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Any su�ciently advanced technology is indistinguishable from magic.

Arthur C. Clarke



Abstract

Quantum simulations consist in the reproduction of the dynamics of a quantum sys-

tem on a controllable platform, with the goal of capturing an interesting feature of the

considered model. It is broadly believed that the advent of quantum simulators will

represent a technological revolution, as they promise to solve several problems which

are considered intractable in a classical computer. Although there are strong theoret-

ical bases confirming this claim, several aspects of quantum simulators have still to be

studied, in order to faithfully prove their feasibility. Moreover, the general question on

which features of the considered models are simulatable is an attractive research topic,

whose study would help to define the limits of a quantum simulator.

In this Thesis, we develop several algorithms, which are able to catch relevant prop-

erties of the simulated quantum model. The proposed protocols follow a new concept

named embedding quantum simulator, in which the simulated Schrödinger equation is

mapped onto an enlarged Hilbert space in a nontrivial way. Via this embedding, we

are able to retrieve, by measuring few observables, quantities that generally require full

tomography in order to be evaluated. Moreover, we pay a special attention to the ex-

perimental feasibility, defining mappings which are space e�cient, and do not require

the implementation of challenging Hamiltonians. The presented algorithms are general,

and they may be implemented in several quantum platforms, e.g. photonics, trapped

ions, circuit QED, among others.

First, we propose a protocol which simulate the dynamics of an embedded Hamil-

tonian, allowing for the e�cient extraction of a class of entanglement monotones. This

is done using an embedding that is able to implement unphysical operations, as is the

case of complex conjugation. The analysis is accompanied with a study of feasibility

in a trapped-ion setup, which can be generalised to other platforms following similar

computational models. Second, we propose an algorithm to measure n-time correlation

functions of spinorial, fermionic, and bosonic operators, by considerably improving pre-

vious versions of the same result. We apply this protocol to the computation of magnetic

susceptibilities, as well as to the simulation of Markovian and non-Markovian dissipative

processes in a novel way, without the necessity of engineering any bath. All the proposed

protocols are designed with a single ancillary qubit, minimising the needed experimental

resources.

We believe that embedding quantum simulators have a potential to become a pow-

erful tool in the quantum simulation theory, since they pave the way for improving the

flexibility of a quantum simulator in di↵erent experimental contexts.



Resumen''
!

!

!

En! esta! Tesis,! introducimos! el! concepto! de! “Embedding! Quantum! Simulator”!

(EQS),!un!paradigma!que!nos!permite!capturar!características!especificas!de!un!

modelo! cuántico,! cuya!medida! típicamente! supone!un!desafío! en!un! simulador!

cuántico! estándar! (“one@to@one! quantum! simulator”),! donde! la! dinámica! se!

implementa! directamente.! El! “Embedding! Quantum! Simulator”! consiste! en! la!

codificación! adecuada! de! la! dinámica! simulada! en! un! espacio! de! Hilbert!

ampliado.! De! esta! manera,! cantidades! físicas! interesantes! están!

convenientemente!mapeadas! a! observables! físicos,! superando! la! necesidad! de!

tomografía! cuántica! y! ganando! en! términos! de! eficiencia.! ! Los! protocolos!

propuestos!son!muy!generales,!en!el!sentido!que!pueden!ser!implementados!en!

plataformas! cuánticas! que! siguen! modelos! computacionales! típicos.! De! hecho,!

una! característica! del! “Embedding! Quantum! Simulator”! es! que! puede! ser!

aplicado! a!modelos! cuánticos! generales,! con! un!pequeño! coste! en! términos! de!

recursos! experimentales! adicionales.! En! concreto,! hemos! diseñado! mapeos!

capaces!de!capturar!la!dinámica!de!medidas!de!entrelazamiento!y!para!medir!las!

funciones!de!correlación!temporales!en!sistemas!bosónicos!y!fermiónicos.!En!el!

caso!de!las!medidas!de!entrelazamiento,!hemos!proporcionado!una!propuesta!de!

implementación!realista!en!plataformas!basadas!en!iones!atrapados,!teniendo!en!

cuenta! del! ruido! típico! de! estos! sistemas.! A! su! vez,! el! protocolo! para! calcular!

funciones!de!correlación!ha!sido!aplicado!a!la!computación!de!susceptibilidades!

magnéticas,! y! en! general! al! calculo! de! funciones! de! respuesta! lineales! y! no!

lineales.! Por! otra! parte,! hemos! propuesto! un! nuevo! algoritmo! para! simular!

sistemas! disipativos! sin! necesidad! de! hacer! ingeniería! de! baños.! Esto! nos! ha!

permitido! introducir! un! nuevo! concepto! de! simulador! cuántico,! donde! no!

queremos! crear! el! estado! final! bajo! una! dinámica! dada,! sino! que! apuntamos!

directamente! al! valor! esperado! de! un! observable.! Por! tanto! el! EQS! es!



potencialmente! útil! en! varios! campos,! como! la! materia! condensada,! química!

cuántica,!óptica!cuántica,!etc.!!

Esta!Tesis!contiene!un!Capitulo!introductorio,!seguido!de!cuatro!Capítulos.!Cada!

uno! contiene! ejemplos! de! aplicaciones! del! “Embedding! Quantum! Simulator”.!

Concluimos! con! una! sección! de! Apéndices,! que! contiene! las! demostraciones!

técnicas!de!las!afirmaciones!de!la!parte!principal.!

En!los!Capítulos!2!y!3,!hemos!estudiado!un!protocolo!para!simular!la!dinámica!de!

una! clase! de! medidas! de! entrelazamiento! en! sistemas! de! qubits.! El! mapeo!

propuesto! puede! ser! implementado! en! una! plataforma! cuántica! añadiendo! un!

solo! qubit,! y! la! longitud! de! interacción! de! ! la! dinámica! se! incrementa! en! uno.!

Todo!el!sistema!tiene!que!interactuar!con!el!qubit!auxiliar,!y!eso!puede!dar!lugar!

a! interacciones! no! locales.! Hemos! mostrado! como! resolver! este! problema,!

mediante!la!definición!de!un!qubit! lógico!a!costa!de!eficiencia!espacial,!es!decir!

del! numero! de! partículas.! Por! último,! generalizamos! los! resultados! al! caso! de!

matrices! densidad,! discutiendo! un! algoritmo! híbrido! clásico@cuántico.! Aunque!

hemos! tratado! el! caso! de! las! medidas! de! entrelazamiento,! es! importante!

mencionar! que! el! protocolo! propuesto! es! capaz! de! simular! operadores!

antilineales! generales,! que! no! se! pueden! medir! en! un! “one@to@one! quantum!

simulator”.! En! el! Capitulo! 3,! hemos! propuesto! una! de! estas! ideas!

implementación! en! plataformas! basadas! en! iones! atrapados.! Este! Capitulo!

proporciona! también!un!protocolo!para!medir!un!producto! tensorial!arbitrario!

de! matrices! de! Pauli,! mediante! su! codificación! en! un! observable! de! un! qubit!!

auxiliar.!El!análisis!vale!en!general!para!plataformas!cuánticas!donde!puertas!de!

Mølmer@Sørensen!pueden! implementarse! de!manera! eficiente,! como! es! el! caso!

de!la!óptica!lineal.!!

Una! futura! investigación! interesante!de!estos! resultados!sería!el! estudio!de! las!

propiedades!del!mapeo!propuesto,! con!el! fin!de!aumentar! la! flexibilidad!de!un!

simulador! cuántico.!De!hecho,! si!no!estamos! limitados!a!un! solo!qubit! auxiliar,!

mapeos! arbitrarios! a! espacio! de! Hilbert! más! grandes! podrían! simular! otras!

cantidades!no!físicamente!accesible!en!un!“one@to@one!quantum!simulator”.!Otra!

cuestión! es! cómo! el! entorno! afecta! a! los! resultados! finales! de! la! dinámica!



unitaria! simulada.! Aquí,! el! “Embedding!Quantum!Simulator”! podría! conducir! a!

una!mejora!de!la!estabilidad!frente!al!ruido.!Estas!preguntas!se!quedan!abiertas,!

y!requieren!de!mas!análisis!para!se!bien!entendida.!!

Un!experimento!de!primeros!principios!basado!en!estas!ideas!se!está!ejecutando!

en! este! momento! en! el! grupo! del! Prof.! Andrew! White! de! la! Universidad! de!

Queensland! (Brisbane,! Australia).! La! implementación! es! en! una! plataforma! de!

fotónica,!y!consiste!en!realizar!medidas!de!entrelazamiento!entre!dos!qubits!que!

evolucionan! bajo! una! dinámica! específica.! El! experimento! se! realiza! con! tres!

qubits,! cada!uno!de!ellos!correspondiente!a!una!polarización!de! la!señal!óptica!

que!se!propaga.!Todas!las!operaciones!se!implementan!con!dispositivos!estándar!

de!óptica!cuántica,!por!ejemplo!divisores!de!haz,!rotaciones!de!qubits!y!puertas!

NOT! controladas.! Resultados! preliminares! muestran! que! la! medida! de!

entrelazamiento! elegida! posee! una! alta! fidelidad,! y! eso! puede! llevar! a!

implementaciones!similares!en!otras!plataformas!basadas!en! iones!atrapados!o!

circuitos!superconductores.!

En!el!Capitulo!4,!hemos!desarrollado!un!protocolo!para!computar! funciones!de!

correlación! temporal! de! operadores! generales! en! un! simulador! cuántico.!

También! en! este! caso,! hemos! mapeado! a! una! ecuación! de! Schrödinger! en! un!

espacio!de!Hilbert!de!dimensión!doble.!El!mapeo!tiene!la!misma!estructura!que!

el!caso!de!los!operadores!antilineales,!discutido!en!los!Capitulos!2!y!3,!y!esto!es!

un!indicio!que!otras!aplicaciones!no!triviales!son!posibles.!Hemos!discutido!cómo!

aplicar!el!protocolo!en! los!casos!espinorial,! fermionico!y!bosónicos,!mostrando!

que! el! método! es! eficiente! en! términos! de! tiempo! y! de! espacio.! El! algoritmo!

propuesto! no! requiere! la! implementación! de! Hamiltonianos! controlados,! que!

puede! ser! un! problema! complicado! para! la! mayoría! de! modelos! interesante!

desde!el!punto!de!vista! físico.!Este!aspecto,!en!comparación!con! los!protocolos!

anteriores,!conlleva!una!ganancia!enorme!a!nivel!experimental,!y!es!posible!que!

pronto! veamos! experimentos! de! primeros! principios! donde! se! aplica! este!

protocolo.!También!en!este!caso!necesitamos!que!el!sistema!interactúe!a!nivel!no!

local!con!un!qubit!auxiliar.!Este!problema!se!puede!resolver!de!la!misma!manera!

que!en!el!Capitulo!1,!codificando!el!qubit!auxiliar!en!una!serie!de!qubits!lógicos.!



Como! aplicación! típica,! hemos! considerado! la! simulación! cuántica! de!

susceptibilidades!magnéticas!y!de!funciones!de!respuesta!lineales!y!no@lineales.!

Este! protocolo! es! suficientemente! simple! para! permitir! una! implementación!

experimental!con!la!tecnología!actual!o!en!un!futuro!próximo,!dependiendo!de!la!

plataforma.!

En!el!Capitulo!5,!hemos!estudiado!un!protocolo!original!para! simular!procesos!

disipativos!Markovianos! y! no!Markovianos.! La! potencia! del!método! propuesto!

reside! en! que! no! requieres! ninguna! ingeniería! de! baños.! En! su! lugar,!

desarrollamos! perturbativamente! con! respecto! a! los! parámetros! disipativos,!!

computando!de!forma!efectiva!los!términos!de!corrección!a!la!dinámica!unitaria.!

La! evaluación! de! cada! termino! consiste! en! medir! funciones! de! correlación!

temporal!del!observable!que!queremos!simular!y!de!los!operadores!de!Lindblad.!

Para! lograr! esto,! aplicamos! el! protocolo! discutido! en! el! Capitulo! 4.! El!método!

propuesto! es! una! alternativa! a! las! técnicas! basadas! en! descomposición! de!

Trotter!y!puede!ser!implementado!en!sistemas!donde!el!algoritmo!del!Capitulo!4!

puede! aplicarse,! incluyendo! plataformas! cuánticas! analógicas! donde! puertas!

especificas! son! viables.! La! principal! novedad! de! este! algoritmo! consiste! en! un!

nuevo!tipo!de!simulador,!en!el!que!no!estamos!interesados!en!alcanzar!el!estado!

final! del! modelo! simulado,! sino! en! el! valor! esperado! del! observable! que!

queremos! medir.! Por! esta! razón,! hemos! llamado! este! tipo! de! protocolos!

“Algorithmic!Quantum!Simulation”.!

Vale! la! pena!mencionar! que! con! nuestro!método! podemos! simular! ecuaciones!

maestra!tipo!Lindblad!locales!en!el!tiempo,!que!pueden!ser!no!Markovianas!si!los!

parámetros! disipativos! toman! valores! negativos! durante! ciertos! intervalos! de!

tiempo.! Seria! interesante! extender! resultados! a! ecuaciones! maestras! no!

Markovianas! mas! generales,! que! no! sean! locales! en! el! tiempo.! Esto! es!

actualmente!objecto!de!estudio,!y!puede!dar!lugar!a!un!avance!claro!con!respecto!

otros!métodos,!que!no!!pueden!manejar!dinámicas!no!Markovianas!de!este!tipo.!

Por! otra! parte,! hay! posibilidades! que! nuestro! algoritmo! obtenga! mejores!

resultados! en! términos! de! eficiencia.! De! hecho,! ya! se! ha! demostrado! que! un!

simulador!cuántico!basado!en!la!expansión!de!Taylor!es!optimo!en!términos!de!



precisión.! Este! resultado! debería! ser! traslado! al! caso! disipativo,! posiblemente!

considerando!modelos!computacionales!mas!generales.!!

En!los!Apéndices,!hemos!proporcionado!detalles!técnicos!de!varias!afirmaciones!

del! texto! principal.! En! los! Apéndices! A! y! B! demostramos! que! el! algoritmo! de!

funciones!de! correlaciones! es! eficiente,! y! comparamos!nuestro!método! con! los!

protocolos! previos.! Los! Apendices! C,! D,! E! y! F! están! centradas! a! probar! los!

resultados! de! la! simulación! cuántica! de! procesos! disipativos,! dando! fórmulas!

explícitas!que!describen!la!eficiencia!del!protocolo.!!En!particular,!en!el!Apéndice!

F!hemos!discutido!la!simulación!cuántica!de!Hamiltonianos!no!Hermiticos,!de!la!

misma!manera!del!caso!disipativo.!!

En! definitiva,! esta! Tesis! trata! sobre! cuán! flexible! puede! ser! un! simulador!

cuántico.! Nuestro! “Embedding! Quantum! Simulator”! tiene! como! objetivo!

principal!la!mejora!de!la!clases!de!operaciones!que!un!simulador!cuántico!puede!

llevar!a!cabo.!Buscar!algoritmos!que!codifican!cantidades!generales!utilizando!la!

teoría! cuántica! es! un! campo! de! investigación! atractivo,! y! en! esta! Tesis! hemos!

tratado! de! seguir! una! línea! original! en! este! tema.! Sin! embargo,! hay! varias!

preguntas! teóricas! que! necesitan! una! respuesta! si! queremos! demostrar! la!

ventaja! de! un! simulador! cuántico! respecto! a! uno! clásico.! Por! ejemplo,! no! está!

claro! si! es! posible! demostrar! que! el! resultado! de! un! simulador! cuántico! es!

correcto.!Protocolos!de!certificación!!pueden!ser!adaptados!de!los!computadores!

cuántico! universales,! donde! algoritmos! de! corrección! de! errores! son!

teóricamente!disponibles.!Pero!estos!métodos! funcionan!solo!para!simuladores!

cuánticos!digitales,!y!pueden!llevar!a!una!tremenda!perdida!de!eficiencia!en!los!

métodos!basados!en!descomposición!de!Trotter.!Por!otro! lado,! los!simuladores!

cuánticos!analógicos!necesitan!un!tratamiento!totalmente!diferente!y!novedoso!

porque,!en!este!caso,!el!error!no!se!puede!digitalizar.!Una!cuestión!relacionada!es!

sobre! la! eficiencia! de! los! simuladores! cuánticos.! Las! definiciones! actuales! de!

eficiencia!pueden!perder!sentido!cuando!las!condiciones!experimentales!entran!

en! juego.! Esto! nos! puede! llevar! hacia! definiciones! novedosas! de! clases! de!

complejidad,!capturando!las!versiones!con!ruido!de!los!simuladores!analógicos!y!

digitales!sin!correcciones!de!errores.!Concluyendo,!en!esta!Tesis!hemos!tratado!



el! importante!cuestión!de!encontrar!el! límite!de! lo!que!se!puede!simular!en!un!

simulado!cuántico.!Le!comprensión!de!este!problema,!junto!con!una!respuesta!a!

las! últimas! preguntas! presentadas,! nos! ayudaría! en! la! comprensión! de! los!

aspectos! fundamentales! de! las! simulaciones! cuánticas! y,! en! general,! de! la!

mecánica!cuántica.!
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Chapter 1

Introduction

Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d

better make it quantum mechanical, and by golly it’s a wonderful problem, because it

doesn’t look so easy.

Richard Feynman

1.1 Introduction to quantum simulations

A quantum simulation [1, 2] consists in the reproduction of the dynamics of a

quantum system on a controllable platform, called quantum simulator, with the goal

of capturing an interesting feature of the considered model. Based on the intuition of

Richard Feynman [3], who first envisioned that the degrees of freedom of a quantum sys-

tem may be used as a computation resource, the field of quantum simulations has seen

an increasing interest among physicists in recent years. Indeed, quantum simulations

are considered the most promising candidates for overpassing the computational capa-

bilities of a classical computer. In fact, it is broadly believed that simulating a quantum

system is in a sense ”hard”. This is tought to be due to the exponential growth of the

needed storage with the number of particles, even in the fortunate case in which there

exists an e�cient classical algorithm solving a particular problem [4]. This means that

quantum mechanical models, even if apparently simple, are arduous to analyse without

an adequate support. If we want to overcome this problem, a device following itself the

quantum mechanical laws is thus a natural choice.

A quantum simulation can be seen as a specific problem that can be solved by a

quantum computer, by decomposing the corresponding unitary operation in universal

quantum gates. In fact, it has been shown that qubit-based quantum computer can be

1
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used as a universal quantum simulator. However, not any Hamiltonian can be simu-

lated in this way with polynomial resources, and this approach may be not practical.

Therefore, one may think about a dedicated machine performing a quantum simulation

more e�ciently. As this machine is thought to be simpler, it is believed that practical

quantum simulations will become a reality well before full-fledged quantum computers.

Indeed, we are witnessing several advancements in coherently controlling quantum sys-

tems with larger fidelities, which brought to the first proof of principle experiments, e.g.

in photonic [5], trapped ions [6], cold atoms [7], and, very recently, in circuit QED [8].

However, there are di�culties in finding a good compromise between scalability and

individual control and readout of the system. For instance, typical platforms based on

trapped ions and superconducting qubits have achieved a high level of controllability,

but they still need to face the problem of an e�cient scalability. Research on this line is

very active, and it involves also large companies as Google, D-wave, IBM, among sev-

eral others, indicating that in a near future quantum simulations, and novel quantum

technologies in general, will appear very likely in the daily routines of people.

From the theoretical point of view, there are still several questions to answer. Dur-

ing the last years, we have witnessed tremendous progress in finding quantum algorithms

for simulating specific dynamics in di↵erent quantum platforms. These proposals consist

generally in a direct implementation of the dynamics of interest, which implies a one-

to-one correspondence between the Hilbert space dimensions of the simulated system

and the simulating architecture. Key examples of this approach involve the quantum

simulation of black holes in Bose-Einstein condensates [9], relativistic quantum mechan-

ical problems [10, 11] and quantum phase transitions [12] in optical lattices, many-body

systems with Rydberg atoms [13], the quantum Rabi model [14] and quantum rela-

tivistic dynamics [15] in superconducting circuits. Similar e↵orts have been invested

in trapped-ion technologies for simulating spin models [16–20], relativistic scattering

processes [21–26], and interacting fermionic and bosonic theories including quantum

chemistry problems [27–30]. However, the one-to-one approach may lead to a lost of

flexibility of the quantum simulation. Defining the actual capabilities of a quantum

simulator is one of the open theoretical questions, and it will be discussed in this Thesis.

Indeed, one of our goals is to merge the concepts of quantum algorithms and quan-

tum simulations, resulting in the ability of catching e�ciently nontrivial features of the

simulated dynamics.
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1.2 Quantum simulation techniques

All kinds of quantum simulations consist in encoding a specific problem, typically

quantum, in a Schrödinger equation

i@t| (t)i = H| (t)i, (1.1)

where ~ = 1, H is the Hamiltonian, and | (t)i is the state of the simulating system

at time t. A quantum simulation consists basically in three steps: initialisation of the

system at the state | (0)i, implementation of the dynamics H, and measurements of

one or more observables, depending on the specific encoding. Each of these steps have

to be made e�ciently, in order to achieve a gain with respect a classical simulation. Let

us briefly review each of these steps.

1.2.1 Initialisation

Preparing e�ciently an arbitrary quantum state is, in general, not possible. However,

e�cient algorithms to prepare specific classes of quantum states are already available.

Among others, we can mention the generation states encoding the antisymmetric many-

particle states of fermions with polynomial resources [31] and realistic quantum states

on a lattice [32]. Moreover, ground states of Hamiltonians can be prepared by coupling

the system to a thermal bath at zero temperature. There is not a general method and

each case has to be tackled individually.

1.2.2 Hamiltonian implementation

There are two ways of implementing an Hamiltonian H: digital and analog methods. Let

us consider a Hamiltonian of the kind H =
P

i Hi, where each term Hi may not commute

with the others. A digital quantum simulation consists in implementing in small time

steps each of the Hi’s. This technique is justified by the Trotter decomposition

e�iHt = lim
�t!0

 

Y

i

e�iHi�t

!t/�t

. (1.2)

This method has been proven to be e�cient, in the sense that the time needed to im-

plement the dynamics at time t scales mostly polynomially with the number of particles

and with the error done by considering a finite time step �t. A drawback of this ap-

proach is that a good approximation of the target dynamics comes with a small �t.

However, this requires a large number of quantum gates, which may be a cumbersome
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problem if we want to implement them in its fall tolerant version [33]. The analogue

quantum simulation is aimed to implement the dynamics directly, without any approx-

imation technique. This version of the quantum simulation is useful if one is looking

for qualitative answers. For instance, if we want to know whether a phase transition is

happening in a particular model, we can retrieve this information even in presence of

environmental noise and errors in the control parameters. The drawback of this method

is that error correction is not currently available, so quantitative answers are quite hard

to be trusted.

1.2.3 Measurement

After bringing the system to the final state | (t)i, approximately or not, we need to

measure the observables whose results gives us the desired information. Generally, we

would like to have a full-knowledge of the final state, in order to process classically all

the needed information. However, full tomography techniques scale exponentially with

the number of particles, unless we are restricted to a corner of the Hilbert space [34, 35].

This scaling is a problem if one needs to measure many observables, as for quantities

requiring full tomography, and it may limit the capability of a quantum simulator. This

issue can be solved by a careful encoding of the simulated dynamics, which bring us to

the concept of embedding quantum simulator (EQS).

1.3 This Thesis

In this Thesis, we introduce the concept of embedding quantum simulators [36], a

paradigm allowing to e�ciently catch specific features of a quantum model, typically

challenging to measure in a one-to-one quantum simulation. It consists in the suitable

encoding of a simulated dynamics in the enlarged Hilbert space of an embedding quan-

tum system. In this manner, typical interesting physical quantities are conveniently

mapped onto physical observables, overcoming the necessity of full tomography and

reducing drastically the experimental requirements. Therefore, the main goal of the

embedding quantum simulator is to enhance the class of operations and features that a

quantum simulator can carry out.

The proposed protocols are quite general, in the sense that can be implemented in

quantum platforms following typical computational models. Indeed, a general feature

of embedding quantum simulators is that it can be applied to general quantum models,

with a small overhead of experimental resources, see Fig. 1.1. In particular, we have

designed the structure of the enlarged Hilbert space able to catch the dynamics of specific
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Simulation of quantum dynamics 
Universal quantum computer
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Figure 1.1: Complexity hierarchy of quantum simulators: the embedding quantum
simulator is placed between the one-to-one and the universal quantum simulator. The
embedding quantum simulator increases slightly the experimental complexity, in order
to read quantities otherwise unreachable in a one-to-one quantum simulator. However,
the complexity of an embedding quantum simulator is far from the one of the universal
quantum computer. The highlighted parts correspond to the cases studied in this
Thesis.

entanglement monotones, and to measure n-time correlation functions in a bosonic and

fermionic systems. Regarding the entanglement monotones case, we have provided with

a realistic implementation proposal in trapped ions, taking into account of typical noise

sources. Instead, the proposed n-time correlation function protocol has been applied

to compute magnetic susceptibilities, and in general to the computation of linear and

non-linear response functions. Moreover, we have been able to create a novel algorithm

to simulate dissipative systems without the needed of engineering any reservoir. This

has allowed us to define the new concept of algorithmic quantum simulation, where we

are not aimed to create the final state under a given dynamics, but we directly target the

approximated expectation value of a given observable. Embedding quantum simulators

is a powerful tool in quantum simulation theory, and it is potentially useful in several

area as condensed matter, quantum chemistry, quantum optics, etc.

This Thesis contains an introductory Chapter 1, followed by four Chapters, each

of them containing examples of physical quantities that can be simulated in an embed-

ding quantum simulator. We conclude with an Appendix part, where we provide with

technical proofs of those claims in the main part:
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I Quantum computation of entaglement monotones

In Chapter 1 of this Thesis, we show how the dynamics of entanglement mono-

tones can be simulated in an embedding quantum simulator. This is done by an

appropriate encoding of the initial state, the dynamics and the final measurement

onto an equivalent in a doubled Hilbert space. This mapping can be implemented

by adding one qubit to the system. This results in a small overhead in the exper-

imental resources, and a huge gain in the flexibility of the quantum simulation.

In fact, we have that a wide class of entanglement monotones for spin system can

be retrieved via the measurement of few observables instead of full tomography.

We also consider the case of mixed states evolving under a unitary dynamics, by

considering a classical-quantum hybrid algorithm. In this case the quantum simu-

lation is able to enhance the classical algorithm in the time-evolution step. Finally,

we show how to keep the simulating dynamics local by defining the ancillary qubit

in a logical way, using the stabilizer formalism.

II Trapped-ion embedding quantum simulator

In Chapter 2 of this Thesis, we propose an implementation of the results of

Chapter 1 in a trapped-ion setup [37]. Although we put a particular emphasis on

trapped ions, the analysis holds for all quantum platforms where Mølmer-Sørensen

gates are available. We provide with a statistical analysis taking into account

typical noise arising in these setups, i.e. depolarising noise. Moreover, we present

numerical examples where the simulating dynamics is implemented with Trotter

techniques, and where we show how a typical entanglement monotone as the 3-

tangle is simulated. We also provide with a novel measurement protocol, which

encodes in a single-ion measurement general Pauli-operator correlations between

the spinorial degrees of freedom of the ions.

III Quantum Algorithm for computing n-time correlation functions

In Chapter 3 of this Thesis, we propose a novel protocol to compute n-time

correlation functions, when the system is evolving under a general dynamics [38].

On the one hand, this kind of quantities, although they can be cast as Hermitian

operators, do not correspond to easy observables. On the other hand, n-time cor-

relation functions are relevant for computing susceptibilities, and, in general, the

response functions derived in perturbation theory. Moreover, they are interesting

for studying Lieb-Robison bounds, which bound the propagation velocity of the

information in a general system. It is already known how to measure this kind

of quantities for propagating signals. The problem is more challenging if we are

interested in the spinorial, fermionic and bosonic degrees of freedom of massive

particles. Previous proposed protocols relies on operations which are considered
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challenging to implement in a realistic experiment. Our method is space e�cient

and it requires only specific controlled operations, corresponding to the particular

observables that we want to measure. Also in this case, the simulated system

is embedded in a doubled Hilbert space that can be implemented by adding one

qubit. The resulting interaction with the ancillary qubit can be cast to be local,

by defining it in a logical way. Here, we have a huge benefit in experimental terms,

as in general will happen with an embedding quantum simulator.

IV Quantum simulation of dissipative processes

In Chapter 4 of this Thesis, we propose an original method to simulate dis-

sipative systems, Markovian and non-Markovian, without engineering the reser-

voir [39]. Dissipative systems are modelled through a Lindblad master equation,

that is derived by coupling the system with a bath, and tracing out its degrees

of freedom. Standard techniques are based on the actual implementation of the

bath, or on engineering the resulting e↵ective master equation, and they may not

be practical in some cases. Instead, quantum simulation methods based in Trot-

ter techniques are proved to be e�cient, but they are not applicable on analogue

quantum simulators. Our method is based on the expansion with respect the dis-

sipative parameters, and it is aimed to give the expectation value of the chosen

observable at a given time. Each perturbative term is computed using the protocol

presented in Chapter 4. In this Chapter, we present the method, and we discuss

its e�ciency by calculating specific bounds.

V Appendix

The Appendix part of this Thesis, containing Appendices A, B, C, D, E, F, we

present specific proofs of the claims in the main part of the Thesis. Appendices A

and B are aimed to describe the e�ciency of the n-time correlation algorithm,

and its comparison with previous existing protocols. Instead, the rest of the Ap-

pendices are focused on proving the results regarding the quantum simulation of

dissipative processes, by giving explicit bounds describing the e�ciency of the pro-

tocol. Moreover, in Appendix F we give the details of how to apply the protocol

to simulate non-Hermitian Hamiltonian in the same fashion as in the dissipative

case.





Chapter 2

Quantum computation of

entanglement monotones

In this Chapter, we introduce the concept of embedding quantum simulator [36], and

we apply it to the e�cient quantum computation of a class of bipartite and multipartite

entanglement monotones. It consists in the suitable encoding of a simulated quantum

dynamics in the enlarged Hilbert space of an embedding quantum simulator. In this

manner, entanglement monotones are conveniently mapped onto physical observables,

overcoming the necessity of full tomography and reducing drastically the experimental

requirements. This method is directly applicable to pure states and, assisted by classical

algorithms, to the mixed-state case.

2.1 Introduction

Entanglement is considered one of the most remarkable features of quantum me-

chanics [40, 41], stemming from bipartite or multipartite correlations without classical

counterpart. Firstly revealed by Einstein, Podolsky, and Rosen as a possible drawback

of quantum theory [42], entanglement was subsequently identified as a fundamental re-

source for quantum communication [43, 44] and quantum computing purposes [45, 46].

Beyond considering entanglement as a purely theoretical feature, the development of

quantum technologies has allowed us to create, manipulate, and detect entangled states

in di↵erent quantum platforms. Among them, we can mention trapped ions, where eight-

qubit W and fourteen-qubit GHZ states have been created [47, 48], circuit QED (cQED)

where seven superconducting elements have been entangled [49], superconducting cir-

cuits where continuous-variable entanglement has been realized in propagating quantum

9
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Embedding
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Entanglement
monotones

Figure 2.1: One-to-one quantum simulator versus embedding quantum simulator.
The conveyor belts represent the dynamical evolution of the quantum simulators. The
real (red) and imaginary (blue) parts of the simulated wave vector components are split
in the embedding quantum simulator, allowing the e�cient computation of entangle-
ment monotones.

microwaves [50], and bulk-optic based setups where entanglement between eight photons

has been achieved [51].

Quantifying entanglement is considered a particularly di�cult task, both from the-

oretical and experimental viewpoints. In fact, it is challenging to define entanglement

measures for an arbitrary number of parties [52, 53]. Moreover, the existing entanglement

monotones [54] do not correspond directly to the expectation value of a Hermitian op-

erator [55]. Accordingly, the computation of many entanglement measures, see Ref. [56]

for lower bound estimations, requires previously the reconstruction of the full quantum

state, which could be a cumbersome problem if the size of the associated Hilbert space is

large. If we consider, for instance, an N -qubit system, quantum tomography techniques

become already experimentally unfeasible for N ⇠ 10 qubits. This is because the dimen-

sion of the Hilbert space grows exponentially with N , and the number of observables

needed to reconstruct the quantum state scales as 22N � 1.

From a general point of view, a standard quantum simulation is meant to be imple-

mented in a one-to-one quantum simulator where, for example, a two-level system in the

simulated dynamics is directly represented by another two-level system in the simulator.

In this Chapter, we show how to compute e�ciently a wide class of entanglement mono-

tones [54] in a spin system. This method can be applied at any time of the evolution

of a simulated bipartite or multipartite system, with the prior knowledge of the Hamil-

tonian H and the corresponding initial state | 0i. The e�ciency of the protocol lies in
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the fact that, unlike standard quantum simulations, the evolution of the state | 0i is

embedded in an enlarged Hilbert space dynamics (see Fig. 2.1). In our case, antilinear

operators associated with a certain class of entanglement monotones can be e�ciently

encoded into physical observables, overcoming the necessity of full state reconstruction.

The simulating quantum dynamics, which embeds the desired quantum simulation, may

be implemented in di↵erent quantum technologies with analog and digital simulation

methods.

2.2 Complex conjugation and entanglement monotones

An entanglement monotone is a function of the quantum state, which is zero for all

separable states and does not increase on average under local quantum operations and

classical communication [54]. There are several functions satisfying these basic prop-

erties, as concurrence [55] or three-tangle [60], extracting information about a specific

feature of entanglement. For pure states, an entanglement monotone E(| i) can be de-

fined univocally, while the standard approach for mixed states requires the computation

of the convex roof

E(⇢) = min
{pi,| ii}

X

i

piE(| ii). (2.1)

Here, ⇢ =
P

i pi| iih i| is the density matrix describing the system, and the minimum

in Eq. (2.1) is taken over all possible pure-state decompositions [41].

A systematic procedure to define entanglement monotones for pure states involves

the complex-conjugation operator K [61, 62]. For instance, the concurrence for two-qubit

pure states [55] can be written as

C(| i) ⌘ |h |�y ⌦ �yK| i|. (2.2)

Note that �y ⌦ �yK, where K| i ⌘ | ⇤i, is an antilinear operator that cannot be

associated with a physical observable. In general, we can construct entanglement mono-

tones for N -qubit systems combining three operational building blocks: K, �y, and

gµ⌫�µ�⌫ , with gµ⌫ = diag{�1, 1, 0, 1}, �0 = I2, �1 = �x, �2 = �y, �3 = �z, where

we assume the repeated index summation convention [62]. For a two-qubit system,

N = 2, we can define |h |�y ⌦ �yK| i| and |gµ⌫g�⌧ h |�µ ⌦ ��K| ih |�⌫ ⌦ �⌧K| i|
as entanglement monotones. The first expression corresponds to the concurrence and

the second one is a second-order monotone defined in Ref. [62]. For N = 3 we have

|gµ⌫h |�µ ⌦ �y ⌦ �yK| ih |�⌫ ⌦ �y ⌦ �yK| i|, corresponding to the 3-tangle [60], and

so on.
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To evaluate the above class of entanglement monotones in a one-to-one quantum

simulator, we would need to perform full tomography on the system. This is because

terms like h |OK| i ⌘ h |O| ⇤i, with O Hermitian, do not correspond to the expec-

tation value of a physical observable, and they have to be computed classically once

each complex component of | i is known. We will explain now how to compute e�-

ciently quantities as h |OK| i in our proposed embedding quantum simulator, via the

measurement of a reduced number of observables.

Consider a pure quantum state | i of an N -qubit system 2 C2N , whose evolution is

governed by the Hamiltonian H via the Schrödinger equation (~ = 1)

(i@t � H)| (t)i = 0. (2.3)

The quantum dynamics associated with the Hamiltonian H can be implemented in a

one-to-one quantum simulator [1, 3] or, alternatively, it can be encoded in an embedding

quantum simulator, where K may become a physical quantum operation [63]. The latter

can be achieved according to the following rules.

2.3 Embedding quantum simulation

We define a mapping M : C2N ! R2N+1 in the following way:

| i =

0

B

B

B

B

B

@

 1
re + i 1

im

 2
re + i 2

im

 3
re + i 3

im
...
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M�! | ̃i =

0

B

B

B

B

B

B

B

B
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B
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B

B

B
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@

 1
re
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re
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re
...

 1
im

 2
im

 3
im
...

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (2.4)

Hereafter, we will call C2N the simulated space and R2N+1 the simulating space or the

enlarged space. We note that the resulting vector | ̃i has only real components (see

refs. [57–59] for other developments involving real Hilbert spaces), and that the reverse

mapping is | i = M | ̃i, with M = (1 , i) ⌦ I2N . It is noteworthy to mention that, for

an unknown initial state, the mapping M is not physically implementable. However, ac-

cording to Eq. (2.4), the knowledge of the initial state in the simulated space determines

completely the possibility of initializing the state in the enlarged space. Furthermore, it
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can be easily checked that the inverse mapping M can always be completed to form a

unitary operation.

Now, we can write

K| i ⌘ | ⇤i = M | ̃⇤i = M(�z ⌦ I2N )| ̃i ⌘ MK̃| ̃i, (2.5)

which, despite its simple aspect, has important consequences. Basically, Eq. (2.5) tells

us that while | i and | ⇤i are connected by the unphysical operation K in the simulated

space, the relation between their images in the enlarged space, | ̃i and | ̃⇤i, is a physical

quantum gate K̃ ⌘ (�z ⌦ I2N ). In this way, we obtain that

h |OK| i = h ̃|M †OM(�z ⌦ I2N )| ̃i, (2.6)

where we can prove that

M †OM(�z ⌦ I2N ) = (�z � i�x) ⌦ O. (2.7)

Note that M †OM(�z ⌦ I2N ) is a linear combination of Hermitian operators �z ⌦ O and

�x ⌦ O. Hence, its expectation value can be e�ciently computed via the measurement

of these two observables in the enlarged space.

So far, we have found a mapping for quantum states and expectation values between

the simulated space and the simulating space. If we also want to consider an associated

quantum dynamics, we would need to map the Schrödinger equation (2.3) onto another

one in the enlarged space. In this sense, we look for a wave equation

(i@t � H̃)| ̃(t)i = 0, (2.8)

whose solution respects | (t)i = M | ̃(t)i and | ⇤(t)i = MK̃| ̃(t)i, thereby assuring

that the complex conjugate operation can be applied at any time t with the same single

qubit gate. If we define in the enlarged space a (Hermitian) Hamiltonian H̃ satisfying

MH̃ = HM , while applying M to both sides of Eq. (2.8), we arrive to equation (i@t �
H)M | ̃(t)i = 0. It follows that if | ̃(t)i is the solution of Eq. (2.8) with the initial

condition | ̃0i, then M | ̃(t)i is the solution of the original Schrödinger equation (2.3)

with the initial condition M | ̃0i. Thus, if | 0i = M | ̃0i, then | (t)i = M | ̃(t)i, as

required. The Hamiltonian H̃ satisfying HM = MH̃ reads

H̃ =

 

iB iA

�iA iB

!

⌘
⇥

iI2 ⌦ B � �y ⌦ A
⇤

, (2.9)
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Quantum
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Quantum
evolution in IS

analog

Quantum
evolution

analog

digital

analog � digital

Direct measurement of EMs
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M

| 0i

| ̃0i | ̃(t)i

| (t)i
(t)

(t)

Initial state

h |OK| i
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Quantum evolution
in the simulated space

Quantum evolution
in the enlarged space

Full state

E�cient measurement of EMsE�cient measurement of EMs

Figure 2.2: Protocol for computing entanglement monotones (EMs) using the en-
larged space formalism (blue arrows), compared with the usual protocol (black arrows).
For any initial state | 0i, we can construct throught the mapping M its image | ̃0i
in the enlarged space. The evolution will be implemented using analog or digital tech-
niques giving rise to the state | ̃(t)i. The subsequent measure of a reduced number of
observables will provide us with the EMs.

where H = A+iB, with A = A† and B = �B† real matrices, corresponds to the original

Hamiltonian in the simulated space. We note that H̃ is a Hermitian imaginary matrix,

e.g. H = �x ⌦ �y + �x ⌦ �z is mapped into H̃ = I2 ⌦ �x ⌦ �y � �y ⌦ �x ⌦ �z which is

Hermitian and imaginary. In this sense, | ̃0i with real entries implies the same character

for | ̃(t)i, given that the Schrödinger equation is a first order di↵erential equation with

real coe�cients. In this way, the complex-conjugate operator in the enlarged space

K̃ = �z ⌦ I2N is the same at any time t.

On one hand, the implementation of the dynamics of Eq. (2.8) in a quantum sim-

ulator will turn the computation of entanglement monotones into an e�cient process,

see Fig. 2.2. On the other hand, the evolution associated to Hamiltonian H̃ can be im-

plemented e�ciently in di↵erent quantum simulator platforms, as is the case of trapped

ions or superconducting circuits [20, 64]. We want to point out that, in the most general

case, the dynamics of a simulated system involving n-body interactions will require an

embedding quantum simulator with (n + 1)-body couplings. This represents, however,

a small overhead of experimental resources. It is noteworthy to mention that the im-

plementation of many-body spin interactions have already been realized experimentally

in digital quantum simulators in trapped ions [20]. Concluding, quantum simulations in

the enlarged space require the quantum control of only one additional qubit.
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2.4 Preserving locality in multipartite systems

One important problem with the defined mapping is that the resulting Hamiltonian to

implement may be not local. This turns out in a lost in implementability, if we consider

that most of the operation that can be cast in a quantum platform are local. This

issue can be overcome by carefully implementing the proposed mapping in a slightly

alternative way. Indeed, let us consider the simulation of an array of qubits, and let

us put an ancilla for each qubit. We can construct a two-dimensional subspace in the

Hilbert space defined by all the ancillary qubits, in a way that the final simulating

Hamiltonian is local [59]. Let us define the logical qubit

|0̃i =

r

1

2N�1

X

h(y) even

(�1)h(y)/2|yi (2.10)

|1̃i =

r

1

2N�1

X

h(y) odd

(�1)(h(y)�1)/2|yi, (2.11)

where N is the number of qubits, y 2 {0, 1}N , and h(y) is the number of ones in y. With

this definition, it is easy to check that �ky |0̃i = i|1̃i and �ky |1̃i = �i|0̃i, for all 1  k  N ,

meaning that applying a �y to any of the ancillary qubit is equivalent to apply �̃y to

the logical qubit. Consequently, in Eq. (2.9) we can change �y with a �ky corresponding

to an arbitrary ancillary qubit, and this choice can be done in the most convenient way.

Lastly, regarding the observable in Eq. (2.7), we notice that measuring in the �z basis of

the ancillary qubit in the nonlocal case, corresponds to measuring in the �kz basis of each

of the ancillary qubit in the local case. This correspondence is achieved by considering

0 as outcomes when we measure an even number of 1’s, and 1 when we measure an odd

number of 1’s. A similar argument holds for �x measurement, and this keeps invariant

the time e�ciency of the method. As a result, locality is recovered at space e�ciency

cost, i.e. 2N qubits instead of N + 1.

2.5 E�cient computation of entanglement monotones

A general entanglement monotone constructed with K, �y, and gµ⌫�µ�⌫ , contains

at most 3k terms of the form h |OK| i, k being the number of times that gµ⌫�µ�⌫

appears. Thus, to evaluate the most general set of entanglement monotones, we need to

measure 2 · 3k observables, in contrast with the 22N � 1 required for full tomography.

We present now examples showing how our protocol minimizes the required exper-

imental resources.
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i) The concurrence.— This two-qubit entanglement monotone defined in Eq. (2.2)

is built using �y and K, and it can be evaluated with the measurement of 2 observables

in the enlarged space, instead of the 15 required for full tomography. Suppose we know

| 0i and want to compute C(| (t)i), where | (t)i ⌘ e�iHt| 0i. We first initialize the

quantum simulator with the state | ̃0i using the mapping of Eq. (2.4). Second, this state

evolves according to Eq. (2.8) for a time t. Finally, following Eq. (2.6) with O = �y ⌦�y,
we compute the quantity

h ̃(t)|�z ⌦ �y ⌦ �y � i�x ⌦ �y ⌦ �y| ̃(t)i, (2.12)

by measuring the observables �z ⌦ �y ⌦ �y and �x ⌦ �y ⌦ �y in the enlarged space.

ii) The 3-tangle.— The 3-tangle [60] is a 3-qubit entanglement monotone defined as

⌧3(| i) = |gµ⌫h |�µ⌦�y⌦�yK| ih |�⌫⌦�y⌦�yK| i|. It is built using gµ⌫�µ�⌫ and K,

so the computation of ⌧3 in the enlarged space requires 6 measurements instead of the

63 needed for full-tomography. The evaluation of ⌧3(| (t)i) can be achieved following

the same steps explained in the previous example, but now computing the quantity

�

�� h ̃(t)|�z ⌦ I2 ⌦ �y ⌦ �y � i�x ⌦ I2 ⌦ �y ⌦ �y| ̃(t)i2 +

+h ̃(t)|�z ⌦ �x ⌦ �y ⌦ �y � i�x ⌦ �x ⌦ �y ⌦ �y| ̃(t)i2 +

+h ̃(t)|�z ⌦ �z ⌦ �y ⌦ �y � i�x ⌦ �z ⌦ �y ⌦ �y| ̃(t)i2
�

�,

(2.13)

with the corresponding measurement of observables in the enlarged space.

iii) N-qubit monotones.— In this case, the simplest entanglement monotone is

|h |�⌦N
y K| i| if N is even (expression that is identically zero if N is odd), and |gµ⌫h |�µ⌦

�⌦N�1
y K| ih |�⌫ ⌦ �⌦N�1

y K| i| if N is odd. The first entanglement monotone needs

2 measurements, while the second one needs 6. This minimal requirements have to be

compared with the 22N � 1 observables required for full quantum tomography.

iv) The mixed-state case.— Once we have defined E(| i) for the pure state case,

we can extend our method to the mixed state case via the convex roof construction, see

Eq. (2.1). Such a definition is needed because the possible pure state decompositions of

⇢ are infinite, and each of them brings a di↵erent value of
P

i piE(| ii). By considering

its minimal value, as in Eq. (2.1), we eliminate this ambiguity preserving the properties

that define an entanglement monotone. To decide when E(⇢) is zero is called separability

problem, and it is proven to be NP-hard for states close enough to the border between
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the sets of entangled and separable states [65, 66]. However, there exist useful classical

algorithms 1 able to find an estimation of E(⇢) up to a finite error [67, 68].

Our approach for mixed states involves a hybrid quantum-classical algorithm, work-

ing well in cases in which ⇢ is approximately a low-rank state. We restrict our study

to the case of unitary evolutions acting on mixed-states, given that the inclusion of dis-

sipative processes would require an independent development. Let us consider a state

with rank r and assume that the pure state decomposition solving Eq. (2.1) has c ad-

ditional terms. That is, k = r + c, with k being the number of terms in the optimal

decomposition, while c is assumed to be low. An algorithm that solves Eq. (2.1) (see for

example [67, 68]) evaluates at each step the quantity
Pk

i=1 piE(| ii) and, depending on

the result, it changes {pi, | ii} in order to find the minimum. Our method consists in

inserting an embedded quantum simulation protocol in the evaluation of each E(| ii),
which can be done with few measurements in the enlarged space. We gain in e�ciency

with respect to full tomography if k · l · m < 22N � 1, where l is the number of iter-

ations of the algorithm and m is the number of measurements to evaluate the specific

entanglement monotone. We note that m is a constant that can be low, depending on

the choice of E, and, if ⇢ is low rank, k is a low constant too. With this approach, the

performance of the computation of entanglement monotones, E(⇢), can be cast in two

parts: while the quantum computation of
Pk

i=1 piE(| ii) can be e�ciently implemented,

the subsequent minimization remains a di�cult task.

2.6 Outlook

We have presented a paradigm for the e�cient computation of a class of entanglement

monotones requiring minimal experimental added resources. The proposed framework

consists in the adequate embedding of a quantum dynamics in the degrees of freedom of

an enlarged-space quantum simulator. In this manner, we have proposed novel concepts

merging the fundamentals of quantum computation with those of quantum simulation.

This is a first example of how nontrivial mapping between quantum systems, may bring

to an excellent gain in e�ciency for the quantum computation of physical interesting

features, as it is the case of entanglement monotones. It is noteworthy to mention that

the presented algorithm can be implement in most of the promising quantum platform,

such as trapped ions, cQED, photonics etc.

At this point, some comments are needed. First of all, we have not taken into

account the possible decoherence of a quantum platform. During the last years, we

1
We stress that this is not equivalent to solving the separability problem, as the classical algorithm

will always give a strict upper bound of E(⇢).
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have witnessed a tremendous improvement in the development of coherently control-

lable quantum platforms. However, the e↵ects of dissipation and decoherence are still

enough strong to simulate a many-body unitary quantum dynamics up to a small error.

Robustness of the embedding quantum simulator under decoherence is still an open prob-

lem, and it needs further studies. Moreover, the question whether we can simulate more

complicated quantities, such as entropies, norm-based entanglement measures, etc., and

and the limit of what is simulatable with this approach, are also other open questions,

which we try to answer, at least partially, in this Thesis.



Chapter 3

Trapped-ion embedding quantum

simulator

In this Chapter, we provide an experimental quantum simulation recipe to e�ciently

compute entanglement monotones involving antilinear operations, developing the em-

bedding quantum simulator concepts for an ion-trap based quantum platform [37]. The

associated quantum algorithm is composed of two steps. First, we embed the N -qubit

quantum dynamics of interest into a larger Hilbert space involving only one additional

ion qubit and stroboscopic techniques. Second, we extract the corresponding entangle-

ment monotones with a protocol requiring only the measurement of the additional single

qubit. It is noteworthy to mention that, for the computation of the associated entangle-

ment monotones, the embedding quantum simulator approach does not require full-state

tomography. Finally, we show how to correct experimental imperfections induced by our

quantum algorithm.

3.1 Introduction

Trapped-ion systems are among the most promising technologies for quantum com-

putation and quantum simulation protocols [69]. In such systems, fidelities of state

preparation, two-qubit gate generation, and qubit detection, exceed values of 99% [70].

With current technology, more than 140 quantum gates including many body interac-

tions have been performed [20]. In this sense, the technology of trapped ions becomes

a promising quantum platform to host the described embedded quantum algorithm. In

the following analysis, we will rely only on a set of operations involving local rotations

and global entangling Mølmer-Sørensen (MS) gates [70, 71]. Therefore, our method is

not only applicable to trapped-ion systems. In general, it can be used in any platform

19
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where MS gates, or other long-range entangling interactions, as well as local rotations

and qubit decoupling are available. Among such systems, we can mention cQED [64]

where an implementation of MS gates has been recently proposed [72], or quantum

photonics where MS interactions are available after a decomposition in controlled NOT

gates [73].

As already seen in Chapter 2, entanglement monotones are functionals of the quan-

tum state of a system taking zero value when the state is separable, and do not increase

under local operations and classical communication (LOCC). For pure states, a class of

entanglement monotones can be defined as E (t) = |h |⇥| ⇤i| = |h |⇥K| i|, where ⇥

is some Hermitian operator, and K is the complex-conjugation operation [62]; see, for ex-

ample, the case of the two-qubit concurrence [74] where ⇥ = �y ⌦�y. As a consequence,

E (t) does not correspond to the the expectation value of a physical observable, thus

it cannot be directly measured. Let us assume that we have an N -qubit system, rep-

resented by the wavefunction  , evolving under a Hamiltonian H. As described above,

this system will be embedded in a larger one, requiring only one additional qubit, in

such a way that K becomes a physical operation [25]. Let us briefly summarise the

embedding procedure [36]. This is based on the following mapping

 �!  = 1
2

 

 +  ⇤

i � i ⇤

!

,

H = A + iB �! H̃ =
⇥

iI2 ⌦ B � �y ⌦ A
⇤

.

(3.1)

Here,  2 C2N and H 2 C2N ⇥ C2N are the wavefunction and Hamiltonian (with A

and B its real and imaginary parts) governing the dynamics of the N -qubit system in

the simulated space, while  and H̃ correspond to their images in the enlarged Hilbert

space, these having a dimension of 2N+1 and 2N+1 ⇥ 2N+1 respectively. The matrix

M = (1 , i) ⌦ I2N , projects the states of the embedding quantum simulator onto the

simulated space through the identity  (t) = M (t). For example, for a single-qubit case

where  (t) = (↵(t),�(t))T , T being the transpose operation, the corresponding enlarged-

wavefunction is  (t) = (↵r(t),�r(t),↵i(t),�i(t))T , with ↵r,i(t), �r,i(t) the real and imag-

inary parts of ↵(t) and �(t) respectively, and the M matrix is M =

 

1 0 i 0

0 1 0 i

!

.

Note that due to the property MH̃ = HM , the previous relation is valid at any time

t as long as the embedding quantum simulator is initialized such that  (0) = M (0).

Although this mapping from  (0) to  (0) is nonphysical, the initial state  (0) can be

directly generated from the ground state of the simulator. In the embedding quantum

simulator, the physical quantum gate �z ⌦ I2N applied to  produces a quantum state

corresponding to  ⇤ in the simulated space, i.e. M(�z ⌦ I2N ) (t) =  ⇤(t). This will
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allow us to e�ciently compute correlations between  and  ⇤ in terms of standard

expectation values in the enlarged space as follows

h |⇥| ⇤i = h |M †⇥M(�z ⌦ I2N )| i

= h |(�z � i�x) ⌦⇥| i, (3.2)

with ⇥ being a Hermitian operator. In this way, the expectation value of the antilinear

operator ⇥K in the simulated space can be evaluated via the measurement of �z ⌦ ⇥
and �x ⌦⇥ in the enlarged Hilbert space.

3.2 Trapped-ion implementation

The embedded dynamics of an interacting-qubit system is governed by the Schrödinger

equation i~@t = H̃ , where the Hamiltonian H̃ is H̃ =
P

j H̃j and each H̃j operator

corresponds to a tensorial product of Pauli matrices. In this way, an embedded N -qubit

dynamics can be implemented in two steps. First, we decompose the evolution operator

using standard Trotter techniques [1, 75],

Ut = e�
i
~
P

j H̃jt ⇡
⇣

⇧je
�iH̃jt/n

⌘n
, (3.3)

where n is the number of Trotter steps. Second, each exponential e�
i
~ H̃jt/n can be

implemented with a sequence of two Mølmer-Sørensen gates [71] and a single qubit

rotation between them [28, 76]. These three quantum gates generate the evolution

operator

ei'�
z
1⌦�x

2⌦�x
3 ...⌦�x

N , (3.4)

where ' = gt, g being the coupling constant of the single qubit rotation [76]. In Eq. (3.4),

subsequent local rotations will produce any combination of Pauli matrices. As it is the

case of quantum models involving Pauli operators, there exist di↵erent representations

of the same dynamics. For example, the physically equivalent Ising Hamiltonians, H1 =

!1�x1 +!2�x2 +g�y1 ⌦�y2 and H2 = !1�
y
1 +!2�

y
2 +g�x1 ⌦�x2 , are mapped onto the enlarged

space as H̃1 = �!1�
y
0 ⌦ �x1 �!2�

y
0 ⌦ �x2 � g�y0 ⌦ �y1 ⌦ �y2 and H̃2 = !1�

y
1 +!2�

y
2 � g�y0 ⌦

�x1 ⌦ �x2 . In principle, both Hamiltonians H̃1 and H̃2 can be implemented in trapped

ions. However, while H̃1 requires two- and three-body interactions, H̃2 is implementable

with a collective rotation applied to the ions 1 and 2 for the implementation of the

free-energy terms, and MS gates for the interaction term. In this sense, H̃2 requires less

experimental resources for the implementation of the embedding quantum simulator
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Figure 3.1: a) Level scheme of 40Ca+ ions. The standard optical qubit is encoded in
the m

j

= �1/2 substates of the 3D5/2 and 4S1/2 states. The measurement is performed
via fluorescence detection exciting the 42S1/2 $ 42P1/2 transition. b) The qubit can
be spectroscopically decoupled from the evolution by shelving the information in the
m

j

= �3/2, �5/2 substates of the 3D5/2 state.

dynamics. Therefore, a suitable choice of the system representation can considerably

enhance the performance of the simulator.

3.3 Measurement protocol

We want to measure correlations of the form appearing in Eq. (3.2), with ⇥ a

linear combination of tensorial products of Pauli matrices and identity operators. This

information can be encoded in the expectation value h�↵a i of one of the ions in the chain

after performing two evolutions of the form of Eq. (3.4). Let us consider the opera-

tors U1 = e�i'1(�i
1⌦�

j
2⌦�k

3 ...) and U2 = e�i'2(�o
1⌦�

p
2⌦�

q
3 ...) and choose the Pauli matrices

�i1,�
j
2, ... and �o1,�

p
2 , ... such that U1 and U2 commute and both anticommute with the

Pauli operator to be measured �↵a . In this manner, we have that

h�↵a i'1,'2=⇡
4

= hU †
1(
⇡

4
)U †

2(
⇡

4
) �↵a U1(

⇡

4
)U2(

⇡

4
)i

= h�i1�o1 ⌦ �j2�
p
2 ⌦ ... ⌦ �↵a�

l
a�

r
a...i. (3.5)

Then, a suitable choice of Pauli matrices will produce the desired correlation. Note

that this protocol always results in a correlation of an odd number of Pauli matrices. In
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order to access a correlation of an even number of qubits, we have to measure a two-qubit

correlation �↵a ⌦ ��b instead of just �↵a . For the particular case of correlations of only

Pauli matrices and no identity operators, evolution U2 is not needed and no distinction

between odd and even correlations has to be done. For instance, if one is interested in an

even correlation like �y1 ⌦ �x2 ⌦ �x3 ⌦ �x4 ⌦ I5 ⌦ ... ⌦ IN , N being the number of ions of the

system, then one would have to measure observable �y1 ⌦ �x2 after the evolutions U1 =

e�i(�x
1⌦�

y
2⌦�

y
3⌦�

y
4⌦�

y
5⌦...⌦�y

j⌦...)' and U2 = e�i(�x
1⌦�

y
2⌦�z

3⌦�z
4⌦�

y
5⌦...⌦�y

j⌦...)'. However, for

the particular case of N = 4 a single evolution U1 = e�i(�x
1⌦�x

2⌦�x
3⌦�x

4 )' and subsequent

measurement of h�z1i is enough. Note that all the gates in the protocol, as they are of

the type of Eq. (3.4), are implementable with single qubit and MS gates.

3.4 Examples

Consider the Ising Hamiltonian for two spins, H = ~!1�
y
1 + !2�

y
2 + g�x1 ⌦ �x2 whose

image in the enlarged space corresponds to H̃ = !1�
y
1 + !2�

y
2 � g�y0 ⌦ �x1 ⌦ �x1 . The

evolution operator associated to this Hamiltonian can be implemented using the Trotter

method from Eq. (3.3) with (H̃1, H̃2, H̃3) = (!1�
y
1 ,!2�

y
2 , �g�y0 ⌦ �x1 ⌦ �x2 ). While evolu-

tions e�
i
~ H̃1t/n and e�

i
~ H̃2t/n can be implemented with single ion rotations, the evolution

e�
i
~ H̃3t/n, which is of the kind described in Eq. (3.4), is implemented with two MS gates

and a single ion rotation. This simple case allows us to compute directly quantities such

as the concurrence measuring h�z0�
y
1�

y
2i and h�x0�

y
1�

y
2i. According to the measurement

method introduced above, to access these correlations we first evolve the system under

the gate U = e�i(�y
0⌦�

y
1⌦�

y
2 )' for a time such that ' = ⇡

2 , and then measure h�x0 i for the

first correlation and h�z0i for the second one.

Based on the two-qubit example, one can think of implementing a three-qubit model

as HGHZ = !1�
y
1 +!2�

y
2 +!3�

y
3 +g�x1 ⌦�x2 ⌦�x3 , which in the enlarged space corresponds

to

H̃GHZ = !1�
y
1 + !2�

y
2 + !3�

y
3 � g�y0 ⌦ �x1 ⌦ �x2 ⌦ �x3 . (3.6)

This evolution results in GHZ kind states, which can be readily detected using the

3-tangle ⌧3 [60]. This is an entanglement monotone of the general class of Eq. (3.2)

that can be computed in the enlarged space by measuring
�

� � h ̃(t)|�z ⌦ I2 ⌦ �y ⌦
�y � i�x ⌦ I2 ⌦ �y ⌦ �y| ̃(t)i2 + h ̃(t)|�z ⌦ �x ⌦ �y ⌦ �y � i�x ⌦ �x ⌦ �y ⌦ �y| ̃(t)i2 +

h ̃(t)|�z ⌦ �z ⌦ �y ⌦ �y � i�x ⌦ �z ⌦ �y ⌦ �y| ̃(t)i2
�

�. More complex Hamiltonians with

interactions involving only three of the four particles can also be implemented. In this

case, the required entangling operations acting only on a part of the entire register can

be realized with the aid of splitting the MS operations into smaller parts and inserting

refocusing pulses between them as shown in Ref. [76]. An alternative method is to



Chapter 3. Trapped-ion embedding quantum simulator 24

a) b)

c) d)

0.0 10.4 0.8 0.0 10.4 0.8

0.4

0.8

0.4

0.8

⌧3

⌧3

!1t !1t

5 Trotter steps

5 Trotter steps

10 Trotter steps

20 Trotter steps

Figure 3.2: Numerical simulation of the 3-tangle evolving under Hamiltonian in
Eq. (3.6) and assuming di↵erent error sources. In all the plots, the blue line shows
the ideal evolution. In a), b), c) depolarizing noise is considered, with N=5,10 and
20 Trotter steps, respectively. Gate fidelities are ✏ = 1, 0.99, 0.97, and 0.95 marked
by red rectangles, green diamonds, black circles and yellow dots, respectively. In d)
crosstalk between ions is added with strength �0 = 0, 0.01, 0.03, and 0.05 marked
by red rectangles, green diamonds, black circles and yellow dots, respectively. All the
simulations in d) were performed with 5 Trotter steps. In all the plots, we have used
!1 = !2 = !3 = g/2 = 1.

decouple the spectator ions from the laser light by shelving the quantum information

into additional Zeeman substates of the ions as sketched in Fig. 3.1 for 40Ca+ ions. This

procedure has been successfully demonstrated in Ref. [77]. For systems composed of a

larger number of qubits, for example N > 10, our method yields nontrivial results given

that the standard computation of entanglement monotones of the kind h (t)|⇥| (t)⇤i
requires the measurement of a number of observables that grows exponentially with N .

For example, in the case of ⇥ = �y⌦�y⌦· · ·⌦�y [62] our method requires the evaluation

of 2 observables while the standard procedure based on state tomography requires, in

general, the measurement of 22N � 1 observables.
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3.5 Experimental considerations

A crucial issue of a quantum simulation algorithm is its susceptibility to experimental

imperfections. In order to investigate the deviations with respect to the ideal case, the

system dynamics needs to be described by completely positive maps instead of unitary

dynamics. Such a map is defined by the process matrix � acting on a density operator ⇢

as follows: ⇢ !
P

i,j �i,j�i⇢�j , where �i are the Pauli matrices spanning a basis of the

operator space. In complex algorithms, errors can be modeled by adding a depolarizing

process with a probability 1 � " to the ideal process �id

⇢ ! "
X

i,j

�id
i,j�

i⇢�j + (1 � ")
I

2N
. (3.7)

In order to perform a numerical simulation including this error model, it is required to

decompose the quantum simulation into an implementable gate sequence. Numerical

simulations of the Hamiltonian in Eq. (3.6), including realistic values gate fidelity " =

{1, 0.99, 0.97, 0.95} and for {5, 10, 20} Trotter steps, are shown in Figs. 3.2 a), b), and c).

Naturally, this analysis is only valid if the noise in the real system is close to depolarizing

noise. However, recent analysis of entangling operations indicates that this noise model

is accurate [70, 78]. According to Eq. (3.7), after n gate operations, we show that

hOiEid(⇢) =
hOiE(⇢)

"n
� 1 � "n

"n
Tr (O), (3.8)

where hOiEid(⇢) corresponds to the ideal expectation value in the absence of decoher-

ence, and hOiE(⇢) is the observable measured in the experiment. Given that we are

working with observables composed of tensorial products of Pauli operators �y0 ⌦ �x1 ...

with Tr (O) = 0, Eq. (3.8) will simplify to hOiEid(⇢) =
hOiE(⇢)

"n . In order to retrieve with

uncertainty k the expected value of an operator O, the experiment will need to be re-

peated Nemb =
�

1
k✏n
�2

times. Here, we have used k ⌘ �E(⇢)
hOi = �E(⇢)

O /
p

N ( for large

N), and that the relation between the standard deviations of the ideal and experimental

expectation values is �E(⇢)
O = �Eid(⇢)

O /"n. If we compare Nemb with the required number

of repetitions to measure the same entanglement monotone to the same accuracy k in a

one-to-one quantum simulator, Noto = 3Nqubits
�

1
k�n
�2

, we have

Nemb

Noto
= l

✓

�p
3"

◆2Nqubit

. (3.9)

Here, l is the number of observables corresponding to a given entanglement monotone

in the enlarged space, and � is the gate fidelity in the one-to-one approach. We are

also asuming that full state tomography of Nqubits qubits requires 3Nqubit measurement

settings for experiments exploiting single-qubit discrimination during the measurement
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process [79]. Additionally, we assume the one-to-one quantum simulator to work under

the same error model but with � fidelity per gate. Finally, we expect that the number

of gates grows linearly with the number of qubits, that is n ⇠ Nqubit, which is a fair

assumption for a nearest-neighbour interaction model. In general, we can assume that

� is always bigger than " as the embedding quantum simulator requires an additional

qubit which naturally could increase the gate error rate. However, for realistic values

of " and �, e.g. " = 0.97 and � = 0.98 one can prove that Nemb
Noto

⌧ 1. This condition is

always fulfilled for large systems if �p
3"

< 1. The latter is a reasonable assumption given

that in any quantum platform it is expected � ⇡ ✏ when the number of qubits grows, i.e.

we expect the same gate fidelity for N and N + 1 qubit systems when N is large. Note

that this analysis assumes that the same amount of Trotter steps is required for the

embedded and the one-to-one simulator. This is a realistic assumption if one considers

the relation between H and H̃ in Eq. (3.1). A second type of imperfections are undesired

unitary operations due to imperfect calibration of the applied gates or due to crosstalk

between neighbouring qubits. This crosstalk occurs when performing operations on a

single ion due to imperfect single site illumination [70]. Thus the operation szj (✓) =

exp(�i ✓ �zj /2) needs to be written as szj (✓) = exp(�i
P

k ✏k,j ✓�
z
k/2) where the crosstalk

is characterized by the matrix �. For this analysis, we assume that the crosstalk a↵ects

only the nearest neighbours with strength �0 leading to a matrix � = �k,j +�0 �k±1,j .

In Fig. 3.2 d) simulations including crosstalk are shown. It can be seen, that simulations

with increasing crosstalk show qualitatively di↵erent behavior of the 3-tangle, as in the

simulation for �0 = 0.05 (yellow line) where the entire dynamics is distorted. This

e↵ect was not observed in the simulations including depolarizing noise and, therefore,

we identify unitary crosstalk as a critical error in the embedding quantum simulator.

It should be noted that, if accurately characterized, the described crosstalk can be

completely compensated experimentally [70].

3.6 Outlook

We have discussed an embedded quantum algorithm for trapped-ion systems to e�-

ciently compute entanglement monotones for N interacting qubits at any time of their

evolution and without the need for full state tomography. Furthermore, we showed that

the involved decoherence e↵ects can be corrected if they are well characterised. We have

given a first proof of principle theoretical experiment to predict how the method would

perform in a real experiment. Although we have discussed the trapped-ion scheme, this

analysis holds for whatever platforms in which Mølmer-Sørensen gates, or its decompo-

sition in simpler gates, are available, making this analysis rather general. Experimental
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verification of the embedding quantum simulator for entanglement monotones would

open the way for studying quantum correlations in generic many-body systems.





Chapter 4

Quantum algorithm for

computing n-time correlation

functions

In this Chapter, we study an e�cient quantum algorithm for computing general n-time

correlation functions of an arbitrary quantum system, requiring only an initially added

probe and control qubit [38]. Our method is applicable to a general class of interacting

spinorial, bosonic, and fermionic systems, and it does not require the implementation

of the controlled version of the evolution Hamiltonian. We provide examples of this

protocol in the frame of the linear response theory, where n-time correlation functions

are needed.

4.1 Introduction

According to quantum theory, all information about a system, its stationary states and

its evolution, is encoded in the Hamiltonian. Nonetheless, for most cases, the extraction

of this information may not be straightforward [80, 81]. Therefore, alternative strategies

are needed to identify and obtain measurable quantities that characterize the relevant

physical information [36, 37]. A case of particular importance is given by response

functions and susceptibilities, which in the linear response theory are computed in terms

of two-time correlation functions [82–84]. For example, the knowledge of two-time

correlation functions of the form h |A(t)B(0)| i, stemming from perturbation theory,

provides us with a microscopic derivation of useful quantities such as conductivity and

magnetization [85]. The reconstruction of time-correlation functions, however, need not

be trivial at all, and could profit from quantum algorithm and simulation protocols

29
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for their determination. The computation of time correlation functions for propagating

signals is at the heart of quantum optical methods [86], including the case of propagating

quantum microwaves [50, 87, 88]. However, these methods are not necessarily easy to

export to the case of spinorial, fermionic and bosonic degrees of freedom of massive

particles. In this sense, recent methods have been proposed for the case of two-time

correlation functions associated to specific dynamics in optical lattices [89], as well as

in setups where post-selection and cloning methods are available [90]. On the other

hand, in quantum computer science the SWAP test [91] (see Appendix B) represents a

standard way to access n-time correlation functions if a quantum register is available that

is, at least, able to store two copies of a state, and to perform a generalized-controlled

swap gate [92]. However, this could be demanding if the system of interest is large, for

example, for an N -qubit system the SWAP test requires the quantum control of a system

of more than 2N qubits. Another possibility corresponds to the Hadamard test [93] (see

Appendix B) that requires controlled-time evolutions. The latter is demanding if the

dynamics of interest involve many-body or time-dependent Hamiltonians. In contrast

to this, here we present an embedding protocol that exploits the natural evolution of the

system and that requires the addition of only one qubit.

Let us thus consider a two-time correlation function hA(t)B(0)i where A(t) =

U †(t)A(0)U(t), U(t) being a given unitary operator, while A(0) and B(0) are both

Hermitian. Remark that, generically, A(t)B(0) will not be Hermitian. However, one

can always construct two self-adjoint operators C(t) = 1
2{A(t), B(0)} and D(t) =

1
2i [A(t), B(0)] such that hA(t)B(0)i = hC(t)i + ihD(t)i. According to the quantum

mechanical postulates, there exist two measurement apparatus associated with observ-

ables C(t) and D(t). In this way, we may formally compute hA(t)B(0)i from the mea-

sured hC(t)i and hD(t)i. However, the determination of hC(t)i and hD(t)i depends non

trivially on the correlation times and on the complexity of the specific time evolution

operator U(t). Furthermore, we point out that the computation of n-time correlations,

as h | 0i = h |U †(t)AU(t)B| i, is not a trivial task even if one has access to full state

tomography, due to the ambiguity of the global phase of state | 0i = U †(t)AU(t)B| i.
Therefore, we are confronted with a cumbersome problem: the design of measurement

apparatus depending on the system evolution for determinating n-time correlations of a

system whose evolution may not be accessible.

4.2 The protocol

The protocol works under the following two assumptions. First, we are provided

with a controllable quantum system undergoing a given quantum evolution described by
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the Schrödinger equation

i~@t|�i = H|�i. (4.1)

And second, we require the ability to perform entangling operations, for example Mølmer-

Sørensen [94] or equivalent controlled gates [40], between some part of the system and the

ancillary qubit. More specifically, and as it is discussed in the Appendix A, we require a

number of entangling gates that grows linearly with the order n of the n-time correlation

function and that remains fixed with increasing system-size. This protocol will provide

us with the e�cient measurement of generalized n-time correlation functions of the form

h�|On�1(tn�1)On�2(tn�2)...O1(t1)O0(t0)|�i, where On�1(tn�1)...O0(t0) are certain oper-

ators evaluated at di↵erent times, e.g. Ok(tk) = U †(tk; t0)Ok U(tk; t0), U(tk; t0) being

the unitary operator evolving the system from t0 to tk. For the case of dynamics gov-

erned by time-independent Hamiltonians, U(tk; t0) = U(tk�t0) = e�
i
~H(tk�t0). However,

our method applies also to the case where H = H(t), and can be sketched as follows.

First, the ancillary qubit is prepared in state 1p
2
(|ei + |gi) with |gi its ground state, as in

step 1 of Fig. 4.1, so that the whole ancilla-system quantum state is 1p
2
(|ei + |gi) ⌦ |�i,

where |�i is the state of the system. Second, we apply the controlled quantum gate

U0
c = exp (� i

~ |gihg| ⌦ H0⌧0), where, as we will see below, H0 is a Hamiltonian related to

the operator O0, and ⌧0 is the gate time. As we point out in the Appendix A, this entan-

gling gate can be implemented e�ciently with Mølmer-Sørensen gates for operators O0

that consist in a tensor product of Pauli matrices [94]. This operation entangles the an-

cilla with the system generating the state 1p
2
(|ei⌦ |�i+ |gi⌦ Ũ0

c |�i), with Ũ0
c = e�

i
~H0⌧0 ,

step 2 in Fig. 4.1. Next, we switch on the dynamics of the system governed by Eq. (4.1).

For the sake of simplicity let us assume t0 = 0. The e↵ect on the ancilla-system wavefunc-

tion is to produce the state 1p
2

�

|ei ⌦ U(t1; 0)|�i + |gi ⌦ U(t1; 0)Ũ0
c |�i

�

, step 3 in Fig. 4.1.

Note that, remarkably, this last step does not require an interaction between the system

and the ancillary-qubit degrees of freedom nor any knowledge of the Hamiltonian H.

These techniques, as will be evident below, will find a natural playground in the context

of quantum simulations, preserving its analogue or digital character. If we iterate n times

step 2 and step 3 with a suitable choice of gates and evolution times, we obtain the state

� = 1p
2
(|ei ⌦ U(tn�1; 0)|�i + |gi ⌦ Ũn�1

c U(tn�1; tn�2)... U(t2; t1)Ũ1
c U(t1; 0)Ũ0

c |�i). Now,

we target the quantity Tr(|eihg||�ih�|) by measuring the h�xi and h�yi corresponding

to the ancillary degrees of freedom. Simple algebra leads us to

Tr(|eihg||�ih�|) =
1

2
(h�|�x|�i + ih�|�y|�i) =

1

2
h�|U †(tn�1; 0)Ũn�1

c U(tn�1; tn�2)... U(t2; t1)Ũ
1
c U(t1; 0)Ũ0

c |�i.

(4.2)
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We introduce the concept of embedding quantum simulators, a paradigm allowing the e�cient

quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in

the suitable encoding of a simulated quantum dynamics in the enlarged Hilbert space of an embed-

ding quantum simulator. In this manner, entanglement monotones are conveniently mapped onto

physical observables, overcoming the necessity of full tomography and reducing drastically the exper-

imental requirements. Furthermore, this method is directly applicable to pure states and, assisted

by classical algorithms, to the mixed-state case. Finally, we expect that the proposed embedding

framework paves the way for a general theory of enhanced one-to-one quantum simulators.

PACS numbers: 03.67.-a,03.67.Ac, 03.67.Mn

Entanglement is considered one of the most remark-
able features of quantum mechanics [1, 2], stemming from
bipartite or multipartite correlations without classical
counterpart. Firstly revealed by Einstein, Podolsky, and
Rosen as a possible drawback of quantum theory [3], en-
tanglement was subsequently identified as a fundamental
resource for quantum communication [4, 5] and quantum
computing purposes [6, 7]. Beyond considering entangle-
ment as a purely theoretical feature, the development of
quantum technologies has allowed us to create, manip-
ulate, and detect entangled states in di↵erent quantum
platforms. Among them, we can mention trapped ions,
where eight-qubit W and fourteen-qubit GHZ states have
been created [8, 9], circuit QED (cQED) where seven
superconducting elements have been entangled [10], su-
perconducting circuits where continuous-variable entan-
glement has been realized in propagating quantum mi-
crowaves [11], and bulk-optic based setups where entan-
glement between eight photons has been achieved [12].

Quantifying entanglement is considered a particularly
di�cult task, both from theoretical and experimental
viewpoints. In fact, it is challenging to define entangle-
ment measures for an arbitrary number of parties [13, 14].
Moreover, the existing entanglement monotones [15] do
not correspond directly to the expectation value of a
Hermitian operator [16]. Accordingly, the computation
of many entanglement measures, see Ref. [17] for lower
bound estimations, requires previously the reconstruc-
tion of the full quantum state, which could be a cumber-
some problem if the size of the associated Hilbert space
is large. If we consider, for instance, an N -qubit system,
quantum tomography techniques become already exper-
imentally unfeasible for N ⇠ 10 qubits. This is because
the dimension of the Hilbert space grows exponentially
with N , and the number of observables needed to recon-
struct the quantum state scales as 22N � 1.

From a general point of view, a standard quantum sim-
ulation is meant to be implemented in a one-to-one quan-

U(t)

Ũ(t)

( (

( ( ((

� �
� �

One-to-one quantum simulator

Embedding
quantum simulator

Entanglement
monotones

FIG. 1. (color online) One-to-one quantum simulator versus

embedding quantum simulator. The conveyor belts represent

the dynamical evolution of the quantum simulators. The real

(red) and imaginary (blue) parts of the simulated wave vector

components are split in the embedding quantum simulator, al-

lowing the e�cient computation of entanglement monotones.

tum simulator where, for example, a two-level system
in the simulated dynamics is directly represented by an-
other two-level system in the simulator. In this Letter,
we introduce the concept of embedding quantum simula-
tors, allowing the e�cient computation of a wide class of
entanglement monotones [15]. This method can be ap-
plied at any time of the evolution of a simulated bipartite
or multipartite system, with the prior knowledge of the
Hamiltonian H and the corresponding initial state | 0i.
The e�ciency of the protocol lies in the fact that, unlike
standard quantum simulations, the evolution of the state
| 0i is embedded in an enlarged Hilbert space dynamics
(see Fig. 1). In this case, antilinear operators, in particu-
lar those associated with a certain class of entanglement
monotones, can be e�ciently encoded into physical ob-
servables, overcoming therefore the need of full state re-
construction. The simulating quantum dynamics, which
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Figure 4.1: Quantum algorithm for computing n-time correlation functions. The
ancilla state 1p

2
(|ei + |gi) generates the |ei and |gi paths, step 1, for the ancilla-system

coupling. After that, controlled gates Um

c

and unitary evolutions U(t
m

; t
m�1) applied

to our system, steps 2 and 3, produce the final state �. Finally, the measurement of
the ancillary spin operators �

x

and �
y

leads us to n-time correlation functions.

It is easy to see that, by using the composition property U(tk; tk�1) = U(tk; 0)U †(tk�1; 0),

Eq. (4.2) corresponds to a general construction relating n-time correlations of system

operators Ũk
c with two one-time ancilla measurements. In order to explore its depth,

we shall examine several classes of systems and suggest concrete realizations of the pro-

posed algorithm. The crucial point is establishing a connection that associates the Ũk
c

unitaries with Ok operators.

4.3 Preserving locality: stabilizer states

As in the simulation of entanglement monotones, also in this case we have the

problem that we need the system to interact with an ancillary qubit. In most of the

current platform, this means that we need to implement nonlocal operation to perform

the protocol. We can fix this in the same way as in the second chapter, via the stabilizer

formalism. First, we note that that all the operations in the protocol corresponds to

Hamiltonian of the kind I⌦ H, �z ⌦ H and their combinations, where H is an arbitrary

system Hamiltonian. We consider an array of N ancillary qubits, where N can be

chosen in the most convenient way. We want to find the subspace of their resulting

Hilbert space, such that �iz�
j
z|�i = |�i, for an arbitrary state |�i of the N -qubit system.
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This subspace is unique, and is spanned by the following vectors:

|e�i =

r

1

2N�1

X

h(y) even

|yi (4.3)

|e+i =

r

1

2N�1

X

h(y) odd

|yi, (4.4)

where |⌥i = 1p
2
(|ei⌥ |gi), y 2 {�, +}N , and h(y) is the number of +’s in y. If we define

our logical ancillary qubit via Eqs. (4.3)-(4.4), we can substitute �z with �jz, for any

1  j  N . Finally, the measurement of the logical �x corresponds to the parity of the

+ outcomes of the N ancillary qubits, and a similar argument holds for the measurement

of �y. In this way, while we have increased the space resources from 1 qubit more to N

qubits more, the time e�ciency is preserved.

4.4 Spinorial, fermionic and bosonic systems

So far, we have shown how to quantum compute n-time correlation functions of

unitary operations. In the following, we show how to adapt these ideas for n-time

correlation functions of Hermitian operators, in di↵erent kind of systems.

4.4.1 Spinorial systems

Starting with the discrete variable case, e.g. spin systems, and profiting from the fact

that Pauli matrices are both Hermitian and unitary, it follows that

Ũm
c

�

�

⌦⌧m=⇡/2
= exp (� i

~Hm⌧m)
�

�

⌦⌧m=⇡/2
= �iOm, (4.5)

where Hm = ~⌦Om, ⌦ is a coupling constant, and Om is a tensor product of Pauli

matrices of the form Om = �im ⌦ �jm ...�km with im, jm, ..., km 2 0, x, y, z, and �0 = I.
In consequence, the controlled quantum gates in step 2 correspond to Um

c

�

�

⌦⌧m=⇡/2
=

exp (�i|gihg| ⌦ ⌦Om⌧m), which can be implemented e�ciently, up to local rotations,

with four Mølmer-Sørensen gates [20, 28, 76, 94]. In this way, we can write the second

line of Eq. (4.2) as

(�i)nh�|On�1(tn�1)On�2(tn�2)...O0(0)|�i, (4.6)

which amounts to the measured n-time correlation function of Hermitian and unitary

operators Ok. We can also apply these ideas to the case of non-Hermitian operators,
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independent of their unitary character, by considering linear superpositions of the Her-

mitian objects appearing in Eq. (4.6).

4.4.2 Fermionic systems

We show now how to apply this result to the case of fermionic systems. In principle,

the previous proposed steps would apply straightforwardly if we had access to the cor-

responding fermionic operations. In the case of quantum simulations, a similar result is

obtained via the Jordan-Wigner mapping of fermionic operators to tensorial products

of Pauli matrices, b†p ! ⇧p�1
r=1�

p
+�

r
z [95]. Here, b†p and bq are creation and annihilation

fermionic operators obeying anticommutation relations, {b†p, bq} = �p,q. For trapped

ions, a quantum algorithm for the e�cient implementation of fermionic models has been

recently proposed [28, 96, 97]. Then, we code hb†p(t)bq(0)i = h�|(�p+ ⌦ �p�1
z ...�1

z)t �
q
� ⌦

�q�1
z ...�1

z |�i, where (�p+ ⌦ �p�1
z ...�1

z)t = e
i
~Ht�p+ ⌦ �p�1

z ...�1
ze

� i
~Ht. Now, taking into

account that �± = 1
2(�x ± i�y), the fermionic correlator hb†p(t)bq(0)i can be written as

the sum of four terms of the kind appearing in Eq. (4.6). This result extends naturally

to multitime correlations of fermionic systems.

4.4.3 Bosonic systems

The case of bosonic n-time correlators requires a variant in the proposed method,

due to the nonunitary character of the associated bosonic operators. In this sense, to

reproduce a linearization similar to that of Eq. (4.5), we can write

@⌦⌧mŨm
c

�

�

⌦⌧m=0
= @⌦⌧m exp (� i

~Hm⌧m)
�

�

⌦⌧m=0
= �iOm , (4.7)

with Hm = ~⌦Om. Consequently, it follows that

@⌦⌧j ...@⌦⌧kTr(|eihg||�ih�|)
�

�

⌦(⌧↵...⌧�)=⇡
2 , ⌦(⌧j ...⌧k)=0

=

(�i)nh�|On�1(tn�1)On�2(tn�2)...O0(0)|�i , (4.8)

where the label (↵, ...,�) corresponds to spin operators and (j, ..., k) to spin-boson op-

erators. The right hand side is a correlation of Hermitian operators, thus substantially

extending our previous results. For example, Om would include spin-boson couplings as

Om = �im ⌦ �jm ...�km(a + a†). The way of generating the associated evolution oper-

ator Ũm
c = exp(�i⌦Om⌧m) has been shown in [28, 29, 96], see also Appendix A. Note

that, in general, dealing with discrete derivatives of experimental data is an involved

task [98, 99]. However, recent experiments in trapped ions [22, 24, 100] have already
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succeeded in the extraction of precise information from data associated to first and

second-order derivatives.

4.4.4 Density matrix case

The method presented here works as well when the system is prepared in a mixed-

state ⇢0, e.g. a state in thermal equilibrium [82, 83]. Accordingly, for the case of spin

correlations, we have

Tr(|eihg|⇢̃) = (�i)nTr(On�1(tn�1)On�2(tn�2)...O0(0)⇢0),

(4.9)

with ⇢̃ =
�

...U(t2; t1)U1
c U(t1; 0)U0

c

�

⇢̃0

�

U0†
c U(t1; 0)†U1†

c U(t2; t1)†...
�

and ⇢̃0 = 1
2(|ei +

|gi)(he| + hg|) ⌦ ⇢0. If bosonic variables are involved, the analogue to Eq. (4.8) reads

@⌦⌧j ...@⌦⌧kTr(|eihg|⇢̃)
�

�

⌦(⌧↵...⌧�)=⇡
2 , ⌦(⌧j ...⌧k)=0

=

(�i)nTr(On�1(tn�1)On�2(tn�2)...O0(0)⇢0). (4.10)

4.5 Example: magnetic susceptibility

We will now exemplify the introduced formalism with the case of quantum computing

of spin-spin correlations of the form

h�ki (t)�lj(0)i, (4.11)

where k, l = x, y, z, and i, j = 1, ..., N , N being the number of spin-particles involved. In

the context of spin lattices, where several quantum models can be simulated in di↵erent

quantum platforms as trapped ions [17–19, 101–103], optical lattices [12, 104, 105], and

circuit QED [106–109], correlations like (4.11) are a crucial element in the computation

of, for example, the magnetic susceptibility [82–84]. In particular, with our protocol,

we have access to the frequency-dependent susceptibility �!�,� that quantifies the linear

response of a spin-system when it is driven by a monochromatic field. This situation

is described by the Schrödinger equation i~@t| i = (H + f!�lje
i!t)| i, where, for sim-

plicity, we assume H 6= H(t). With a perturbative approach, and following the Kubo

relations [82, 83], one can calculate the first-order e↵ect of a magnetic perturbation

acting on the j-th spin in the polarization of the i-th spin as

h�ki (t)i = h�ki (t)i0 + �!�,�f!ei!t. (4.12)
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Here, h�ki (t)i0 corresponds to the value of the observable �ki in the absence of perturba-

tion, and the frequency-dependent susceptibility �!�,� is

�!�,� =

Z t

0
ds ��,�(t � s)ei!(s�t) (4.13)

where ��,�(t � s) is called the response function, which can be written in terms of

two-time correlation functions,

��,�(t � s) =
i

~h[�ki (t � s),�lj(0)]i =
i

~Tr
�

[�ki (t � s),�lj(0)]⇢
�

, (4.14)

with ⇢ = U(t)⇢0U †(t), ⇢0 being the initial state of the system and U(t) the perturbation-

free time-evolution operator [82]. Note that for thermal states or energy eigenstates,

we have ⇢ = ⇢0. According to our proposed method, and assuming for the sake of

simplicity ⇢ = |�ih�|, the measurement of the commutator in Eq. (4.14), correspond-

ing to the imaginary part of h�ki (t � s)�lj(0)i, would require the following sequence of

interactions: |�i ! U1
c U(t � s)U0

c |�i, where U0
c = e�i|gihg|⌦�l

j⌦⌧ , U(t � s) = e�
i
~H(t�s),

and U1
c = e�i|gihg|⌦�k

i ⌦⌧ , for ⌦⌧ = ⇡/2. After such a gate sequence, the expected value

in Eq. (4.14) corresponds to �1/2h�|�y|�i. In the same way, Kubo relations allow the

computation of higher order corrections of the perturbed dynamics in terms of higher

order time correlation functions. In particular, second-order corrections to the linear

response of Eq. (4.12) can be calculated through the computation of three-time corre-

lation functions of the form h�ki (t2)�lj(t1)�lj(0)i. Using the method introduced in this

paper, to measure such a three-time correlation function one should perform the evo-

lution |�i ! U1
c U(t2 � t1)U0

c U(t1)U0
c |�i, where U0

c = e�i|gihg|⌦�l
j⌦⌧ , U(t) = e�

i
~Ht and

U1
c = e�i|gihg|⌦�k

i ⌦⌧ for ⌦⌧ = ⇡/2. The searched time correlation then corresponds to

the quantity 1/2(ih�|�x|�i � h�|�y|�i).

Our method is not restricted to corrections of observables that involve the spinorial

degree of freedom. Indeed, we can show how the method applies when one is interested

in the e↵ect of the perturbation onto the motional degrees of freedom of the involved

particles. According to the linear response theory, corrections to observables involving

the motional degree of freedom enter in the response function, �a+a†,�(t�s), as time cor-

relations of the type h(ai+a†i )(t�s)�
l
ji, where (ai + a†i )(t�s) = e

i
~H(t�s)(ai + a†i )e

� i
~H(t�s).

The response function can be written as in Eq. (4.14) but replacing the operator �ki (t�s)

by (ai + a†i )(t�s). The corrected expectation value is now

h(ai + a†i )ti = h(ai + a†i )ti0 + �!a+a†,�f!ei!t. (4.15)

In this case, the gate sequence for the measurement of the associated correlation func-

tion h(ai + a†i )(t�s)�
l
ji reads |�i ! U1

c U(t � s)U0
c |�i, where U0

c = e�i|gihg|⌦�l
j⌦0⌧0 ,
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U(t � s) = e�
i
~H(t�s), and U1

c = e�i|gihg|⌦(ai+a†i )⌦1⌧1 , for ⌦0⌧0 = ⇡/2. The time correla-

tion is now obtained through the first derivative �1/2@⌦1⌧1(h�|�x|�i+ih�|�y|�i)|⌦1⌧1=0.

Equations (4.12) and (4.15) can be extended to describe the e↵ect on the system

of light pulses containing frequencies in a certain interval (!0,!0 + �). In this case,

Eqs. (4.12) and (4.15) read

h�ki (t)i = h�ki (t)i0 +

Z !0+�

!0

�!�,�f!ei!td!, (4.16)

and

h(ai + a†i )ti = h(ai + a†i )ti0 +

Z !0+�

!0

�!a+a†,�f!ei!td!. (4.17)

Note that despite the presence of many frequency components of the light field in the

integrals of Eqs. (4.16, 4.17), the computation of the susceptibilities, �!�,� and �!a+a†,�,

just requires the knowledge of the time correlation functions h[�ki (t � s),�lj(0)]i and

h[(a + a†)(t�s),�
l
j(0)]i, which can be e�ciently calculated with the protocol described in

Fig 4.1. In this manner, we provide an e�cient quantum algorithm to characterize the

response of di↵erent quantum systems to external perturbations.

Lastly, our method may be related to the quantum computation of transition prob-

abilities |↵f,i(t)|2 = |hf|U(t)|ii|2 = hi|Pf(t)|ii, between initial and final states, |ii and |fi,
with Pf(t) = U(t)†|fihf|U(t), and to transition or decay rates @t|↵f,i(t)|2 in atomic en-

sembles. These questions are of general interest for evolutions perturbed by external

driving fields or by interactions with other quantum particles.

4.6 Outlook

In this Chapter, we have presented an embedding quantum algorithm to e�ciently

compute arbitrary n-time correlation functions. The protocol requires the initial addi-

tion of a single probe and control qubit and is valid for arbitrary unitary evolutions. Fur-

thermore, we have applied this method to interacting fermionic, spinorial, and bosonic

systems, showing how to compute second-order e↵ects beyond the linear response the-

ory. Moreover, if used in a quantum simulation, the protocol preserves the analogue or

digital character of the associated dynamics. This is a further example of encoding of

a physical quantity, i.e. n-time correlation function, onto a larger Hilbert space, via a

nontrivial mapping. It is noteworthy to mention that the complexity of the presented

protocol relies only on the implementation of the considered Hamiltonian and of specific

entangling gates. This makes the method a useful tool in quantum simulations, that can

be used in a variety of situations. A further application is shown in the next Chapter.





Chapter 5

Quantum simulation of

dissipative processes

In this Chapter, we introduce a quantum algorithm to simulate finite dimen-

sional Lindblad master equations, corresponding to Markovian or non-Markovian pro-

cesses [39]. Our protocol shows how to reconstruct, up to an arbitrary finite error, physi-

cal observables that evolve according to a dissipative dynamics, by evaluating multi-time

correlation functions of its Lindblad operators. We show that the latter requires the im-

plementation of the unitary part of the dynamics in a quantum simulator, without the

necessity of physically engineering the system-environment interactions. Moreover, we

demonstrate how these multi-time correlation functions can be computed with a reduced

number of measurements. We further show that our method can be applied as well to

the simulation of processes associated with non-Hermitian Hamiltonians. Finally, we

provide specific error bounds to estimate the accuracy of our approach. The method

presented in this Chapter falls under a class of simulation that we have called algorithmic

quantum simulation, where we are not aimed to reproduce the state of the system, but

we directly target the expected value of a given observable in an algorithmic way.

5.1 Introduction

While every physical system is indeed coupled to an environment [110, 111], modern

quantum technologies have succeeded in isolating systems to an exquisite degree in a

variety of platforms [64, 73, 112, 113]. In this sense, the last decade has witnessed great

advances in testing and controlling the quantum features of these systems, spurring the

quest for the development of quantum simulators [1–3, 114]. These e↵orts are guided

by the early proposal of using a highly tunable quantum device to mimic the behavior

39
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of another quantum system of interest, being the latter complex enough to render its

description by classical means intractable. By now, a series of proof-of-principle experi-

ments have successfully demonstrated the basic tenets of quantum simulations revealing

quantum technologies as trapped ions [115], ultracold quantum gases [116], and super-

conducting circuits [117] as promising candidates to harbor quantum simulations beyond

the computational capabilities of classical devices.

It was soon recognised that this endeavour should not be limited to simulating the

dynamics of isolated complex quantum systems, but should more generally aim at the

emulation of arbitrary physical processes, including the open quantum dynamics of a

system coupled to an environment. Tailoring the complex nonequilibrium dynamics of

an open system has the potential to uncover a plethora of technological and scientific

applications. A remarkable instance results from the understanding of the role played by

quantum e↵ects in the open dynamics of photosynthetic processes in biological systems

[118, 119], recently used in the design of artificial light-harvesting nanodevices [120–122].

At a more fundamental level, an open-dynamics quantum simulator would be invaluable

to shed new light on core issues of foundations of physics, ranging from the quantum-

to-classical transition and quantum measurement theory [123] to the characterization

of Markovian and non-Markovian systems [124–126]. Further motivation arises at the

forefront of quantum technologies. As the available resources increase, the verification

with classical computers of quantum annealing devices [127, 128], possibly operating with

a hybrid quantum-classical performance, becomes a daunting task. The comparison

between di↵erent experimental implementations of quantum simulators is required to

establish a confidence level, as customary with other quantum technologies, e.g., in

the use of atomic clocks for time-frequency standards. In addition, the knowledge and

control of dissipative processes can be used as well as a resource for quantum state

engineering [129].

Facing the high dimensionality of the Hilbert space of the composite system made of

a quantum device embedded in an environment, recent developments have been focused

on the reduced dynamics of the system that emerges after tracing out the environmental

degrees of freedom. The resulting nonunitary dynamics is governed by a dynamical

map, or equivalently, by a master equation [110, 111]. In this respect, theoretical [130–

132] and experimental [133] e↵orts in the simulation of open quantum systems have

exploited the combination of coherent quantum operations with controlled dissipation.

Notwithstanding, the experimental complexity required to simulate an arbitrary open

quantum dynamics is recognised to substantially surpass that needed in the case of

closed systems, where a smaller number of generators su�ces to design a general time-

evolution. Thus, the quantum simulation of open systems remains a challenging task.
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5.2 The Lindblad form

Consider a quantum system coupled to an environment whose dynamics is described

by the von Neumann equation id⇢̄dt = [H̄, ⇢̄]. Here, ⇢̄ is the system-environment den-

sity matrix, H̄ = Hs + He + HI , where Hs and He are the system and environment

Hamiltonians, while HI corresponds to their interaction. Assuming weak coupling and

short time-correlations between the system and the environment, after tracing out the

environmental degrees of freedom we obtain the Markovian master equation

d⇢

dt
= Lt⇢, (5.1)

being ⇢ = Tre(⇢̄) and Lt the time-dependent superoperator governing the dissipative

dynamics [110, 111]. Notice that there are di↵erent ways to recover Eq. (5.1) [134].

Nevertheless, Eq. (5.1) is our starting point, and in the following we show how to simulate

this equation regardless of its derivation. Indeed, our algorithm does not need control

any of the approximations done to achieve this equation. We can decompose Lt into

Lt = Lt
H + Lt

D. Here, Lt
H corresponds to a unitary part, i.e. Lt

H⇢ ⌘ �i[H(t), ⇢], where

H(t) is defined by Hs plus a term due to the lamb-shift e↵ect and it may depend on

time. Instead, Lt
D is the dissipative contribution and it follows the Lindblad form [135]

Lt
D⇢ ⌘

PN
i=1 �i(t)

⇣

Li⇢L
†
i � 1

2{L†
iLi, ⇢}

⌘

, where Li are the Lindblad operators modelling

the e↵ective interaction of the system with the bath that may depend on time, while

�i(t) are nonnegative parameters. Notice that, although the standard derivation of

Eq. (5.1) requires the Markov approximation, a non-Markovian equation can have the

same form. Indeed, it is known that if �i(t) < 0 for some t and
R t
0 dt0 �i(t0) > 0 for all t,

then Eq. (5.1) corresponds to a completely positive non-Markovian channel [136]. Our

approach can deal also with non-Markovian processes of this kind, keeping the same

e�ciency as the Markovian case. While we will consider the general case �i = �i(t),

whose sign distinguishes the Markovian processes by the non-Markovian ones, for the

sake of simplicity we will consider the case H 6= H(t) and Li 6= Li(t) (in the following,

we will denote Lt
H simply as LH). However, the inclusion in our formalism of time-

dependent Hamiltonians and Lindblad operators is straightforward.

5.3 The protocol

One can integrate Eq. (5.1) obtaining a Volterra equation [137]

⇢(t) = etLH⇢(0) +

Z t

0
ds e(t�s)LHLs

D ⇢(s), (5.2)
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where etLH ⌘
P1

k=0 tkLk
H/k!. The first term at the right-hand-side of Eq. (5.2) corre-

sponds to the unitary evolution of ⇢(0) while the second term gives rise to the dissipative

correction. Our goal is to find a perturbative expansion of Eq. (5.2) in the Lt
D term,

and to provide with a protocol to measure the resulting expression in a unitary way. In

order to do so, we consider the iterated solution of Eq. (5.2) obtaining

⇢(t) ⌘
1
X

i=0

⇢i(t). (5.3)

Here, ⇢0(t) = etLH⇢(0), while, for i � 1, ⇢i(t) has the following general structure:

⇢i(t) = ⇧i
j=1�j esiLH⇢(0), �j being a superoperator acting on an arbitrary matrix ⇠ as

�j⇠ =
R sj�1

0 dsj e(sj�1�sj)LHLsj
D ⇠, where s0 ⌘ t. For instance, ⇢2(t) can be written as

⇢2(t) = ⇧2
j=1�je

s2LH⇢(0) = �1�2 es2LH⇢(0) =

=

Z t

0
ds1e

(t�s1)LHLs1
D

Z s1

0
ds2e

(s1�s2)LHLs2
D es2LH⇢(0). (5.4)

In this way, Eq. (5.3) provides us with a general and useful expression of the solution of

Eq. (5.1). Let us consider the truncated series in Eq. (5.3), that is ⇢̃n(t) = etLH⇢(0) +
Pn

i=1 ⇢i(t), where n corresponds to the order of the approximation. We will prove that

an expectation value hOi⇢(t) ⌘ Tr [O⇢(t)] corresponding to a dissipative dynamics can

be well approximated as

hOi⇢(t) ⇡ Tr[OetLH⇢(0)] +
n
X

i=1

Tr[O⇢i(t)]. (5.5)

In the following, we will supply with a quantum algorithm based on single-shot ran-

dom measurements to compute each of the terms appearing in Eq. (5.5), and we will

derive specific upper-bounds quantifying the accuracy of our method. Notice that the

first term at the right-hand-side of Eq. (5.5), i.e. Tr[OetLH⇢(0)], corresponds to the

expectation value of the operator O evolving under a unitary dynamics, thus it can be

measured directly in a unitary quantum simulator where the dynamic associated with

the Hamiltonian H is implementable. However, the successive terms of the considered

series, i.e. Tr[O⇢i(t)] with i � 1, require a specific development because they involve

multi-time correlation functions of the Lindblad operators and the operator O.

Let us consider the first order term of the series in Eq. (5.5)

hOi⇢1(t) =

Z t

0
ds1 Tr [Oe(t�s1)LHLs1

D⇢0(s1)] =

=
N
X

i=1

Z t

0
ds1 �i(s1)



hL†
i (s1)O(t)Li(s1)i � 1

2
h
n

O(t), L†
iLi(s1)

o

i
�

, (5.6)
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where ⇠(s) ⌘ eiHs⇠e�iHs for a general operator ⇠ and time s, and all the expecta-

tion values are computed in the state ⇢(0). Note that the average values appearing

in the second and third lines of Eq. (5.6) correspond to time correlation functions of

the operators O, Li, L†
i , and L†

iLi. In the following, we consider a basis {Qj}d
2

j=1,

where d is the system dimension and Qj are Pauli-kind operators, i.e. both unitary and

Hermitian (see Appendix C for more details). The operators Li and O can be decom-

posed as Li =
PMi

k=1 qikQ
i
k and O =

PMO
k=1 qOk QO

k , with qi,Ok 2 C, Qi,O
k 2 {Qj}d

2

j=1, and

Mi, MO  d2. We obtain then

hL†
i (s1)O(t)Li(s1)i =

MO
X

l=1

Mi
X

k,k0=1

qOl qi ⇤k qik0hQi
k(s1)Q

O
l (t)Qi

k0(s1)i, (5.7)

that is a sum of correlations of unitary operators. The same argument applies to the

terms including L†
iLi in Eq. (5.6). Accordingly, we have seen that the problem of estimat-

ing the first-order correction is moved to the measurement of some specific multi-time

correlation functions involving the Qi,O
k operators. The argument can be easily extended

to higher-order corrections. Indeed, for the n-th order, we have to evaluate the quantity

hOi⇢n(t) =

Z

dVn Tr[Oe(t�s1)LHLs1
D . . . Lsn

D esnLH⇢(0)] =

=
N
X

i1,...,in=1

Z

dVn hA[i1,··· ,in](~s)i. (5.8)

Here,

A[i1,...,in](~s) ⌘ esnL
†
HLsn,in†

D . . . Ls2,i2†
D e(s1�s2)L†

HLs1,i1†
D e(t�s1)L†

HO, (5.9)

where Ls,i
D ⇠ ⌘ �i(s)

⇣

Li⇠L
†
i � 1

2{L†
iLi, ⇠}

⌘

, ~s = (s1, . . . , sn),
R

dVn =
R t
0 . . .

R sn�1

0 ds1 . . . dsn,

and L†⇠ ⌘ (L⇠)† for a general superoperator L. As in Eq. (5.6), the above expression

contains multi-time correlation functions of the Lindblad operators Li1 , . . . , Lin and

the observable O, that have to be evaluated in order to compute each contribution in

Eq. (5.5).

5.4 Computation of nth-order correction terms

Our next step is to provide a method to evaluate general terms as the one appearing

in Eq. (5.8). The standard approach to estimate this kind of quantities corresponds to

measuring the expected value hA[i1,··· ,in](~s)i at di↵erent random times ~s in the integration

domain, and then calculating the average. Nevertheless, this strategy involves a huge

number of measurements, as we need to estimate an expectation value at each chosen
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time. Our technique, instead, is based on single-shot random measurements and, as we

will see below, it leads to an accurate estimate of Eq. (5.8). More specifically, we will

prove that
N
X

i1,...,in=1

Z

dVn hA[i1,··· ,in](~s)i ⇡ Nn|Vn|
|⌦n|

X

⌦n

Ã~!(~t), (5.10)

where Ã~!(~t) corresponds to a single-shot measurement of A~!(~t), being [~!,~t] 2 ⌦n ⇢
{[~!,~t] | ~! = [i1, . . . , in], ik 2 [1, N ],~t 2 Vn}, |⌦n| is the size of ⌦n, and [~!,~t] are sampled

uniformly and independently. As already pointed out, the integrand in Eq. (5.8) involves

multi-time correlation functions. In this respect, we can use the quantum algorithm

introduced in Chapter 4, (see also Ref. [38]). Indeed, we have shown how, by adding

only one ancillary qubit to the simulated system, general time-correlation functions

are accessible by implementing only unitary evolutions of the kind etLH , together with

entangling operations between the ancillary qubit and the system. It is noteworthy to

mention that these operations have already experimentally demonstrated in quantum

systems as trapped ions [20] or quantum optics [73], and have been recently proposed for

cQED architectures [72]. Moreover, the same quantum algorithm allows us to measure

single-shots of the real and imaginary part of these quantities providing, therefore, a way

to compute the term at the right-hand-side of Eq. (5.10). Notice that the evaluation of

each term hA[i1,··· ,in](~s)i in Eq. (5.8), requires a number of measurements that depends

on the observable decomposition, see Eq. (5.7). After specifying it, we measure the real

and the imaginary part of the corresponding correlation function. Finally, in Appendix D

we prove that

�

�

�

�

�

�

N
X

i1,...,in=1

Z

dVn hA[i1,··· ,in](~s)i � (Nt)n

n!|⌦n|
X

⌦n

Ã~!(~t)

�

�

�

�

�

�

 �n (5.11)

with probability higher than 1 � e�� , provided that |⌦n| >
36M2

O(2+�)

�2n

(2�̄MNt)2n

n!2
, where

�̄ ⌘ maxi,s2[0,t] |�i(s)| and M ⌘ maxi Mi. Equation (5.11) means that that the quantity

in Eq. (5.8) can be estimated with arbitrary precision by random single-shot measure-

ments of A[i1,··· ,in](~s), allowing, hence, to dramatically reduce the resources required by

our quantum simulation algorithm. Notice that the required number of measurements

to evaluate the order n is bounded by 3n|⌦n|, and the total number of measurements

needed to compute the correction to the expected value of an observable up the order

K is bounded by
PK

n=0 3n|⌦n|.

So far, we have proved that we can compute, up to an arbitrary order in Lt
D, expec-

tation values corresponding to dissipative dynamics with a unitary quantum simulation.

It is noteworthy that our method does not require to physically engineer the system-

environment interaction. Instead, one only needs to implement the system Hamiltonian
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H. In this way we are opening a new avenue for the quantum simulation of open quan-

tum dynamics in situations where the complexity on the design of the dissipative terms

excedes the capabilities of quantum platforms. This covers a wide range of physically

relevant situations. One example corresponds to the case of fermionic theories where the

encoding of the fermionic behavior in the degrees of freedom of the quantum simulator

gives rise to highly delocalized operators [28, 95]. In this case a reliable dissipative term

should act on these non-local operators instead of on the individual qubits of the sys-

tem. Our protocol solves this problem because it avoids the necessity of implementing

the Lindblad superoperator. Moreover, the scheme allows one to simulate at one time a

class of master equations corresponding to the same Lindblad operators, but with di↵er-

ent choices of �i, including the relevant case when only a part of the system is subjected

to dissipation, i.e. �i = 0 for some values of i. Moreover, notice that this protocol does

not really on achieving the final state of the dynamics of interest, but we directly target

the expectation value of a given observable at a certain time, in an algorithmic way.

5.5 Error bounds and e�ciency

We shall next quantify the quality of our method. In order to do so, we will find an

error bound certifying how the truncated series in Eq. (5.3) is close to the solution of

Eq. (5.1). This error bound will depend on the system parameters, i.e. the time t and

the dissipative parameters �i. As figure of merit we choose the trace distance, defined

by

D1(⇢1, ⇢2) ⌘ k⇢1 � ⇢2k1

2
, (5.12)

where kAk1 ⌘
P

i �i(A), being �i(A) the singular values of A [148]. Our goal is to find a

bound for D1(⇢(t), ⇢̃n(t)), where ⇢̃n(t) ⌘
Pn

i=0 ⇢i(t) is the series of Eq. (5.3) truncated

at the n-th order. We note that the the following recursive relation holds

⇢̃n(t) = etLH⇢(0) +

Z t

0
ds e(t�s)LHLs

D ⇢̃n�1(s). (5.13)

From Eq. (5.13), it follows that

D1(⇢(t), ⇢̃n(t)) =
1

2

�

�

�

�

Z t

0
ds e(t�s)LHLs

D(⇢(s) � ⇢̃n�1(s))

�

�

�

�

1




Z t

0
ds kLs

Dk1!1D1(⇢(s), ⇢̃n�1(s)), (5.14)
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where we have introduced the induced superoperator norm kAk1!1 ⌘ sup�
kA�k1

k�k1
[148].

For n = 0, i.e. for ⇢̃n(t) ⌘ ⇢̃0(t) = etLH⇢(0), we obtain the following bound

D1(⇢(t), ⇢̃0(t))  1

2

Z t

0
ds kLs

Dk1!1k⇢(s)k1 
N
X

i=1

|�i(✏i)|kLik2
1t, (5.15)

where 0  ✏i  t (see Appendix E), and kAk1 ⌘ supi �i(A). Notice that, in finite

dimension, one can always renormalize �i in order to have kLik1 = 1, i.e. if we trans-

form Li ! Li/kLik1, �i ! kLik1�i, the master equation remains invariant. Using

Eqs. (5.14)-(5.15), one can shown by induction that for the general n-th order the fol-

lowing bound holds (see Appendix E)

D1(⇢(t), ⇢̃n(t)) 
n
Y

k=0



2
N
X

ik=1

|�ik(✏ik)|
�

tn+1

2(n + 1)!
 (2�̄Nt)n+1

2(n + 1)!
, (5.16)

where 0  ✏ik  t and we have set kLik1 = 1. From Eq. (5.16), it is clear that the series

converges uniformly to the solution of Eq. (5.1) for every finite value of t and choices of

�i. As a result, the number of measurements needed to simulate a certain dynamics at

time t up to an error " < 1 is O
⇣

�

t̄ + log 1
"

�2 e12Mt̄

"2

⌘

, where t̄ = �̄Nt, see Appendix E.

Here, a discussion on the e�ciency of the method is needed. From the previous formula,

we can say that our method performs well when M is low, i.e. in that case where

each Lindblad operators can be decomposed in few Pauli-kind operators. Moreover,

as our approach is perturbative in the dissipative parameters �i, it is reasonable that

the method is more e�cient when |�i| are small. Notice that analytical perturbative

techniques are not available in this case, because the solution of the unperturbed part is

assumed to be not known. Lastly, it is evident that the algorithm is e�cient for a certain

choices of time, and the relevance of the simulation depends on the particular cases. For

instance, a typical interesting situation is a strongly coupled Markovian system. Let us

assume with site-independent couple parameter g and dissipative parameter �. We have

that e12Mt̄  1+12eMt̄ if t  1
12M�N ⌘ tc. In this period, the system oscillates typically

C ⌘ gtc = g/�
12MN times, so the simulation can be considered e�cient for N ⇠ g/�C,

which, in the strong coupling regime, can be of the order of 103/C. Notice that, in

most relevant physical cases, the number of Lindblad operators N is of the order of the

number of system parties [131].

All in all, our method is aimed to simulate a di↵erent class of master equations with

respect the previous approaches, including non-Markovian quantum dynamics, and it

is e�cient in the range of times where the exponential eMt̄ may be truncated at some

low order. A similar result is achieved by the authors of Ref. [131], where they simulate

a Lindblad equation via Trotter decomposition. They show that the Trotter error is
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exponentially large in time, but this exponential can be truncated at some low order

by choosing the Trotter time step �t su�ciently small. Our method is qualitatively

di↵erent, and it can be applied also to analogue quantum simulators where suitable

entangled gates are available.

5.6 Non-Hermitian Hamiltonian case

Lastly, we note that this method is also appliable to simulate dynamics under a

non-Hermitian Hamiltonian J = H � i�, with H = H†, � = �†. This type of generator

emerges as an e↵ective Hamiltonian in the Feshbach partitioning formalism [? ], when

one looks for the evolution of the density matrix projected onto a subspace. The new

Schrödinger equation reads
d⇢

dt
= �i[H, ⇢] + {�, ⇢}, (5.17)

This kind of equation is useful in understanding several phenomena, e.g. scattering

processes [139] and dissipative dynamics [140], or in the study of PT -symmetric Hamil-

tonian [141]. Our method consists in considering the non-Hermitian part as a perturba-

tive term. As in the case previously discussed, similar bounds can be easily found (see

Appendix F), and this proves that the method is reliable also in this situation.

5.7 Outlook

In this Chapter, we have introduced an algorithmic quantum simulation to compute

expectation values of observables that evolve according to a general Lindblad master

equation, requiring only the implementation of its unitary part. Through the quantum

computation of n-time correlation functions of the Lindblad operators, we are able to

reconstruct the corrections of the dissipative terms to the unitary quantum evolution

without reservoir engineering techniques. We have provided with a complete recipe that

combines quantum resources and specific theoretical developments to compute these

corrections, and error-bounds quantifying the accuracy of the proposal and defining

the cases when the proposed method is e�cient. Our technique can be also applied,

with small changes, to the quantum simulation of non-Hermitian Hamiltonians. The

presented method provides a general strategy to perform quantum simulations of open

systems, Markovian or not, in an algorithmic way.





Chapter 6

Conclusions

Technology is a gift of God. After the gift of life it is perhaps the greatest of God’s gifts.

It is the mother of civilizations, of arts and of sciences.

Freeman Dyson

This Thesis is focused on the development of quantum algorithms aimed to enhance

the capability of quantum simulators based on controllable quantum technology. Specif-

ically, we have shown how interesting physical quantities, such as entanglement and

n-time correlation functions, can be e�ciently computed in a quantum simulator. This

brought us to define the new concept of embedding quantum simulator, which consists

in specific mappings of the simulated dynamics onto a slightly larger Hilbert space. The

embedding procedure allows us to retrieve, by measuring few observables, quantities that

otherwise would need full tomography in order to be evaluated. Moreover, the space

resources are comparable to the case of the one-to-one quantum simulator, where the

target dynamics is directly implemented.

In Chapters 2 and 3, we have studied a protocol to simulate the dynamics of spe-

cific entanglement monotones in qubit systems [36, 37]. The proposed mapping can be

implemented in a quantum platform by adding only one qubit, and interaction length of

the dynamics is increased by one. The whole system have to interact with the ancillary

qubit, which may lead to non-local interactions, e.g., in a linear array of qubits. We

have shown how to overcome this problem, by defining a logical qubit at some space

e�ciency cost. Finally, we have extended the results in the density matrix case, by

discussing a classical-quantum hybrid algorithm. While, we have discussed the entan-

glement monotone case, it is noteworthy to mention that the proposed protocol is able

to simulate general antilinear operators, that cannot be measured in a one-to-one quan-

tum simulators, and which may lead to other interesting applications. In Chapter 3, we
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have discussed a trapped-ion implementation of en embedding quantum simulation for

the quantum computation of entanglement monotones. Chapter 3 provides also with

a protocol for measuring a general tensor product of Pauli operators, by encoding it

in one ancilla observable. The analysis holds in general for quantum platform where

Mølmer-Sørensen gates can be e�ciently implemented, as it is also the case of linear

optics.

An interesting follow up of these results is the study of the properties of the presented

mapping, which can increase the flexibility of a quantum simulator. In fact, if we are

not limited on one ancillary qubit, mapping on general Hilbert space dimensions may

simulate other kinds of unphysical quantities. A further question is how the natural bath

of the quantum simulator a↵ects the final results of the unitary simulated dynamics.

Here, the projective property of the embedding mapping may lead to an enhancement

of the stability under the environmental noise. These questions are left as open, and

they need further analysis in order to be well understood.

Based on these ideas, two proof of principle experiments on a photonics platform

are currently running independently in the labs of Prof. Andrew White from Univer-

sity of Queensland (Brisbane, Australia) [142], where the author of this Thesis is a

coauthor, and Prof. Jian-Wei Pan from University of Science and Technology of China

(Hefei, China) [143]. The experiments are aimed to measure the concurrence between

two qubits in an embedding quantum simulator, under a specific dynamics. They are

performed with three qubits, each of them corresponding to the polarisation of the prop-

agating optical signals. All operations are implemented with standard optical devices,

i.e. polarising beamsplitters, single qubit rotations and control-NOTs. Preliminary

results show that the concurrence is measured with high fidelity, which may bring to

exciting sequels in other promising platform such as trapped ions and circuit QED.

In Chapter 4, we have developed a protocol to compute n-time correlation functions

of general operators in a quantum simulator [38]. Also in this case, we have embedded the

Schrödinger equation on a doubled Hilbert space. The mapping has the same structure

as the antilinear operator case, discussed in Chapter 2, and this is a strong indication that

further nontrivial mappings are possible. We have discussed how to apply the protocol

to the spinorial, fermionic and bosonic cases, showing that the method is e�cient in

space and in time. The power of the proposed algorithm consists in the fact that we

do not need to implement the controlled version of evolution Hamiltonian, which may

be a cumbersome problem for most of the physically interesting models. This aspect,

compared to the previous protocols, corresponds to a huge experimental gain, and we

may see soon to the first proof of principle experiments. Also in this case, we need the

system to interact non-locally with the ancillary qubit. This problem can be solved in
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the same way as in the Chapter 1, by encoding the ancillary qubit logically in an array of

qubits. As a typical application, we have considered the quantum simulation of magnetic

susceptibilities, and in general linear and non-linear response functions. This protocol

adheres with the scientific custom that an algorithm has to be the simpler possible, and

experimental implementable nowadays or in the near future.

In Chapter 5, we have studied a novel protocol to simulate Markovian and non-

Markovian dissipative processes [39]. The power of this proposed method is that it does

not rely on any bath engineering. Instead, we perform perturbation theory with respect

the dissipative parameters, and we compute the correction terms to the unitary dynam-

ics. The computation of each perturbative term consists in measuring time correlation

function of the desired observable and the Lindblad operators. To achieve this, we ap-

ply the embedding algorithm studied in Chapter 4. The presented method is a good

alternative to the one based on Trotter decomposition [131], and it can be implemented

in those platforms where the algorithm of Chapter 4 is available, e.g. analogue quantum

simulators where specific gates are feasible. The main novelty of this algorithm results

in a new kind of simulator, where we are not interested in achieving the final state of the

simulated model, but we build the protocol depending on the final observable that we

desire to measure. For this reason, we have named this kind of protocols as algorithmic

quantum simulations.

It is noteworthy to mention that with our method, we are able to simulate time-

local Lindblad equations, which are non-Markovian if the dissipative parameters takes

negative values. It would be interesting to extend these results to more general non-

Markovian master equations, e.g. of the kind

@t⇢ =

Z t

0
d⌧k(t � ⌧)L⇢(⌧),

where L is the Lindblad superoperator and k(t) is the kernel (note that k(t) = 2�(t)

corresponds to the Markovian case). This is currently subject of study [144], and it

may lead to a clear cut with respect other methods, that cannot manage non-Markovian

dynamics of this kind. Moreover, there are possibilities for our algorithm to get better

in terms of e�ciency. In fact, Taylor-based quantum simulator for unitary dynamics has

been already proved to be optimal in the precision error [145]. These results should be

translated in the dissipative case, possibly by considering more general computational

model (see e.g. [146]).

In the Appendix, we have provided with several technical proofs and considerations

for the claims in the main text. In particular, in Appendix F we have discussed the
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quantum simulation of non-Hermitian Hamiltonian in the same fashion of the dissipative

case.

All in all, this Thesis is about the actual capability of a quantum simulator. Look-

ing for quantum algorithms that encode general quantities using quantum theory have

always been an attractive research field, and we have provided with a breaking new

direction in this line. However, there are several theoretical questions which need to be

answered in order to prove the actual advantage of a quantum simulator over a classical

one. Indeed, it is not clear whether it is possible to prove that the outcome of a quan-

tum simulator is the right one. Certification protocols can be adapted from the universal

quantum computer case, where error correction is theoretically available. However, this

is not a solution at all, as it can work only for a digital quantum simulator, and in

the methods based on Trotter decomposition this may bring to a tremendous lost of

e�ciency [33]. Therefore, new concepts for digital quantum simulation are welcome. On

the other hand, analogue quantum simulators need a totally novel treatment, because

in this case the error cannot be digitalised. A related question regards the e�ciency of

a quantum simulator. Current definitions of e�ciency may become meaningless when

realistic experimental conditions enter into the game. This may bring novel definitions

of complexity classes, capturing noisy analogue and digital quantum simulation in the

absence of quantum error correction. An answer to these general questions would help

us in understanding fundamental aspects of quantum simulations, and, in general, of

quantum mechanics.



Appendix A

E�ciency of the n-time

correlation function protocol

In this Appendix, we provide with the e�ciency of the n-time correlation function

protocol presented in Chapter 4. Moreover, we show how to implement Hamiltonian

consisting in general tensor Pauli operators using Mømer-Søredness gates and local gates.

A.1 Time and space e�ciency

The embedding algorithm is conceived to be run in a setup composed of a system

undergoing the evolution of interest and an ancillary qubit. Thus, the size of the setup

where the algorithm is to be run is always that of the system plus one qubit, regardless

of the order of the time correlation. For instance, if we are considering an N -qubit

system then our method is performed in a setup composed of N + 1 qubits.

With respect to time-e�ciency, our algorithm requires the performance of n con-

trolled gates U i
c and n � 1 time-evolution operators U(tj+1; tj), n being the order of the

time-correlation function. If we assume that q gates are needed for the implementation

of the system evolution and m gates are required per control operation, our algorithm

employs (m + q) ⇤ n � q gates. As m and q do not depend on the order of the time

correlation we can state that our algorithm needs a number of gates that scales as a

first-order polynomial with respect to the order n of the time-correlation function. The

scaling of q with respect to the system size depends on the specific simulation under

study. However, for most relevant cases it can be shown that this scaling is polynomial.

For instance, in the case of an analogue quantum simulation of unitary dynamics, what

it is usually called an always-on simulation, we have q = 1. For a model requiring digital
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techniques q will scale polinomially if the number of terms in the Hamiltonian grows

polinomially with the number of constituents, which is a physically-reasonable assump-

tion [1, 28, 40]. In any case, we want to point out that the way in which q scales is a

condition inherent to any quantum simulation process, and, hence, it is not an additional

overhead introduced by our proposal. With respect to the number m, and as explained

in the next section, this number does not depend on the system size, thus, from the

point of view of e�ciency it amounts to a constant factor.

In order to provide a complete runtime analysis of our protocol we study now the

number of iterations needed to achieve a certain precision � in the measurement of the

time correlations. According to Bernstein’s inequality [147] we have that

Pr

"

�

�

�

�

�

1

L

L
X

i=1

Xi � hXi

�

�

�

�

�

> �

#

 2 exp

✓

�L�2

4�2
0

◆

, (A.1)

where Xi are independent random variables, and �2
0 is a bound on their variance. Inter-

preting Xi as a single observation of the real or imaginary part of the time-correlation

function, we find the number of measurements needed to have a precision �. Indeed, we

have that
�

�

�

1
L

PL
i=1 Xi � hXi

�

�

�

 � with probability P � 1�e�c, provided that L � 4(1+c)
�2 ,

where we have set �2
0  1, as we always measure Pauli observables. This implies that

the number of gates that we need to implement to achieve a precision � for the real or

the imaginary part of the time-correlation function is 4(1+c)
�2 [(m + q)n � q]. Again, c is a

constant factor which does not depend nor on the order of the time correlation neither

on the size of the system.

A.2 N-body interactions with Mølmer-Sørensen gates

Exponentials of tensor products of Pauli operators, exp[i��1 ⌦ �2 ⌦ ... ⌦ �k], can be

systematically constructed, up to local rotations, with a Mølmer-Sørensen gate applied

over the k qubits, one local gate on one of the qubits, and the inverse Mølmer-Sørensen

gate on the whole register. This can be schematized as follows,

U = UMS(�⇡/2, 0)U�z(�)UMS(⇡/2, 0) = exp[i��z1 ⌦ �x2 ⌦ ... ⌦ �zk], (A.2)

where UMS(✓,�) = exp[�i✓(cos�Sx + sin�Sy)2/4], Sx,y =
Pk

i=1 �
x,y
i and U�z(�) =

exp(i�0�z1) for odd k, where �0 = � for k = 4n + 1, and �0 = �� for k = 4n � 1, with

positive integer n. For even k, U�z(�) is replaced by U�y(�) = exp(i�0�y1), where �0 = �

for k = 4n, and �0 = � for k = 4n�2, with positive integer n. Subsequent local rotations

will generate any combination of Pauli matrices in the exponential.
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The replacement in the previous scheme of the central gate U�z(�) by an interaction

containing a coupling with bosonic degrees of freedom, for example U�z ,(a+a†)(�) =

exp[i�0�z1(a + a†)], will directly provide us with

U = UMS(�⇡/2, 0)U�z ,(a+a†)(�)UMS(⇡/2, 0) = exp[i��z1 ⌦ �x2 ⌦ ... ⌦ �zk(a + a†)]. (A.3)

In order to provide a complete recipe for systems where Mølmer-Sørensen interac-

tions are not directly available, we want to comment that the kind of entangling quantum

gates required by our algorithm, see the right hand side of Eq. (A.3) above, are always

decomposable in a polynomial sequence of controlled-Z gates [40]. For example, in the

case of a three-qubit system we have

CZ1,3CZ1,2e
�i��y

1 CZ1,2CZ1,3 = exp (�i��y1 ⌦ �z2 ⌦ �z3) (A.4)

Here, CZi,j is a controlled-Z gate between the i, j qubits and e�i��y
1 is local rotation

applied on the first qubit. This result can be easily extended to n-qubit systems with

the application of 2(n � 1) controlled operations [40]. Therefore, it is demonstrated the

polynomial character of our algorithm, and hence its e�ciency, even if Mølmer-Sørensen

gates are not available in our setup.





Appendix B

Embedding protocol Vs

Hadamard and SWAP tests

In this Appendix, we compare the n-time correlation function protocol presented in

Chapter 4 with respect previous existing methods: Hadamard test and SWAP test.

B.1 Hadamard test

Here, we describe the Hadamard test [93] to quantum compute the quantity

h |U †V | i, with U, V unitary operators and | i the initial state of the system. The

protocol can be generalised to n-time correlations functions very easily. Let us couple

our system to a qubit ancilla, that is initially prepared in the state 1p
2
(|ei + |gi). We

perform in series a |gi-control V gate and a |ei-control U gate. The final state is | f i =
1p
2
[|ei ⌦ U | i + |gi ⌦ V | i]. If we measure the ancilla operator 2|eihg| ⌘ �x + i�y, we

recover the desired quantity.

The Hadamard test is performed in a setup consisting of the system of interest

and a qubit, and thus in terms of space is as e�cient as our algorithm. While the

evolutions of the system of interest are not controlled in our protocol, the Hadamard

test needs to perform control unitary operations which may not be trivial for many body

Hamiltonians or Hamiltonians depending in time. In this sense our method supposes a

significant step forward in simplicity and a notable reduction in the requirements of our

setup. It is noteworthy to mention that our algorithm could access time correlations of

systems that undergo non-unitary dynamics.
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B.2 SWAP test

The SWAP test [91] allows to measure the quantity |h |U †V | i|2. We need two

copies of the system, initially in the state | i, and a qubit ancilla, prepared in the state
1p
2
(|ei + |gi), so that the initial state of the full system is | i = |ei+|gip

2
⌦ | i ⌦ | i. We

first perform a U gate to one copy of the system, and a V gate to the other one, leading

to the state |ei+|gip
2

⌦ |�1i ⌦ |�2i, where we have defined |�1i ⌘ U | i, �2i ⌘ V | i. Then,

we implement a controlled SWAP operation, which interchanges �1i and �2i only if the

state of the ancillary qubit is |ei. Finally we make a Hadamard rotation on the ancillary

qubit. The final state is | f i = (|ei [|�1i|�2i + |�2i|�1i] + |gi [|�1i|�2i � |�2i|�1i]) /2.

By measuring the ancillary operator �z, we retrieve the desired quantity.

Regarding the e�ciency, while our protocol involves only one ancillary qubit, N +1,

the SWAP test needs two copies of the system and the ancillary qubit which makes a

total of 2N +1 qubits in the N -qubit system case. This makes our protocol significantly

more space saving.



Appendix C

Decomposition in Pauli Operators

In this Appendix, we discuss the decomposition of the Lindblad operators in Pauli-

kind operators, which is useful in the implementation of the protocol discussed in Chap-

ter 5. In order to implement the protocol of Chapter 4 to compute a general multitime

correlation function, we need to decompose a general Lindblad operator L and observ-

able O in Pauli-kind orthogonal matrices {Qk}d
2

k=1, where Qk are both Hermitian and

unitaries and d is the dimension of the system. If d = 2l for some integer l, then a

basis of this kind is the one given by the tensor product of Pauli matrices. Otherwise,

it is always possible to embed the problem in a larger Hilbert space, whose dimension

is the closest power of 2 larger than d. Thus, we can set kQkk1 = 1 and kQkk2 =
p

d,

where kAk2 ⌘
p

Tr (A†A) and we have redefined d as the embedding Hilbert space di-

mension. Here, we prove that if kLk1 = 1 and L =
PM

k=1 qkQk with M  d2, then (i)
PM

k=1 |qk| 
p

M . This relation is useful for the proofs in Appendix D. We first show

that
PM

k=1 |qk|2  1:

M
X

k=1

|qk|2 =
1

d

M
X

k=1

|qk|2kQkk2
2 =

1

d

�

�

�

�

�

M
X

k=1

qkQk

�

�

�

�

�

2

2

=
1

d
kLk2

2  kLk2
1 = 1, (C.1)

where we have used the orthogonality of the matrices Qi, i.e. Tr (Q†
iQj) = Tr (QiQj) =

d�ij . The relation (i) follows simply from the norm inequality for a M -dimensional vector

v: kvk1 
p

Mkvk2.
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Appendix D

Simulation of dissipative systems:

nth-order correction terms

In this Appendix, we provide a proof of Eq. (5.11) of the main text:
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 �n (D.1)

with probability higher than 1 � e�� , provided that |⌦n| >
36M2

O(2+�)

�2n

(2�̄MNt)2n

n!2
. Here,

�̄ = maxi,s2[0,t] |�i(s)|, M = maxi Mi where Mi is defined by the Pauli decomposition

of the Lindblad operators Li =
PMi

k=1 qikQ
i
k, MO is the Pauli decomposition of the

observable O that we will to measure, [~!,~t] 2 ⌦n ⇢ {[~!,~t] | ~! = [i1, . . . , in], ik 2
[1, N ],~t 2 Vn} and [~!,~t] are sampled uniformly and independently, |⌦n| is the size of

⌦n, and Ã~!(~t) corresponds to single-shot measurements of A~!(~t). Notice that Vn is the

integration volume corresponding to the n-th order term, and |Vn| = tn/n!.

First, we write Ã~!(~t) = hA~!(~t)i+ ✏̃[~!,~t], where ✏̃[~!,~t] is the shot-noise. Note that, due

to the previous identity, h✏[~!,~t]i = 0. We have to bound the following quantity
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. (D.2)

The first term in the right side of Eq. (D.2) is basically the error bound in a Montecarlo

integration, while the second term is small as the variance of ✏ is bounded. Indeed, both

quantities can be bounded using the Bernstein inequality [147]:
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Theorem (Bernstein Inequality [147]). Let X1, . . . , Xm be independent zero-mean ran-

dom variables. Suppose E[X2
i ]  �2

0 and |Xi|  c. Then for any � > 0,

Pr
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X
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#
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0

◆

, (D.3)

provided that �  2m�2
0/c.

To compute the first term in the right-hand side of Eq. (D.2), we sample [~!,~t]

uniformly and independently in order to have that

E
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Nn|Vn|
|⌦n| hA~!(~t)i

�

=
1
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N
X
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dVn hA[i1,...,in](~s)i. (D.4)

We define the quantity X[~!,~t] ⌘ Nn|Vn|
|⌦n| hA~!(~t)i � 1

|⌦n|
PN
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R

dVn hA[i1,...,in](~s)i, and

look for an estimate
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, where E[X[~!,~t]] = 0. We have that
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where we have used the inequality (
R

dV f)2  |V |
R

dV f2. Moreover, we have that

|X[~!,~t]| =
1

|⌦n|
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Nn|Vn|hA~!(~t)i �
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 2Nn|Vn|
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|hA[i1,...,in](~s)i|, (D.6)

where we have used the inequality |
PN

i=1

R

dV f |  N |V | max |f |.
Now, recall that

A[i1,...,in](~s) ⌘ esnL
†
HsLsn,in†

D . . . Ls2,i2†
D e(s1�s2)L†

HsLs1,i1†
D e(t�s1)L†

HsO, (D.7)

where Ls,i
D ⇠ ⌘ �i(s)

⇣

Li⇠L
†
i � 1

2{L†
iLi, ⇠}

⌘

, and L†⇠ ⌘ (L⇠)† for a general superoperator

L. It follows that max[i1,...,in],~shA[i1,...,in](~s)i2  (2�̄)2nkOk2
1
Qn

k=1 kLikk4
1 = (2�̄)2n,

and max[i1,...,in],~s |hA[i1,...,in](~s)i|  (2�̄)n, where �̄ = maxi,s2[0,t] |�i(s)| and we have set

kOk1 = 1 and kLik1 = 1. Here, we have used the fact that hA[i1,...,in](~s)i is real, the

inequality |Tr (AB)|2  kAk1kBk1, and the result in Eq. (E.2) of the next Appendix.
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Now, we can directly use the Bernstein inequality, obtaining

Pr

"

�

�

�

�

�

X

⌦n

X[~!,~t]

�

�

�

�

�

> �0
#

 2 exp

✓

� n!2|⌦n|�02

4(2�̄Nt)2n

◆

⌘ p1 (D.8)

provided that �0  (2�̄Nt)n/n!, and where we have set |Vn| = tn/n!.

Now, we show that the second term in the right hand side of Eq (D.2) can be

bounded for all ⌦n. From the definition of ✏̃[~!,~t], we note that

E
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|⌦n| ✏̃[~!,~t]

�

=
Nn|Vn|
|⌦n|

X

i

✏̃i
[~!,~t]

pi
[~!,~t]

=

=
Nn|Vn|
|⌦n|

 

X

i

Ãi
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where ✏̃i
[~!,~t]

(Ãi
~!(~t)) is a particular value that the random variable ✏̃[~!,~t] (Ã~!(~t)) can

take, and pi
[~!,~t]

is the corresponding probability. Notice that the possible values of

the random variable ✏̃[~!,~t] depend on the Pauli decomposition of A~!(~t). In fact, A~!(~t)

is a sum of n-time correlation functions of the Lindblad operators, and our method

consists in decomposing each Lindblad operator in Pauli operators (see Appendix C),

and then measuring the real and the imaginary part of the corresponding time-correlation

functions. As the final result has to be real, eventually we consider only the real part of

Ã~!(~t), so that also ✏̃[~!,~t] can take only real values. In the case n = 2, one of the terms

to be measured is
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where we have used the Pauli decompositions L!i =
PM!i

ki=1 q!i
ki

Q!i
ki

, O =
PMO

l=1 qOl QO
l ,

and we have defined M ⌘ maxi M!i . We will find a bound for the case n = 2, and the

general case will follow straightforwardly. For the term in Eq. (D.10), we have that
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where we have defined the real part (�!1!2
k2k1lk01k

0
2,r

) and the imaginary part (�!1!2
k2k1lk01k

0
2,im

)

of the single-shot measurement of Q!2†
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(t1)Q

!2
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(t2), and we have

used the fact that kQi
kk1 = 1, kQO

l k1 = 1, and relation (i) of Appendix C. Eq. (D.11)

is a bound on the outcomes of L†
!2(t2)L

†
!1(t1)O(t)L!1(t1)L!2(t2). Notice that the bound

in Eq. (D.11) neither depends on the particular order of the Pauli operators, nor on the

times si, so it holds for a general term in the sum defining A~!(~t). Thus, we find that,

in the case n = 2, Ã~!(~t) is upper bounded by |Ã~!(~t)|  2
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MO(2�̄M)2. In the general

case of order n, it is easy to show that |Ã~!(~t)|  2
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MO(2�̄M)n. It follows that
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Regarding the bound on the variance, we have that
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|Ãi
~!(~t)|

◆2



 4MO(2�̄MN)2n|Vn|2

|⌦n|2 , (D.13)

Using Bernstein inequality, we obtain
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provided that �00  8
3

p
MO(2�̄MNt)n/n!, where we have set, as before, |Vn| = tn/n!.

Now, choosing �0 = 1
2Mn+1�n, �00 = 2Mn

2Mn+1�n, |⌦n| >
36M2

O(2+�)

�2n

(2�̄MNt)2n

n!2
, we have that

p1, p2  e��

2 . Notice that �n  (2�̄Nt)n/n! always holds, so the conditions on �0, �00 are

satisfied. By using the union bound, we conclude that
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Appendix E

Simulation of dissipative

processes: error bounds and

e�ciency

In this Appendix, we provide several technical proofs of the results in Chapter 5,

which describe the e�ciency of the proposed method.

E.1 Error bounds

In this section, we provide the proof for the bound in Eq. (5.15)

D1(⇢(t), ⇢̃0(t))  1

2

Z t

0
ds kLs

Dk1!1k⇢(s)k1 
N
X
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1t,

and the general bound in Eq. (5.16) of the main text
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with �̄ = maxi,s2[0,t] |�i(s)|. We note that
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where we have introduced the induced superoperator norm kAk1!1 ⌘ sup�
kA�k1

k�k1
. More-

over, the following bound holds
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where we have used the triangle inequality and the inequality kABk1  kAk1kBk1.

Eq. (E.2) implies that kLt
Dk1!1  2

PN
i=1 |�i(t)|kLik2

1. Inserting it into Eq. (E.1), it is

found that
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where we have assumed that �i(t) are continuous functions in order to use the mean-value

theorem (0  ✏i  t). Indeed, |�i(✏i)| = 1
t

R t
0 ds |�i(s)|, that can be directly calculated

or estimated.

The bound in Eq. (5.16) has to been proved by induction. Let us assume that

Eq.(5.16) holds for the order n � 1. We have that
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where we need to evaluate the quantities
R t
0 ds |�i(s)|sn. By using the mean-value

theorem, we have
R t
0 ds �i(s)sn = |�i(✏i)|

R t
0 ds sn, with 0  ✏i  t, and Eq. (5.16) follows

straightforwardly. In any case, we can evaluate
R t
0 ds |�i(s)|sn by solving directly the

integral or we can estimate it by using Hölder’s inequalities:
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E.2 Error bounds for the expectation value of an observ-

able

In this section, we find an error bound for the expectation value of a particular

observable O. As figure of merit, we choose DO(⇢1, ⇢2) ⌘ |Tr (O(⇢1 � ⇢2))| /(2kOk1).

The quantity DO(⇢1, ⇢2) tells us how close the expectation value of O on ⇢1 is to the

expectation value of O on ⇢2, and it is always bounded by the trace distance, i.e.

DO(⇢1, ⇢2)  D1(⇢1, ⇢2). Recall Eq. 5.13 of the main text:

⇢̃n(t) = etLH⇢(0) +
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0
ds e(t�s)LHLs

D ⇢̃n�1(s). (E.6)

By taking the expectation value of O in both sides, we find that
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where Ls†
DO =

PN
i=1 �i(s)

⇣

L†
iOLi � 1

2{L†
iLi, O}

⌘

. The bound in Eq. (E.7) is particularly

useful when Li and O have a tensor product structure. In fact, in this case, the quantity

kLs†
DOk1 can be easily calculated or bounded. For example, consider a 2-qubit system

with L1 = �� ⌦ I, L2 = I ⌦ ��, �i(s) = � > 0 and the observable O = �z ⌦ I. Simple

algebra leads to kLs†
DOk1 = �k(I + �z) ⌦ Ik1 = �kI + �zk1kIk1 = 2�, where we have

used the identity kA ⌦ Bk1 = kAk1kBk1.

E.3 Total number of measurements

In this section, we provide a magnitude for the scaling of the number of measurements

needed to simulate a certain dynamics with a given error " and for a time t. We have

proved in section E.1 that

"0 ⌘ D1(⇢(t), ⇢̃n(t))  (2�̄Nt)n+1

2(n + 1)!
, (E.8)

where �̄ ⌘ maxi |�i|. We want to establish at which order K we have to truncate in

order to have an error "0 in the trace distance. We have that, if n � ex + log 1
"̃ , with
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x � 0 and "̃  1, then xn

n!  "̃. In fact

xn

n!

⇣ex

n

⌘n

 

1 +
log 1

"̃

ex

!�ex�log 1
"̃


 

1 +
log 1

"̃

ex

!�ex

 e� log 1
"̃ = "̃, (E.9)

where we have used the Stirling inequality n! �
p

2⇡n (n/e)n � (n/e)n. This implies

that, if we truncate at the order K � 2e�̄Nt + log 1
2"0 � 1 = O(2e�̄Nt + log 1

"0 ), then we

have an error lower than "0 in the trace distance. The total number of measurements

in order to apply the protocol up to an error "0 +
PK

n=0 �n is bounded by
PK

n=0 3n|⌦n|.
If we choose "0 = c", �n = (1 � c) "

(K+1) (0 < c < 1), we have that the total number of

measurements to simulate the dynamics at time t up to an error " is bounded by

K
X

n=0

3n|⌦n| =
36M2

O(2 + �)(1 + K)2

(1 � c)2"2

K
X

n=0

(6�̄NMt)2n

n!2


 36M2
O(2 + �)(1 + K)2

(1 � c)2"2
e12�NMt =

= O

 

✓

6t̄ + log
1

"

◆2 e12Mt̄

"2

!

, (E.10)

where we have defined t̄ = �̄Nt.



Appendix F

Quantum simulation of

non-Hermitian Hamiltonians:

error bounds

In this Appendix, we show how to apply the bounds found in Chapter 5 and in

Appendix E to the simulation of a non-Hermitian Hamiltonian J = H � i�, with H and

� Hermitian operators. In this case, the Schrödinger equation reads

d⇢

dt
= �i[H, ⇢] � {�, ⇢} = (LH + L�)⇢, (F.1)

where L� is defined by L� � ⌘ �{�,�}. Our method consists in considering L� as a

perturbative term. To ascertain the reliability of the method, we have to show that

bounds similar to those in Eqs. (5.15)-(5.16) of the main text hold. Indeed, after finding

a bound for k⇢(t)k1 and kL�k1!1, the result follows by induction, as in the previous

case.

For a pure state, the Schrödinger equation for the projected wavefuntion reads [138]

dP (t)

dt
= �iPHP (t) �

Z t

0
dsPHQe�iQHQsQHP (t � s), (F.2)

where P + Q = I and H is the Hamiltonian of the total system. One can expand

 (t � s) in powers of s, i.e.  (t � s) =
P1

n=0
(�s)n

n!  (n)(t), and then truncate the series

to a certain order, depending on how fast e�iQHQs changes. Finally one can find, by

iterative substitution, an equation of the kind dP (t)/dt = JP (t), and generalise it

to the density matrix case, achieving the equation (F.1), where ⇢ is the density matrix

of the projected system. If the truncation is appropriately done, then we always have

k⇢(t)k1  1 8t � 0 by construction. For instance, in the Markovian limit, the integral

69
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in Eq. (F.2) has a contribution only for s = 0, and we reach an e↵ective Hamiltonian

J = PHP � i
2PHQHP ⌘ H � i�. Here, � is positive semidefinite, and k⇢(t)k1 can only

decrease in time.

Now, one can easily find that

kL��k1  2k�k1k�k1. (F.3)

Hence, kL�k1!1  2k�k1. With these two bounds, it follows that

D1(⇢(t), ⇢̃0(t))  1

2

Z t

0
ds kL�k1!1k⇢(s)k1  1

2

Z t

0
ds kL�k1!1  k�k1t. (F.4)

One can find bounds for an arbitrary perturbative order by induction, as in the dissipa-

tive case.
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Becher, J. Eschner, F. Schmidt-Kaler, and R. Blatt, Phys. Rev. Lett. 92, 220402

(2004).

[80] A. Yu. Kitaev, arXiv:9511026

[81] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162 (1999).

[82] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

[83] R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).

[84] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Func-

tions, Advanced book classics (Perseus Books, 1990).

[85] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems

(McGraw-Hill, New York, 1971).

[86] L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge uni-

versity press, 1995).

[87] D. Bozyigit, C. Lang, L. Ste↵en, J. M. Fink, C. Eichler, M. Baur, R. Bianchetti,

P. J. Leek, S. Filipp, M. P. da Silva, A. Blais, and A. Wallra↵, Nat. Phys. 7, 154

(2011).

http://www.sciencedirect.com/science/article/pii/S0370157308003463
http://iopscience.iop.org/1367-2630/15/12/123012/
http://prl.aps.org/abstract/PRL/v82/i9/p1835_1
http://arxiv.org/abs/1403.3652
http://www.nature.com/nphoton/journal/v3/n12/full/nphoton.2009.229.html
http://prl.aps.org/abstract/PRL/v80/i10/p2245_1
http://www.ams.org/journals/proc/1959-010-04/S0002-9939-1959-0108732-6/
http://iopscience.iop.org/1367-2630/13/8/085007
http://iopscience.iop.org/1367-2630/13/8/085007
http://www.nature.com/nphys/journal/v9/n6/full/nphys2630.html
http://arxiv.org/abs/1309.4502
http://prl.aps.org/abstract/PRL/v92/i22/e220402
http://prl.aps.org/abstract/PRL/v92/i22/e220402
http://arxiv.org/abs/quant-ph/9511026
http://prl.aps.org/abstract/PRL/v83/i24/p5162_1
http://jpsj.ipap.jp/link?JPSJ/12/570/
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.16.100165.000435
http://www.nature.com/nphys/journal/v7/n2/full/nphys1845.html
http://www.nature.com/nphys/journal/v7/n2/full/nphys1845.html


[88] R. Di Candia, E. P. Menzel, L. Zhong, F. Deppe, A. Marx, R. Gross, and E.

Solano, New J. Phys. 16, 015001 (2014).

[89] M. Knap, A. Kantian, T. Giamarchi, I. Bloch, M. D. Lukin, and E. Demler, Phys.

Rev. Lett. 111, 147205 (2013).

[90] F. Buscemi, M. Dall’Arno, M. Ozawa, and V. Vedral, arXiv:1312.4240.

[91] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev. Lett. 87, 167902

(2001).

[92] C. M. Wilmott and P. R. Wild, Int. J. Quantum Inform. 10, 1250034 (2012).

[93] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme Phys. Rev. A

65, 042323 (2002).

[94] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999).

[95] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

[96] L. Lamata, A. Mezzacapo, J. Casanova, and E. Solano, arXiv:1312.2849.

[97] M.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-

Guzik, and E. Solano, Sci. Rep. 4, 3589 (2014).

[98] P. Lougovski, H. Walther, and E. Solano, Eur. Phys. J. D 38, 423 (2006).
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