization conditions, one has the system of equations

8

>

>

>

<

>

>

>

:

�i = ↵i + ��i

|↵i| = 1

|�i| = 1.

(9.5)

The eigenvalues ↵i, �i can now be written as a function of the initial collision operator

and weight �,

Re(↵i) =
�2i � �2 + 1

2�i

Im(↵i) =

q

��4i + 2�2i (�2 + 1)� (�2 � 1)2

2�i

Re(�i) =
�2i + �2 � 1

2�i�

Im(�i) = �
q

��4i + 2�2i (�2 + 1)� (�2 � 1)2

2�i�
. (9.6)

The unitary operators U↵(�) are reconstructed via
�

U↵(�)

�

ij
= V †

in↵n(�n)Vnj . The real

domain of Eqs. (9.6) provides the range of validity of the method developed here. Simple

algebra leads to the set of inequalities

|� 1 + �i|  �  1 + �i, 8i. (9.7)

By defining �M and �m as the maximal and minimal eigenvalues of the spectrum of

C, the system of inequalities in Eq. (9.7) can be reduced to one of the two inequalities

|�1+�m|  �  1+�m or |�1+�M |  �  1+�m, respectively when |�1+�m|  |�1+�M |
or | � 1 + �m| � | � 1 + �M |. If longer evolution times t are considered, the spectral

range of C changes accordingly. The weighted �-sum derived here can be implemented

with quantum computing algorithms, using ancillary qubits and controlled U↵ and U�

gates [173]. By measuring the ancilla state, one can determine whether the desired

operation has been performed or not. The success of the protocol depends on the

weighted sum of unitary operators, with a failure probability Pf = �||U↵�U� ||2/(�+1)2.

As Pf is an increasing function of �, choosing �0 = min{| � 1 + �m|, | � 1 + �M |}
maximizes the probability of success. This directly connects the simulation time of the

scattering process C with the best choice for �. To propagate the dynamics of a given

collision process C, one can split the step time �t into N time intervals �t/N and
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perform the heralded protocol at each step, such that C = exp(�i⌦ij�t/N)N . At each

step, one has a collision operator exp(�i⌦ij�t/N), with an optimal �0. In this way,

as the step size gets smaller, the success probabilities for each step increase, while the

total success probability accumulates single success rates from the individual steps. In

Fig. 9.2a, we plot the success probability Ps(N) = 1 � Pf (N) of the simulation of the

single step, as a function of N , for random symmetric purely imaginary matrices. As

expected, the success probability per step increases as the size for the single time step

gets smaller. The success of the whole protocol PN
s is constant and does not depend on

N . In Fig. 9.2b is shown that the optimal protocol is performed at � = �0.

9.4 Four-speed lattice

The scheme proposed can be adapted to a variety of transport fluid problems. As an

example, we consider the implementation of an advection-di↵usion process in two spatial

dimensions. The dynamics of the transported species, e.g. pollutants or bacteria, is

described by the equation

@t⇢+r · (⇢~U) = D�⇢, (9.8)

where ⇢ =
P4

i=1 fi is the scalar field transported by a fluid with space-dependent velocity

~U = (Ux, Uy) and constant di↵usivity D.

The problem in Eq. (9.8) can be recast in LB form, as in Eq. (9.1). The correspond-

ing equilibrium distribution function is defined as

f eq
i = wi

"

⇢+
⇢~U · ~ci

c2s

#

, (9.9)

with wi = 1/4, c2s = 1/2. The scattering matrix reads Aij =
P4

k=1 A(k)
i !kA

(k)
j , where

A(1)
i = 1i ⌘ (1, 1, 1, 1), A(2)

i = cix ⌘ (1, 0,�1, 0), A(3)
i = ciy ⌘ (0, 1, 0,�1) and A(4)

i =

c2ix � c2s ⌘ (1/2, 0, 1/2, 0) are the four eigenvectors.

The first three corresponding eigenvalues are given by

!1 = 0, !2 = !3 =
1

1/2 + D/c2s
, (9.10)

which follows from mass conservation and the expression of the di↵usion constant D =

c2s(1/!�1/2), respectively. By choosing di↵erent values for !2 and !3, one can implement

anisotropic di↵usivities along the x and y directions. Finally, !4 has no direct bearing

on the macroscopic limit and can be chosen as !4 = 1 for convenience. The relative

scattering matrix ⌦ij is defined by �Aij [fj(~x; t) � f eq
j (~x; t)] = ⌦ijfj(~x, t). By choosing
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Figure 9.3: Spectrum of a collision operator (solid red line) for advection-di↵usion
process of a four-speed lattice as a function of the evolution time step �t, in units of
1/!4. The allowed region for � is bounded by dashed blue lines using Eq. (9.7) and
shadowed in the picture.

a Couette flow, e.g. U = U0/L(y, 0), where L is the typical size of the domain, one has

f eq
i = wi⇢(1 + ui), with u1 = �u3 = U0y/c2s and u2 = u4 = 0. Here, velocities are

numbered 1 ÷ 4 counterclockwise starting from the +x direction.

The latter defines the quantum scattering matrix as composed of three contributions,

namely i⌦ijfj = �iAij [fj + wj⇢ + wj⇢uj ], where y ⌘ a2 + a†2 stands for the position

quadrature of the bosonic mode associated with the y direction. The three contribu-

tions to the scattering matrix represent classical linear wave propagation and damping,

mass conservation and macroscopic advection, respectively. They can be implemented

with the quantum simulation protocol previously introduced. The bounds to � can be

obtained, e.g., for the first contribution to the scattering matrix �Aij , by computing

the spectrum of C = e�A�t for di↵erent time steps �t, for D = 0.05, in units of 1/!4.

The result is shown in Fig. 9.3.

Natural quantum platforms for prospective implementation of the proposed scheme

could be ions trapped in linear Paul traps or circuit QED setups, in which the sequential

streaming and collision steps in Eq. (9.4) can be realized. The pseudospin-bosonic state

can be encoded, in the case of ion traps, in the internal level and motion modes of the

ions [14], while in a circuit QED implementation, one can use the first levels of charge-like

qubits, e.g. transmon qubits, and microwave resonators [34]. One may consider opening

similar avenues in other quantum technologies as is the case of quantum photonics [174]

and Bose-Einstein condensates [175].

Note that the above scheme readily extends to the case of reactive flow, by augment-

ing the collision operator with a local source term proportional to the chemical reaction
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rate. Such kind of advection-di↵usion-reaction phenomena in complex geometries, say

catalytic reactors, represents a very active area of applications of the LB scheme. Further

developments may include the implementation of hydrodynamic non-linearities to model

the Navier-Stokes fluid dynamic equations. This requires the inclusion of quadratic terms

in the LB equilibrium distribution. Such nonlinear behavior can be provided in a quan-

tum mechanical experiment by preparing multiple copies of the system [176], feedback

mechanisms [177], or non-unitary operations induced by measurements.

We have developed a protocol to reproduce the dynamics of fluid transport phe-

nomena in a quantum mechanical experiment, by using pseudospins coupled to bosonic

modes that can be implemented in di↵erent quantum platforms. This proposal paves

the way to quantum simulation and retrieval of complex classical fluid dynamics in

controlled quantum systems.
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Conclusions

In this Thesis, we have proposed a variety of quantum information protocols, analyzing

their implementation with quantum platforms, mainly trapped-ion and superconducting

circuit architectures. We believe that the results here obtained will serve to strengthen

the connection between theoretical and experimental physics oriented to quantum infor-

mation, when it comes to practical implementations. The work done here will hopefully

contribute, in the near future, to bring new knowledge in the fields of condensed matter,

high-energy physics, quantum chemistry and classical fluid dynamics, as the available

quantum platforms scale up in terms of size and control.

In Chapter 2, we have shown that trapped-ion chains can host a parity-based pro-

tected qubit [44], based on a dual representation of a topological fermionic Kitaev chain.

We have predicted that this qubit can outperform the usual ionic qubit coherence time

by more than one order of magnitude, yielding an e�cient quantum memory. Logical

local rotations upon the qubit can be performed by means of global and local laser-ion

interactions. Moreover, a quantum interface with photonic states can be realized, al-

lowing for the realization of two-qubit gates among several of such parity qubits. These

parity qubits represent a practical instance, realizable with minimal quantum resources,

of a logical qubit.

In Chapter 3, 4 and 5, we have developed a framework for the digital quantum

simulation of fermionic and coupled fermionic-bosonic dynamics in trapped-ion systems.

This framework has been first applied to the simulation of fermionic models [60]. We

have proposed that collective interactions between a set of many ions can implement

high-order and long range fermionic interactions. These collective gates also account

for increased e�ciency in the simulation of two and three-dimensional fermionic sys-

tems, when compared to simulation protocols based on local two-qubit gates. The

total dynamics of the fermionic model is then recovered by means of a digitization and

Jordan-Wigner mapping. With current ion-trap technology, more than 100 gates have

been realized in a single experiment [25]. Indeed, without error correction, one would

expect the realization of hundreds of gates in times shorter than the decoherence time
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of 30 ms. The rate at which ion-trap systems actually improve [4], combined with the

increased e�ciency of our proposal, make these results look relevant, e.g., for quantum

simulations of condensed-matter systems, or for probing high-energy physics in nonper-

turbative regimes.

In Chapter 4, we have extended the simulation protocol presented in Chapter 3 to

coupled bosonic-fermionic systems, explaining in detail how it can be realized for the

Holstein model [71]. The simulation of these systems has an increased complexity with

respect to purely fermionic systems, due to the fast-growing Hilbert space, following the

growth of the bosonic population. It is noteworthy to mention that our proposed digital

quantum simulation will already overcome the limits of classical computers with 10 ions

and 5 phonons per ion. This will allow to study the formation of small polarons under

these conditions. Future experiments involving 20 to 30 ions will permit to address

the study of more complex dynamics, including electron-electron correlations mediated

by phonons. In Chapter 5, using the framework developed for the fermionic systems,

we have proposed a hybrid quantum simulation protocol for quantum chemistry with

trapped ions [178]. This paradigm in quantum simulations has several advantages: an

e�cient electronic simulation, the possibility of interacting electronic and vibrational

degrees of freedom, and the increasing scalability provided by trapped-ion systems. This

approach for solving quantum chemistry problems aims to combine the best of classical

and quantum computation, for the sake of computational e�ciency.

In Chapters 6, 7 and 8, we have dealt with superconducting circuit systems. In

Chapter 6, we have proposed a digital quantum simulation of spin chain models in su-

perconducting circuits [130]. We have considered prototypical models as the Heisenberg

and frustrated Ising interactions. Furthermore, we have shown the feasibility of the

simulation with state-of-the-art technology of transmon qubits coupled to microwave

resonators. The proposed models have been realized by the Quantum Device Lab of

Prof. Andreas Wallra↵ at ETH Zürich. These protocols may be extended to many-qubit

spin models, paving the way towards universal quantum simulation of spin dynamics in

cQED setups. In Chapter 7, we have shown that a setup made out of several supercon-

ducting three-island devices, provided with tunable coupling to a coplanar waveguide

resonator, can realize collective gates and many-body interactions among superconduct-

ing qubits [179]. These interactions, similar to the ones analyzed in Chapter 3 for

ion-trap systems, can be used to implement topological codes and e�ciently simulate

fermionic dynamics in cQED setups. Finally, in Chapter 8, we have shown that the

dynamics of the quantum Rabi and Dicke models can be encoded in a cQED setup us-

ing an digital-analog approach [131]. These quantum simulations will contribute to the

observation of quantum dynamics not accessible in current experiments.

http://www.qudev.ethz.ch/


Chapter 12. Conclusions 101

In the last part of this Thesis we have analyzed quantum simulations for classical

systems. In Chapter 9, we have developed a protocol to reproduce the dynamics of

fluid transport phenomena in a quantum mechanical experiment, by using pseudospins

coupled to bosonic modes that can be implemented in di↵erent quantum platforms [180].

This proposal paves the way to quantum simulation and retrieval of complex classical

fluid dynamics in controlled quantum systems. Further developments to this work will

include the possibility of simulating nonlinear behavior, and extending the proposal to

more complex fluid dynamics models.

In the Appendix, we present complementary material to the Parts and Chapters,

which helps for a better understanding of the results shown in this Thesis.

We believe that the scientific results presented in this Thesis represent an important

contribution to the success and development of quantum technology in the near future.





Part V

Appendices

103





Appendix A

An upper bound for the norm of

the Holstein Hamiltonian

In this Appendix, we give an upper bound for the the norm of the Holstein Hamiltonian

in Chapter 4, in order to bound the error one makes with a Suzuki-Lie-Trotter expan-

sion [40]. Consequently, we bound the number of gates one needs for achieving a given

fidelity on the simulated quantum state. The norm is bounded by the sum of the norms

of each term appearing in H. The computation of single norms amounts to finding the

largest eigenvalue of the single terms

||H||  |h| ·
N�1
X

i=1

�

�(�+i �
�
i+1 + h.c.)

�

�+ (A.1)

+|g|
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�
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�
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represents a sum of 2(N � 1) tensor products of Pauli matrices, with norm 1. There-

fore, |h|PN�1
i=1

�

�(��+i ��i+1 + h.c.)
�

�  |h|(N � 1). The norm
�

�

�

b†ibi
�

�
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is bounded by the

truncation in the number of bosons in the mode i , as is clear by the standard Fock

representation

b†ibi !

0

B

B

B

B

B

@

0

1
. . .

M

1

C

C

C

C

C

A

,
�

�

�

b†ibi
�

�

�

= M. (A.2)

Therefore
PN

i=1

�

�

�

b†ibi
�

�

�

=
PN

i=1 M = NM .
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The norm
PN

i=1

�

�

�

(bi + b†i )
(�z

i +1)
2

�

�

�

is equivalent to
PN

i=1

�

�

�

(bi + b†i )
�

�

�

, given that
�

�

�

(�z
i +1)
2

�

�

�

= 1. The term (bi + b†i ) in the Fock basis reads

(bi + b†i )!

0

B

B

B

B

B

B

B

B

B

B

@

0 1

1 0
p

2p
2 0

. . .

0
p

Mp
M 0

1

C

C

C

C

C

C

C

C

C

C

A

. (A.3)

The characteristic polynomial of the matrix for the truncation to M bosons is given in

a recursively way,

D0(�) = 1, D1(�) = ��
Dn(�) = ��Dn�1(�)� (n� 1)Dn�2(�). (A.4)

The Dn(�) are a
p

2 rescaled version of the Hermite polynomials. A simple bound for

the largest zero of DM (�) (i.e. the norm of the bosonic displacement operator) is given

by the expression 2
p

M � 1 (see for example Ref. [181]). Summarizing, the norm for the

Holstein Hamiltonian is upper bounded by

kHk  |h|(N � 1) + 2|g|NpM � 1 + !0NM. (A.5)



Appendix B

Estimation of

non-nearest-neighbor coupling

strenght

In this Appendix, we give an estimation of the NNN couplings that appear when one

wants to generate the NN Ising interaction with the parameters that we use in Chapter 4.

We propose to address pairs of NN ions with independent counterpropagating couples

of lasers detuned close to di↵erent modes, i.e. a di↵erent mode is assigned to a specifiic

couple of NN ions. This gives rise to NNN coupling between distant ions, which we show

being negligible for specific detunings and gate times. For a 3+1 ion configuration, for

example, the total Hamiltonian is

H = H1 + H2 =
X

m

sin(�1t)
⇣

ame�i⌫mt + a†mei⌫mt
⌘

2
X

i=1

⌦i⌘i,m�
x
i + (B.1)

X

m

sin(�2t)
⇣

ame�i⌫mt + a†mei⌫mt
⌘

3
X

i=2

⌦i⌘i,m�
x
i ,

obtained by driving the first two ions with two pairs of counterpropagating lasers

detuned to ±�1 [65], while the lasers driving the second and the third ion are detuned to

±�2. Therefore a second order Magnus expansion of the Hamiltonian in Eq.(B.1) leads

to unwanted NNN terms in the evolution operator of the form

 

Z t

0
dt0

Z t0

0
dt00[H1(t

0), H2(t
00)] +

Z t

0
dt0

Z t0

0
dt00[H2(t

0), H1(t
00)]

!

= (B.2)

X

m

(Z1,m(t) + Z2,m(t)) S1,mS2,m, (B.3)
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where we have defined S1,m =
P2

i=1⌦i⌘i,m�xi , S2,m =
P3

i=2⌦i⌘i,m�xi . Some straightfor-

ward algebra leads to

Z1,m(t) =
i

2(�21 � ⌫2m)

⇣

�1
sin(�2 � ⌫m)t

(�2 � ⌫m)
� �1 sin(�2 + ⌫m)t

(�2 + ⌫m)
+ (B.4)

⌫m
sin(�2 � �1)t

(�2 � �1) � ⌫m sin(�2 + �1)t

(�2 + �1)

⌘

, (B.5)

Z2,m(t) =
i

2(�22 � ⌫2m)

⇣

�2
sin(�1 � ⌫m)t

(�1 � ⌫m)
� �2 sin(�1 + ⌫m)t

(�1 + ⌫m)
+ (B.6)

⌫m
sin(�1 � �2)t

(�1 � �2) � ⌫m sin(�1 + �2)t

(�1 + �2)

⌘

. (B.7)

These contributions are negligible for the parameters that we use, i.e. first detuning

close to the first mode and second detuning close to the second one, |⌫1 � �1| ⌧ ⌫1,

|⌫2 � �2| ⌧ ⌫2. For example, taking the strongest resonant term from the series in Eq.

(B.2), m = 2 for Z2,2(t), the first term on the right side in Eq. (B.6) reads

�2 sin(�1 � ⌫2)t
2(�22 � ⌫22)(�1 � ⌫2)

=
�2 sin(�1 � ⌫2)t

2(�2 + ⌫2)(�2 � ⌫2)(�1 � ⌫2) . (B.8)

Since ⌦i⌘i,m ⇠= ⌦j⌘j,n, the term is negligible in comparison to the desired NN terms,

whose couplings goes like � i⌫2t
2(�22�⌫22 )

, � i⌫1t
2(�21�⌫21 )

, for su�cient large times,

�

�

�

�

�

⌫2t

(�2 + ⌫2)(�2 � ⌫2)

�

�

�

�

�

�
�

�

�

�

�

�2
(�2 � ⌫2)(�2 + ⌫2)(�1 � ⌫2)

�

�

�

�

�

, (B.9)

t�
�

�

�

�

�

�2
⌫2

1

(�1 � ⌫2)

�

�

�

�

�

. (B.10)

For realistic parameters the critical time is t ⇠ 1 /⌫1. Since our gates are obtained

at times ⌧ ⇠ 100/⌫1, these NNN terms can be neglected. We stress again that in the

protocol some of the frequencies ⌫i have to be shifted, we have left the original frequencies

to avoid a heavy notation. Same kind of considerations are valid for the other terms in

the right side of Eq. (B.6) and Eq. (B.4). This also extends in a straightforward way

to couplings between any two NNN ions in a configuration with an arbitrary number of

ions, as long as conditions like Eq. (B.10) are satisfied.



Appendix C

Derivation of e↵ective models for

collective gates

In this Appendix, we show in detail how to derive the e↵ective collective entangling

Hamiltonian between N tunable-coupling transmon qubits (TCQs) presented in Chap-

ter 7. We start from the interaction between the resonator and several TCQs capacitively

coupled to it,

H̃I =
N
X

j=1

X

±
g±(t)(b̃†±j � b̃±j)(a

† � a). (C.1)

According to what is discussed in Chapter 7, one can design proper magnetic fluxes,

threading the SQUIDs in each TCQ, in order to modulate g+(t) = gs+ + gd+[cos(!gt) +

cos(!0
gt)], where one has defined the two detuned sideband frequencies !g = !r + !̃+� �

and !0
g = !r � !̃+ � �. As a consequence, also the transition element to the third level

of the devices g�(t) will undergo fast oscillations. One can numerically obtain its time

dependence, and expand the signal in its Fourier components g�(t) =
P

n gn exp(i!nt),

with !n = 2⇡n/T , where n 2 Z, and T is much larger than the timescale of the dynamics

considered. The interaction Hamiltonian in a many qubit setup then becomes

H̃I =
N
X

j=1

h

gs+ + gd+
�

cos(!gt) + cos(!0
gt)

�

i

(b̃†+j � b̃+j)(a� a†)

+
N
X

j=1

"

X

n

gn exp(i!nt)

#

(b̃†�j � b̃�j)(a� a†). (C.2)

One can identify three contributions to the dynamics, H̃I = H̃IJC + H̃I+ + H̃I� . There

are two terms representing standard Jaynes-Cummings interactions, due to the static

109



Appendix C. Derivation of e↵ective models for collective gates 110

contributions of the couplings,

H̃IJC = �
N
X

j=1

X

±
gs±(b̃†±ja + b̃±ja

†), (C.3)

where we have defined gs� ⌘ g0. The other contributions to the dynamics are given by

the time-dependent part of the interaction. Namely,

H̃I+ =
N
X

j=1

gd+
⇥

cos(!gt) + cos(!0
gt)

⇤

(b̃†+j � b̃+j)(a� a†),

H̃I� =
N
X

j=1

"

X0

n

gn exp(i!nt)

#

(b̃†�j � b̃�j)(a� a†), (C.4)

where the prime symbol excludes the zeroth addend from the series. One can define an

interaction picture with respect to H̃0, and neglect the H̃I� contribution, if there is no

large component gn of the Fourier decomposition, whose frequency !n is close to the

resonator-third level sidebands. This is shown to be the case in Fig. 3 in Chapter 7.

Due to su�cient level anharmonicity, that one can assume being preserved during the

dynamics, only the two lowest levels for each anharmonic oscillator are populated. One

is thus allowed to consider a two-level Pauli algebra to model qubit excitations, b̃±j ⌘
��±j(equivalently b̃†±j ⌘ �+±j), and the interaction Hamiltonian, in the rotated frame,

becomes

H̃I ⇡
N
X

j=1

h

gs+ + gd+
�

cos(!gt) + cos(!0
gt)

�

i

(�++je
i!̃+t � ��+je

�i!̃+t)(ae�i!rt � a†ei!rt).

(C.5)

Under the condition |(gs+)2/�+|⌧ |(gd+)2/4�|, the biggest contribution to the dynamics

come from the terms rotating at the smallest frequency �,

H̃I =
N
X

j=1

gd+
2

n

(�++j � ��+j)(a
†ei�t � ae�i�t)

o

= �i
gd+
2

Sy(a†ei�t � ae�i�t), (C.6)

where Sy =
PN

j=1 �
y
+j . The evolution operator associated with Hamiltonian in Eq. (C.6)

can be computed exactly at second order in gd+/2, obtaining

ŨI(t) = exp

(

gd+Sy

2�

h

(ei�t � 1)a† �H.c.
i

)

exp

8

<

:

i

 

gd+
2�

Sy

!2

[sin(�t)� �t]
9

=

;

. (C.7)

At times ⌧ = 2⇡n/�, with integer n, the above evolution operator can be associated with

the e↵ective unitary ŨI(t) = exp
h

i
P

ij(g
d
+)2/4��y+i�

y
+j

i

. By choosing appropriate initial
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phases in Eq. (C.1), one can obtain the generic e↵ective interaction (here ↵ = {x, y})

HIe↵ = �
X

ij

(gd+)2

4�
�↵+i�

↵
+j . (C.8)





Appendix D

Many-body operators

In this Appendix, we show explicitly how to obtain an e↵ective many-body interaction

of N qubits, along the lines of Refs. [56, 70]. We consider a combination of direct and in-

verse collective gates and a local rotation on one of the qubits (e.g. the first one). In other

words, we consider the gate sequence US(t) = exp(�iHIe↵⌧) exp(igt�z1) exp(iHIe↵⌧),

where ⌧ = �2�/(gd+)2, that explicitly reads

US(t,�) = ei�/2
P

j=2 �
↵
i �

↵
j eigt�

z
1e�i�/2

P
j=2 �

↵
i �

↵
j . (D.1)

One can expand the local rotation and write the equivalent expression

US(t,�) = ei�/2�
↵
1

P
j=2 �

↵
j (cos(gt) + i sin(gt)�z1) e�i�/2�↵

1

P
j=2 �

↵
j . (D.2)

Taking into account that �z1e
i�/2�↵

1

P
j=2 �

↵
j = e�i�/2�↵

1

P
j=2 �

↵
j �z1 , one has that

US(t,�) = cos(gt) + i sin(gt)�z1e
�i��↵

1

P
j=2 �

↵
j . (D.3)

Considering that
⇣

�z1e
�i�/2�↵

1

P
j=2 �

↵
j

⌘n
= {1,�z1e

�i�/2�↵
1

P
j=2 �

↵
j } for n = {even,odd},

Eq. (D.3) can be rewritten,

US(t,�) = exp

0

@igt�z1
Y

j=2

�

cos(�)� i�↵1 �
↵
j sin(�)

�

1

A . (D.4)

Choosing � = ⇡/2, one has

US(t,⇡/2) = exp

0

@igt�z1
Y

j=2

��i�↵1 �
↵
j

�

1

A . (D.5)
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Figure D.1: a) Scheme of the generation of many-particle operator among four TCQs.
The coupling of the four qubits to the resonator is shown as a function of time. Col-
lective gates as in Eq. (C.8) are performed in the initial and final time regions, while a
standard phase gate is performed upon the first qubit between the two collective oper-
ations. The e↵ective interaction can be mapped on an arbitrary stabilizer operator on
a spin lattice with generic topology, due to the non-local nature of the quantum bus.
With an additional ancillary qubit, the system state can be mapped on the ground
states of topological codes, via stabilizer pumping.

The resulting gate, as a function of the total number of qubits N , reads

exp (�igt�z1�
↵
2 · · ·�↵N ) , N = 4n� 1,

exp (igt�z1�
↵
1 · · ·�↵N ) , N = 4n + 1,

exp
⇣

igt��1�
↵
2 · · ·�↵N

⌘

, N = 4n,

exp
⇣

�igt��1�
↵
2 · · ·�↵N

⌘

, N = 4n� 2, (D.6)

where ��1 = ��y1(�x1 ) for ↵ = x(y), N = 4n, and ��1 = �y1(��x1 ) for ↵ = x(y), N = 4n�2.

All these interactions are equivalent to an arbitrary stabilizer many-body operator, up

to local rotations. Summarizing, the physical realization of the multiqubit interaction

can be schematized as in Fig. D.1. Magnetic fluxes drive the collective gates at the

beginning and the end of the protocol, while in the central time interval the coupling

with the resonator of all the qubits is turned o↵, except for the TCQ that undergoes a

standard phase shift gate (qubit 1 in the figure). By adding an auxiliary ancilla qubit

one can guide the ground state of the system to the one of topological states [140], via

the stabilizer pumping protocol described in [56]. Sequences of collective operators as

in Eq. (D.6) can be used to simulate correlated fermionic Hamiltonians in spin systems,

with a constant overhead of the quantum resources, according to the protocols presented

in [60, 71].
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A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, and A. Wallra↵,

e-print arXiv:1502.06778 (2015).

[44] A. Mezzacapo, J. Casanova, L. Lamata, and E. Solano, New J. Phys. 15, 033005

(2012).

[45] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma, Rev. Mod. Phys.

80, 1083 (2008).

[46] A. Y. Kitaev, Physics-Uspekhi 44, 131 (2001).

[47] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Nature Phys.

p. 412 (2011).

[48] R. M. L. J. D. Sau and S. D. Sarma, Phys. Rev. Lett. 105, 077001 (2010).

[49] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010).

[50] L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac,

E. Demler, M. D. Lukin, and P. Zoller, Phys. Rev. Lett. 106, 220402 (2011).

[51] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nature Phys. 7, 971 (2011).

http://arxiv.org/abs/1501.07703
http://www.sciencemag.org/content/339/6124/1169.full
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.40.546
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.153
http://www.nature.com/nature/journal/v415/n6867/full/415039a.html
http://www.nature.com/nphys/journal/v8/n4/full/nphys2232.html
http://www.sciencedirect.com/science/article/pii/037596019090962N
http://www.ams.org/journals/proc/1959-010-04/S0002-9939-1959-0108732-6/
http://www.chem.purdue.edu/kais/paper/Anmer-JCP-2011.pdf
http://arxiv.org/abs/1502.06778
http://m.iopscience.iop.org/1367-2630/15/3/033005
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.80.1083
http://iopscience.iop.org/1063-7869/44/10S/S29/
http://www.nature.com/nphys/journal/v7/n5/abs/nphys1915.html
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.077001
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.177002
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.220402
http://www.nature.com/nphys/journal/v7/n12/full/nphys2106.html


[52] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P.

Kouwenhoven, Science 336, 1003 (2012).

[53] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).

[54] A. Friedenauer, H. Schmitz, J. T. Glueckert, D. Porras, and T. Schätz, Nat. Phys.

4, 757 (2008).

[55] J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunder-

lich, R. Folman, and F. Schmidt-Kaler, Eur. Phys. J. D 65, 285 (2011).

[56] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hen-

nrich, C. F. Roos, P. Zoller, and R. Blatt, Nature 470, 486 (2011).

[57] J. Casanova, L. Lamata, I. L. Egusquiza, R. Gerritsma, C. F. Roos, J. J. Garćıa-
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