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A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible
only through approximation methods. The mean field theories, as the simplest practices of approximation
methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the
Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle
number conservation and completely erases quantumness characterized by concurrence and quantum
discord between different modes. We restore the symmetry by using the projected BCS theory and the exact
numerical solution and find that the lost quantumness is synchronously reestablished. We show that while
entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive
quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction
strengths. The new feature of discord offers promising applications in modern quantum technologies.

A
quantum many-body Hamiltonian H often possesses invariance under symmetry operations, exemplified
by the particle number N and the angular momentum J2, Jz. Proper treatments of symmetry are of great
importance in developing approximation methods for the Hamiltonian, in particular for strongly corre-

lated systems. Unfortunately, ubiquitous approximation methods such as the mean field approach usually require
breaking the symmetry of the Hamiltonian. For instance, the renowned BCS theory1, proposed for supercon-
ductivity and later for nuclear system, employs simple product wave functions of independent quasi-particles to
reveal the underlying physics, at a price of violating the particle-number conservation. The entire system under-
goes a phase transition to a symmetry-violating superfluid phase. In condensed matter physics, the particle-
number fluctuation of a bulk superconductor is weak and the symmetry breaking does not play a significant role.
On the contrary, the violation manifests itself in finite-size ensembles such as superconductive grains2 and nuclear
systems. For instance, the nuclear properties obtained in the BCS treatment are the average of the target nucleus
and its adjacent nuclei. The BCS theory successfully captures the dominant quantum correlation, i.e. the pairing
effect between single particle (electron or nucleon) states and their time-reversals, but thoroughly washes out
other correlations such as the correlations between different modes. These correlations might not be important
for bulk superconductors but apparently exist in finite-size systems, and can be restored by the symmetry-
restoration methods that go beyond the mean field approaches.

In quantum information theory, quantum and classical correlations can be distinguished specifically.
Quantum correlations characterize quantumness, measured by concurrence and quantum discord, of a correlated
system. It should be of great interest how quantumness varies with the process from violation to restoration of
symmetry. Here we study a two-level BCS model. The conventional BCS theory of the model violates the particle-
number conservation. We shall restore the conservation by the projected BCS (PBCS) method, which projects out
states with fixed particle numbers from the BCS wave function. It is noticeable that the lost quantumness is found
when the symmetry is restored. Quantumness and symmetry are destroyed and reestablished simultaneously. We
study the finite particle number effects on both concurrence and quantum discord in the case of large degeneracy.
To our surprise, while entanglement drops greatly with the particle number from the maximum at two end points
and then remains at half value, quantum discord behaves as an extensive quantity for a target system with a fixed
degeneracy. This implies that the paring interaction is effectively transparent to discord. Physically, discord
displays quantumness where a pair of qubits moves independently as if other qubits do not exist, whereas the
existence of other qubits severely affects the entanglement. According to their definitions, quantum discord is the
quantumness associated with quantum measurement, e.g. von Neumann measurement, on a system, while
entanglement is from the density matrix itself of the system. The difference is crystal clear. Quantum discord
seems to be a more general and fundamental nonclassical correlation than entanglement as pointed out in recent
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literatures3–6. As proved in Ref. 6, the set of states with zero-discord
has volume zero in the whole Hilbert space, very different from the
set of non-entangled states which have finite volumes. Since almost
all quantum states may be useful resources for discord-dependent
tasks due to their positive discord, our result that discord acts as an
extensive quantity, can be important in assessing availability of a
quantum state in various quantum information tasks.

The BCS theory1 was proposed to determine the fully paired
ground state of superconductors and later was translated into the
theories of nuclear structure7 since the pairing correlation was found
in low-lying states of even-even nuclei. In the past decade some
authors studied the entanglement of superconductors in the frame
of BCS model considering that it provides a solution to a quantum
many-body problem with an explicit wave function. Ref. 8 used
concurrence to quantify the entanglement of the BCS state of super-
conducting compounds. Ref. 9 analyzed the finite-size properties of
the two-level BCS model and discussed the entanglement properties
of the ground state via concurrence. Without loss of generality, we
now focus on the BCS application in nuclear systems, however, the
conclusions obtained can be applied to any finite systems directly.

The ground-state BCS wave function of an even-even nucleus
reads10

BCSj i~P
kw0

ukzvka{ka{�k

� �
0j i, ð1Þ

which violates particle-number conservation. Here a{k and a{�k are
fermionic creation operators of single particle state k and its time-
reversal �k, respectively. uk and vk are real variational parameters
satisfying the normalization condition u2

kzv2
k~1. These parameters

are determined by variation of the energy, with the restrictions that
the expectation value of particle number operator N̂ is equal to the
practical particle number N, i.e., BCSh jN̂ BCSj i~N .

The pure pairing interaction is widely used in nuclear BCS theory,
for it provides a simple and powerful description of paring correla-
tions in nuclei. A generic Hamiltonian with the pairing interaction
reads

H~
X
kw0

k a{kakza{�ka�k

� �
{
X

k,k’w0

Gkk’kk’a
{
ka{�ka�k’ak’, ð2Þ

where k
0s are single-particle energies and Gkk9kk9 are the strengths of

paring force dependent on the energy levels. The BCS theory is con-
venient and widely used. However it violates the particle number
conservation and the physics obtained from BCS treatment is an aver-
age of the target nucleus and its adjacent nuclei. This symmetry break-
ing can be restored by the PBCS theory11, as introduced in Method.

We now construct three bilinear fermionic operators, S kð Þ
z ~a{ka{�k ,

S kð Þ
{ ~a�kak and S kð Þ

0 ~
1
2

a{kakza{�ka�k{1
� �

, which play the same role

as spin operators (half of Pauli operators) and generate an su(2)

algebra. The operator S0 has eigenvalues +
1
2

depending on whether

the pair state k,�k
� �

is occupied or not. We denote the empty and
occupied with j0æ and j1æ, two states supporting a qubit. The equi-
valence between fermonic pairs and qubits is discussed in Refs. 12–
14. Specifically, a fermonic pair in k,�k

� �
corresponds to the kth qubit.

Results
Consider a simplified pairing Hamiltonian (2) (similar to the nuclear
model in Ref. 15, 16): two degenerate single particle energy levels, set
as 1~0 and 2~1, with the degeneracies V1 and V2, respectively.
The strengths of paring force are Gk�kk’�k’~4Gii i~1,2ð Þ for both k and
k9 in the same level i and Gk�kk’�k’~4G12~4G21 for k and k9 in different
levels. We focus on the low-lying states where all particles are

coupled in pairs. The BCS and PBCS wave functions are given by
Eqs. (1) and (32) in Methods.

Eq. (1) can be rewritten such that the BCS wave function becomes
a direct product state of qubit states of different modes. Both con-
currence and quantum discord are therefore vanishing. It shows that
while violating particle number conservation, BCS wave function
annihilates quantumness of different modes.

Now we calculate the reduced density matrix of two qubits A and B
under the PBCS wave function10. The Hilbert space of the two qubits
is spanned by the computational base, {j00æ, j01æ, j10æ, j11æ}, where in
each basis, the first (second) digit indicates the state of qubit A(B).
There are three different types of reduced density matrices, deter-
mined by the way qubits A and B occupy the two energy levels, and all
of them are a particular case of two-qubit X states17–20,22–24 with r14 5

r41 5 0, which in general reads

r~

r11 0 0 0

0 r22 r23 0

0 r32 r33 0

0 0 0 r44

0
BBB@

1
CCCA, ð3Þ

We distinguish the three types by superscripts (1), (2) and (3). Type
(1) denotes the case that both qubits A and B are in the lower level; (2)
A and B in the lower and the higher levels, respectively; (3) both A
and B in the higher level. The non-zero matrix elements of r(1) are:

r
1ð Þ

11 ~C
Xmin p,V1{2f g

i~max 0,p{V2f g

V1{2

i

 !
v2

1

u2
1

� �i V2

p{i

 !
v2

2

u2
2

� �p{i

,

r
1ð Þ

22 ~r
1ð Þ

33 ~r
1ð Þ

23 ~r
1ð Þ

32

~C
Xmin p,V1{1f g

i~max 1,p{V2f g

V1{2

i{1

 !
v2

1

u2
1

� �i V2

p{i

 !
v2

2

u2
2

� �p{i

,

r
1ð Þ

44 ~C
Xmin p,V1f g

i~max 2,p{V2f g

V1{2

i{2

 !
v2

1

u2
1

� �i V2

p{i

 !
v2

2

u2
2

� �p{i

,

ð4Þ

where
n
k

� �
stands for the number of combination, the common

factor C~u2V1
1 u2V2

2 . For the second type, the matrix elements are

r
2ð Þ

11 ~C
Xmin p,V1{1f g

i~max 0,p{V2z1f g

V1{1

i

 !
v2

1

u2
1

� �i V2{1

p{i

 !
v2

2

u2
2

� �p{i

,

r
2ð Þ

22 ~C
Xmin p{1,V1{1f g

i~max 0,p{V2f g

V1{1

i

 !
v2

1

u2
1

� �i V2{1

p{i{1

 !
v2

2

u2
2

� �p{i

,

r
2ð Þ

33 ~C
Xmin p{1,V2{1f g

i~max 0,p{V1f g

V1{1

p{i{1

 !
v2

1

u2
1

� �p{i V2{1

i

 !
v2

2

u2
2

� �i

,

r
2ð Þ

23 ~r
2ð Þ

32 ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

2ð Þ
22 r

2ð Þ
33

q
,

r
2ð Þ

44 ~C
Xmin p{1,V1f g

i~max 1,p{V2f g

V1{1

i{1

 !
v2

1

u2
1

� �i V2{1

p{i{1

 !
v2

2

u2
2

� �p{i

:

ð5Þ

The reduced density matrix of third type is similar to first one. When
V1 5 V2 5 V, the two types are connected by a simple relationship,
r(1)(p) 5 r(3)(2V2 p), due to the particle-hole symmetry with 2V2 p
being the hole number.

For the X-type density matrix, one can derive the expression of
concurrence as17

C rð Þ~max 0, 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r22r33
p

{2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r11r44
p	 


: ð6Þ
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The total correlation of the system can be written as18

I rð Þ~r11 log2 r11zr44 log2 r44z r22zr33ð Þ log2 r22zr33ð Þ

{ r11zr22ð Þ log2 r11zr22ð Þ{ r33zr44ð Þ log2 r33zr44ð Þ

{ r11zr33ð Þ log2 r11zr33ð Þ{ r22zr44ð Þ log2 r22zr44ð Þ:

ð7Þ

The classical correlation is defined, based on the von Neumann
measurements {Bk} (k 5 0, 1) on subsystem B, as

C rð Þ~{ r11zr22ð Þ log2 r11zr22ð Þ

{ r33zr44ð Þ log2 r33zr44ð Þ{min S1,S2f g,
ð8Þ

where we follow the discussions of Ref. 20 and here

S1~{r11 log2
r11

r11zr33
{r33 log2

r33

r11zr33

{r22 log2
r22

r22zr44
{r44 log2

r44

r22zr44

ð9Þ

and

S2~{
1{h

2
log2

1{h

2
{

1zh

2
log2

1zh

2
ð10Þ

with

h~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r11zr22{r33{r44ð Þ2z4r22r33

q
ð11Þ

Two-level case. We now consider a pair-correlated system with two
degenerate levels. We first compute concurrence and quantum
discord based on PBCS for a simple case that V1 5 V2 5 V, G11 5

G12 5 G21 5 G22 5 G. The concurrence and quantum discord of
three types versus pairing number p are shown in Fig. 1 (a) and (b),
respectively. At first glance, we notice that both curves of
concurrence and quantum discord exhibit symmetry about p 5 V,
perfectly for the second type, and approximately for the first and

third types, as well as the particle-hole symmetry between first case
and third case as mentioned above. Thus, in the following we only
need to concentrate our discussion on the region 0 # p # V and one
of the three types, e.g., type 2. The more meaningful and essential
result displayed in Fig. 1 is that concurrence and discord exhibit
totally different behaviors. From Fig. 1 (a) we can see that
concurrence starts with zero at p 5 0 corresponding to the BCS
ground state, jumps to the maximal value at p 5 1, then decreases
by near half and keeps almost unchanged with particle number.
Clearly, it shows that symmetry restoration results in the
reestablishment of entanglement.

On the other hand, Fig. 1 (b) shows that quantum discord also
starts with zero, indicating that the BCS state is not only unentangled
but also classic-only correlated. The different behavior of discord
occurs after p 5 1, it does not drop like concurrence but increases
with pair numbers until its highest value as the total maximal occu-
pation number of the two levels are half-filled. This fact implies
that concurrence and discord are different aspects of quantumness,
owing to their distinct nature. There have been some reports about
physical phenomena where entanglement and discord behave differ-
ently. A typical example is that discord can indicate the Kosterlitz-
Thouless phase transition in the XXZ model, whereas concurrence
cannot18,25,26.

In Fig. 2 we plot together the curves of concurrence and discord, as
well as the total correlation I rð Þ and classical correlation C rð Þ (refer
to Ref. 22 for detailed expressions) vs particle number for the second
type with V1 5 V2 5 20. Apart from the remarkable difference
between concurrence and quantum discord, we can also see that
D§C for the whole range of particle number, oppositing to the early
speculation that C§D for any quantum state27–29.

The Hamiltonian (2) can be exactly diagonalized. The numerical
calculations show that the differences between PBCS and the exact
solution will diminish with degeneracy and tend to vanish as the
degeneracy is large enough. For a small degeneracy, e.g., V1 5 V2

Figure 1 | PBCS calculations for (a) Concurrence and (b) Quantum discord versus particle-pair number p at the paring strength G 5 0.6, single
particle energies 1~0 and 2~1. Both levels have the same degeneracy V 5 20. The results of BCS are also drawn as a reference. All connection lines

between points are just for guiding eyes and the same below.

www.nature.com/scientificreports
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5 6, the fully restored quantum correlations measured by concurrence
and discord in the exact solution are slightly larger than those in PBCS.
It shows that PBCS is a perfect approximation to the exact solution in
the sense of restoring the quantum correlations. However, superior to
PBCS method, the exact diagonalization can even treat more compli-
cated cases. In particular, we set G11 5 0.7, G12 5 0.6, G22 5 0.5 for the
fixed V1 5 V2 5 6, and V1 5 7, V2 5 5 for the fixed G11 5 G12 5 G22

5 0.6, respectively. Fig. 3 shows concurrence and quantum discord,
and compare with a typical case that V1 5 V2 5 6 and G11 5 G12 5

G22 5 0.6. The deviations from the typical case are slight.
Comparing Fig. 2 and Fig. 3, we also notice that for larger degen-

eracy, quantum discord increases approximately linearly with par-
ticle (hole) pair, when p,q=V, indicating that it acts as an extensive
quantity like internal energy. We calculate the cases when V1 ? V2,
and G11 ? G22 5 G33 ? G44, and confirm that these interesting
properties remain the same. From Fig. 2, we can see that the quantum
mutual information, i.e., the total correlation displays a much better
linearity than discord. For p # 8 the variation of total correlation
versus p is very close to a straight line with slope , 0.42. For p # 4 the
quantum discord also coincides quite well with the straight line. An
extensive quantity normally is the sum of the properties of separate
noninteracting subsystems that compose the entire system. This
implies astonishingly that the pairing interaction is effectively trans-
parent to discord. For instance, discord as a function of the pairing
strength G: D Gð Þ?1:006 0:4ð Þ, 1.003(0.5), 0.998(0.7), 0.997(0.8),
0.996(0.9) and 0.995(1.0) in unit of D G~0:6ð Þ~0:03168 when V
5 120 and p 5 4. The values of D Gð Þ merely change with G, in
particular when G is strong. Physically, discord displays quantum-
ness where a pair of qubits moves independently as if other qubits do
not exist, whereas the existence of other qubits severely affects the
values of entanglement. Based on their definitions, discord reflects
the quantumness from quantum measurement on the interested
system, meanwhile entanglement is from the density matrix directly
of the system. In comparison with entanglement, discord quantifies
more general and more fundamental quantum correlations3–6. In
particular, Ref. 6 shows that the set of states with vanishing discord,
i.e., the set of classical states, has volume zero in the whole Hilbert
space. This is very different from the set of separable (non-entangled)
states, which exhibits finite volume. This result provides another

perspective for understanding the differences between entanglement
and discord. Considering that the existence of discord determines the
nontrivial properties of quantum states, it was shown that discord
may be the resource responsible for the quantum speedup4 in com-
putational models. This implies that almost all quantum states are
useful resources due to their positive discord. The feature, discord as
an extensive quantity, is expected to have new applications in
quantum information practices.

One-level case. In order to understand the above results deeply, we
consider a one-level system with degeneracyV. This is the limit of the
two-level cases when level difference vanishes. The density matrix
now reads

r~
1

V V{1ð Þ

q q{1ð Þ 0 0 0

0 pq pq 0

0 pq pq 0

0 0 0 p p{1ð Þ

0
BBB@

1
CCCA ð12Þ

where q 5 V 2 p is the hole-pair number in the single level. The
strength of paring force G does not appear in the density matrix,
which may be the reason why in the two-level case the entanglement
and correlations are hardly affected by the strength of paring force. It
turns out that it is paring correlation itself, rather than paring
interaction, that determines these novel properties of a pair-
correlated many-body system. Here we emphasize that r is
symmetric under the interchange of p and q, or interexchange of
states j00æ and j11æ, so are the entanglement, classical correlations
and quantum discord. In one-level case, all correlations have explicit
analytical expressions, the concurrence is

C rð Þ~ 2
V V{1ð Þ pq{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p p{1ð Þq q{1ð Þ

ph i
, ð13Þ

and the total correlation reads

I rð Þ~ p p{1ð Þ
V V{1ð Þ log2

p p{1ð Þ
V V{1ð Þz

q q{1ð Þ
V V{1ð Þ log2

q q{1ð Þ
V V{1ð Þ

z
2pq

V V{1ð Þ log2

2pq
V V{1ð Þ{

2p
V

log2

p
V

{
2q
V

log2

q
V

,

ð14Þ

Figure 2 | Discord, concurrence, total correlation, and classical correlation versus pair number p at the paring strength G 5 0.6, and V 5 20. Single

particle energies are 1~0 and 2~1.

www.nature.com/scientificreports
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As for classical correlation, we compare

S1~{
pq

V V{1ð Þ log2

q
V{1

{
p p{1ð Þ
V V{1ð Þ log2

p{1
V{1

{
pq

V V{1ð Þ log2

p
V{1

{
q q{1ð Þ
V V{1ð Þ log2

q{1
V{1

ð15Þ

and

S2~{
1{h

2
log2

1{h

2
{

1zh

2
log2

1zh

2
ð16Þ

with

h~
1

V V{1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p{qð Þ2 V{1ð Þ2z4p2q2

q
ð17Þ

We find that min {S1, S2} 5 S2, thus the classical correlation is given
by

C rð Þ~ 1{h

2
log2

1{h

2
z

1zh

2
log2

1zh

2

{
p
V

log2
p
V

{
q
V

log2
q
V

ð18Þ

and thereby the quantum discord is

D rð Þ~ p p{1ð Þ
V V{1ð Þ log2

p p{1ð Þ
V V{1ð Þz

q q{1ð Þ
V V{1ð Þ log2

q q{1ð Þ
V V{1ð Þ

z
2pq

V V{1ð Þ log2

2pq
V V{1ð Þ{

p
V

log2

p
V

{
q
V

log2

q
V

{
1{h

2
log2

1{h

2
{

1zh

2
log2

1zh

2
:

ð19Þ

These expressions are exactly symmetric under the interchange of p
and q, therefore all of them are even functions of p 2 q and their

extrema lie at p 5 q 5 V/2 and at the ends. In what follows we will
focus our discussions on particle pair p due to the symmetry. All
results are the same once replacing p with q. Concurrence C is a
monotone decreasing function of p for p , V/2 and reaches its
minimum at p 5 V/2. However, for a fixed degeneracy V, the
values of concurrence hardly vary with p, as shown in the above
equations. Concurrence has the limit, as V?1, p?1, p=V

C rð Þ^ 1
V{1

, ð20Þ

which is the same as its minimum at p~
V

2
. This indicates that

concurrence behaves as an intensive quantity. On the other hand,

concurrence vanishes at large V because of the factor
2

V V{1ð Þ in

Eq. (13). This result may be used to choose materials as the resource
of quantumness according to their degeneracy and the number of
particle (or hole) pairs.

On contrary to concurrence, the total correlation, classical cor-
relation and quantum discord behave completely differently. They
are monotonically increasing functions of p in the intervals p g (0,
V/2) with p 5 V/2 as the maximum. The maximal values are

Imax~log2

V{2
V{1

z
V

2 V{1ð Þ log2

2V
V{2

ð21Þ

Cmax~
1
4

V{2
V{1

log2

V{2
V{1

z
3V{2
V{1

log2

3V{2
V{1

� �
{1 ð22Þ

Dmax~
1
4

3V{2
V{1

log2
V{2

3V{2
z

2V
V{1

log2
2V

V{2

� �
z1 ð23Þ

When V?1, their limits are given by

Figure 3 | Concurrence and discord versus particle-pair number p from the exact solutions of Hamiltonian (2). Single particle energies are 1~0 and

2~1.
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Imax?
1
2

, ð24Þ

Cmax?
3
4

log2 3{1^0:189, ð25Þ

Dmax?
3
2
{

3
4

log2 3^0:311, ð26Þ

It means that no matter how large the degeneracy is, the above
correlations do not vanish but remain a constant.

Under the large degeneracy limits with small numbers of pairs, the
total correlation, classical correlation and quantum discord are

I rð Þ V?1,p=V

�� ^
2p
V

, ð27Þ

C rð Þ V?1,p=V

�� ^{
p
V

log2
p
V

, ð28Þ

D rð Þ V?1,p=V^
2p
V

���� z
p
V

log2
p
V
: ð29Þ

It is thus clear that the total correlation increases linearly with par-
ticle pair, while the quantum discord increases almost linearly, as
observed in the two-level case where the slope is , 0.42 whenV5 40.
We therefore further confirm, by the analytical one-level case that the
conclusions of discord being an extensive quantity in the two-level
case remains valid and should imply profound universality for any
many-body system consisting of pairwise correlated particles. These
theoretical results are obviously testable experimentally. For example
strong correlated many-body nuclear systems may allow to choose a
series of even-even isotones, which usually have the same single
particle levels for valence neutrons, to examine the dependance of
quantum correlations on the number of paired neutrons. We can also
select a group of nuclei which have the same number of valence
protons (or neutrons) but different valence shells to check our results
for quantum correlations.

Discussion
We have studied symmetry restoration and quantumness reestab-
lishment of the BCS theory, as well as the relationship between paring
correlation and quantumness in pair-correlated many-body systems.
Restored entanglement may not matter for bulk superconductors
because it keeps on a low level with particle-pair numbers.
Quantum discord, on the other hand, is an extensive quantity and
grows linearly with pair numbers. From the perspective of paring
interaction, a pair of qubits moves independently, while surrounding
qubits strongly affects entanglement of the target qubit pair. The
underlying origin of these effects should be from that discord is a
measurement-dependent quantity, while entanglement is only deter-
mined by the density matrix of the target system. Besides, because of
the volume-zero of the set of classic states, these states can be hardly
found in Hilbert space. Considering that in many physical systems,
quantum discord behaves qualitatively similar to entanglement, it is
significant to find physical entities where discord substantially differs
from entanglement. An example is that discord signals KT phase
transition while entanglement cannot. Our results display a new
aspect of the differences, with respect to particle number effect,
which may play a unique role in exploring strongly correlated sys-
tems like high temperature superconductors since the quantity is
hardly dependent on interactions in strong interaction regime30.
The new feature may hint profound physics behind quantum discord
and may offer promising applications for, e.g., certain quantum
computations.

It is worth mentioning that quantum discord can also be discussed
in a more general setup of positive operator valued measurements

(POVM)20,21. We can expect that, by considering POVM instead of
von Neumann measurement, the main results will remain essentially
the same. For X-states as considered here, extremization via POVM
can be reduced to orthogonal projectors for a number of states21.

Methods
BCS and PBCS. By introducing the Lagrange multiplier l, called the chemical
potential, we determine the BCS parameters by variation of the BCS expectation value
of H’~H{lN̂

BCSh jH’ BCSj i~
X
kw0

k{lð Þv2
kz

X
k,k’w0

Gkk’kk’v
2
k v2

k’

z
X

k,k’w0

Gk�kk’�k’ukvkuk’vk’,
ð30Þ

and yields two quadratic equations for u2
k and v2

k ,

u2
k~

1
2

1{
~kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~2
kzD2

k

q
0
B@

1
CA, v2
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1
2

1z
~kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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kzD2

k

q
0
B@

1
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where ~k~ kz
X
k’w0

Gkk’kk’zG�kk’�kk’ð Þv2
k’{l and the gap parameters

Dk~{
X
k’w0

Gk�kk’�k’uk’vk’ . The BCS method provides the convenience that we can treat

a nucleus as a system of quasi-particles independently moving in a mean field.
However it violates the particle number conservation.

This symmetry breaking can be restored by projection techniques, of which the

method of residues11 employs a projector P̂A~
1

2pi

þ
zN̂

zAz1
dz to act on the BCS wave

function Eq.(1)

YN
�� �

~P̂N~2p Wj i~ 1
2pi

þ
df

fpz1 Pk
ukzvkfak

{a�k
{

� �
0j i, ð32Þ

where f 5 z2 and p 5 N/2 is the number of particle pairs. The integrand in the above
equation is a Laurent series in f. Making use of the fermionic commutation relations
for the operators ak, ak

{, the matrix elements of an observable can be expressed by the
residues

Rm
v k1, � � � ,kmð Þ~ 1

2pi

þ
dz

z p{vð Þz1
P

k=k1 ,���,kmw0
u2

kzzv2
k

� �
: ð33Þ

For example, the expectation value of energy is written as,

EA
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This projection method is termed as the PBCS theory.

Concurrence and discord. Consider a mixed state r of two qubits A and B. By
introducing operator ~r~ sy6sy

� �
r� sy6sy
� �

17, where sy is the y component of
Pauli matrix, one defines the concurrence of r,

C rð Þ~ max 0,
ffiffiffiffiffi
l1
p

{
ffiffiffiffiffi
l2
p

{
ffiffiffiffiffi
l3
p

{
ffiffiffiffiffi
l4
p	 


, ð35Þ

where li (i 5 1, 2, 3, 4) are the eigenvalues of r~r in descending order. When C rð Þw0,
qubits A and B are entangled.

Quantum discord, as another kind of correlation, may exist even without entan-
glement3. The quantum correlation features itself with many aspects, e.g., in char-
acterizing quantum phase transitions18. For the state r, quantum discord reads:

D rð Þ~I rð Þ{C rð Þ, ð36Þ

where I rð Þ is the quantum analogue of classical mutual information, defined as

I rð Þ~S rA
� �

zS rB
� �

{S rð Þ, ð37Þ

with rA(B) 5 TrB(A)(r) denoting the reduced density matrix of the partition A(B), S(r)
the corresponding von Neumann entropy. I rð Þ is interpreted as a measure of total
correlations in the composite system A 1 B, while C rð Þ is a measure of classical
correlations, defined as

C rð Þ~S rA
� �

{ sup
Bkf g

S r Bkf gjð Þ ð38Þ

where {Bk} (k 5 0, 1) stands for the von Neumann measurements on subsystem B.
From the above definitions, we can see that quantum discord is the quantumness
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coming from quantum measurement, while entanglement is from the wave function
(more generally density matrix) itself.
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