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Abstract

Background: Excessive apoptosis induces unwanted cell death and promotes pathological conditions. Drug discovery
efforts aimed at decreasing apoptotic damage initially targeted the inhibition of effector caspases. Although such inhibitors
were effective, safety problems led to slow pharmacological development. Therefore, apoptosis inhibition is still considered
an unmet medical need.

Methodology and Principal Findings: The interaction between Apaf-1 and the inhibitors was confirmed by NMR. Target
specificity was evaluated in cellular models by siRNa based approaches. Cell recovery was confirmed by MTT, clonogenicity
and flow cytometry assays. The efficiency of the compounds as antiapoptotic agents was tested in cellular and in vivo
models of protection upon cisplatin induced ototoxicity in a zebrafish model and from hypoxia and reperfusion kidney
damage in a rat model of hot ischemia.

Conclusions: Apaf-1 inhibitors decreased Cytc release and apoptosome-mediated activation of procaspase-9 preventing cell
and tissue damage in ex vivo experiments and in vivo animal models of apoptotic damage. Our results provide evidence
that Apaf-1 pharmacological inhibition has therapeutic potential for the treatment of apoptosis-related diseases.
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Introduction

The intrinsic or mitochondria mediated apoptosis pathway can

be initiated by a number of cellular stress factors that together with

the participation of members of the BCL-2 family of proteins, lead

to mitochondrial outer membrane permeabilization (MOMP) [1].

This is followed by cytochrome c (Cytc) release from mitochondria

that binds to the protein Apaf-1 (apoptotic protease-activating

factor) [2] and forms the multiprotein complex termed apopto-

some. The apoptosome recruits and activates an initiator member

of the caspase family of cysteine aspartyl proteases, procaspase-9,

that in turn activates apoptosis-effector caspases initiating there-

fore apoptotic cell death. Defects in the regulation of apoptosis are

at the root of a variety of diseases. When cells acquire resistance to

apoptosis it frequently correlates with cancer or autoimmune

diseases. In contrast, excessive apoptosis induces unwanted cell

death and promotes pathological conditions related to stroke,

ischemia-reperfusion damage and degenerative diseases [3].

Therefore, there is a medical need for treatments based on

unwanted apoptosis inhibition, but no treatment has been

approved. In this sense, drug discovery efforts initially targeted
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the inhibition of caspase activity, particularly the executioner

caspase-3 [4]. This strategy demonstrated a promising potential in

several animal models [5,6,7,8] although caspase inhibitor-based

drugs are experimenting slow pharmacological advance due to the

reported side effects [9].

To address the goal of developing unwanted apoptosis inhibitors

new pharmacological targets of the apoptotic pathway have to be

explored. Of special interest are the protein-protein interactions

upstream of caspase activation in particular, the formation of the

apoptosome offered evidences to be considered as an interesting

target for developing anti-apoptotic therapies [10,11]. The main

constituent of the apoptosome is Apaf-1, a protein involved in

nucleotide and Cytc binding [12]. Apaf-1 is a multidomain protein

with an N-terminal caspase recruitment domain (CARD), a

central nucleotide-binding and oligomerization domain (NOD),

and a C-terminal WD40 repeats domain. We previously reported

on a first generation of small molecules that inhibit apoptosis by

interfering with the apoptosome activity [13,14]. In particular,

SVT016426 (previously named QM31 [14] is an efficient inhibitor

of apoptosis. Here we demonstrated that SVT016426 specifically

targets Apaf-1 inhibiting the activation of procaspase-9 in vitro
and in cellulo-based systems. The treatment of apoptosis injured

cells with SVT016426 and its derivatives showed a decrease in

Cytc release from mitochondria and an improvement in cell

viability. We provide evidences that a single target could define a

pharmacological alternative that prevents mitochondrial damage

and caspase activation and present proof of principle for

therapeutic relevance in inhibition of unwanted apoptosis in

animal models.

Results

Apaf-1 inhibitors
SVT016426 was discovered as a result of an initial medicinal

chemistry program directed to improve a series of linear

peptidomimetics discovered as inhibitors of the activity of the

apoptosome via chemical library screening [13]. The compound

inhibits anthracyclin-induced apoptosis in a variety of transformed

human cell lines and cell death induced by doxycycline-inducible

BAX overexpression in human osteosarcoma cells [13]. These

results suggest that SVT016426 may constitute a new class of

cytoprotective agents. One of the main concerns to achieve in vivo
experiments with the SVT016426 was the low solubility of this

drug. Then, we initiated a study of the putative binding site of the

compound on the surface of Apaf-1 to obtain information for the

design of SVT016426-derivatives. A blind docking screening

targeting the reported human WD40 repeats depleted Apaf-1

(Apaf-1 1–591) structure [15] revealed potential binding sites for

SVT016426 at the CARD-NOD interface and at the reported

dATP binding site in the NOD domain [15] (Fig. 1A; Table S1

and Fig. S1 and S2 in File S1). Thus, binding of SVT016426 could

either stabilize Apaf-1 into a ‘‘locked’’ conformation, which may

hinder unpacking of the CARD-NOD interface that facilitates

nucleotide binding or directly block the nucleotide binding site.

Furthermore, we confirmed by NMR-based experiments that

there was binding to Apaf-1 and Apaf-1 1–591 (Fig. 1B). We

applied two complementary ligand-based NMR techniques that

analyze the effects of ligand binding on NMR signals: water-

LOGSY (water-ligand observed by gradient spectroscopy) [16]

and STD (saturation transfer difference) [17]. In these techniques,

an excess of ligand is mixed with the target protein (here,

SVT016426 and Apaf-1), and the exchange between the bound

and free states of the ligand modulates the NMR signal of the free

ligand. Both STD and waterLOGSY, experiments produced

positive interaction results with Apaf-1 and Apaf-1 1–591

constructs (Fig. 1B). In addition, we used a carboxyfluorescein-

labelled derivative of SVT016426 (CF-SVT016426) and fluores-

cence polarization spectroscopy to demonstrate that SVT016426

bound to recombinant Apaf-1 and to recombinant Apaf-1 1–591

(Fig. 1C). dATP decreased the affinity, suggesting that the Apaf-1

binding site for SVT016426 involves the CARD and NOD

domains. Based on the structural information we generated a

number of SVT016426-derivatives in a medicinal chemistry effort

focused on identifying compounds with similar activities but better

pharmacological properties that were amenable to the different

therapeutic applications. Then, we synthesized compounds with a

six-member ring in the central core of the molecule (core B

Fig. 1D) and different substituents, generating the compounds

listed in Fig. 1D. All of them inhibited the activation of

procaspase-9 in an in vitro reconstituted apoptosome [18] and

in a cell extract-based assay [13] (Fig. 1D; Fig. S3A and S3B in

File S1). To confirm apoptosome inhibiting activity, the caspase-9

processing was also followed by immunoblotting in cellular assays

(Fig. S4 in File S1). However, SVT compounds did not have a

direct inhibitory effect on recombinant caspase-3 and caspase-9

and did not show features of being a promiscuous aggregator in

the b-lactamase inhibition assay [19] (Fig. S3C–S3E in File S1).

The protective effect of SVT016426 requires the presence
of Apaf-1 in the cell

Excessive apoptosis is a problem associated with many diseases

and organ-stress processes that remains to be solved from the

pharmacological point of view. Current anti-apoptotic drugs such

as caspase inhibitors seem to act too late in the cell death process

and recovery results are being not as good as expected. Then, in

order to rationalize the advantages of working with Apaf-1

inhibitors, we performed a comparative study of the Apaf-1

inhibition-cell recovery potential with other apoptosis inhibitors in

wild type mouse embryonic fibroblasts (wtMEFS) (Fig. 2A) and

HeLa cells (Fig. S5A in File S1). We have included in this study

caspase-3 inhibitors, such as z-VAD-fmk and IDN-6556 [20], and

the antioxidant ebselen. Ebselen (2-phenyl-1,2-benzisoselenazol-

3[2H]-one) is a selenoorganic compound exhibiting both gluta-

thione peroxidase activity and antioxidant activity which has been

reported to inhibit apoptosis in several models [21]). We used a

cell-based model to demonstrate that after treatment with the

intrinsic apoptotic inducer cisplatin (cis-diammineplatinum(II)

dichloride, CDDP), cell death in wtMEFS was inhibited by

SVT016426 and its derivatives (Fig. 2A and Fig. S5A in File S1).

While all the compounds decreased CDDP-induced caspase-3

activity; only Apaf-1 inhibitors diminished Cytc release and cell

death, improving survival (Fig. 2A and 2C; Fig. S5A in File S1).

In order to show that all the observed effects were dependent on

Apaf-1 inhibition, we demonstrated that CDDP-induced cell death

was not inhibited by SVT016426 in Apaf-1 siRNA-based

knockdown HeLa cells; although, it did inhibit CDDP-induced

cell death in control cells transfected with random siRNA (Fig. 2B

and Fig. S5B in File S1). These results correlated with

measurements of caspase-3 activity and Cytc release from

mitochondria (Fig. 2B and 2D), suggesting that the inhibitory

capacity of SVT016426 was dependent on the levels of Apaf-1 in

the cell. Equivalent results were observed with the different

SVT016426-derivatives (Fig. S5C in File S1). We also evaluated

several intrinsic apoptosis inducers, such as etoposide, with similar

results (data not shown). Taken together, these results confirmed

that SVT016426 and its derivatives avoid apoptosis activation

through an inhibitory effect on Apaf-1 activity and that the
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Figure 1. Design of new Apaf-1 inhibitor derivatives (SVTs). (A) Human Apaf-1 1–591 structure showing the CARD (green) and NOD (light
gray) domains, as well as the best docked poses, for SVT016426 at the CARD-NOD interface (orange) and at the nucleotide binding site (cyan). The
inset shows also the interacting Apaf-1 residues (see File S1). (B) Details of the aromatic region of NMR spectra acquired with Apaf-1 and Apaf-1 1–
591 in the presence of SVT016426. Under the experimental conditions, only the signals from SVT016426 are observed. From top, one dimension 1H
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cytoprotective effect of the compounds requires the presence of

Apaf-1 in the cell.

Remarkably, silencing of Apaf-1 renders cells with less

mitochondrial Cytc in the two different Apaf-1 siRNA assayed

(Fig. 2D) suggesting a role for Apaf-1 in the dynamics of Cytc
release. Supporting this hypothesis, the addition of rApaf-1 to

isolated mitochondria inhibits cBid mediated Cytc release

(Fig. 2E). The levels of mitochondrial Cytc in the presence of

the apoptotic inductor CDDP decrease, but are recovered when

cells are treated with SVT016426 (Fig. 2D). This effect is lost

when Apaf-1 is silenced, ruling out the existence of an SVT016426

off-target responsible of this effect. Then we propose a

SVT016426 mechanism of action where the inhibition of the

apoptosome function of Apaf-1 promotes its interaction with the

mitochondria avoiding Cytc release, and thus improving cell

survival. In fact, treatment with CDDP in the presence of

SVT016426 recovers mitochondrial membrane permeability (Fig.

S6 in File S1) and allows partial clonogenic recovery on MEFS

cells (Fig. 2F). These results open the field to future studies about a

putative role of Apaf-1 in mitochondrial function.

Apaf-1 inhibitors prevent unwanted apoptosis in animal
models of disease

CDDP-based chemotherapy has wide application to treat

different cancers although not devoid of side effects. CDDP

induced ototoxicity is one of the main dose-limiting side-effect of

anti-neoplastic treatment. In CDDP-therapy, the drug accumu-

lates in the inner ear fluids and is then taken up by otic epithelial

cells, particularly in the cochlea [22] inducing ototoxicity that can

lead to permanent hearing loss. At the molecular level, CDDP

triggers the reactive oxygen and nitrogen species production

inducing thereby apoptosis cell death of inner hair cells. The

efficacy of Apaf-1 inhibitors, SVT017686 and SVT017923, in

preventing CDDP-induced apoptosis was tested in an organ of

Corti-derived cell line (HEI-OC1). CDDP treatment induced

apoptotic cell death characterized by caspase-3 activation and

Cytc release. Both were decreased in the presence of the

compounds and this effect was translated in an improved cell

survival (Fig. 3A). Compound treatment reduced the expression of

Apaf-1 which was increased after CDDP treatment (Fig. 3B).

These results suggest that Apaf-1 inhibition has a cytoprotective

effect in HEI-OC1 cell line after CDDP-induced cell death.

Finally, in order to probe the in vivo efficacy of SVT017686, a

zebrafish model of CDDP induced ototoxicity was set up [23].

Fig. 3C shows the distribution of auditory neuromasts in 5 dpf

zebrafish, as detected by DASPEI staining. SVT017686 markedly

decreases the CDDP induced loss of neuromast, demonstrating

that Apaf-1 inhibition is an effective strategy against CDDP

induced ototoxicity.

Ischemia and reperfusion (I/R) is a pathological condition

characterized by blood restriction-dependent tissue hypoxia. In

renal transplantation, I/R is associated with pathophysiological

alterations (tubular epithelial cells undergo necrosis and apoptosis)

resulting in the destruction of renal tissue and delayed graft

function, affecting the long-term transplant outcome [24,25]. We

evaluated whether the beneficial effects observed for SVT016426

and its derivatives on chemotherapeutic-induced cell death could

be applied to hypoxia-induced apoptosis. We used cultured

porcine proximal renal tubule (LLC-PK-1) cells treated with

SVT016448 (this compound was more active than SVT016426 in

the experimental setup procedures with these cells). The cells were

exposed to hypoxia/hypercapnia (HH) conditions for 24 h and

then to normoxia for 24 h to simulate I/R. Apoptosis was reduced

in SVT016448-treated cells, as measured by increased cell viability

and a decreased level of I/R-induced caspase-3 activity (Fig. 4A).

The HH treatment led to transcriptional upregulation of Apaf-1 at

the same levels observed for Bnip3 mRNA after hypoxia-inducible

factor 1a (HIF-1a) pathway activation [26] (Fig. 4B), and both

levels were inhibited by SVT016448 treatment. If functional

problems derived from hot ischemia injury could be overcome,

kidneys from non-heart-beating donors could be used for

transplantation, which would increase the number of organs

available. To determine the impact of Apaf-1 inhibition in vivo,

we evaluated SVT016448 in a rat model of hot ischemia [27].

Immunofluorescence labeling of kidney slices for active caspase-3

showed that animals treated with intraperitoneal injections of

SVT016448 had lowered levels of apoptosis (Fig. 4C) and less

kidney lesions in blind histopathological analysis (Fig. 4D). RT-

qPCR analysis of kidney tissue showed that SVT016448 treatment

lowered the expression of Apaf-1, which was overexpressed after

hot ischemia treatment (Fig. 4E). Similar results were found when

the compound was supplied intravenously (Fig. S7 in File S1).

Thus, Apaf-1 can be defined as pharmacological target for

inhibition of unwanted apoptosis.

Discussion

Apoptosis is on the basis of numerous pathologies but there is

not an approved treatment based on its inhibition. Previous

proposals on apoptosis inhibitors faced with troubles in develop-

ment. Here, we describe a new pharmacological alternative with

two fold significance. First, we characterized SVT016426 and its

derivatives as selective inhibitors of Apaf-1, which lead to

decreased unwanted cell death in animal models of excessive

apoptosis-related pathological disorders. Second, the results

obtained when apoptotic injured cells were treated with

SVT016426 suggested a mitochondrio-protective effect that

prompted to seek for a role of Apaf-1 at Cytc release from

mitochondria.

We propose that the SVT family of Apaf-1 inhibitors binds to

Apaf-1 at the CARD-NOD interface or at the reported dATP

binding site in the NOD domain and thwarted the required

conformational change that permits a productive Apaf-1 oligo-

merization [28]. As a consequence the recruitment of procaspase-9

is not effective, inhibiting the induction of the apoptotic pathway

in cells [13]. The SVT family has not unspecific cell toxicity and

did not show any noticeable effect in cells where Apaf-1 was not

present by gene knock down by siRNA (Fig. 2). In addition we

found that long term treatment with Apaf-1 inhibitors did not

induce alterations in cell proliferation and aneuploidy (Fig. S8 in

File S1). Caspases have been considered as the effectors of cell

death during apoptosis then caspase inhibitors were therapeuti-

cally evaluated in apoptosis related diseases [4,7]. Furthermore,

due to the MOMP-dependent generation of reactive oxygen

species, different antioxidants as ebselen or free radical scavengers

as N-Acetylcysteine (NAC) have been also proposed as agents to

NMR reference spectrum of SVT016426; Saturation Transfer Difference experiment (STD) and WaterLOGSY for SVT016426 with Apaf-1 and Apaf-1 1–
591. (C) CF-SVT016426 fluorescence polarization assays for Apaf-1 and Apaf-1 1–591 in the presence or absence of dATP (100 mM) (n = 3). (D) The
IC50s of SVTs were analyzed using in vitro reconstitution of the apoptosome and HEK293 cell extract-based assays (see Materials and Methods and
Fig. S3A and S3B in File S1).
doi:10.1371/journal.pone.0110979.g001
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Figure 2. Apaf-1 is required for the inhibitory activity of SVT016426. (A) From left to right, cell survival and caspase-3 activity of wtMEFS
after 30 h incubation with CDDP (20 mM) in the presence of vehicle (DMSO), zVAD (1 mM), IDN6566 (IDN; 1 mM), Ebselen (10 mM), or SVT016426-
derivatives (10 mM) (mean 6 SD, n = 3 independent experiments). (B) Apaf-1 was silenced in HeLa cells by two different Apaf-1 siRNAs (100 nM). Cell
survival and caspase-3 activity were measured for control (Rsi) or Apaf-1 (Apafsi) silencing in the presence or absence of SVT016426 treatment (SVT;
10 mM) (mean 6 SD, n = 3 independent experiments). Asterisks represent significant differences as determined by one-way ANOVA test with
Bonferroni’s multiple comparison post-test (*p,0.1; **p,0.05; ***p,0.001). (C–D) Analysis of mitochondrial Cytc by cytometry analysis in the A and
B described conditions. (E) Apaf-1 binds to mitochondria in a cBID dependent manner and inhibits Cytc release in purified mitochondria. The
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palliate the noxious consequences of unwanted apoptosis [21,29].

There were problems determining the clinical benefit of NAC [30]

and although the pan-caspase inhibitor IDN-6556 was effective in

different settings [6,7,8] safety concerns were raised due to atypical

cellular infiltrate in the liver, kidney, and adrenal glands in

experimental models [9]. Here we demonstrated that ebselen,

IDN-6556 as well as the SVT compounds, showed inhibition of

caspase activity (Fig. 2B) however only SVT compounds showed

potential to prevent CDDP-, and hypoxia-induced cell death

(Fig. 2 and 4). In fact, in mammals solely caspase inhibition,

downstream of MOMP, delays and modifies the outcome, more

than prevents cell death [31]. Strikingly, in all the cell types

analyzed in our study the SVT-dependent cell death inhibition

correlated with a decrease in Cytc release from mitochondria. In

contrast, no such effect was observed in cells treated with caspase

inhibitors or antioxidants. We conclude that SVT-compounds

were inducing a pre-MOMP event probably related to Apaf-1.

Previous reports include conflicting data on the role of Apaf-1 on

Cytc release. Franklin and Robertson [32] showed that in Apaf-1

deficient Jurkat T-lymphocytes etoposide- and mitoxantrone-

induced Cytc release and loss of mitochondrial membrane

potential was impaired. In contrast, Ferraro et al. [33] observed

that Cytc release from Apaf-1-deficient proneural embryonic

telencephalic naı̈ve Apaf-1 knockout cells, followed faster kinetics

than that of wild type cells. In addition, Potokar et al. [34]

observed that at short times after rotenone-induced apoptosis in

mitochondria treated with rApaf-1 (150 nM) and cBID (10 nM) were centrifuged and separated into pellet (mitochondria) and supernatant and
immunobloted for Cytc release and Apaf-1 incorporation (left panel). Bands were quantified by densitometry (right panel). (F) wtMEFS were treated
with 5 mM CDDP for 6 h and incubated in the presence or absence SVT016426. After two weeks cells were fixed and stained with crystal violet and
the quantification of the number of cell colonies was performed. Data represent the mean 6 SD of three independent experiments.
doi:10.1371/journal.pone.0110979.g002

Figure 3. Apaf-1 inhibitors protected against CDDP-induced ototoxicity in an in vitro and in vivo model. (A) Caspase-3 activity, Cytc
release and cell survival, respectively from HEI-OC1 cells treated with CDDP (25 mM) in the presence or absence of compounds (10 mM). Data are
expressed as the mean 6 SD (n = 3 independent assays). Asterisks represent significant differences relative to DMSO treatment as determined by one-
way ANOVA test with Bonferroni’s multiple comparison post-test (*p,0.1; **p,0.05; ***p,0.001). (B) Transcriptional regulation of Apaf-1 analyzed
by RT-qPCR from HEI-OC1 cells treated with CDDP (25 mM) in the presence or absence of compounds (10 mM) (mean 6 SD; n = 3). (C) Apaf-1
inhibitors protected against CDDP-induced ototoxicity in a zebrafish model. Five-day embryos (n = 10) were treated with CDDP (10 mM) for 24 h in
the presence or absence of SVT017686 (15 mM). Neuroblasts are the white dots (arrows). Scale bar, 1 mm. Hair cells were counted and cell survival
was calculated as a percentage of the control group (not exposed to CDDP). Data bars represent mean 6 SD hair cell survival (n = 9/10 fishes).
doi:10.1371/journal.pone.0110979.g003
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pituitary cells Apaf-1 redistributed to mitochondria. Our in vitro
experiments with isolated mitochondria aiming to reproduce the

initial events of mitochondria-mediated apoptosis using cBID

showed [35] that the presence of Apaf-1 on mitochondria cBID-

induced attenuated release of Cytc (Fig. 2) and thus Apaf-1 is

probably a modulator of MOMP events. The Cytc release

Figure 4. Apaf-1 inhibitors provide protection in an in vivo animal ischemic induced acute kidney injury model. (A) Cell survival and
caspase-3 activity in cell lysates from LLC-PK-1 cells measured after 24 h hypoxia/hypercapnia plus 24 h normoxia in the absence or presence of Apaf-
1 inhibitor (10 mM) (mean 6 SD; n = 3). (B) Transcriptional regulation of Apaf-1 and Bnip-3 were analyzed by RT-qPCR in LLC-PK-1 cells. mRNA levels
were compared in hypoxia/hypercapnia (Hx) versus normoxia (Nx) conditions after SVT016448 treatment (mean 6 SD; n = 3). (C) Intraperitoneal
injection of SVT016448 (10 mg/Kg) decreases caspase activity in a renal hot ischemia in vivo model. A representative image of the
immunofluorescence of active caspase-3 (left panel) and mean grey value quantification (right panel) (mean 6 SD, n = 5). Asterisks represent
significant differences relative to ischemia treatment as determined by one-way ANOVA test with Bonferroni’s multiple comparison post-test (*p,
0.05). (D) Damaged tissue decreases in the presence of the Apaf-1 inhibitor, as determined by histopathological evaluation. (E) SVT016448 treatment-
dependent decrease in Apaf-1 mRNA levels, as analyzed by RT-qPCR.
doi:10.1371/journal.pone.0110979.g004
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inhibitory capability of SVT016426 was dependent on the Apaf-1

expression levels in the cell. Moreover, Apaf-1 gene silencing

renders cells with less mitochondrial Cytc (Fig. 2D). All together,

our results shift the balance to the existence of a role for Apaf-1 in

the control of Cytc release.

Nowadays there is no ideal protective agent in clinical use

against cisplatin ototoxicity. This would eliminate one of the dose-

limiting side effects of cisplatin therapy and improve the quality of

life for many patients [36]. As an example clinical trials for the

transtympanicof L-N-Acetylcysteine administration in patients

receiving cisplatin chemotherapy for head and neck cancerdid

not demonstrate a significant benefit [37]. There is a great need to

find safe and effective protective agents. In this study we show the

effectiveness of treatment with SVTs in cellular and in vivo models

of cisplatin- induced ototoxicity.

Ischemic, toxic, or obstructive renal damage triggers apoptotic

mechanisms that cause tubular cell loss and decreased renal

function [38]. Currently there are no effective pharmacological

strategies to treat acute renal failure. Here, we show the ability of

Apaf-1 inhibitors to decrease cell death in kidney ischemia cellular

and in vivo models. These results support the potential application

of Apaf-1 inhibitors to prevent acute kidney injury (AKI).

In conclusion, we characterized SVT016426 and its derivatives

as selective inhibitors of Apaf-1 that prevent cell death in different

cellular settings and show efficiency as potential apoptosis

inhibitory drugs in models of disease.

Materials and Methods

Chemical synthesis
The general method for the synthesis of perhydro-1,4-

diazepine-2,5-diones such as SVT016426 and 3-substituted 1,4-

piperazine-2,5-dione derivatives (SVT016448, SVT017686 and

SVT017923) has been previously reported [39].

Apoptosome activity assays
Apoptosome was reconstituted by incubating rApaf-1 (100 nM)

with vehicle (DMSO) or SVT compounds in assay buffer (20 mM

HEPES, 10 mMKCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM

EGTA, 1 mM DTT, 0.1 mM PMSF) at 30uC for 30 min. Next,

100 mM dATP and 100 nM Cytc were added and incubated for

additional 40 min. Then, caspase-9 (100 nM) was added, and

activity was monitored by the Ac-LEHD-afc substrate (50 mM;

Enzo Life Sciences) using a Victor 2 spectrofluorimeter

(lexc = 390 nm; lem = 510 nm). A cell-free caspase activation assay

was also performed as described [13,40]. Briefly, Apaf-1 depleted

cytosolic extracts from HEK293 were incubated with rApaf-1

(100 nM) and in the presence of the different SVT-derivatives. Ac-

DEVD-afc substrate (Enzo Life Sciences) was used to measure

caspase 3 activity, using a Victor 2 spectrofluorimeter.

Fluorescence polarization spectroscopy
A 60 nM solution of 59-69carboxyfluorescein-labeled

SVT016426 was titrated with concentrated protein solutions in

reaction buffer (total reaction volume was 200 ml) Fluorescence

polarization measurements were recorded in a Victor 2 Wallac

1420 Workstation spectrofluorimeter (lexc = 480 nm;

lem = 535 nm).

Computational docking
The blind docking protocol consisted on a search for cavities in

the Apaf-1 CARD-NOD structure to identify potential ligand

binding sites, followed by a flexible docking of the ligand on to the

different sites located. Fig. S1 in File S1 shows the best scored sites

for interaction within the target structure and Table S1 in File S1

summarizes the site scores. Docking at the binding sites rendered

plausible binding poses for compound SVT016426 (Fig. S2 and

Table S1 in File S1).

Computational Methods. Molecular simulations were con-

ducted with the package Schrödinger Suite 2011 [41] through its

graphical interface Maestro [42]. The program Macromodel [43],

with its default force field OPLS 2005, a modified version of the

OPLS-AA force field [44], and GB/SA water solvation conditions

[45] were used for all energetic calculations. The coordinates of

WD40-deleted human Apaf-1 (Apaf-1 1–591, PDB 1Z6T, chain

B) were obtained from the Protein Data Bank [46] at Brookhaven

National Laboratory. The structure of the protein was prepared

using the Protein Preparation Wizard included in Maestro to

remove the unused subunits as well as the solvent molecules and

ligands, adding hydrogens, setting protonation states and mini-

mizing the energy using the OPLS force field. SiteMap [47,48,49],

was used to identify and score potential binding sites on the

protein. The score provided by SiteMap is constructed and

calibrated so that the average SiteScore for 157 investigated

submicromolar sites is 1.0. Therefore, a score$1.0 suggests a site

of particular promise, while a score#0.8 has been found to

accurately distinguish between drug-binding and non-drug-bind-

ing sites. The best scored sites were used as targets for docking of

the SVT016426 ligand with the program Glide XP [50,51,52].

The structure of SVT016426 was built within Maestro and then it

was prepared with the LigPrep application [53] included in the

software to generate ring conformers of the two stereoisomers of

the compound. Eight ring conformers for each enantiomer were

generated and used as input ligands for the docking at each target

site. In order to ensure a good conformational sampling during the

docking simulations the following settings were used: a maximum

of 5000000 poses per input structure for the initial phase of

docking, the extendend sampling protocol, and 50 poses for the

post-docking minimization. Glide XP scores were used to rank the

resulting docked poses. The interaction diagrams for the best poses

were built with the Ligand Interaction Diagram application

implemented in Maestro.

NMR experiments
NMR spectra for protein ligand interaction were recorded at

298 K with a BrukerUltrashield Plus Avance II 600 MHz

spectrometer equipped with a 5-mm cryogenically-cooled TCI

probe. An NMR sample consisted of 1 mM rApaf-1 or Apaf-1 1–

591 and 20 or 100 mM SVT017683 to yield protein:ligand ratios

of 1:20 and 1:100 for the waterLOGSY and STD experiments,

respectively. The sample buffer was 50 mM phosphate, pH 7.0,

with 50 mMNaCl; 8 K points were used for a sweep width of

9,600 Hz and a total of 1 K and 4 K scans were accumulated for

the waterLOGSY and STD experiments, respectively.

Cell culture and reagents
Human cervix adenocarcinoma (HeLa) and proximal tubular

renal porcine LLC-PK-1 cells were obtained from ATCC

(Rockville, MD). wtMEFS, previously established in the referenced

publications [54], were kindly provided by Dr. Franceso Cecconi.

The HEI-OC1 cell line (House Ear Institute-Organ of Corti-1)

was obtained from F. Kalinec and primary human dermal

fibroblasts (HDFn) were obtained from Cascade Biologics. HeLa,

HDFn, wtMEFS cells were cultured in DMEM supplemented with

10% FBS (Invitrogen). LLC-PK-1 cell line was grown in M199

supplemented with 3% FBS. HEI-OC1 cells were cultured in

antibiotic free DMEM with 10% FBS (GIBCO) and 5 mg/ml of

gamma interferon (Sigma) at 33uC and 10% CO2 in air. All the
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rest of cell lines were maintained at 37uC in an atmosphere of 5%

carbon dioxide. Cisplatin (CDDP) and ebselen were purchased

from Sigma and pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-

fluoromethylketone (zVAD-fmk) from Tocris. IDN-5665 was

synthesized by Laboratorios Salvat, S.A. LipofectamineTM 2000

(Invitrogen) was used according to the manufacturer’s instructions

to transfect HeLa cells with the control siRNA (Rsi; Cell Signaling)

and Apaf-1 siRNA (Dharmacon and Cell Signaling).

Cell-based caspase activation assay
MEFS and HeLa cells were seeded in 6-well plate at a cellular

density of 16105 cells/well and 26105 cells/well, respectively,

while 36105 cells/well were grown for LLC-PK-1. Cells were pre-

treated with SVT compounds for 1 h and then cisplatin (25 mM)

was added. After 30 h cells were harvested and cytosolic extracts

were obtained as described previously [13]. Total protein (50 mg)

was mixed with assay buffer containing 20 mM Ac-DEVD-afc

substrate. Activity was measured using a Victor 2 spectrofluorim-

eter. HeLa cells were treated in the same conditions after 24 h of

siRNA transfection. LLC-PK-1 were also pre-treated with SVT

compounds for 1 h and then subjected to hypoxia/hypercapnia

(HH - 1% O2, 18% CO2) conditions for 24 h plus 24 h of re-

oxygenation before cytosolic extracts were prepared.

HEI-OC1 cells were plated in sterile 96-well microtiter plates

(BD) at cellular density of 4500 cells/well and treated with the

SVT compounds and the caspase inhibitor zVAD-fmk in a dose

response manner. Apoptosis was induced with cisplatin and cells

were incubated for 24 h. Caspase 3 activity was determined by

using Caspase-Glo 3/7 Assay Kit (Promega) according to the

manufacturer’s instruction.

Cell viability assays
Cell proliferation was measured using a 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay.

MEFS, LLC-PK-1 and HEI-OC1 cells were grown in 96-well

plates at a cellular density of 1500 cells/well, 2500 cells/well and

4500 cells/well, respectively. After seeding, the cells were left to

adhere to the plate overnight and MEFS and HEI-OC1 were

treated with cisplatin plus SVT compounds for 24 h at 37uC. Four

hours before the end of the treatment MTT (1 mg/ml in PBS) was

added to each well and the plates were incubated for a further 4 h

at 37uC. Finally, the medium was removed and the precipitated

formazan crystals were dissolved in optical grade DMSO. Plates

were read at 570 nm on a Wallac 1420 workstation. Same

procedure was achieved in the case of LLC-PK-1 cells after 24 h

of HH plus 24 h of re-oxygenation.

Cytochrome c release assay
MEFS and HeLa cells were grown in 6-well plate at the same

conditions described above. After 24 h in the presence of SVT

compounds, mitochondrial Cytc was followed using the Innocy-

teTM Flow Cytometric Cytochrome c Release kit (Calbiochem).

Same procedure was applied for HEI-OC1 cells upon 48 h of

CDDP administration in the presence or not of the SVT

compounds or the caspase inhibitor zVAD-fmk. Cells were

analysed on a Cytomics FC 500 (Beckman Coulter) flow

cytometer.

Cytochrome c release assays in purified mitochondria
Purified mitochondria were prepared from wtMEFS cells.

Briefly, cells were mechanically broken using a 2 ml glass/glass

dounce homogenizer (Kontes), using two rounds of 30 strokes.

Homogenates were cleared in MB buffer (10 mM Hepes pH 7.5,

210 mM mannitol, 70 mM sucrose, and 1 mM EDTA) at 1,500 g

and the mitochondria were spun down at 10,500 g. For Cytc
release assays, 20 mg of purified mitochondria were resuspended

in RB buffer (125 mMKCl, 5 mM succinate and 0.5 mM EGTA)

supplemented with protease inhibitor cocktail (Roche). Proteins at

indicated concentrations were added to the samples and the

incubations were carried out at 30uC. At the indicated time points,

samples were spun down and supernatants and pellets were

analyzed by immunoblotting using anti-cytochrome c or anti-

Apaf-1 antibodies.

Clonogenicity assays
1250 MEFS cells per well were seeded in 24-well plates, treated

with cisplatin 5 mM in the presence or absence of SVT016426.

After 6 h of treatment, the apoptotic stimulus was removed. Two

weeks latter cell were fixed with 2% paraformaldehyde and stained

with crystal violet.

Immunoblotting
Whole cell extracts were obtained by lysing cells in 25 mMTris-

HCl pH 7.4, 1 mM EDTA, 1 mM EGTA, and 1% SDS plus

protease and phosphatase inhibitors. Protein concentration was

determined by the BCA protein assay. Lysates were subjected to

SDS-PAGE, transferred to nitrocellulose membranes, and im-

munoblotted following standard procedures. The antibodies used

were Apaf-1 (611364 from BD), cytochrome c (556433 from BD),

capase-9 (9508 from Cell Signaling) and a-tubulin (T-8203 from

Sigma). Quantifications were performed with Image J software.

RT-qPCR
Total RNA was isolated using the RNAsy Kit (Qiagen)

according to the manufacturer’s instructions. First strand cDNA

was synthesized from 500 ng of RNA using Superscript First

Strand Synthesis System (Invitrogen). Gene products were

analyzed by qPCR using SYBR Green Mix (Roche) and specific

oligonucleotides in a Roche 480 Lightcycler. Primer sequences are

the following: F 59-CTGGCAACGGGAGATGACAATGG-39

and R 59-AGCGGAGCACACAAATGAAGAAGC-39 for Apaf-1

and F 59-CTGGACGGAGTAGCTCCAAG-39 and R 59-

GACGCTCGTGTTCCTCATGC-39 for Bnip3. Each value

was normalized to b-actin (F 59-GGACTTCGAGCAAGA-

GATGG-39 and R 59-AGCACTGTGTTGGCGTACAG-39)

and expressed as relative units (R.U.). All reactions were

performed in triplicate.

Zebra fish
Zebrafish (Daniorerio) embryos of the AB wild-type strain were

used. At 5 days post-fertilization (dpf) larvae were dispensed in 24

well plates in embryo medium in a tissue incubator at 28.5uC.

Cisplatin at the concentration of 10 mM and compounds were

added and incubated for 24 h. After this period of treatment, the

embryos were stained with 0.01% DASPEI (Molecular Probes),

washing and anesthetized with 0.04% of tricaine. In order to take

photomicrographs, the embryos were mounted in methylcellulose

for observation under a fluorescence microscope. Pictures

obtained were analyzed by counting the number of neuroblast

presented in the lateral line of embryos.

Renal hot ischemia assay
This study was approved by the Committee on the Ethics and

Animal Welfare of the CIPF (Permit Number: 10-0185). All efforts

were made to minimize suffering.
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Male Wistar rats (200 g) were distributed in 4 different groups

(n = 5); vehicle, ischemia plus vehicle; ischemia plus 10 or 20 mg

kg21 SVT016448. Rats were anesthetised (Pentobarbital 6 mg

ml21), sacrificed by cervical dislocation and maintained during

60 min at 37uC. Then kidneys were extracted by abdominal

incision and divided into three parts. The first slice was frozen in

liquid nitrogen, the second was fixed in formaldehyde 4% and the

third was fixed in OCT. In the intraperitoneal assay (vehicle,

methyl cellulose 0.5%, Tween80 0.1% in PBS) the treatments

were administered 60 min before the rats were sacrificed. For the

intravenous assay (vehicle, 30% of DMSO in PBS) compound

treatments were administered 6 h before the sacrifice and the

ischemia was prolonged by additional 90 min.

Pathological analysis
Kidneys were analyzed in the SIAL (Integral services for

Laboratory animals Barcelona, Spain). Briefly, kidneys fixed in

formaldehyde were included in paraffin and slices stained with

haematoxylin-eosin. Five levels of damage were established

between no damage and serious lesions and scored from 1 to 5.

Score 5 corresponds to severe lesions and Score 4 corresponds to

moderate damage.

Immunohistochemistry
Kidney slices (8 mm) were fixed in cold acetone and blocked

with 5% goat serum, 0.3% Triton X-100 in PBS, incubated with

10 ml of caspase-3 active antibody (PE active caspase-3, BD

Pharmigen) and mounted in Mowiol with DAPI. Confocal images

of four different fields per sample were captured with a Leica

microscope. Quantification of caspase-3 activity was performed

evaluating the mean grey value of the different fields using the

ImageJ software analysis.

Supporting Information

File S1 This file contains supporting information for the

Materials and Methods section, Figures S1–S8 and Table S1.
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