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Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons
from transversely polarized protons at the Hermes experiment. The asymmetries were studied as a
function of the azimuthal angle ψ about the beam direction between the target-spin direction and the
hadron production plane, the transverse hadron momentum P T relative to the direction of the incident
beam, and the Feynman variable xF . The sinψ amplitudes are positive for π+ and K +, slightly negative
for π− and consistent with zero for K −, with particular P T but weak xF dependences. Especially large
asymmetries are observed for two small subsamples of events, where also the scattered electron was
recorded by the spectrometer.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
Transverse single-spin asymmetries (SSAs) observed in the az-
imuthal distributions of hadrons produced in high-energy electro-
magnetic and hadronic reactions (where either the projectile or
the target nucleon is polarized transversely to the beam direc-
tion) are a window for our understanding of the nucleon structure
and the process of hadronization in the framework of quantum-
chromodynamics (QCD). They originate from correlations of the
transverse spin of the nucleon and/or the transverse spins of the
quarks with transverse quark momentum and could in models be
related to spin-orbit effects and to the elusive orbital motion of
partons within the nucleon. Left-right cross-section asymmetries
AN for the inclusive production of various hadrons in hadron-
nucleon collisions have been measured over the past three decades
by numerous experiments [1–25] for center-of-mass energies in
the range 4.9–500 GeV. Large values of AN were observed for
single hadrons in p↑ p → h X reactions at large transverse hadron
momenta, P T , and large positive values of xF , exceeding |AN | = 0.4
for charged pions. The Feynman variable xF is defined as the ra-
tio of the longitudinal hadron momentum P L along the beam
direction to its maximum possible value. Transverse single-spin
asymmetries have also been investigated in semi-inclusive deep-
inelastic lepton scattering, lN↑ → l′h X , from transversely polarized
hydrogen [26–31], deuterium [32–34], and 3He [35] targets. Here,
substantial azimuthal SSAs up to about 0.1 have been observed for
hydrogen targets. A review of experimental results can be found in
Refs. [36] and [37], together with an extended discussion on con-
temporary theoretical work.

The large size of these single-spin asymmetries indicates the
importance of effects beyond the standard leading-twist frame-
work based on collinear factorization. One approach [38] is based
on the use of parton distribution and fragmentation functions
that are unintegrated in transverse momenta. In this approach,
the asymmetries are caused mainly by two mechanisms: the
Sivers [39] and Collins [40] effects. The former is related to the
transverse-momentum-dependent naive-time-reversal odd Sivers
distribution function of unpolarized quarks with non-zero trans-
verse momenta in a transversely polarized nucleon. The latter is
related to the chiral-odd transversity distribution of transversely
polarized quarks in a transversely polarized nucleon, in conjunc-
tion with the transverse-momentum-dependent chiral-odd Collins
fragmentation function. The other approach [41–46] links collinear
parton dynamics to higher-twist multiparton correlations. Again,
two mechanisms dominate where either a twist-three chiral-odd
fragmentation function couples to the transversity distribution,
or where a twist-three chiral-even distribution function enters
with the ordinary leading-twist unpolarized fragmentation func-
tion. These approaches have different kinematic domains of valid-
ity, but with a region in common. In the past it was believed that
they succeeded in reproducing the existing measurements of AN

in hadron–hadron reactions to a very large extent, and have been
shown to be related to and consistent with each other in the kine-
matic region where they both apply [47]. Recently, however, a sign
error was identified [48] that invalidates the good agreement ob-
served earlier. Presently the situation is unsettled [49].

There exist several theoretical expectations for aspects of the
SSAs in hadron electroproduction. Their validity depends on the
relative magnitude of the three relevant scales ΛQCD, P T and Q ,
where ΛQCD ∼= 0.3 GeV is the QCD scale parameter and -Q 2 is the
squared four-momentum of the virtual photon that mediates the
lepton-nucleon scattering process:

(i) Theory makes no reliable prediction for the kinematic region
where both P T and Q are small and of order ΛQCD;

(ii) The twist-three approach leads to a characteristic power sup-
pression by 1/P T for large P T , provided P T is the largest scale
in the process. For P T < 1 GeV such power suppressions typi-
cally become less efficient;

(iii) The Sivers and Collins effects become significant when Q 2 >

P 2
T and Q 2 � Λ2

QCD and give a contribution that is not

P T -suppressed. For large Q 2, the dominant contribution to the
asymmetry should therefore come from the Sivers and Collins
mechanisms. The SSAs measured in semi-inclusive DIS were,
in fact, the basis for an extraction of the Sivers and transver-
sity distribution functions and the Collins fragmentation func-
tion (see e.g., Refs. [50,51]);

(iv) It was shown that, for the kinematic regime Q � P T � ΛQCD,
the descriptions in terms of the Sivers distribution function
and of twist-three quark-gluon correlation functions become

http://creativecommons.org/licenses/by/3.0/
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equivalent [52] and that there also exists a kinematic region
in which a twist-three fragmentation function and the leading-
twist Collins fragmentation function can be mapped onto one
another [53]. For P 2

T ∼ Q 2 one cannot make any quantitative
theoretical statement about their connection.

A substantial number of theoretical predictions (see, e.g.,
Refs. [44,47,54–60]) have not yet been confronted with experimen-
tal data. More data are required in a wider kinematic range that
covers transverse momenta as high as possible but also approaches
P T values as small as ΛQCD for both AN in hadron–hadron re-
actions and SSAs in electroproduction of hadrons, lp↑ → h X . This
Letter reports on the first measurement of azimuthal SSAs in inclu-
sive electroproduction of charged pions and kaons off transversely
polarized protons. It addresses a portion of this unexplored kine-
matic space.

The data reported here were collected during the period
2002–2005 with the Hermes spectrometer [61] using the 27.6 GeV
lepton beam (electrons or positrons) incident upon a transversely
nuclear-polarized gaseous hydrogen target internal to the Hera

lepton storage ring at Desy. The integrated luminosity of the data
sample was approximately 146 pb−1. The average magnitude of
the proton-polarization component perpendicular to the beam di-
rection, ST , was 0.713 ± 0.063. The direction of the target-spin
vector was reversed between the “upward” and “downward” direc-
tions at 1–3 minute intervals to minimize systematic effects, while
both the nuclear polarization and the atomic fraction inside the
target cell were measured continuously [62]. The beam was lon-
gitudinally polarized and its helicity reversed every few months.
A helicity-balanced data sample was used to obtain an effectively
unpolarized beam.

Selected events had to contain at least one charged-hadron
track, identified as either a pion or a kaon, within the angu-
lar acceptance of the spectrometer (±170 mrad horizontally and
±(40–140) mrad vertically) independent of whether there was
also a scattered lepton in the acceptance or not. Hadrons were
distinguished from leptons by using a transition-radiation de-
tector, a scintillator pre-shower counter, and an electromagnetic
calorimeter. This resulted in a tiny lepton contamination in the
hadron sample of less than 0.1%. Hadrons within the momentum
range 2–15 GeV were further identified using a dual-radiator ring-
imaging Cherenkov detector [63]. This identification is based on a
direct ray tracing algorithm that deduces the most probable parti-
cle types from the event-level hit pattern of Cherenkov photons on
the photomultiplier matrix [64].

The trigger of the experiment was formed, for each detector
half, by a coincidence of signals from a scintillation counter in
front of the spectrometer magnet and from a scintillator hodoscope
and the pre-shower counter behind the magnet, spaced by 1 m,
with the requirement of an energy deposit greater than 1.4 GeV
in the electromagnetic calorimeter. The trigger was almost 100%
efficient for leptons with energies above threshold. The energy
threshold of the calorimeter was low enough to trigger also on
events with only charged hadrons and no leptons in its geometri-
cal acceptance. In this case, the trigger efficiency was substantially
smaller and depended on the hadron momentum Ph , as well as on
the impact position and angle of the hadron track on the calorime-
ter surface and the hadron multiplicity in the event. Averaged over
the hadron multiplicity, the trigger efficiency was about 40–45% for
hadron momenta greater than approximately 7 GeV and decreased
smoothly with decreasing Ph to about 15% at Ph ≈ 2 GeV. In or-
der not to bias the inclusive-hadron sample towards events with
a coincident lepton in the detector acceptance, trigger-efficiency
corrections dependent on the event topology (e.g., additional lep-
ton or further hadrons in the event) were applied. In total, about
Fig. 1. The definition of the azimuthal angle ψ .

60 ·106 (50 ·106) tracks of positively (negatively) charged pions and
5.1 · 106 (2.8 · 106) tracks of positively (negatively) charged kaons
were collected. These correspond to about 172 · 106 (142 · 106)
positively (negatively) charged pions and 14.5 · 106 (7.3 · 106) pos-
itively (negatively) charged kaons after trigger-efficiency correction
(cf. Table 1), which are used in all of the subsequent results.

As the scattered lepton was not required for the primary anal-
ysis, the following hadron variables were used: P T , the trans-
verse momentum of the hadron with respect to the lepton beam
direction; xF , here calculated in the lepton-nucleon center-of-
momentum frame; and ψ , the azimuthal angle about the beam di-
rection between the “upward” target spin direction and the hadron
production plane, in accordance with the Trento Conventions [65]
(see Fig. 1).

The cross section for inclusive electroproduction of hadrons us-
ing an unpolarized lepton beam and a transversely polarized target
includes a polarization-averaged and a polarization-dependent part
and is given for each hadron species as

dσ = dσUU
[
1 + ST Asin ψ

UT sinψ
]
. (1)

Here, the first subscript U denotes unpolarized beam, the sec-
ond subscript U (T ) an unpolarized (transversely polarized) target.
The dependences of the cross section and of the azimuthal ampli-
tude Asin ψ

UT on P T and xF have been omitted. The sin ψ azimuthal

dependence follows directly from the term 	S · (	Ph × 	k) in the spin-
dependent part of the cross section (see, e.g., Ref. [60]), with 	S
being the target-spin vector, and 	k and 	Ph the three-momenta of
the incident lepton and of the final-state hadron, respectively.

The sinψ amplitude Asin ψ
UT is related to the left-right asymme-

try AN along the direction of the incident lepton beam and with
respect to the nucleon-spin direction,2 measured with a detector
with full 2π -coverage in ψ and constant efficiency, by

AN ≡
∫ 2π
π dψ dσ − ∫ π

0 dψ dσ
∫ 2π
π dψ dσ + ∫ π

0 dψ dσ
= − 2

π
Asin ψ

UT . (2)

Experimentally, the Asin ψ
UT amplitudes were extracted by per-

forming a maximum-likelihood fit to the cross section of Eq. (1),
i.e., the measured yield distribution for the two target-spin states
weighted with the inverse of the trigger efficiencies and lumi-
nosity, binned in P T and xF , but unbinned in ψ . The detection

2 The sign convention of AN in hadron collisions commonly differs through defin-
ing “left” and “right” with respect to the momentum and transverse-spin directions
of the incoming polarized hadron.
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Fig. 2. Asin ψ
UT amplitudes for charged pions and kaons as a function of P T (top)

and xF (bottom). Positive (negative) particles are denoted by closed (open) symbols.
When visible, the inner error bars show the statistical uncertainties, while the to-
tal ones represent the quadratic sum of statistical and systematic uncertainties. Not
shown is an additional 8.8% scale uncertainty due to the precision of the measure-
ment of the target polarization. The bottom subpanels show the P T dependence (xF

dependence) of the average xF (P T ). Data points for negative particles are slightly
shifted horizontally for legibility.

efficiency, if independent of the target-spin state, cancels in the
fit as long as the polarization-weighted luminosity vanishes, i.e.,∫

ST (t)L(t)dt = 0, as is the case for the present data.

The extracted Asin ψ
UT amplitudes for charged pions and kaons

are presented as a function of P T in the top panels of Fig. 2.
The amplitudes are positive for the positive hadrons, being slightly
larger for kaons compared to pions. They rise smoothly with P T

up to a maximum value of approximately 0.06 (0.08) for pions
(kaons) at P T � 0.8 GeV and then decrease again with increas-
ing P T . Note that at P T = 0 GeV the amplitude Asin ψ

UT vanishes by
definition. For P T > 1.3 GeV, the statistical uncertainties increase
substantially with P T . Here, there is an indication of an increase
of the amplitude for pions, while for kaons it is compatible with
zero within the uncertainties, apart from the point at the high-
est P T , where the amplitude is 2.8 standard deviations above zero.
For negative hadrons the amplitudes are much smaller in magni-
tude, sometimes positive and sometimes negative, apart from the
π− point at P T = 1.5 GeV. Detailed investigations of the data and
the analysis leading to this exceptionally large asymmetry ampli-
tude have not revealed any instrumental origin.

In the bottom panels of Fig. 2, the measured Asin ψ
UT ampli-

tudes are presented as a function of xF . For positive pions, the
amplitudes are positive everywhere and increase nearly linearly
with xF up to a value of approximately 0.06, with the excep-
tion of the point in the highest xF bin, where the value is
0.10 ± 0.01stat ± 0.01sys. For negative pions, the amplitude is neg-
ative over most of the xF range and decreases linearly down to a
value of about −0.04 for the last xF bin. These xF dependences of
the pion asymmetry amplitudes look similar to the one observed
in hadron-hadron collisions. For positive kaons, the amplitude is
about constant around 0.07, with some small variation with xF . For
negative kaons, the asymmetry amplitude is compatible with zero
over most of the xF range, with a small positive excursion in the
lowest xF bin, and a negative one in the region around xF = 0.3.

The variables xF and P T are strongly correlated in these mea-
surements as can be seen from the bottom subpanels of Fig. 2,
where they are shown at the average bin kinematics. Hence, any
observed kinematic dependence of Asin ψ

UT cannot be uniquely as-
cribed to the variable plotted against but may stem from the
underlying dependence on the kinematic variable over which the
data are integrated. For this reason, a two-dimensional extraction
of the asymmetry amplitudes was performed by binning simulta-
neously in P T and xF . The resulting Asin ψ

UT amplitudes are shown
as a function of P T in four slices of xF in Fig. 3, and in Fig. 4
as a function of xF in four slices of P T . Only data points with
a statistical uncertainty of the asymmetry amplitude smaller than
0.1 are shown. The P T dependence in the four xF slices is very
similar in shape and magnitude, apart from increased statistical
fluctuations. For positive pions the amplitude is seen to be es-
sentially independent of xF in all four slices in P T . Therefore, it
can be concluded that the apparent increase of the magnitude
of the asymmetry amplitude with xF seen for positive pions in
Fig. 2 is just a reflection of the underlying dependence on P T . In
contrast, for negative pions the decrease with xF follows the one
observed in the one-dimensional extraction. The dependence on
xF of the kaon asymmetry amplitudes is less pronounced in the
two-dimensional extraction, with a slight tendency towards an in-
crease (decrease) with xF for positive (negative) kaons. Note that
in measurements of inclusive SSAs in proton–proton collisions, AN
is seen to rise strongly for values of xF larger than about 0.3–0.4.
For charged pions [22] and neutral pions [23] such an increase of
AN with xF was seen even after binning the data in slices of P T .

In Figs. 2–5, the systematic uncertainties are added in quadra-
ture to the statistical ones. One contribution arises from different
methods employed for the trigger-efficiency correction. An addi-
tional contribution, added in quadrature to the previous one, arises
from typical effects due to non-perfect experimental resolution
and acceptance, and is determined in a manner to include the
effects of the necessary binning of finite statistics. This second
contribution was determined from a high-statistics Monte Carlo
data sample obtained from a simulation using the program PYTHIA

6.2 [66,67]. This simulation [68] contained a full description of
the detector, including effects such as acceptance, correction for
particle deflection in the vertical target holding field, losses due
to decay in flight and secondary strong interactions, and particle
identification. In addition, a spin-dependent azimuthal asymmetry
was imposed on the simulated event sample according to Eq. (1).
The functional form Asin ψ

UT,MC is a Taylor expansion in P T (up to
fifth order) and xF (up to first order) around the average kine-
matics of the entire experimental data sample. The set of (up
to) twelve parameters for each hadron species was obtained in a
maximum-likelihood fit to the experimental data where the num-
ber of terms in the expansion was tuned to describe all measured
asymmetry amplitudes. The sin ψ amplitudes Asin ψ

UT,MC were then
extracted from the now spin-dependent Monte Carlo sample in
the same way as described above for data. The total systematic
uncertainty in each bin corresponds to the maximum value of ei-
ther the (in most bins negligibly small) statistical uncertainty in
the Monte Carlo sample or the deviation between the model func-
tion Asin ψ

UT,MC evaluated at the average kinematics of the bin and

the reconstructed Asin ψ
UT,MC amplitude. This calculational approach is

designed to address, among others, the differences between the
asymmetry amplitudes evaluated at the average values of their
kinematical dependences and the asymmetry amplitudes averaged



HERMES Collaboration / Physics Letters B 728 (2014) 183–190 187
Fig. 3. Asin ψ
UT amplitudes for charged pions and kaons as a function of P T for various

slices in xF . Symbol definitions and additional 8.8% scale uncertainty as in Fig. 2.

over the bin range(s) of the kinematical dependences. These dif-
ferences can become large whenever an amplitude’s dependence
deviates significantly from linear behavior over the width of the
bin in that dependence. This makes the one-dimensional repre-
sentation of Fig. 2, where one integrates over the whole range in
the variable not shown, more susceptible to systematic deviations.
These can be observed, e.g., in the xF dependence of the K + asym-
metry amplitudes, where the integration is over a strongly varying
P T dependence. Additionally, the uncertainty on the measurement
of the target polarization produces a 8.8% scale uncertainty on the
value of Asin ψ

UT that is not included in the error bars. Other pos-
sible sources of systematic uncertainty not included in the Monte
Carlo simulation such as time-dependence of the measured ampli-
tudes and the effect of different beam charges were found to be
negligible.

The inclusive data set presumably is a mixture of various con-
tributions with different kinematic dependences. Therefore, it is
difficult to draw conclusions about the underlying physics from
the observed kinematic dependences of the inclusive asymmetry
amplitudes. More insight may be gained by studying separately
the asymmetries for the events without a scattered lepton in the
acceptance (‘anti-tagged’ category) and the events with a scat-
tered lepton in the acceptance (‘tagged’ or semi-inclusive category).
These categories cover different kinematic regimes and are defined
as follows:

1) ‘Anti-tagged’ category: The undetected lepton in most cases
had a small scattering angle and remained within the beam pipe.
Fig. 4. Asin ψ
UT amplitudes for charged pions and kaons as a function of xF for various

slices in P T . Symbol definitions and additional 8.8% scale uncertainty as in Fig. 2.

Hence Q 2 is small and P T is the only hard scale. For these events,
the difference between the transverse hadron momentum with
respect to the beam direction, P T , and with respect to the virtual-
photon direction, Ph⊥ , is small. The latter was used in the pre-
vious analyses of SSAs in semi-inclusive deep-inelastic scattering
[26–28]. The present data sample is dominated by the kinematic
regime Q 2 ≈ 0 GeV2 of quasireal photoproduction where the cross
section is largest and where the hadronic component of the pho-
ton plays an important role. Generally speaking, in this kinematic
range l + p↑ reactions are expected to be quite similar in nature
to h + p↑ reactions. The ‘anti-tagged’ category contains a small
contamination of events at higher Q 2 where the electron is scat-
tered into the horizontal gap of the spectrometer. These events
amount to about one third in statistics of the semi-inclusive cate-
gory, discussed below. Another tiny high-Q 2 contamination arises
from lepton scattering angles beyond the maximum polar angular
acceptance of the spectrometer. These events occur dominantly at
high P T . Here, the large angle of the virtual photon with respect to
the beam axis often results in a significantly larger P T than Ph⊥ of
the hadrons. After correction for trigger efficiency, about 98% of all
hadrons belong to the ‘anti-tagged’ category. The fraction of these
hadrons with respect to the total inclusive sample is nearly 100%
at low P T . It decreases monotonically to about 85–90% for positive
hadrons and to more than 90% for negative hadrons at the highest
P T values.

2) ‘Tagged’ or semi-inclusive category: The scattered positron was
recorded in the spectrometer acceptance and kinematic quanti-
ties like y, z, Q 2, x, and W 2 could be determined, where in the
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Fig. 5. Asin ψ
UT amplitudes for charged pions and kaons for the ‘anti-tagged’ cate-

gory and the two DIS subsamples with 0.2 < z < 0.7 and z > 0.7, respectively. Also
shown are the relative fractions of the two DIS subsamples with respect to the to-
tal inclusive sample of the corresponding hadron species after correction for trigger
efficiency. Positive (negative) particles are denoted by filled (open) symbols. Inner
error bars show the statistical uncertainties and the total error bars represent statis-
tical and systematic uncertainties added in quadrature. Not shown is an additional
8.8% scale uncertainty due to the precision of the measurement of the target polar-
ization.

laboratory system y ≡ P · q/(P · k) is the fractional beam energy
carried by the virtual photon and z ≡ P · Ph/(P · q) is the frac-
tional virtual-photon energy carried by the hadron. The quantity
x ≡ Q 2/(2P · q) is the Bjorken scaling variable with −Q 2 = q2 ≡
(k − k′)2, and W 2 ≡ (P + q)2 is the squared invariant mass of the
virtual-photon nucleon system. Here, P , k, k′ , and Ph are the four-
momenta of the target nucleon, the incident and scattered lepton,
and the produced hadron, respectively. This category can be fur-
ther divided into several subsamples covering different kinematic
regions.

For the present analysis, two of these subsamples have been
selected that affect substantially the observed asymmetries at
large P T :

DIS events with 0.2 < z < 0.7: This subsample is identical to the
one used previously [26–28] for the determination of azimuthal
transverse single-spin asymmetries in semi-inclusive deep-inelastic
scattering related to the Sivers and transversity distributions and
the Collins fragmentation function. Here, events were selected
according to the kinematic requirements Q 2 > 1 GeV2, W 2 >

10 GeV2, 0.023 < x < 0.4, and 0.1 < y < 0.95. The fractional
hadron energy was required to be in the range 0.2 < z < 0.7. For
this sample, 〈Q 2〉 rises from ∼ 2.2 GeV2 at low P T to ∼ 4.3 GeV2

at high P T , and 〈Q 2〉 is always larger than 〈P 2
T 〉 apart from the

two highest P T bins;
DIS events with z > 0.7: The kinematic requirements are iden-

tical to those of the above subsample, apart from the require-
ment for the fractional hadron energy. Only hadrons with z > 0.7
are selected. The average value of Q 2 rises from ∼ 1.5 GeV2 to
∼ 5.5 GeV2 and 〈Q 2〉 > 〈P 2 〉 over the whole P T range.
T
Table 1
Accumulated yields of hadrons (in million) for the various event samples without
and with an electron in the spectrometer acceptance, after correction for trigger
efficiency. The DIS subsamples are part of the ‘tagged’ category, as explained in the
text.

subsample π+ π− K + K −

‘anti-tagged’ 170.5 140.7 14.3 7.2
‘tagged’ 1.93 1.49 0.26 0.13
DIS, 0.2 < z < 0.7 0.69 0.49 0.12 0.05
DIS, z > 0.7 0.061 0.037 0.013 0.001

The total number of hadron tracks in the ‘anti-tagged’ and the
‘tagged’ categories and in the two DIS subsamples is listed in
Table 1. The remaining events of the ‘tagged’ category contribute
only at xF < 0.2 and P T < 0.9 GeV and will not be discussed fur-
ther.

In Fig. 5, the Asin ψ
UT amplitudes are presented as a function of

P T for the ‘anti-tagged’ category and the two DIS subsamples with
0.2 < z < 0.7 and z > 0.7, respectively. Also shown are the rela-
tive fractions of these two subsamples with respect to the total
inclusive sample of the corresponding hadron species after correc-
tion for trigger efficiency. The relative fractions are generally larger
for positive hadrons than for negative hadrons. For P T < 1 GeV,
the fractions are below 1%. In the highest two P T bins, the frac-
tion of DIS events with z > 0.7 dominates for positive hadrons
and reaches values of about 6%, while the DIS contribution with
0.2 < z < 0.7 stays below 4%. As can be seen from Fig. 5, the
asymmetry amplitudes for the ‘anti-tagged’ category and for the
two subsamples of the ‘tagged’ category show several remarkable
peculiarities:

‘Anti-tagged’ category: The asymmetry amplitudes are, over most
of the P T range, essentially identical to the inclusive amplitudes as
expected from the fact that this sample comprises about 98% of the
whole statistics. One can therefore safely conclude that essentially
all of the kinematic dependences of the inclusive data set observed
for P T below approximately 1.5 GeV originate from quasi-real pho-
toproduction. Since P T is the only hard scale, the origin of the
asymmetries can most likely be explained by higher-twist contri-
butions. At low values of P T , where one observes a rise of the
asymmetry amplitudes for positive hadrons, P T is comparable to
ΛQCD and theory cannot presently make reliable predictions about
the magnitude and P T dependence of the amplitudes. At high P T ,
the ‘anti-tagged’ asymmetry amplitude is consistently smaller than
the inclusive amplitude for positive pions and its P T dependence
is, within uncertainties, compatible with a constant or a decrease
with P T as one would expect for this class of events [59,60]. At
P T > 1.3 GeV the contributions from the other subsamples become
sizable causing the increase with P T observed for the inclusive
asymmetry amplitude.

DIS events with 0.2 < z < 0.7: For positive pions, Asin ψ
UT is pos-

itive and larger than the ‘anti-tagged’ amplitude. It rises rather
linearly with P T from a value of approximately 0.04 at low P T

to approximately 0.2 at the highest P T values, where the statisti-
cal uncertainties are rather large. For negative pions, the amplitude
is (apart from the two highest P T points) consistently negative
and larger in magnitude than the asymmetry amplitude for the
‘anti-tagged’ sample over the whole range of P T . As stated above,
Q 2 is the largest scale over essentially the whole P T range and
transverse-momentum-dependent distribution and fragmentation
functions can contribute without P T -suppression. Since the angle
ψ and the Sivers angle φ − φs are closely related, one can expect
that the observed P T dependence is predominantly caused by the
Sivers effect. In fact, the asymmetries are very similar to those in
Ref. [27], where it was concluded that the small amplitudes for π−
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require cancellation effects, e.g., from a down-quark Sivers function
opposite in sign to the dominant up-quark Sivers function.

DIS events with z > 0.7: Large asymmetries are observed for this
subsample for both pion charges and especially for positive kaons,
where the amplitudes reach values of more than 0.4. For positive
pions the amplitude is rather constant with a value of around 0.2
in the P T range 0.5–1.5 GeV, and rises up to a value above 0.3 at
the highest P T bin. For negative pions, the amplitude is negative
and decreases from approximately zero at P T ∼ 0.5 GeV down to
a value of about −0.2 at high P T . This subsample receives con-
tributions from processes that can become significant only in this
kinematic region. Pions receive contributions from decays of exclu-
sive mesons like, e.g., the ρ meson [69] that can contribute up to
about 50% (30%) to the yield of π− (π+) at large z [70]. For kaons,
the corresponding contributions from φ decays are less than 10%.
For positive pions there is in addition a contribution from exclusive
production, lp → l′π+n, which has, however, been measured [71]
to constitute only approximately 3% of this sample. The corre-
sponding contributions for the quasi-exclusive production of nega-
tive pions from lp → l′π−�++ or positive kaons from lp → l′K +Λ

are expected to be even smaller [72] and no such quasi-exclusive
channel exists for negative kaons. The large asymmetry amplitude
seen for negative pions may indicate that a large fraction of events
in this subsample stems from the favoured fragmentation of the
struck quark (here the down quark) and that the asymmetry pos-
sibly preserves information from the down-quark Sivers function
without dilution from disfavoured fragmentation of the otherwise
dominating up quark. Indeed, the signs and relative magnitudes of
the pion and kaon asymmetry amplitudes observed are not incon-
sistent with the values of the up and down quark Sivers functions
extracted in phenomenological fits [50].

In summary, transverse azimuthal single-spin asymmetries are
measured in inclusive and semi-inclusive electroproduction of
charged pions and kaons. A two-dimensional extraction of the
asymmetry amplitudes is performed by binning simultaneously in
the component of the hadron-momentum transverse to the incom-
ing lepton beam, P T , and the Feynman-x variable, xF . For positive
pions, the resulting amplitudes are found to be essentially inde-
pendent of xF . The apparent increase with xF after integration over
P T is mostly a reflection of the underlying dependence on P T . For
negative pions, and less significantly for negative (positive) kaons,
the asymmetry amplitudes decrease (increase) with xF , also in the
case of a two-dimensional extraction. The amplitudes as a func-
tion of P T are positive for the positive hadrons and slightly larger
for K + compared to π+ . They rise smoothly with P T from zero
at low P T up to a maximum value of approximately 0.06 (0.08)
for pions (kaons) at P T � 0.8 GeV and then decrease with increas-
ing P T . The data sample is dominated by the kinematic regime
Q 2 ≈ 0 GeV2 of quasi-real photoproduction, where P T is the only
hard scale. The origin of the observed asymmetries can, therefore,
most likely be explained by higher-twist contributions. At P T val-
ues above 1.5 GeV there are sizable contributions from events with
an electron in the acceptance and large values of Q 2. The asym-
metries for the subsample within DIS kinematics and fractional
energies of the hadron in the range 0.2 < z < 0.7 can likely be re-
lated to the transverse-momentum dependent Sivers distribution
function. Very large asymmetry amplitudes are observed for pos-
itive pions and kaons and negative pions for the DIS subsample
with high values of the fractional hadron energy z. In this kine-
matic regime exclusive processes can contribute substantially to
the asymmetry and effects from the favoured fragmentation of the
struck quark dominate. The data may be very helpful in formulat-
ing a better understanding of spin-orbit effects of partons within
the nucleon.
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