
i
i

i
i

i
i

i
i

UNIVERSITY OF THE BASQUE COUNTRY UPV/EHU

CONTRIBUTIONS ON AGREEMENT IN

DYNAMIC DISTRIBUTED SYSTEMS

Department of Computer Architecture and Technology

Ph.D. Dissertation presented by Carlos Gómez-Calzado

Advisors: Alberto Lafuente and Mikel Larrea

llzitbel
Texto escrito a máquina

llzitbel
Texto escrito a máquina
(cc)2015 CARLOS GOMEZ CALZADO (cc by-nc-sa 4.0)

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

UNIVERSITY OF THE BASQUE COUNTRY UPV/EHU

CONTRIBUTIONS ON AGREEMENT IN

DYNAMIC DISTRIBUTED SYSTEMS

Department of Computer Architecture and Technology

Ph.D. Dissertation presented by Carlos Gómez-Calzado

Advisors: Alberto Lafuente and Mikel Larrea

Carlos Gómez-Calzado Alberto Lafuente Rojo Mikel Larrea Álava

Donostia-San Sebastián, June 2015

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Acknowledgements

Ante todo quiero dar las gracias a mis directores Alberto Lafuente y Mikel

Larrea por haberme ayudado en esta tarea tan larga y dura como es una

tesis doctoral. Le hemos dedicado mucho trabajo. Tengo clarísimo que no

estaría aquí sin vuestra ayuda. Muchas gracias por haber creído en mi.

También quiero agradecer a mis padres (José y Pilar), a mi hermana (Gloria)

y a toda la familia en general, por su apoyo en los buenos momentos, pero

sobre todo durante los malos momentos. Vosotros me habéis dado la fuerza

que necesitaba cuando las mías flaqueaban. Esta tesis es tan vuestra como

mía.

Quiero darle las gracias a los profesores del grupo Egokituz (Julio, Luis,

Miriam, Nestor) y los que me quedan por mencionar del Grupo de Sis-

temas Distribuidos (Iratxe y Roberto). Siempre habéis estado dispuestos

a ayudar, y se agradece un montón. No puedo olvidarme de la gente de

la tercera planta de la Facultad de Informática. Algunos, a día de hoy,

seguimos por la universidad (Unai, Borja, Edu, Xabi,...) y otros ya os

habéis marchado (Ana, Amaia, Idoia, Raúl y Zigor). Hemos compartido

muchas charlas y vivencias durante estos años. Espero que nuestra amistad

dure muchos años, independientemente de dónde estemos. Además, quiero

agradecer a Antonio Fernandez su apoyo en ciertas partes del trabajo. Ha

sido un placer compartir ideas y charlas contigo. Por último, (en español)

i
i

i
i

i
i

i
i

quiero dar las gracias a mis amigos en general. Espero veros más a partir

de ahora.

I want to thanks Arnaud Casteigts his hospitality in Bordeaux during my

research stay in 2014. It has been a great experience to work with you and

your team. I hope it will not be the last time. Thanks also Michel Raynal

for the right comments in the precise moment and for contributing in one

of the publications of this work.

This research has been supported by the Basque Government, under grant

IT395-10, the Spanish Research Council, under grants TIN2010-17170 and

TIN2013-41123-P, and a doctoral fellowship from the Basque Government

(call of 2010). Additionally, part of this work has also been possible thanks

to the University of the Basque Country under grant INF11/42, and the

support of the Faculty of Informatics of San Sebastián and its the Depart-

ment of Computer Architecture and Technology.

i
i

i
i

i
i

i
i

Abstract

This Ph.D. thesis studies the agreement problem in dynamic distributed

systems by integrating both the classical fault-tolerance perspective and

the more recent formalism based on evolving graphs. First, we developed

a common framework that allows to analyze and compare models of dy-

namic distributed systems for eventual leader election. The framework

extends a previous proposal by Baldoni et al. by including new dimen-

sions and levels of dynamicity. Also, we extend the Time-Varying Graph

(TVG) formalism by introducing the necessary timeliness assumptions and

the minimal conditions to solve agreement problems. We provide a hier-

archy of time-bounded, TVG-based, connectivity classes with increasingly

stronger assumptions and specify an implementation of Terminating Re-

liable Broadcast for each class. Then we define an Omega failure de-

tector, Ω∗, for the eventual leader election in dynamic distributed systems,

together with a system model, M∗, which is compatible with the time-

bounded TVG classes. We implement an algorithm that satisfy the prop-

erties of Ω∗ in M∗. According to our common framework, M∗ results to

be weaker than the previous proposed dynamic distributed system models

for eventual leader election. Additionally we use simulations to illustrate

this fact and show that our leader election algorithm tolerates more general

(i.e., dynamic) behaviors, and hence it is of application in a wider range

i
i

i
i

i
i

i
i

of practical scenarios at the cost of a moderate overhead on stabilization

times.

i
i

i
i

i
i

i
i

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Objectives . 4

1.2 Contributions . 5

1.3 Roadmap . 7

2 Background and Related Work 9

2.1 Distributed Agreement and Related Problems 11

2.1.1 Consensus . 11

2.1.2 Eventual Leader Election . 12

2.1.3 Terminating Reliable Broadcast 12

2.1.4 Group Membership . 13

2.2 Solving Agreement in Distributed Systems 14

2.2.1 Models in Distributed Systems 14

2.2.1.1 Time Models . 14

2.2.1.2 Failure Models . 18

2.2.2 Solving Agreement with Failure Detectors 22

i

i
i

i
i

i
i

i
i

CONTENTS

2.3 Solving Agreement in Dynamic Distributed Systems 28

2.3.1 Impossibility Results in Dynamic Distributed Systems 29

2.3.2 Models in Dynamic Distributed Systems 30

2.3.2.1 Time-Varying Graphs 30

2.3.2.2 Connectivity Classes 33

2.3.2.3 A Dynamic Distributed System Categorization 38

2.3.3 Leader Election in Dynamic Distributed Systems 39

2.3.3.1 Implementing Ω in Dynamic Distributed Systems . . . 40

2.3.3.2 Other Dynamic Leader Election Solutions 41

3 Categorizing Dynamic Distributed Systems 45

3.1 A Four-level Categorization . 46

3.2 Adding Dimensions . 48

3.3 Representing System Models . 51

3.4 Conclusions . 56

4 Connectivity Models for Solving Agreement 59

4.1 A Timely Model for Dynamic Systems 62

4.1.1 Definitions . 63

4.1.2 Terminating Reliable Broadcast in T C(∆) 64

4.2 Implementability of TRB . 68

4.2.1 (Lower)-bounding the Edge Stability 69

4.2.2 (Upper)-bounding the Edge Appearance 73

4.2.3 Relating Timely Classes . 79

4.3 From ∆-TRB to ∆-Consensus in Dynamic Systems 80

4.4 On the Weakest Implementable Timely Connectivity Class 81

4.5 Conclusions . 87

ii

i
i

i
i

i
i

i
i

CONTENTS

5 Eventual Leader Election in Dynamic Distributed Systems 91

5.1 Problem Specification and System Model 93

5.1.1 Problem Specification . 93

5.1.2 System Model M∗ . 96

5.2 A Leader Election Algorithm for M∗ 98

5.2.1 A Reliable Broadcast Primitive for M∗ 98

5.2.2 ∆∗Ω Implementation . 102

5.2.2.1 Correctness proof of the algorithm 107

5.3 Evaluation . 113

5.3.1 Comparing M∗ to Other Models 114

5.3.2 Simulation Examples . 116

5.4 Conclusions . 119

6 Conclusions 121

6.1 Summary of Contributions . 121

6.2 Future Work . 124

Bibliography 127

iii

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

ListofFigures

2.1 Relations of inclusion between classes. 36

2.2 The resulting extended relations of inclusion between classes. 38

3.1 An intuition of where (mobile) dynamic distributed systems should be. 47

3.2 Dimensions categorizing mobile dynamic distributed systems. 49

3.3 Graphical representation of a static and synchronous distributed system. 50

3.4 Graphical representation of a totally asynchronous dynamic distributed

system. 51

3.5 Representation of the model proposed by Fetzer and Cristian [32]. . . . 53

3.6 Representation of the model proposed by Masum et al. [65]. 54

3.7 Representation of the model proposed by Ingram et al. [46]. 55

3.8 Representation of the model proposed by Melit and Badache [67]. . . . 56

3.9 Representation of the model proposed by Arantes et al. [6]. 57

4.1 Terminating Reliable Broadcast for T C(∆) executed in a node p. 66

4.2 Terminating Reliable Broadcast for T C′(β). 70

4.3 Terminating Reliable Broadcast for T C′′(α,β). 75

4.4 A time-line explaining the Γ upper-bound for the worst case (α,β)-

journey from a process p to another process q in the system. 77

v

i
i

i
i

i
i

i
i

LIST OF FIGURES

4.5 ∆-TRB based ∆-Consensus algorithm for T C(∆). 81

4.6 Terminating Reliable Broadcast for T Cw(ω). 85

4.7 T C′′(α,β)⊂ T C′(β)⊂ T Cw(ω)⊂ T C(∆) 88

4.8 The proposed connectivity classes classified in terms of relations of

inclusion with respect of class 5 of [16]. 89

5.1 Algorithm implementing Reliable Broadcast by ω-journeys (code for

process pi). 100

5.2 Process states during the algorithm. 102

5.3 Algorithm implementing ∆∗Ω in model M∗ (code for process pi). . . . 103

5.4 Auxiliary functions. 104

5.5 Figure on the left illustrates the graphical representation of the model

M∗. Figure on the right illustrates the comparison between model M∗

and the model proposed by Fetzer and Cristian [32]. 114

5.6 Figure on the left illustrates the comparison between modelM∗ and the

model proposed by Masum et al. [65]. Figure on the right illustrates

the comparison between model M∗ and the model proposed by Ingram

et al. [46]. 115

5.7 Figure on the left illustrates the comparison between model M∗ and

the model proposed by Melit and Badache [67]. Figure on the right

illustrates the comparison between model M∗ and the model proposed

by Arantes et al. [6]. 115

5.8 Screen-shot sequence of a simulation showing how the merge of two

graphs leads to a unique leader and how new joins do not affect the

leadership. Leaders are represented by white circles. 116

5.9 A continuous joining situation in Melit and Badache’s algorithm. The

leader is represented in white. 117

vi

i
i

i
i

i
i

i
i

LIST OF FIGURES

5.10 A periodic mobility pattern in Melit and Badache’s algorithm. The

leader is represented in white. 117

5.11 A varying neighborhood situation in Arante et al.’s algorithm. The

leader is represented in white. 118

5.12 The set of initial graphs used for obtaining the convergence metrics of

each algorithm studied. 119

5.13 Time to converge a stable leader for the three analyzed algorithms. The

simulated environment is composed by 10 processes with the same ran-

dom topology. 119

vii

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

ListofTables

2.1 Classification of the different failure detector classes by their properties. 24

2.2 Classification of dynamic distributed system models by Baldoni et al. [10]. 39

3.1 Examples of dynamic system models. 51

ix

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER

1
Introduction

In nowadays computing applications, devices of any kind, geographically distrib-

uted and interconnected by wired or wireless networks, execute pieces of code in a

collaborative way. The abstraction of process is commonly used to refer to the entity

executing the code on a single device. Processes in these distributed systems gracefully

collaborate to exhibit some kind of useful behavior according to the functionality of

the distributed application, specified by means of a distributed algorithm. Commonly,

the collaborative work of processes in a distributed system is boosted by the need of

agreement. Researchers in distributed systems have represented agreement problems

by the well know paradigm of the Consensus problem, which in the last decades has

been considered a fundamental problem and its solution has attracted huge attention

from theoretical researches and practitioners.

A distributed system is said to be synchronous when both the execution speed of

processes and the transmission delay of messages are bounded, and the bounds are

1

i
i

i
i

i
i

i
i

1. INTRODUCTION

known. Solving agreement in such a system is relatively straightforward [23]. On the

other hand, in an asynchronous system, where there are no time assumptions, it has

been shown that it is impossible to solve Consensus in the presence of failures due to

the impossibility of distinguishing between a “slow” process and a crashed one (FLP

impossibility [34]). For solving agreement and circumvent this impossibility, several

models of partial synchrony have been proposed where unknown time bounds hold

either during the whole execution or eventually [2, 19, 24, 27, 28, 80, 85, 86]. Other

proposals, as for example [20, 32], opt for assuming infinitely recurrent good periods

where bounds hold followed by bounded periods of asynchrony.

One of the most popular approaches to solve Consensus in models of partial syn-

chrony is based on the abstraction of unreliable failure detectors [19], which have

been studied for the last two decades. A failure detector encapsulates the required

synchrony such that agreement problems that cannot be solved in purely asynchron-

ous systems, e.g., Consensus, become solvable. Among the different classes of failure

detectors that have been proposed, Omega (Ω) is of special interest, because it is the

weakest failure detector allowing to solve Consensus (assuming a majority of correct

processes) [18]. The specification of Ω states that eventually all the correct processes

trust the same correct process. In other words, Ω provides an eventual leader elec-

tion functionality. Indeed, a number of leader-based Consensus algorithms have been

proposed, e.g., [39, 51, 55, 73, 75].

Observe that the models of partial synchrony, as well as unreliable failure detect-

ors, were initially defined for static distributed systems prone to process crash failures.

Hence, communication among correct processes was usually assumed to be reliable.

Since then, new scenarios have been considered, e.g., process crash-recovery and omis-

sion failures [1, 22, 58], unknown membership [7, 47], and more recently system dy-

namicity, including process mobility [59, 78], which makes even the communication

among correct processes unpredictable.

2

i
i

i
i

i
i

i
i

Nowadays there are new scenarios where devices include a huge variety of behavi-

ors. Devices like mobile phones, sensors or smart-watches with wireless communica-

tion capabilities, lead to new paradigms (e.g., ubiquitous systems [81]) which no longer

assume neither a static network nor fully, permanent connectivity among nodes. In gen-

eral we refer to these scenarios as dynamic. Contrary to the well established discipline

of static distributed systems, where concepts and terminology are commonly accepted

and system models well defined, dynamic distributed systems is a relatively novel field

with many faces, which is being boarded from different perspectives, and where much

research is necessary to establish concepts, terminology, models and categories. As a

result of the mobility, the unplugged power supply and the wireless connection, dy-

namic distributed systems usually include unavailable and unreliable nodes and links,

unknown or unbounded membership and infinite arrival.

Yet, dynamic distributed systems can be modeled using the classical fault-tolerance

perspective [6, 59, 67]. For example a system model could include partial synchrony,

message omission and crash-recovery failures, and fair lossy channels. However, as

pointed by Casteigts et al. [16], in dynamic systems “changes is not anomalies but

rather integral part of the nature of the system". This has encouraged for seeking dif-

ferent approaches to dynamic systems, usually taking the graph theory as a foundation.

In this regard the concept of evolving graphs [49] or Time-Varying Graphs (TVG) [16]

has been developed [30, 35, 48, 61, 83]. The TVG framework provides a formal-

ism to describe dynamic networks and introduces the concept of journey (a.k.a. tem-

poral path). A journey represents a (multi-hop) communication opportunity between

two nodes along time (temporal connectivity). Based on the concept of temporal con-

nectivity, Casteigts et al. define a hierarchy of classes of dynamic networks. One of

the classes provides the necessary recurrence to specify agreement problems. However,

the TVG approach lacks the necessary mechanisms (i.e. time bounds in communica-

tion) to describe the specific assumptions that are required by fault-tolerant agreement

3

i
i

i
i

i
i

i
i

1. INTRODUCTION

algorithms to terminate [40].

The scope of this Ph. D. thesis is agreement in dynamic distributed systems, spe-

cifically the models and algorithms that operate in these systems to solve agreement

problems. A goal is to integrate different perspectives, on the one hand the classical

fault-tolerance approaches, and on the other hand the more recent formalism based on

graph dynamics.

1.1 Objectives
The main objective of this work is the study of agreement in dynamic distributed sys-

tems. We mainly focus on leader election and analyze the system model conditions of

a distributed dynamic system in which this problem can be solved.

Specific goals of this work are:

• Establishing a framework to provide a reference for analyzing and comparing

models of dynamic distributed systems.

• Studying the graph stability conditions required to solve agreement in dynamic

distributed systems.

• Defining the properties of eventual leader election and implementing a leader

election algorithm for a dynamic distributed system.

To reach these goals, we first study the proposals in the literature from both the

classical fault-tolerance theory and the graph theory, specifically the Time-Varying

Graph formalism. Furthermore, we search for a common framework to analyze and

compare dynamic system models approaches. We take TVG models to find minimal

conditions under which agreement problems can be solved in dynamic distributed sys-

tems. Then we board eventual leader election in a weak dynamic system model by

4

i
i

i
i

i
i

i
i

1.2 Contributions

providing formal proofs of the algorithms. Also, we use simulation to compare our

approach to other proposals.

1.2 Contributions
The present work contributes to the state-of-the-art of Dynamic Distributed Systems in

the following aspects:

1. We present a framework for dynamic distributed systems that allow to compare

the system models proposed in the literature for agreement problems, and spe-

cifically for leader election [36, 41]. The framework extends the previous cat-

egorization proposed by Baldoni et al. [10]. New dimensions are considered

to capture all the details of mobility and dynamism. Furthermore, a new level

for each dimension is introduced in order to include behaviors which are not

considered by the classical proposals of synchrony, asynchrony, and partial syn-

chrony. Models like the one by Cristian and Fetzer [24] can be now compared

to the classical proposals and classified in terms of weakness. Interestingly, the

four-level scale we propose can be uniformly applied to every dimension in our

framework. Furthermore, besides a formal notation, we provide a graphical rep-

resentation that makes very intuitive to compare system models.

2. We extend the Time-Varying Graph (TVG) formalism by introducing specific

timeliness constrains in the recurrent connectivity class proposed by Casteigts

et al. We address timeliness from a synchronous point of view, i.e., systems

where the transmission delay of messages is bounded and the bound is known

a priori by the processes [40]. The set of concepts and mechanisms we provide

makes it possible to describe system dynamics at different levels of abstraction

and with a gradual set of assumptions, resulting in a hierarchy of time-bounded

5

i
i

i
i

i
i

i
i

1. INTRODUCTION

TVG classes. We first formulate a very abstract property on the temporal con-

nectivity of the TVG, namely, that the temporal diameter of a component in

the TVG is recurrently bounded by ∆. We specify a version of the Terminating

Reliable Broadcast problem (TRB) for ∆-components (and their corresponding

∆-journeys), which is related to the ability of solving agreement at component

level. Although we proof that ∆-components provide a sufficient concept at the

most abstract level to specify a TRB solution, they require oracles that are not

directly implementable in message-passing systems. Therefore, we introduce a

first constraint to force the existence of journeys whose edges presence dura-

tion is lower-bounded by a time β , thereby enabling repetitive communication

attempts to succeed eventually. Finally, we introduce a further constrained class

of TVG, inspired by the work of Fernández-Anta et al. [5], whereby the local

appearance of a link also must be bounded by some duration α , yielding to the

concept of (α,β)-journeys. The corresponding algorithms for TRB are specified

and proved, and a relation among classes is defined. Furthermore a minimal im-

plementable class based on a lower-bound ω , which is linked to the edge latency,

is proposed.

3. We study the leader election problem in mobile and dynamic distributed sys-

tems [36]. We define a new Omega failure detector, ∆∗Ω, together with a system

model, M∗, derived from the eventual leader election model proposed by Larrea

et al. for non-mobile dynamic systems [59]. Being compatible with any of the

connectivity classes based on ∆-components, M∗ introduces additional assump-

tions on the graph stability. Specifically, we provide a leader election algorithm

that uses the assumptions of w-journeys and introduces the necessary mechan-

isms to cope with the partial synchrony assumptions of ∆∗Ω. We provide a

correctness proof of the algorithm. Additionally, we have carried out simulations

6

i
i

i
i

i
i

i
i

1.3 Roadmap

and compare our algorithm to other related leader election algorithms.

1.3 Roadmap
The structure of the rest of this document is the following. In Chapter 2 we define

the background on agreement in distributed systems and on dynamic distributed sys-

tems. In Chapter 3 we present a common framework for dynamic distributed systems

that allow to compare different approaches. Chapter 4 is devoted to extend the TVG

formalism to allow to implement agreement algorithms in a model with time bounds.

Next, in Chapter 5, we present an eventual leader election algorithm for dynamic dis-

tributed systems. Finally, Chapter 6 is devoted to conclude the work and identify the

open research lines.

7

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER

2
BackgroundandRelated

Work

A distributed system is composed of a set of networked devices such that, in gen-

eral terms, coordinate their actions in order to achieve a common goal. There exist

many different ways for the processes to communicate. However, in this work we

only consider message-passing solutions and therefore we leave out of the scope of

this work other existing communication paradigms like, for example, shared-memory

distributed systems.

The agreement resolution is key in many of today’s distributed applications due

to their need in any distributed problem at some point. In this sense, the Consensus

problem is a central paradigm in distributed systems, as it represents many agreement

problems, e.g., leader election, atomic commitment and group membership. Unfor-

tunately the agreement resolution is full of complexities since agreement cannot be

9

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

solved in a totally asynchronous systems in presence of failures [34]. Intuitively, in an

asynchronous system it is not possible to distinguish between a faulty process and a

‘slow’ process or network. This result, presented by Ficher, Lynch and Patterson, is

known as the FLP impossibility. As a consequence of this impossibility, there is no

deterministic way to solve Consensus even in presence of only one faulty process in

asynchronous systems.

Hence, a fundamental question in distributed computing concerns how processes of

the system can agree on a common value despite possible failures. In this regard there

exist solutions that circumvent the FLP impossibility providing distributed agreement

in presence of faulty processes. One of the purposes of this chapter is to illuminate

the issues involved in solving distributed agreement in presence of faulty processes or

links.

Most of the research on Consensus has considered a static distributed system with

permanent connectivity among processes. In many current distributed systems, how-

ever, these assumptions are not valid any more. Instead, these new systems exhibit a

dynamic behavior, with process joining the system, leaving it or just moving, which

implies uncertain connectivity conditions. Indeed, and unlike in classical static sys-

tems, these events are no longer considered incorrect or sporadic behaviors, but rather

the natural dynamics of the system. In this chapter we also describe the existing know-

ledge about dynamic distributed systems, dynamic distributed agreement and evolving

networks in general.

The structure of this chapter is the following. In the first section we introduce some

of the most important agreement problems in distributed computing. Then, in next

section we introduce the concepts of partial synchrony, links and process failure models

and we describe some of the existing distributed agreement solutions in static systems.

Finally, we introduce the existing background in dynamic systems. More precisely, we

describe an existing framework call Time-Varying Graphs, by which we classify the

10

i
i

i
i

i
i

i
i

2.1 Distributed Agreement and Related Problems

existing dynamic models in the literature. We also introduce the dynamic distributed

system categorization introduced in [10], which we will extend in the following chapter.

As conclusion of this chapter we list some of the existing leader election solutions in

dynamic systems.

2.1 Distributed Agreement and Related Problems
As previously mentioned, the agreement resolution in presence of faulty processes is

one of the most studied problems in distributed system problems. More precisely, the

Consensus resolution stands out as the most important problem among them, since

many distributed problems are equivalent to Consensus. Yet, apart from Consensus,

other problems like Group Membership, Leader Election or Terminating Reliable Broad-

cast are of our interest. In particular, in this work we use the Leader Election problem

and the Terminating Reliable Broadcast problem as case studies.

It must be emphasized that some processes of the system can fail at any arbitrary

time of the execution. For this reason, processes can be cataloged in terms of how they

have behaved during the execution. For one, processes that fail at any time are said to

be incorrect. For another, processes that never fail are called correct.

We proceed to describe which are the properties that must be satisfied in order to

solve Consensus properly.

2.1.1 Consensus

The Consensus problem describes how all parties of a distributed system must de-

cide on a common value. In a distributed system solving Consensus every process pi

proposes a value vi. Eventually, every correct process eventually calls the primitive

decide(d), where d is the same value for all correct processes and is chosen among the

set of proposed values v1,v2, . . . ,vn.

11

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

Formally, a Consensus implementation has to satisfy the following three properties:

• Validity: Every correct process has to decide a proposed value.

• Agreement: Every correct process has to decide the same value.

• Termination: Every correct process has to decide in a bounded amount of time.

2.1.2 Eventual Leader Election

The eventual leader election problem describes how processes eventually decide ` as

their unique, common and correct leader. Obviously, the elected leader ` is selected

among the leaders proposed by any of the participants of the system. As a consequence,

two sets of processes can be identified in the system: the leader process and the rest

of non-leader processes.

An eventual leader election service implementation must satisfy the following prop-

erties:

• Termination: Every correct process elects a leader in a bounded time.

• Integrity: The elected leader is a correct process.

• Agreement: Every correct process elects the same leader.

2.1.3 Terminating Reliable Broadcast

The Terminating Reliable Broadcast problem (or TRB for short) consists on the broad-

casting of a message m to the rest of processes in a system where processes (including

the sender) can fail. The resolution of this problem could seem trivial, however, the

delivery or not of the message m must be agreed by all correct processes of the sys-

tem, i.e., either all correct processes deliver m or none of them does it. Instead, if the

message m is not delivered, every correct process delivers a special message called SF

12

i
i

i
i

i
i

i
i

2.1 Distributed Agreement and Related Problems

denoting that the sender is faulty. A TRB implementation organizes the system into

two subsets of processes: the sender and the receivers.

Formally, a TRB implementation must satisfy the following properties:

• Termination: Every correct process delivers some value.

• Validity: If the sender is correct and broadcasts a message m, then every correct

process delivers m.

• Integrity: Every process delivers a message at most once, and if it delivers some

message m 6= SF, then m was broadcast by the sender.

• Agreement: If a correct process delivers a message m, then all correct processes

deliver m.

It is important to emphasize that according to [29], Consensus is equivalent to TRB

in static synchronous systems.

2.1.4 Group Membership

The group membership problem is also equivalent to Consensus [17]. Let us imagine a

distributed system with the set of processes where some of them could fail. Eventhough

the need of synchrony is not intuitive, for the system to know the active membership at

a given time t, first of all, every process in the system must agree on which processes

are active at t. Summarizing, a system implementing a group membership service

provides a view of the membership agreed by every correct process at any time.

Formally, a group membership implementation must fulfill the following properties:

• Monotonicity: If a process adopts a view V generated at time t and later adopts

another view V ′ generated at time t ′ then t ′ > and V ′ ⊆V .

13

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

• Uniform Agreement: If some process adopts a view V generated at time t and

another different process adopts another view V ′ generated at time t ′ then V =V ′.

• Completeness: If a process p fails, then eventually every correct process adopts

a view V such that p /∈V .

• Accuracy: If some process adopts a view V generated at time t with q /∈V such

that q ∈Π, then q has failed.

2.2 Solving Agreement in Distributed Systems

Until now we have described agreement problems in terms of properties. Recall how-

ever that the FLP impossibility states that no deterministic agreement can be implemen-

ted in an asynchronous and faulty distributed system. In this section we describe par-

tially synchronous distributed systems, which allow circumventing the FLP impossib-

ility.

2.2.1 Models in Distributed Systems

We devote this section to describe all concepts surrounding distributed system models.

2.2.1.1 Time Models

The FLP circumvention requires the assumption of a certain degree of synchrony. How-

ever, making timeliness assumptions is not the only way of circumventing the FLP im-

possibility. Moreover, there exist an alternative approach, called failure detectors, that

encapsule the partial synchrony required for solving agreement. That way, the agree-

ment protocol focuses only on agreeing on a value relying on the information provided

by the failure detector.

14

i
i

i
i

i
i

i
i

2.2 Solving Agreement in Distributed Systems

As the FLP impossibility states, the agreement resolution depends directly on the

degree of synchrony provided by the distributed system. Both end points, synchronous

and asynchronous distributed systems are defined as follows:

• Synchronous systems are those where time bounds exist and are permanently

satisfied by processes/links. Moreover, those bounds are a priori known by the

system.

• Asynchronous systems are those where there exist no timing assumptions. There-

fore it cannot be assumed any time bound in the system.

Nevertheless, assuming synchronous distributed systems can be too restrictive in

most of real scenarios. This is why alternative synchrony models have been studied.

Partial Synchrony Models

A partially synchronous model is weaker than a synchronous model, yet providing

enough synchrony to circumvent the FLP impossibility. The concept of partial syn-

chrony is due to Dolev et al. [27]. In this work three kind of asyncrhony episodes are

identified:

1. Processor asynchrony, that allows processors to "go to sleep" for arbitrarily long

time while other processors continue to run.

2. Communication asynchrony, that prevent a priori bounds on message transmis-

sion time.

3. Message order asynchrony, that results in changing the order in message deliv-

ering.

Based on the previous, Dolev et al. state that assuming bounded process execution

speed is not enough for solving Consensus, but it is sufficient to assume a bound in

15

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

communication delays or the existence of an order between messages for solving Con-

sensus. Consequently, they propose partial synchrony, which consists on introducing a

certain degree of synchrony in the system (without assuming a full synchrony) which

allows us to solve agreement in presence of faulty processes. In particular, Dolev et

al. introduced 32 models of partial synchrony by the combination of five parameters

which can be set to “favorable” or “unfavorable”. Dolev et al. prove that it is necessary

the existence of an upper bound on the time for messages to be delivered and an up-

per bound on the relative speeds of processes to solve Consensus. This discovery was

paramount since many researchers started providing new partially synchronous models

for solving Consensus.

We have classified the existing proposals into three main approaches for providing

partial synchrony to a distributed system.

• Bound-based partial synchrony models:

– Dwork, Lynch and Stockmeyer models: Introduced in [28], the first proposal

assumes an unknown bound ∆ in the timeliness of the system that holds

during the whole execution. The second proposal defines the existence of

an a priori known bound in timeliness that is eventually satisfied after a

Global Stabilization Time (from now GST).

– Chandra and Toueg’s model: Based on the previous definitions of partial

synchrony, Chandra and Toueg [19] introduced the combination of both

models. The resulting model defines the existence of an unknown bound

that holds after GST.

• Bounded-rate-based partial-synchrony models:

– Archimedean model: Introduced by Vitányi [86], this model assumes a

bound in the ratio between the maximum end-to-end delay time and the

16

i
i

i
i

i
i

i
i

2.2 Solving Agreement in Distributed Systems

minimal computation step time.

– Θ-model: Introduced by Le Lann and Schmid [60], this model bounds the

ratio between maximal and minimal end-to-end delays of message simul-

taneously in transit.

– FAR model: Introduced by Fetzer et al. [33], it is a model where computing

step times and message delays are bounded with a finite average.

• Behavior-restriction-based partial-synchrony models:

– MCM model: Introduced by Fetzer in [31], this model assumes that all

delivered messages are precisely classified as “slow” or “fast”.

– Timed-Asynchronous model: Introduced by Cristian and Fetzer [24], this

model assumes that the system alternates “stable” periods, where a priori

known bound holds, followed by “unstable” periods where bounds can be

violated arbitrarily.

– TCB model: Introduced by Verissimo et al. [85], this model assumes the

existence of a timely subsystem that provides timing failure detection and

other time-related services to the asynchronous part of the system.

– ADD model: Introduced by Sastry and Pike [80], this model establishes an

unknown bound that does not hold perpetually, but is satisfied periodically

after an unknown but finite number of events.

– Weak Timely Link model: Introduced by Aguilera et al. [2] define a model

where only a subset of communications provide a bounded end-to-end delay.

– Time-Free: Introduce by Mostefaoui et al. [71, 72], this model allows a

total asynchrony assumed the existence of an eventually winning link. An

eventually winning link satisfies that eventually a correct process is always

17

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

among the first processes responding in a query-response communication

pattern, i.e., there is a process that never responds the last.

As can be observed, partial synchrony has been a well studied field in distributed

computing. Nevertheless, a correct distributed system description requires more as-

sumptions than the partial synchrony model itself. In next sections we cover the rest

of assumptions required for correctly describe a distributed system model.

2.2.1.2 Failure Models

Agreement problems can be solved taking into account one of previous models. Yet,

each agreement implementation requires a failure model description. For example, an

eventual leader election implementation, for converging to a common leader, could

require that faulty processes do not recover during the execution or recover a finite

number of times. In the same way, other implementations could allow faulty processes

but require that no message is lost. In the following we describe the different failure

proposals made in the literature in this regard.

Remember that the FLP impossibility relies on the existence of failures in the sys-

tem. For this reason, apart from timeliness aspects, a distributed system model has

to describe which is the expected behavior of the system. A system is composed of

processes and links, therefore, we have to describe which kind of failures can occur at

execution time. We proceed to list the some of most relevant failure models regarding

processes and links.

Process Failure Models

Apart from determining the synchrony model of the system it is also important to de-

termine the nature of the failures allowed. Introduced by Lamport in [52], a Byzantine

process, apart from acting asynchronously in terms of time bounds, can also act as

an adversary introducing uncertainty in the system. This kind of faulty processes are

18

i
i

i
i

i
i

i
i

2.2 Solving Agreement in Distributed Systems

cataloged as adversaries of the system since they can exhibit a conscious bad beha-

vior in order to explicitly corrupt the system. Among the possible bad behaviors are

for example the corruption of messages or the manipulation of the control messages.

Lamport showed that in a system composed by n processes where f of them are Byz-

antine, Consensus cannot be solved if f is n < 3 f +1. However, Lamport also stated

that, if process failure nature is limited to crashing, the number of faulty processes

tolerated in the system increases up to f ≤ (n+1)/2.

The basic Crash-Stop failure model considers as correct processes to those that do

not fail by crashing or as incorrect processes to those f faulty processes that crash at

any time of the execution. Observe that, this basic failure model considers that when

an incorrect process crashes it does not recover.

Although the majority of correct processes is still necessary, due to the appearance

of new failure models, the meaning of correctness has substantially changed. The

Omission failure model defines a process as correct to the one that neither crashes

nor loses messages in its buffers. Besides, incorrect processes are those that crash

and never recover again, or those that omit messages either in the input buffer or in

the output buffer. Observe that processes that omit messages permanently, both in the

input buffer and in the output buffer, can be considered as crashed since they cannot

communicate.

The Crash-Recovery model, introduced in [1, 44], allows four possible behaviors.

On the one hand, an always up process is the one that never crashes. On the other

hand, an eventually up process is allowed to crashes and recoveries a finite number of

times but there is a time after which it remains behaving correctly for the rest of the

execution. On the contrary, an eventually down process is also crashes and recovers a

finite number of times but there is a time after which it never recovers again. Finally,

unstable processes can crash and recover as they will. Intuitively, always up processes

are considered correct. Nevertheless, in some proposals, eventually up processes are

19

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

also considered correct since the solvability of the agreement is assumed to happen

eventually.

Summarizing, the existing process failure models are the following:

• Crash-Stop Failure Model

• Omission Failure Model

• Crash-Recovery Failure Model

• Byzantine Failure Model

As can be seen, Crash-Stop⊆ Omission⊂Crash-Recovery⊂ Byzantine.

Link Failure Models

In the same way a process can fail, the lose of a message can be considered as a link

failure. Even though, this kind of failure was not considered a priori, as time went

by researchers realized that the description of this kind of failures is as important as

the description of process failures. Unfortunately, some of the link behavior definitions

provided in the literature do not clearly divide timeliness assumptions from failure

assumptions. This fact makes difficult to identify a pure failure pattern more than

a global behavior description. We make an effort in this sense and we describe the

existing approaches cataloged by failures and timeliness assumptions.

• Link failure models:

– Reliable links: Every message sent by this link will be delivered and will

not be lost.

– k-lossy links: At least one of k message sent is received.

– ADD links: There is an unknown number of consecutive message lost after

which a message is reliably delivered.

20

i
i

i
i

i
i

i
i

2.2 Solving Agreement in Distributed Systems

– Fair lossy links: If it is sent an infinite number of messages then an infinite

subset of them will be reliably delivered.

– Lossy links: There is no guarantee neither in the delivery time nor in the

loss of the message.

• Link timeliness model:

– Timely delivery: If a message is delivered is done in a bounded time.

– Eventually delivery: There is a time after which if a message is delivered

is done in a bounded time.

• Combined approaches:

– Timely links: (Timely delivery + Reliable links) Every message is timely

delivered.

– Eventually timely links: (Eventually timely delivery + Reliable links) There

is a time after which every message is timely delivered.

Observe that reliable or eventually timely links provide a finite number of message

loses while the rest of links allow an infinite number of loses. Among those that allow

an infinite number of loses the differences rely on the way that successful messages are

delivered. While k-lossy or ADD links provide a reliable communication in a bounded

(maybe unknown) number of attenpts, fair lossy links and lossy links do not have a

priori a successful communication pattern. In essence, for having timely communica-

tions, it is important to provide a bounded successful communication pattern. That is

the reason why lossy links cannot be used to implement agreement solutions since they

are not assumed even to deliver any message.

21

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

2.2.2 Solving Agreement with Failure Detectors

Regarding the concepts introduced in previous sections researchers were able to provide

different solutions to agreement problems in distributed systems. One of the first pro-

posal was the one introduced by Dolev et al. in [27] that showed how Consensus

becomes possible with up to n/2 faulty proceses in partially synchronous systems un-

der the crash-stop failure model.

In general, there exist three main approaches to implement agreement problems in

the literature: randomized Consensus, timing assumption based Consensus and fail-

ure detectors. Randomized Consensus algorithms are based on probabilistic techniques

and provide that a value is decided with probability equal to 1 [8, 11, 14]. In [9] it

is provided a survey of some of the most important existing randomized algorithms.

Additionally, there exist Consensus solutions in dynamic networks based on random-

ization [69, 70] (concretely in the wireless networks field). Timing assumptions based

Consensus solutions are executed in systems with weak synchrony assumptions. Solu-

tions like those proposed by Dwork et al. in [28] or the one proposed by Dolev et al.

in [27] are examples of this kind of solutions. These approaches are explicit in the pro-

tocol. Finally, failure detector based agreement solutions solve this problem abstracting

from the synchrony matters encapsulating this requirements into failure detectors im-

plementations more than in the implementation of the main agreement solution. In this

work we focus on failure detectors, being the rest of approaches out of our scope.

Since their appearance in 1996, unreliable failure detectors have attracted the atten-

tion of many researchers of the area. Proposed by Chandra and Toueg in their seminal

paper [19], an unreliable failure detector is a module executed at each process of a

distributed system. The goal of this module is reporting the status for each process

composing the distributed system. Unfortunately, occasionally the information can be

unreliable resulting in false suspicions.

22

i
i

i
i

i
i

i
i

2.2 Solving Agreement in Distributed Systems

In general, detectors assume that eventually an unknown time bound holds not only

in processing time but also in message delivery time. This is important since failure

detectors operate usually exchanging heartbeat messages with the rest of processes in

order to denote their correctness. Consequently the reception of those messages be-

comes a key element in the implementation. The reception of a heartbeat messages

before a threshold expiration denotes the correct behavior of the sender process. Oth-

erwise, if the timer associated to a process pi expires then pi is suspected. However,

the timeout value associated to pi is increased in order to converge to a real value in

case of a premature false suspicion.

Recall that the information provided may not be reliable. Indeed Chandra and

Toueg were aware of it and proposed a family of unreliable failure detectors classified

in terms of the precision of the information provided. Failure detectors can be classified

in terms of two properties:

• Completeness: This property denotes the ability of a failure detector to detect

crashed processes.

– Strong completeness: Eventually every process that crashes is permanently

suspected by every correct process.

– Weak completeness: Eventually every process that crashes is permanently

suspected by some correct process.

• Accuracy: This property denotes the ability of a failure detector to not suspect

processes that are still alive.

– Strong accuracy: No process is suspected before it crashes.

– Weak accuracy: Some correct process is never suspected.

– Eventual strong accuracy: There is a time after which correct processes are

not suspected by any correct process.

23

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

– Eventual weak accuracy: There is a time after which some correct process

is never suspected by any correct process.

A failure detector must satisfy both properties in a certain degree to be useful, since

the independent satisfaction of a single property is trivial. For example, a “complete”

failure detector is the one that suspect every process. On the other hand, an accurate

failure detector is the one that does not suspect any process.

Failure detectors areshown in at the Table 2.1 according to the possible properties

combinations:

Accuracy
Completeness

Strong Weak

Strong P Q
Weak S W

Eventual strong 3P 3Q
Eventual weak 3S 3W

Table 2.1: Classification of the different failure detector classes by their properties.

There are Consensus solution based on 3P like [45, 82].

We want to highlight the Consensus protocol proposed by Chandra and Toueg that

it is based on a 3S failure detector implementation. The system model adopted for the

3S failure detector assumes eventually reliable links and the crash-stop failure model.

Chandra et al. [18] proposed another failure detector class, called Omega (Ω). The

Ω failure detector class provides eventual agreement on a common and correct leader

among all correct processes in a distributed system. An Ω failure detector must satisfy

that:

• There is a time after which all the correct processes always trust the same correct

process.

24

i
i

i
i

i
i

i
i

2.2 Solving Agreement in Distributed Systems

Chandra et al. proved that Ω is the weakest failure detector for solving Consensus.

In the same work, Chandra et al. also proved that Ω and 3S are equally strong.

We are interested on the Ω failure detector because is one of our case study. It is

important to remark that there exist several Consensus protocol like for example the

one proposed by Mostefaoui and Raynal in [73] that explicitly make use of an even-

tual leader election service. Moreover, one of the most popular Consensus algorithm,

Paxos, is a leader-based Consensus protocol. Paxos is presented as a fictional story

which describes how the parlament of the Greek island Paxos used to agree their de-

cisions. Yet, the Paxos protocol was published as a journal article [51] by Lamport

in 1998, this contribution was written in 1989 . One of the most attractive properties

of Paxos is that it can sporadically solve Consensus in asynchronous systems without

Byzantine processes. However, Paxos does not contradict the FLP impossibility since

for deterministically solving agreement it requires the existence of a stable leader.

Until now we can conclude that for circumventing the FLP impossibility it is ne-

cessary to implement a monitorization mechanism. Since we place this work in the

message-passing world, we consider only those monitorization mechanisms implemen-

ted using network communication. Thus, we proceed to study which are the commu-

nication patterns typically used in this kind of mechanisms.

We can observe two different kind of messages that are control messages and event-

messages. Control messages are sporadic and ensure the fulfillment of a certain invari-

ant in the protocol. Alternatively, event messages have a periodical nature and they are

used to implement the ratification of process status.

Periodical messages are implemented by one of these two main communication

patterns:

• Polling: A polling communication based mechanism sends a query message from

each process p to anther process q. After that p waits for an answer from q. The

25

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

non reception of an answer after a given time makes p suspecting q. Examples

of failure detectors based on polling are [53, 54].

• Heartbeat: A heartbeat-based mechanism only requires the periodic send of an

alive message from a process q to the rest of processes in the system. If the

message is not received after a given time by any process p, p automatically

suspects q.

The election of one of this communication pattern has its impact in the scalability

of the resulting failure detectors. In fact, it has been recurrently observed that the more

complex is the protocol and more message requires, the less scalable is the system. In

this regard, Aguilera et al. [2, 3], Larrea et al. [56], and recently Lafuente et al. [50]

study the communication efficiency and optimality of failure detector implementations

(in particular, failure detector classes Ω and 3P), defined as follows:

• Communication efficiency: A failure detector implementation is communication-

efficient if only n links are used forever, n being the number of processes in the

system.

• Communication optimality: A failure detector implementation is communication-

optimal if only c links are used forever, c≤ n being the number of correct pro-

cesses in the system.

These definitions classify failure detector implementations in terms of how good a

failure detector uses the network resource, i.e., the number of links used forever. In

other to empirically evaluate failure detectors, Chen et al. in [21] proposed a set of

metrics that describe the quality of service (QoS) of failure detectors. The proposed

metrics are the following:

26

i
i

i
i

i
i

i
i

2.2 Solving Agreement in Distributed Systems

• Primary metrics:

– Detection time (TD): TD is the time between a process p crashes and another

process q starts suspecting p permanently.

– Mistake recurrent time (TMR): TMR is the time between two consecutive

mistakes.

– Mistake duration (TM): TM is the time needed to correct a false suspicion.

• Derived metrics:

– Average mistake rate (λM): λM is the mistake rate of a failure detector.

– Query accuracy probability (PA): PA is the probability of having a correct

response if the failure detector is queried at an arbitrary time.

– Good period duration (TG): TG denotes the length of a good period.

– Forward good period duration (TFG): TFG represents the time that elapses

from a random time where a process q trusts p to the time when q starts

trusting again p after a previous suspicion.

These metrics provide us an easy way of comparing different implementations from

an empirical view point. This comparison framework is very useful since the obtained

results clearly show which failure detector implementation fits better in certain real

scenarios.

Regarding process failures, classical implementations of 3P and 3S usually assume

the crash-stop process failure model. However, we believe that, apart from Byzantine

process behaviors, the crash-recovery failure model is the weakest dynamic member-

ship behavior that we can expect in a distributed system. A remarkable crash-recovery

solution was proposed by Aguilera et al. in [1] where it was presented an adaptation

27

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

of 3S called 3Se in the crash-recovery failure model. One of the featured characterist-

ics of 3Se is that it allows solving agreement with a majority of always up processes

without stable storage. Additionally, another failure detector called 3Su is presented in

the same paper, which allows solving Consensus even with a lower number of always

up process compared to the number of incorrect processes. Instead, 3Su requires a

number of correct processes higher than the number of incorrect processes and stable

storage.1

After the proposal of Aguilera et al., several new proposals appeared, almost all of

them implementing the Ω failure detector . There exist many Ω implementations that

assume failure models like crash-recovery or omission failure models [1, 22, 57, 58,

63, 64] differently to the classic crash-stop failure model. Some of these algorithms

are analyzed in terms of QoS in [37].

Recently some models with unknown membership [7, 47] and dynamic distributed

systems [59, 78] have been proposed. Nevertheless, these proposals and the classical

failure models describe a key characteristic of distributed systems that is the dynamicity

of the system. In this work we want to adopt these new arising dynamic models as

well as the process crash-recovery model. We believe that it is interesting to reach

agreement in a totally dynamic distributed system. To do so, we consider that a totally

dynamic distributed system should satisfy all the previous dynamicity properties all

together. In the following sections we present the needed theoretical concepts in order

to achieve the objective of this work.

2.3 Solving Agreement in Dynamic Distributed Systems

So far we have studied how agreement is solved in the presence of failures. However,

all this knowledge have been deployed assuming permanent connectivity. As we have

1In this case, eventually up processes are also considered correct.

28

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

quoted before, a process p isolation because of mobility is equivalent to p’s failure

or to the simultaneous failure of the links connecting p with the rest of the processes

of the system. Note that, for example, a process connected by a lossy link could be

considered as a well-connected process but continuously moving inside and outside of

the network graph. Consequently, if links and process failures prevent agreements to

converge, intuitively, evolving systems will have the same problem.

There exist several proposals that implement agreement in evolving systems, but

they rely on “ad-hoc” connectivity models that sometimes could seem unrealistic. One

problem is the lack of a common framework to be able to compare different connectiv-

ity models. This is essential, since the basis of knowledge generation starts from having

a common language. In this work we propose for this task the use of the time-varying

graph framework [16]. We study, using the time-varying graph notation, which are

the minimum conditions that a dynamic distributed system has to satisfy in order to

allow solving agreement. More concretely, in this section we introduce the necessary

concepts needed for understanding this part of the work. We also describe the existing

dynamic agreement solutions.

2.3.1 Impossibility Results in Dynamic Distributed Systems

In [13] Biely et al. study the agreement problem in synchronous and directed dynamic

graphs. The system model assumes a slotted time approach where messages and graph

changes are performed in the beginning of each time slot. Additionally, it is assumed

that the whole system compose permanently a strongly connected component, i.e., there

is no isolated processes in the system and the system cannot partition at any time.

However edge directions and even the presence of them can change between rounds.

For example, in round 1 the graph can conform a star with out-coming links from the

center to the rest of nodes, and in round 2 the graph can conform a ring with links

oriented in the same direction of the clockwise.

29

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

Biely et al. prove that under directional graph assumptions, Consensus cannot be

solved if it is not guaranteed an eventual bidirectional connectivity between nodes of

the system.

In [5], Fernandez Anta et al. assume opportunistic communication where the changes

in the communication topology are created online. In essence, processes are not re-

quired to be directly connected at the same time while exist a temporal path that con-

nects them. In [5] the case study is place in the field of Mobile Ad-hoc Networks

(MANETs). They assume a slotted time model where communications are sent in the

beginning of each time slot, and the time slot is enough for their correct deliverance.

Additionally, the graphs evolves synchronously in the sense that graph changes are also

performed at the beginning of each slot of time. Under this assumptions, Fernandez

Anta et al. study a fundamental problem as it is the information dissemination.

2.3.2 Models in Dynamic Distributed Systems

System models are in charge of describing how the system is assumed to behave.

Nevertheless, as we have highlighted before, there is no unanimity in the way how a

dynamic distributed system must be described. A recent framework called time-varying

graphs [16] (TVG, for short), provides the notation needed for describing evolving

graphs. Indeed, the TVG framework extends the classical graph theory introducing the

required notation to describe evolving graphs.

In this section, first of all we present the TVG framework for describing evolving

systems. Next we describe and classify the existing dynamic models in terms of TVG.

Finally we introduce an existing dynamic distributed systems classification.

2.3.2.1 Time-Varying Graphs

A recent framework called time-varying graphs, proposed by Casteigts et al. [16], aims

at providing a precise formalism for describing dynamic networks. As usual, the en-

30

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

tities of the system and the communication links between them are represented as a

graph. More specifically, a time-varying graph (TVG, for short) is defined as a tuple

G = (V,E,T ,ρ,ζ ,ψ), where:

• V is the set of communicating entities (or nodes, or processes, interchangeably).

• E is the set of edges (or links, interchangeably) that interconnect the nodes in V.

In this work, all edges are undirected, i.e., unidirectional links.

• T is the lifetime of G, i.e., the interval of time over which the graph is defined. It

is a subset of the temporal domain T, itself being N or R+ depending on whether

time is discrete or continuous (in this work, it is continuous). For convenience,

both endpoints of T are referred to as T − and T +, the latter being possibly +∞.

• ρ : E×T →{true, f alse}, called the presence function, indicates whether a given

edge is present at a given time (i.e., ρ(e, t) = true if and only if edge e is present

at time t) .

• ζ : E×T → T, called the latency function, indicates how long it takes to send

a message across a given edge for a given emission time (assuming the edge is

present at that time).

• (Optional) ψ : V ×T →→ {true, f alse}, called the node presence function, in-

dicates whether a given node is present at a given time (i.e., ψ(p, t) = true if

and only if node p is present at time t).

The kind of network we are addressing is possibly disconnected at every instant.

Still, a form of communication can be achieved over time by means of journeys (a.k.a.

temporal path). Formally, a journey J = {((e1, t1),(e2, t2), . . . ,(ek, tk))} is a sequence

such that (e1,e2, . . . ,ek) is a valid path in the underlying graph (V,E), and:

31

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

1. for every i ∈ [1,k], edge ei is present at time ti long enough to send a message

across (formally, ρ(ei, ti +δ) = true for all δ ∈ [0,ζ (ei, ti))).

2. the times when edges are crossed (we also say activated) and the correspond-

ing latencies allow a sequential traversal (formally, ti+1 ≥ ti + ζ (ei, ti) for all

i ∈ [1,k)). What makes this form of connectivity temporal is the fact that a

journey can pause in between hops, e.g., if the next link is not yet available.

Given a journey J , departure(J) and arrival(J) denote respectively its starting

time t1 and its ending time tk+ζ (ek, tk). Journeys can be thought of as paths over time,

having both a topological length k (i.e., the number of hops) and a temporal length (i.e.,

a duration) arrival(J)−departure(J) = tk + ζ (ek, tk)− t1. Note that journeys describe

opportunities of communication between an emitter and a receiver. J ∗G is the set of all

such opportunities over G’s lifetime, while J ∗(p,q) ⊆ J
∗
G are those journeys from p to

q. A simplified way of denoting the existence of a journey between a process p and

a process q, when the context of G is clear, is p ; q. Finally, the graph is said to be

temporally connected if for every p,q ∈V, p ; q.

An induced sub-TVG G′⊆G is obtained by restricting either the set of nodes V ′⊆V

or the lifetime T ′ ⊆ T , resulting in the tuple (V ′,E ′,T ′,ρ ′,ζ ′,ψ ′) such that:

• (V ′,E ′) is the subgraph of (V,E) induced (in the usual sense) by V ′

• ρ ′ : E ′×T ′→{true, f alse} where ρ ′(e, t) = ρ(e, t)

• ζ ′ : E ′×T ′→ T where ζ ′(e, t) = ζ (e, t)

• ψ ′ : V ′×T ′→{true, f alse} where ψ ′(e, t) = ρ(e, t)

If only the lifetime is restricted, say to some interval [ta, tb), then the resulting graph

G′ is called a temporal subgraph of G and denoted G[ta,tb). The temporal diameter of a

graph G at time t is the smallest duration d such that G[t,t+d) is temporally connected.

32

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

Finally, following Bhadra and Ferreira in [12], we consider a temporal variant of

connected components (hereafter, simply called components), which are maximal sets

of nodes V ′ ⊆ V such that ∀p,q ∈ V ′, p ; q. Two variants are actually considered,

whether the corresponding journeys can also use nodes that are in V \V ′ (open com-

ponents) or not (closed components). Observe that a closed component is equivalent

to an induced sub-TVG being temporally connected.

2.3.2.2 Connectivity Classes

The study of evolving graphs is a mature research area in computation science. Para-

doxically, dynamic distributed agreement has recently started to be considered. A pos-

sible reason is the target consumers of these kind of solutions. While graph theory is

applicable in many theoretical research topics, the use of distributed agreement is more

related to practical implementations (distributed applications). Nevertheless, any con-

nectivity model approach (theoretical or practical) can be useful if it is able to solve

dynamic distributed agreement.

In [16] a hierarchy of classes of TVG is provided. This hierarchy classifies some

of the existing connectivity models into a class dependence-tree. Note that the first five

are the bases for describing any existing connectivity model. The TVG classes are the

following:

• Class 1: At least one node can reach onces all the others.

Formally,

∃u ∈V : ∀v ∈V,u ; v

• Class 2: At least one node can be reached onces by all the others.

Formally,

33

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

∃u ∈V : ∀v ∈V,v ; u

• Class 3: Connectivity over time. Every node can reach all the others onces.

Formally,

∀u,v ∈V,u ; v

• Class 4: Round Connectivity. Every node can reach all the others and be reached

back afterwards onces.

Formally,

∀u,v ∈V,∃J1 ∈ J ∗(u,v),∃J2 ∈ J ∗(v,u) : arrival(J1)≤ departure(J2)

• Class 5: Recurrent connectivity. Formally,

∀u,v ∈V,∀t ∈ T ,∃J ∈ J ∗(u,v) : departure(J)> t

• Class 6: Recurrence of edges. Formally,

∀e ∈ E,∀t ∈ T ,∃t ′ > t : ρ(e, t ′) = true and Gt ′ is connected

• Class 7: Time-bounded recurrence of edges.

Formally,

∀e ∈ E,∀t ∈ T ,∃t ′ ∈ [t, t +∆),ρ(e, t ′) = true, for some ∆ ∈ T and G is connected

• Class 8: Periodicity of edges.

Formally,

∀e ∈ E,∀t ∈ T ,∀k ∈ N,ρ(e, t) = true→ ρ(e, t + kp) = true, for some p ∈ T and

G is connected

34

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

• Class 9: Constant connectivity.

Formally,

∀t ∈ T ,Gt is connected

Under the assumption of a slotted time, it is proved by Biely et al. in [13] that

is sufficient to solve Consensus.

• Class 10: A T -interval connectivity model is introduced in [49]. A graph is T -

interval connected if and only if for any T consecutive time slots exist a common

spanning subgraph.

Formally,

∀i∈ T ,T ∈N,∃G′ ⊆G : VG′ =VG,G′ is connected, and ∀ j ∈ [i, i+T−1],G′ ⊆G j

• Class 11: Eventual connectivity.

Formally,

∀i ∈ N,∃ j ∈ N : j ≥ i,G j is connected

• Class 12: Eventual routability.

Formally,

∀u,v ∈V,∀i ∈ N,∃ j ∈ N : j ≥ i and there exists a path from u to v in G j

• Class 13: Complete graph of interaction.

Formally,

G = (V,E) is complete and ∀e ∈ E,∀t ∈ T ,∃t ′ > t : ρ(e, t ′) = true

35

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

Figure 2.1: Relations of inclusion between classes.

Figure 2.1 shows the relations of inclusion among these classes.

This hierarchy of classes was proposed in 2012 and meanwhile new connectivity

models have appeared. As one of the contributions of this work, we extend this hier-

archy with the following connectivity models:

• Class 14: A model called α,β -connectivity model is proposed in [5]. The (α,β)-

connectivity model is defined as the existence of an edge e in at most α time

such that e connects two processes p, p′ belonging to two different subsets. Ad-

ditionally, the edge e = (p, p′) exists during a time interval of size β . Formally,

(∀t ∈ T ,∀p,q ∈V,∀(p,q) ∈ E,max(ζ ((p,q), t))≤ β) and

(∀t ∈ T ,∀S⊂V,S =V \S, p ∈ S, p′ ∈ S,∃(p, p′) ∈ E,∃t ′ ∈ [t, t +α) : ∀t ′′ ∈

[t ′, t ′+β),ρ((p, p′), t ′′) = true)

• Class 15: In [6] it is proposed a novel connectivity model based on the Class 5

but with a stability assumption. The stability condition requires that at least the

majority of neighbors of each process remains permanently in the neighborhood.

Formally, if we define N t
p as the set of neighbors of a process p ∈ V at time t,

then

36

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

(∃pi ∈V : ∀t ∈ T , t ′ ≥ t,∃S⊂N t
pi

: |S| ≥ |N t
pi
|/2+1∧S⊆N t ′

pi
) and

(∀t ∈ T ,∀p,q ∈ S∪ pi,∃J ∈ J ∗p,q : departure(J)≥ t)

• Class 16: In [79] it is proposed a variant of Class 6 which introduces the fol-

lowing assumption: if a link appears its lifetime is lower-bounded by δ , where

δ is the maximum latency allowed in a one-hop communication in the system.

Formally,

∀e ∈ E,∀t ∈ T ,∃t ′ > t : ρ(e, t ′) = true and G is connected and

(@t ′′ ∈ [t ′, t ′+δ) : ρ(e, t ′′) = f alse)

• Class 17: Also introduced in [79], it is another variant of Class 6 where whenever

a recurrent link e appears, e is allowed to be active an arbitrary short period. In

exchange, it is assumed that e is present infinitely often during more than 2δ ,

where δ is the maximum latency allowed in a one-hop communication in the

system.

∀e ∈ E,∀t ∈ T ,∃t ′ > t : ∀t ′′ ∈ [t ′, t ′+2δ)ρ(e, t ′′) = true and G is connected

• Class 18: Recently, Michail et al. [68], have proposed a novel connectivity class

that allows the network to be disconnected. It is assumed a finite number of

nodes and slotted time, i.e., T = N. Additionally, if the graph changes it does

it at the beginning of each round. Intuitively, the number of changes that can

occur in an execution is finite, thus there is a time after which edges reappear,

even being the graph disconnected. Observe that this model is equivalent to a

(α,β)-connectivity model instanced to α = n−1 and β = 1.

∀e ∈ E,∀t ∈ N,∃t ′ > t : ρ(e, t ′) = true∧ t ′ < t +n

Figure 2.2 represents relations of inclusion among classes resulting from the exten-

sion of Figure 2.1.

37

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

Figure 2.2: The resulting extended relations of inclusion between classes.

2.3.2.3 A Dynamic Distributed System Categorization

Baldoni et al. characterize in [10] dynamic distributed systems in terms of two com-

plementary dimensions:

1. the number of concurrent processes in the system, and

2. the network diameter

Each dimension can be cataloged into three levels depending on the existence and

the knowledge of an upper bound. If a bound exists and is known the level is denoted

as b, if a bound exists but is unknown the dimension is denoted by n, and finally,

if there is no bound the dimension is denoted by ∞. The combination of dimensions

and levels results into six possible dynamic models. For more details see [10]. The

Table 2.2 illustrates all possible models regarding the combination of dimensions with

levels, excluding non logical ones.

b : a bound exists and it is known a priori by processes in all runs.

n : a bound exists in each run, but it is not known a priori by processes.

38

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

∞ : there is no bound, i.e., the value can grow indefinitely.

For example, a fully-connected synchronous system corresponds to a network diameter

of level b whose bound value is 1.

The combination of process concurrency level with network diameter level results

in a particular category of dynamic distributed system model. From the nine possible

combinations, Mb,n, Mb,∞ and Mn,∞ are not considered since the number of concurrent

processes bounds the network diameter. The possible six models of interest are shown

in Table 2.2.
XXXXXXXXXXXXProcesses

Diameter
b n ∞

b Mb,b

n Mn,b Mn,n

∞ M∞,b M∞,n M∞,∞

Table 2.2: Classification of dynamic distributed system models by Baldoni et al. [10].

We consider that dynamic distributed systems are not totally described with the set

of dimensions and levels proposed by Baldoni et al. In the following chapter we will

extend the set of dimensions and levels with new values that we consider that describe

better dynamic distributed systems.

2.3.3 Leader Election in Dynamic Distributed Systems

As a case study of this work we want to provide a way of solving agreement in dy-

namic systems. In this work we focus on eventual leader election and TRB problems

for providing agreement in dynamic distributed systems. On the one hand, from a syn-

chronous view point, TRB has been proven to be equivalent to Consensus. On the other

hand, from a partial synchrony view point, there exist several Consensus protocols that

rely on an eventual leader election service.

39

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

In previous sections we have addressed the leader election problem from a static

point of view. However, such static solutions do not handle the possible scenarios that

can arise from process movements, infinite arrivals, or system partitions. In the next we

list the existing leader election approaches that tolerate a certain degree of dynamicity.

2.3.3.1 Implementing Ω in Dynamic Distributed Systems

In [59] Larrea et al. study the eventual leader election problem from a dynamic mem-

bership point of view. In this regard, they redefine the leader election property for

adapting it to this kind of scenarios. As a result, they introduce the ∆Ω failure detector

class that has the following properties:

• EL-NI (Eventual Leadership in Non-Increasing systems): If after some time

the system does not increase (i.e., no new process joins the system), then a

correct leader must eventually be elected.

• EL-ND (Eventual Leadership in Non-Decreasing systems): If after some time

the system does not decrease (i.e., no process leaves the system or crashes), then

(1) a leader must eventually be elected, and (2) the new processes that join the

system after a leader has been elected have to eventually consider this process

as their leader.

Additionally, they provide two different ∆Ω implementations. The first one assumes

the existence of a global time service by which processes can take a time stamp and

decide whether the actual leader is older or not. The second implementation is based

on the sing of an special control message by which processes are able to establish a

chronological order in the system. In both cases, the oldest process with the lower

identifier becomes the leader of the system. Observe that ∆Ω provides the properties

for tolerating infinite arrivals, but it is not the only proposal which allows infinite

40

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

arrival. Tucci-Piergiovanni and Baldoni, in [78], also provide an Ω implementation

that tolerates infinite arrival.

Melit and Badache in [66, 67] propose a classic Ω-based solution for eventually

electing a leader per connected partition of a dynamic distributed system. The approach

followed by the algorithm is the flooding of the network with a heartbeat message

containing the identifier and a priority value chosen aleatory. Melit and Badache’s

solution is the closest a communication-efficient implementation in multi-hop scenarios,

i.e., eventually only the elected leader continues creating new messages while the rest

of processes only limit their communication helping the leader messages reaching to

the whole system.

In a recent paper [6], Arantes et al. redefine the proposal made by Greve et al.

in [38] in order to provide a classic Ω failure detector implementation able to deal

with mobile processes. For the algorithm to converge they assume a Stabilization Re-

sponsiveness Property, which requires that every neighbor of the leader ` to eventually

stop moving outside `’s neighborhood.

2.3.3.2 Other Dynamic Leader Election Solutions

The appearance of scenarios that exhibit behaviors not considered by the classical the-

ory, as for example dynamic partitioning or multi-hop communications, resulted in a

new family of leader election solutions for this kind of scenarios. These new solutions

are not based on the implementation of an Ω failure detector, since the assumptions

made do not fit with the ones made in the classical distributed computing literature.

One of the first solutions was proposed by Fetzer and Cristian. In [32], they pro-

pose a local leader election service useful for partitionable networks. At the time of

this proposal, wireless networks were not as common as today. In fact, in this work

system partition were considered not by process movements but by link failures. How-

ever, as we have previously mentioned, a process movement could be somehow equi-

41

i
i

i
i

i
i

i
i

2. BACKGROUND AND RELATED WORK

valent to a link failure. The goal of a local leader election service is to elect a local

leader per partition. Fetzer and Cristian introduce two properties called ∆-partitions

and stable partitions. A ∆-partition is defined as the set of processes that can com-

municate with each other in a bounded time lower than ∆1. Moreover, two processes

are ∆-disconnected if the link used to communicate between them does not deliver

any message in a time lower than ∆. Based on the ∆-partition definition, it is also

provided a definition of stable partition of the system. A ∆-partition is stable if and

only if all processes in the partition are mutually connected and are ∆-disconnected

from other processes in the system. The leadership criteria proposed in this solution

elects a leader per logical partition, assuming that there is a stable partition included

in each logical partition. Haddar et al. in [43], following the same approach consider

mobile agents to provide a leader election solution in several network topologies.

On the other hand, there exist several leader election solutions that take as start

point the routing protocol TORA [76]. For example, Malpani et al. in [62] proposed

two algorithms based on TORA. This algorithm restrict cycles in their connectivity

graph (by means of a Directed Acyclic Graph). One of the algorithms proposed in this

paper assumes a single change in the graph at a time, while the second one supports

concurrent changes in the communication graph. However, no one of the algorithms

has been formally proved, what makes them not as trustworthy as other solutions.

Another TORA-based solution was proposed by Ingram et al. in [46]. Based

on [62], they adapt their solution for providing a good election in presence of con-

current process movements.

At the same time Derhab and Badache in [25] proposed another TORA-based solu-

tion. As leadership criteria they consider the oldest process as the leader of the system.

Nevertheless, they introduce an upper-bound in the number of merges of components.

1Observe that this definition leaves open the possibility of overlapping between different ∆-partitions.

42

i
i

i
i

i
i

i
i

2.3 Solving Agreement in Dynamic Distributed Systems

TORA has not been the unique communication protocol adapted for solving leader

election. As another example, the Zone Routing Protocol (ZRP) proposed in [42],

has been modified by Parvathipuram et al. [77] for solving leader election in dynamic

networks.

Apart from the adaptations of other protocols, Masum et al. [65] provided an al-

gorithm that elects a local process in the system as the leader. The solution uses as

leadership criteria the information provided by the context of the device like battery

level or computational capability.

Alslaity and Alwidian in [4] propose a solution that also takes into account the

energy consumption. The proposal relies on electing the nodes with best perform-

ance value, where the criteria is the density, velocity, battery power, or signal strength.

Whenever a process detects a leader crash, it sends a message for starting a new elec-

tion to a subset of K processes from its neighborhood. The leader eventually is elected

from the set of processes that received that message either directly or indirectly.

Another interesting work by Vasudevan et al. [84], propose an algorithm that elects

a unique leader in the system despite topological changes. The leader election al-

gorithm is based on the classical termination-detection algorithm by Dijkstra and Schol-

ten [26]. A flooding process p that starts the algorithm and creates a route to the rest of

processes. Every process sends back to p a proposal value for being elected as leader.

Once p receives all the messages, it decides which of the proposals will be the leader.

Then p communicates its decision to the rest of processes by flooding the identity of

the new leader.

43

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER

3
CategorizingDynamic

DistributedSystems

In the previous chapter we have described the background concepts on Consensus

solvability in both statics and dynamic distributed systems. Since the dynamic distrib-

uted discipline is not mature, there does not exist a common framework that would

allow to extract conclusions in a comparison of dynamic system models. Our goal

in this chapter is to identify a set of relevant dimensions, including a common set of

levels, which allow to define a framework that should facilitate a systematic system

model analysis and comparison.

As shown in Chapter 2, in [10], Baldoni et al. describes a framework that categorize

dynamic distributed systems in terms of two complementary dimensions in one of a set

of three possible behaviors levels. In essence, the mentioned levels denote the degree

of a priori knowledge and the existence of bounds in each dimension.

45

i
i

i
i

i
i

i
i

3. CATEGORIZING DYNAMIC DISTRIBUTED SYSTEMS

In the rest of this chapter we extend the categorization proposed by Baldoni et

al. by providing a descriptive framework that will allow to compare dynamic system

models. We consider that the framework proposed by Baldoni et al. does not describe

all the characteristic aspects inherent to dynamic distributed systems. As we will see,

new dimensions should be added in order to capture all the details of dynamic system

models, for example, graph stability, graph partitioning or process and link failures.

On the other hand, the three-levels framework proposed by Baldoni et al. (bounded

and known, unknown but bounded, and unbounded), does not consider other altern-

ative models which have been proposed in the literature. For example, the one by

Cristian and Fetzer [24] considers alternate periods of stability (bounds hold) and in-

stability (bounds do not hold). In our framework we will take as a basis this proposal

to introduce a new level in each dimension.

To proceed, we first extend the set of levels for the dimensions provided by Baldoni

et al. and then we complete the set of dimensions. As we will see, the four-level

description can be applied systematically to all the dimensions. Additionally, we use a

graphical representation that enable a first-look comparison of system models and we

illustrate it by the analysis of a set of example extracted from the literature.

3.1 A Four-level Categorization

Recall that in Baldoni et al.’s categorization each dimension is tagged into three dif-

ferent levels depending on the existence and the knowledge of an upper bound. If a

bound exists and it is known, then the level is denoted by b. If a bound exists but it

is unknown, then the level is denoted by n. Finally, if there is no bound the level is

denoted by ∞.

In order to characterize (mobile) dynamic distributed systems more precisely, we

propose to extend the previous formalism by introducing an additional level, inspired

46

i
i

i
i

i
i

i
i

3.1 A Four-level Categorization

Figure 3.1: An intuition of where (mobile) dynamic distributed systems should be.

by the good/bad period alternation of the timed asynchronous model proposed by Cris-

tian and Fetzer [24]. We denote the new level by s, denoting that the system alternates

periods of stability where bounds hold and finite periods of instability where no bound

holds. Thus, the new four-level categorization remains as follows:

b : a bound exists and it is known a priori by processes in all runs.

n : a bound exists in each run, but it is not known a priori by processes.

s : the system alternates good periods, where a bound exists but it is not known a

priori by processes, and bad periods, where there is no bound.

∞ : there is no bound, i.e., the value can grow indefinitely.

Note that s is weaker than n and stronger than ∞. Observe first that level s is

stronger than level ∞, since existence with dimensions of level ∞ are not required to

provide stability periods. On the other hand, observe that level s is weaker than level

n. Consider a system model S1 with an n dimension di, where bounds hold after GST.

Observe that there exist a system model S2 equal to S1 except that in S2 the dimension

di is s where di bounds could not hold after GST for a finite period of time.

47

i
i

i
i

i
i

i
i

3. CATEGORIZING DYNAMIC DISTRIBUTED SYSTEMS

As represented in Figure 3.1 that the proposed level s is weaker than level n but

stronger than level ∞. In fact, level s combines levels n and ∞ in good and bad periods,

respectively. Observe also that the new level s can be naturally applied to the process

concurrency and network diameter dimensions defined by Baldoni et al. in [10].

3.2 Adding Dimensions
As introduced in Chapter 2, Baldoni et al. characterize dynamic distributed systems in

terms of two complementary dimensions, namely the number of concurrent processes

in the system and the diameter of the network. For example, consider two systems with

known membership N, (i.e., level b), and a known diameter D < N/2, (also level b).

Consider that S1, is static in the sense that processes do not move nor fail. However,

consider that in S2 processes can fail and move. Observe that, in S2, since more that

half of the process can fail or became disconnected, Consensus could not be solved,

contrary to in S1. Thus, it is apparent that new dimensions should be added as we will

describe next.

As defined in our previous work [36], the dimensions that characterize mobile dy-

namic distributed systems are:

• The timeliness of processes and links. For simplicity, and without loss of gen-

erality, processing times are usually considered as negligible with respect to mes-

sage transmission times.

• The number of process failures, which allows addressing crash-recovery scen-

arios.

• The number of link failures, which allows addressing message loses.

• Graph partitioning, defined as the number of partitions (i.e., disconnected graphs)

allowed during the execution of the system. Graph partitioning is denoted by b if

48

i
i

i
i

i
i

i
i

3.2 Adding Dimensions

the number of partitions is bounded and the bound is known, by n if the number

of partitions is bounded but the bound is unknown, by s if the number of parti-

tions alternates between bounded but unknown (good) periods and (bad) periods

where the number of partitions is unbounded, and by ∞ if there is no bound on

the number of partitions.

• The number of processes in a graph (similar to the process concurrency di-

mension of [10]).

• The diameter of the graph (similar to the network diameter dimension of [10]).

• Graph stability, modeled in terms of a bound in the number transitions in the

link status (the link exists or the link does not exist). Similarly, for this dimension

b denotes having a bounded and known number transitions, n denotes having

a bounded but unknown number link transitions, s denotes the alternation of

good periods with a bounded but unknown number of link transitions and bad

periods with unbounded number of link transitions, and ∞ denotes no bound on

the number of link transitions.

Dimension (L ∈ {b,n,s,∞}) Bound corresponds to. . .

Timeliness (T L) . . . processing and message transmission time
Process Failures (PL

F) . . . the number of failures a process can suffer
Link Failures (CL

F) . . . the number of message losses on any link
Graph Partitioning (GL

#) . . . the number of graphs in the system
Graph Membership (GL

Π
) . . . the number of processes in any graph

Graph Diameter (GL
D) . . . the diameter of any graph

Graph Stability (GL
S) . . . the graph stability bound or link transitions

Figure 3.2: Dimensions categorizing mobile dynamic distributed systems.

49

i
i

i
i

i
i

i
i

3. CATEGORIZING DYNAMIC DISTRIBUTED SYSTEMS

In [36] we introduce a formalism to denote the aforementioned dimensions as sum-

marized in Figure 3.2. Following our approach, the compositions of those dimensions

with a particular level per dimension denotes a dynamic distributed system model,

formally:

M(T L,PL
F ,CL

F ,G
L
,G

L
Π
,GL

D,G
L
S)

We introduce now a graphical representation that provides a first-look comparison

between models. This representation use a radar chart in which each dimension is

represented as a radio of the chart where levels are represented from the center to the

outside in increasing degree of weakness. Observe that, the higher the area covered in

the radar chart, the weaker the system model. To illustrate this, we represent the two

extreme trivial cases: a totally synchronous and static distributed system (Figure 3.3)

and a totally asynchronous dynamic distributed system (Figure 3.4).

Figure 3.3: Graphical representation of a static and synchronous distributed system.

50

i
i

i
i

i
i

i
i

3.3 Representing System Models

Figure 3.4: Graphical representation of a totally asynchronous dynamic distributed system.

3.3 Representing System Models
In this section we use our framework to categorize some of the system models pro-

posed for leader election algorithms that we have studied in Chapter 2. In Table 3.1

summarizes the models that we will describe next.

Model Reference

M(T b,Pb
F ,C∞

F ,G
n
#,G

n
Π
,Gb

D,G
b
S) Fetzer and Cristian [32]

M(T ∞,Pb
F ,Cb

F ,G
n
#,G

n
Π
,Gn

D,G
n
S) Ingram et al. [46]

M(T b,Pb
F ,Cb

F ,G
n
#,G

n
Π
,Gb

D,G
n
S) Masum et al. [65]

M(T n,Pn
F ,Cn

F ,G
n
#,G

n
Π
,Gn

D,G
n
S) Melit and Badache [67]

M(T ∞,Pb
F ,C∞

F ,G
n
#,G

n
Π
,Gn

D,G
s
S) Arante et al. [6]

Table 3.1: Examples of dynamic system models.

For the models analyzed from the literature, we have interpreted the system model

definition in terms of our formalism and extracted the parameter values accordingly. In

51

i
i

i
i

i
i

i
i

3. CATEGORIZING DYNAMIC DISTRIBUTED SYSTEMS

some cases, the system model specification were incomplete. In this cases we extract

the parameters for the categorization by the inspection of the algorithm. On the other

hand, some system models assume an ∞ level in some of their dimensions. As we will

see, in these cases, in general there are implicit extra assumptions in the system model

or in the algorithm.

Fetzer and Cristian [32]

Fetzer and Cristian do not assume a mobile scenario, however we consider this model

as dynamic because they assume network partitions due to network traffic delays. In

this work, Fetzer and Cristian propose a model based on a global approach including

good and bad periods, and encapsulates link and process failures. We had categorized

separately process and link failure models by inspection of the algorithm.

Regarding the rest of dimensions, on the one hand, we can clearly specify that the

membership is finite but unknown, being the membership dimension identified as a n

level. On the other hand, they assumes a fully-connected network which is translated

into a b level for the diameter dimension.

Figure 3.5 illustrates the model proposed by Fetzer and Cristian according the

framework presented in this Chapter.

Masum et al. [65]

Another interesting proposal is presented in [65] by Masum et al. which is similar

to [32]. The system described by Masum et al. shares with [32] the categorization of

processes failures, graph membership and graph diameter. However, they differ in the

assumption of totally reliable and timely links (T b and Cb), and in the assumption of

a dynamic topology which eventually stops moving, i.e., Gn
S.

Figure 3.6 represents the model proposed by Masum et al.

52

i
i

i
i

i
i

i
i

3.3 Representing System Models

Figure 3.5: Representation of the model proposed by Fetzer and Cristian [32].

Ingram et al. [46]

Ingram et al. in [46] present a weaker timeliness link model where there is no bound

in message transmission time, but all messages are eventually delivered, i.e., links are

eventually reliable (level n). In this proposal it is assumed a crash failure model and a

finite but unknown membership. Observe that since the membership is finite, the graph

diameter will be also bounded.

Finally, Ingram et al. assume that eventually the topology stops evolving. Con-

sequently, the number of partitions and the stability are denoted by the n level in both

graph partitioning and graph stability dimensions. Figure 3.7 illustrates the model pro-

posed by Ingram et al. using our formalism.

For the ∞ timeliness dimension, they assume synchrony between process clocks.

Moreover, a common feature of the aforementioned proposal is the existence of an

53

i
i

i
i

i
i

i
i

3. CATEGORIZING DYNAMIC DISTRIBUTED SYSTEMS

Figure 3.6: Representation of the model proposed by Masum et al. [65].

oracle that provides a list of correct neighbors. This oracle encapsulates the additional

synchrony requirements to solve leader election.

Melit and Badache [67]

Melit and Badache propose a dynamic eventual leader election algorithm based on the

Ω failure detector. They assume a system model which follows an eventual approach

in every dimension, i.e., their proposal assumes that after a time GST, messages are

reliably and timely delivered, and the topology does not change. Observe that, even

they assume a crash-recovery failure model, the requirement of an eventually static

topology prevent process failures after GST. In essence, the eventually static graph

assumption makes the system unable to cope with unstable processes and prevents

the inclusion of new processes. Consequently, the membership will be unknown but

finite, and thus, the number of failures are arbitrary high but finite. In fact, due to the

54

i
i

i
i

i
i

i
i

3.3 Representing System Models

Figure 3.7: Representation of the model proposed by Ingram et al. [46].

finite membership, the graph diameter will be also unknown but bounded. Figure 3.8

illustrates the model proposed by Melit and Badache.

Arantes et al. [6]

Based on a time-free approach, Arantes et al. assume a system model where processes

can crash and links behave as fair-lossy. Additionally, they assume that the system

eventually converge to a unique partition and the membership is unknown but finite.

For the system to converge in [6], the neighborhood of the leader must not change,

i.e., once a process becomes a neighbor of the leader, it remains neighbor of leader

forever. This introduces a bound in the mobility of nodes (graph stability), and we

represent this dimension by level s. Note that, although the number of link changes

is unbounded, some good behavior is expected for the transitions of the links with the

leader.

55

i
i

i
i

i
i

i
i

3. CATEGORIZING DYNAMIC DISTRIBUTED SYSTEMS

Figure 3.8: Representation of the model proposed by Melit and Badache [67].

Figure 3.9 illustrate the model proposed by Arantes et al.

3.4 Conclusions

In this chapter we have extended the formalism introduced by Baldoni et al. [10] in

order to provide a framework and a notation which has been revealed very useful to

compare our system to other proposals in the literature. Basically, the formalism defines

a range of levels on the bound of several system dimensions (e.g., network diameter

or process synchrony). A feature of the formalism is its uniformity: the same range of

levels is defined for all dimensions of the system. As a new level, we have included

the behavior representing the alternation of bounded and unbounded periods, inspired

on the timed asynchronous model of Cristian and Fetzer [24].

An eventually stable model defines unknown bounds under which good things fi-

56

i
i

i
i

i
i

i
i

3.4 Conclusions

Figure 3.9: Representation of the model proposed by Arantes et al. [6].

nally happen. Those bounds hold forever after a Global Stabilization Time (GST). Ob-

serve that eventually stable systems do not guarantee anything before GST and do not

allow unexpected behaviors after GST. Eventually stable models are more restrictive

than “periodically” stable systems. Indeed, a periodically stable approach can provide

a dynamic system with the flexibility required for dealing with continuously changing

scenarios. Said this, in periodically stable approaches it is necessary to identify which

properties should be defined to provide some minimal stability and how long those

properties must hold. In other words, an answer to the question of what stable enough

and long enough mean, for each dimension of the system, should be given. We will

board this questions in the next chapters.

57

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER

4
ConnectivityModels for

SolvingAgreement

As we have mentioned, most of the research on Consensus has considered a static

distributed system with permanent connectivity among processes. In many current dis-

tributed systems, however, these assumptions are not valid any more. Instead, these

new systems exhibit a dynamic behavior, with processes joining the system, leaving

it or just moving, which implies uncertain connectivity conditions. Indeed, and unlike

in classical static systems, these events are no longer considered incorrect or sporadic

behaviors, but rather the natural dynamics of the system.

Clearly, even the synchrony assumptions of classical (static) models of distributed

systems are not enough to solve agreement problems in dynamic systems. For ex-

ample, having an upper bound on link latencies is pointless if the link is not available

at the time of transmission of the message. Note however that the processes could

59

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

still communicate using an alternative path in the network. Thus, assumptions should

consider the overall system connectivity, which encourages for a holistic approach to

model dynamic distributed systems.

As we have seen in Chapter 2, in recent years there was a rising interest in mod-

eling dynamic distributed systems from the perspective of graph theory. However, re-

garding Consensus, none of them lowers the assumptions to the realm of temporal

connectivity, i.e., not requiring that the graph be connected at every instant, but only

that paths exist over time and space (temporal path, aka journeys). We believe that

the Time-Varying Graph formalism [16] (TVG, for short) provides a useful qualitative

framework to model dynamic distributed systems. Among the TVG classes provided

by [16], the recurrent connectivity class requires that a journey exists between any

two processes infinitely often (that is, recurrently). Nevertheless, this class lacks the

necessary timeliness (i.e., time bounds in communication) to describe the specific as-

sumptions that are required by synchronous agreement algorithms, such as TRB, to

terminate.

In this chapter we extend the recurrent connectivity class by introducing timeliness

constraints, together with practical considerations, and analyze the impact of these new

constraints on solving Consensus. Thus, we address timeliness in evolving systems

(i.e., TVG) from a synchronous point of view, i.e., systems where the transmission

delay of messages is bounded and the bound is known a priori by the processes. The

resulting set of concepts and mechanisms make it possible to describe system dynamics

at different levels of abstraction and with a gradual set of assumptions.

We first formulate a very abstract property on the temporal connectivity of the

TVG, namely, that the temporal diameter (i.e., maximum duration of a journey) of a

component in the TVG is recurrently bounded by ∆. We refer to such a component as

a ∆-component, and define the concept of correct process in terms of this component.

60

i
i

i
i

i
i

i
i

We then specify a version of the Terminating Reliable Broadcast problem (TRB) for

∆-components, which we relate to the ability of solving agreement at component level.

Although ∆-components are proven to be a sufficient concept at the most abstract

level, they rely on very inefficient (and hardly implementable) communication patterns

in message-passing systems. Indeed, the solution to TRB proposed in this abstract

model requires the existence of an oracle that provides the algorithm an instantaneous

knowledge of the appearance of an edge. Unfortunately, this oracle does not have a

straightforward implementation in terms of real processes and communication links.

Therefore, we introduce a first constraint to force the existence of journeys whose

edges presence duration is lower-bounded by some duration β (which holds a relation

to the maximal latency of a link), thereby enabling repetitive communication attempts

to succeed eventually. These journeys are called β -journeys and their existence makes

it possible to implement the TRB algorithm without an oracle. We then look at a further

constrained class of TVG, inspired by the work of Fernández-Anta et al [5], whereby

the local appearance of the edge used by every next hop of (at least one of the possibly

many) β -journeys also must be bounded by some duration α , yielding to the concept

of (α,β)-journeys. The existence of recurrent (α,β)-journeys allows the processes to

stop sending a message α time after they receive it, which is much more efficient. Note

that, as we will discuss in this chapter, the introduction of new restrictions decrease

the number of potential behaviors achieved by the connectivity model. Intuitively, the

number of different timely graphs based on β -journeys is lower than the number of

graphs based on ∆-journeys since ∆-journeys have not the extra restriction introduced

in β -journeys. Similarly, number of graph based on (α,β)-journey is lower than the

number of graph based on β -journeys.

Recall that one of the goals of this work is study how the Consensus solvability is

affected by evolving networks. Even the described connectivity models are weak, we

consider that exists a weaker connectivity class that we call ω-journeys. ω-journeys

61

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

introduce a common lower-bound ω in the active time of every edge e of the system.

This new bound makes e be active during a time strictly higher than the latency of e

at any moment. We prove that T Cw, a ω-journey connectivity class, is the weakest

∆-component based connectivity class that allows solving agreement.

In this chapter we define the abstract timely connectivity model based in a new

timely component definition called ∆-components. Additionally, we show how the TRB

problem can be solved with respect to ∆-components. However, this TRB implement-

ation requires the assumption of an “oracle” which implementation is far from the

reality. Then, we introduce β -journeys (and the corresponding β -components), which

we show to be sufficient to implement an effective (i.e., oracle-free) version of the

algorithm. We then define (α,β)-journeys and components, and discuss their trade-

offs compared to β -journeys based components. After the presentation of these set

of timely behaving temporal components, we describe how Consensus can be solved

by using their corresponding TRB implementations. We also consider important to

analyze which are the trade-offs between the election of the proposed timely dynamic

models in terms of the number of possible graphs that can be achieved with respect

to others. We highlight that there exist no implementable Consensus solution for some

timely behaving evolving graph. In the same time we also prove that β -components

and (α,β)-components can achieve the same set of timely evolving graphs. In farther

reading, on the weakest connectivity model, we present a weaker connectivity model

called ω-components that allows implementable TRB solutions, and consequently is

the weakest timely component based connectivity model solving Consensus.

4.1 A Timely Model for Dynamic Systems

This section focuses on the analysis of timeliness in dynamic systems at the most

abstract point of view, i.e., considering only a general communication bound ∆ for

62

i
i

i
i

i
i

i
i

4.1 A Timely Model for Dynamic Systems

end-to-end communication. We first provide a set of definitions related to this bound,

which leads to the formulation of a new class of TVGs that is a strict subclass of

Class 5 (recurrent connectivity) in [16]. We then specify a solution to the problem of

Terminating Reliable Broadcast (TRB) in the corresponding context.

4.1.1 Definitions

We define the concept of bounded-time journey as follows:

Definition 4.1.1. A journey J is said to be a ∆-journey if and only if arrival(J)−
departure(J)≤ ∆.

Based on ∆-journeys we define the concept of bounded-time component. Unlike

components, we require here that connectivity be also recurrent by definition.

Definition 4.1.2. A ∆-component in G = (V,E,T ,ρ,ζ) is a set V ′ ⊆ V such that for
every t in [T −,T +−∆], for every p,q in V ′, there exists a ∆-journey from p to q in
G[t,t+∆).

Similarly to components, ∆-components can be open or closed, depending on whether

the ∆-journeys use nodes in V \V ′. Observe that, a graph behaving in an open way

provides flexibility in mobility, and therefore, a model allowing open ∆-components is

weaker (in the sense that it requires less assumptions) than a model strictly based on

closed ∆-components. Henceforth we assume that in our system model ∆-components

are open.

Informally, ∆-components allow us to think about subsets of nodes behaving timely

with each other. Hence, nodes in a ∆-component are also said to be timely connected.

We define the (parametrized) class of timely (and recurrently) connected TVGs T C(∆)

as follows:

Definition 4.1.3. G ∈ T C(∆) ⇐⇒ V is a ∆-component.

63

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

Observe that T C(∆) does not relay on any kind of slotted synchronization, since

T could perfectly be the set of real values R. In fact, this is one of the contributions

of this model, since trivially, this is the weakest way of introducing time bounds in

dynamic systems with no slotted time synchrony assumption.

4.1.2 Terminating Reliable Broadcast in T C(∆)

It has been shown in [29] that Consensus is equivalent to Terminating Reliable Broad-

cast in static synchronous systems. We take this as a starting point and describe here

a solution for TRB in the scope of a ∆-component.

Basic System Model

First of all, processing times are assumed to be negligible with respect to communica-

tion time. The system is composed of processes that can crash and recover, and leave

and join the system. Processes that crash or leave the system, even if they recover or

join again later, are by definition excluded from any ∆-component, however since we

assume the existence of open ∆-components, they can punctually take part on journeys.

Recall that a distributed system may have several ∆-components. There may exist

values of ∆ for which a same process belongs to different components, which are thus

overlapping. However, since every component is recurrently connected, then overlap-

ping components become naturally merged as the value for ∆ increases, and transitively,

there must exist a sufficiently large value of ∆ such that all remaining components are

disjoint. Henceforth, we consider ∆ to be (an upper bound on) such a value.

We define now which processes are correct in terms of the classical terminology.

In a classical partitioned system it can be considered that a process p behaves correctly

in its partition, and incorrectly with respect to the other partitions in the system. Sim-

ilarly, in our ∆-component based system a process p behaves correctly with respect

to the ∆-component p belongs to, denoted by C. However p could still sporadically

64

i
i

i
i

i
i

i
i

4.1 A Timely Model for Dynamic Systems

communicate timely with some processes in other ∆-component, say C′. We consider p

incorrect with respect to C′, but a message m from p received by some process in C′

should either be delivered by all processes in C′, or by none of them in order to hold

the agreement property of reliable broadcast.

Thus, in T C(∆) a set of properties should be satisfied in order to solve ∆-TRB:

• ∆-Termination: Every process in the same ∆-component eventually delivers some

message.

• ∆-Validity: If a process in a ∆-component broadcasts a message m, then all pro-

cesses in the same ∆-component eventually deliver m.

• ∆-Agreement: If a process in a ∆-component delivers a message m, then all

processes in the same ∆-component eventually deliver m.

• ∆-Integrity: For any message m in a ∆-component, every process in the ∆-

component delivers at most one message, and if it delivers m 6= SF then sender(m)

must have broadcast m.

As usual in TRB, the broadcast at time tinit of a message m should be considered

in the scope of m.

To guarantee the ∆-Agreement property we should understand when a message m

broadcast by p /∈ C should be delivered by all processes in C. If p has been able to

propagate m to some process q ∈C, then we assume that there exists a ∆-journey from

p to q. Observe that this assumption is consistent with the fact that our model allows

the existence of open ∆-components.

A solution to the TRB problem is described in Figure 4.1. Informally, the distin-

guished process pB ∆-TRBroadcasts a message m by sending m on all its active edges

65

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

To ∆-TRBroadcast a message m at time tinit :

if p = pB then
for all edge e = (pB,−) s.t. ρ(e, tinit) = true do

send(m) on e at tinit

On appearance of e = (pB,−) at time t ∈ [tinit , tinit +∆):

send(m) on e at t

On reception of a message m for the first time at time trec ∈ [tinit , tinit +2∆):

if p 6= pB then
for all edge e = (p,−) s.t. ρ(e, trec) = true do

send(m) on e at trec

On appearance of e = (p,−) at time t ∈ [tinit , tinit +2∆):

if a message m has been previously received then
send(m) on e at t

At time tinit +2∆:

if a message m has been previously received then
∆-T RDeliver(m)

else
∆-T RDeliver(SF)

Figure 4.1: Terminating Reliable Broadcast for T C(∆) executed in a node p.

at time tinit . Whenever an edge in pB’s neighborhood appears1, pB also sends m on

that edge. Every other process p, upon reception of m for the first time, forwards

m on all its active edges, as well as upon the appearance of a new edge. Finally, at

time tinit +2∆ every process p ∆-TRBdelivers either m (if m has been received) or SF

(sender faulty in the classical TRB terminology).

We explain next why a time of 2∆ is necessary and sufficient to deliver m.

Observe that, since we are assuming that pB could be not in C, pB could not be

1We assume here the existence of an abstract oracle to capture events of edge appearance. In the
next section we will address the implementation of such an oracle.

66

i
i

i
i

i
i

i
i

4.1 A Timely Model for Dynamic Systems

able to communicate to all nodes in C in ∆ time, (otherwise pB ∈C), thus, after m is

resent by q, every process in C will receive m into a second ∆ time interval. Henceforth

the bound for a process in C to T RDeliver a message is 2∆.

Correctness proof

We prove that the algorithm specified in Figure 4.1 is a solution to ∆-TRBroadcast in

a ∆-component.

Observation 4.1.1. Observe that, by the system model assumptions, if a message m
has been communicated between any two processes p and q then the communication
time is bounded by ∆ even if p and q are not in the same ∆-component.

Lemma 4.1.4. The specification in Figure 4.1 provides the ∆-Termination property.

Proof. Observe that at time tinit +2∆ a process p ∆-TRDelivers either m or a SF mes-
sage.

Lemma 4.1.5. The specification in Figure 4.1 provides the ∆-Validity property.

Proof. Observe that pB sends a message m at time tinit to all processes with an edge
with p at tinit and p keeps sending m for every edge whenever it appears during 2∆

time. Since every process p ∈C resends m on the appearance of its edges during the
same time interval, then m will be received by all processes in C and ∆-TRDelivered
at time tinit +2∆.

Lemma 4.1.6. The specification in Figure 4.1 provides the ∆-Agreement property.

Proof. By Lemma 4.1.5, every process q in a ∆-component C eventually receives and
∆-TRRdelivers m if pB ∈C. Else, if pB /∈C, we prove now that either (a) eventually
every process q ∈C will ∆-TRDeliver m, or (b) no process in C will deliver m.

Assume first that a process q ∈ C has received m. Since pB has communicated
with q, by Observation 4.1.1, m has been received by q no later than tinit +∆. Since
q resends m whenever an edge appears during the next 2∆ time by definition of ∆-
component C, and by the proof of Lemma 4.1.5 every process in C receives m before
tinit +2∆ and ∆-TRDelivers m at time tinit +2∆.

67

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

Otherwise, if no process in C has received m before tinit +∆, again by Observa-
tion 4.1.1 m will not be received by any process in C, thus no process in C will deliver
m.

Lemma 4.1.7. The specification in Figure 4.1 provides the ∆-Integrity property.

Proof. Observe that a process p ∆-TRDelivers a message just once. Observe also that
m and SF are the only messages that can be delivered, been m the message that is
∆-TRBroadcast by process pB.

Theorem 4.1.8. The specification in Figure 4.1 satisfies the properties of Terminating
Reliable Broadcast in a ∆-component.

Proof. Straightforward from Lemmas 4.1.4, 4.1.5, 4.1.6 and 4.1.7.

4.2 Implementability of TRB
The specification of TRB provided in Figure 4.1 relies on an “oracle” available at

every process p, which informs p instantaneously upon the appearance of a new edge

in its neighborhood. Such an abstraction has been recently used by Raynal et al. [79]

to implement a broadcast algorithm for recurrent dynamic systems. However, a strict

implementation of this oracle in a real system is far from being trivial, as we discuss

now.

Observe that the only temporal assumption in ∆-journeys is that they satisfy a given

upper-bound ∆ in its temporal length, thus the duration of an edge may be as short as

the latency of the message. In consequence, an implementation of this oracle should

be able to allow the sending of a message at the very same time that the edge gets

activated, which is unrealistic since the oracle should be able to predict the behavior

of the links in a real network. Alternatively, an algorithm could continuously send

message m along the whole time interval in the hope that one of the sending attempts

68

i
i

i
i

i
i

i
i

4.2 Implementability of TRB

will succeed in the appearance of an edge. Observe, however, that this iteration would

require a period of time zero between two consecutive sends. In other words, the

algorithm should be able to send an infinite number of messages per unit of time,

which is impossible.

Therefore, additional assumptions should be introduced in order to provide an im-

plementation for the above specification of TRB. Specifically, we first propose an extra

assumption that allows to maintain active the edge not only for communicating the

message but also to detect its appearance.

4.2.1 (Lower)-bounding the Edge Stability

We assume that the edge latency is bounded, i.e., there exists a bound on max{ζ (e, t) :

t ∈ T ,e ∈ E}, that we call ζMAX . Additionally, we assume that edges are active at least

β time. Let us call β -edge an edge that fullfils this bounded availability. For this new

model we define β -journeys as follows:

Definition 4.2.1. A β -journey J is a ∆-journey such that:

1. ζMAX < β ≤ ∆.

2. ∀i ∈ [0,k),ei is a β -edge.

3. the times when edges are activated and their corresponding latencies allow a
bounded sequential traversal (formally, ∀i ∈ [0,k), ti+1 ≥ ti +β).

We now define β -components as a subset of ∆-components that use β -journeys.

Formally:

Definition 4.2.2. A β -component is a ∆-component where a set V ′ ⊆ V satisfies that
∀t ∈ [T −,T +−∆],V ′ is a β -journey based temporal component in G[t,t+∆).

We define the parametrized timely connectivity class T C′(β) as follows:

Definition 4.2.3. G ∈ T C′(β) ⇐⇒ V is a β -component.

69

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

TRB in T C′(β)

We give now a TRB algorithm for the T C′(β) model, which is shown in Figure 4.2.

W ← value ∈ (0,β −ζMAX]1

To ∆-TRBroadcast a message m at time tinit :2

if p = pB then3

while now()< tinit +∆ do4

send(m) to all5

wait(W)6

end7

end8

9

On reception of a message m for the first time at time trec ∈ [tinit , tinit +2∆):10

∆-TRDeliver(m)11

if p 6= pB then12

while now()< trec +∆ do13

send(m) to all14

wait(W)15

end16

end17

18

At time tinit +2∆:19

if p has not ∆-TRDelivered any message then20

∆-TRDeliver(SF)21

end22

23

Figure 4.2: Terminating Reliable Broadcast for T C′(β).

In the algorithm proposed in Figure 4.2, process pB sends at time tinit a message m

by ∆-TRBroadcasting it, and pB keeps sending m each W time in order to ensures the

correct sending of m through every β -journey. Observe that, according to the definition

70

i
i

i
i

i
i

i
i

4.2 Implementability of TRB

of β -edge, for a β -edge e = (p,q) in a β -journey, if process p sends a message m on

e each W ≤ β − ζMAX time during ∆, q will receive m at least once. When a process

p receives the message m it ∆-TRDelivers m, and additionally, if p 6= pB, p sends m

each W time during ∆. Finally, if a process does not receive the message m, at time

tinit +2∆, it ∆-TRDelivers the special message SF .

Correctness proof

We prove that Algorithm in Figure 4.2 solves ∆-TRBroadcast in a β -component. Thus,

note that ∆-TRB properties hold on β -components.

Lemma 4.2.4. Let β > ζMAX , 0 < W ≤ β − ζMAX and let e = (p,q) be a β -edge be-
longing to a β -journey J such that departure(J) = t where t ∈ [T −,T +−∆]. If a
process p tries to send a message m on e each W from time T − to time T +−∆], q
will receive m at least once.

Proof. Since J is a β -journey, by definition J is also a ∆-journey and thus its temporal
length is bounded by ∆. Also by definition of β -journey, e should appear at least once
and be active for at least β time. Let t ′ be the time when the edge e appears, thus e is
active in the interval t ′+β . Observe that t ≤ t ′ ≤ t +∆−β .

We prove now that if p is sending m on e at times T −, T −+W , T −+2W , . . ., m
will be received by q no later than t +∆.

Consider the worst-case situation, in which: (a) e becomes active only once in the
interval (recall that t ′ ≤ t +∆−β), (b) e has activated just after a sending attempt at
time T −+kW , and (c) the latency of the sending attempt at time T −+(k+1)W is the
maximum latency we are assuming, ζMAX .

In this situation e is active in the interval (T −+kW,T −+kW +β]. Process p will
try to send m at time T −+(k+1)W , thus, in order to be a successful attempt, e should
be active in the interval [T −+(k+1)W to T −+(k+1)W +ζMAX]. We prove then that

[T −+(k+1)W,T −+(k+1)W +ζMAX]⊂ (T −+ kW,T −+ kW +β]

Observe first that at the time of the new sending of m by p, e continues to be active,
since W < β . Observe now that the bound for m to be received by q is not higher than
the time at which e disappears, since by definition W ≤ β −ζMAX . In effect,
T −+(k+1)W +ζMAX ≤ T −+ kW +β

71

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

which results in
ζMAX ≤ β −W
Finally we show that m is received by q before t +∆.
In the limit, the only activation of e could happen at a time t ′ ≤ t +∆−β . Thus,

T −+kW < T −+∆−β . Since the last sending attempt of p to q could be done as late
as at time T −+(k+1)W , m would be received by p before T −+∆−β +W +ζMAX .
Again, since W ≤ β − ζMAX , the previous results in that m is received by q before
t +∆.

Lemma 4.2.5. Algorithm in Figure 4.2 provides the ∆-Termination property: Every
process in the same β -component eventually delivers some message.

Proof. Observe that by Lines 20-21 a process p executing the algorithm in Figure 4.2
∆-TRDelivers a SF message at time tinit + 2∆ if p has not previously ∆-TRDeliver m
by Line 11.

Lemma 4.2.6. Algorithm in Figure 4.2 provides the ∆-Validity property: If a process in
a β -component broadcasts a message m, then all processes in the same β -component
eventually deliver m.

Proof. Observe first that, since W ∈ (0,β − ζMAX] by Line 1, Lemma 4.2.4 is applic-
able. By Lemma 4.2.4 and the Definition 4.2.2, if a process pB in a β -component C
sends a message m to all processes at time tinit and pB keeps sending m periodically
with a period W < β − ζMAX (lines 4-7), then m will be received by Line 11 at least
by one process in C, otherwise pB is the only process in C. A process q ∈C receiving
m by Line 11 will ∆-TRDeliver m, and will resend m by lines 13-16 of the algorithm.
Reasoning as previously by iteration on Lemma 4.2.4 and the Definition 4.2.2, every
process in C will ∆-TRDeliver m before tinit +∆.

Lemma 4.2.7. Algorithm in Figure 4.2 provides the ∆-Agreement property: If a process
in a β -component delivers a message m, then all processes in the same β -component
eventually deliver m.

Proof. By Lemma 4.2.6, every process q in a β -component C eventually receives and
∆-TRDelivers m if pB ∈ C. Else, if pB /∈ C, we prove now that either (a) eventually
every process q ∈C will ∆-TRDeliver m, or (b) no process in C will deliver m.

72

i
i

i
i

i
i

i
i

4.2 Implementability of TRB

Assume first that a process q ∈C has received m (by Line 10). Before resending
m by lines 13-17, q will ∆-TRDeliver m (by Line 11), thus we should prove now
that every process in C will ∆-TRDeliver m. Since pB has communicated with q, by
Observation 4.1.1 m has been received by q no later than tinit +∆. Since q resends
m by lines 13-17, by definition of β -component C, and by the proof of Lemma 4.2.6
every process in C eventually receives and ∆-TRDelivers m.

Otherwise, if no process in C has received m before tinit +∆, again by Observa-
tion 4.1.1, m will not be received by any process in C, thus no process in C will
deliver m.

Lemma 4.2.8. Algorithm in Figure 4.2 provides the ∆-Integrity property: For any mes-
sage m present in a β -component, every process in the β -component delivers at most
one message, and if it delivers m 6= SF then the sender(m) must have broadcast m.

Proof. A process p executes the ∆-TRDeliver primitive (after receiving m, Line 11)
just once since the Line 10 explicitly denotes “for the first time”, or by SF by Line 21
at time tinit +∆. Observe that, by Line 20, ∆-TRDeliver(SF) is only executed if p
has not previously delivered m by Line 11, thus either one message m or SF will be
delivered.

Observe also by the algorithm that m and SF are the only messages that can be
delivered, been m the message that is ∆-TRBroadcast by process pB.

Theorem 4.2.9. The algorithm in Figure 4.2 satisfies the properties of ∆-TRB in a
β -component.

Proof. Straightforward from Lemmas 4.2.5, 4.2.6, 4.2.7 and 4.2.8.

4.2.2 (Upper)-bounding the Edge Appearance

In previous reading we have presented a new timely connectivity model stronger than

T C(∆). Based on the assumption of an edge activity higher than the maximum latency

of the system, the T C′(β) connectivity offers us the possibility to implement TRB

without using any kind of oracle. Nevertheless, observe that in the algorithm in Fig-

ure 4.2 messages are forwarded during the whole ∆ interval. This is necessary because

73

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

the ending edge of a β -journey could be activated at a time as late as tinit +∆−β . It is

apparent that more efficient implementations of a TRB algorithm in terms of number

of messages could be envisaged if stronger connectivity assumptions are introduced in

the model. Specifically, in this section we introduce an additional timely assumption

on the appearance of edges.

We adopt the assumption of [5], where, besides β , a bound α on the appearance

of links is defined. We define a new type of journey, that we call (α,β)-journey.

Formally:

Definition 4.2.10. A (α,β)-journey J is a β -journey such that:

1. The appearance of e1 is bounded by t1 ≤ t +α .

2. The appearance of the subsequent edges are also bounded by α . Formally, ti+1≤
ti +ζ (ei, ti)+α for all i ∈ [1,k)).

We define a (α,β)-component as follows:

Definition 4.2.11. A (α,β)-component is a β -component where a set V ′ ⊆V satisfies
that ∀t ∈ [T −,T +−∆],V ′ is a (α,β)-journey based temporal component in G[t,t+∆).

We define the parametrized timely connectivity class T C′′(α,β) as follows:

Definition 4.2.12. G ∈ T C′′(α,β) ⇐⇒ V is a (α,β)-component.

TRB in T C′′(α,β)

The algorithm in Figure 4.3, present a TRB algorithm in a T C′′(α,β) dynamic system.

The new bound α , together with the latency bound β and ζMAX , allows to calculate

global system bounds, namely the period W and a time to deliver Γ, strictly in terms

of specific network parameters. In the algorithm proposed in Figure 4.3 process pB

∆-TRBroadcast a message m at time tinit by sending each W time m until the time

is strictly higher than tinit +α , in order to ensure the correct sending of m by every

74

i
i

i
i

i
i

i
i

4.2 Implementability of TRB

W ← value ∈ (0,β −ζMAX]1

Γ← (d α

W e+(|V |−2)d ζMAX+α

W e)W +ζMAX2

To ∆-TRBroadcast a message m at time tinit :3

if p = pB then4

send(m) to all5

repeat6

wait(W)7

send(m) to all8

until now()> tinit +α9

end10

11

On reception of a message m for the first time at time trec:12

∆-TRDeliver(m)13

if p 6= pB then14

send(m) to all15

repeat16

wait(W)17

send(m) to all18

until now()> trec +α19

end20

21

At time tinit +Γ:22

if p has not ∆-TRDelivered any message then23

∆-TRDeliver(SF)24

end25

26

Figure 4.3: Terminating Reliable Broadcast for T C′′(α,β).

(α,β)-journey. When a process p receives the message m at time trec for the first time,

it ∆-TRDelivers m and, additionally, if p 6= pB, p sends m each W until the time is

strictly higher than trec +α . Finally, if any of the processes in C does not receive the

75

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

message m at time tinit +Γ, ∆-TRDelivers the special message SF denoting the sender

failure.

It is important to note that in the TRB algorithm for T C′′(α,β), differently to

the upper classes, processes need to known the network diameter, which is bounded

by |V | − 1. This is a consequence of the fact of considering strictly local bounds in

T C′′(α,β). Instead, both T C(∆) and T C′(β) rely on a system-wide bound, ∆.

Bounding the Time-to-Deliver

We explain now how we calculate Γ, the bound used in the algorithm in Figure 4.3 for

a process to ∆-TRBdeliver the message (see Figure 4.4 for a graphical illustration).

A process p1 (the sender) will send a copy of m from tinit on, each W time units.

In the worst case, the first edge of the journey will appear at tinit +α , but p1 will

not success sending a copy of m until tinit + d α

W eW , i.e., the d α

W eW ’s sending attempt.

Observe that, tinit +α < tinit + d α

W eW ≤ tinit +α +W .

For a journey including a single edge (p1, p2), the message m would be delivered

by p2 at time tinit + d α

W eW +ζMAX .

In general, for a journey including k nodes (and thus k−1 hops), excluding the first

hop, the subsequent k− 2 hops can be time-bounded as follows: a message m resent

by a process pi is received by pi+1 in ζMAX time units and pi+1 waits α time units

until the appearance of edge ei+1 to re-send m on this edge. Consequently, pi+1 will

succeed in the sending attempt made on ei+1 at a time not greater than tinit +d α

W eW +

d ζMAX+α

W eW . Summarizing, a message from p1 to pk by a (α,β)-journey at time tinit

will be delivered by pk at time tinit +Γ, where Γ = (d α

W e+(k−2)d ζMAX+α

W e)W +ζMAX .

In the worst case, k = |V | − 1, the bound to deliver a message will be tinit +Γ,

where Γ = (d α

W e+(|V |−2)d ζMAX+α

W e)W +ζMAX .

76

i
i

i
i

i
i

i
i

4.2 Implementability of TRB

Figure 4.4: A time-line explaining the Γ upper-bound for the worst case (α,β)-journey
from a process p to another process q in the system.

Correctness proof

Lemma 4.2.13. Algorithm in Figure 4.3 provides the ∆-Termination property: Every
process in the same (α,β)-component eventually delivers some message.

Proof. Observe that by Lines 22-25 a process p executing the algorithm in Figure 4.3
∆-TRDelivers a SF message at time tinit +Γ if p has not previously ∆-TRDeliver m by
Line 13.

Lemma 4.2.14. Algorithm in Figure 4.3 provides the ∆-Validity property: If a process
in a (α,β)-component broadcasts a message m, then all processes in the same (α,β)-
component eventually deliver m.

Proof. By Definition 4.2.11, if a process pB in a (α,β)-component C sends a message
m to all processes at time tinit and pB keeps sending m periodically with a period
W < β − ζMAX (Lines 6-9) during the maximum time for the appearance of the link,
α , then m will be received by Line 12 at least by one process in C, otherwise pB is
the unique process in C. Reasoning in the same way by iteration on Lines 16-19 of the

77

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

algorithm, by Definition 4.2.11, every process q ∈ C will ∆-TRDeliver m by Line 13
before tinit +Γ. Observe by Line 2 that Γ has been set as a bound of the temporal
length of an (α,β)-journey in a system with |V | nodes.

Lemma 4.2.15. Algorithm in Figure 4.3 provides the ∆-Agreement property: If a pro-
cess in a (α,β)-component delivers a message m, then all processes in the same
(α,β)-component eventually deliver m.

Proof. By Lemma 4.2.14, every process q in a (α,β)-component C eventually receives
and ∆TRDelivers m if pB ∈C. Else, if pB /∈C, we prove now that either (a) eventually
every process q ∈C will ∆TRDeliver m, or (b) no process in C will deliver m.

Assume first that a process q ∈ C has received m (by Line 12). Since pB has
communicated with q, m has been received by Line 12 of q according the time bounds
α and β following a journey topologically bounded by the maximum network diameter,
|V−1|, and q ∆-TRDelivers m by Line 13. By Line 2, Γ has been set as a bound on the
temporal length of such an (α,β)-journey. By Lines 16-19 m is resent by q during the
maximum time for the appearance of the link, α , and, again by Lemma 4.2.14, every
process in a (α,β)-component C eventually receives and ∆TRDelivers m. Again, Γ

holds as the general bound, since it considers the worst-case diameter, which includes
all the processes in the system.

Otherwise, if no process in C has received m before tinit +Γ, every process in C
will ∆-TRDeliver SF at time tinit +Γ.

Lemma 4.2.16. Algorithm in Figure 4.3 provides the ∆-Integrity property: For any
message m present in a (α,β)-component, every process in the (α,β)-component de-
livers at most one message, and if it delivers m 6= SF then the sender(m) must have
broadcast m.

Proof. A process p executes the ∆-TRDeliver primitive (after receiving m, Line 13)
just once since the Line 12 explicitly denotes “for the first time”, or by SF by Line 24
at time tinit +Γ. Observe that, by Line 24, ∆-TRDeliver(SF) is only executed if p has
not previously delivered a message m by Line 13.

Observe also by the algorithm that m and SF are the only messages that can be
delivered, been m the message that is ∆-TRBroadcast by process pB.

78

i
i

i
i

i
i

i
i

4.2 Implementability of TRB

Theorem 4.2.17. The algorithm in Figure 4.3 satisfies the properties of Terminating
Reliable Broadcast in a (α,β)-component.

Proof. Straightforward from Lemmas 4.2.13, 4.2.14, 4.2.15 and 4.2.16.

4.2.3 Relating Timely Classes

We have defined a hierarchy of classes with increasingly stronger timely assumptions.

Being T C(∆), T C′(β) and T C′′(α,β) the parametrized classes, we define now for

each one the union of all its possible instances:

G ∈ T C∗ ⇐⇒ ∃∆ 6= ∞ : G ∈ T C(∆)

G ∈ T C′∗ ⇐⇒ ∃β 6= ∞ : G ∈ T C′(β)

G ∈ T C′′∗ ⇐⇒ ∃α,β 6= ∞ : G ∈ T C′′(α,β)

In spite of the different strength of the parametrized classes, we show that T C′′∗ ≡

T C′∗. Besides, T C′∗ ⊂ T C∗ and T C′′∗ ⊂ T C∗.

Correctness proof

Theorem 4.2.18. T C′′∗ ≡ T C′∗

Proof. On the one hand, ∀G ∈ T C′′∗,∃β : G ∈ T C′(β), since by definition, a (α,β)-
component in T C′(β) is a β -component. More specifically, if G ∈ T C′′(α,β) then
G ∈ T C′((|V | − 1)(α +β),β). On the other hand, ∀G ∈ T C′∗,∃α,β : G ∈ T C′(α,β).
Observe that G ∈ T C′′(α ′,β) such that α ′ is max(t− t ′) : t ∈ [T −,T +], t ′ = t0) where
∀J = {(e0, t0),(e1, t1), . . .} ∈ J ∗ ∧ arrival(J) < t +∆ and G ∈ T C′(β). Since, T C′∗ \
T C′′∗ = /0, then T C′′∗ ≡ T C′∗.

Theorem 4.2.19. T C′∗ ⊂ T C∗

79

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

Proof. By the definition of T C′(β), ∀G ∈ T C′∗,∃∆ : G ∈ T C(∆). We prove now that
there exists G ∈ T C∗ such that G /∈ T C′∗. Assume a graph G such that any of its
journey is composed by an edge ei which is active during a βi time where βi = ζMAX ,
and, by Definition 4.2.1, those journeys are not allowed in any parametrized T C′(β)
class. Consequently, T C′∗ ⊂ T C∗.

Theorem 4.2.20. T C′′∗ ⊂ T C∗

Proof. By Theorem 4.2.18 and Theorem 4.2.19, T C′′∗ ⊂ T C∗.

4.3 From ∆-TRB to ∆-Consensus in Dynamic Systems

In this section we analyse the equivalence between TRB and Consensus, originally

stated for synchronous static systems [29], in terms of a dynamic system as the one

we have modelled.

In the former sections we have presented three ∆-TRB algorithms in the scope of

respectively ∆-, β - and (α,β)-components. We show now how the Consensus problem

can be reduced1 to a ∆-TRB problem. We will refer as ∆-Consensus to this kind of

Consensus in the scope of ∆-components.

By the properties of ∆-TRB, it is straightforward to define the ∆-Consensus prop-

erties as follows:

• ∆-Termination: Every process in the ∆-component eventually decides.

• ∆-Agreement: Every process in the ∆-component decides the same value.

• ∆-Validity: The decided value is a proposed one.

Without loosing generality we focus here on ∆-Consensus using the ∆-TRB spe-

cification of Figure 4.1 for the T C(∆) Class.

1We say that a problem A can be reduced to a problem B if A can be solved using B.

80

i
i

i
i

i
i

i
i

4.4 On the Weakest Implementable Timely Connectivity Class

Vector Vp(i)←⊥ : i ∈ [0, |V |)1

To ∆-Propose v at time tinit :2

∆-TRBroadcast(v)3

4

On ∆-TRDeliver(m) by q:5

Vp(q)← m6

7

At time tinit +2∆:8

∆-decide(Vp(min(i : Vp(i) 6= SF)))9

10

Figure 4.5: ∆-TRB based ∆-Consensus algorithm for T C(∆).

The resulting ∆-Consensus algorithm is shown in Figure 4.5. Every process p holds

a vector Vp initialized to ⊥. At time tinit , |V | instances of ∆-TRB are started, one per

process, being each process the sender in one instance. Every process p records in

vector Vp(q) the message mq delivered from process q (or SF in case mq has not been

received on time). At time tinit +2∆, p decides on the first non-SF value of Vp.

Note that solving Consensus at system level would require an additional ∆-TRB

instance to agree on the decision of the majority, provided that the temporal interval

[T −,T +] in which the ∆-component is defined covers both rounds. In other words, the

stability of ∆-components must be temporally extended to solve Consensus at system

level.

4.4 On the Weakest Implementable Timely Connectivity
Class
In the previous Section, we have introduced three different connectivity classes by

which Consensus can be solved. We have also identified that in order to be implement-

81

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

able a dynamic distributed agreement protocol, two essential assumptions are required.

On the one hand it is necessary a time bound in communications. On the other hand,

the link active time must be strictly higher than the time required for a message to be

correctly delivered.

The class T C′(β), although it is a weak option, it is based on β -journeys, which

are not the weakest journeys allowing implementable timely communication primitives.

We are interested in determining which is the weakest connectivity class providing im-

plementable timely communication primitives, and consequently which is the weakest

connectivity class allowing to solve Consensus without using any kind of oracle.

Note that by Definition 4.2.2, every edge belonging to a journey of a β -component

share the same β value. This means that exists a common lower-bound satisfied by

every journey of the system which is β−ζMAX . Observe that Lemma 4.2.4 the assump-

tion of a non-zero drift between β and ζMAX allows the existence of an implementable

communication protocol.

Observation 4.4.1. Trivially, the Lemma 4.2.4 also illustrates that it is necessary for
providing implementable communication protocols in ∆-components since a W = 0
value corresponds to send each 0 time a message, or in other words, send infinite
messages.

The target communication protocol states that if processes of a β -journey send a

message m each W where 0 <W ≤ β −ζ MAX , then m will be delivered by each node

involved in the journey.

Every edge involved in a β -journey is assumed to be active β time, i.e., more than

the maximum latency of the system. However, an edge ei belonging to a β -journey

delivers messages at most ζ (ei, ti +β −ζMAX), which can be a latency lower than the

ζMAX itself. In summary, in β -journeys edges are assumed to be active more time than

the required to guarantee implementable communications.

82

i
i

i
i

i
i

i
i

4.4 On the Weakest Implementable Timely Connectivity Class

In the following we present the weakest connectivity class providing implementable

timely communication primitives.

In the same way that β is the activation time required for every edge in the system,

we consider that βi is the specific activation time of an edge ei at time ti. We call ω-

edge to the edge that satisfies that βi−ζ (ei, ti)≥ ω . We also consider that ∀t ∈ [ti, ti +

ω),ζ (ei, t)≤ ζ (ei, ti). Observe that, in the worst case communication ζ(ei, ti)+ω = ∆,

which in essence could be considered as the previous ζMAX .

We now define ω-journeys as follows:

Definition 4.4.1. A ω-journey J is a ∆-journey such that:

1. ∀i ∈ [0,k),ei is a ω-edge.

2. ζ (ei, ti)< βi ≤ ∆.

3. the times when edges are activated and their corresponding latencies allow a
bounded sequential traversal (formally, ∀i ∈ [0,k), ti+1 ≥ ti +βi).

We now define ω-components as a subset of ∆-components that uses ω-journeys.

Formally:

Definition 4.4.2. A ω-component is a ∆-component where a set V ′ ⊆V satisfies that
∀t ∈ [T −,T +−∆],V ′ is a ω-journey based temporal component in G[t,t+∆).

We define the parametrized timely connectivity class T C′(ω) as follows:

Definition 4.4.3. G ∈ T Cw(ω) ⇐⇒ V is a ω-component.

Observation 4.4.2. Observe that, by Definition 4.4.2 every process is connected by
ω-journeys, i.e., with the same ω value. In essence, exists a common lower-bound in
the drift βi−ζ (ei, ti) satisfied by every edge of the component. Since the W period of
the Lemma 4.2.4 also relies on a common global drift β − ζMAX , Lemma 4.2.4 also
holds for ω-journey.

Theorem 4.4.4. T C′∗ ⊂ T Cw

83

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

Proof. By the definition of T C′(β), ∀G ∈ T C′∗,∃ω : G ∈ T Cw(ω), more precisely,
ω = β −ζMAX . We prove now that there exists G ∈ T Cw such that G /∈ T C′∗.

In a β -journey J the lower-bound β is the time required for every edge ei to be
active, i.e., ∀i,βi ≥ β > ζMAX which is bounded according the maximum ζMAX in the
system. Thus, every link must be active a time higher than ζMAX . Besides, in ω-
journeys, even having an ω = β − ζMAX , by Definition 4.4.1 each ei is allowed to be
a βi = ζ (ei, ti)+ω . Every edge of an ω-journey can be active different times while
the drift βi− ζ (ei, ti) ≥ ω holds. However, note that βi is not restricted to be higher
than ζMAX . A possibility to represent ω-journeys in terms of β -journeys would be
assuming that β = ω +min{ζ (ei, ti)}. Unfortunately this statement would result in
ζMAX = min{ζ (ei, ti)} which is a contradiction.

Therefore, there are ω-journeys than cannot be represented as any possible β -
journeys. Consequently, T C′∗ ⊂ T Cw.

Theorem 4.4.5. T Cw is the weakest connectivity class based on ∆-components able to
provide timely without assuming an oracle.

Proof. The Observation 4.4.1 shows that is necessary the fulfillment of this property.
Note that, by Observation 4.4.2, Lemma 4.2.4 holds for ω-journeys. Observe also that
ω-edges drift are based exclusively on their own βi and ζ (ei, ti) parameters, but not
in other existing edge’s behavior. This fact is ratified by Theorem 4.4.4, which shows
that T Cw contains T C′∗.

Consequently, the T Cw(ω) is the weakest connectivity class based on ∆-components
able to provide timely communications by implementable communication primitives.

TRB in T Cw(ω)

We give now a TRB algorithm for the T Cw(ω) model, which is shown in Figure 4.6.

In the algorithm proposed in Figure 4.6 process pB sends at time tinit a message m

by ∆-TRBroadcasting it, and pB keeps sending m each W time in order to guarantee

the correct sending of m by every ω-journey. Observe that, according to the definition

of ω-edge, for a ω-edge e = (p,q) in a ω-journey, if process p sends a message m on

84

i
i

i
i

i
i

i
i

4.4 On the Weakest Implementable Timely Connectivity Class

W ← value ∈ (0,ω]1

To ∆-TRBroadcast a message m at time tinit :2

if p = pB then3

while now()< tinit +∆ do4

send(m) to all5

wait(W)6

end7

end8

9

On reception of a message m for the first time at time trec ∈ [tinit , tinit +2∆):10

∆-TRDeliver(m)11

if p 6= pB then12

while now()< trec +∆ do13

send(m) to all14

wait(W)15

end16

end17

18

At time tinit +2∆:19

if p has not ∆-TRDelivered any message then20

∆-TRDeliver(SF)21

end22

23

Figure 4.6: Terminating Reliable Broadcast for T Cw(ω).

e each W ≤ω time during ∆, q will receive m at least once. When a process p receives

the message m it ∆-TRDelivers m, and additionally, if p 6= pB, p sends m each W time

during ∆. Finally, if a process does not receive the message m, at time tinit + 2∆, it

∆-TRDelivers the special message SF .

85

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

Correctness proof

Similar to previous proofs, we prove that Algorithm in Figure 4.6 solves ∆-TRBroadcast

in a ω-component. Thus, note that ∆-TRB properties hold on ω-components.

Lemma 4.4.6. Algorithm in Figure 4.6 provides the ∆-Termination property: Every
process in the same ω-component eventually delivers some message.

Proof. Observe that by Lines 19-22 a process p executing the algorithm in Figure 4.6
∆-TRDelivers a SF message at time tinit + 2∆ if p has not previously ∆-TRDeliver m
by Line 11.

Lemma 4.4.7. Algorithm in Figure 4.6 provides the ∆-Validity property: If a process in
a ω-component broadcasts a message m, then all processes in the same ω-component
eventually deliver m.

Proof. Observe first that, since W ∈ (0,ω] by Line 1 and thus Lemma 4.2.4 is ap-
plicable. By Observation 4.4.2, Lemma 4.2.4 and the definition of ω-component, if a
process pB in a ω-component C sends a message m to all processes at time tinit and pB

keeps sending m periodically with a period W < ω (lines 4-7), then m will be received
by Line 11 at least by one process in C, otherwise pB is the only process in C. A
process q ∈C receiving m by Lines 10-11 will ∆-TRDeliver m, and will resend m by
lines 13-16 of the algorithm. Reasoning as previously by iteration on Lemma 4.2.4
and the definition of ω-component, every process in C will ∆-TRDeliver m before
tinit +∆.

Lemma 4.4.8. Algorithm in Figure 4.6 provides the ∆-Agreement property: If a process
in a ω-component delivers a message m, then all processes in the same ω-component
eventually deliver m.

Proof. By Lemma 4.4.7, every process q in a ω-component C eventually receives and
∆-TRDelivers m if pB ∈ C. Else, if pB /∈ C, we prove now that either (a) eventually
every process q ∈C will ∆-TRDeliver m, or (b) no process in C will deliver m.

Assume first that a process q ∈C has received m (by Line 10). Before resending
m by lines 13-16, q will ∆-TRDeliver m (by Line 11), thus we should prove now
that every process in C will ∆-TRDeliver m. Since pB has communicated with q, by
Observation 4.1.1 m has been received by q not later than tinit +∆. Since q resends

86

i
i

i
i

i
i

i
i

4.5 Conclusions

m by lines 13-16, by definition of ω-component C, and by the proof of Lemma 4.4.7
every process in C eventually receives and ∆-TRDelivers m.

Otherwise, if no process in C has received m before tinit +∆, again by Observa-
tion 4.1.1 m will not be received by any process in C, thus no process in C will deliver
m.

Lemma 4.4.9. Algorithm in Figure 4.6 provides the ∆-Integrity property: For any mes-
sage m present in a ω-component, every process in the same ω-component delivers at
most one message, and if it delivers m 6= SF then the sender(m) must have broadcast
m.

Proof. A process p executes the ∆-TRDeliver primitive (after receiving m, Line 11)
just once since the Line 10 explicitly denotes “for the first time”, or by SF by Line 21
at time tinit +∆. Observe that, by Line 20, ∆-TRDeliver(SF) is only executed if p
has not previously delivered m by Line 11, thus either one message m or SF will be
delivered.

Observe also by the Algorithm that m and SF are the only messages that can be
delivered, been m the message that is ∆-TRBroadcast by process pB.

Theorem 4.4.10. The algorithm in Figure 4.6 satisfies the properties of ∆-TRB in a
ω-component.

Proof. Straightforward from Lemmas 4.4.6, 4.4.7, 4.4.8 and 4.4.9.

4.5 Conclusions
In this chapter we have studied how to introduce timeliness in evolving systems so

that the resolution of agreement problems (specifically Consensus) is possible. On the

basis of previous works, we have adopted the concept of journey or temporal path and

have introduced the necessary timeliness (i.e., time bounds) to describe the specific

assumptions that are required by an agreement algorithm to terminate and satisfy the

Consensus properties.

We have first proposed a general class, T C(∆), with a very abstract property on the

temporal connectivity of the TVG to provide the necessary stability condition, namely,

87

i
i

i
i

i
i

i
i

4. CONNECTIVITY MODELS FOR SOLVING AGREEMENT

that the temporal diameter of a recurrent component in the TVG is bounded. We refer

to such a component as a ∆-component. To approach the Consensus problem we have

defined a TRB specification in terms of ∆-components, ∆-TRB. However, ∆-TRB is not

implementable in T C(∆) by message-passing without zero processing time assump-

tions. Henceforth, by introducing increasingly stronger connectivity assumptions, we

have provided two implementable connectivity classes, namely T C′(β) and T C′′(α,β),

as well as two respective implementations of ∆-TRB in these classes.

Instead of using a general, system-wide bound, in T C′′(α,β), journeys have a

bound, Γ, that can be calculated in terms of parameters that are linked to entities of

real-world networks, namely, temporal bounds on the appearance of a link and on the

stability of the link, as well as the diameter of the network. It should be noted that for

every instance of the T C′′(α,β) class, there exists a global bound that can be used to

derive an instance of the upper-level classes, which yields to define relations between

the classes, as summarized in Figure 4.7.

T C′′(α,β)

T C′(β)

T Cw(ω)

T C(∆)

Figure 4.7: T C′′(α,β)⊂ T C′(β)⊂ T Cw(ω)⊂ T C(∆)

We have shown that Consensus at ∆-component level is easily reduced to ∆-TRB.

Nevertheless, extending the stability period of ∆-components is necessary to solve Con-

88

i
i

i
i

i
i

i
i

4.5 Conclusions

sensus at system level.

Observe that the T C′(β) impose a β minimum time of activity on each ei of a

β -journey. In the same way, in ω-components we offer a timely component definition

based on ω-journeys. An ω-component based connectivity class is weaker than T C′(β)

since it does not assume a β bound, but only a minimum a priori known drift between

the lifetime of every edge ei at any time t and the latency ζ (e, t). We have proved

that this connectivity model is the weakest connectivity class allowing implementable

∆-TRB algorithms.

Finally, the proposed connectivity classes are represented in Figure 4.8 according

to the inclusion tree classification introduced in Section 2.3.2.2.

Figure 4.8: The proposed connectivity classes classified in terms of relations of inclusion
with respect of class 5 of [16].

89

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER

5
EventualLeaderElection

inDynamicDistributed
Systems

In the previous chapter we have provided several TRB algorithms which, under

synchrony assumptions, are equivalent to Consensus. However, TRB in partially syn-

chronous systems is not equivalent to Consensus.

As mentioned in Chapter 2, many Consensus protocol rely on the existence of a

leader election service. Failure detectors in general, and Ω in particular, were initially

defined to face asynchrony and crash failures. Nevertheless, nowadays there exist sev-

eral proposals that implement Ω under dynamic characteristics like unknown member-

ship, crash-recovery or infinite arrival [57, 59, 63, 64]. In this chapter we will focus on

leader election to board the agreement problem in dynamic systems, including process

91

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

mobility and the several dimension of dynamicity described in Chapter 3.

Recall that the type of systems we are considering are highly dynamic, and pro-

cesses execute in different types of devices, some of them mobile and connected via

wireless networks. As a consequence, communication can sometimes fail, messages

can get lost, and the system can even partition. Due to that, in Chapter 4 we have

studied the limits on process mobility in order to Consensus be solvable. Observe that

the assumption of some kind of ∆-component in the system is necessary to success

in the attempt of reaching agreement, be it on a leader (Ω) or on a proposed value

(Consensus).

The aim of this chapter is to provide an algorithm to solve leader election in a sys-

tem model as weak (i.e., dynamic) as possible. To do so, we assume that the system

alternates periods of “good” and “bad” behavior, i.e, the algorithm is aimed to work

in level s in terms of the categorization we introduced in Chapter 3. Recall that this

system model is weaker than the one based in the existence of unknown Global Sta-

bilization Times after which the system behaves timely forever, corresponding to level

n. Also, while previous works like the timed asynchronous model by Cristian and Fet-

zer [24] or the Heard-Of model of Charron-Bost and Schiper [20], assume good/bad

periods in terms of asynchrony and failures for a finite and static set of processes, we

extend the assumption to all the dimensions of the systems as described in Chapter 3.

We call M∗ to this model.

We extend the eventual leadership properties to adapt them to ∆-components based

dynamic scenarios (as we did with ∆-Consensus). The resulting eventual leader election

is based on ∆Ω. Recall that ∆Ω is the non-mobile dynamic leader election proposed by

Larrea et al. [59]. We extend ∆Ω in order to tolerate two new properties that take into

account temporal-subgraph joins/fragmentations, which in general corresponds to a ∆-

component based system model, introduced in Chapter 4. We call ∆∗Ω to the resulting

eventual leader election. Then, we propose a new leader election algorithm for M∗.

92

i
i

i
i

i
i

i
i

5.1 Problem Specification and System Model

Finally, we compare our model to others using the framework defined in Chapter 3 and

presents some conclusions obtained from the results of simulations.

Note that we will start using the definitions of ∆∗Ω as defined in a previous work

of ours [36] and we redefine them in terms of the TVG formalism of Chapter 3. In

this way we integrate the fault-tolerant perspective into the (more general) connectivity

models provided by the TVG formalism.

5.1 Problem Specification and System Model

5.1.1 Problem Specification

We first specify the properties in terms of an Ω-like failure detector in dynamic dis-

tributed systems, denoting the resulting class of failure detectors ∆∗Ω. We show this

relation with the connectivity model defined in Chapter 4. Then, we propose a weak

dynamic distributed system model called M∗.

Chandra et al. proposed in [18] the Ω failure detector class, which provides an

eventual leader election functionality. The system model in which Ω was originally

proposed was a static distributed system with reliable communication links and known

membership, where processes may fail by crashing. The property satisfied by Ω is the

following:

• EL (Eventual Leadership): There is a time after which all the correct processes

permanently trust, i.e., have as their leader, the same correct process.

More recently, Larrea et al. [59] have proposed a redefinition of the eventual leader

election problem in non-mobile dynamic systems with unknown initial membership,

where processes may join and crash/leave arbitrarily. The two properties that define

the Dynamic Omega failure detector class (denoted ∆Ω) are the following:

93

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

• EL-NI (Eventual Leadership in Non-Increasing systems): If after some time the

system does not increase (i.e., no new process joins the system), then a correct

leader must eventually be elected.

• EL-ND (Eventual Leadership in Non-Decreasing systems): If after some time

the system does not decrease (i.e., no process leaves the system or crashes), then

(1) a leader must eventually be elected, and (2) the new processes that join the

system after a leader has been elected have to eventually consider this process

as their leader.

Note that, by the definition, Ω⊂ ∆Ω.

The authors remark that the continuous joins and leaves of processes could affect

the convergence of any leader election algorithm. However, if processes remain “long

enough” in the system, then a leader will be elected, even if any of the EL-NI or EL-

ND properties are not fully satisfied. In other words, it is sufficient in practice that a

“long enough” period of time allows to elect a leader that does neither leave the system

nor crash, after which processes may continue joining and leaving/crashing arbitrarily

and forever. Thus, the properties EL-NI and EL-ND must be seen as conditions under

which the leader election is ensured.

In general, in dynamic distributed systems we can not assume a unique and fully

connected graph. Even if the system converges to a common and correct leader, it can

be impossible to ensure the communication with the leader. For this reason, in [36], we

defined a connectivity property for the leader election problem in dynamic distributed

systems:

• ELBC (Eventual Leadership with Bidirectional Connectivity): Eventually and for

sufficiently long, there is a bidirectional path between the leader and the rest of

processes.

94

i
i

i
i

i
i

i
i

5.1 Problem Specification and System Model

Observe that, in terms of the connectivity models defined in Chapter 4, since a

∆-componentC provides by definition bidirectional connectivity among processes in C.

Consequently, the ∆-component trivially satisfies the ELBC property.

Additionally, also in [36], we redefined the dynamic leader election properties EL-

NI and EL-ND for systems with process mobility as follows:

• ELBC-NI (Eventual Leadership with Bidirectional Connectivity in Non-Increasing

systems): If after some time the system does not increase, then a correct leader

must eventually be elected and this leader must satisfy the ELBC property.

• ELBC-ND (Eventual Leadership with Bidirectional Connectivity in Non-Decreasing

systems): If after some time the system does not decrease, then (1) a leader must

eventually be elected and this leader must satisfy the ELBC property, and (2) the

new processes that join the system after a leader has been elected have to even-

tually consider this process as their leader.

Again, in terms of the ∆-component based connectivity model of Chapter 4, the

previous properties result as follows:

Definition 5.1.1. ELBC-NI (Eventual Leadership with Bidirectional Connectivity in
Non-Increasing systems): If after some time a ∆-component C does not increase, then
a correct leader belonging to C must eventually be elected.

Definition 5.1.2. ELBC-ND (Eventual Leadership with Bidirectional Connectivity in
Non-Decreasing systems): If after some time a ∆-component C does not decrease, then
(1) a leader belonging to C must eventually be elected by every process in C, and
(2) the new processes that join to C after a leader has been elected have to eventually
consider this process as their leader.

As we have said, a dynamic distributed system allows the existence of more than

one ∆-component. Due to process mobility and system dynamicity, the number of

components can continuously evolve, either by the join of two or more components

95

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

or by the fragmentation of a component. In order to cope with these situations, two

additional properties are defined for the leader election problem in dynamic distributed

systems:

Definition 5.1.3. EL-GJ (Eventual Leadership in a Graph Joining situation1): If two
or more ∆-components join into a single ∆-component, then the resulting ∆-component
must satisfy the ELBC-NI and ELBC-ND properties.

Definition 5.1.4. EL-GF (Eventual Leadership in a Graph Fragmentation situation): If
a ∆-component is fragmented in two or more ∆-components, then each of the resulting
∆-components must satisfy independently the ELBC-NI and ELBC-ND properties.

Observe that while the ELBC-NI and ELBC-ND properties consider a single ∆-

component, the EL-GJ and EL-GF properties consider the whole system, potentially

composed of several ∆-components. By analogy with the classes Ω and ∆Ω, in [36] we

call Mobile Dynamic Omega, denoted ∆∗Ω, to the class of failure detectors satisfying

the EL-GJ and EL-GF properties2. Note that, by the definition of EL-GJ and EL-GF,

∆∗Ω implicitly satisfies ELBC-NI and ELBC-ND in each ∆-component. Note also that

∆Ω⊂ ∆∗Ω.

5.1.2 System ModelM∗

In this section, we propose a weak mobile dynamic distributed system model M∗. Ac-

cording to the categorization framework proposed in Chapter 3,M∗ has all dimensions

tagged with the level s, i.e., M∗ =M(T s,Ps
F ,Cs

F ,G
s
#,G

s
Π
,Gs

D,G
s
S) following the nota-

tion presented in Chapter 3. This model will subsequently be used by a leader election

algorithm implementing ∆∗Ω. In the remainder of this section we will describe the

main characteristics of model M∗, and in particular its stability assumption.

1We have maintained the original property names given in [36].
2In [36] EL-GJ and EL-GF were defined in terms of subgraphs, not in terms of ∆-components as

in the present work.

96

i
i

i
i

i
i

i
i

5.1 Problem Specification and System Model

As in general in the literature, in M∗ processes are assumed to be synchronous.

Moreover, for simplicity processing times are considered as negligible compared to

communication delays. Each process in the system has a unique identifier, and is

equipped with a clock that can measure real-time intervals. However, clocks are not

synchronized. Regarding the process failure model, as denoted by the level s, we

assume a crash-recovery model where processes can leave/crash and join/recover the

system at will.

To send a message, processes have access to a reliable broadcast communication

primitive. From a communication reliability and synchrony point of view, we assume

that periodically all links act as eventually timely links [3]. An eventually timely link

allows messages to get lost, but ensures that eventually every message that is sent is

received before an unknown bound.

According to the level s of each dimension of M∗, we assume that M∗ alternates

periods of good and bad behavior in the line of the timed asynchronous model of

Cristian and Fetzer [24]. Good periods are both “stable enough” (from a dynamicity

and timeliness point of view) and “long enough” (from a duration point of view) to

elect a leader in every graph of the system. We also assume that good periods occur

infinitely often.

Recall that we are considering that a process is correct with respect to a ∆-component.

In this way, the stability assumption of a good period, necessary to elect a leader, relies

on the non occurrence of ∆-component partitioning.

Also, during a good period the ∆-components can “grow”. In particular, new nodes

may be added (e.g., due to a new process join, or upon the recovery of a crashed

process), and even two disconnected graphs may join into a single graph. However,

new node additions and/or graph joinings during a good period must not affect the s

level for all the dimensions of M∗. In particular, the graph membership and graph

diameter must remain bounded (with possibly unknown bounds).

97

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

5.2 A Leader Election Algorithm forM∗

In this section, we propose a new leader election algorithm that implements the class

∆∗Ω in the model M∗, i.e., satisfies the EL-GJ and EL-GF properties previously

defined in good periods. Without loss of generality, we specifically choose the class

T Cw to implement algorithm. Recall that T Cw is the weakest class of ∆-components

in which Terminating Reliable Broadcast can be implemented in a message-passing

system.

5.2.1 A Reliable Broadcast Primitive forM∗

In contrast to static networks, where reliable links are usually assumed, and thus a

message broadcast by a process pi will be delivered by all correct processes dynamic

distributed systems this is no longer true. Hence, we need to provide forM∗ a reliable

broadcast primitive in a ∆-component C such that, sending a finite number of copies of

each message, a process pi is able to deterministically communicate with all processes

in C in a bounded time by temporal paths, i.e., ω-journeys. However, since bounds

are not known a priory, as usual in partial synchronous approaches the algorithm must

learn the communication bounds. Consequently, the proposed reliable broadcast will

have an eventual approach. Note that, for a process to learn a communication bound,

there must exist a periodical send pattern included in the algorithm in order to processes

be able to learn that bound. We assume that every process in the system periodically

broadcast messages.

In this regard, the proposed primitive must satisfy the following properties:

• Validity: Eventually if a correct process belonging to a ∆-component C sends a

message, then some correct process belonging to C will eventually deliver that

message.

98

i
i

i
i

i
i

i
i

5.2 A Leader Election Algorithm for M∗

• Agreement: Eventually if a correct process belonging to a ∆-component C de-

livers a message, then all correct processes belonging to C eventually deliver that

message.

• Integrity: Eventually every correct process belonging to a ∆-component C de-

livers the same message at most once and only if that message has been sent by

a process in the system.

Figure 5.1 illustrates the proposed eventual reliable broadcast. In essence, the al-

gorithm follows the scheme proposed in classical reliable broadcast. The differences

relies on the mechanisms required in order to cope with temporal paths as we made

for the TRB algorithms in Chapter 4. The most relevant characteristics of the proposed

reliable broadcast are the following:

Differently to the TRB algorithms proposed in Chapter 4, the system model follows

an eventual approach, i.e., communication bounds are not known but are learned during

the execution. Specifically we use “echo” messages to learn this bounds. Observe that,

according to ∆-component’s definition a receiver of a message m will communicate

with the sender of m in at most ∆ time again. This means that if the first reception

of m lasted ∆ time and the receptor maintains broadcasting m during other ∆ time, the

original sender of m will receive an “echo” of m in at most 2∆. Note, however, that for

the algorithm to converge it is required that both sender and receiver process timeout-

RBConnectivityi ≥ ∆. For timers to converge, it is required a periodical communication

pattern in order a process be able to approximate the bounds, and thus bounds can be

learned by a timeout mechanism.

Correctness Proof

Lemma 5.2.1. The algorithm proposed in Figure 5.1 satisfies the Validity property of
Reliable Broadcast in ∆-components.

99

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

W ← v ∈ (0,ω]1
timer_RBConnectivityi← 02
timeout_RBConnectivityi← 03

RBroadcast(m) at time ti:4
while now() < ti + timeout_RBConnectivityi do5

broadcast(m)6
wait(W)7

when a message m is received from p j 6= pi for the first time:8
if sender(m) 6= pi then9

RDeliver(m)10
while now() < ti + timeout_RBConnectivityi do11

broadcast(m)12
wait(W)13

else14
reset timer_RBConnectivityi15

when timer_RBConnectivityi expires:16
increase timeout_RBConnectivityi17

Figure 5.1: Algorithm implementing Reliable Broadcast by ω-journeys (code for
process pi).

Proof. Let us assume that pi is a correct process belonging to an ω-component C and
timer_RBConnectivityi is higher than ∆. By definition, every process of the system
periodically broadcasts a message m by Line 6 during timer_RBConnectivityi time. Let
us assume that pi broadcasts a message m at time ti. By definition of ω-component
and Lemma 4.2.4, since m is broadcast each time unit and ω is higher than that period,
p j in C will RDeliver a copy of m by Line 10.

On the other hand, if a process pi has a timer_RBConnectivityi lower than ∆, the
message m could not be received by any other process since the connectivity is assured
by the bound ∆ and Lemma 4.2.4 is not applicable. In that case, timer_RBConnectivityi

will expire and will be increased by Lines 16-17. Observe that every process in the
system is assumed to broadcast a new message m periodically. Consequently, for every
correct process in C eventually timer_RBConnectivityi will be higher than ∆ and con-
sequently every message broadcast from that moment on by the primitive described in
Figure 5.1 will be RDelivered by Line 10.

100

i
i

i
i

i
i

i
i

5.2 A Leader Election Algorithm for M∗

Lemma 5.2.2. The algorithm proposed in Figure 5.1 satisfies the Agreement property
of Reliable Broadcast in ∆-components.

Proof. Let us assume that pi is a correct process belonging to an ω-component C and
timer_RBConnectivityi is higher than ∆. If pi receives a message m broadcasts by p j,
since pi is not the sender, by Lines 10-13, pi will RDeliver m and will broadcast a copy
of m during timer_RBConnectivityi time. By definition, every process of the system
periodically broadcasts a message m by Line 6 during timer_RBConnectivityi time. By
definition of ω-component and Lemma 4.2.4, since m is broadcast each time W unit
and ω is higher or equal to W , p j in C will RDeliver by Line 10 and propagate a copy
of m at least one hop in the temporal path.

On the other hand, if a process pi has a timer_RBConnectivityi lower than ∆, the
message m could not be received by any other process since the connectivity is assured
by the bound ∆ and Lemma 4.2.4 is not applicable. In that case, timer_RBConnectivityi

will expire and will be increased by Lines 16-17. Observe that every process in the
system is assumed to broadcast a new message m periodically. Consequently, for every
correct process in C eventually timer_RBConnectivityi will be higher than ∆. From that
moment on, Lemma 4.2.4 is applicable for every process belonging to any ω-journey.
Therefore, every message m received by any process pi belonging to C subsequently
will be RDelivered and rebroadcast by Line 10-13 and thus RDelivered by every cor-
rect process in C.

Lemma 5.2.3. The algorithm proposed in Figure 5.1 satisfies the Integrity property of
Reliable Broadcast in ∆-components.

Proof. Observe that messages are only broadcast by Line 4. By Line 8, a message
is only delivered the first time it is received by a process. On the other hand, by the
algorithm, no other messages are inserted in the system.

Theorem 5.2.4. The algorithm in Figure 5.1 satisfies the eventual reliable broadcast
properties of Reliable Broadcast in ∆-components.

Proof. Follows directly from Lemmas 5.2.1, 5.2.2 and 5.2.3.

101

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

5.2.2 ∆∗Ω Implementation

In the algorithm proposed in Figure 5.4, we introduce a mechanism that detects whether

a leader is connected with some other process or not. We exploit the radiation nature of

the broadcast primitive for implementing the mechanism to detect self-isolation situ-

ations. Connected processes are those that are able to receive messages from other

processes, while unconnected processes are those that, being isolated, are executing

the algorithm, trying to communicate with any other process. Figure 5.2 shows the

process sate diagram with the transitions between states. The goal of this mechan-

ism is preventing isolated processes from being leaders. The timer in charge of this

mechanism in a process pi is called timer_connectivityi, and is handled by Task 4.

Figure 5.2: Process states during the algorithm.

102

i
i

i
i

i
i

i
i

5.2 A Leader Election Algorithm for M∗

Initialization:1
set_unconnected()2

Repeat forever every β time units: Message broadcast3
if (connectedi = FALSE) then4

RBroadcast(JOIN, i)5
else if (leaderi = i) then6

RBroadcast(LEADER, i, | joinsi|)7

when a message m is received from p j 6= pi: Msg reception8
if (connectedi = FALSE) then9

connectedi← T RUE10
set_leader(i, | joinsi|)11
reset timer_connectivityi to timeout_connectivityi to check connectivity12
RBroadcast(JOIN, i)13

if (message is of type (JOIN,k)) then14
if (k /∈ joinsi) then15

joinsi← joinsi ∪{k}16
update_if _I_am_leader()17
RBroadcast(JOIN,k)18

else if (message is of type (LEADER, `,num_ joins`)) then19
if ((leaderi = i)∧ (`= i)) then20

reset timer_connectivityi to timeout_connectivityi to check connectivity21
else if (best_candidate(`,num_ joins`)) then22

set_leader(`,num_ joins`)23
reset timer_leaderi to timeout_leaderi to monitor leaderi24
RBroadcast(LEADER, `,num_ joins`)25

when timer_leaderi expires: Leader timeout expiration26
increase the timeout value timeout_leaderi used to control timer_leaderi27
set_leader(i, | joinsi|)28
reset timer_connectivityi to timeout_connectivityi to check connectivity29

when timer_connectivityi expires: Connectivity timeout expiration30
if leaderi = i then31

increase the timeout value timeout_connectivityi user to control timer_connectivityi32
set_unconnected()33

Figure 5.3: Algorithm implementing ∆∗Ω in model M∗ (code for process pi).

103

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

Procedure set_unconnected: Disconnect a process34
connectedi← FALSE35
joinsi←{i}36
leaderi← i37
num_ joinsleaderi ← 138

Procedure set_leader(id,num_ joins): Change leader39
leaderi← id40
num_ joinsleaderi ← num_ joins41

Procedure update_if _I_am_leader: Update leader info42
if leaderi = i then43

num_ joinsleaderi ← | joinsi|44

Function best_candidate(`,num_ joins`) returns Boolean Leadership criteria45
if ((num_ joins`, `)> (| joinsi|, i))∧ ((num_ joins`, `)≥ (num_ joinsleaderi , leaderi)) then46

return T RUE47

return FALSE48

Figure 5.4: Auxiliary functions.

104

i
i

i
i

i
i

i
i

5.2 A Leader Election Algorithm for M∗

The algorithm uses the following leadership criteria: the leader process will be the

oldest one of the connected component with the highest identifier (see Line 46)1.

Processes initiate the execution of the algorithm as unconnected, until they receive

a message from any other process in the system. Whenever a message is received by

a unconnected process, the process becomes connected and all its data structures are

re-initialized (Lines 9-13).

Task 1 is in charge of broadcasting periodical messages. If a process pi is uncon-

nected, by Task 1 it broadcasts JOIN messages (Line 5). Otherwise, if pi is connected

and leaderi = i, pi broadcasts LEADER messages (Line 7), postulating itself as leader.

All neighbor processes of pi, i.e., those which have one hop communication with pi

according the assumptions of ω-components, will become connected at the reception

of one of the message sent in Task 1. When a process becomes connected, it starts

considering itself as leader (Line 11), and therefore, broadcasts also LEADER messages

periodically.

The reception of a JOIN message at process pi, sent by process pk, implies that pi is

“older” than pk (or both are equal). For maintaining this information, pi checks whether

k is in a set joinsi, and introduces k into joinsi if k was not already there (Line 16).

Additionally, if leaderi = i this inclusion must be consistent with the num_ joinsleaderi

variable. This is ensured by pi executing Line 17.

The reception of a LEADER message at process pi has three goals: checking the

connectivity with the graph, electing a common leader, and maintaining a coherent

leader among the execution. First of all, when a LEADER message is received at pi,

if the message was previously sent by pi itself, then pi recognizes this message as an

echo. This fact remarks that some other process has received a LEADER message from

1For the leadership criteria, we consider that the (a1,a2)> (b1,b2) relationship returns true if a1 > b1

or a1 = b1 ∧a2 > b2. Similarly, (a1,a2)≥ (b1,b2) returns true if a1 > b1 or a1 = b1 ∧a2 ≥ b2.

105

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

pi and has resent it. For this reason, pi resets timer_connectivityi (Line 21), preventing

it to expire.

If pi receives a LEADER message from a process ` 6= i, then the message is not an

echo and pi must decide whether p` must be pi’s leader or not.

Observe that, since links are assumed to be eventually timely, even during a good

period some messages may be not received in time. The non reception of some JOIN

messages by a leader process p` could imply that | joinsi|> | joins`| and therefore, the

leadership criteria would not be satisfied. For coping with this scenario, process pi

always checks whether the leader p` still satisfies the leadership criteria or pi itself is

a better candidate (Line 46). Note that, the leader process eventually will receive the

same JOIN messages as the rest of processes, maintaining stable the leadership criteria.

If a new process pi joins the graph Gt , and assuming that the leader of Gt is p`,

then pi will eventually receive a LEADER message from p` and p` will receive a JOIN

message sent by pi. The reception at pi of a LEADER message satisfying the leadership

criteria will result in the adoption of p` as pi’s leader by Line 23. In contrast, if two

graphs join into a single one, messages sent by both previous leaders will by received

by each other. The previous leader not satisfying the leadership criteria will eventually

stop broadcasting LEADER messages.

Whenever pi sets its leader to ` (Line 23), pi resets a timer timer_leaderi on its

leader (Line 24) and forwards the LEADER message to the rest of the system (Line 25).

Task 3 is in charge of monitoring leaderi if leaderi 6= i. If a LEADER message

is not received in time by pleaderi , then timerleaderi will expire. As a consequence, pi

will consider itself as leader (Line 28) and will reset again the timer timer_connectivityi

(Line 29) for self-monitoring pi’s connectivity. Observe that, by Line 27, timer_leaderi

will be increased in order for pi to eventually avoid erroneous premature suspicions on

leaderi.

106

i
i

i
i

i
i

i
i

5.2 A Leader Election Algorithm for M∗

Task 4 decides if a connected and leader process becomes isolated or not by monit-

oring if any of its LEADER messages has been resent by some neighbor process before

a timer expires. If a leader process pi does not receive such an echo message before

timer_connectivityi expires, then pi will become unconnected and will reset its data

structures (see Line 33). Similarly to timer_leaderi, each time timer_connectivityi ex-

pires it is increased in order to eventually avoid premature expiration (Line 32).

5.2.2.1 Correctness proof of the algorithm

In this section we prove that the algorithm proposed in Figure 5.4 implements ∆∗Ω in

a M∗ model.

We will prove the correctness of the algorithm in two steps. For simplicity, we will

first prove that the algorithm implements ∆∗Ω in a stronger system model M− that

assumes reliable links instead of the s one:

M− =M(T s,Ps
F ,Cb

F ,G
s
#,G

s
Π
,Gs

D,G
s
S)

Then, we will study how the assumption of finite but unknown message loses on

links may affect the time of convergence of the algorithm but not its correctness. Then,

we will be able to assure that the algorithm also implements ∆∗Ω in the system model

M∗.

The ELBC-NI and ELBC-ND properties define a correct leader election behavior in

a single ω-component. Similarly, the EL-GJ and EL-GF properties define a correct

leader election behavior in the whole system. Note however that EL-GJ and EL-GF

imply that ELBC-NI and ELBC-ND are satisfied in each ω-component of the system.

We will first prove the ELBC-NI and ELBC-ND properties, and then the EL-GJ and

EL-GF properties.

Implicitly, by the assumption of an ω-component, during a good period the graph

diameter is also bounded by d. We also assume an unknown bound in the number of ω-

components and in the number of processes in an ω-component. Of course, processes

107

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

can crash and recover, but only if those crashes do not affect the connectivity among

the rest of processes.

We also assume that the duration of the good period is long enough for the al-

gorithm to converge. Thus, any time instant t of the proof occurs in the considered

good period.

Finally, from now p` ∈C will be the non faulty process with the highest cardinality

| joins`|, with connected` = T RUE permanently and lowest identifier.

Regarding notation, given an ω-component C in G(T −,T +) we denote Ct the tem-

poral subcomponent in G[t,t+∆).

Lemma 5.2.5. In M−, ∀t ∈ T , ∀pi ∈ Ct , eventually and permanently connectedi =

T RUE.

Proof. Observe the adaptive stability mechanisms of variable timer_connectivityi in
Task 4 (for the leader) and the timer_leaderi in Task 3. By Lines 27 and 32, both
variables increase their value each time they expires. Since no one of them are rein-
itialized even changing to unconnected mode and by Theorem 5.2.4 eventually every
message broadcast by processes in C will be delivered, we can say that eventually the
timer_connectivity` and all timer_leaderi will never expire again, i.e., Line 33 will
never be executed again since that moment. Consequently, ∀t, ∀pi ∈Ct , eventually and
permanently connectedi = T RUE.

Lemma 5.2.6. In M−, for every message m sent by a process pi ∈Ct at time t, m will
be eventually delivered by every process p j ∈Ct .

Proof. Follows directly from the assumption of reliable links, the Definition 4.4.2, The-
orem 5.2.4 and the re-broadcasting mechanism of Lines 18 and 25.

Definition 5.2.7. We say that a process pi joins C at a time t when, after entering the
system, pi is able to communicate timely with every process p j ∈Ct .

Lemma 5.2.8. In M−, ∀t, ∀pi ∈ Ct with connectedi = T RUE permanently, for all
process p j ∈C′t where t ′ ≥ t and p j does not have connected j = T RUE permanently at
t, then eventually | joins j|< | joinsi|.

108

i
i

i
i

i
i

i
i

5.2 A Leader Election Algorithm for M∗

Proof. We know that eventually every process pk in C will have connectedk = T RUE,
however, any process p j that do not have connected j = T RUE permanently at t, eventu-
ally will execute Line 33 deleting all gathered information and becoming unconnected.
Beside, every processes pi that has connectedi = T RUE permanently in t will never
execute Line 33 again, and thus, no pi will broadcast a JOIN message again. When p j

joins the C at time t ′ ≥ t, it broadcasts a JOIN message by Task 2 before becoming con-
nected (Line 13). By Lemma 5.2.6, this message will eventually be delivered by Task 2
of pi, which will include j ∈ joinsi (Line 16). Taking into account that joini will never
decrease, then | joins j|< | joinsi|. Consequently, ∀pi ∈Ct with connectedi = T RUE per-
manently, for all process p j ∈C′t where t ′≥ t and p j does not have connected j = T RUE
permanently at t, then eventually | joins j|< | joinsi|.

Lemma 5.2.9. InM−, if pi ∈Ct such that connectedi = T RUE forever, then eventually
| joinsi| ≤ | joins`| permanently.

Proof. The proof is by contradiction. Let us assume that pi is connected perman-
ently, with i /∈ joins` eventually and permanently. In other words, p` has not delivered
any JOIN message sent by pi. This can only happen if pi becomes connected per-
manently before p` (i.e., without p` receiving a JOIN message from pi after p` has
become connected permanently). In this case, pi will never broadcast again a JOIN

message by Line 13 and thus for p` i /∈ joins` permanently. In contrast, pi by Line 14
and Lemma 5.2.6, eventually will deliver the last JOIN message sent by p` before it
becomes connected permanently, and thus ` ∈ joinsi permanently by Line 16. Con-
sequently, p` will not be the process with the highest number of elements in its joins`
set in Ct (a contradiction). Consequently, eventually | joinsi| ≤ | joins`|.

Lemma 5.2.10. In M−, ∀t, ∀pi ∈ Ct , if leaderi = j and connected j = FALSE, then
eventually leaderi 6= j.

Proof. Let us assume that leaderi = j and connected j = FALSE. By the algorithm,
process pi will have timer_leaderi active, and pi is waiting for a next LEADER message
from p j. We have two possible cases:

1. timer_leaderi expires before p j becomes connected again.

2. p j becomes connected and broadcasts a LEADER message (Line 7), which is
delivered by pi before timer_leaderi expires. In this case, when p j becomes un-

109

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

connected, by Line 33 p j will initialize joins j to { j} (Line 36), and consequently
p j will broadcast a value 1 in the LEADER message (Line 7). Upon the reception
of that message, by not satisfying the condition of Line 46 pi will not re-set the
timer for p j.

In both cases, timer_leaderi will expire for p j and pi will execute Task 3, setting
leaderi = i 6= j (Line 28). Consequently, ∀t, ∀pi ∈Ct , if leaderi = j and connected j =

FALSE, then eventually leaderi 6= j.

Lemma 5.2.11. In M−, eventually leader` = ` permanently.

Proof. By Lemma 5.2.5, eventually and permanently connected` = T RUE. If any
other process pi has | joinsi| > | joins`|, by Lemma 5.2.9,then eventually pi will set
connectedi = FALSE reseting all data structures by Line 34 or will crash. As a con-
sequence, by Lemma 5.2.10 eventually leader` 6= i for every process pi such that
| joinsi|> | joins`|. Observe that, by Lemma 5.2.8, p` will include in joins` (Line 16)
both new joining/recovering processes and processes becoming connected. Joining/re-
covering processes broadcast a JOIN message either by Line 5 or Line 13.

By the previous reasoning, the last process pi such that | joinsi| > | joins`| which
sets connectedi = FALSE will make p` set leader` to ` by Line 28. Since p` has
the highest number of elements in its joins` set, any subsequent LEADER message
delivered by p` will not satisfy the condition of Lines 46. Consequently, eventually
leader` = ` permanently.

Lemma 5.2.12. In M−, ∀t, ∀pi ∈ Ct , there is a time after which timer_leaderi will
not expire.

Proof. By Lemmas 5.2.5 and 5.2.11, eventually p` will have permanently connected` =
T RUE and leader` = ` respectively. Hence, by Task 1 p` will be continuously broad-
casting LEADER messages (Line 7). Every process pi ∈ Ct will deliver those mes-
sages by Lemma 5.2.6, setting leaderi to ` (Line 23) and resetting timer_leaderi to
timeouti(`) (Line 24). Observe that each time timer_leaderi expires for process p`,
pi increases the value of timeouti(`) by 1 (Line 27). Thus, eventually timeouti(`) will
have a value such that pi always delivers a new LEADER message from p` before
timer_leaderi expires. Consequently, ∀t, ∀pi ∈ Ct , eventually timer_leaderi will not
expire.

110

i
i

i
i

i
i

i
i

5.2 A Leader Election Algorithm for M∗

Lemma 5.2.13. In M−, ∀t, ∀pi ∈Ct , eventually and permanently leaderi = `.

Proof. Follows directly from Lemma 5.2.12 if there is an ω-component C during the
whole good period.

Without loss of generality, assume now that we have initially two disjoint ω-
components (C′t)i and (C′t) j where t ′ < t and each one has its own “temporary” leader
p`i and p` j respectively. Let us assume that (C′t)i and (C′t) j joins into a unique ω-
component Ct at a time t. Clearly, only one of the two leaders satisfies the conditions
for being p` (highest number of elements in its joins set, with lowest identifier in case
of ties) at t. Assume also without loss of generality that p` = p`i . Following the same
reasoning as before, eventually p` j will deliver, by Lemma 5.2.6, a LEADER message
from p` and will set its leader` j variable to ` by Line 23, since the message satisfies
the condition of Line 46. Moreover, eventually this will also happen to every process
pi ∈ Ct . By definition of Cs

#, the number of ω-component joins in a good period is
unknown but bounded, thus, this situation will happen a bounded number of times.
Therefore, by Lemma 5.2.12, eventually and permanently leaderi = `.

Regarding to process crashes, if a process ph crashes during a good period, timers
of processes pi whose shortest path included ph could expire. However, at expiration
time by Line 27 the timer will be increased. Additionally, being C a ω-component
and by Theorem 5.2.4, the LEADER message sent by p` will eventually reach to pi

by other way (Lemma 5.2.6). Consequently, in the worst case timers will converge to
∆. Since the diameter d is also unknown but finite (Gs

D), eventually leaderi = ` again
permanently.

Concerning the new process pi joining at ω-component Ct , observe that it will not
disturb `’s leadership, since ` /∈ joinsi and eventually i ∈ joins` permanently. There-
fore | joinsi| < | joins`| permanently. By Lemma 5.2.12, eventually timer_leaderi will
converge at pi and leaderi = ` permanently.

Consequently, ∀pi ∈Ct , eventually and permanently leaderi = `.

Lemma 5.2.14. In M−, the algorithm of Figure 5.4 satisfies the ELBC property with
process p` as the leader.

Proof. Follows directly from Definition 4.4.2 and the definition of good period (see
Section 5.1.2).

111

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

Lemma 5.2.15. In M−, the algorithm of Figure 5.4 satisfies the EL-GJ property of
∆∗Ω. Therefore, it also satisfies the ELBC-NI and ELBC-ND properties of ∆∗Ω inM−.

Proof. Follows directly from Lemmas 5.2.13 and 5.2.14.

Lemma 5.2.16. In M−, the algorithm of Figure 5.4 satisfies the EL-GF property of
∆∗Ω.

Proof. Follows from Lemma 5.2.15, applied to each ω-component resulting from the
fragmentation of a ω-component C due to an asynchronous episode previous to the
beginning of the good period.

Theorem 5.2.17. In M−, the algorithm of Figure 5.4 implements ∆∗Ω.

Proof. Follows directly from Lemmas 5.2.15 and 5.2.16.

We will now prove that the algorithm of Figure 5.4 implements ∆∗Ω in the system

model M∗, i.e., assuming s link failures. To do so, we assume an unknown bound in

the number of messages lost k. However, we still assume that an unknown bound ∆

in delivery time, but it only applies to the subset of messages that are not lost. Hence,

the delay between two message receptions among any pair of processes pi, p j ∈ C is

eventually finite.

Lemma 5.2.18. In M∗, there is a time after which Lemma 5.2.6 holds.

Proof. Observe that the number of messages lost is unknown but finite. Thus eventu-
ally the link will be reliable in terms of failures and Lemma 5.2.6 will hold for every
message sent in the system.

Lemma 5.2.19. In M∗, eventually and permanently ∀pi ∈Ct : leaderi = `.

Proof. The main goal of the leadership criteria is to establish an order among processes
of a ω-component and hold it during the election of a leader. Observe that the non-
reception by the process pi of a JOIN message could cause that another process p j had
a | joins j| > | joinsi| even pi had joined to C before p j. Thus, we cannot guarantee a
order between processes in presence of message loses.

112

i
i

i
i

i
i

i
i

5.3 Evaluation

However, by Lemma 5.2.18 there exist a time t after which ∀p,q ∈Ct every mes-
sage broadcast by p will be delivered by q and Theorem 5.2.4 holds. Observe that,
independently from the with independence of the process and message history before
t, after t all join messages will be delivered by every process pi ∈Ct , i.e., the differ-
ences between every | joini| will be maintained permanently. Therefore, from time t
on, every Lemma of the M− model can be directly applied to M∗. Consequently, by
Lemma 5.2.13, eventually and permanently ∀pi ∈Ct : leaderi = `.

Lemma 5.2.20. In M∗, the algorithm of Figure 5.4 satisfies the ELBC property with
process p` as the leader.

Proof. Follows directly from Lemma 5.2.19 and the definition of good period (see
Section 5.1.2).

Lemma 5.2.21. In M∗, the algorithm of Figure 5.4 satisfies the EL-GJ property of
∆∗Ω. Therefore, it also satisfies the ELBC-NI and ELBC-ND properties of ∆∗Ω in M∗.

Proof. Follows directly from Lemmas 5.2.19 and 5.2.20.

Lemma 5.2.22. In M∗, the algorithm of Figure 5.4 satisfies the EL-GF property of
∆∗Ω.

Proof. Follows from Lemma 5.2.21, applied to each ω-component Ci resulting from
the fragmentation of a ω-component C due to an asynchronous episode previous to the
beginning of the good period.

Theorem 5.2.23. In M∗, the algorithm of Figure 5.4 implements ∆∗Ω.

Proof. Follows directly from Lemmas 5.2.21 and 5.2.22.

5.3 Evaluation
In the previous we have proposed a weak system model M∗ for dynamic distributed

systems and an eventual leader election algorithm for this model. In this section, we

use the formalism introduced in Chapter 3 to compare the model M∗ to other sys-

tem models for eventual leader election and illustrate the behavior of our algorithm

comparatively to the others by mean of simulations.

113

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

5.3.1 ComparingM∗ to Other Models

The aim of this section is to compare the system model where our algorithm works,

M∗ , to system models of other leader election algorithms proposed in the literature.

More specifically, in this section we compare M∗ with the system models analyzed

in Chapter 3. Recall that we have previously summarized in Table 3.1 these system

models. The graphical tool introduced in Chapter 3 will facilitate the comparison.

Basically, the bigger area covered for a model in the chart, the weaker the model is.

Observe first in Figure 5.5 (left) the representation of the model defined for our

leader election algorithm, i.e., M∗ =M(T s,Ps
F ,Cs

F ,G
s
#,G

s
Π
,Gs

D,G
s
S), rating s in every

dimension.

Figure 5.5: Figure on the left illustrates the graphical representation of the model M∗.
Figure on the right illustrates the comparison between model M∗ and the model proposed
by Fetzer and Cristian [32].

Figures 5.5 (right), 5.6 and 5.7, illustrate how M∗ compares to the other system

models we have analyzed. Overall, M∗ is weaker than the rest of models. Some

models, as for example Ingram et al. [46] in Figure 5.6 (right), and Arantes et al. [6]

in Figure 5.7 (right), rate some particular dimensions as infinite. However, recall that

in the case of Ingram et al., they assume an oracle that provides processes information

about the existing neighborhood (which is an agreement problem itself) which makes

114

i
i

i
i

i
i

i
i

5.3 Evaluation

the timeliness assumption unrealistic. On the other hand, in the case of Arantes et

al., they make a very specific additional assumption to face the FLP impossibility,

requiring a process in each neighborhood that never is the last process responding in a

query-response communication attempt.

Figure 5.6: Figure on the left illustrates the comparison between model M∗ and the
model proposed by Masum et al. [65]. Figure on the right illustrates the comparison
between model M∗ and the model proposed by Ingram et al. [46].

Figure 5.7: Figure on the left illustrates the comparison between model M∗ and the
model proposed by Melit and Badache [67]. Figure on the right illustrates the comparison
between model M∗ and the model proposed by Arantes et al. [6].

115

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

Figure 5.8: Screen-shot sequence of a simulation showing how the merge of two graphs
leads to a unique leader and how new joins do not affect the leadership. Leaders are
represented by white circles.

5.3.2 Simulation Examples

The proposed algorithm has been implemented and simulated using the JBotSim sim-

ulation tool [15]. Figure 5.8 shows some screen-shots of a simulation to illustrate an

example of process mobility resulting in the join of two graphs and the management of

the leaders according to the defined properties. JBotSim has been reveled very useful

for a qualitative evaluation of our algorithm with respect to the others we have ana-

lyzed. In the rest of this section we use some simulated scenarios to illustrate how the

other leader election algorithms cannot manage dynamic scenarios where our algorithm

would converge to a stable leader.

Together our eventual leader election algorithm, we have implemented with JBot-

Sim the eventual leader election algorithm proposed by Melit and Badache [67] and the

eventual leader election algorithm proposed by Arantes et al. [6] to illustrate the fact

116

i
i

i
i

i
i

i
i

5.3 Evaluation

that both algorithms are more restrictive than ours in some highly dynamic scenarios.

Figure 5.9 illustrates how the continuous joining of processes results in an unstable

leader due to the choice of a random value as leadership criteria in the algorithm of

Melit and Badache. On the other hand, according to the movement pattern shown in

Figure 5.10 we observed that as a consequence of periodic movement of processes,

messages are lost and not a single leader is elected in the system. This is due to the

fact that Melit and Badache do not consider temporal paths and use a classical one-shot

broadcast primitive.

Figure 5.9: A continuous joining situation in Melit and Badache’s algorithm. The leader
is represented in white.

Figure 5.10: A periodic mobility pattern in Melit and Badache’s algorithm. The leader is
represented in white.

Regarding to Arantes et al.’s algorithm, in Figure 5.11 illustrates how the mobility

of leader’s neighbor makes the leadership unstable. Recall that Arantes et al.’s al-

gorithm requires a stability of the leader’s neighborhood. Consequently, this algorithm

can not assume a fully dynamic connectivity assumption.

117

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

Figure 5.11: A varying neighborhood situation in Arante et al.’s algorithm. The leader is
represented in white.

The previous toy examples show how our algorithm performs better than the two

algorithms more similar to ours regarding leadership stability. In the present work we

do not have boarded the large-scale experiments necessary to obtain a quantitative per-

formance, which is proposed as a future work. However we have used the CMINDPA

random graph generation [74] in order to have some performance figures of the struc-

tural complexity of our algorithm. We have generated a set of random graph situations

with sizes 5, 10, 20 and 40 (number of nodes) as input topologies for our simulations

(see Figure 5.12). The aim is to measure the time required for the algorithm to con-

verge to a stable leader. Figure 5.13 shows an example of execution with 10 processes

that illustrate how, as expected, our algorithm requires a longer time to converge to a

leader than the algorithm by Melit and Badache, and the algorithm by Arantes et al.

The overhead is due to the isolation detection mechanism used by our algorithm. This

is the price to pay for tolerating a high degree of dynamicity.

On the other hand, we have obtained that the structural complexity of our algorithm

with respect to the number of nodes is linear with a low coefficient. Although more ex-

perimentation should be carry out, this preliminary experiment show that the coefficient

is in all the tested situations less than one.

118

i
i

i
i

i
i

i
i

5.4 Conclusions

Figure 5.12: The set of initial graphs used for obtaining the convergence metrics of each
algorithm studied.

Figure 5.13: Time to converge a stable leader for the three analyzed algorithms. The
simulated environment is composed by 10 processes with the same random topology.

5.4 Conclusions
In this Chapter we have boarded leader election in a dynamic distributed system M∗,

using the proposed formalism, which is weaker than others we have found in the liter-

ature. A new failure detector class for M∗, denoted ∆∗Ω, has been defined by means

of a set of properties, namely EL-GJ and EL-GF for respectively Eventual Leader-

ship in a Graph Joining and Eventual Leadership in a Graph Fragmentation situations.

An algorithm for ∆∗Ω has been proposed. The algorithm guarantees the election of a

leader in sufficiently long stability periods for each one of the system partitions. Even

119

i
i

i
i

i
i

i
i

5. EVENTUAL LEADER ELECTION IN DYNAMIC DISTRIBUTED
SYSTEMS

in the presence of unstable processes that crash/recover or move during the execution,

the algorithm conveniently manages graph joining and partitioning situations.

120

i
i

i
i

i
i

i
i

CHAPTER

6
Conclusions

In this work we have studied how to solve agreement in dynamic distributed sys-

tems. We have combined two different perspectives, on the one hand the classical

approaches of fault-tolerant distributed systems, and on the other hand the formalism

of the Time-Varying Graph theory, in order to search for connectivity models that allow

distributed agreement algorithms to terminate.

In this Section we present the contributions of the work and identify directions for

future research.

6.1 Summary of Contributions

We believe that the present work has contributed to the state of the art of dynamic

distributed systems in the following aspects.

121

i
i

i
i

i
i

i
i

6. CONCLUSIONS

A formalism to categorise dynamic distributed systems

We have extended the formalism introduced by Baldoni et al. and provide a frame-

work and a notation which has been revealed very useful to compare our system to

other proposals in the literature. This contribution was published in the PRDC 2013

Conference [36] and a summary of it in the DISC 2013 Conference [41] as a brief

announcement. Basically, the formalism defines a range of levels and a set of dimen-

sions. Each dimension refer to an aspect of the system model (e.g., network diameter

or process synchrony). A feature of the formalism is its uniformity: the same range

of levels is defined for all dimensions of the system. With respect to Baldoni’s form-

alism we have defined one additional level to represent the alternation of bounded and

unbounded periods, inspired on the timed asynchronous model of Cristian and Fetzer.

We have represented the new level as s and shown that level s is weaker than level n

defined by Baldoni et al. In essence, contrary to level n, level s allows for unbounded

behaviors after the global stabilization time of the classical partial synchrony models,

provided that the unbounded behaviors do not last forever (in other words, a new period

of bounded behavior will follow).

A connectivity timely model for dynamic distributed systems

We have studied how to introduce timeliness in evolving systems, formalized as Time-

Varying Graphs, so that the resolution of agreement problems was possible in synchron-

ous dynamic distributed systems. This contribution has been accepted for publication

in the Proceedings of the EuroPar 2015 Conference as a regular paper [40]. On the

basis of previous works by Casteigts et al., we have adopted the concept of journey or

temporal path and have introduced the necessary timeliness (i.e., time bounds) to de-

scribe the specific assumptions that are required by an agreement algorithm to termin-

ate and satisfy the formal properties. We have first proposed a general class, T C(∆),

122

i
i

i
i

i
i

i
i

6.1 Summary of Contributions

with a very abstract property on the temporal connectivity of the TVG to provide the

necessary stability condition, namely, that the temporal diameter of a recurrent com-

ponent in the TVG is bounded. We refer to such a component as a ∆-component.

To approach the Consensus problem we have defined a TRB specification in terms

of ∆-components, ∆-TRB. However, we have shown that ∆-TRB is not implementable

in T C(∆) by message-passing without zero processing time assumptions. Henceforth,

by introducing increasingly stronger connectivity assumptions, we have provided two

implementable connectivity classes, namely T C′(β) and T C′′(α,β), as well as two

respective implementations of ∆-TRB in these classes. Instead of using a general,

system-wide bound, in T C′′(α,β), journeys have a bound, Γ, that can be calculated

in terms of parameters that are linked to entities of real-world networks, namely, tem-

poral bounds on the appearance of a link and on the stability of the link, as well as

the diameter of the network.

We have shown that consensus at ∆-component level is easily reduced to ∆-TRB.

Nevertheless, extending the stability period of ∆-components is necessary to solve con-

sensus at system level.

We have introduced an implementable class T Cw, based on a new ω-component,

which is weaker than T C′(β) since it does not assume a β bound, but only a minimum

a priori known drift between the lifetime of every edge and its latency at any time t..

We have proved that T Cw is the weakest connectivity class allowing implementable

∆-TRB algorithms.

An Eventual leader election algorithm for a weak dynamic system
model

As a specific agreement problem, we have boarded eventual leader election in a dy-

namic distributed system in a system model M∗. This contribution was published in

the Proceedings of the PRDC 2013 Conference [36]. A new failure detector class for

123

i
i

i
i

i
i

i
i

6. CONCLUSIONS

M∗, denoted ∆∗Ω, has been defined by means of a set of properties, namely EL-GJ

and EL-GF. The properties have been formulated in terms of ∆-components. An al-

gorithm that solves eventual leader election in ∆∗Ω has been proposed and proved.

The algorithm guarantees the election of a leader in sufficiently long stability periods

for each one of the system partitions, i.e., rating s in each of the dimensions of our

categorization framework.. Even in the presence of unstable processes that crash/re-

cover or move during the execution, the algorithm conveniently manages graph joining

and partitioning situations. Using the categorization framework, we have compared our

system model M∗ to other models proposed in the literature for the eventual leader

election problem. We have found that M∗ is weaker than other models.

We have carry out simulations of our algorithm as well as of some of the reference

eventual leader election algorithms. As expected, our proposal has higher stabilization

times which is the price to pay for tolerating more dynamicity and hence for covering

a wider range of behaviors and real-life scenarios.

6.2 Future Work
The present work can be extended in several directions.

• Regarding the categorization of dynamic systems, the set of seven dimensions we

have defined covers the general aspects considered in usual system models. How-

ever, some specific dimensions could be added. This is the case, for example,

of clock synchronization. The current availability of resources for external syn-

chronization (specifically GPS) provides in many scenarios an alternative to the

classical internal clock synchronization that relies on timely channels. Another

dimension is process homonymia. In the range of levels for homonymia, bounds

would refer to the number of processes using the same identity. Finally, an ad-

versary model can consider a range of bounds on Byzantine attacks.

124

i
i

i
i

i
i

i
i

6.2 Future Work

• Temporal paths and components have revealed as powerful concepts to define

connectivity models and a hierarchy of classes. Although we have identify a min-

imal connectivity class in this framework, the research in alternative approaches

could bring results that would be interesting to compare to ours in terms of min-

imalism.

• Empirical evaluation could be enriched by considering real-world situations, for

example those based in population dynamics, leading to initial graph distribu-

tions and mobility patterns which would provide a basis to drive simulations and

compare the behavior and performance of the algorithms, as well as determining

the structural complexity for our algorithm in different scenarios.

• A membership service could be built on top of the eventual leadership algorithm.

Under additional stability assumptions the membership service would provide the

conditions to solve consensus in (a part of) the dynamic system.

125

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Bibliography

[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and con-

sensus in the crash-recovery model. Distributed computing, 13(2):99–125, 2000.

2, 19, 27, 28

[2] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam

Toueg. Stable leader election. In Proceedings of the 15th International Conference

on Distributed Computing, DISC 2001, Lisbon, Portugal, volume 2180 of Lecture

Notes in Computer Science, pages 108–122. Springer, 2001. 2, 17, 26

[3] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam

Toueg. On implementing omega in systems with weak reliability and synchrony

assumptions. Distributed Computing, 21(4):285–314, 2008. 26, 97

[4] Alaa N. Alslaity and Sanaa A. Alwidian. A K-Neighbor-based, Energy Aware

Leader Election Algorithm (KELEA) for Mobile Ad hoc Networks. International

Journal of Computer Applications, 59(19):38–43, December 2012. Published by

Foundation of Computer Science, New York, USA. 43

[5] Antonio Fernández Anta, Alessia Milani, Miguel A Mosteiro, and Shmuel Zaks.

Opportunistic information dissemination in mobile ad-hoc networks: The profit of

global synchrony. Distributed Computing, 25(4):279–296, 2012. 6, 30, 36, 61, 74

127

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[6] Luciana Arantes, Fabíola Greve, Pierre Sens, and Véronique Simon. Eventual

leader election in evolving mobile networks. In Principles of Distributed Systems,

pages 23–37. Springer, 2013. v, vi, 3, 36, 41, 51, 55, 57, 114, 115, 116

[7] Sergio Arévalo, Ernesto Jiménez, Mikel Larrea, and Luis Mengual.

Communication-efficient and crash-quiescent Omega with unknown membership.

Information Processing Letters, 111(4):194–199, 2011. 2, 28

[8] James Aspnes. Fast deterministic consensus in a noisy environment. In Pro-

ceedings of the nineteenth annual ACM symposium on Principles of distributed

computing, pages 299–308. ACM, 2000. 22

[9] James Aspnes. Randomized protocols for asynchronous consensus. Distributed

Computing, 16(2-3):165–175, 2003. 22

[10] Roberto Baldoni, Marin Bertier, Michel Raynal, and Sara Tucci Piergiovanni.

Looking for a definition of dynamic distributed systems. In Proceedings of the

9th International Conference on Parallel Computing Technologies, PaCT 2007,

Pereslavl-Zalessky, Russia, volume 4671 of Lecture Notes in Computer Science,

pages 1–14. Springer, 2007. ix, 5, 11, 38, 39, 45, 48, 49, 56

[11] Michael Ben-Or. Another advantage of free choice (extended abstract): Com-

pletely asynchronous agreement protocols. In Proceedings of the second annual

ACM symposium on Principles of distributed computing, pages 27–30. ACM,

1983. 22

[12] Sandeep Bhadra and Afonso Ferreira. Complexity of connected components in

evolving graphs and the computation of multicast trees in dynamic networks. In

Ad-Hoc, Mobile, and Wireless Networks, pages 259–270. Springer, 2003. 33

128

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[13] Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in directed dynamic

networks. In Structural Information and Communication Complexity - 19th Inter-

national Colloquium, SIROCCO 2012, Reykjavik, Iceland, volume 7355 of Lec-

ture Notes in Computer Science, pages 73–84. Springer, 2012. 29, 35

[14] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.

Journal of the ACM (JACM), 32(4):824–840, 1985. 22

[15] Arnaud Casteigts. The JBotSim Library. CoRR, http://arxiv.org/abs/1001.1435,

2010. 116

[16] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro.

Time-varying graphs and dynamic networks. International Journal of Parallel,

Emergent and Distributed Systems, 27(5):387–408, 2012. vi, 3, 29, 30, 33, 60,

63, 89

[17] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. On the impossibility

of group membership. In Proceedings of the 15th Annual ACM Symposium on

Principles of Distributed Computing, PODC 1996, Philadelphia, Pennsylvania,

USA, pages 322–330. ACM, 1996. 13

[18] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure

detector for solving consensus. Journal of the ACM, 43(4):685–722, 1996. 2, 24,

93

[19] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 43(2):225–267, 1996. 2, 16, 22

[20] Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing

in distributed systems with benign faults. Distributed Computing, 22(1):49–71,

2009. 2, 92

129

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[21] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the quality of service

of failure detectors. Computers, IEEE Transactions on, 51(5):561–580, 2002. 26

[22] Roberto Cortiñas, Felix C. Freiling, Marjan Ghajar-Azadanlou, Alberto Lafuente,

Mikel Larrea, Lucia Draque Penso, and Iratxe Soraluze Arriola. Secure failure

detection and Consensus in TrustedPals. IEEE Transactions on Dependable and

Secure Computing, 9(4):610–625, 2012. 2, 28

[23] Flaviu Cristian. Reaching agreement on processor-group membrship in synchron-

ous distributed systems. Distributed Computing, 4(4):175–187, 1991. 2

[24] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system

model. IEEE Transactions on Parallel and Distributed Systems, 10(6):642–657,

1999. 2, 5, 17, 46, 47, 56, 92, 97

[25] Abdelouahid Derhab and Nadjib Badache. A Self-Stabilizing Leader Election

Algorithm in Highly Dynamic Ad Hoc Mobile Networks. IEEE Transactions on

Parallel and Distributed Systems, 19(7):926–939, 2008. 42

[26] Edsger W. Dijkstra and Carel S. Scholten. Termination detection for diffusing

computations. Inf. Process. Lett., 11(1):1–4, 1980. 43

[27] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchron-

ism needed for distributed consensus. J. ACM, 34(1):77–97, January 1987. 2, 15,

22

[28] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the

presence of partial synchrony. Journal of the ACM, 35(2):288–323, 1988. 2, 16,

22

130

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[29] Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In

Proceedings of the twentieth annual ACM symposium on Theory of computing,

pages 148–161. ACM, 1988. 13, 64, 80

[30] Afonso Ferreira. Building a reference combinatorial model for manets. Network,

IEEE, 18(5):24–29, 2004. 3

[31] Christof Fetzer. The message classification model. In Proceedings of the sev-

enteenth annual ACM symposium on Principles of distributed computing, PODC

’98, pages 153–162, New York, NY, USA, 1998. ACM. 17

[32] Christof Fetzer and Flaviu Cristian. A Highly Available Local Leader Election

Service. IEEE Transactions on Software Engineering, 25(5):603–618, 1999. v,

vi, 2, 41, 51, 52, 53, 114

[33] Christof Fetzer, Ulrich Schmid, and Martin Susskraut. On the possibility of con-

sensus in asynchronous systems with finite average response times. In Distributed

Computing Systems, 2005. ICDCS 2005. Proceedings. 25th IEEE International

Conference on, pages 271–280. IEEE, 2005. 17

[34] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of dis-

tributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,

1985. 2, 10

[35] Paola Flocchini, Bernard Mans, and Nicola Santoro. Exploration of periodically

varying graphs. In Algorithms and Computation, pages 534–543. Springer, 2009.

3

[36] Carlos Gomez-Calzado, Alberto Lafuente, Mikel Larrea, and Michel Raynal.

Fault-tolerant leader election in mobile dynamic distributed systems. In Depend-

131

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

able Computing (PRDC), 2013 IEEE 19th Pacific Rim International Symposium

on, pages 78–87, Dec 2013. 5, 6, 48, 50, 93, 94, 95, 96, 122, 123

[37] Carlos Gómez-Calzado, Mikel Larrea, Iratxe Soraluze, Alberto Lafuente, and

Roberto Cortinas. An evaluation of efficient leader election algorithms for crash-

recovery systems. In Parallel, Distributed and Network-Based Processing (PDP),

2013 21st Euromicro International Conference on, pages 180–188. IEEE, 2013.

28

[38] Fabíola Greve, Pierre Sens, Luciana Arantes, and Véronique Simon. A failure

detector for wireless networks with unknown membership. In Euro-Par 2011

Parallel Processing, pages 27–38. Springer, 2011. 41

[39] Rachid Guerraoui and Michel Raynal. The information structure of indulgent

consensus. IEEE Transactions on Computers, 53(4):453–466, 2004. 2

[40] Carlos Gómez-Calzado, Arnaud Casteigts, Alberto Lafuente, and Mikel Larrea. A

connectivity model for agreement in dynamic systems. In Euro-Par 2015 - Paral-

lel Processing, 21th International Euro-Par Conference, Vienna, Austria, August

24-28, 2015, Proceedings (accepted), 2015. 4, 5, 122

[41] Carlos Gómez-Calzado, Alberto Lafuente, Mikel Larrea, and Michel Raynal.

Brief Announcement: Revisiting Dynamic Distributed Systems. In Proceedings

of the 27th International Symposium on Distributed Computing, DISC 2013, Jer-

usalem, Israel, October 14-18, 2013. 5, 122

[42] Zygmunt J Haas, Marc R Pearlman, and Prince Samar. The zone routing protocol

(zrp) for ad hoc networks. 2002. 43

[43] Med Amine Haddar, A Hadj Kacem, Yves Métivier, Mohamed Mosbah, and Mo-

hamed Jmaiel. Electing a leader in the local computation model using mobile

132

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

agents. In Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS

International Conference on, pages 473–480. IEEE, 2008. 42

[44] Michel Hurfin, Achour Mostefaoui, and Michel Raynal. Consensus in asynchron-

ous systems where processes can crash and recover. In Reliable Distributed Sys-

tems, 1998. Proceedings. Seventeenth IEEE Symposium on, pages 280–286. IEEE,

1998. 19

[45] Michel Hurfin and Michel Raynal. A simple and fast asynchronous consensus

protocol based on a weak failure detector. Distributed Computing, 12(4):209–

223, 1999. 24

[46] Rebecca Ingram, Patrick Shields, Jennifer E. Walter, and Jennifer L. Welch. An

asynchronous leader election algorithm for dynamic networks. In Proceedings of

the 23rd IEEE International Symposium on Parallel and Distributed Processing,

IPDPS 2009, Rome, Italy, May 23-29, pages 1–12. IEEE Computer Society, 2009.

v, vi, 42, 51, 53, 55, 114, 115

[47] Ernesto Jiménez, Sergio Arévalo, and Antonio Fernández. Implementing unreli-

able failure detectors with unknown membership. Information Processing Letters,

100(2):60–63, 2006. 2, 28

[48] David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference prob-

lems for temporal networks. In Proceedings of the thirty-second annual ACM

symposium on Theory of computing, pages 504–513. ACM, 2000. 3

[49] Fabian Kuhn, Nancy A. Lynch, and Rotem Oshman. Distributed computation in

dynamic networks. In Proceedings of the 42nd ACM Symposium on Theory of

Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages

513–522. ACM, 2010. 3, 35

133

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[50] Alberto Lafuente, Mikel Larrea, Iratxe Soraluze, and Roberto Cortiñas.

Communication-optimal eventually perfect failure detection in partially synchron-

ous systems. J. Comput. Syst. Sci., 81(2):383–397, 2015. 26

[51] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-

tems (TOCS), 16(2):133–169, 1998. 2, 25

[52] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals

problem. ACM Transactions on Programming Languages and Systems (TOPLAS),

4(3):382–401, 1982. 18

[53] Mikel Larrea, Sergio Arévalo, and Antonio Fernandez. Efficient algorithms to

implement unreliable failure detectors in partially synchronous systems. In Dis-

tributed Computing, pages 34–49. Springer, 1999. 26

[54] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. On the implementation of

unreliable failure detectors in partially synchronous systems. Computers, IEEE

Transactions on, 53(7):815–828, 2004. 26

[55] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Eventually consistent fail-

ure detectors. Journal of Parallel and Distributed Computing, 65(3):361–373,

2005. 2

[56] Mikel Larrea, Alberto Lafuente, Iratxe Soraluze, Roberto Cortiñas, and Joachim

Wieland. Designing efficient algorithms for the eventually perfect failure detector

class. JSW, 2(4):1–11, 2007. 26

[57] Mikel Larrea and Cristian Martín. Implementing the Omega Failure Detector

in the Crash-Recovery Model with partial Connectivity and/or Synchrony. In

DEXA Workshops, 17th International Workshop on Database and Expert Systems

134

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

Applications (DEXA 2006), 4-8 September 2006, Krakow, Poland, pages 400–405,

2006. 28, 91

[58] Mikel Larrea, Cristian Martín, and Iratxe Soraluze Arriola. Communication-

efficient leader election in crash-recovery systems. Journal of Systems and Soft-

ware, 84(12):2186–2195, 2011. 2, 28

[59] Mikel Larrea, Michel Raynal, Iratxe Soraluze, and Roberto Cortiñas. Specifying

and implementing an eventual leader service for dynamic systems. International

Journal of Web and Grid Services, 8(3):204–224, 2012. 2, 3, 6, 28, 40, 91, 92,

93

[60] Gérard Le Lann and Ulrich Schmid. How to implement a timer-free perfect failure

detector in partially synchronous systems. Department of Automation, Technische

Universität Wien, Tech. Rep, 183:1–127, 2003. 17

[61] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densific-

ation and shrinking diameters. ACM Transactions on Knowledge Discovery from

Data (TKDD), 1(1):2, 2007. 3

[62] Navneet Malpani, Jennifer L. Welch, and Nitin H. Vaidya. Leader election al-

gorithms for mobile ad hoc networks. In Proceedings of the 4th International

Workshop on Discrete Algorithms and Methods for Mobile Computing and Com-

munications, DIAL-M 2000, Boston, Massachusetts, USA, August 11, pages 96–

103. ACM, 2000. 42

[63] Cristian Martín, Mikel Larrea, and Ernesto Jiménez. On the implementation of

the omega failure detector in the crash-recovery failure model. In Proceedings of

the 2nd International Conference on Availability, Reliability and Security, ARES

2007, April 10-13 2007, Vienna, Austria, pages 975–982, 2007. 28, 91

135

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[64] Cristian Martín, Mikel Larrea, and Ernesto Jiménez. Implementing the omega

failure detector in the crash-recovery failure model. Journal of Computer and

System Sciences, 75(3):178–189, 2009. 28, 91

[65] Salahuddin Mohammad Masum, Amin Ahsan Ali, and Mohammad Touhid youl

Islam Bhuiyan. Asynchronous Leader Election in Mobile Ad Hoc Networks. In

Proceedings of the 20th International Conference on Advanced Information Net-

working and Applications, AINA 2006, Vienna, Austria, 18-20 April, pages 827–

831. IEEE Computer Society, 2006. v, vi, 43, 51, 52, 54, 115

[66] Leila Melit and Nadjib Badache. An energy efficient leader election algorithm

for mobile ad hoc networks. In Programming and Systems (ISPS), 2011 10th

International Symposium on, pages 54 –59, april 2011. 41

[67] Leila Melit and Nadjib Badache. An Ω-Based Leader Election Algorithm for

Mobile Ad Hoc Networks. In Proceedings of the 4th International Conference on

Networked Digital Technologies, NDT 2012, Dubai, UAE, April 24-26, volume

293, pages 483–490. Springer, 2012. v, vi, 3, 41, 51, 54, 56, 115, 116

[68] Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Causality, influ-

ence, and computation in possibly disconnected synchronous dynamic networks.

Journal of Parallel and Distributed Computing, 74(1):2016–2026, 2014. 37

[69] Henrique Moniz, Nuno F. Neves, and Miguel Correia. Byzantine fault-tolerant

consensus in wireless ad hoc networks. Mobile Computing, IEEE Transactions

on, 12(12):2441–2454, Dec 2013. 22

[70] Henrique Moniz, Nuno Ferreira Neves, Miguel Correia, and Paulo Veríssimo.

Randomization can be a healer: Consensus with dynamic omission failures. In

Proceedings of the 23rd International Conference on Distributed Computing,

DISC’09, pages 63–77, Berlin, Heidelberg, 2009. Springer-Verlag. 22

136

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[71] Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asynchronous imple-

mentation of failure detectors. In DSN, pages 351–360. Citeseer, 2003. 17

[72] Achour Mostéfaoui, Eric Mourgaya, Michel Raynal, and Corentin Travers. A

time-free assumption to implement eventual leadership. Parallel Processing Let-

ters, 16(02):189–207, 2006. 17

[73] Achour Mostéfaoui and Michel Raynal. Leader-based consensus. Parallel Pro-

cessing Letters, 11(01):95–107, 2001. 2, 25

[74] Furuzan Atay Onat, Ivan Stojmenovic, and Halim Yanikomeroglu. Generating

random graphs for the simulation of wireless ad hoc, actuator, sensor, and internet

networks. Pervasive and Mobile Computing, 4(5):597 – 615, 2008. 118

[75] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In Proc. USENIX Annual Technical Conference, pages 305–320, 2014.

2

[76] Vincent Douglas Park and M Scott Corson. A highly adaptive distributed routing

algorithm for mobile wireless networks. In INFOCOM’97. Sixteenth Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings

IEEE, volume 3, pages 1405–1413. IEEE, 1997. 42

[77] Pradeep Parvathipuram, Vijay Kumar, and Gi-Chul Yang. An Efficient Leader

Election Algorithm for Mobile Ad Hoc Networks. In Proceedings of the First In-

ternational Conference on Distributed Computing and Internet Technology, ICD-

CIT 2004, Bhubaneswar, India, December 22-24, volume 3347 of Lecture Notes

in Computer Science, pages 32–41. Springer, 2004. 43

[78] Sara Tucci Piergiovanni and Roberto Baldoni. Eventual leader election in infinite

arrival message-passing system model with bounded concurrency. In Proceedings

137

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

of the 8th European Dependable Computing Conference, EDCC 2010, Valencia,

Spain, pages 127–134. IEEE Computer Society, 2010. 2, 28, 41

[79] Michel Raynal, Julien Stainer, Jiannong Cao, and Weigang Wu. A simple broad-

cast algorithm for recurrent dynamic systems. In Advanced Information Network-

ing and Applications (AINA), 2014 IEEE 28th International Conference on, pages

933–939, May 2014. 37, 68

[80] Srikanth Sastry and Scott M. Pike. Eventually perfect failure detectors using

ADD channels. In Proceedings of the 5th International Symposium on Parallel

and Distributed Processing and Applications, ISPA 2007, Niagara Falls, Canada,

volume 4742 of Lecture Notes in Computer Science, pages 483–496. Springer,

2007. 2, 17

[81] Mahadev Satyanarayanan. Pervasive computing: vision and challenges. IEEE

Personal Communications, 8(4):10–17, 2001. 3

[82] André Schiper. Early consensus in an asynchronous system with a weak failure

detector. Distributed Computing, 10(3):149–157, 1997. 24

[83] John Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Characterising

temporal distance and reachability in mobile and online social networks. ACM

SIGCOMM Computer Communication Review, 40(1):118–124, 2010. 3

[84] Sudarshan Vasudevan, James F. Kurose, and Donald F. Towsley. Design and Ana-

lysis of a Leader Election Algorithm for Mobile Ad Hoc Networks. In Pro-

ceedings of the 12th IEEE International Conference on Network Protocols, ICNP

2004, Berlin, Germany, 5-8 October, pages 350–360. IEEE Computer Society,

2004. 43

138

i
i

i
i

i
i

i
i

BIBLIOGRAPHY

[85] Paulo Verissimo, Antonio Casimiro, and Christof Fetzer. The timely computing

base: Timely actions in the presence of uncertain timeliness. In Dependable Sys-

tems and Networks, 2000. DSN 2000. Proceedings International Conference on,

pages 533–542. IEEE, 2000. 2, 17

[86] Paul M.B. Vitányi. Distributed elections in an archimedean ring of processors.

In Proceedings of the sixteenth annual ACM symposium on Theory of computing,

STOC ’84, pages 542–547, New York, NY, USA, 1984. ACM. 2, 16

139

	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Roadmap

	2 Background and Related Work
	2.1 Distributed Agreement and Related Problems
	2.1.1 Consensus
	2.1.2 Eventual Leader Election
	2.1.3 Terminating Reliable Broadcast
	2.1.4 Group Membership

	2.2 Solving Agreement in Distributed Systems
	2.2.1 Models in Distributed Systems
	2.2.1.1 Time Models
	2.2.1.2 Failure Models

	2.2.2 Solving Agreement with Failure Detectors

	2.3 Solving Agreement in Dynamic Distributed Systems
	2.3.1 Impossibility Results in Dynamic Distributed Systems
	2.3.2 Models in Dynamic Distributed Systems
	2.3.2.1 Time-Varying Graphs
	2.3.2.2 Connectivity Classes
	2.3.2.3 A Dynamic Distributed System Categorization

	2.3.3 Leader Election in Dynamic Distributed Systems
	2.3.3.1 Implementing in Dynamic Distributed Systems
	2.3.3.2 Other Dynamic Leader Election Solutions

	3 Categorizing Dynamic Distributed Systems
	3.1 A Four-level Categorization
	3.2 Adding Dimensions
	3.3 Representing System Models
	3.4 Conclusions

	4 Connectivity Models for Solving Agreement
	4.1 A Timely Model for Dynamic Systems
	4.1.1 Definitions
	4.1.2 Terminating Reliable Broadcast in TC()

	4.2 Implementability of TRB
	4.2.1 (Lower)-bounding the Edge Stability
	4.2.2 (Upper)-bounding the Edge Appearance
	4.2.3 Relating Timely Classes

	4.3 From -TRB to -Consensus in Dynamic Systems
	4.4 On the Weakest Implementable Timely Connectivity Class
	4.5 Conclusions

	5 Eventual Leader Election in Dynamic Distributed Systems
	5.1 Problem Specification and System Model
	5.1.1 Problem Specification
	5.1.2 System Model M*

	5.2 A Leader Election Algorithm for M*
	5.2.1 A Reliable Broadcast Primitive for M*
	5.2.2 * Implementation
	5.2.2.1 Correctness proof of the algorithm

	5.3 Evaluation
	5.3.1 Comparing M* to Other Models
	5.3.2 Simulation Examples

	5.4 Conclusions

	6 Conclusions
	6.1 Summary of Contributions
	6.2 Future Work

	Bibliography

