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Quantum Simulation of Dissipative 
Processes without Reservoir 
Engineering
R. Di Candia1, J. S. Pedernales1, A. del Campo2, 3, 4, E. Solano1, 5 & J. Casanova1, 6

We present a quantum algorithm to simulate general finite dimensional Lindblad master equations 
without the requirement of engineering the system-environment interactions. The proposed method 
is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum 
computation of the dissipative corrections to the unitary evolution of the system of interest, via the 
reconstruction of the response functions associated with the Lindblad operators. Our approach is 
equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the 
quality of our method providing specific error bounds that quantify its accuracy.

While every physical system is indeed coupled to an environment1,2, modern quantum technologies have 
succeeded in isolating systems to an exquisite degree in a variety of platforms3–6. In this sense, the last 
decade has witnessed great advances in testing and controlling the quantum features of these systems, 
spurring the quest for the development of quantum simulators7–10. These efforts are guided by the early 
proposal of using a highly tunable quantum device to mimic the behavior of another quantum system of 
interest, being the latter complex enough to render its description by classical means intractable. By now, 
a series of proof-of-principle experiments have successfully demonstrated the basic tenets of quantum 
simulations revealing quantum technologies as trapped ions11, ultracold quantum gases12, and supercon-
ducting circuits13 as promising candidates to harbor quantum simulations beyond the computational 
capabilities of classical devices.

It was soon recognised that this endeavour should not be limited to simulating the dynamics of iso-
lated complex quantum systems, but should more generally aim at the emulation of arbitrary physical 
processes, including the open quantum dynamics of a system coupled to an environment. Tailoring the 
complex nonequilibrium dynamics of an open system has the potential to uncover a plethora of tech-
nological and scientific applications. A remarkable instance results from the understanding of the role 
played by quantum effects in the open dynamics of photosynthetic processes in biological systems14,15, 
recently used in the design of artificial light-harvesting nanodevices16–18. At a more fundamental level, an 
open-dynamics quantum simulator would be invaluable to shed new light on core issues of foundations 
of physics, ranging from the quantum-to-classical transition and quantum measurement theory19 to the 
characterization of Markovian and non-Markovian systems20–22. Further motivation arises at the fore-
front of quantum technologies. As the available resources increase, the verification with classical comput-
ers of quantum annealing devices23,24, possibly operating with a hybrid quantum-classical performance, 
becomes a daunting task. The comparison between different experimental implementations of quantum 
simulators is required to establish a confidence level, as customary with other quantum technologies, 
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e.g., in the use of atomic clocks for time-frequency standards. In addition, the knowledge and control of 
dissipative processes can be used as well as a resource for quantum state engineering25.

Facing the high dimensionality of the Hilbert space of the composite system made of a quantum 
device embedded in an environment, recent developments have been focused on the reduced dynamics 
of the system that emerges after tracing out the environmental degrees of freedom. The resulting nonuni-
tary dynamics is governed by a dynamical map, or equivalently, by a master equation1,2. In this respect, 
theoretical26–28 and experimental29 efforts in the simulation of open quantum systems have exploited the 
combination of coherent quantum operations with controlled dissipation. Notwithstanding, the experi-
mental complexity required to simulate an arbitrary open quantum dynamics is recognised to substan-
tially surpass that needed in the case of closed systems, where a smaller number of generators suffices to 
design a general time-evolution. Thus, the quantum simulation of open systems remains a challenging 
task.

In this Letter, we propose a quantum algorithm to simulate finite dimensional Lindblad master equa-
tions, corresponding to Markovian or non-Markovian processes. Our protocol shows how to reconstruct, 
up to an arbitrary finite error, physical observables that evolve according to a dissipative dynamics, by 
evaluating multi-time correlation functions of its Lindblad operators. We show that the latter requires 
the implementation of the unitary part of the dynamics in a quantum simulator, without the necessity 
of physically engineering the system-environment interactions. Moreover, we demonstrate how these 
multi-time correlation functions can be computed with a reduced number of measurements. We further 
show that our method can be applied as well to the simulation of processes associated with non-Hermitian 
Hamiltonians. Finally, we provide specific error bounds to estimate the accuracy of our approach.

Consider a quantum system coupled to an environment whose dynamics is described by the von 
Neumann equation i H[ ]d

dt
ρ= ,ρ . Here, ρ is the system-environment density matrix, H H s= H He I+ + , 

where Hs and He are the system and environment Hamiltonians, while HI corresponds to their interaction. 
Assuming weak coupling and short time-correlations between the system and the environment, after trac-
ing out the environmental degrees of freedom we obtain the Markovian master equation

 1d
dt

tρ= , ( )ρ

being Treρ ρ= ( ) and t the time-dependent superoperator governing the dissipative dynamics1,2. 
Notice that there are different ways to recover Eq. (1)30. Nevertheless, Eq. (1) is our starting point, and 
in the following we show how to simulate this equation regardless of its derivation. Indeed, our algorithm 
does not need to control any of the approximations done to achieve this equation. We can decompose 
t into   t

H
t

D
t= + . Here, H

t  corresponds to a unitary part, i.e. ρ ρ≡− ( ), [ ]i H tH
t , where H(t) 

is defined by HS plus a term due to the lamb-shift effect and it may depend on time. Instead, D
t  is the 

dissipative contribution and it follows the Lindblad form31 ( )ρ γ ρ ρ≡ ∑ ( ) − ,=
† † { }t L L L LD

t
i
N

i i i i i1
1
2

, 
where Li are the Lindblad operators modelling the effective interaction of the system with the bath that 
may depend on time, while tiγ ( ) are nonnegative parameters. Notice that, although the standard deriva-
tion of Eq. (1) requires the Markov approximation, a non-Markovian equation can have the same form. 
Indeed, it is known that if t 0iγ ( ) <  for some t and dt t 0

t
i0∫ γ′ ( ′) >  for all t, then Eq. (1) corresponds 

to a completely positive non-Markovian channel32. Our approach can deal also with non-Markovian 
processes of this kind, keeping the same efficiency as the Markovian case. While we will consider the 
general case ti iγ γ= ( ), whose sign distinguishes the Markovian processes from the non-Markovian 
ones, for the sake of simplicity we will consider the case H H t≠ ( ) and L L ti i≠ ( ) (in the following, we 
will denote H

t  simply as H). However, the inclusion in our formalism of time-dependent Hamiltonians 
and Lindblad operators is straightforward.

One can integrate Eq. (1) obtaining a Volterra equation33

∫ρ ρ ρ( ) = ( ) + ( ), ( )( − )  t e ds e s0 2t t t s
D
s

0
H H

where e t kt
k

k
H
k

0
H ≡ ∑ / !=

∞ . The first term at the right-hand-side of Eq. (2) corresponds to the unitary 
evolution of 0ρ ( ) while the second term gives rise to the dissipative correction. Our goal is to find a 
perturbative expansion of Eq. (2) in the D

t  term, and to provide with a protocol to measure the result-
ing expression in a unitary way. In order to do so, we consider the iterated solution of Eq. (2) obtaining

ρ ρ( ) ≡ ∑ ( ). ( )=
∞t t 3i i0

Here,  t e 0t
0

Hρ ρ( ) = ( ), while, for i ≥  1, tiρ ( ) has the following general structure: t e 0i j
i

j
s

1
i Hρ Π ρ( ) = Φ ( )=  

jΦ  being a superoperator acting on an arbitrary matrix ξ as ds ej
s

j
s s

D
s

0
j j j H j1 1∫ξ ξΦ = ( − )− − , where 

s t0 ≡ . For instance, t2ρ ( ) can be written as
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In this way, Eq. (3) provides us with a general and useful expression of the solution of Eq. (1). Let us 
consider the truncated series in Eq. (3), that is t e t0n

t
i
n

i1
Hρ ρ ρ( ) = ( ) + ∑ ( )=

, where n corresponds to 
the order of the approximation. We will prove that an expectation value ρ≡ ( )ρ ( ) [ ]O O tTrt

 corre-
sponding to a dissipative dynamics can be well approximated as

O r Oe r O tT [ 0 ] T [ ] 4t
t

i
n

i1
Hρ ρ≈ ( ) + ∑ ( ) . ( )ρ ( ) =

In the following, we will supply with a quantum algorithm based on single-shot random measure-
ments to compute each of the terms appearing in Eq. (4), and we will derive specific upper-bounds 
quantifying the accuracy of our method. Notice that the first term at the right-hand-side of Eq. (4), i.e. 

r OeT [ 0 ]t Hρ ( ) , corresponds to the expectation value of the operator O evolving under a unitary dynam-
ics, thus it can be measured directly in a unitary quantum simulator where the dynamics associated with 
the Hamiltonian H is implementable. However, the successive terms of the considered series, i.e. 

r O tT [ ]iρ ( )  with i ≥  1, require a specific development because they involve multi-time correlation func-
tions of the Lindblad operators and the operator O.

Let us consider the first order term of the series in Eq. (4)

∫

∫∑

ρ

γ

= ( )

= ( )




( ) ( ) ( ) − ( ), ( )





,

( )ρ ( )
( − )

=

† †



{ }
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ds s L s O t L s O t L L s
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1
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1 0 1 1 1 1 1

H
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where s e eiHs iHsξ ξ( ) ≡ −  for a general operator ξ and time s, and all the expectation values are computed 
in the state 0ρ ( ). Note that the average values appearing in the second and third lines of Eq. (5) corre-
spond to time correlation functions of the operators O, Li, Li

†, and L Li i
† . In the following, we consider a 

basis { }Q j j

d

1

2

=
, where d is the system dimension and Qj are Pauli-kind operators, i.e. both unitary and 

Hermitian (see supplemental material37 for more details). The operators Li and O can be decomposed as 
L q Qi k

M
k
i

k
i

1
i= ∑ =

 and O q Qk
M

k
O

k
O

1
O= ∑ =

, with qk
i O ∈, , { }Q Qk

i O
j j

d

1

2

∈,
=

, and Mi,Mo ≤  d2. We obtain then

L s O t L s q q q Q s Q t Q s 6i i l
M

k k
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l
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k
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k
i

l
O

k
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1 1 1 1 1 1O i( ) ( ) ( ) = ∑ ∑ ( ) ( ) ( ) , ( )= , ′= ′ ′
† ⁎

that is a sum of correlations of unitary operators. The same argument applies to the terms including L Li i
†  

in Eq. (5). Accordingly, we have seen that the problem of estimating the first-order correction is moved 
to the measurement of some specific multi-time correlation functions involving the Qk

i O,  operators. The 
argument can be easily extended to higher-order corrections. Indeed, for the n-th order, we have to 
evaluate the quantity

  O dV Oe e dV A sTr[ 0 ] 7t n
t s

D
s

D
s s

i i
N

n i i1 [ ]
n

H n n H
n n

1 1
1 1∫ ∫ρ= … ( ) ≡ ∑ (→) . ( )ρ ( )

( − )
,…, = ,...,

Here,

    A s e e e Oi i
s

D
s i

D
s i s s

D
s i t s

[ ]n
n H n n H H

1
2 2 1 2 1 1 1(→) ≡ … ,,…,

, , ( − ) , ( − )† † †† † †

where ( )ξ γ ξ ξ≡ ( ) − ,, † † { }s L L L LD
s i

i i i i i
1
2

, s s sn1
→ = ( , …, ), dV ds dsn

t s
n0 0 1

n 1∫ ∫ ∫= … …− , and 
 ξ ξ≡ ( )† † for a general superoperator . As in Eq. (5), the above expression contains multi-time 
correlation functions of the Lindblad operators L Li in1

, …,  and the observable O, that have to be evalu-
ated in order to compute each contribution in Eq. (4).

Our next step is to provide a method to evaluate general terms as the one appearing in Eq. (7). The 
standard approach to estimate this kind of quantities corresponds to measuring the expected value 
A si i[ ]n1

(→),...,  at different random times s→ in the integration domain, and then calculating the average. 
Nevertheless, this strategy involves a huge number of measurements, as we need to estimate an expecta-
tion value at each chosen time. Our technique, instead, is based on single-shot random measurements 
and, as we will see below, it leads to an accurate estimate of Eq. (7). More specifically, we will prove that

dV A s A t 8i i
N

n i i
N V

1 [ ]n n

n
n

n n1 1∫∑ (→) ≈ ∑ (
→
), ( )

∼
ω,…, = ,..., Ω Ω →



www.nature.com/scientificreports/

4Scientific RepoRts | 5:09981 | DOi: 10.1038/srep09981

where A t(→)∼
ω→  corresponds to a single-shot measurement of A t(→)ω→ , being 

ω ω ω→,
→
∈ Ω ⊂ →,

→ → = , …, , ∈ , ,
→
∈{ }t t i i i N t V[ ] [ ] [ ] [1 ]n n k n1 , nΩ  is the size of nΩ , and t[ ]ω→, →  

are sampled uniformly and independently. As already pointed out, the integrand in Eq. (7) involves 
multi-time correlation functions. In this respect, we note that a quantum algorithm for their efficient 
reconstruction has recently been proposed34. Indeed, the authors in Ref. [34] show how, by adding only 
one ancillary qubit to the simulated system, general time-correlation functions are accessible by imple-
menting only unitary evolutions of the kind et H, together with entangling operations between the ancil-
lary qubit and the system. It is noteworthy to mention that these operations have already experimentally 
demonstrated in quantum systems as trapped ions35 or quantum optics6, and have been recently pro-
posed for cQED architectures36. Moreover, the same quantum algorithm allows us to measure single-shots 
of the real and imaginary part of these quantities providing, therefore, a way to compute the term at the 
right-hand-side of Eq. (8). Notice that the evaluation of each term A si i[ ]n1

(→),...,  in Eq. (7), requires a 
number of measurements that depends on the observable decomposition, see Eq. (6). After specifying it, 
we measure the real and the imaginary part of the corresponding correlation function. Finally, in the 
supplemental material37 we prove that

dV A s A t 9i i
N

n i i
Nt

n n1 [ ]n n

n

n n1 1∫ δ∑ (→) − ∑ (
→
) ≤ ( )

∼
ω,…, = ,...,

( )

! Ω Ω →

with probability higher than  e1 − β− , provided that  n
M MNt

n
36 2 2O

n

n2

2

2

2Ω >
β

δ

γ( + ) ( )

!
, where  smax i s t i[0 ]γ γ≡ ( ), ∈ ,  

and M max Mi i≡ . Equation (9) means that that the quantity in Eq. (7) can be estimated with arbitrary 
precision by random single-shot measurements of A si i[ ]n1

(→),..., , allowing, hence, to dramatically reduce the 
resources required by our quantum simulation algorithm. Notice that the required number of measure-
ments to evaluate the order n is bounded by 3n

nΩ , and the total number of measurements needed to com-
pute the correction to the expected value of an observable up the order K is bounded by 3n

K n
n0∑ Ω= . In the 

following, we discuss at which order we need to truncate in order to have a certain error in the final result.
So far, we have proved that we can compute, up to an arbitrary order in D

t , expectation values cor-
responding to dissipative dynamics with a unitary quantum simulation. It is noteworthy that our method 
does not require to physically engineer the system-environment interaction. Instead, one only needs to 
implement the system Hamiltonian H. In this way we are opening a new avenue for the quantum simu-
lation of open quantum dynamics in situations where the complexity on the design of the dissipative 
terms excedes the capabilities of quantum platforms. This covers a wide range of physically relevant sit-
uations. One example corresponds to the case of fermionic theories where the encoding of the fermionic 
behavior in the degrees of freedom of the quantum simulator gives rise to highly delocalized opera-
tors38,39. In this case a reliable dissipative term should act on these non-local operators instead of on the 
individual qubits of the system. Our protocol solves this problem because it avoids the necessity of imple-
menting the Lindblad superoperator. Moreover, the scheme allows one to simulate at one time a class of 
master equations corresponding to the same Lindblad operators, but with different choices of iγ , includ-
ing the relevant case when only a part of the system is subjected to dissipation, i.e. 0iγ =  for some 
values of i.

We shall next quantify the quality of our method. In order to do so, we will find an error bound 
certifying how the truncated series in Eq. (3) is close to the solution of Eq. (1). This error bound will 
depend on the system parameters, i.e. the time t and the dissipative parameters iγ . As figure of merit we 
choose the trace distance, defined by

D 101 1 2 2
1 2 1ρ ρ( , ) ≡ , ( )
ρ ρ−

where A Ai i1 σ≡ ∑ ( ), being Aiσ ( ) the singular values of A40. Our goal is to find a bound for 
D t tn1 ρ ρ( ( ), ( ))

, where t tn i
n

i0ρ ρ( ) ≡ ∑ ( )=

 is the series of Eq. (3) truncated at the n-th order. We note 
that the the following recursive relation holds

∫ρ ρ ρ( ) = ( ) + ( ). ( )( − )
− 

 t e dse s0 11n
t

t
t s

D
s

n0 1
H H

From Eq. (11), it follows that

∫

∫

ρ ρ ρ ρ

ρ ρ
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→ −
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where we have introduced the induced superoperator norm 


sup1 1
1

1
≡ σ

σ

σ→
40. For n =  0, i.e. for 

ρ ρ ρ( ) ≡ ( ) = ( )
 

t t e 0n
t

0
H , we obtain the following bound

D t t ds s L t
t

D
s

i i ii
N

1 0 0 1 1 1
21

2
( ( ), ( )) ( ) ( ) ,ρ ρ ρ γ ε ≤ ≤∫ ∑→ = ∞

 1

where t0 iε≤ ≤ 37, and A Asupi iσ≡ ( )∞ . Notice that, in finite dimension, one can always renormal-
ize iγ  in order to have L 1i =∞

, i.e. if we transform L L Li i i→ / ∞
, Li i iγ γ→ ∞

, the master equa-
tion remains invariant. Using Eq. (12)–(13), one can show by induction that for the general n-th order 
the following bound holds

D t t 2 14n k
n

i
N

i i
t
n

Nt
n1 0 1 2 1

2
2 1k k k

n n1 1

ρ ρ γ ε( ( ), ( )) ≤ ∏ 
 ∑

( ) 


≤ , ( )γ
= = ( + ) !

( )
( + ) !

+ +



where t0 ik
ε≤ ≤  and we have set L 1i =∞ . From Eq. (14), it is clear that the series converges uni-

formly to the solution of Eq. (1) for every finite value of t and choices of iγ . As a result, the number of 
measurements needed to simulate a certain dynamics at time t up to an error 1ε <  is O t log e1 2 Mt12

2( )

 +



,ε ε

 

where t Ntγ= 37. Here, a discussion on the efficiency of the method is needed. From the previous for-
mula, we can say that our method performs well when M is low, i.e. in case where each Lindblad oper-
ators can be decomposed in few Pauli-kind operators. Moreover, as our approach is perturbative in the 
dissipative parameters iγ , the method is more efficient when iγ  are small. Notice that analytical pertur-
bative techniques are not available in this case, because the solution of the unperturbed part is assumed 
to be not known. Lastly, it is evident that the algorithm is efficient for certain choices of time, and the 
relevance of the simulation depends on the particular cases. For instance, a typical interesting situation 
is a strongly coupled Markovian system. Let us assume a site-independent couple parameter g and a 
dissipative parameter γ. We have that e eMt1 12Mt12 ≤ +  if t t

M N c
1

12
≤ ≡

γ
. In this period, the system 

oscillates typically C gtc
g

MN12
≡ = γ/  times, so the simulation can be considered efficient for N g Cγ/~ , 

which, in the strong coupling regime, can be of the order of 103/C. Notice that, in most relevant physical 
cases, the number of Lindblad operators N is of the order of the number of system parties27.

All in all, our method is aimed to simulate a different class of master equations with respect to the 
previous approaches, including non-Markovian quantum dynamics, and it is efficient in the range of 
times where the exponential e Mt may be truncated at some low order. A similar result is achieved by the 
authors of Ref. [27], where they simulate a Lindblad equation via Trotter decomposition. They show that 
the Trotter error is exponentially large in time, but this exponential can be truncated at some low order 
by choosing the Trotter time step Δ t sufficiently small. Our method is qualitatively different, and it can 
be applied also to analogue quantum simulators where suitable entangled gates are available.

Lastly, we note that this method is also appliable to simulate dynamics under a non-Hermitian 
Hamiltonian J H i= − Γ, with H H= †, Γ = Γ†. This type of generator emerges as an effective 
Hamiltonian in the Feshbach partitioning formalism41, when one looks for the evolution of the density 
matrix projected onto a subspace. The new Schrödinger equation reads

i H[ ] { } 15d
dt

ρ Γ ρ= − , + , , ( )ρ

This kind of equation is useful in understanding several phenomena, e.g. scattering processes42 and 
dissipative dynamics43, or in the study of PT-symmetric Hamiltonian44. Our method consists in consid-
ering the non-Hermitian part as a perturbative term. As in the case previously discussed, similar bounds 
can be easily found (see the supplemental material37), and this proves that the method is reliable also in 
this situation.

In conclusion, we have proposed a method to compute expectation values of observables that evolve 
according to a generalized Lindblad master equation, requiring only the implementation of its unitary 
part. Through the quantum computation of n-time correlation functions of the Lindblad operators, we 
are able to reconstruct the corrections of the dissipative terms to the unitary quantum evolution without 
reservoir engineering techniques. We have provided a complete recipe that combines quantum resources 
and specific theoretical developments to compute these corrections, and error-bounds quantifying the 
accuracy of the proposal and defining the cases when the proposed method is efficient. Our technique 
can be also applied, with small changes, to the quantum simulation of non-Hermitian Hamiltonians. 
The presented method provides a general strategy to perform quantum simulations of open systems, 
Markovian or not, in a variety of quantum platforms.

References
1. Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, New York, 2002).
2. Rivas, Á. & Huelga, S. F. Open Quantum Systems. An Introduction (Springer, Heidelberg, 2011).
3. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

(13)



www.nature.com/scientificreports/

6Scientific RepoRts | 5:09981 | DOi: 10.1038/srep09981

4. Devoret, M. H. & Schoelkopf, R. J. Superconducting Circuits for Quantum Information: An Outlook. Science 339, 1169 (2013).
5. Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23 (2005).
6. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687 (2009).
7. Feynman., R. P. Simulating Physics with computers. Int. J. Theor. Phys. 21, 467 (1982).
8. Lloyd, S. Universal Quantum Simulators. Science 273, 1073 (1996).
9. Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nature Phys. 8, 264 (2012).

10. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153 (2014).
11. Schneider, C., Porras, D. & Schaetz, T. Experimental quantum simulations of many-body physics with trapped ions. Rep. Prog. 

Phys. 75, 024401 (2012).
12. Bloch, I., Dalibard, J. & Nascimbéne, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267 (2012).
13. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292 (2012).
14. Huelga, S. F. & Plenio, M. B. Vibrations, quanta and biology. Contemp. Phys. 54, 181 (2013).
15. Mostame, S. et al. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in 

photosynthetic complexes. New J. Phys. 14, 105013; (2012).
16. Scully, M. O., Chapin, K. R., Dorfman, K. E., Barnabas Kim, M. & Svidzinsky, A. Quantum heat engine power can be increased 

by noise-induced coherence. PNAS 108, 15097 (2011).
17. Dorfman, K. E., Voronine, D. V., Mukamel, S. & Scully, M. O. Photosynthetic reaction center as a quantum heat engine. PNAS 

110, 2746 (2011).
18. Creatore, C., Parker, M. A., Emmott, S. & Chin, A. W. Efficient biologically inspired photocell enhanced by delocalized quantum 

states. Phys. Rev. Lett. 111, 253601 (2013).
19. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003).
20. Breuer, H.-P., Laine, E.-M. & Piilo, J. Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open 

Systems. Phys. Rev. Lett. 103, 210401 (2009).
21. Rivas, Á., Huelga, S. F. & Plenio, M. B. Entanglement and non-markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 

(2010).
22. Liu, B.-H. et al. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. 

Nature Phys. 7, 931 (2011).
23. Boixo, S., Albash, S. T., Spedalieri, F. M., Chancellor, N. & Lidar, D. A. Experimental signature of programmable quantum 

annealing. Nat. Commun. 4, 3067 (2013).
24. Boixo, S. et al. Evidence for quantum annealing with more than one hundred qubits. Nature Phys. 10, 218 (2014).
25. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nature 

Phys. 5, 633 (2009).
26. Lloyd, S. & Viola, L. Engineering quantum dynamics. Phys. Rev. A 65, 010101 (R) (2001).
27. Kliesch, M., Barthel, T., Gogolin, C., Kastoryano, M. & Eisert, J. Dissipative quantum church-turing theorem. Phys. Rev. Lett. 107 

120501 (2011).
28. Wang, H., Ashhab, S. & Nori, F. Quantum algorithm for simulating the dynamics of an open quantum system. Phys. Rev. A 83, 

062317 (2011).
29. Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486 (2011).
30. Alicki, R., Lidar, D. A. & Zanardi, P. Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations 

of the quantum Markovian limit. Phys. Rev. A 73, 052311 (2006).
31. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976).
32. Rivas, Á., Huelga, S. F. & Plenio, M. B. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. 

Phys. 77, 094001 (2014).
33. Bellman, R. Introduction to matrix analysis, (McGraw-Hill,  New York,  1970).
34. Pedernales, J. S., Di Candia, R., Egusquiza, I. L., Casanova, J. & Solano, E. Efficient quantum algorithm for computing n-time 

correlation functions. Phys. Rev. Lett. 113, 020505 (2014).
35. Lanyon, B. P. et al. Universal Digital Quantum Simulation with Trapped Ions. Science 334, 57 (2011).
36. Mezzacapo, A., Lamata, L., Filipp, S. & Solano, E. Many-body interactions with tunable-coupling transmon qubits. Phys. Rev. 

Lett. 113, 050501 (2014).
37.  Supplemental material
38. Jordan, P. & Wigner, E. Über das Paulische Äquivalenzverbot Z. Phys. 47, 631 (1928).
39. Casanova, J., Mezzacapo, A., Lamata, L. & Solano, E. Quantum simulation of interacting fermion lattice models in trapped ions. 

Phys. Rev. Lett. 108, 190502 (2012).
40. Watrous, J. Notes on super-operator norms induced by Schatten norms. arXiv: 0411077
41. Muga, J. G., Palao, J. P., Navarro, B. & Egusquiza, I. L. Complex absorbing potentials. Phys. Rep. 395, 6; (2004).
42. Moiseyev, N. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 302, 

212; (1998).
43. Plenio, M. B. & Knight, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70, 101 

(1998).
44. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947; (2007).

Acknowledgments
The authors thank Iñigo L. Egusquiza and Ángel Rivas for stimulating discussions. The authors further 
acknowledge support from the Alexander von Humboldt Foundation; Spanish MINECO FIS2012-
36673-C03-02; UPV/EHU UFI 11/55; UPV/EHU PhD grant; Basque Government IT472-10; CCQED, 
PROMISCE, SCALEQIT European projects, U.S. Department of Energy through the LANL/LDRD 
Program and a LANL J. Robert Oppenheimer fellowship (AdC).

Author Contributions
R.D.C. did the calculations. R.D.C., J.S.P., A.D.C., E.S. and J.C. contributed to the developing of the ideas, 
obtention of the results and writing the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

http://www.nature.com/srep


www.nature.com/scientificreports/

7Scientific RepoRts | 5:09981 | DOi: 10.1038/srep09981

Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Di Candia, R. et al. Quantum Simulation of Dissipative Processes without 
Reservoir Engineering. Sci. Rep. 5, 9981; doi: 10.1038/srep09981 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Quantum Simulation of Dissipative Processes without Reservoir Engineering
	Acknowledgments
	Author Contributions



 
    
       
          application/pdf
          
             
                Quantum Simulation of Dissipative Processes without Reservoir Engineering
            
         
          
             
                srep ,  (2015). doi:10.1038/srep09981
            
         
          
             
                R. Di Candia
                J. S. Pedernales
                A. del Campo
                E. Solano
                J. Casanova
            
         
          doi:10.1038/srep09981
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep09981
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep09981
            
         
      
       
          
          
          
             
                doi:10.1038/srep09981
            
         
          
             
                srep ,  (2015). doi:10.1038/srep09981
            
         
          
          
      
       
       
          True
      
   




