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This paper investigates stability and asymptotic properties of the error with respect to its nominal version of a nonlinear time-
varying perturbed functional differential system subject to point, finite-distributed, and Volterra-type distributed delays associated
with linear dynamics together with a class of nonlinear delayed dynamics. The boundedness of the error and its asymptotic
convergence to zero are investigated with the results being obtained based on the Hyers-Ulam-Rassias analysis.

1. Introduction

The background literature on Hyers-Ulam-Rassias analysis
is abundant and many different problems have been solved
with it under the basis that there is a perturbation of a
nominal equation and that a norm upper-bounding function
of the error is obtained, [1–13]. A variety of results in this
field have been obtained, in particular, for perturbations of
additive and subadditive functions [5–7]. Special attention
to the asymptotic properties of the Cauchy equation is
paid in [5]. On the other hand, some inequalities related
to the exponential function are proposed and investigated
in [1]. Closed problems related to the slopes and mean
values of exponential functions are discussed in [2]. Also,
extensions to functions of several variables and to the study of
approximate homomorphisms are discussed and solved in [3,
4], which are nowadays classical studies in the field of Hyers-
Ulam-Rassias stability. A discussion with several results of
asymptotic aspects is given in [5] close to the asymptotic
derivability which is a very important issue in nonlinear
analysis. The cubic function is studied in [8] from the Hyers-
Ulam stability point of view while its relations to the related
stability quadratic functional functions, symmetric biadditive
functions are also commented. Different kinds of perturbed
differential equations of first order are investigated in [11–13]
in the light of the Hyers-Ulam-Rassias stability analysis.

On the other hand, it is well known that time-delay
dynamic systems are a very relevant field of research
in dynamic systems and functional differential equations
because of their intrinsic theoretical interest since the
required formalism lies in that of functional differential
equations, then infinite dimensional, and since there are a
wide range of applicability issues in modelling aspects of
physical systems, like queuing systems, teleoperated systems,
war and peace and biological models and transportation
systems, also finite impulse response filtering, and so forth.
Another important useful application is the inclusion of
delays in the description of epidemic models so as to obtain
richer information about the disease propagation and to take
it into account in the design of vaccination laws. See, for
instance, [14–23] and references therein. The stability and
the derivation of approximate solutions of some kinds of
functional equations have been also investigated in [24, 25]
and references therein, under close analysis methods.

This paper is concerned with the study of the solutions
of perturbed time-delay differential systems and their com-
parison and asymptotic properties of convergence to those of
the corresponding unperturbed ones.Thedifferential systems
involve a combined fashion linear dynamics of point delays,
finitely distributed time-delays, and infinitely distributed
Volterra-type delays as well as perturbations involving non-
linear dynamics depending on further delays, in general, and
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which can be unknown with just slight “a priori” knowledge
on an upper-bounding function on the supremum of the
trajectory solution norm. External nonnecessarily identical
forcing terms can be also present in both the nominal and
the current differential functional equations. The number of
delays of the perturbed equation and that of its nominal
versions might be distinct and the matrices describing the
linear delayed and delay-free dynamics of both differential
systems might be also distinct. There are two problems
focused on in the paper; namely, firstly the paper focuses on
the asymptotic convergence to zero of the error between both
nominal and current solutions irrespective of the stability
properties of the nominal differential system, if any, and,
secondly such a problem is revisited togetherwith the stability
or asymptotic stability of both the nominal and the perturbed
functional differential systems.

Notation. Consider
R
0+
:= R
+
∪ {0} , R

+
:= {𝑧 ∈ R : 𝑧 > 0} ,

R
0−
:= R
−
∪ {0} , R

−
:= {𝑧 ∈ R : 𝑧 < 0} ,

C
0+
:= {𝑧 ∈ C : Re 𝑧 ≥ 0} , C

+
:= {𝑧 ∈ C : Re 𝑧 > 0} ,

C
0−
:= {𝑧 ∈ C : Re 𝑧 ≤ 0} , C

−
:= {𝑧 ∈ C : Re 𝑧 < 0} ,

Z
0+
:= Z
+
∪ {0} , Z

+
:= {𝑧 ∈ Z : 𝑧 > 0} ,

(1)
where R, C, and Z are the sets of real, complex, and integer
numbers, respectively. The complex imaginary unity is i =
√−1. A finite subset of 𝑗 consecutive positive integers starting
with 1 is denoted by 𝑗 := {1, 2, . . . , 𝑗}. The set R

−ℎ
𝜃 :=

[−𝜃, 0) ∪ R
0+

will be used to define the solution of functional
differential equations onR

0+
including its initial condition on

[−𝜃, 0].
𝐶
𝑒
(R
0+
) := 𝐶(R

0+
,C𝑛) is the Banach space of continuous

functions from R
0+

into C𝑛 endowed with the supremum
norm |𝑥|

𝛼
= sup

0≤𝜏<∞
(‖𝑥(𝜏)‖

𝛼
).

𝐶(R
−𝜃
) := 𝐶([−𝜃,∞),C𝑛) is the Banach space of

continuous functions from [−𝜃,∞) into C𝑛 endowed with
the supremum norm |𝜙|

𝛼
= sup

−𝜃≤𝜏<∞
(‖𝜙(𝜏)‖

𝛼
); ∀𝜙 ∈

𝐶
𝑒
(−𝜃) := 𝐶([−𝜃, 0),C𝑛) (defined below) is an initial

condition, for some given vector norm ‖ ⋅ ‖
𝛼
.

𝐶
𝑒
(−𝜃) := {𝜙 = 𝜙

1
+ 𝜙
2
: 𝜙
1
∈ 𝐶(−𝜃), 𝜙

2
∈ 𝐵
0
(−𝜃)},

𝜙(0) = 𝑥
0
, with 𝐶(−𝜃) := {𝐶0([−𝜃, 0], 𝑋)}, that is, the set of

continuous mappings from [−ℎ, 0] into the Banach space 𝑋
with norm𝜙

𝛼
:= |𝜙|
𝛼
= sup{‖𝜙(𝑡)‖

𝛼
: −𝜃 ≤ 𝑡 ≤ 0}; ‖⋅‖denotes

the Euclidean normof vectors inC𝑛 andmatrices inC𝑛×𝑛, and
𝐵
0
(−𝜃):={𝜙 : [−𝜃, 0] → 𝑋} is the set of real bounded vector

functions on 𝑋 endowed with the supremum norm having
support of zero measure.

𝑥
𝑡
denotes the solution string within [𝑡 − 𝜃, 𝑡] pointwise

defined by the solution 𝑥(𝑡).
It is said that the delays associated with Volterra-type

dynamics are infinitely distributed because the contribution
of the delayed dynamics ismade under an integral over [0,∞)
as 𝑡 → ∞; that is, 𝑥(𝑡 − 𝜏 − ℎ

𝑖
) acts on the dynamics of 𝑥(𝑡)

from 𝜏 = 0 to 𝜏 = 𝑡 for finite 𝑡 and as 𝑡 → ∞.
Dom(𝐻) is the definition domain of the operator𝐻.

2. Perturbed and Nominal Differential System

We now consider a functional 𝑛th order differential system
with point and, in general, both infinite-type Volterra-type
and finite-distributed delays in a more general context that is
the approaches of [16, 21–23], since it includes the contribu-
tions of both structured and unstructured delayed dynamics
with point and finite- and infinite-distributed delays, as well
as the presence of nonlinear dynamics. Such a differential
equation obeys the widely general structure:

�̇� (𝑡) − 𝐿𝑥
𝑡
− 𝑔 (𝑡) = 0, (2)

where

𝐿𝑥
𝑡
≡ 𝐿
0
𝑥
𝑡
+ 𝑓 (𝑡, 𝑥

𝑡−𝜃𝑏
) , (3)

𝐿
0
𝑥
𝑡

≡ 𝐴
0
𝑥 (𝑡) +

𝑚0

∑

𝑖=1

𝐴
𝑖 (
𝑡) 𝑥 (𝑡 − ℎ𝑖

)

+

𝑚


0

∑

𝑖=0

∫

𝑡

0

𝑑𝛼
𝑖 (
𝜏) 𝐴𝛼𝑖

(𝜏) 𝑥 (𝑡 − 𝜏 − ℎ


𝑖
)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝑡

𝑡−ℎ


𝑖

𝑑𝛼
𝑖
(𝑡 − 𝜏)𝐴

𝛼𝑖
(𝜏) 𝑥 (𝜏 − 𝜃

0
) + 𝑔
0
(𝑡)

(4)

𝑓 (𝑡, 𝑥
𝑡−𝜃𝑏
) = 𝑓
0
(𝑡, 𝑥
𝑡−𝜃𝑎
) + 𝑓
1
(𝑡, 𝑥
𝑡−𝜃3
) ;

𝑔 (𝑡) = 𝑔
0
(𝑡) + 𝑔 (𝑡) ,

(5)

𝑓
1
(𝑡, 𝑥
𝑡−𝜃3
) =

𝑚

∑

𝑖=1

̃
𝐴
𝑖 (
𝑡) 𝑥 (𝑡 − ℎ𝑖

)

+

𝑚


∑

𝑖=0

∫

𝑡

0

𝑑𝛼
𝑖
(𝜏)

̃
𝐴
𝛼𝑖
(𝜏) 𝑥 (𝑡 − 𝜏 − ℎ



𝑖
)

+

𝑚

+𝑚


∑

𝑖=𝑚

+1

∫

𝑡

𝑡−ℎ


𝑖

𝑑𝛼
𝑖
(𝑡 − 𝜏)

̃
𝐴
𝛼𝑖
(𝜏) 𝑥 (𝜏 − 𝜃

1
) ,

(6)

𝑥(𝑡) ≡ 𝜙(𝑡); 𝑡 ∈ [−𝜃, 0] for some given initial
condition vector function 𝜙 ∈ 𝐶

𝑒
(−𝜃), where 𝜃∗

0
=

max(max
1≤𝑖≤𝑚0

(ℎ
𝑖
),max

1≤𝑖≤𝑚


0

(ℎ


𝑖
),max

𝑚


0
+1≤𝑖≤𝑚



0
+𝑚


0

(ℎ


𝑖
)+𝜃
0
)

and 𝜃∗ = max (𝜃∗
0
, 𝜃
𝑎
) are, respectively, the maximum delays

of the unperturbed (or perfectly modelled nominal system,
being associated with the operators 𝐿

0
𝑥
𝑡
) and the nominal

system subject to unmodeled and perhaps nonlinear non-
structured dynamics, of maximum delay 𝜃

𝑎
, which includes

the contribution to the dynamics of the possibly nonlinear
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function 𝑓
0
(𝑡, 𝑥
𝑡−𝜃𝑎
) while the maximum delay of the current

system is

𝜃

=max(max
1≤𝑖≤𝑚

(ℎ
𝑖
) , max
1≤𝑖≤𝑚


+𝑚


(ℎ


𝑖
) , max
𝑚

+1≤𝑖≤𝑚


+𝑚


(ℎ


𝑖
)+𝜃
1
, 𝜃
𝑏
) ,

(7)

where 𝜃
𝑏

= max(𝜃
𝑎
, 𝜃
3
) is the maximum delay of its

unmodeled dynamics with

𝜃
3
= max( max

1≤𝑖≤𝑚0

(ℎ
𝑖
) , max
1≤𝑖≤𝑚



0

(ℎ


𝑖
) , max
𝑚


0
+1≤𝑖≤𝑚



0
+𝑚


0

(ℎ


𝑖
) + 𝜃
1
) .

(8)

The nonnegative real constants 𝜃
0
and 𝜃

1
, if they are not

zero in (4) and (6), modulate the finitely distributed delays
with the functions that configure their contributions under
the integral symbols. The objective is the comparison of
the solution of the current dynamic functional equation (2),
subject to (3)–(6), to that of its nominal version �̇�(𝑡) − 𝐿

0
𝑥
𝑡
−

𝑓
0
(𝑡, 𝑥
𝑡−𝜃𝑎
)−𝑔
0
(𝑡) = 0.The following, ratherweak, hypotheses

are made.
(1) 𝐿 : 𝐶

𝑒
(R
−𝜃
) → C𝑛 is a bounded linear functional

defined by the right hand side of (2).
(2) ℎ
𝑘
and ℎ



ℓ
and ℎ



𝑗
+ 𝜃
0,1

(𝑘 = 1, 2, . . . , 𝑚; ℓ =

0, 1, . . . , 𝑚
, 𝑗 = 𝑚 + 1, . . . , 𝑚 +𝑚) are nonnegative

real point delays, infinite-time distributed Volterra-
type delays (i.e., the first 𝑚 distributed delays), and
finite time-interval distributed delays with ℎ

0
= ℎ


0
=

0 such that 𝑚 ≥ 𝑚
0
, 𝑚 ≥ 𝑚

0
, and 𝑚 ≥ 𝑚

0
, where

the 0 subscripts stand for the nominal equation. The
finitely distributed nominal and current delays have
an increasing factor 𝜃

0
≥ 0 and 𝜃

1
≥ 0 for formulation

generality purposes.
(3) 𝑔
0
, 𝑔 : R

0+
→ C𝑛 is piecewise continuous, 𝑓

0
: R
0+
×

𝐶(R
−𝜃
) → C𝑛 describes a perturbed linear dynamics,

and

𝑥
𝐶(R−𝜃)
𝑡

:= {

𝑥 : [−𝜃, 𝜏) → 𝑋, 𝜏 ≤ 𝑡

0, 𝜏 > 𝑡,

(9)

satisfying 𝑥(𝑡) = 𝜙(𝑡), ∀𝑡 ∈ [−𝜃, 0], is a string of the
solution of (2).

The following, rather nonrestrictive in practice, hypotheses
are made.
(H.1) The initial condition of (2) is 𝜙 ∈ 𝐶

𝑒
(−𝜃). Roughly

speaking, 𝜙 ∈ 𝐵0(−𝜃) if and only if it is almost every-
where zero except at isolated discontinuity points
within [−𝜃, 0] where it is bounded.Thus, 𝜙 ∈ 𝐶

𝑒
(−𝜃)

if and only if it is almost everywhere continuous in
[−𝜃, 0] except possibly on a set of zero measure of
bounded discontinuities.𝐶

𝑒
(−𝜃) is also endowedwith

the supremum norm since 𝜙 = 𝜙
1
+ 𝜙
2
, some 𝜙

1
∈

𝐶(−𝜃), 𝜙
2
∈ 𝐵
0
(−𝜃) for each 𝜙 ∈ 𝐶

𝑒
(−𝜃). In the

following, the supremum norms on 𝐿(𝑋) are also
denoted by | ⋅ |.

(H.2) All the linear operators 𝐴
𝑘
,
̃
𝐴
𝑘
(0 ≤ 𝑘 ≤ 𝑚),

𝐴
𝛼𝑘
,
̃
𝐴
𝛼𝑘
(0 ≤ 𝑘 ≤ 𝑚


+ 𝑚

), with the abbreviated

notation 𝐴
𝛼0

= 𝐴
𝛼
, are in 𝐿(𝑋) := 𝐿(𝑋,𝑋), the

set of linear operators on 𝑋, of dual 𝑋∗, which are
closed and densely defined with respective domain
and range 𝐷(𝐴

𝛼𝑖
) and 𝑅(𝐴

𝛼𝑖
) ⊂ 𝑋 (𝑖 = 0, 1, . . . , 𝑚).

The functions 𝛼
𝑖
∈ 𝐶
0
([0,∞),C) ∩ BVloc(C+) (𝑖 =

0, 1, . . . , 𝑚

) and 𝛼

𝑖
∈ 𝐶
0
([−ℎ, 0),C) (𝑖 = 0, 1, . . . , 𝑚+

𝑚
) are everywhere differentiable with possibly

boundeddiscontinuities on subsets of zeromeasure of
their definition domains with ∫∞

0
𝑒
]𝑡
|𝑑𝛼
𝑖
(𝑡)| < ∞ for

some nonnegative real constant ] (𝑖 = 0, 1, . . . , 𝑚). If
𝛼
𝑖
(⋅) is amatrix function𝛼

𝑖
: [0,∞)×𝑋

∗
→ 𝐿(𝑋,𝑋

∗
)

then it is in 𝐶
0
([0,∞),C𝑛×𝑛) ∩ BVloc(C𝑛×𝑛+ ) with

∫

∞

0
𝑒
]𝑡
|𝑑𝛼
𝑖
(𝑡)| < ∞ and its entries are everywhere

time differentiablewith possibly bounded discontinu-
ities within a subset of zeromeasure of their definition
domains.

3. Main Results

There is an interesting set of references on the application
of Hyers-Ulam method to stability of differential equations
(c.f. [11–13]). The first and third ones are first-order equa-
tions, respectively, linear and nonlinear while the second
one [12] is of linear time-varying type. Such differential
equations in those references are delay-free, so that they
are of a nonfunctional type. In the following, we develop
a related formal stability analysis of functional differential
equations with internal delays under the forms (2)–(6) and
satisfying hypotheses (H.1)-(H.2). Note that the studied
equations have several types of time-varying linear delayed
dynamics (as, e.g., point delays, finitely distributed delays,
and Volterra-type infinitely distributed delays). Note also
that, furthermore, nonautonomous nonlinear dynamics can
be considered in (3) under the generic structure of (4)-(5),
that is, involving if suited any of the various types of delays
plus nonlinear unmodeled terms under the functional 𝑓

0

which can be unstructured and unmeasurable. In that case, an
upper-bounding function of generic structure, the supremum
of the norm of the state, will be assumed to be known in
the formal subsequent developments. This general structure
of the functional equation of dynamics and its stability
study under the Hyers-Ulam-Rassias formalism are the main
contribution of the paper. It turns out while it is a well-
known feature that Hyers-Ulam-Rassias method of analysis
in differential equations relies basically on comparing the
perturbed differential equation with the unperturbed (or
nominal) one. In [11–13], the analysis is performed based on
the error in between both differential equations while, in the
current paper, it is based on the direct analysis of the error
between both of them. Other important characteristics of the
proposed formalism are that it is based on a dynamic system
description rather than on simple differential equations and
that the fundamentalmatrix can be defined based on different
comparison systems which can be delay-free or it can contain
a number of delays. The formal treatment proceeds in such a
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way that the delayed dynamics which is not accounted for,
if any, to define the fundamental matrix is considered as a
contribution to the forcing part of the differential system.
The analysis is neither based in a formalism stated on the
Hilbert space framework, as in [15], nor in Lyapunov stability
theory, including the use of matrix equalities and inequalities
as in [17, 18, 21], but on the analysis of the solution error in
between the nominal and the current differential systems for
all time. In particular, note that the approach used in [16] is
not directly applicable in this context since the differential
system at hand is time-varying and the Laplace transform
methods cannot be used.

Themain results of this section consist of a main theorem
and three corollaries related to sufficiency-type conditions
for guaranteeing the theorem and particular cases as well
as several remarks related to their applications to further
potential particular cases. The basic main result follows
below.

Theorem 1. Assume that 𝑔 ≡ 0 and 𝑓
0

: R
0+

×

C𝑛 → C𝑛 is subadditive, 𝜃 ≥ 𝜃
∗, and ‖𝑓

0
(𝑡, 𝑥
𝑡−𝜃𝑏
)‖ ≤

𝐾
00

sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑏−𝛿

‖ + 𝐾
01

for some 𝐾
00
, 𝐾
01
∈ R
0+
; ∀𝑡 ∈

R
0+
. Let 𝜇(𝑡

𝑛
) = (𝜇

1
, 𝜇
2
, . . . , 𝜇

𝑚0
)(𝑡
𝑛
) be any 𝑚

0
-tuple defined

from a piecewise constant 𝑚
0
-binary vector function 𝜇 :

[𝑡
𝑛
, 𝑡
𝑛+1
)×Z
0+
→ {𝜇

1
(𝑡
𝑛
), . . . , 𝜇

𝑚0
(𝑡
𝑛
)} for any combination of

values of the set of binary variables 𝜇
𝑖
(𝑡
𝑛
) ∈ {0, 1}; ∀𝑖 ∈ 𝑚

0
=

{1, 2, . . . , 𝑚
0
} defining a fundamental matrix of the nominal

unforced differential system �̇�(𝑡) = 𝐿
0
𝑥
𝑡
of the form

Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡
𝑛
)

= 𝑒
𝐴0(𝑡−𝑡𝑛)

× (𝐼 +

𝑚0

∑

𝑖=1

𝜇
𝑖
(𝑡
𝑛
)

× ∫

𝑡

𝑡𝑛

𝑒
𝐴0(𝑡𝑛+𝜏)

𝐴
𝑖
(𝜏) Ψ
𝜇(𝑡𝑛)

(𝜏 − ℎ
𝑖
) 𝑈 (𝜏 − ℎ

𝑖
) 𝑑𝜏) ;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) ;

(10)

∀𝑛 ∈ Z
0+

with initial conditions with Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡) = 𝐼; ∀𝑡 ∈
R
0
and Ψ

𝜇(𝑡𝑛)
(𝑡, 𝑡
𝑛
) = 0 for 𝑡 < 𝑡

𝑛
, where 𝐼 is the 𝑛-identity

matrix and 𝑈(𝑡) is the Heaviside function, which satisfies the
differential system:

̇
Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡
𝑛
)

= 𝐴
0
Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡
𝑛
)

+

𝑚0

∑

𝑖=1

𝜇
𝑖
(𝑡
𝑛
) 𝐴
𝑖 (
𝑡) 𝑈 (𝑡 − ℎ𝑖

) Ψ
𝜇(𝑡𝑛)

(𝑡 − ℎ
𝑖
, 𝑡
𝑛
) ;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) , ∀𝑛 ∈ Z

0+
.

(11)

Then, the following properties hold.
(i) The error norm is in between the current solution and

the nominal one on [𝑡
𝑛
,∞); ∀𝑛 ∈ Z

0+
is upper-bounded

by a prescribed positive norm bound 𝐸 if ‖𝑒(𝑡
0
)‖ ≤ 𝐸; the

fundamental matrix defined from a binary vector function 𝜇 :

[𝑡
𝑛
, 𝑡
𝑛+1
) × Z
0+

→ {𝜇
1
(𝑡
𝑛
), . . . , 𝜇

𝑚0
(𝑡
𝑛
)} fulfills for a matrix

induced vector norm ‖Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)‖ ≤ 𝜓

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡) < 1; ∀𝑡 ∈

(𝑡
𝑛
, 𝑡
𝑛+1
], ∀𝑛 ∈ Z

0+
, such that the upper-bounding function

𝜓
𝜇(⋅)
(⋅, ⋅) : Z

0+
× R
0+
→ R
0+

satisfies 𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡
𝑛
) = 1; ∀𝑛 ∈

Z
0+
, and the subsequent constraint holds for some sufficiently

small real constant 𝑇∗ ∈ R
+
:

𝑡 − 𝑡
𝑛

≤ ((1 − 𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡))

× (max
𝑡𝑛≤𝜏≤𝑡

(𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝜏)

×












𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
(𝑡
𝑛
)) 𝐴
𝑖 (
𝜏)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖 (
𝜎) 𝐴𝛼𝑖

(𝜎)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖 (
𝜏 − 𝜎)𝐴𝛼𝑖

(𝜎)

+𝑓 (𝜏, 𝑒
𝜏−𝜃𝑏

)












))

−1

) ;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) , ∀𝑛 ∈ Z

0+

(12)

for some strictly increasing sequence {𝑡
0
, 𝑡
1
, . . .} satisfying

𝑇
∗
≤ 𝑇
𝑛
:= 𝑡
𝑛+1
− 𝑡
𝑛

≤ min (ℎ∗ (𝑡
𝑛
) ,max (arg 𝑟

𝑛
∈ R
+
: 𝑟
𝑛
= 𝑧
𝑛
)) ;

∀𝑛 ∈ Z
0+
,

(13)

where

𝑧
𝑛

≤ ((1 − 𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡
𝑛
+ 𝑧
𝑛
))

× (𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡
𝑛
+ 𝑧
𝑛
)

× max
𝑡𝑛≤𝜏≤𝑡𝑛+1

(












𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
(𝑡
𝑛
)) 𝐴
𝑖
(𝜏)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎)
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+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎)

+𝑓 (𝜏 , 𝑒
𝜏−𝜃𝑏

)












))

−1

) ;

∀𝑛 ∈ Z
0+

(14)

ℎ
∗
(𝑡
𝑛
) := min( min

1≤𝑖≤𝑚0

(1 − 𝜇
𝑖
(𝑡
𝑛
)) ℎ
𝑖
, min
𝑚0<𝑖≤𝑚

ℎ
𝑖
, ℎ


1
) ;

∀𝑛 ∈ Z
0+
;

(15)

∀𝜙 ∈ 𝐶
𝑒
(−𝜃) := 𝐶([−𝜃, 𝑡

0
),C𝑛) with 𝜃 =

max(max
1≤𝑖≤𝑚

(ℎ
𝑖
),max

1≤𝑖≤𝑚

+𝑚
(ℎ


𝑖
), max

𝑚

+1≤𝑖≤𝑚


+𝑚
(ℎ


𝑖
)+

𝜃
1
, 𝜃
𝑏
) ≥ 𝜃

∗, with 𝑥(𝑡
0
) = 𝜑(𝑡

0
) for any given 𝑡

0
∈ R
0+
. If

sup
0≤𝑡≤𝑡0

‖𝑒(𝑡)‖ ≤ 𝐸 for any given absolutely continuous
vector function of initial conditions 𝜑 : [−𝜃, 0] → C𝑛 then
sup
0≤𝑡<∞

‖𝑒(𝑡)‖ ≤ 𝐸.
(ii) Assume that property (i) holds by

(a) replacing the constraint ‖Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)‖ ≤ 𝜓

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡) <

1 with ‖Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)‖ ≤ 𝜓

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡) < 𝐾

𝑛
; ∀𝑡 ∈ (𝑡

𝑛
+

𝛾
𝑛
, 𝑡
𝑛+1
] for some real sequence {𝛾

𝑛
} with 𝛾

𝑛
≥ 𝛾 > 0;

∀𝑛 ∈ Z
0+
;

(b) replacing𝐸 by a nonnegative real sequence {𝐸
𝑛
} satisfy-

ing 𝐸
𝑛+1

= 𝐾
𝑛
𝐸
𝑛
for each 𝑛 ∈ Z

+
and some decreasing

sequence of nonnegative real numbers {𝐾
𝑛
} such that

lim sup
𝑛→∞

𝐾
𝑛
= 𝐾 for some real constant𝐾 ∈ [0, 1);

(c) replacing “1” in the numerator of (12) and (14) by 𝐾
𝑛
;

∀𝑛(≥ 𝑛
0
) ∈ Z
0+

for some given 𝜀(< 1 − 𝐾) ∈ R
+
and

𝑛
0
= 𝑛
0
(𝜀) ∈ Z

0+
such that 𝐾

𝑛
≤ 𝐾 + 𝜀 < 1.

Then, 𝑒(𝑡) → 0 exponentially as 𝑡 → ∞.

Proof. The nominal and current unique solutions of (2)–(4)
[16, 17] are, respectively, given by

𝑥
0
(𝑡)

= Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡
0
) 𝑥
0
(𝑡
0
)

+ ∫

𝑡

𝑡0

Ψ
𝜇(𝑡𝑛)

(𝑡, 𝜏)

×
[

[

𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
) 𝐴
𝑖
(𝜏) 𝑥
0
(𝜏 − ℎ

𝑖
)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎) 𝑥
0
(𝜏 − 𝜎 − ℎ



𝑖
)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎) 𝑥
0
(𝜎 − 𝜃

0
)
]

]

𝑑𝜏

+ ∫

𝑡

𝑡0

Ψ
𝜇 (
𝑡, 𝜏) 𝑔 (𝜏) 𝑑𝜏; ∀𝑡 (≥ 𝑡

0
) ∈ R
0+

𝑥 (𝑡)

= Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡
0
) 𝑥 (𝑡
0
)

+ ∫

𝑡

𝑡0

Ψ
𝜇(𝑡𝑛)

(𝑡, 𝜏)

× [

𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
) 𝐴
𝑖
(𝜏) 𝑥 (𝜏 − ℎ

𝑖
)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎) 𝑥 (𝜏 − 𝜎 − ℎ



𝑖
)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎) 𝑥 (𝜎 − 𝜃)

+𝑓 (𝜏, 𝑥
𝜏−𝜃𝑏

)] 𝑑𝜏

+ ∫

𝑡

𝑡0

Ψ
𝜇(𝑡𝑛)

(𝑡, 𝜏) 𝑔 (𝜏) 𝑑𝜏; ∀𝑡 (≥ 𝑡
0
) ∈ R
0+

(16)

and, since 𝑓
1
: R
0+
× C𝑛 → C𝑛 is structurally additive in

its second argument, then also subadditive, and 𝑓
0
: R
0+
×

C𝑛 → C𝑛 is subadditive in its second argument; then 𝑓
1
:

R
0+
×C𝑛 → C𝑛 is subadditive in its second argument so that

ℎ : R
0+
×C𝑛 → C𝑛 is also subadditive in its second argument.

Thus,

𝑒 (𝑡) := 𝑥 (𝑡) − 𝑥
0
(𝑡)

= Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡
𝑛
) 𝑒 (𝑡
𝑛
)

+ ∫

𝑡

𝑡𝑛

Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝜏)

× [

𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
) 𝐴
𝑖
(𝜏) 𝑒 (𝜏 − ℎ

𝑖
)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖 (
𝜎) 𝐴𝛼𝑖

(𝜎) 𝑒 (𝜏 − 𝜎 − ℎ


𝑖
)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖 (
𝜏 − 𝜎)𝐴𝛼𝑖

(𝜎) 𝑒 (𝜎 − 𝜃)

+𝑓 (𝜏, 𝑒
𝜏−𝜃𝑏

)] 𝑑𝜏;

(17)
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∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) for any strictly increasing sequence

{𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑛
, . . .} and any absolutely continuous initial con-

dition 𝜑(𝑡) on [𝑡
0
− ℎ, 𝑡
0
] with 𝑥(𝑡

0
) = 𝜑(𝑡

0
) for any given

𝑡
0
∈ R
0+

where 𝜇(𝑡
𝑛
) = (𝜇

1
(𝑡
𝑛
), 𝜇
2
(𝑡
𝑛
), . . . , 𝜇

𝑚0
(𝑡
𝑛
)) is any

𝑚
0
-tuple defined for any combination of values of the set of

binary variables 𝜇
𝑖
∈ {0, 1}; ∀𝑖 ∈ 𝑚

0
= {1, 2, . . . , 𝑚

0
} with

𝑓 (𝑡, 𝑥
𝑡−𝜃𝑏
) = 𝑓
0
(𝑡, 𝑥
𝑡−𝜃𝑎
)

+

𝑚

∑

𝑖=1

̃
𝐴
𝑖 (
𝑡) 𝑥 (𝑡 − ℎ𝑖

)

+

𝑚


∑

𝑖=0

∫

𝑡

0

𝑑𝛼
𝑖
(𝜎)

̃
𝐴
𝛼𝑖
(𝜎) 𝑥 (𝑡 − 𝜎 − ℎ



𝑖
)

+

𝑚

+𝑚


∑

𝑖=𝑚

+1

∫

𝑡

𝑡−ℎ


𝑖

𝑑𝛼
𝑖
(𝑡 − 𝜎)

̃
𝐴
𝛼𝑖
(𝜎) 𝑥 (𝜎 − 𝜃

1
)

∀𝑡 (≥ 𝑡
0
) ∈ R
0+
;

𝑒 (𝑡) := 𝑥 (𝑡) − 𝑥
0
(𝑡)

= Ψ
𝜇(𝑡𝑛)

(𝑡, 𝑡
𝑛
) 𝑒 (𝑡
𝑛
)

+ ∫

𝑡

𝑡𝑛

Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝜏)

× [

𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖𝑛
) 𝐴
𝑖
(𝜏) 𝑒 (𝜏 − ℎ

𝑖
)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎) 𝑒 (𝜏 − 𝜎 − ℎ



𝑖
)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎) 𝑒 (𝜎 − 𝜃)

+𝑓 (𝜏, 𝑥
𝜏−𝜃𝑏

)] 𝑑𝜏.

(18)

Assume for any 𝑛 ∈ Z
0+

that sup
𝑡0≤𝑡≤𝑡𝑛

‖𝑒(𝑡)‖ ≤ 𝐸, ‖Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)‖ ≤ 𝜓

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡) < 1 (note that Ψ

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡
𝑛
) = 𝐼; ∀𝑛 ∈

Z
0+
; ∀𝑡 ∈ (𝑡

𝑛
, 𝑡
𝑛+1
], ∀𝑛 ∈ Z

0+
). Note also that 𝑇

𝑛
= 𝑡
𝑛+1

− 𝑡
𝑛
;

∀𝑛 ∈ Z
0+
, and define

ℎ (𝑡
𝑛
) = max( max

1≤𝑖≤𝑚0

(1 − 𝜇
𝑖
(𝑡
𝑛
)) ℎ
𝑖
, max
1≤𝑖≤𝑚



0

(ℎ


𝑖
) ,

max
𝑚


0
+1≤𝑖≤𝑚



0
+𝑚


0

(ℎ


𝑖
) + 𝜃
0
, 𝜃) .

(19)

Note that (12) holds with a bounded denominator for
0 ≤ 𝜏 ≤ 𝑇

𝑛
≤ ℎ
∗
(𝑡
𝑛
); ∀𝑛 ∈ Z

0+
since ‖𝑓

0
(𝑡,

𝑥
𝑡−𝜃𝑎
)‖ ≤ 𝐾

00
sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑎−𝛿

‖ + 𝐾
01

then ‖𝑓(𝑡, 𝑥
𝑡−𝜃𝑏
)‖ ≤

𝐾
0
sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑏−𝛿

‖+𝐾
1
; ∀𝑡 ∈ R

0+
from (5)-(6) note the fact

that linearity of𝑓
1
grows non faster than linearitywith respect

to sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑏−𝛿

‖;∀𝑡 ∈ R
0+
. As a result, if sup

𝑡0≤𝑡≤𝑡𝑛
‖𝑒(𝑡)‖ ≤

𝐸, then




̇𝑒 (𝑡) − 𝐿𝑒

𝑡





=






𝐿
0
𝑒
𝑡
+ 𝑓 (𝑡, 𝑥

𝑡−𝜃𝑏
)






=




(𝐿 − 𝐿

0
) 𝑥
0𝑡





,

(20a)




𝑒 (𝑡 − 𝑡

𝑛
)





≤






Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡) 𝑒 (𝑡

𝑛
)







+ (𝑡 − 𝑡
𝑛
) sup
𝑡𝑛−ℎ(𝑡𝑛)≤𝜏≤𝑡−ℎ

∗
(𝑡𝑛)

‖𝑒 (𝜏)‖

× max
𝑡𝑛≤𝜏≤𝑡

(






Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)







×












𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
(𝑡
𝑛
)) 𝐴
𝑖
(𝜏)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎)

+𝑓 (𝜏, 𝑥
𝜏−𝜃𝑏

)












)

≤ 𝐸𝜓
𝜇(𝑡𝑛)

(𝑡, 𝑡
𝑛
)

+ (𝑡 − 𝑡
𝑛
) 𝐸

× max
𝑡𝑛≤𝜏≤𝑡

(𝜓
𝜇(𝑡𝑛)

(𝜏, 𝑡
𝑛
)

×












𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
(𝑡
𝑛
)) 𝐴
𝑖
(𝜏)

+

𝑚


0

∑

𝑖=0

∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎)

+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1

∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎)

+𝑓 (𝜏, 𝑥
𝜏−𝜃𝑏

)














)

≤ 𝐸; ∀𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1
] ; ∀𝑛 ∈ Z

0+
.

(20b)

Thus, if sup
𝑡0≤𝑡≤𝑡𝑛+1−ℎ∗𝑛

‖𝑒(𝑡)‖ ≤ 𝐸 and ‖Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)‖ < 1 for

𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1
], ∀𝑛 ∈ Z

0+
then, for any given 𝑛 ∈ Z

0+
,

sup
𝑡0≤𝑡≤𝑡𝑛

‖𝑒(𝑡)‖ ≤ 𝐸 < +∞ ⇒ sup
𝑡0≤𝑡≤𝑡𝑛+1

‖𝑒(𝑡)‖ ≤ 𝐸;
if constraint (12) holds, subject to (13)–(15) (note that the
second min-max part of (13) comes from (12) for 𝜏 = 𝑡

𝑛+1
,

and then 𝑡
𝑛+1−ℎ

∗
𝑛
≤ 𝑡
𝑛
, ∀𝑛 ∈ Z

0+
, and that the upper-bound
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of 𝑧
𝑛
is continuous and is zero if 𝑧

𝑛
= 0; ∀𝑛 ∈ Z

0+
), the

matrix function Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡) from (Z

0+
× R) × R to C𝑛×𝑛 is

everywhere continuous in (Z
0+
× R) × R even if 𝜇(𝑡+

𝑛
) ̸=

𝜇(𝑡
𝑛
) (i.e., if the matrices of the dynamics used to define the

fundamental matrix change at 𝑡 = 𝑡
𝑛
for some 𝑛 ∈ Z

0+
).Then,

property (i) has been proved by complete induction. The
proof of property (ii) is direct from property (i) together with
sup
𝑡𝑛−1≤𝑡≤𝑡𝑛

‖𝑒(𝑡)‖ ≤ 𝐸
𝑛
; ∀𝑛 ∈ Z

+
and {𝐸

𝑛
} → 0 at exponential

rate as 𝑛 → ∞ since ‖Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)‖ ≤ 𝜓

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡) < 𝐾

𝑛
,

lim sup
𝑛→∞

𝐾
𝑛
= 𝐾 < 1.

Theorem 1 involves the assumption that 𝜃 ≥ 𝜃
∗; that

is, the total delay involved in the current system is not less
than that of the nominal one subject to unmodeled dynamics.
The above assumption is made for presentation clarity. Its
removal is not difficult by replacing 𝜃 → 𝜃 = max(𝜃, 𝜃∗)
in the proof which would be the maximum delay appearing
in the error in between the solutions 𝑥(𝑡) and 𝑥

0
(𝑡) if any of

the two situations 𝜃 ≥ 𝜃
∗ or 𝜃 < 𝜃

∗ holds. Note that the
definition of appropriate terms in the function 𝑓

1
, 𝜃
1
, equal

to or distinct from 𝜃
0
, or the integers defining maximum

point and distributed numbers of delays in both differential
equations, that is, 𝑚

(⋅)
, 𝑚


(⋅)
, 𝑚


(⋅)
versus its nominal values,

might allow the cancellation of some of the delayed dynamics
contributions in the nominal system if suited. As a result
of the case, 𝜃 < 𝜃

∗ can be also easily considered in the
formulation.

Remark 2. It turns out that all fundamental matrices of form
(10), satisfying (11), for any values of 𝜇 in the set {0, 1} ×

{0, 1} ⋅ ⋅ ⋅

𝑚
0⏟⏟⏟⏟⏟⏟⏟

⋅ ⋅ ⋅ {0, 1} are useful to construct the solution since
the dynamics of the point delays which do not contribute to
the homogeneous part of the solution are transferred to the
forced solutions through contributing coefficients of the form
(1−𝜇
𝑖
); ∀𝑖 ∈ 𝑚

0
= {1, 2, . . . , 𝑚

0
}. Note also that the definition

of the fundamental matrix dynamics (10) as a solution of
(11) allows dealing with the stability conditions under more
general condition than the approaches used in [14–20]. See
also Remark 3 and Corollaries 4 and 5.

Remark 3. Note that if 𝜓
𝜇(⋅)
(⋅, ⋅) : Z

0+
× R
0+

→ R
0+

is nonincreasing in [𝑡
𝑛
+ 𝜂
𝑛
, 𝑡
𝑛+1
] and strictly decreasing in

(𝑡
𝑛
, 𝑡
𝑛
+ 𝜂
𝑛
), ∀𝑛 ∈ Z

0+
for some positive real sequence

{𝜂
𝑛
}, with 𝜂

𝑛
≤ 𝑇
∗
≤ 𝑇
𝑛
, then the right-hand side of (12)

is positive for all 𝑛 ∈ Z
0+

since 𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡
𝑛
) = 1. Thus,

Theorem 1(i) is applicable if its fundamental matrix has a
norm ‖Ψ

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡)‖ < 1 being nonincreasing in [𝑡

𝑛
+ 𝜂
𝑛
, 𝑡
𝑛+1
]

and strictly decreasing in (𝑡
𝑛
, 𝑡
𝑛
+𝜂
𝑛
); ∀𝑛 ∈ Z

0+
.Theorem 1(ii)

is applicable if ‖Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡)‖ < 𝐾

𝑛
; ∀𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1
); ∀𝑛 ∈ Z

0+

and it is strictly decreasing in time subintervals (𝑡
𝑛
, 𝑡
𝑛
+ 𝜂
𝑛
);

∀𝑛 ∈ Z
0+
.

Direct sufficient conditions for the fulfilment of
Theorem 1 are given in the subsequent result by using the
upper-bounding function of the constraint for the potentially
unknown nonlinear nonautonomous unmodeled dynamics
contribution ‖𝑓

0
(𝑡, 𝑥
𝑡−𝜃𝑎
)‖ ≤ 𝐾

0
sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑎−𝛿

‖ + 𝐾
1
.

Corollary 4. The following properties hold.
(i)Theorem 1(i) holds if the upper-bound of (12) is replaced

with the following one:

(1 − 𝐾
0
− 𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡))

× (max
𝑡𝑛≤𝜏≤𝑡

(𝜓
𝜇(𝑡𝑛)

( 𝑡
𝑛
, 𝜏)

× (𝐾
1
+

𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
(𝑡
𝑛
))




𝐴
𝑖
(𝜏)





+

𝑚


0

∑

𝑖=0










∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎)










+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1











∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎)











)))

−1

;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) , ∀𝑛 ∈ Z

0+

(21)

provided that 𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡) < 1 − 𝐾

0
with 𝐾

0
,𝐾
1
∈ R
+
being

such that ‖𝑓(𝑡, 𝑥
𝑡−𝜃𝑏
)‖ ≤ 𝐾

0
sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑏−𝛿

‖+𝐾
1
; ∀𝑡 ∈ R

0+
.

(ii) Theorem 1(ii) holds if the upper-bound of (12) is
replaced with

(𝐾 − 𝐾
0
− 𝜀 − 𝜓

𝜇(𝑡𝑛)
(𝑡
𝑛
, 𝑡))

× (max
𝑡𝑛≤𝜏≤𝑡

(𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝜏)

× (𝐾
1
+

𝑚0

∑

𝑖=1

(1 − 𝜇
𝑖
(𝑡
𝑛
))




𝐴
𝑖
(𝜏)





+

𝑚


0

∑

𝑖=0










∫

𝜏

0

𝑑𝛼
𝑖
(𝜎) 𝐴
𝛼𝑖
(𝜎)










+

𝑚0+𝑚


0

∑

𝑖=𝑚


0
+1











∫

𝜏

𝜏−ℎ


𝑖

𝑑𝛼
𝑖
(𝜏 − 𝜎)𝐴

𝛼𝑖
(𝜎)











)))

−1

;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) , ∀𝑛 ∈ Z

0+

(22)

provided that 𝜓
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡) < 𝐾 + 𝜀 − 𝐾

0
with 𝐾 =

lim sup
𝑛→∞

𝐾
𝑛
< 1; ∀𝑡 ∈ [𝑡

𝑛
+ 𝛾
𝑛
, 𝑡
𝑛+1
) with 𝛾

𝑛
≥ 𝛾 > 0;

∀𝑛(≥ 𝑛
0
= 𝑛
0
(𝜀)) ∈ Z

0+
for any given 𝜀(< 1 − 𝐾) ∈ R

+
.

Aparticular stability result of the perturbed system under
that of the nominal one follows.

Corollary 5. Consider the perturbed differential system 𝐿𝑥
𝑡
≡

𝐿
0
𝑥
𝑡
+𝑓(𝑡, 𝑥

𝑡−𝜃
)with linear nominal version subject to a single

point delay ℎ
1
> 0 of dynamics 𝐿

0
𝑥
𝑡
≡ ∑
1

𝑖=0
𝐴
𝑖
𝑥(𝑡 − ℎ

𝑖
),

with ℎ
0
= 0 and 𝐴

0
being a stability matrix of stability
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abscissa (−𝜌
0
) < 0, under any initial vector function satisfying

hypothesis (H.1) with 𝑓(𝑡, 𝑥
𝑡−𝜃𝑏

) = 𝑓
0
(𝑡, 𝑥
𝑡−𝜃𝑎
) + 𝑓
1
(𝑡, 𝑥
𝑡−𝜃3
)

with ‖𝑓(𝑡, 𝑥
𝑡−𝜃𝑏
)‖ ≤ 𝐾

0
sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑏−𝛿

‖ + 𝐾
1
for some

𝐾
0
, 𝐾
1
∈ R
0+
; ∀𝑡 ∈ R

0+
, and 𝑓

0
(𝑡, 𝑥
𝑡−𝜃0
) being subadditive.

Assume that

(1) |𝜇
2
(𝐴
1
)| < 𝜌

0
(or if ‖𝜇

2
(𝐴
1
)‖
2
< 𝜌
0
), where 𝜇

2
(𝐴
1
) is

the 2-matrix measure of 𝐴
1
;

(2) 𝜓
1
(𝑡
𝑛
, 𝑡) ≤ 𝐾𝑒

−(𝜌0−𝛿0)(𝑡−𝑡𝑛); ∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
), ∀𝑛 ∈ Ζ

0+

for any arbitrary 𝛿
0
∈ R
+
,𝐾 = 𝐾

Ψ0
(1 + ‖𝐴

1
‖
2
/𝜌
0
) and

𝐾
Ψ0
∈ R
+
being such that ‖𝑒𝐴0𝑡‖

2
≤ 𝐾
Ψ0
𝑒
−𝜌0𝑡;∀𝑡 ∈ R

0+
;

(3) 0 ≤ 𝐾
0
< 𝐾(1 − 𝑒

−𝜌0𝛾
) for some 𝛾 ∈ R

+
;

(4) {𝑇
𝑛
} is subject to (13) so that (14) takes the form

𝑧
𝑛
≤

𝐾 − 𝐾
0
− 𝜓
1
(𝑡
𝑛
, 𝑡)

𝐾
1
max
𝑡𝑛≤𝜏≤𝑡

𝜓
1
(𝑡
𝑛
, 𝜏)

;

∀𝑡 ∈ [𝑡
𝑛
+ 𝛾
𝑛
, 𝑡
𝑛+1
) 𝑤𝑖𝑡ℎ 𝛾

𝑛
≥ 𝛾 > 0

(23)

for sufficiently large 𝑛
0
∈ Z
0+

and (15) becomes
ℎ
∗
(𝑡
𝑛
) = ℎ
1
; ∀𝑛 ∈ Z

0+
.

Then, the nominal and perturbed solutions are bounded
for all time and 𝑥

0
(𝑡) → 0, 𝑥(𝑡) → 0, and 𝑒(𝑡) →

0 exponentially fast as 𝑡 → ∞ so that the nominal and
the perturbed differential systems are globally exponentially
Lyapunov stable. The condition that ‖𝑒(𝑡)‖ is bounded for all
time and 𝑒(𝑡) → 0 exponentially fast as 𝑡 → ∞ still
holds if condition 1 (global asymptotic stability of the nominal
differential system) is removed.

Proof. It turns out that if 𝐴
0
is a stability matrix of stability

abscissa (−𝜌
0
) < 0 and |𝜇

2
(𝐴
1
)| < 𝜌 (or if ‖𝜇

2
(𝐴
1
)‖
2
<

𝜌
0
since |𝜇

2
(𝐴
1
)| ≤ ‖𝐴

1
‖
2
) then the solution of 𝐿

0
𝑥
𝑡
≡

∑
1

𝑖=0
𝐴
𝑖
𝑥(𝑡 − ℎ

𝑖
) is bounded for any initial solution subject

to hypothesis (H.1). Furthermore, 𝑥
0
(𝑡) → 0 as 𝑡 → ∞

exponentially for the fundamentalmatrix function for𝜇
1
(𝑡) ≡

1:

Ψ
1
(𝑡, 𝑡
𝑛
)

= 𝑒
𝐴0(𝑡−𝑡𝑛)

× (𝐼 + ∫

𝑡

𝑡𝑛

𝑒
𝐴0(𝑡𝑛+𝜏)

𝐴
1
Ψ
1
(𝜏 − ℎ

1
) 𝑈 (𝜏 − ℎ

1
) 𝑑𝜏) ;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) ; ∀𝑛 ∈ Z

0+

(24)

being the unique solution of

̇
Ψ
1
(𝑡, 𝑡
𝑛
) = 𝐴

0
Ψ
1
(𝑡, 𝑡
𝑛
)

+ 𝐴
1
(𝑡) 𝑈 (𝑡 − ℎ

1
) Ψ
1
(𝑡 − ℎ

1
, 𝑡
𝑛
) ;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) , ∀𝑛 ∈ Z

0+

(25)

with Ψ
1
(𝑡, 𝑡) = 𝐼; ∀𝑡 ∈ R

0
and Ψ

1
(𝑡, 𝑡
𝑛
) = 0 for 𝑡 < 𝑡

𝑛
; ∀𝑛 ∈

Z
0+

[16, 21–23] with ‖Ψ
1
(𝑡, 𝑡
𝑛
)‖
2
≤ 𝜓
1
(𝑡
𝑛
, 𝑡); ∀𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1
),

∀𝑛 ∈ Z
0+
. Furthermore,

(a) ‖𝑒𝐴0𝑡‖
2
≤ 𝐾
Ψ0
𝑒
−𝜌0𝑡 for some 𝐾

Ψ0
∈ R
+
; ∀𝑡 ∈ R

0+
since

𝐴
0
is a stability matrix, and

(b)





Ψ
1
(𝑡, 𝑡

)





2

≤








𝑒
𝐴0(𝑡−𝑡


)





2

× (1 +










∫

𝑡

𝑡


𝑒
𝐴0(𝑡

+𝜏)
𝐴
1
Ψ
1
(𝜏 − ℎ

1
) 𝑈 (𝜏 − ℎ

1
) 𝑑𝜏








 2

)

≤ 𝐾
Ψ0
𝑒
−𝜌0(𝑡−𝑡


)
(1 +

𝐾
Ψ0





𝐴
1




2

𝜌
0

)

≤ (𝐾
Ψ0
+
̃
𝐾) 𝑒
−(𝜌0−𝛿0)(𝑡−𝑡


)

≤ 𝐾
Ψ0
𝑒
−𝜌0(𝑡−𝑡


)
+
̃
𝐾𝑒
−(𝜌0−𝛿 0

)(𝑡−𝑡

)

(26)

for all 𝑡(≥ 𝑡

) ∈ R

0+
and any arbitrary 𝛿

0
∈ R
+
if ̃𝐾 ≥

𝐾
Ψ0
‖𝐴
1
‖
2
/𝜌
0
. Thus,





Ψ
1
(𝑡, 𝑡
𝑛
)



2

≤ 𝜓
1
(𝑡
𝑛
, 𝑡) ≤ 𝐾𝑒

−(𝜌0−𝛿0)(𝑡−𝑡𝑛)

≤ 𝐾 − 𝐾
0
= 𝐾
Ψ0
(1 +





𝐴
1




2

𝜌
0

) − 𝐾
0
;

(27)

∀𝑡 ∈ [𝑡
𝑛
+ 𝛾
𝑛
, 𝑡
𝑛+1
), ∀𝑛 ∈ Z

0+
for 𝛾
𝑛
≥ 𝛾 > 0 and sufficiently

large 𝛾 ∈ R
+
. On the other hand, from Corollary 4 for 𝜇

1
(𝑡) ≡

1, then leading to (23), one gets that ‖𝑒(𝑡)‖ is bounded for all
𝑡 ∈ R

0+
for any initial solution of the perturbed differential

system subject to hypothesis (H.1) and 𝑒(𝑡) → 0 as 𝑡 → ∞

exponentially fast. As a result, ‖𝑥(𝑡)‖
2
is bounded for all 𝑡 ∈

R
0+

and 𝑥(𝑡) → 0 as 𝑡 → ∞ exponentially fast.

Remark 6. Note that a close result to Corollary 5 may be
formulated for the special case when 𝑓

1
(𝑡, 𝑥
𝑡−𝜃
) =

̃
𝐴
1
(𝑡)𝑥(𝑡 −

ℎ
1
) by replacing 𝐾

0
→ 𝐾

00
, 𝐾
1
→ 𝐾

01
in (23) with

𝐾
00
≤ 𝐾
0
and 𝐾

01
≤ 𝐾
1
being such that ‖𝑓

0
(𝑡, 𝑥
𝑡−𝜃𝑎
)‖ ≤

𝐾
00

sup
0≤𝛿≤ℎ

‖𝑥
𝑡−𝜃𝑎−𝛿

‖ + 𝐾
01
.

Remark 7. A close result to Corollary 5 may be formulated if
(𝐴
0
+ 𝐴
1
) is a stability matrix of stability abscissa (−𝜌) < 0

by replacing 𝜌
0
→ 𝜌 in conditions 1–3 and 𝐾

1
→ 2𝐾

1

in condition 4. In the case that 𝑓
1
(𝑡, 𝑥
𝑡−𝜃
) =

̃
𝐴
1
(𝑡)𝑥(𝑡 − ℎ

1
)

(see Remark 6) a further close result is obtained by replacing
𝐾
1
max
𝑡𝑛≤𝜏≤𝑡

𝜓
1
(𝑡
𝑛
, 𝜏) → 2 max

𝑡𝑛≤𝜏≤𝑡
(𝜓
1
(𝑡
𝑛
, 𝜏) + ‖

̃
𝐴
1
(𝜏)‖
2
)

in condition 4 of Corollary 5 since ‖𝐴
1
(𝑥(𝑡 − ℎ

1
) − 𝑥(𝑡))‖

2
≤

2‖𝐴
1
‖
2
‖𝑥
𝑡
‖
2
with 𝑥

𝑡
being the string of solution in [𝑡 − ℎ

1
, 𝑡].

The associated proofs are direct fromCorollary 5 by rewriting
the nominal differential system as 𝐿

0
𝑥
𝑡
≡ (𝐴
0
+ 𝐴
1
)𝑥(𝑡) +

𝐴
1
(𝑥(𝑡 − ℎ

1
) − 𝑥(𝑡)).

Remark 8. A further close result to Corollary 5 can be
obtained by considering the nominal differential system to be
𝐿
0
𝑥
𝑡
≡ 𝐴
0
𝑥(𝑡) so that𝐴

1
𝑥(𝑡−ℎ

1
) defines a perturbed delayed
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dynamics. In this case, we consider the fundamentalmatrix to
beΨ
0
(𝑡, 𝑡
𝑛
) = 𝑒
𝐴0(𝑡−𝑡𝑛) with ‖Ψ

0
(𝑡
𝑛
, 𝑡)‖
2
≤ 𝜓
0
(𝑡, 𝑡
𝑛
) ≤ 𝐾
𝜓0
𝑒
−𝜌0𝑡;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
), ∀𝑛 ∈ Z

0+
. Conditions 1–3 are restated with the

replacement 𝜓
1
(𝑡
𝑛
, 𝜏) → 𝜓

0
(𝑡
𝑛
, 𝜏) for 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1
), ∀𝑛 ∈ Z

0+

while constraint (23) of condition 4 is changed to

𝑧
𝑛
≤

𝐾 − 𝐾
0
− 𝜓
0
(𝑡
𝑛
, 𝑡)

max
𝑡𝑛≤𝜏≤𝑡

[𝜓
0
(𝑡
𝑛
, 𝜏) (𝐾

1
+






𝐴
1
+
̃
𝐴
1
(𝜏)





2
)]

;

∀𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) , ∀𝑛 ∈ Z

0+
.

(28)

Then, the nominal and perturbed solutions are bounded for
all time and 𝑥

0
(𝑡) → 0, 𝑥(𝑡) → 0, and 𝑒(𝑡) → 0

exponentially fast as 𝑡 → ∞ so that the nominal and the
perturbed differential systems are globally exponentially Lya-
punov stable under conditions 1–3 and condition 4 modified
with (28). The condition that ‖𝑒(𝑡)‖

2
is bounded for all time

and 𝑒(𝑡) → 0 exponentially fast as 𝑡 → ∞ still holds
if condition 1 (global asymptotic stability of the nominal
differential system) is removed. Variants of this result under
the considerations of Remarks 6 and 7 are direct.

Note that the above results imply that both the nomi-
nal system and the current perturbed one have trajectory
solutions which converge asymptotically to zero under any
initial conditions. It is easy to see that 𝑥 = 0 is a globally
asymptotically stable equilibrium point and also a fixed point
of the state-trajectory solution, under the various conditions
of Corollary 5 as well as their variants in Remarks 3–8;
that is, it is a globally stable attractor for all the trajectory
solutions. The relevance of fixed point theory in stability of
perturbed differential systems has been also emphasized in
some background literature. See, for instance, [10, 20, 24, 26–
28] and references therein. On the other hand, Hyers-Ulam
stability has been also invoked in difference-type linear and
nonlinear equations as, for instance, in [25] and several back-
ground references therein. Note that difference equations are
sometimes got from the discretization of continuous-time
system either via the use of numerical tools or by the use
of physical sampling and hold devices and that the stability
of such discretized systems can be, in general, either studied
independently of that of their continuous-time counterparts,
via “ad hoc” discrete analysis methods, or based with the
stability properties of the continuous-time version with extra
conditions on the sequence of sampling instants (see, e.g.,
[22]).

If 𝑔 = 𝑔 − 𝑔
0
is nonzero, then the extension of all the

above results is direct for the cases that it is either bounded
on R
0+
, if the fundamental matrix is absolutely integrable,

or square-integrable, if the fundamental matrix is absolutely
integrable on R

0+
. Note that if the nominal differential

system is exponentially stable, then a fundamental matrix
is of exponential negative order, and then both absolutely
integrable and square-integrable exist. Then one has the
following result.

Corollary 9. Assume that the nominal differential system
is globally exponentially stable and 𝑔 : R

0+
→ R𝑛 is

either bounded or integrable or square-integrable. Then, a

fundamental matrix Ψ
𝜇(𝑡𝑛)

(𝑡
𝑛
, 𝑡) exists such that Theorem 1,

Corollaries 4 and 5, and their extensions of Remarks 3–8
still hold for some 𝐸 > ‖ ∫

𝑡

𝑡𝑛

Ψ
𝜇
(𝑡, 𝜏)𝑔(𝜏)𝑑𝜏‖ if the needed

denominator of (21) to (23) is, in each case, corrected with
the additive term ‖ ∫𝑡

𝑡𝑛

Ψ
𝜇
(𝑡, 𝜏)𝑔(𝜏)𝑑𝜏‖ or with any of its upper-

bounds:

max
𝑡𝑛≤𝜏≤𝑡

𝜓
𝜇
(𝑡, 𝜏)











∫

𝑡

𝑡𝑛

𝑔 (𝜏) 𝑑𝜏











;

max
𝑡𝑛≤𝜏≤𝑡





𝑔 (𝜏)
















∫

𝑡

𝑡𝑛

Ψ
𝜇 (
𝑡, 𝜏) 𝑑𝜏











;

(











∫

𝑡

𝑡𝑛

𝑔 (𝜏) 𝑑𝜏











2

)

1/2

(











∫

𝑡

𝑡𝑛

Ψ
𝜇
(𝑡, 𝜏) 𝑑𝜏











2

)

1/2

.

(29)

Outline of Proof. Note that (20a) is modified as follows:





̇𝑒 (𝑡) − 𝐿𝑒

𝑡





=











∫

𝑡

𝑡𝑛

Ψ
𝜇
(𝑡, 𝜏) 𝑔 (𝜏) 𝑑𝜏











≤




(𝐿 − 𝐿

0
) 𝑥
0𝑡





+ Λ (𝑡

𝑛
, 𝑡)

(30)

for some nonnegative real function Λ : (Z
0+
× R
0+
) × R
0+
→

R
0+

such that Λ(𝑡
𝑛
, 𝑡) is of some of the forms of (29) leading

to Λ(𝑡
𝑛
, 𝑡) → 0 and ‖(𝐿 − 𝐿

0
)𝑥
0𝑡
‖ + Λ(𝑡

𝑛
, 𝑡) → 0 for

𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1
) as 𝑛 → ∞; the nominal differential system is

globally exponentially stable and 𝑔 : R
0+

→ R𝑛 is either
bounded or integrable or square-integrable.
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