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Abstract

During the last two decades, analysis of 1/f noise in cognitive science has led to a consider-
able progress in the way we understand the organization of our mental life. However, there
is still a lack of specific models providing explanations of how 1/f noise is generated in cou-
pled brain-body-environment systems, since existing models and experiments typically tar-
get either externally observable behaviour or isolated neuronal systems but do not address
the interplay between neuronal mechanisms and sensorimotor dynamics. We present a
conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it
possible to relate mechanistic (neurodynamic) and behavioural levels of description. The
model consists of a simulated robot controlled by a network of Kuramoto oscillators with ho-
meostatic plasticity and the ability to develop behavioural preferences mediated by sensori-
motor patterns. With only three oscillators, this simple model displays self-organized
criticality in the form of robust 1/f noise and a wide multifractal spectrum. We show that the
emergence of self-organized criticality and 1/f noise in our model is the result of three simul-
taneous conditions: a) non-linear interaction dynamics capable of generating stable collec-
tive patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c)
strong sensorimotor coupling with the environment that induces transient metastable neuro-
dynamic regimes. We carry out a number of experiments to show that both synaptic plastici-
ty and strong sensorimotor coupling play a necessary role, as constituents of self-organized
criticality, in the generation of 1/f noise. The experiments also shown to be useful to test the
robustness of 1/f scaling comparing the results of different techniques. We finally discuss
the role of conceptual models as mediators between nomothetic and mechanistic models
and how they can inform future experimental research where self-organized critically in-
cludes sensorimotor coupling among the essential interaction-dominant process giving rise
to 1/f noise.
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Introduction

The tools and concepts of complex systems research (often forged in the realm of physics) are
increasingly permeating cognitive science and the way we understand the mind and ourselves.
Since early cybernetics [1] and system’s theory [2, 3], what might currently be called the com-
plex systems approach to cognition, has put the emphasis on self-organization, the irreducible
non-linearity of cognitive processes and circular causality [4-6]. This approach contrasts with
some of the classical assumptions behind the computational theory of the mind: modularity,
functional decomposition, perception-action dichotomy, agent environment ‘decoupling’
(sharp analytic separation between the dynamics of the agent and the environment), etc. The
complex systems approach to cognitive science seeks to move beyond the formalism of compu-
tational theory and information exchange and to place cognition within the broader formalism
of dynamical systems [7-9].

Paradigmatic examples of the conceptual tools of the complex systems approach, with appli-
cations in several domains (in particular in cognitive science and neuroscience), are the con-
cepts of self-organized criticality (SOC hereafter) and 1/f noise (also known as scale-free or
pink noise) [10, 11]. The concept of SOC was initially proposed by Bak, Tang and Wiesenfeld
[10] to define certain classes of dynamical systems which have a critical point as an attractor,
displaying critical behaviour without any significant ‘tuning’ of the system from the outside.
Critical systems have very interesting @properties, the most characteristic of which is the lack
of a dominant scale of activity. They show complex dynamical responses and their statistical
properties have to be described by power laws. Thus, critical systems typically display temporal
and spatial scale invariance in the form of fractals and 1/f noise, reflecting the process of propa-
gation of long-range interactions based on local effects. For the complex systems approach to
cognitive science SOC is appealing because it allows us to imagine systems that are able to self-
regulate coordinated behaviours at different scales in a distributed manner and without a
central controller.

SOC in Neuroscience, Cognitive Science and Psychology

It has been shown that the brain is in a continuous state of SOC. Experimental evidence and ar-
tificial neural network models support this hypothesis. Criticality in the brain is suggested by
power law scaling in degree distributions of functional brain networks or avalanche size distri-
butions [12]. Long-range correlations in the form of 1/f patterns have been extensively found
in EEG/MEG measurements of brain activity in alpha, mu, and beta oscillations [13]. Scale-
free neocortical dynamics has also been ascertained by Freeman [14] in EEG measurements in
rabbits. In addition, there are many instances of critically self-organized behaviour in artificial
network models, which provide some interesting insights [15]. For example, it has been shown
that a broad (robust) critical regime is favoured by the presence of strong synaptic interaction
and high synaptic time-dependent plasticity [16].

SOC and 1/fhave also been extensively found in cognitive science and psychology. For ex-
ample, 1/f noise is present in time series showing how performance fluctuates over time [17].
More recently, Van Orden, Holden and Turvey [8, 18] used 1/f noise measurements in differ-
ent tasks to gather evidence to defend the idea that certain systems are not modular and de-
composable but are ‘softly assembled’ systems sustained by interaction-dominant dynamics
(IDD hereafter) as opposed to component-dominant dynamics [8]. That is, IDD systems do not
consist of additive interactions of their components, but of multiplicative interactions that
imply coordination between the different timescales in the system. Silberstein and Chemero go
further and suggest that 1/f measurements can be an indicator of extended cognitive systems, in
which strongly nonlinear and softly assembled interactions allow the emergence of a brain-
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body-environment system of nested self-organization [19]. These hypotheses are inspired by
measurements of 1/f noise in a simple human-tool interaction with and without perturbations
in the interface between human and tool [20]. In this context, ‘extended’ means that it is impos-
sible to determine the contribution of every individual part to the behaviour of the system as a
whole. Instead, under this framework, these authors attempt to characterize holistic integrated
behaviours that can account for locally irreducible properties at the whole agent level (what
some philosophers call the ‘personal level’): intentionality, free will, agency, and so on [21].
Self-organized criticality thus becomes an interesting candidate for explaining the holistic and
integrated nature of mental life; and its 1/f noise manifestation a signature or quantitative indi-
cator of this holistic integration.

One of the most promising approaches to the ‘unity’ or ‘integratedness’ of mental life was
suggested by Varela [22], proposing that mental-cognitive states are mediated by a specific cell
assembly (the term was originally coined by Hebb [23]) that emerges through transient phase
locking of distributed neural regions. Every cognitive act corresponds to the emergence of one
dominant assembly which incorporates or discards cortical and subcortical regions into a uni-
fied and transitory whole. More recently, Tononi and Edelman [24] have used the term dynam-
ic core to describe this process, emphasizing both its integration and its ability to generate an
extraordinary variety of complex patterns. Ever since, the notion of a dynamic core has become
relatively widespread in large-scale neuroscience studies [25-29]. SOC has been suggested as a
candidate for characterizing this state between integration and segregation, allowing the system
to remain in a self-organized state that is at the same time stable (or metastable) while also ex-
tremely sensitive to small microscopic perturbations, and with the capacity to develop long-
range correlations at all the scales of the system without requiring a costly fine tuning of local
parameters [30]. In turn, the presence of 1/f noise has been proposed as an indicator of the
long-term evolution of a dynamic core in EGG measurements [31].

The Controversy over the Explanatory Capacity of 1/f Noise
Measurements

Despite the enthusiasm brought by the widespread finding of 1/f noise, some authors remain
cautious about its specific interpretation. Van Orden et al. claim that ubiquitous pink noise is
not sufficient evidence of self-organized criticality but rather a necessary consequence [8,

p. 343]. They argue that while it is possible to interpret 1/f noise in some contexts as a signature
of a softly assembled system (self-sustained by IDD and SOC) this is not always necessarily the
case. Moreover, 1/fis not a unique and exclusive property of SOC systems (see [32, 33]) since it
can be displayed by a linear superposition of random components acting on multiple time
scales [34]. To avoid the uncertainty about the true origin of 1/f noise some authors have sug-
gested complementing it with a measure of multifractality as a quantitative indicator of interac-
tion-dominant dynamics, providing a means to ensure the nonlinear nature of the ongoing
interactions that build the self-organized process [35].

But the feasibility of different types of indicators or measurements is not the only problem.
At the theoretical level there still remains considerable controversy as to when a system can be
considered to display SOC properties (e.g. [11]). Bak, Tang, and Wiesenfeld’s original use of
the term SOC was based on a loose phenomenological definition: a system that exhibits power
laws or 1/f fluctuations without any apparent tuning is said to exhibit self-organized criticality
[10]. However, sometimes 1/f patterns found in connection with the search for SOC extend
only over a narrow frequency interval, and sometimes in genuine critical systems not all ob-
servables will show 1/fbehaviour. Some authors have pointed out the limitations of mere de-
scriptive or phenomenological approaches in which 1/fis identified and explained just by
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verbal descriptions and metaphors of SOC without specifying concrete models or mechanistic
requirements to identify a system as operating under SOC [33].

Generative or mechanistic definitions have also been provided where the observed phenome-
na are systematically related to the underlying mechanisms or organizational principles. Ac-
cording to Jensen [11], SOC systems are slowly driven, interaction-dominated threshold
systems: many degrees of freedom interact, and the dynamics of the system is dominated by
the mutual interaction between those degrees of freedom. Fractal scaling arises from the fact
that the external driving of the system is much slower than the internal relaxation processes,
and the existence of thresholds and metastability in the system ensures that it can be driven by
the interactions between its different components. Jensen’s definition of SOC allows us to go
further in our understanding of the phenomenon, modelling and testing concrete hypotheses
about critically self-organized behaviour. An example, pointed out by Jensen, is the difference
between sand piles (which exhibit avalanches with periodic behaviour) and rice piles (which
display a broad distribution of avalanche sizes characteristic of SOC) [11, p. 126]. In a sandpile,
the kinetic energy (gravitational pull) of individual grains dominates the friction between
grains, whereas in a ricepile the motion of a single grain is easily stopped by intergrain
friction forces. Intergrain friction produces a threshold (‘local rigidity’) that allows a huge num-
ber of possible metastable states. Jensen suggests that the existence of thresholds is a necessary
condition for the interaction-dominant dynamics necessary for SOC. This approach allows
us to generate hypotheses that can be tested by mathematical modelling and experimental
results.

Filling the Gap: Exploring the Role of Active Sensorimotor Modulation in
the Generation of 1/f Noise

Whereas evidence for the presence of 1/f noise in neural dynamics and in certain experimental
psychology tasks is apparent (mostly behavioural data in the latter case), there is very little un-
derstanding of how both neurodynamic and behavioural levels relate to each other and to 1/f
noise. Moreover, most models proposing generative mechanisms for the emergence of 1/f
noise are focused on either a behavioural [36] or a neural level [16, 37].

Although insightful, these models fall short of providing in-depth explanations about the
nature of neural and behavioural organization in embodied subjects in a softly assembled
brain-body-environment system, because in such models the systems are never shown to oper-
ate embedded in a specific environment.

In this paper, we aim to address this gap by exploring the role of active sensorimotor modu-
lation in the generation of 1/f noise and SOC, i.e., how neural, embodied and environmental
dynamics interact together to generate critically self-organized dynamics. Since previous ap-
proaches (detailed mechanistic models or conceptual nomothetic analysis) have not yet proven
to be especially fruitful for addressing the interaction between neural and behavioural scales,
we propose an approach in which we exploit a minimal conceptual robotic model of brain-
body-environment interaction. Following the theoretical modelling tradition of evolutionary
robotics, which has for a long time contributed specific models for abstract concepts [38, 39],
we present a conceptual model depicting a simulated robot in a behavioural preference task. A
conceptual model differs from detailed mechanistic models in the sense that it does not target a
specific task or specific empirical data, but rather implements known principles and mecha-
nisms and generates qualitatively significant results that make it possible to advance hypothe-
ses about the nature of explanations, to make explicit complex and non-intuitive relationships
between levels of description, to provide proofs of concepts, etc. [40]. We do not aim to obtain
universal rules for the relation between neural and behavioural levels of description, but we
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hope to clarify to some extent what kind of mechanisms and principles (sensorimotor cou-
pling, plasticity, etc.) may underlie the generation of 1/f noise and SOC, at least in some cases.

In the next section we describe our model, its neural controller (a Kuramoto oscillatory net-
work with a relational homeostatic mechanism), embodiment and environment, together with
the details of the artificial evolutionary optimization process used to make it solve a beha-
vioural preference task. We then analyze the behavioural dynamics of the agent and its relation
to the presence of synaptic plasticity and sensorimotor coupling. We analyze 1/f patterns in
our agents for different conditions of internal plasticity and absence of sensorimotor interac-
tion. Finally, we discuss the results obtained and their impact on the current state of complex
systems approaches to cognition. We conclude with some remarks about the model presented
and the proposed modelling strategy.

Model

We follow the work of Di Paolo and colleagues on autonomy in evolutionary robotics [41-43],
extending previous models of homeostatic adaptation. Unlike previous models, where continu-
ous time recurrent neural networks (CTRNN) were used as robot controllers, this model is im-
plemented in a simulated mobile agent with a plastic Kuramoto network as a neural controller,
with an additional loop of homeostatic regulation in which the homeostatic zone favours some
preferred phase relations between the network’s oscillators. The simulated robot is presented
with two lights of different colours that are perceived by two different pairs of sensors, and
evolved using a genetic algorithm to develop switching robust preferences to the two types of
lights. All parameters (except when specified otherwise) are determined genetically within the
indicated range.

Kuramoto Oscillator Networks with Relational Homeostatic Plasticity

A fully connected Kuramoto network [44] with three oscillators is used as the agent’s control-
ler. The evolution of the state of each oscillator is defined by:

N
0,= o, + 1+ K,-sin(0,— 0, (1)
j=1

where 6; represents the phase of oscillator i, w; is its natural frequency (range [0, 5]), Kj; is the
strength of the coupling between the oscillator i and the oscillator j and I; represents the senso-
ry inputs, which are given only to sensory neuronal oscillators 1 and 2.

This model is not intended to represent the activity of individual neurons but, more general-
ly, to capture the dynamics of neural oscillations at a mesoscopic level. Integration mechanisms
in the brain are hypothesized to be based on phase synchronization processes between neuro-
nal groups [29], thus we aim to represent the large-scale synchronization of brain regions that
are far apart in the brain.

In order to measure global levels of synchronization we have extended the Kuramoto model
to include the relations of one oscillator with respect to its neighbours. This new parameter ¢ is
computed by the phase difference of one oscillator with respect to the sum of the oscillator
cluster connected to it weighted by the strength of their connections. It is represented by:

N
¢, =/ (ZK"J' . ei(ujt)i)> (2)
=1
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where / denotes the phase of the result of the summatory and i is the imaginary unit. Here ¢;
represents the weighted phase relation between oscillator i respect to the other oscillators
which it is connected.

A plastic mechanism is added to the Kuramoto network to homeostatically modify the
weights of the connections between neurons. Homeostatic regulation is defined by a stepwise
function that determines synaptic plasticity as a function of the phase relations ¢ between an
oscillator and its connected cluster, p(¢, — ¢?), where the homeostatic region is located around
a preferred phase relation ¢! (range [, %]). The function p(x) (Fig. 1.b) is defined by two acti-
vation thresholds H; and H, (range [0,Z]). The value of p(x) is 0 when x < Hj, it increases line-
arly while H; < x < H, and it is equal to 1 when H, < x. We have arbitrarily set the values of
H, =0.2m and H, = 0.27. That is, neural oscillations connect to each other in such a way that
they can show preferred phase relations with other oscillating clusters. This function deter-
mines the level of plastic change for all incoming weights. Within the homeostatic region the
value of the plastic function is 0, which means that no plastic changes take place while the oscil-
lator stands within the boundaries of its preferred phase relation with the cluster to which it is
connected. Though the implemented homeostatic mechanism may be arbitrary, there is evi-
dence of how brain networks adjust their temporal relations with great precision by plastic
mechanisms [45].

Changes in the value of the incoming weights of oscillator i depend on the local plasticity of
oscillator i, p(¢, — ¢?), multiplied by an extra term which determines the level of synchroniza-
tion between oscillator i and each incoming oscillator j, the plasticity being smaller for oscilla-
tors with higher levels of phase synchronization:

0K, =n, - plg, — ¢7) - sin((0, — 0,) — ¢") (3)

where 6Kj; are the connection weights which are initialized randomly at the beginning of each
trial and, n;; is the rate of change (range [0, 0.9]) of each connection.

Finally, the actual connection strengths are mapped by a modified sinusoidal function of the
weights 0Kj;. A similar strategy was already used in [46] in homeostatic neural networks, in-
stead of using a Hebbian-like rule, to avoid saturation of synaptic strengths. This mechanism
makes sure that there is enough variability for plastic reconfigurations in order to explore the
whole space of connection weights. In our case, we have modified the sinusoidal mapping mul-
tiplying it by a positive square wave with half its frequency in order to assure the possibility of
total disconnection between oscillators. Thus, when plastic changes take place, connection
strengths follow a continuous non-monotonic function Kj; = a - F(6Kj;) (see Fig. 1.c) capable of
exploring the full configuration space, where « is a constant (range [0, 5]) that regulates how
strong the oscillator coupling can be.

In a nutshell, this minimal model works under the assumption that large-scale neural oscil-
latory components try to maintain an invariant preferred phase relation with respect to other
oscillatory components by means of plastically regulating the strength of their connectivity.

Minimal Robotic Embodiment. Behavioural Preference Task

The agent is modelled as a simulated wheeled robot with a circular body of radius 4 and two di-
ametrically opposed motors (Fig. 1.a). The motors can drive the agent forward and backwards.
We assume that the agent’s mass is small enough to be neglected (in order to avoid inertial re-
sistance), so we can describe the speed of the agent as follows: the translational speed of the
robot is calculated as the vectorial average of the motor velocities, and the angular speed as the
difference of the motor velocities divided by the body diameter. The motor outputs are calcu-
lated from the phase relation ¢ of the effector oscillator (oscillator 3). The speed of the motor is
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Fig 1. The robotic agent with three plastic oscillatory units. a) Scheme of the agent, the environment, sensors and motors, and the neural controller b)
Plastic function p(¢; — ¢?), in which plasticity depends on the difference between the weighted phase relation ¢; of the neural oscillator i with respect to other

oscillators and the preferred weighted phase relation ¢? ¢) Mapping function F(6Kj) which transforms weight values 6Kj; into the actual value of coupling
strengths between oscillators Kj;.

doi:10.1371/journal.pone.0117465.9001

obtained by multiplying the motor output by a gain parameter of value 2:

Mr = 2 : Sin(¢3 - ¢r)
M, =2-sin(¢, — ¢,)

where ¢, and ¢; (range [0, 277]) are bias terms which map the motor output into the actual
motor activation.

The agent has two pairs of sensors (right and left) for each of the different light sources A
and B. Each sensor points to a direction at 71/3 radians from the forward direction. Light A sen-
sors are connected to oscillator 1 and light B sensors are connected to oscillator 2. The activa-
tion of the sensor depends on the angle between the sensor and the light, such that the
maximal activation happens when the sensor faces the light. The effects of both the angle and
the distance on the sensor activation are represented by the following function:

Spx - 0.5+ (1 4 cos(opy )
IDX = 1 + eo*(dpx—b) ’
0, otpy| > /2

|| < 7/2

where X can represent either light A or B, D stands for either right or left sensor, apy is the
angle of sensor DX to light X, dpy is the distance between sensor DX and light X, and a and b
have the arbitrary values of 0.03 and 100 respectively. The light intensity received at each sen-
sor is multiplied by a gain parameter spx (range [—8, 8]). The resultant value is fed to the corre-
sponding oscillator’s input I;. A full scheme of the robot is represented in Fig. 1.a.
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Atrtificial Evolution: Fitness Function

A population of 20 agents is evolved using a rank-based genetic algorithm with elitism. Each of
the agent parameters w;, spx, @, ;j> ¢»» ¢rand ¢! is encoded into a 5 bits string representing a
real number within the specified range. For each generation, the best 4 agents (20% of the pop-
ulation) pass to the next generation without change. For the remaining slots, pairs of individu-
als are selected for crossover with a probability proportional to their fitness value, and new
individuals are created mixing their genes (bit series) adding a mutation probability of 3% for
each gene.

The agents are evaluated for 4 different tasks (as in [42]): a single light A, a single light B,
one light A and a blinking light B, one light B and a blinking light A. In the two first tasks, only
one light (either A or B) is present, and the agent gains fitness by approaching the light. In the
two latter tasks, two lights are presented (one of type A and one of type B) and one of them is
blinking. The agent gains fitness by approaching the non-blinking light. The blinking light
emits light only with a probability of 0.15 for each time step. The objective of this is to create a
‘dummy’ that encourages the agent to learn to ignore one of the lights while approaching the
other. The lights appear at a random distance, [100, 150]. When two lights are present, they ap-
pear, from the agent’s point of view, with a random separation within the range [71/2, 37/2].
The length of each trial is 125s.

Each individual agent is tested for 12 independent runs (3 for each of the 4 tasks, see Fig. 2).
Each run consists of some trials where a light or a pair of lights are presented to the agents for a
fixed time. At the beginning of each run, the synaptic weights 5Kj; are reset to initial random
values (note that this is different from [42], where weights were reset to a fixed initial value ob-
tained by evolution). Each run consists of 8 trials. For each trial, one or two lights (depending
on the task) are presented to the agent for a specified time. After the trial is finished, a new trial
begins and two new lights are presented at new positions. Only the last 3 trials of each run are
evaluated in order not to penalize slow plastic changes.

Fitness for each trial is calculated in three terms, Fy;s = (Fp + F,) - Fp, where Fp, values how
close to the light the agent has gotten at the end on each trial. For each trial, F, = 1 - ddd;,
where drand d; respectively correspond to the final and initial distances to the target light. F,,

Ftotal
7/ A AN
Frun Frun Frun Frun Frun Frun Frun Frun Frun Frun Frun Frun
Fitness test: - CIEE i
1
12 runs i Task 1: Light A Task 2: Light B Task 3: Lights A-B* Task 4: Lights A*-B
:
e ->D 1 run
A

trlal Ftrlal Ftrlal

Single run: 00000866 ~O 1 o
rials NY———

F

run

Fig 2. Structure of the task performed by the genetic algorithm. Each agent is tested for 12 different runs (3 for one of the 4 tasks), averaging their fitness
values to obtain the total fitness. Each run consists of 8 different trials. For each trial, two lights are presented to an agent during a period of 125s. Only the
three last trials of a run are taken into account for computing the fitness of the run in order to avoid penalizing slow plasticity.

doi:10.1371/journal.pone.0117465.g002
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indicates the proportion of time that the agent spends within a distance of less than 4 times its
body radius (i.e. a distance of 16) to the target light during a trial. Finally, Fy; represents the
proportion of homeostasis in the system, computing the degree of homeostasis 1 — p(¢, — ¢")
(i.e., 1 minus the level of plasticity) for each oscillator and averaging the result over time and
over the three oscillators. In this way we select agents that remain as homeostatic as possible.
The total fitness is calculated and then averaged over all 12 runs.

The code simulating the behaviour of the agent and the parameters obtained from the ge-
netic algorithm can be accessed from the following repository https://github.com/IsaacLab/
HNA-robotic-model/tree/master/minimal-preference-task.

Results

After running the genetic algorithm we select the evolved agent from the last generation that
obtained the best fitness value. In what follows we analyze the behaviour of this agent but the
results can be extended to many other agents that we found to display similar dynamics (i.e.
the agent under analysis in this section displays a typical behaviour of this and other evolution-
ary runs). By analyzing the behaviour of the agent under different conditions, we can test the
role played by different aspects of the model in generating the behaviour and the specific effects
of such conditions. More specifically we compare the results of agents under the following
conditions:

1. A normally functioning agent with both synaptic plasticity and a normal
sensorimotor interaction.

2. An agent without synaptic plasticity, where the values of the weights are obtained randomly
from a simulation of agent 1 (for the value of the weights at the midpoint of the trials of the
simulation represented in Fig. 3).
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Fig 3. Distance to the two lights at the end of each trial for different agents. A regular agent with synaptic plasticity a), and three agents in which plastic
mechanisms have been frozen at different instants; b) in a situation of preference to light A (trial 5); c) in a situation of preference towards light B (trial 15), and
d) at a moment in which the preference switches from B to A (trial 38).

doi:10.1371/journal.pone.0117465.g003
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3. A decoupled agent, that only receives random uncorrelated noise at all its sensors.

We compare these three agents in two ways in the following subsections. The different
agents are tested in an environment where the two lights have the same intensity (no dum-
mies). Note that this task (two lights presented with the same intensity) was never carried out
during evolution. First, we perform a dynamical analysis of their behaviour and, secondly, we
measure the patterns of 1/f noise and other fractal indicator of SOC and IDD.

The first step consists of analyzing the behaviour of the agent in a descriptive manner. We
present the agent with a series of 60 pairs of lights, and we provide the agent a time of 125s to
choose and approach one of them. We measure the final distance to both lights at time ¢ =
125s, obtaining the series represented in Fig. 3.a. The agent is able to develop stable preferences
towards one of the lights, maintaining it for several trials until the preference is changed. A
video of the behaviour of the agent (including plastic mechanisms) can be found at S1 Video.

Behavioural Analysis

We now perform a dynamic analysis of the behaviour of the agent and its internal plastic con-
troller. This allows us to test some of the hypotheses about the organization of neural activity
and obtain some insights into the processes that give rise to behavioural preferences in our
agent. First, we analyze the role of synaptic plasticity in the maintenance of preferences over
several trials. We then analyze the neural patterns that sustain transient preferences and give
rise to new ones.

Synaptic Plasticity. We can test the role of plasticity in the emergence of a new preference
by stopping plastic mechanisms at a particular point. We have taken the results of the simula-
tion represented in Fig. 3.a, and run the simulation again under exactly the same initial condi-
tions but freezing the plasticity in the midpoint of a particular trial. We observe in Fig. 3.b and
3.c that when plasticity is stopped the preference is frozen and the robot always chooses the
same light. Thus, we can say that plastic mechanisms mediate the creation and destruction of
behavioural preferences. These results show how preferences arise from a complex interplay be-
tween the agent’s interaction with its environment and the neural mechanisms of synaptic plas-
ticity. That is, preferences emerge and are maintained when a certain plastic configuration (e.g.
sensitiveness to light A and blindness to light B) are met with certain environmental conditions
that allow the agent to maintain its configuration (e.g. the stimuli received from the lights do
not trigger plastic mechanisms that may destroy the current sensitiveness of the agent).

Moreover, if we try to stop plasticity during a transition trial (precisely at the moment in
which the agent is about to switch its preference, as shown in Fig. 3.d), we observe that the
agent continuously alternates between the two lights, being unable to hold a specific prefer-
ences. When the weights are frozen at transition points (like the agent in Fig. 3.d) the agent
seems to go indifferently to either of the two lights. We call these undecided agents. However,
are these undecided agents really indifferent to which light to go or do they simply have a
shorter preference span?

In order to answer this question we simulate different runs of an agent with synaptic plastic-
ity and several agents without synaptic plasticity of the undecided type. We run the simulations
for 1000 trials. For each simulation, we create a time series with the result of the 1000 trials,
having a value of 1 when the agent goes to light A, and —1 when light B is chosen. This time se-
ries D(n) represents the decisions of the agent, where 7 is the number of the trial.

First, we can analyze whether the sequences of consecutive trials choosing the same light
constitute a consistent preference, or if the agent just chooses randomly and the sequences of
same-light consecutive trials are merely happy coincidences. We hold the hypothesis that the
agent we called ‘undecided” (whose connection weights are frozen from an instant in which
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Fig 4. Cross-correlation between the agent’s decisions. We compute the cross-correlation between the time series of the decisions made by the agent at
the end of each trial (where 1 means light A and -1 light B). We observe how consistent trial-to-trial cross-correlations only arise for the agent with
synaptic plasticity.

doi:10.1371/journal.pone.0117465.9004

agent was just switching preferences) does not really possess an internal bias for any light
source and whose behavioural choice is the mere result of environmental contingencies. As the
configuration of the environment at each trial is completely random, the series of decisions D
(n) would be totally uncorrelated if there is not a mechanism that makes subsequent decisions
depend on the choice of the agent in this trial. Thus, we can test the existence of consistent
preferences simply by computing the autocorrelation of D(n), obtaining

() = S22, D(x) - Dz + n).

In Fig. 4.a we observe how the agent with plasticity displays strong correlations in its se-
quence of decisions. The correlation function shows how decisions are positively correlated
with the decisions taken in the 20 previous and posterior trials, suggesting that this is the aver-
age duration of preferences. In contrast, we see in Fig. 4.b how the ‘undecided’ agent is genuine-
ly undecided and presents no correlations between one decision and the next, meaning that
decisions are determined by the randomly generated configuration of the environment. We ob-
serve how synaptic plasticity indeed plays a crucial role in the emergence of behavioural prefer-
ences, since it is synaptic plasticity a necessary element to produce correlations between one
decision and the next.

Sensorimotor Interaction. Apart from the role of internal plastic mechanisms, we want
to explore role of sensorimotor coupling. Here we test the role of sensorimotor interaction in
the emergence of stable neurodynamic patterns in the agent’s oscillatory controller. We do this
by comparing the situated agent with a decoupled agent. However, since the decoupled oscilla-
tor network alone ends up trapped by an attractor, we stimulated it by feeding the sensors with
external signals. First, we stimulated the neural controller with both structured and random
signals to find configurations that might produce fractal scaling. Specifically, we tried to feed
each sensor with either sinusoidal oscillatory signals or random Gaussian noise. We tested dif-
ferent frequencies for the oscillatory signals and different standard deviations o for the Gauss-
ian noise. We used some of the fractal indicators described in the next section to find which
cases present results most closely resembling to 1/f noise and we observed that this only occurs
in some instances when we feed the network with Gaussian noise signals. Moreover, we ob-
served that only when o was high enough to trigger the plasticity thresholds of the oscillators
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(p(¢, — ¢?)) were the dynamics of the oscillator network different to white noise. Finally, we
found that with a value of 0 = 1 the decoupled agents presents dynamics resembling 1/f noise,
so we kept this value for the rest of the experiments.

Both the situated and the decoupled agents are simulated for a period of time equivalent to
60 trials (7500s). For the case of the situated agent the simulation is that represented in Fig. 3.a
where the agent is presented with 60 pairs of lights. To analyze the dynamics of the neural con-
troller, we extract segments of the signal taking a sliding window with a width of 125s and dis-
placing it along the temporal axis with a slide of 25s. Different window sizes were tested with
similar results. For each window, we characterize a neurodynamic pattern of behaviour dis-
played by the internal controller recording the time series within the window of the pairs of
variables sin(6, — 05) and sin(6, — 65) (note that 6, — 6, = (6, — 65) — (6, — 65)). We illustrate
two examples of the patterns displayed in trials 5 and 15 for the situated agent in Fig. 5.a. Com-
puting each pattern, we compute the joint density function of the two variables. The density
functions are computed using an averaged shifted histogram [47] with 100 bins for each di-
mension and 8 shifts (although we tested values from 20 to 500 bins with similar results).

After computing the joint probability function of sin(8, — 05) and sin(6, — 6;) for each win-
dow, we have a series of neurodynamic patterns each represented by a matrix of 114x114 ele-
ments. To analyze the evolution of different patterns, we compute the correlation of all pairs of
matrices over the 60 trials. We can observe the result in Fig. 5.b for the situated agent and
Fig. 5.c for the decoupled agent.

Once the correlations of the neurodynamic patterns have been computed we can observe
how, for the situated agent, different patterns evolve over time and which instants display simi-
lar patterns. This is represented by a temporal clustering in the correlation matrix. For exam-
ple, we can see in Fig. 5.b how the pattern displayed during trials 3-8 is displayed again during
trials 50-58, and comparing with Fig. 3.a we can see how this pattern correspond with periods
of time where the agent chooses to go to light A. Moreover, we can see how changes of

c)

Decoupled agent
60 , , , :
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LAEI S
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Fig 5. Correlation analysis of the dynamical patterns emerging from the neural controller. We analyze the patterns at different moments for the
situated and decoupled agents. In a) we observe different examples of patterns emerging from the situated agent for trials 5 and 15. In b) and c) we observe
the correlations between the joint density function of the patterns at different moments of a trial (white for correlation equal to one, black for zero correlation).
Clusters of correlated patterns in b) describe the different emergent stable behavioural patterns corresponding to particular preference modes of the situated
agent. For the decoupled agent we do not find different clusters of stable behavioural patterns.

doi:10.1371/journal.pone.0117465.g005
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preference coincide with changes of pattern (e.g. in trials 10 and 38). Also, there are situations
where the patterns change but where the preference towards one type of light source is main-
tained (e.g. trials 33, 47). In general we observe well defined and distinguishable patterns,
which is consistent with the idea of a dynamic core that sustains autonomous modes of opera-
tion. This analysis reveals quite a complex scenario with many different patterns that show dif-
ferent degrees of stability (some are maintained for only one trial while others last for several
trials).

On the other hand, when we analyze the decoupled agent (Fig. 5.c), we observe that there no
longer any differentiated pattern exist anymore, and all displayed patterns look very much
alike. The same happens for different levels of noise activity (different values of ¢) or when ana-
lyzing the patterns using different window sizes. Thus, the emergence of coherent clusters of
different behavioural patterns only takes place when neurodynamic activity is modulated by
the interaction between agent and environment, where behaviourally distinguishable sensori-
motor patterns shape the neural dynamics into different patterns that cannot be sustained by
the internal activity of the neural controller alone.

Self-Organized Criticality: 1/f Noise and Multifractality

So far, we have characterized the dynamic formation and dissolution of patterns through the
interaction of neurodynamic plastic mechanisms and embodied interaction with the environ-
ment. However, is this neural configuration the consequence of a critically self-organized sys-
tem driven by non-linear interaction-dominant dynamics? In this section we show how fractal
and multifractal analyses can provide insights into the types of processes underlying the emer-
gence of behavioural and neurodynamic patterns.

We carefully analyze 1/f patterns for the three different agents (situated, decoupled and
without synaptic plasticity) to find out if they can be characterized as SOC systems, being espe-
cially careful to rule out false positives of 1/f-like patterns that are not produced by SOC. We
first use two different methods to characterize 1/f patterns (fractal and spectral methods). We
then measure multifractal exponents for characterizing whether the systems displays IDD. Fi-
nally we test if the 1/f patterns found are robust to parametrical changes, a property that is defi-
nitory of SOC and that allows us to test whether the displayed criticality is truly self-organized.

Fractal and Spectral Methods. Since we are analyzing behavioural patters that are main-
tained over several trials (remember that a trial consists of one presentation of lights and the
agent’s ‘decision’ to approach one of the lights), we are interested in measuring long-range cor-
relations at a scale up to many trials. Thus, for the three conditions (situated and plastic, decou-
pled, and without plasticity) we simulate several runs of an agent facing a series of pairs of
lights (again at random distances [100, 150] and random separation angles [7/2,371/2]) during
125000s. Each time the agent reaches a light (the distance to the light is less than 16 units) or
when the agent does not reach the light in a period of 1250s, the lights disappear and two new
lights appear at random positions. We measure 1/f correlations in a signal
@ = |H(; S°7  sin(0,))], where H(x) is the Hilbert transform of signal x. Here ® can be inter-
preted as the amplitude envelope of the mean activation signal of the oscillatory Kuramoto net-
work. Taking the amplitude envelope of a signal is a widespread practice when analyzing
fractal exponents of neural oscillatory signals (e.g. see [48]).

As we saw in the Introduction, simply identifying a linear slope in a logarithmic representa-
tion is not enough for characterizing 1/f noise. In [18] Van Orden et al. propose to use fractal
and spectral methods in tandem to avoid the mistake of taking transient correlations for scaling
relations. We therefore use two different methods for characterizing 1/f dynamics: the discrete
Fourier transform (DFT) and detrended fluctuation analysis (DFA). DFT allows us to
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decompose a signal into its different frequency components. Then, we use the Welch method
[49] to estimate the signal’s power spectrum. If the power spectrum has the form of a 1/f* func-
tion we say that the signal exhibits fractal dynamics. Usually pink or 1/f noise is considered to
correspond to values of §f between 0.5 and 1.5. Similarly, values of 3 close to 0 correspond to
white noise (uncorrelated processes) and values close to 2 to brown noise (process driven by
slow timescales showing short-term predictability). Only processes with  around 1 are consid-
ered to display SOC [11].

DFA [50] is a method for determining the statistical self-affinity of a signal. In a nutshell,
the DFA algorithm integrates the analyzed time series and then divides it into boxes of equal
length n. For each box and each value of n, the least squares line (the trend of the signal within
the box) that best fits the data is extracted. For each box of size n, the characteristic size of the
fluctuation F(n) is computed as the root mean square deviation between the integrated signal
and its trend in each box. This computation is repeated for every value of n. Typically, F(n) in-
creases with 7. A linear relationship on a log-log plot with slope « indicates the presence of
fractal scaling in the analyzed signal, where & is a generalization of the Hurst exponent, which
is related to the scaling in the Power Spectrum of the Fourier analysis being =2 - a - 1.

DFA has some advantages compared to DFT analysis. While DFT is only well suited for sta-
tionary signals, DFA has been reliably used for non-stationary signals. Moreover, results from
DFT are often noisy and sometimes not absolutely reliable for determining linear relationships
in logarithmic scales (e.g. see [32]). Here we compute the average of the DFT's for
different runs.

After generating a series of the amplitude envelope of the mean network activation ® over
1000 trials for the three different conditions (situated, decoupled and non-plastic), we can
apply DFA and DFT algorithms to the signal. We focus our analysis in a temporal scale ranging
from 1s to 10 s.

Detrended Fluctuation Analysis. If we take different series of the variable @ for the situat-
ed agent and apply the DFA algorithm to them, we find that the signal presents linear relation-
ships on a logarithmic scale from 1s up to around 10> s (Fig. 6). If we compute the 3
coefficient we find that it is quite close to pink noise. We can run the simulation several times
for different initial values and we always find quite similar results, with f around 0.77. This re-
sult suggests that the process of the emergence of complex patterns analyzed above is generated
by SOC.

For the case without synaptic plasticity, we obtain different results depending on the ‘frozen’
weight configuration. Specifically, we obtain quite different results for two different kinds of
agent: 1) committed agents that always go to the same light, and 2) pliable agents that chose
one light or another depending on their initial positions. We can generalize the results in two
different kinds of DFA results (Fig. 6.c and 6.d). The committed agents (as in the cases of Figs.
3.b and 3.c) display the signature of @ with a characteristic white noise structure (8= 0.01),
where the absence of plasticity leads to a situation where the agent has no ‘memory’ of its previ-
ous trajectories. Pliable agents, which are sensitive to both lights (Fig. 3.d), present a narrower
fractal spectrum and display a scaling with a value of the § coefficient around 1.71, characteris-
tic of brown noise signals. These agents present a much stronger ‘memory’ than pink noise sig-
nals, showing short-term predictabilities in their activity. In both cases, when synaptic
plasticity is removed, the system clearly losses its ability to critically self-organize.

Finally, if we apply DFA to the series generated from the decoupled agent, we obtain some-
thing that appears to be similar to the results for the situated agent (Fig. 6.b). However, the
slope no longer appears to be so straight. Although it resembles a 1/f pattern, in DFT analysis
we show how in this case (as opposed to the case of a situated agent) DFA results can be mis-
leading and need to be validated with further analysis in order to reliably characterize SOC.
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Fig 6. Results of the detrended fluctuation analysis. We observe for the situated and decoupled agents,
a) and b) that the DFA analysis shows a scaling close to 1/f noise. The agent without synaptic plasticity
displays either c) white noise for committed agents or d) brown noise for pliable agents.

doi:10.1371/journal.pone.0117465.9006

Discrete Fourier Transform. We have seen that plasticity plays an important role in the
generation of SOC dynamics, but that the situatedness of the agent does not display significant
differences according to DFA exponents (despite the significant differences shown by the anal-
ysis of neurodynamic patterns). To further test this result, we have computed an averaged DFT
spectrum. Since DFT results are noisier than DFA for the 1000 trials series of ®, we average the
resulting DFT over 100 independent runs (each one consisting of 1000 trials) with random ini-
tial conditions. The averaged DFT shows us the difference between the situated and decoupled
spectrum with greater precision (Fig. 7). Since in DFA we have to look for slopes between 0.5
and 1.5 while in DFT they range between 0 and 2, we can better appreciate the difference be-
tween both signals. For the situated signal, we find a region with a fractal scaling for frequencies
between 10" Hz and 107> Hz, that is, very close to pink noise (8 = 0.90) which is only dis-
torted for lower frequencies. Moreover, if we reduce the range in which we compute the fractal
scaling for DFA analysis (see Fig. 6.a) for a smaller temporal range of n = [10*s, 10%° s]) we
find that the exponent S rises up to 0.88.

Moreover, for the decoupled case (Fig. 7.b), we find that what appeared to be a slight curved
line in DFA analysis is much more noticeable in DFT analysis. The signal obtained no longer
displays a clear linear relation and the slope of the linear fitting is much lower (3 = 0.47). Thus,
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Fig 7. Result of the discrete Fourier transform. We observe the differences between the situated and decoupled agent and how deviations from linearity in
the decoupled agent are much more noticeable in DFT analysis than in DFA analysis.

doi:10.1371/journal.pone.0117465.g007

DFT analysis suggests that the decoupled agent does not display SOC. Nevertheless, it is yet to
be confirmed that the decoupled system does not present the kind of nonlinear interaction-
dominated threshold dynamics necessary for SOC. We now analyze how 1/f patterns only arise
in a robust manner for the situated case.

Interaction-Dominant Dynamics and Multifractality. The constructive definition of
SOC [11] emphasizes that SOC systems are interaction-dominated threshold systems driven
by inherently nonlinear coordinative mechanisms. IThlen and Vereijken have proposed that 1/f
noise is neither necessary nor sufficient evidence of interaction-dominant dynamics and that
multifractal analysis is a quantitative framework suitable for the analysis of interaction-domi-
nant behaviour [35]. The multifractal spectrum quantitatively defines the presence of multipli-
cative interactions between temporal scales that are responsible for the emergence of
intermittent, emergent or coherent periods of large fluctuations within the response series of a
system. In [35] it is shown how critical and super-critical neural network models display a mul-
tifractal structure, whereas subcritical networks (where multiplicative interactions across tem-
poral scales do not take place) show monofractal structures.

We use the Continuous Wavelet Transformation (CWT) algorithm to calculate the multi-
fractal spectrum. The CWT uses a Morlet waveform to decompose the response series into a
continuous range of temporal scales [51]. This decomposition allows us not only to analyze the
scaling of the variance of a signal (as in DFA) but also the entire probability density function
defined by all g-order statistical moments through a series of local exponents h associated with
each ¢g. The width of the multifractal spectrum Ah = h,,,, — h,,,;,, defines the amplitude differ-
ence between the variability in the intermittent and laminar periods of the response series,
quantifying the influence of the multiplicative interaction, or coordinations, between the multi-
ple time scales of the response series.

We have computed both the § coefficient from DFA analysis and the multifractal spectrum
of the variable @ for 25 different runs of the four types of agents (situated, committed, pliable
and decoupled). This time (since we already know where the interesting parts of the spectrum
lie) we restrict DFA analysis to the interval n = [10' s, 10** 5] for the situated and decoupled
agents, and the interval of n = [10> 5, 10** 5] for the pliable and committed agents. Due to
computational reasons, for the multifractal analysis we have decimated the time series by a
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Fig 8. Fractal exponents and width of the multifractal spectrum of the four types of agents. Only situated agents present both a pink noise exponent
and a wide multifractal exponent. Decoupled agents appear to present a 1/f exponent but this is a misleading sign of SOC because they show
no multifractality.

doi:10.1371/journal.pone.0117465.g008

factor of 10, although similar results were found for individual runs without decimation. As in
[35] we have only computed the lower half of the spectrum, using a lower bound of g > 0,
since the CWT yield unstable estimations of negative moments. The upper bound was set

to g =10.

The results of the fractal and multifractal analysis are shown in Fig. 8. We can see how: a)
the situated agent shows a pink noise exponent (mean £ of 0.88) and a broad multifractal spec-
trum (mean Ah of 0.49) with a very high consistency between trials; b) the committed agent
without synaptic plasticity displays a white noise exponent (mean 5 of 0.02) and a variable am-
plitude of the multifractal spectrum, ranging between 0.02 and 0.64, with a mean of 0.21; ¢) the
pliable agent presents a brown noise exponent (mean f of 1.65) and a variable multifractal
spectrum between 0.11 and 1.02 and with 0.40 mean. This may show how different configura-
tions of the network weights leads to different kinds of dynamics. Note that supercritical dy-
namics have been shown to display broader multifractal spectra than critical dynamics [35]).
Finally, d) the decoupled agent displays a pink noise exponent (mean j of 0.56) and quite a nar-
row monofractal spectrum (with Ak around 0.03), suggesting that the system is not driven by
interaction-dominant dynamics and presents a much more limited coordination
between timescales.

This confirms our suspicion about the decoupled agent not being a critically self-organized
system, since the emergent dynamics do not arise from a process of multiplicative interactions
between components, but from a component-dominant dynamics.

Response to Parametrical Changes in the Agent’s Configuration. As we have seen,
agents with synaptic plasticity and active coupling to the environment display both pink noise
and multifractal patterns, as opposed to agents without synaptic plasticity or agents without
sensorimotor coupling. However, decoupled agents present a signature which looks similar to
a 1/f pattern even if they have a monofractal spectrum, and this may be misleading for charac-
terizing them as SOC systems. Typically, a system is defined as critically self-organized when it
displays critical dynamics without any fine tuning by an external driving influence. In order to
test the robustness of the agents above by measuring 1/fand multifractal patterns when the
model’s parameters are changed, we have run a series of simulations of the situated and decou-
pled agents which display different parametrical changes in the configuration of the model.
The simulated agents are as follows:
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1. A normally functioning agent

2. An agent presenting a random permutation of the values of ¢j.
3. An agent presenting a random permutation of the values of w.
4. An agent presenting a random permutation of the values of 7.

5. An agent presenting an alteration of the parameter o. The value of & is multiplied by a con-
stant k, = 2", where r is a random number distributed uniformly in the interval [-1, 1].

6. An agent presenting an alteration of the value of H;. The value of H; is multiplied by a con-
stant kg, = 2, where  is a random number distributed uniformly in the interval [-1, 1].

For each condition of the list above we have simulated the behaviour of both the situated
and the decoupled agents for 25 runs during 125000s, with the same configuration as the other
simulations described in this section. Surprisingly, all the situated agents with parametrical
changes were able to behave in a phototactic manner displaying transient preferences for the
two lights. For each simulation we performed DFA and multifractal analysis for the variable ®
over the range n = [10' 5, 10 5]. The results can be seen in Fig. 9.

We observe how pink noise patterns are quite robust for the situated agents, which always
display fractal exponents close to 1 with small variability. The only situation in which the frac-
tal exponent becomes slightly lower is in the case of the alteration of the threshold H, that trig-
gers plasticity in the neural controller. This suggests that nonlinear thresholds dynamics is a
crucial element for the generation of SOC.

On the other hand, fractal exponents for the decoupled agent are dramatically reduced
when parametrical changes are applied. Thus, we cannot attribute a genuine SOC for the de-
coupled agents, since small changes in the parameter of the agents destroy the criticality in the
system. This suggest that in this case criticality is produced by tuning of the oscillator network
parameters, so pink noise-like exponents are more likely to be result a right set of parameters
from the genetic algorithm.
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Fig 9. Fractal analysis of the patterns emerging under different parametrical changes. Whereas 1/f patterns are robust for the situated agents the
fractal exponents are drastically reduced for the decoupled agent.

doi:10.1371/journal.pone.0117465.g009
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Discussion

Self-organized criticality refers to the phenomenon whereby a dissipative dynamical system
with many degrees of freedom operates near a configuration of minimal stability, i.e., a critical
configuration, and does so without any fine tuning by an external driving influence. For SOC
to emerge, the dynamics of a system must be dominated by mutual interaction of the many de-
grees of freedom comprising the system, interaction-dominant dynamics being a necessary
condition for the emergence of SOC. Also, SOC systems usually display robust 1/f patterns
without fine parameter tuning, being resistant to alterations in the system’s parameters. In this
work we have proposed the use of scale-free exponents (fractal and spectral) and multifractal
exponents as indicators of SOC and IDD respectively, and we have proposed a methodology
for accurately characterizing SOC ruling out false positives when characterizing 1/f patterns.

We have presented an agent controlled by a plastic neural controller which performs a beha-
vioural preference task, choosing alternatively between two lights and generating stable but
transient preferences to one of the lights. The agent displays an adaptive and flexible behaviour,
being able to overcome changes in its parametrical configuration. It also shows stable beha-
vioural patterns of light preference. Scale-free exponents and multifractal analysis show that
the agent displays SOC in the dynamics of its neural controller (without this controller ever
being explicitly selected to display SOC). Moreover, SOC dynamics are stable in the face of
parametrical changes. The only situations in which SOC is no longer displayed arise when the
agent loses either its synaptic plasticity or its sensorimotor coupling with the world.

Research on 1/f patterns and SOC in cognition has been typically divided between advocates
of two apparently irreconcilable views: nomothetic perspectives on 1/f noise on the one hand
promoting general explanations of 1/f noise [8, 20], and mechanistic perspectives on 1/f noise
on the other, focused on modeling concrete processes underlying particular phenomena or
calling for physiologically detailed mechanistic models [16, 36]. Some of the latter accuse the
former of proceeding ‘by identifying a mysterious phenomenon (i.e., 1/f noise) and explaining
this phenomenon by verbal reference to a series of other mysterious phenomena (e.g., SOC),
without ever making contact with latent cognitive processes’ [33, p. 91]. It is the tendency to ig-
nore specific mechanisms that demands attention, since the alleged lack of explanatory power
of nomothetic perspectives (making verbal references to other mysterious phenomena) is moti-
vated by a lack of reference to constituent components of the explanation. The very proponents
of nomothetic or so called ‘dynamical explanations’ state that such explanations ‘do not pro-
pose a causal mechanism that is shown to produce the phenomenon in question’ [52, p. 432]
and often rely on higher level principles where ‘the change over time in a set of magnitudes in
the world can be captured by a set of differential equations’. Appeals to SOC, or interaction-
dominant systems, for explaining 1/f scaling are argued to fall within this category of nomo-
thetic explanations devoid, according to Wagenmakers, of genuine explanatory potential.

We consider that the terms dynamical or complex systems to characterize a type of model or
explanation need not to be equated with nomothetic explanations. Dynamical systems theory,
very much like computational theory or algebra, can be used to build either mechanistic or no-
mothetic explanations. Moreover, following Kaplan and Bechtel’s call for complementarity be-
tween nomothetic and mechanistic explanations [53] we believe that much is to be learned by
attempting to connect and explore the relationship between behaviour generating mechanisms
(at different levels of abstraction) and the regularities displayed by such mechanisms in opera-
tion. It is here where conceptual models [40, 54, 55] can be useful. Conceptual models, such as
the robotic model presented here, need not model specific target systems (i.e. a natural system,
its behaviour and its physiological processes) but might bring into the model abstract mecha-
nisms, general principles or generic processes, in order to study the relationship between
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different levels of explanation (e.g. between mechanistic and nomothetic explanations), be-
tween different types of phenomena (e.g. between 1/f noise and SOC principles) or between dif-
ferent measurements and the principles or properties they capture (e.g. fractal and multifractal
structures and interaction-dominant dynamics) providing valuable insights for future empiri-
cal experimentation and modelling.

Note that the model presented here, being abstract and not empirically driven, does not
prove that the properties just mentioned apply to natural behaving organisms, but rather that
it could be the case. In this sense the model works as a proof of concept that can inform and
drive future experiments operating as what Chemero calls ‘a guide to discovery’ [55, 56].
Thanks to our model we can hypothesize that, at least for some cases, SOC and 1/f patterns in
behaving systems might be the result of: a) non-linear interaction dynamics capable of generat-
ing stable collective patterns, b) internal plastic mechanisms that allow self-sustained criticality
through a continuous modulation of sensorimotor flows, ¢) strong sensorimotor coupling with
the environment that induces transient metastable regimes and, d) a small number of behav-
iour generating components or variables. The last three elements are relatively novel, in rela-
tion to previous models of SOC, and deserve detailed discussion.

Previous works have highlighted the importance of synaptic plasticity for the emergence of
a critical state [16, 57]. The ability to sequentially recruit neurons or neural areas into different
clusters of coordinated oscillators seems crucial for the brain to self-regulate its activity, resting
always at the brink of criticality. In our model, when internal plastic mechanisms are not pres-
ent the agent seems to get stuck in either: a) a state that is closer to a subcritical state (white
noise, narrow multifractal spectrum) in which stimuli are not sufficient to change the agent’s
preference (‘committed” agents) or b) what resembles a supercritical state (brown noise, wide
multifractal spectrum) in which the agent just responds immediately to any stimulus from any
of the lights (‘pliable’ agents). In this sense, plastic mechanisms seem to mediate between inter-
nally driven and externally driving dynamics, allowing a conjunction of internal and external
influences that produce a state of SOC. Experimental studies have shown that 1/f scaling ap-
pears more clearly in constrained motor tasks as participants become trained [58], suggesting
that plastic changes may drive the system’s performance towards a state of SOC. Moreover, en-
hancing or decreasing sources of constraint in the voluntary control of an agent will shift scal-
ing exponents from pink noise towards brown or white noise respectively [59]. Similar
mechanisms may operate among the different kinds of agents presented here.

On the other hand, when sensorimotor coupling is not present, although the fractal spec-
trum of the signal has some similarities with the 1/f spectrum of the coupled agent, the multi-
fractal analysis displays a monofractal spectrum, indicating that the interaction-dominant
dynamics of the system has been lost, and now the system is driven by the sum of the dynamics
of individual components. An analysis of the behaviour of the system under parametrical alter-
ation confirms that the decoupled agent does not present robust 1/f patterns. Thus, we find
that in our model a strong sensorimotor coupling is essential for coordinating the dynamics of
the components of an agent into a critically self-organized dynamic unity, thus extending the
notion of interaction-dominant dynamics to the sensorimotor loop itself (and not just to the
internal interaction between components: e.g. neurons or brain regions).

Another interesting aspect of the model is that whereas it is typically considered that one of
the features of a SOC system is having a large number of units (neurons), the model presented
here is driven by only three oscillators with their respective plastic synapses. We have shown
that a network of just three oscillators is capable of generating SOC provided that plastic mech-
anisms are in place and the system is situated in a sensorimotor environment. That is, as op-
posed to most models of SOC, a huge number of components need not be necessary to
generate 1/fnoise. What counts as a component, however, is subject to debate. There are two
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ways in which oscillators can be interpreted in our model: they can be taken to represent single
neurons or specific neural mechanisms or, alternatively (this is the interpretation we favour) as
mesoscopic structures (e.g. brain regions). The implication of the second interpretation is that
SOC need not be captured at a localized microscopic level of behaviour generating mechanims
(e.g. individual neurons), but could perfectly be described as resulting from meso or macro-
scopic regularities that might result from different local mechanisms.

Other features often associated with SOC, such as stochastic variation of internal parame-
ters, or the ability to store information in spatial patterns, appear not to be present in the
model. On the contrary, as opposed to most models of SOC, our agent is strongly engaged
in a rich sensorimotor interaction with an environment that affords specific sensorimotor con-
tingencies for an embodied agent. We have proved that sensorimotor coupling is a crucial as-
pect for our model to display SOC, and we show that it is not the neural controller on its own
that presents critical self-organization but the extended brain-body-environment system as a
whole. Although 1/fnoise has been found to appear spontaneously out of interconnected
neuronal networks ([15-16, 37]), in some cases the very contribution of the sensorimotor loop
might be crucial for generating genuine 1/f. This calls for an integrated agent-environment
modelling of cognitive processes. Our model shows, that among interaction-dominant
processes, sensorimotor interaction, and not only (or perhaps not even) internal neuronal-
muscular-etc processes, could be the crucial dominating interaction in the production
of 1/f noise.

This idea provides interesting insights into the notion of a dynamic core as a necessary hub
for agencial and conscious processes. Usually a dynamic core is circumscribed to distributed
clusters of neurons intensely interacting with each other within the brain. We find appealing
the notion of a dynamic core composed not only of coupled neural dynamics, but extended
to coupled neural and environmental reentrant processes: a sensorimotor dynamic core.
Edelman and Tononi stress that a dynamic core is a process, not a thing or a place, and is de-
fined in terms of neural interactions, rather than in terms of specific neural locations, connec-
tivity or activity [25]. Thus, there is no apparent reason to limit the definition of a dynamic
core to brain-bound events. Our model shows instead, that the dynamic core might well be ex-
tended, cutting across brain-body-world divisions. This view fits the ‘radical embodiment’
framework proposed by Thompson and Varela [60], in which specific neuronal assemblies
underly the operation of cognitive acts, depending crucially on the manner in which brain
dynamics are embedded in the somatic and environmental context of the agent’s life. Our
model thus provides a generative illustration of the generic intuition outlined by Silberstein
and Chemero.

The model presented here has tried to highlight the importance of taking into account a
framework that includes the coupled dynamics of the brain-body-environment system as a
whole. We have shown how a minimal behavioural model can display self-organized criticality
when we allow strong interactions between plastic neural mechanisms and sensorimotor pro-
cesses. We have tested different measurements of SOC in non-linear sensorimotor dynamics,
we have carried out a systematic comparison of such methods, together with experimental pro-
cedures to accurately test the presence of genuine SOC, and we have provided a simulated
proof of concept of how these measurements can be systematically applied to a simple cogni-
tive agent. By clarifying the relationship between different types o properties and processes ca-
pable of generating SOC and 1/f noise in cognitive systems we hope to have opened the way for
more accurate models and experiments that may shed light to the widespread presence of 1/f
noise in natural agents.
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Supporting Information

S$1 Video. Video of the behaviour of a situated agent. Top left: position of the agent and the
two lights. Top rigth: phase relationships of the oscillators and levels of plasticity. Bottom left:
final distance to each light at every trial. Bottom right: activation of the sensors, motors and
connection weights.
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