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Quantum Simulator for Transport 
Phenomena in Fluid Flows
A. Mezzacapo1, M. Sanz1, L. Lamata1, I. L. Egusquiza2, S. Succi3,4 & E. Solano1,5

Transport phenomena still stand as one of the most challenging problems in computational 
physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a 
quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding 
fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the 
streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled 
quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. 
The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap 
quantum computers or circuit quantum electrodynamics processors.

Transport phenomena in fluid flows play a crucial role for many applications in science and engineering. 
Indeed, a large variety of natural and industrial processes depend critically on the transport of mass, 
momentum and energy of chemical species by means of fluid flows across material media of assorted 
nature1. The numerical simulation of such transport phenomena still presents a major challenge to mod-
ern computational fluid dynamics. Among the reasons for this complexity stand out the presence of 
strong heterogeneities and huge scale separation in the basic mechanisms, namely advection, diffusion 
and chemical reactions2,3. In the last two decades, a novel concept for the solution of transport phenom-
ena in fluid flows has emerged in the form of a minimal lattice Boltzmann (LB) kinetic equation. This 
approach is based on the statistical viewpoint typical of kinetic theory4,5. LB is currently used across a 
broad range of problems in fluid dynamics, from fully developed turbulence in complex geometries to 
micro and nanofluidics6,7, all the way down to lattice gas automata8 and quark-gluon applications9.

Recent improvements in ion trap and superconducting circuit experiments make these platforms ideal 
for challenging quantum information and simulation tasks. Trapped-ion experiments have demonstrated 
quantum information and simulation capabilities10–12, including the quantum simulation of highly cor-
related fermionic systems13, fermionic-bosonic models14,15 and lattice gauge theories16. Superconducting 
circuit setups can host nowadays top-end quantum information protocols, such as quantum telepor-
tation17 and topological phase transitions18. These quantum devices are approaching the complexity 
required to simulate both classical and quantum nontrivial problems, as proposed by Feynman some 
decades ago19. Efforts in designing quantum algorithms for the implementation of fluid dynamics make 
use of quantum computer networks20,21. In these works, the quantum degrees of freedom are used on 
the same ground as classical parameters, and the exponential gain of quantum computers is not properly 
exploited. In contrast, systems described by pseudospins coupled to bosonic modes, such as the afore-
mentioned ion-trap and superconducting circuit platforms, can enjoy quantum superposition and have 
advantages with respect to pure-qubit quantum computers in simulating fluids.

In this article, we propose a quantum simulation of lattice Boltzmann dynamics, using coupled 
pseudospin-boson quantum platforms. Based on previously established analogies between Dirac and LB 
equations, we define here a full quantum mapping of transport equations in fluid flows. The LB dynamics 
is simulated sequentially by performing particle streaming and collision steps. The non-unitary collision 
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process can be implemented with an heralded protocol, by sequential collapses of an ancillary qubit. 
The proposed mapping is amenable to realization in trapped-ion and superconducting circuit platforms.

Results
The lattice Boltzmann equation is a minimally discretized version of the original Boltzmann’s kinetic 
equation, in which the fluid is modeled as an ensemble of particles that move and collide within a uni-
form lattice. The lattice Boltzmann dynamics is described by the equation

(∂ + ∇ ) ( , ) = − 


( , ) − ( , ) 

. ( )

  v f x t A f x t f x t 1t i
b

b i ij j j
eq

Here, ( , )
f x ti  is the ith component of the particle fluid density associated with the lattice site x at the 

time t, and with discrete velocity vi. The macroscopic fluid density at the site x is retrieved as 
ρ ( , ) = ∑ ( , )
 x t f x ti i , while the fluid velocity is defined as the weighted sum of the discrete velocities, 

ρ( , ) = / ∑ ( , )
 

 u x t f x t v1 i i i. The velocity components f vi i, with = , , ...i Q1 2 , satisfy mass-momentum- 
energy conservation laws and rotational symmetry. Typical lattices are D2Q9 or D3Q15 models, for the 
case of two dimensions with 9 speeds, and three dimensions with 15 speeds, respectively22.

Collisional properties are here expressed in scattering-relaxation form, making use of the local equi-
librium distribution ( , )

f x ti
eq . The LB approach to compute the dynamics associated with Eq.  (1) uses 

sequential computational steps. One initially performs a displacement (free-streaming) of each distribu-
tion component ( )

f xi  towards the nearest-neighbor lattice site pointed at by the discrete velocity v i. 
From there, the equilibrium distribution function ( , )

f x ti
eq  is computed and the outcome of the colli-

sional process is retrieved. Further iterations of these calculations allow the propagation of the lattice 
dynamics in time. We address the question of whether all these steps can be performed in a quantum 
simulator with practical quantum computing protocols.

The formal analogy between the Dirac and LB equations was first highlighted in4,23, where the velocity 
distribution of the particle is treated in a similar fashion as a relativistic spinor. This analogy is fur-
ther exploited in the Majorana representation of the Dirac equation, by using real spinors24. The Dirac 
(Majorana) equation reads (ħ =  1 here and in the following)

α β∂ Ψ + ∇ Ψ = Ψ , ( )i i 2t i ij
b

b j ij j

where we have defined the Dirac (Majorana) streaming matrices αij
b, mass term βij, and the imaginary 

prefactor i proper of quantum mechanical evolution.
Notice that the streaming matrices of the LB equation are diagonal, while the αij, which generate a 

Clifford algebra, cannot be simultaneously diagonalized. Additionally, the mass matrix βij is Hermitian, 
while standard collision matrices come in real symmetric form in the LB equation. Therefore, a complete 
codification of the LB scheme in quantum language requires the implementation of diagonal streaming 
matrices and of purely imaginary symmetric scattering matrices.

The components of the fluid density distribution function ( , )
f x ti  can be encoded in a set of quantum 

states Ψi  defined on a proper Fock space. For example, in two dimensions, the distribution of the fluid 
density over the two coordinates can be described by a real quantum wavefunction that encodes the state 
of two bosonic modes, as depicted in Fig.  1. In the x-quadrature representation, it reads 

∫Ψ = ( , )dx dx f x x x xi i1 2 1 2 1 2 , where fi(x1, x2) is a real distribution and ( )x1 2  the eigenstate of the 
quadrature of the first (second) bosonic mode. Several quantum distributions Ψi  can be used by entan-
gling the bosonic state to a multi-level system, such as a set of pseudospins, therefore the state of the 
complete system is given by ηΨ = ∑ ⊗ Ψii i i , with ηi being real-valued coefficients. In order to keep 
a real-valued representation of Ψ , to be identified with a fluid density distribution function, one has to 
act only with purely imaginary interaction matrices.

The quantum simulation of the Dirac equation was originally proposed25 and afterwards realized in a 
trapped-ion experiment26. In general, streaming interactions involving matrices in the Dirac or Majorana 
representation α ∇ij

b
b can be implemented by using a pair of pseudospins coupled to one or more bosonic 

modes. In terms of creation and annihilation operators ( )†a ab b  for the bosonic mode in the b direction, 
one can then consider = ∇ = ( − )†p i i a ab b b b  and write Eq.  (2) on the pseudospin-bosonic Hilbert 
space of Ψ ,

α β∂ Ψ( ) = ( − ) Ψ( ) + Ψ( ) , ( )†i t K i a a t t 3t b
b

b b

where Kb stands for the pseudospin-boson coupling and αb act upon the pseudospin degrees of freedom.
Thus, the three streaming matrices αij

b are written in the Dirac representation as α σ σ= − ⊗b x b
1 2 , in 

a pseudospin representation and the diagonal mass term as β σ= Iz
1 2. These streaming matrices are 

diagonalized via the operators β α= / ( + )S 1 2b
b 24, which have to be physically implemented as quan-

tum gates. Defining = (− )S iH texpb b , the associated generators read σ σ σ= ⊗ + ⊗H A BIb
z x b

1 2 1 2 , 
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with = πA 2
4

 and = πB
2 2

. In this way, a purely imaginary streaming step iβ∇b can be built, which 
mimics the diagonal streaming of the LB equation. The total wavefunction after the streaming steps can 
be retrieved with a sequential implementation, following the operator splitting method23. For example, 
in a 2-dimensional lattice, one has

Ψ( ) = ( )( ) Ψ( ) . ( )+
− −t S D S S D S C t 4n y y y x x x n1

1 1

The last collision step C, which scrambles particle distributions in different directions, is discussed 
below.

Standard collision operators in LB theory are represented by real symmetric matrices associated with 
non-unitary evolution operators. On the other hand, typical controlled quantum mechanics experiments 
produce unitary dynamics. Nevertheless, one can probabilistically encode non-unitary dynamics in a 
quantum device with a heralded protocol, by performing controlled operations conditioned on the state 
of an ancillary qubit, and then using the state of the latter as a flag for the success of the protocol. We 
consider a purely imaginary symmetric scattering matrix Ω , whose quantum evolution equation reads 
∂ Ψ = Ω Ψi t i ij j, providing a non-unitary evolution operator that describes lattice collisions 

= (− ΩΔ )C i texp .
The collision operator can be decomposed in a weighted sum of two commuting unitary operators, 

γ= +β βC U U , with the constraint γ≤ +C 1 , assuming without loss of generality that γ >  0.
Given a specific diagonalizable collision operator C and weight γ, one can then find its decomposition 

in terms of unitaries. In order to find a decomposition in terms of unitaries, C must first be diagonalized 
as = †C VDV . This reduces the problem of finding Uα and Uβ down to an eigenvalue equation, 
δi =  αi +  γβi, with δi, αi and βi being the ith eigenvalues of the collision and unitary operators respec-
tively. Notice that, due to the properties of the scattering matrix, δ ∈ +Ri . Taking into account the nor-
malization conditions, one has the system of equations

δ α γβ
α
β










= +
=

=
.

( )

1
1 5

i i i

i

i

The eigenvalues αi, βi can now be written as a function of the initial collision operator and weight γ,

Figure 1.  (a) The distribution of the fluid density on a 2-dimensional lattice can be simulated, for example, 
via normal motional modes and internal levels of a set of trapped ions (b). (c) Superposition of two 
motional modes entangled with pseudo spin states can encode velocity distributions in different lattice 
directions.
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The unitary operators Uα(β) are reconstructed via ( ) α β= ( )α β( )
†U V V

ij in n n n j. The real domain of Eqs (6) 

provides the range of validity of the method developed here. Simple algebra leads to the set of 
inequalities

δ γ δ− + ≤ ≤ + , ∀ . ( )i1 1 7i i

By defining δM and δm as the maximal and minimal eigenvalues of the spectrum of C, the system of 
inequalities in Eq.  (7) can be reduced to one of the two inequalities δ γ δ− + ≤ ≤ +1 1m m or 

δ γ δ− + ≤ ≤ +1 1M m, respectively when δ δ− + ≤ − +1 1m M  or δ δ− + ≥ − +1 1m M . If 
longer evolution times t are considered, the spectral range of C changes accordingly. The weighted γ-sum 
derived here can be implemented with quantum computing algorithms, using ancillary qubits and con-
trolled Uα and Uβ  gates27. By measuring the ancilla state, one can determine whether the desired opera-
tion has been performed or not. The success of the protocol depends on the weighted sum of unitary 
operators, with a failure probability γ γ= − /( + )α βP U U 1f

2 2.
As Pf is an increasing function of γ, choosing γ δ δ= − + , − +min{ 1 1 }m M0  maximizes the 

probability of success. This directly connects the simulation time of the scattering process C with the best 
choice for γ. To propagate the dynamics of a given collision process C, one can split the step time Δ t into 
N time intervals Δ t/N and perform the heralded protocol at each step, such that ( )= − Ω Δ /C i t Nexp ij

N
. 

At each step, one has a collision operator ( )− Ω Δ /i t Nexp ij , with an optimal γ0. In this way, as the step 
size gets smaller, the success probabilities for each step increase, while the total success probability accu-
mulates single success rates from the individual steps. In Fig.  2a, we plot the success probability 

( ) = − ( )P N P N1s f  of the simulation of the single step, as a function of N, for random symmetric purely 
imaginary matrices. As expected, the success probability per step increases as the size for the single time 
step gets smaller. The success of the whole protocol Ps

N is constant and does not depend on N. In Fig. 2b 
is shown that the optimal protocol is performed at γ =  γ0.

Figure 2.  Probabilities of success P for the implementation of the scattering process. (a) Probability of 
success Ps per time step of simulating real symmetric random matrices as a function of the number of 
ancillary measurements N (solid lines), together with accumulated probabilities for the whole protocol Ps

N

(dashed lines). Each curve represents a different instance of a random matrix. (b) Probability of success of a 
single step as a function of γ/γ0, when N =  10.
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Discussion
The scheme proposed can be adapted to a variety of transport fluid problems. As an example, we consider 
the implementation of an advection-diffusion process in two spatial dimensions. The dynamics of the 
transported species, e.g. pollutants or bacteria, is described by the equation

ρ ρ ρ∂ + ∇ ⋅ ( ) = Δ , ( )
��
U D 8t

where ρ = ∑ = fi i1
4  is the scalar field transported by a fluid with space-dependent velocity ( )= ,

��
U U Ux y  

and constant diffusivity D.
The problem in Eq.  (8) can be recast in LB form, as in Eq.  (1). The corresponding equilibrium dis-

tribution function is defined as

ρ
ρ

=








+
⋅ 






,

( )

�� �
f w

U c
c 9i

eq
i

i

s
2

with wi =  1/4, = /c 1 2s
2 . Note that, by definition, the space-time dependence of the local equilibria is 

entirely carried by the macroscopic fields ρ and 
��
U .

The scattering matrix reads ω= ∑ =
( ) ( )A A Aij k i
k

k j
k

1
4 , where = ≡ ( , , , )( )A 1 1 1 1 1i i

1 , Ai
(2) = cix ≡ 

( , , − , )1 0 1 0 , = ≡ ( , , , − )( )A c 0 1 0 1i iy
3  and = − ≡ ( / , , / , )( )A c c 1 2 0 1 2 0i ix s

4 2 2  are the four eigen- 
vectors.

The first three corresponding eigenvalues are given by

ω ω ω= , = =
/ + /

,
( )D c

0 1
1 2 10s

1 2 3 2

which follows from mass conservation and the expression of the diffusion constant ω= ( / − / )D c 1 1 2s
2 , 

respectively. By choosing different values for ω2 and ω3, one can implement anisotropic diffusivities along 
the x and y directions. Finally, ω4 dictates the decay of higher order fields of no direct macroscopic sig-
nificance, hence it is chosen as ω4 =  1 so as to annihilate the corresponding field in a single collision step.

The relative scattering matrix Ω ij is defined by − 


( ) − ( ) 


≡ Ω ( , )
  A f x t f x t f x t; ;ij j j

eq
ij j

. By choosing 
a Couette flow, e.g. = ( , )U U y 00 , where L is the typical size of the fluid domain, one has 

ρ= ( + )f w u1i
eq

i i , with = − = /u u U y cs1 3 0
2 and = =u u 02 4 . Here, velocities are numbered 1 ÷  4 

counterclockwise starting from the + x direction.
The latter defines the quantum scattering matrix as composed of three contributions, namely 

ρ ρΩ = − 


+ + 


i f iA f w w uij j ij j j j j , where ( )= − ≡ / + †u u U c a as y y1 3 0
2  is proportional to the position 

quadrature of the bosonic mode associated with the y direction. The three contributions to the scattering 
matrix represent classical linear wave propagation and damping, mass conservation and macroscopic 
advection, respectively. They can be implemented with the quantum simulation protocol previously 
introduced. The bounds to γ can be obtained, e.g., for the first contribution to the scattering matrix − Aij, 
by computing the spectrum of = − ΔC e A t for different time steps Δ t, for D =  0.05, in units of 1/ω4. The 
result is shown in Fig. 3.

Natural quantum platforms for prospective implementation of the proposed scheme could be ions 
trapped in linear Paul traps or superconducting circuit setups, in which the sequential streaming and 
collision steps in Eq. (4) can be realized. The pseudospin-bosonic state can be encoded, in the case of ion 

Figure 3.  Spectrum of a collision operator (solid red line) for advection-diffusion process of a four-
speed lattice as a function of the evolution time step Δt, in units of 1/ω4. The allowed region for γ is 
bounded by dashed blue lines using Eq. (7) and shadowed in the picture.
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traps, in the internal level and motion modes of the ions28, while in a superconducting architectures, one 
can use the first levels of charge-like qubits, e.g. transmon qubits, and microwave resonators29. One may 
consider opening similar avenues in other quantum technologies as is the case of quantum photonics30 
and Bose-Einstein condensates31.

A practical implementation of the protocol proposed can make use of many-body interactions, involv-
ing couplings with bosonic modes. These type of gates have been considered in superconducting archi-
tectures32 or in ion-trap platforms33. For a four-speed lattice, the diagonal streaming processes can be 
realized with a combination of a qubit-boson interaction and two entangling gates among the qubits. For 
example, the corresponding evolution operator for the streaming in the X direction can be written as

φα

π π π φσ π π π

= ( − )

= ( / ) (− / ) ( / ) ( − ) ( / ) ( / ) (− / ), ( )

†

† † † †

U a a

R R U a a U R R

exp[ ]

4 4 4 exp[ ] 4 4 4 11
x

z y
C

x
x x C

z y

1
1 1

1 2 1 1 2

where we have defined an entangling operation between the two qubits π σ σ= − ( / )U iexp[ 4 ]C
z z

1 2  and 
local rotations of the i-th qubit about the j-th axis, θ θσ( ) = (− )R iexpi

j
i
j . The Ux interaction can then 

be diagonalized in the qubit space via the realization of two Sx matrix, †S U Sx x x, which can be achieved 
by a combination of entangling two-qubit gates and a phase gate. In the case of more internal degrees of 
freedom of the lattice, the two-body entangling gate can be substituted by a collective interaction 

π σ σ→ 
− ( / ) ∑ 

<U iexp 4C i j i
z

j
z . Similar reasoning applies to the streaming in the Y direction, consider-

ing a different bosonic mode ay. The unitary matrices that implement the collision process 
( )= −( ) ( )U iH texpa b a b  can be implemented in a controlled way27 by using an additional ancillary qubit 

Ψ A and performing the quantum gate σ
− ( ± ) ⊗ 

( )i H texp 1A
z

A a b . These gates can be decomposed in 
general with a Lie-Trotter-Suzuki decomposition, in terms of many-body interactions of the type 
σ σ σα α α

A
i j

N
k

1 , σ η σ σ σ( ± ) ⊗ = ∑α α( )
α α α

H1A
z

A a b A
i j

N
k

1 , with , … ∈ , ,α α α{ }i j k x y z{ }. These 
many-body interactions can be obtained by sequential implementation of collective gates and single qubit 
rotations32,33. In the case of a Couette flow, the term with the linear spatial dependence of the scattering 
matrix can be implemented by considering a single qubit rotation entangled with a bosonic displacement, 
similar to Eq.  (11). The quantum resources necessary to implement Lie-Trotter-Suzuki decompositions 
scale polynomially in the internal degrees of freedom of the lattice, and sub-polynomially in the digital 
error34. Notice also that the quantum resources needed are invariant with respect to the size of the sim-
ulated lattice. The latter will depend on the accessibility and readability of distributions over Fock spaces 
in practical implementations, e.g. the ability to characterize distributions over current quadrature in 
superconducting architectures35,36.

Note that the above scheme readily extends to the case of reactive flow, by augmenting the col-
lision operator with a local source term proportional to the chemical reaction rate. Such kind of 
advection-diffusion-reaction phenomena in complex geometries, say catalytic reactors, represent a very 
active area of applications of the LB scheme. Further developments may include the implementation of 
hydrodynamic non-linearities to model the Navier-Stokes fluid dynamic equations. This requires the 
inclusion of quadratic terms in the LB equilibrium distribution. Such nonlinear behavior can be provided 
in a quantum mechanical experiment by preparing multiple copies of the system37, feedback mecha-
nisms38, or non-unitary operations induced by measurements.

We have developed a protocol to reproduce the dynamics of fluid transport phenomena in a quantum 
mechanical experiment, by using pseudospins coupled to bosonic modes that can be implemented in dif-
ferent quantum platforms. This proposal paves the way to quantum simulation and retrieval of complex 
classical fluid dynamics in controlled quantum systems.

References
1.	 Majda, A. et al. Transport Phenomena, 2nd edition. John Wiley, New York (2002).
2.	 Majda, A. & Kramer, P. Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. 

Rep. 314, 237 (1999).
3.	 Succi, S., Filippova, O., Smith, G. & Kaxiras, E. Applying the Lattice Boltzmann equation to multiscale fluid problems. Comput. 

Sci. Eng. 3, 26 (2001).
4.	 Benzi, R., Succi, S. & Vergassola, M. The Lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145 (1992).
5.	 Aidun, C. K. & Clauser, J. R. Lattice-Boltzmann Method for Complex Flows. Annual Review of Fluid Mechanics 42, 439 (2010).
6.	 Succi, S. Lattice Boltzmann across scales: from turbulence to DNA translocation. Europ. Phys. J. B 64, 471 (2008).
7.	 Succi, S. Lattice Boltzmann 2038. EPL 109, 50001 (2015).
8.	 McNamara, G. R. & Zanetti, G. Use of the Boltzmann Equation to Simulate Lattice-Gas Automata. Phys. Rev. Lett. 61, 2332 

(1988).
9.	 Mendoza, M., Boghosian, B. M., Herrmann, H. J. & Succi, S. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics. Phys. 

Rev. Lett. 105, 104502 (2010).
10.	 Lanyon, B. P. et al. Experimental Violation of Multipartite Bell Inequalities with Trapped Ions. Phys. Rev. Lett. 112, 100403 

(2014).
11.	 Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302 (2014).
12.	 Lanyon, B. P. et al. Universal Digital Quantum Simulation with Trapped Ions. Science 334, 57 (2011).
13.	 Casanova, J., Mezzacapo, A., Lamata, L. & Solano, E. Quantum Simulation of Interacting Fermion Lattice Models in Trapped 

Ions. Phys. Rev. Lett. 108, 190502 (2012).



www.nature.com/scientificreports/

7Scientific Reports | 5:13153 | DOI: 10.1038/srep13153

14.	 Mezzacapo, A., Casanova, J., Lamata, L. & Solano, E. Digital Quantum Simulation of the Holstein Model in Trapped Ions. Phys. 
Rev. Lett. 109, 200501 (2012).

15.	 Stojanović, V. M., Shi, T., Bruder, C. & Cirac, J. I. Quantum Simulation of Small-polaron Formation with Trapped Ions. Phys. 
Rev. Lett. 109, 250501 (2012).

16.	 Hauke, P., Marcos, D., Dalmonte, M. & Zoller, P. Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions. 
Phys. Rev. X 3, 041018 (2013).

17.	 Steffen, L. et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319 (2013).
18.	 Roushan, P. et al. Observation of topological transitions in interacting quantum circuits. Nature 515, 241 (2014).
19.	 Feynman, R. P. Simulating Physics with Computers. Int. J. Theor. Phys. 21, 467 (1982).
20.	 Yepez, J. Quantum lattice-gas model for computational fluid dynamics. Phys. Rev. E 63, 046702 (2001).
21.	 Pravia, M. A., Chen, Z. Yepez, J. & Cory, D. G. Experimental Demonstration of Quantum Lattice Gas Computation. Quant. Inf. 

Process. 2, 97 (2003).
22.	 Qian, Y. H., d’Humieres, D. & Lallemand, P. Lattice BGK Models for Navier-Stokes Equation. Europhys. Lett. 17, 479 (1992).
23.	 Succi, S. & Benzi, R. Lattice Boltzmann equation for quantum mechanics. Physica D 69, 327 (1993).
24.	 Fillion-Gourdeau, F. et al. Formal Analogy between the Dirac Equation in Its Majorana Form and the Discrete-Velocity Version 

of the Boltzmann Kinetic Equation. Phys. Rev. Lett. 111, 160602 (2013).
25.	 Lamata, L., León, J., Schätz, T. & Solano, E. Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion. Phys. Rev. 

Lett. 98, 253005 (2007).
26.	 Gerritsma, R. et al. Quantum simulation of the Dirac equation. Nature 463, 68 (2010).
27.	 Childs, A. M. & Wiebe, N. Hamiltonian Simulation Using Linear Combinations of Unitary Operations. Quant. Inf. and Comp. 

12, 901 (2012).
28.	 Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155 (2008).
29.	 Devoret, M. H. & Schoelkopf, R. J. Superconducting Circuits for Quantum Information: An Outlook. Science 339, 1169 (2013).
30.	 Dreisow, F. et al. Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices. Phys. Rev. Lett. 105, 143902 (2010).
31.	 Salger, T., Grossert, C., Kling, S. & Weitz, M. Klein Tunneling of a Quasirelativistic Bose-Einstein Condensate in an Optical 

Lattice. Phys. Rev. Lett. 107, 240401 (2011).
32.	 Mezzacapo, A., Lamata, L., Filipp, S. & Solano, E. Many-Body Interactions with Tunable-Coupling Transmon Qubits. Phys. Rev. 

Lett. 113, 050501 (2014).
33.	 Müller, M., Hammerer, K., Zhou, Y. L., Roos, C. F. & Zoller, P. Simulating open quantum systems: from many-body interactions 

to stabilizer pumping. New J. Phys. 13, 085007 (2011).
34.	 Berry, D. W., Ahokas, G., Cleve, R. & Sanders, B. C. Efficient Quantum Algorithms for Simulating Sparse Hamiltonians Comm. 

Math. Phys. 270, 359 (2007).
35.	 Mallet, F. et al. Quantum State Tomography of an Itinerant Squeezed Microwave Field Phys. Rev. Lett. 106, 220502 (2011).
36.	 Ku, H. S. et al. Generating and verifying entangled itinerant microwave fields with efficient and independent measurements 

e-print arXiv:1502.03884.
37.	 Leyton, S. K. & Osborne, T. J. A quantum algorithm to solve nonlinear differential equations. e-print arXiv:0812.4423.
38.	 Ringbauer, M. et al. Experimental simulation of closed timelike curves. Nat. Comm. 5, 4145 (2014).

Acknowledgments
We acknowledge financial support from Basque Government Grants IT472-10 and IT559-10, Spanish 
MINECO FIS2012-36673-C03-02, Ramón y Cajal Grant RYC-2012-11391, UPV/EHU Project No. 
EHUA14/04, UPV/EHU UFI 11/55, PROMISCE and SCALEQIT European projects.

Author Contributions
A.M. performed the calculations and the numerical analysis. M.S. and A.M. did the scheme in Fig. 1. 
A.M., M.S., L.L., I.L.E. and E.S. contributed to the design of the quantum algorithm. S.S. contributed to 
the design and implementation of the algorithm for transport phenomena. All authors contributed to 
the writing of the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Mezzacapo, A. et al. Quantum Simulator for Transport Phenomena in Fluid 
Flows. Sci. Rep. 5, 13153; doi: 10.1038/srep13153 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Quantum Simulator for Transport Phenomena in Fluid Flows

	Results

	Discussion

	Acknowledgments

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ (a) The distribution of the fluid density on a 2-dimensional lattice can be simulated, for example, via normal motional modes and internal levels of a set of trapped ions (b).
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Probabilities of success P for the implementation of the scattering process.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Spectrum of a collision operator (solid red line) for advection-diffusion process of a four-speed lattice as a function of the evolution time step Δt, in units of 1/ω4.



 
    
       
          application/pdf
          
             
                Quantum Simulator for Transport Phenomena in Fluid Flows
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13153
            
         
          
             
                A. Mezzacapo
                M. Sanz
                L. Lamata
                I. L. Egusquiza
                S. Succi
                E. Solano
            
         
          doi:10.1038/srep13153
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep13153
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep13153
            
         
      
       
          
          
          
             
                doi:10.1038/srep13153
            
         
          
             
                srep ,  (2015). doi:10.1038/srep13153
            
         
          
          
      
       
       
          True
      
   




