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In the problem of one-class classification (OCC) one of the classes, the target class, has to be distinguished from all other possible
objects, considered as nontargets. In many biomedical problems this situation arises, for example, in diagnosis, image based tumor
recognition or analysis of electrocardiogram data. In this paper an approach to OCC based on a typicality test is experimentally
compared with reference state-of-the-art OCC techniques—Gaussian, mixture of Gaussians, naive Parzen, Parzen, and support
vector data description—using biomedical data sets. We evaluate the ability of the procedures using twelve experimental data sets
with not necessarily continuous data. As there are few benchmark data sets for one-class classification, all data sets considered in the
evaluation have multiple classes. Each class in turn is considered as the target class and the units in the other classes are considered
as new units to be classified.The results of the comparison show the good performance of the typicality approach, which is available
for high dimensional data; it is worthmentioning that it can be used for any kind of data (continuous, discrete, or nominal), whereas
state-of-the-art approaches application is not straightforward when nominal variables are present.

1. Introduction

In one-class classification (OCC), the problem is to classify
data when information is available for only one group of
observations. Specifically, given one set of data, called the
target class, the aim of the OCC methods is to distinguish
data belonging to the target class from other possible classes.
OCC can be seen as a special type of two-class classification
problem, when data from only one class is considered.This is
an interesting problem because there are many real situations
where a representative set of labeled examples for the second
class is too costly, difficult to obtain, or not available at all.
This situation can occur, for instance, in medical diagnosis,
where data from healthy or even from nonhealthy patients
are extremely hard or impossible to obtain: for example,
through mammograms for breast cancer detection [1, 2],
the one-class recognition of cognitive brain functions [3],
in prediction of protein-protein interactions [4], in the lung
tissue categorization of patients affected with interstitial lung
diseases [5], or in the identification of patients with one or
more Nosocomial infections using clinical and other data

collected during the survey [6]. Several approaches to OCC
have been presented and good overviews can be found in
[7–10]. Some of the OCC approaches estimate the density
of the reference data and set a threshold on this density,
using a Gaussian model, a mixture of Gaussians models, or
the Parzen density estimators [11, 12]. Boundary methods,
as the 𝑘-centers, NN-d [13, 14], and support vector machine
SVM [15–18], cover the data set with 𝑘 small balls with
equal radii and they make assumptions about the clustering
characteristics of the data or their distribution in subspaces.
These methods only achieve good results when the target
data have the same distribution tendency in all orientations
[19]. The reconstruction methods (𝑘-mean clustering, self-
organizing maps, PCA, mixtures of PCAs, and diabolo
networks density) make assumptions about the clustering
characteristics of the data or their distribution in subspaces,
and a set of prototypes is needed (see, e.g., [20]). Many of
these methods have data-specific parameters or assume that
data follow a specific model; therefore data knowledge is
necessary. One-class classification can also be considered as
outlier detection, where the classification model can be used
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to detect the units deviating significantly from the target class.
There are some distance-based outlier detection methods
[21, 22], which need the computation of the distances between
units in the target class and distances between a new unit and
their neighbors in the target class, but in contrast with other
OCC methods they are more flexible. Some other state-of-
the-art methods are neural networks [23], Bayesian neural
networks [24], or Naive Bayesian classifiers [25]. Recently, in
[26] the authors formulated a typicality test and this approach
is here applied to the OCC problem. Thus, objects in the
target class can be considered as typical, while objects in
the negative class can be considered as atypical. In order to
evaluate the viability of the typicality approach a comparative
study is presented. Five reference state-of-the-art techniques,
two parametric densitymethods, theGaussian andmixture of
Gaussians procedures; two nonparametric density methods,
the Parzen and naive Parzen procedures; a boundarymethod,
the support vector data description method, are experimen-
tally compared with the typicality approach using biomedical
data sets.

The paper is organized as follows. Section 2 presents
the six considered OCC procedures that are evaluated for
twelve real biomedical data set. The experimental study is
summarized in Section 3, while conclusions are drawn in
Section 4.

2. One-Class Classification

In this section, the one-class classification problem is formally
stated, and the six considered procedures are reviewed.

2.1. The One-Class Classification Problem. Consider a class
𝐶, the target class, containing 𝑛 objects and represented by
a 𝑆-random vector Y with probability density function 𝑓
with respect to a suitable measure 𝜆. Let an object of 𝐶
be represented by a vector y containing the values of the
measures in 𝑝 features, not necessarily continuous.The OCC
problem can be defined as the problem of assigning or not
a new object y

0
to the target class 𝐶, when data only from

the target class is available. Thus, from data in the target
class a classification model should be constructed. The OCC
procedures usually consider a training phase using the so-
called training data set; that is, either the probability density
function or the parameters of the classifier’s model should
be determined. In OCC the training data set contains only
the observations belonging to 𝐶, while the testing data set
includes the observations from class 𝐶 and other possible
class 𝐶󸀠. As in medical care correct diagnosis is very impor-
tant, it is necessary to evaluate the OCC models, which can
be considered as a case/noncase diagnosis where the target
class is, for instance, the case class. This diagnosis will mis-
classify some cases as noncases and some noncases as cases.
These two types of misclassifications lead to two important
aspects of the performance of the diagnosis, sensitivity, and
specificity. As it is known, the sensitivity or true positive rate
is the probability that occurs if an object in class𝐶 is classified
as belonging to this class. The specificity or true negative rate
is the probability that occurs if an object not belonging to 𝐶

is classified as not belonging to 𝐶. A very common way of
displaying the values of the sensitivity and specificity is by
the ROC curve (Receiver Operating Characteristic), which
represents the pairs (1-specificity, sensitivity). Therefore, the
area under the ROC curve, the AUC, lies between 0 and 1
and takes value 1 for a perfect diagnosis and the value 0.5
for random diagnosis, so that AUC values will be useful to
evaluate the performance of OCC models [27].

It is important to note that in one-class classifiers the
ability to learn the true characteristics of the data in presence
of noise or errors in the feature values is specially important.
Furthermore, the number of parameters to be estimated
by users should be minimized, and the computational and
storage requirements must be in consideration, as there are
limiting factors in the use of some of the methods. Finally,
one-class classifiers are determined in the training phase
using the training data set; thus the standardOCCprocedures
may be affected by initial settings.

Next, six one-class classification methods will be
reviewed. We consider five well known and reference OCC
methods: two parametric density methods, the Gaussian and
mixture of Gaussians; two nonparametric density methods,
the Parzen and naive Parzen; a boundary method, the
support vector data description. For these methods, we
summarized some of their characteristics and references
for more details about the construction of the classification
model and properties are given. Finally, a nonparametric
typicality approach based on distances is considered. As
this method has not yet been considered as a one-class
classification procedure, more details about the classification
model and properties will be included.

2.2. Gaussian and Mixture of Gaussians. The Gaussian and
mixture of Gaussians methods assume that the data is
distributed according to the normal distribution or to a
mixture of 𝑛

𝐺
normal distributions [9].The parameters of the

Gaussian model can be found by maximizing the likelihood
function over the training data set, being the learning process
computationally inexpensive. For the mixture of Gaussians,
the parameters can be found efficiently by the EM algorithm.
Thus, the learning process using the EM algorithm is more
computationally demanding as a number of interactions
should be done before the algorithm converges.Themethods
based on Gaussian models are sensitive to the noise in
the training data set, as the noise introduces a significant
bias to the estimate covariance matrix. Furthermore, these
procedures present a rather high sensitivity to errors in
feature values and outliers. In the learning phase, the storage
requirements are rather high but very low in the classification
phase.

2.3. Parzen and Naive Parzen. Parzen and naive Parzen den-
sity estimation are nonparametric procedures and do not
need any assumption about the data distribution [6, 28, 29].
The density is estimated directly from the training data and
is a function of the number of objects situated in a region
of a specific volume with a value ℎ as the length of an edge.
The value of ℎ plays the role of a smoothing parameter.
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An advantage of the method is that it does not need any
estimation of parameters. However, too long values of the
smoothing parameter ℎ imply an oversmoothed estimated
density. When ℎ is too small then the estimated density
contains noise. Furthermore, the method needs to store all
the observation vectors and it makes it slower, presenting
very low computational requirements of learning but rather
high in classification. The method is relatively robust to the
outliers in the training data, choosing appropriate distance,
and presents rather high sensitivity to errors in feature values.
These procedures need to estimate one parameter by the
users.

2.4. One-Class Support Vector Data Description. Support
vector data description (SVDD) is a boundarymethod [9, 17].
It defines a hypersphere with a minimum volume covering
the entire training data set. The minimization is solved as a
quadratic programming problem and can be solved efficiently
by introducing Lagrange multipliers [30, 31]. The method is
relatively resistant to noise. The number of parameters that
are to be estimated is equal to the size of the training data set;
thus it is not useful for large training data sets. SVDDpresents
rather low sensitivity to errors in feature values and outliers.
The method presents very high computational requirements
of learning but very low in classification and needs to estimate
one parameter by the user and learnt the other parameters.

2.5. Typicality Approach. Consider a target class𝐶 containing
𝑛 units measured on 𝑝 features. Let 𝛿(y, y󸀠) be a distance
[32] function on 𝑆. It is said that 𝛿 is an Euclidean distance
function if the metric space (𝑆, 𝛿) can be embedded in an
Euclidean space 𝑅𝑞, Ψ : R → 𝑅𝑞, such that 𝛿2(y, y󸀠) =
‖Ψ(y) − Ψ(y󸀠)‖2, and we may understand 𝐸(Ψ(Y)) as the 𝛿-
mean of Y. There are various ways of achieving this situation,
the most common probably being classical metric scaling,
also known as principal coordinate analysis [33, 34]. Given
the real-valued coordinates Z = Ψ(Y), it is possible to apply
any standard multivariate technique. Such an approach was
used by different authors [35–42]. In this context a general
measure of dispersion of Y, the geometric variability 𝑉

𝛿
of 𝐶,

with respect to 𝛿 can be defined by
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for the geometric variability of 𝐶 and the proximity function
of unit y

0
to 𝐶, respectively.

See [44] and references therein for a review of these
concepts, their application, different properties, and proofs.

Let y
0
be a new observation and consider the OCC

problem to decide whether y
0
belongs to the target class 𝐶

or, on the contrary, it is an outlier or an atypical observation,
belonging to some different and unknown class. Therefore,
the OCC problem can be formulated as a hypothesis test with

𝐻
0
: y
0
comes from the target class 𝐶 with 𝛿-mean
𝐸(Ψ(Y)),

𝐻
1
: y
0
comes from another unknown class.

This test can be considered as a test of typicality, as is
formulated in [26]. In our context, with only one known
class, the typicality test reduces to compute 𝜙2(y

0
). If 𝜙2(y

0
)

is significant it means that y
0
comes from a different and

unknown class.
Sampling distribution of 𝜙2(y

0
) can be difficult to find for

mixed data, but nevertheless it can be obtained by resampling
methods, in particular drawing bootstrap samples: draw 𝑁
units y with replacement from 𝐶 and calculate the corre-
sponding 𝜙2(y) values; repeat this process 10P times, with
𝑃 ≥ 1. In this way, the bootstrap distribution under 𝐻

0
is

obtained.
It is worth to point out that this procedure can be used for

any kind of data (continuous, discrete, or nominal), whereas
other approaches application is not straightforward when
nominal variables are present. As the procedure needs the
computation of the distances between units in the target class
and distances between a new unit and the units in the target
class the storage requirements are rather high but very low in
the classification phase.Themethod is relatively robust to the
outliers in the training data.

3. Results of the Experimental Study

As there are few benchmark data sets for OCC, we use data
sets containing two or multiple classes. Each class in turn is
considered as the target class and the units in the other classes
are considered as new units to be classified. On the one hand,
we used 10 biomedical data sets, none of them containing
nominal variables, from theUCImachine learning repository
[45] to evaluate the performance of all the above procedures.
In order to perform the comparison, the selected data sets
are the biomedical data used in [46]; only the target classes
considered in that referredwork are taken into account in this
paper aswell.On the other hand,we also applied the typicality
approach to two data sets with mixed variables.

In our experiments, we followed the procedure stated in
[46]. Thus, all multiclass problems are transformed to one-
class classification problems by setting a chosen class as a
target class and all remaining classes as nontargets.The target
class was randomly split into equal parts between the training
and test sets. All one-class classifiers were only trained on
the target data, that is, the half of the target data, and tested
on the test data, the remaining half of the target data and
the nontarget data. The experiments were repeated 10 times
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and the AUC average and standard deviation values are
reported.

3.1. Results of Data Sets withoutNominal Variables. In Table 1,
a brief description of these well known data sets is presented.
For the typicality method, a suitable distance is selected for
each data set, according to the type of data (see Table 2
last column). The considered distances were the Euclidean
distance, the Euclidean distance after standardized the data,
the Mahalanobis distance, or the correlation distance.

With breast Wisconsin prognostic, E. coli, hepatitis, and
liver disorders data sets, the typicality model obtained similar
AUC average values than the other procedures, as we can see
in Table 2. For the breast Wisconsin origin data set and taking
benign class as target class, the typicality procedure obtained
very good results (99.4±0.2) and similar to the obtained by the
other procedures. It is worth noting that, for the malignant
class as target class, it obtained similar results (97.6 ± 0.5)
than the naive Parzen procedure (96.5 ± 0.4) and much
better results than the obtained for the other procedures.
With the colon data set, while mixture of Gaussians is not
available and Parzen or SVDD methods gave poor results
with high variability (63.6 ± 22.4, 36.4 ± 22.4 for classes 1
and 2, resp.), the typicality method obtained clearly better
results (75.4 ± 6.3, 78.3 ± 5.8 for classes 1 and 2, resp.)
than Gaussian (61.1 ± 3.8, 70.4 ± 1.1 for class 1 and 2,
resp.) or naive Parzen (73.4 ± 3.1, 70.0 ± 1.5 for classes 1
and 2, resp.) methods. When the leukemia data set was
analyzed, mixture of Gaussians and Parzen procedures were
not available at all, and SVDD procedure presented a large
variability (58.9±30.2 and 41.1±30.2, resp.). However, similar
results were found for Gaussian, naive Parzen, or typicality
procedures. For the METAS data set, it must point out that
when the second class was the target class, the best results
were obtained with the typicality procedure (64.5 ± 4.7),
showing its good performance with high dimensional data
sets. With the SPECT heart data set and using the typicality
method, a little worse results were found when class 0was the
target class. However, when the target class was class 1, clearly
the typicality procedure obtained the best results (69.8 ± 2.5).
Finally, for the thyroid data set, the typicality results were
similar or slightly better than those obtained by the other
procedures.

In summary, from the results presented in Table 2 it is
clear that, in general, the typicality approach performs equal
or better than the other well known procedures, for all the
considered UCI data sets. The results show that, while other
procedures are affected by small target classes, the typicality
approach is more robust. Furthermore, it performs well
with high-dimensional data. On the other hand, as shown
in Table 2, state-of-the-art algorithms give “NaN”—Not a
Number—in some cases; this fact does not appear when the
typicality approach is used. Additional statistics on the AUC
average values are provided in Figure 1 under the form of
boxplots. Black lines correspond to the median values and
black segments to theminimumandmaximumvalues of each
method. As we can see, the typicality procedure is the more
robust for all data sets and it is in the top best methods.

Table 1: Description of ten UCI data sets used in the experiments.

Data sets Classes Instances Features
Breast Wisconsin original 2 241/458 9
Breast Wisconsin prognostic 2 47/151 33
Colon 2 40/22 1908
E. coli 2 52/284 8
Hepatitis 2 123/32 19
Leukemia 2 47/25 3571
Liver disorders 2 145/200 6
METAS 2 46/99 4919
SPECT heart 2 95/254 44
Thyroid 3 93/191/3488 21

3.2. Results on Mixed Variables Data Sets. Next we report the
results obtained using two data sets with mixed variables.
That means that there are some quantitative, binary, and
nominal variables. Therefore, methods that implicitly are
based on the Euclidean distance are not adequate. Thus,
only the typicality approach was performed with these two
data sets. In presence of mixed variables, it is known that
Gower’s distance is an appropriate distance, presenting good
properties in terms of missing values [47, 48].

Statlog (Heart) Data Set.This data set is available in the UCI
dataset repository. It is composed by 270 units classified in
two classes: absence or presence of heart disease, with 150 and
120 units, respectively. There are 13 variables, 6 quantitative,
1 ordered, 3 binary, and 3 nominal, and no missing values
are present. Taking in turn, absence and presence class
as the target class, the typicality approach reported AUC
average and standard deviation values 86.08 ± 2.03 and
84.53 ± 1.62, respectively. Furthermore, Table 3 reports
the results obtained when we attempt to achieve a fixed
False Alarm Rate (FAR) or false negative rate (1-sensitivity),
namely, 0.1. Note that for the two target class, we obtain good
results.

Liver Cancer Data Set. We apply the typicality approach to a
liver cancer data set [49]. It consists of 213 cases described by 4
nominal variables (type of hepatitis, categorized age, sex, and
whether cirrhosis is present) plus 1993 genes. It is worth to
mention that for each case at least onemissing value is present
(9.6% of the values are missing). The data set is divided in
three groups. Group T formed by 107 samples from tumors
on liver cancer patients, groupNT formed by 76 samples from
nontumor tissues of liver cancer patients and groupN formed
by 30 samples from normal livers. In [42] it was shown that
there exists a high degree of confusion between groups, so bad
one-class classification results are expected. Taking groups N,
NT, and T as target classes, the typicality approach obtained
AUC average values and standard deviation values 86.04 ±
3.95, 80.86 ± 3.07, and 55.62 ± 3.76, respectively. Results
obtained for a fixed FAR equal to 0.1 are reported in Table 4.
From Table 4, we can observe that when T is the target class,
the method cannot distinguish the other groups. When NT
is the target class, units from N group are not distinguished
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Table 2: AUC average and standard deviation, in brackets, values on UCI data sets. In the last column the distance used by the typicality
method is indicated: c: correlation, E: Euclidean, E-st: Euclidean after standardization, and M: Mahalanobis.

Data sets Target class Gaussian Mixture Gaussians Naive Parzen Parzen Support vector DD Typicality distance

Breast Wisconsin original Benign 98.5 (0.1) 98.3 (0.2) 98.7 (0.1) 99.2 (0.1) 99.0 (0.1) 99.4 (0.2)—E
Malignant 82.3 (0.2) 69.1 (3.2) 96.5 (0.4) 72.3 (0.5) 66.1 (0.8) 97.6 (0.5)—E

Breast Wisconsin prognostic Returning 63.0 (1.4) 59.1 (1.6) 59.0 (1.9) 59.4 (1.9) 59.6 (1.4) 58.5 (5.4)—M
Nonreturning 50.8 (0.8) 52.6 (1.6) 53.8 (2.2) 52.2 (1.7) 51.7 (1.7) 55.6 (2.9)—M

Colon 1 61.1 (3.8) NaN 73.4 (3.1) 63.6 (22.4) 63.6 (22.4) 75.4 (6.3)—c
2 70.4 (1.1) NaN 70.0 (1.5) 36.4 (22.4) 36.4 (22.4) 78.3 (5.8)—c

E. coli Periplasm 92.9 (0.3) 92.0 (0.4) 93.0 (0.8) 92.2 (0.4) 89.4 (0.8) 95.4 (1.3)—E
Hepatitis Normal 82.1 (1.0) 78.3 (1.0) 80.1 (0.7) 79.0 (1.0) 78.7 (1.1) 80.8 (2.2)—M

Leukemia 1 92.1 (1.8) NaN 90.2 (4.4) NaN 58.9 (30.2) 91.2 (3.4)—c
2 94.7 (2.7) NaN 96.7 (0.4) NaN 41.1 (30.2) 90.6 (3.9)—c

Liver disorders Class 1 58.5 (0.4) 59.3 (0.7) 61.4 (0.7) 58.7 (0.4) 59.0 (0.9) 58.1 (2.5)—M
Class 2 50.9 (0.5) 49.4 (0.6) 48.4 (0.8) 46.9 (0.8) 49.6 (1.0) 58.0 (3.7)—M

METAS 1 69.1 (1.5) NaN 65.3 (0.8) 64.8 (21.5) 64.8 (21.5) 67.3 (2.3)—c
2 36.4 (1.4) NaN 40.7 (1.2) 35.2 (21.5) 35.2 (21.5) 64.5 (4.7)—c

SPECT heart Class 0 93.4 (0.9) 95.1 (0.8) 90.7 (1.5) 95.7 (1.0) 89.7 (3.2) 86.1 (3.8)—M
Class 1 28.4 (0.5) 27.9 (1.3) 26.0 (0.7) 44.5 (0.5) 57.1 (11.1) 69.8 (2.5)—M

Thyroid
Normal 84.3 (0.0) 84.7 (4.4) 96.1 (0.0) 90.6 (0.0) 56.0 (0.0) 98.1 (1.2)—c

Hyperthyroid 70.3 (0.0) 68.1 (0.9) 75.1 (0.0) 70.6 (0.0) 45.7 (0.0) 65.9 (2.5)—c
Subnormal 69.6 (0.0) 81.5 (1.0) 84.4 (0.0) 87.4 (0.0) 50.3 (0.0) 88.0 (2.8)—c

Table 3: For Statlog (heart) data set and using the typicality
approach, false and true positive, and negative values, for a fixed
False Alarm Rate equal to 0.1.

Target class Classified as Tested classes
Absence Presence

Absence Target 135/150 41/120
Nontarget 15/150 79/120

Target class Classified as Tested classes
Presence Absence

Presence Target 110/120 68/150
Nontarget 10/120 82/150

Table 4: For Liver cancer data set and using the typicality approach,
false and true positive, and negative values, for a fixed False Alarm
Rate equal to 0.1.

Target class Classified as Tested classes
N NT T

N Target 29/30 56/76 16/107
Nontarget 1/30 20/76 91/107

Target class Classified as Tested classes
NT N T

NT Target 72/76 28/30 48/107
Nontarget 4/76 2/30 59/107

Target class Classified as Tested classes
T N NT

T Target 102/105 30/30 75/76
Nontarget 3/105 0/30 1/76

Gaus M Gaus N Parzen Parzen SVDD Typicality

40

60

80

100

Figure 1: Boxplots of AUC average values of the OCCmethods over
the experimental data sets.

and only half the units from T are distinguished properly as
nontarget. When N is the target class, units from T are very
well distinguished as nontarget.

4. Conclusions

A noticeable attention has been devoted to the one-class clas-
sification problem in the last years. This type of classification
is characterized by the use of observations belonging to only
one known class. These methods are particularly useful in
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biomedical studies, when observations belonging to other
classes are difficult or impossible to obtain. In this paper,
reference state-of-the art one-class classification methods
have been reviewed, and their suitability has been compared
with a recent typicality procedure. To assess the efficiency
of this new typicality application, experiments have been
conducted on several public data sets from the UCI reposi-
tory and has been compared to five of the most OCC used
procedures, namely, Gaussian, mixture of Gaussians, naive
Parzen, Parzen, and support vector DD models [46]. The
results show that the typicality approach performs equally
well or better than these state-of-the art procedures, thus it
will be very valuable in many biomedical applications. The
typicality approach does not need any knowledge about the
data distribution, does not estimate any parameter, and is
applicable to any kind of data, not necessarily continuous.
This approach performs well with high dimensional data
and it is robust in front of small target classes, whereas
other OCC method accuracy rates are not so stable. For all
these reasons, the typicality approach can be very useful in
many biomedical applications where clinical, pathological, or
biological noncontinuous data can be found and where data
from healthy or even from nonhealthy patients are extremely
hard or impossible to obtain.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Basque Government
Research Team Grant (IT313-10) SAIOTEK Project SA-
2013/00397 and the University of the Basque Country
UPV/EHU (Grant UFI11/45 (BAILab)).

References

[1] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady, “Novelty
detection for the identification of masses in mammograms,”
in Proceedings of the 4th International Conference on Artificial
Neural Networks, pp. 442–447, June 1995.

[2] M. Costa and L. Moura, “Automatic assessment of scintmam-
mographic images using a novelty filter,” Proceedings of the
Annual Symposium on Computer Applications in Medical Care,
pp. 537–541, 1995.

[3] O. Boehm, D. R. Hardoon, and L. M. Manevitz, “Classifying
cognitive states of brain activity via one-class neural networks
with feature selection by genetic algorithms,” International
Journal of Machine Learning and Cybernetics, vol. 2, no. 3, pp.
125–134, 2011.

[4] J. A. Reyes and D. Gilbert, “Prediction of protein-protein inter-
actions using one-class classification methods and integrating
diverse biological data,” Journal of Integrative Bioinformatics,
vol. 4, no. 3, p. 77, 2007.

[5] A. Depeursinge, J. Iavindrasana, A. Hidki et al., “Comparative
performance analysis of state-of-the-art classification algo-
rithms applied to lung tissue categorization,” Journal of Digital
Imaging, vol. 23, no. 1, pp. 18–30, 2010.

[6] G. Cohen, H. Sax, and A. Geissbuhler, “Novelty detection using
one-class Parzen density estimator. An application to surveil-
lance of nosocomial infections,” Studies in Health Technology
and Informatics, vol. 136, pp. 21–26, 2008.

[7] D. M. J. Tax,One-class classification [Ph.D. thesis], Delft Univer-
sity of Technology, 2001.

[8] C. Dsir, S. Bernard, C. Petitjean, and L. Heutte, “One class
random forests,” Pattern Recognition, vol. 46, pp. 3490–3506,
2013.

[9] O. Mazhelis, “One-class classifiers: a review and analysis of
suitability in the context of mobile-masquerader detection,”
South African Computer Journal, vol. 36, pp. 29–48, 2006.

[10] S. S. Khan andM. G. Madden, “A survey of recent trends in one
class classification,” in Proceedings of the 20th Irish Conference
on Artificial Intelligence and Cognitive Science, 2009.

[11] C. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, Oxford, UK, 1995.

[12] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
John Wiley & Sons, New York, NY, USA, 2000.

[13] A. Ypma, D. M. J. Tax, and R. P. W. Duin, “Robust machine
fault detection with independent component analysis and
support vector data description,” in Proceedings of the 9th IEEE
Workshop on Neural Networks for Signal Processing (NNSP ’99),
Y. H. Hu, J. Larsen, E. Wilson, and S. Douglas, Eds., pp. 67–76,
August 1999.

[14] R. O. Duda and P. E. Hart, Pattern Classification and Scene
Analysis, John Wiley & Sons, New York, NY, USA, 1973.

[15] V. Vapnik, The Nature of Statistical Learning Theory, Springer,
New York, NY, USA, 1995.

[16] D. M. J. Tax and R. P. W. Duin, “Data domain description using
support vectors,” in Proceedings of the 7th European Symposium
on Artificial Neural Networks, pp. 251–256, 1999.

[17] D. M. J. Tax and R. P. W. Duin, “Support Vector data descrip-
tion,”Machine Learning, vol. 54, no. 1, pp. 45–66, 2004.

[18] I. W. Tsang, J. T. Kwok, and P.-M. Cheung, “Core vector
machines: fast SVM training on very large data sets,” Journal
of Machine Learning Research, vol. 6, pp. 363–392, 2005.

[19] D. Wang, D. S. Yeung, and E. C. C. Tsang, “Structured one-
class classification,” IEEE Transactions on Systems, Man, and
Cybernetics, B: Cybernetics, vol. 36, no. 6, pp. 1283–1295, 2006.

[20] F. Angiulli, “Prototype-based domain description for one-
class classification,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 6, pp. 1131–1144, 2012.

[21] E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers:
algorithms and applications,” VLDB Journal, vol. 8, no. 3-4, pp.
237–253, 2000.

[22] F. Angiulli, S. Basta, and C. Pizzuti, “Distance-based detection
and prediction of outliers,” IEEETransactions onKnowledge and
Data Engineering, vol. 18, no. 2, pp. 145–160, 2006.

[23] C. M. Bishop, Neural Networks for Pattern Recognition, Claren-
don Press, 1995.

[24] D. Barber and C. M. Bishop, “Ensemble learning in Bayesian
neural networks,” in Neural Networks and Machine Learning,
C. M. Bishop, Ed., vol. 168 of Series F: Computer and Systems
Sciences, pp. 215–237, Springer, 1998.

[25] B. Lerner and N. D. Lawrence, “A comparison of state-of-the-
art classification techniques with application to cytogenetics,”
Neural Computing and Applications, vol. 10, no. 1, pp. 39–47,
2001.



The Scientific World Journal 7

[26] I. Irigoien and C. Arenas, “INCA: new statistic for estimating
the number of clusters and identifying atypical units,” Statistics
in Medicine, vol. 27, no. 15, pp. 2948–2973, 2008.

[27] A. P. Bradley, “The use of the area under the ROC curve
in the evaluation of machine learning algorithms,” Pattern
Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[28] R. P. W. Duin, “On the choice of smoothing parameters
for Parzen estimators of probabilitydensity functions,” IEEE
Transactions on Computers, vol. 25, no. 11, pp. 1175–1179, 1976.

[29] M. Kraaijveld and R. Duin, “A criterion for the smoothing
parameter for parzenestimators of probability density func-
tions,” Tech. Rep., Delft University of Technology, 1991.

[30] V. Vapnik, Statistical LearningTheory, Wiley Interscience, 1998.
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