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In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and
dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional
trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light
scattering experiments. The measurements are performed in the weak perturbation regime, where
these two quantities—the energy and momentum transferred—are expected to be related to the
dynamic structure factor of the system. We discuss this relation, with special attention to the role of in-
trap dynamics on the transferred momentum.

1. Introduction

Stimulated scattering of light or particles from condensed-matter systems—solids, liquids, and gases—is a
powerful tool for providing fundamental insight into the structure of matter. Elastic scattering of x-ray photons
has permitted to disclose the atomic order and electron distribution in crystalline solids, as well as the
arrangement of atoms in molecules [1]. Similarly, inelastic neutron scattering has unveiled the phonon
spectrum of superconductors and the superfluidity of liquid helium [2].

In cold atomic systems, inelastic scattering of photons—also known as Bragg spectroscopy—has been used to
study Bose—Einstein condensates (BECs) in harmonic three-dimensional (3D) traps [3-5], quasi-condensates in
a quasi one-dimensional (1D) trap [6], BECs in shallow cubic optical lattices [7, 8], strongly interacting BECs
across a Feshbach resonance [9], and strongly interacting fermions [ 10, 11], through direct observation of the
net momentum imparted to the system. The transferred momentum is easily measured in this kind of settings,
since the atomic density distribution, observed after time-of-flight in the far-field regime, directly reflects the in-
trap momentum distribution.

Strongly correlated phases of bosons in optical lattices have been investigated by measuring the increase of
energy following the external perturbation. The quantum phase transition from a superfluid to a Mott-insulator
state has been studied in 1D Bose gases in the presence of a longitudinal lattice with experiments of lattice
amplitude modulation, where the excitation has zero momentum [12], and with scattering experiments where
the excitation has non-zero momentum [13, 14]. The latter technique has been also used for studying 1D gases
in optical lattices [ 15, 16]. The energy of a condensate, even in the presence of shallow lattices, is easily extracted
from the time-of-flight density distribution of the gas [17], whereas the energy of strongly-interacting systems
realized in deep optical lattices—as a Mott insulator—is not directly accessible, unless with single-site resolution
experiments [ 18]. In the case of deep optical lattices, the energy excess produced by the Bragg perturbation can
be measured by lowering the lattice depth, i.e., driving the system in a less interacting regime, and letting it
thermalize [12, 13].
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In the linear response regime, both energy and momentum transfer are related to the dynamic structure
factor [19], which carries key information about the dynamical behaviour and correlations of the system.
However in trapped condensates, while the energy is a conserved quantity, momentum is not conserved due to
the presence of the trap. Thus, if the Bragg pulse duration is not negligible compared to the inverse of the trap
frequency, the momentum imparted by the Bragg beams can be affected by the in-trap dynamics [19, 20],
complicating its connection to the dynamical structure factor. On the other hand, a short Bragg pulse would
result in a limited spectral resolution.

In this work, we use inelastic light scattering for accessing the dynamic structure factor of an array of 1D Bose
gases. The dimensionality of the system plays a crucial role: in 1D quantum systems, correlations—which
directly reflect on the dynamic structure factor—Ilead to peculiar phenomena, such as fermionization of
strongly-interacting bosons [21-23], or spin-charge separation of interacting fermions [24], which do not have
any higher-dimensional equivalent. Moreover, for 1D systems, the mechanisms and characteristic times of
thermalization are currently under investigation [25, 26]. This may affect the measurement of the energy
transferred via light scattering. On the other side, momentum measurement of 1D trapped gases may be
influenced by the in-trap dynamics, as above mentioned. The purpose of this work is to investigate
experimentally the relation between energy and momentum imparted to an array of 1D gases due to Bragg
scattering, in a typical regime of parameters [ 13, 16], and to discuss the effect of the in-trap dynamics on the
transferred momentum.

The paper is organized as follows. In section 2 we focus on the comparison of the response of the array of 1D
gases to the scattering experiments in terms of energy deposited and momentum boost imparted to the system.
We present the experimental setup and discuss the results, obtained in a regime of weak perturbation. We also
directly compare the susceptibility of this system to the one of a 3D non-interacting condensate. In section 3 we
study the effect of the in-trap dynamics on the momentum transfer by recording the evolution of the response of
the system in time, after the Bragg excitation.

2. Energy and momentum transferred to an array of 1D gases

2.1. Experimental setup
We produce an array of 1D gases by loading a Bose—Einstein condensate of about 2.5 X 10° *’Rb atoms in a two-
dimensional optical lattice created by two mutually orthogonal standing laser waves of wavelength 4 = 765 nm.
The loading is performed with an exponential ramp of ¢, = 250 ms, with time constant #,/3. The final depth of
thelatticeis V; = 30E,, with E, = h%/(2mA?), m being the atomic mass and 4 the lattice wavelength. This value is
chosen to be high enough to freeze the transverse degrees of freedom of each 1D gas (the radial trapping
frequencyis w, = 2z X (42 + 2)kHz), and suppress the tunneling of particles between different tubes on the
timescale of the experiment.

The equilibrium state of the system is completely described by two dimensionless parameters [27], that s, (i)
the interaction parameter y = mg, , / (h?p), where g, is the 1D interaction strength [29] and p the density, and

(ii) the reduced temperature = 2mkg T/(hp)?, which depends on both density p and temperature T. In this
work, we explorearegimeof y ~ land 7 ~ 1.

The significant parameters that characterize the 1D gases vary overall the array. Their distribution can be
estimated by rescaling the interparticle interaction strength g, asin [16], given the overall trapping frequencies
in the presence of the lattices, w, = 27 (63 + 13) Hz, w, = 27 (60 + 10) Hz, @, = 27 (76 + 15) Hz. We

estimate the array to consist of about 4 X 10° 1D tubes, and the central tube to have y = (0.9 + 0.2), density
p = (5 + 1) um ™', and chemical potential u/h = (3.9 + 0.7) kHz. The average values of these parameters—
obtained weighting the contribution of each tube of the array with its number of atoms—are 7 = (1.4 + 0.4),
7 =37+ 08 um ',and i/h = (3.6 + 0.6)kHz.

The study of this system is carried out by imparting a perturbation to the array of 1D tubes given by two
simultaneous off-resonance laser pulses with time duration tg = 3 ms, which determines an interaction-time
broadening of ~150 Hz. Note that t5 ~ T/5, with T = 27/, being the trap period along the axis of the tubes.
The laser light is detuned by 200 GHz from the *’Rb resonance and the waist of the Bragg beams is 2 900 ym.
The two beams have tunable relative detuning Aw (up to tens of kHz), and produce a moving Bragg grating with
amplitude V5 = h X 900 Hz. The wavevector of the Bragg grating is adjusted to be along the axial direction of
the tubes, and it is fixed at g = (7.3 + 0.2) um™'. Comparing the Bragg wavevector with the average value of the
healing length £ [30], we have g& ~ 0.9. Since in our case the healing length is about a half of the interparticle
distance, the mean-field picture does not apply, and a more convenient length scale is given by the inverse of the
Fermi wavevector, which in our case is kr = 7p ~ 24.In the experiments, we vary the energy A of the
excitation by tuning Aw (being @ = |Aw|) and we measure the response of the system, in terms of energy and
momentum transfer.
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Figure 1. Energy transfer. (a) Experimental timing used for measuring the energy spectrum. The optical lattice is raised to 30E, in 250
ms. During the holding time the Bragg beams are shone onto the atoms, then the whole system is let thermalize by lowering the lattice
depth to 5E,. After 5 ms the trap is released, and the energy is measured from the time-of-flight density distribution. (b) Energy
transferred via Bragg scattering to an array of 1D gases in an optical lattice of height V; = 30 E,, as a function of the excitation
frequency. The signal is obtained from the squared width of the central peak of the time-of-flight density distribution (7 + 26y2 ). The
fitting curve is given by a gaussian function multiplied by the frequency wG (w). (c) Increase of the rms size along the axis of the tubes
(0y) and along a perpendicular axis (o, ), as a function of the excitation frequency.

2.2. Results

Here, we present the measurement of the energy transfer, which is a conserved quantity even in the presence of a
trapping potential. For measuring the energy transfer, after the Bragg pulse we lower the lattice height to

VL = 5E,, where the different lattice sites are coupled via tunneling of particles on a timescale of ~0.6 ms, and the
temperatures of the different gases can re-equilibrate to a common value of the 3D system. After 5 ms the gas is
released and let expand ballistically for a time-of-flight #,,¢ = 25 ms, then we record the density distribution of
the atomic cloud. The experimental timing, see also [13, 28], is sketched in the figure 1(a). From the time-of-
flight images, we extract the squared width of the central peak of the resulting interferogram 62 = 67 + 2@2 0
and subtract the background 6, corresponding to the value measured in the absence of the Bragg pulse, in order
to obtain the experimental signal. This quantity is proportional to the energy imparted to the system, as
previously demonstrated [16]. The latter, in turn, is related to the dynamic structure factor S (g, @) of the system
through the relation [31]

2
AE(q, ) = (%)(%) tg 0S(q, ), (1)

valid in the linear response regime. The measured energy spectrum, normalized to its integral, is shown in
figure 1(b). In order to verify that the system has thermalized after the Bragg pulse, in figure 1(c) we plot
separately the increase of the rms size observed in each direction (Ao, and Ao,): in spite of the symmetry
breaking induced by the Bragg perturbation imparted along the axis of the 1D gases (x direction), Ao, and Ag,
show the same dependence on the Bragg frequency, indicating that an efficient thermalization process has
occurred during the ramping down of the lattices.

In the experiment, we also measure the total momentum imparted to the same system. To this purpose, after
the Bragg pulse, the atoms are abruptly released directly from the trap, as represented in figure 2(a), so that in-
trap momentum is mapped into the atomic density distribution after time-of-flight. When the Bragg
perturbation is on resonance, momentum is transferred efficiently, and the time-of-flight images of the density
distribution exhibit a small cloud of excited atoms ejected from the main cloud. Figure 2(b) shows the evolution
of the normalized density profiles n (x) integrated along the line of sight and along the y direction (orthogonal to
the axis along which momentum is transferred) with the relative detuning between the Bragg beams. From the
time-of-flight images, the net moment boost AP (w, q) is obtained by measuring the displacement of the center
of mass—relative to the unperturbed position—as [32]

6 . . .
Here, we have assumed 6, = ¢, owing to the cylindrical symmetry of the system.
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Figure 2. Momentum transfer. (a) Experimental timing. The optical lattices are abruptly switched off immediately after the Bragg
pulse, and the momentum transfer is measured from the center-of-mass shift of the whole cloud. (b) Normalized density profile # (x)
along the axis of the 1D gases—integrated along the line of sight zand the y direction—for different values of the relative detuning of
the Braggbeams Aw/(27) (false colours). On resonance, the central peak is depleted and the atoms are ejected along the x direction.
(c) Momentum transferred to an array of 1D gases. The filled (empty) dots, at positive (negative) momentum along the axis of the
tubes, correspond to Aw < 0 (Aw > 0). The Bragg parameters of this measurement are the same as described for the measurement
of the energy transfer.

AP (g, ) = tﬁ /x (n(x, y) — no(x, y)) dxdy, (2)

tof

where 7 (x, y) and ny (x, y) are the density profiles integrated along the line of sight and normalized to the unity,
with and without the Bragg excitation, respectively. The experimental spectra normalized to the momentum of
the excitation 2g, AP (q, w)/(hq), are shown in figure 2(c). Filled (empty) dots correspond to positive (negative)
momentum, along the axis of the tubes.

Asremarkedin [19, 20, 33], momentum is a conserved quantity only in the absence of any external trapping
potential. In this case, for a perturbation in the linear response regime and with wtg > 1, AP (¢, @) isrelated to
the dynamic structure factor through the following relation

2\ ( Vi \?
AP (g @) = (7”)(73) ts 45 (4> ). )

For a trapped gas with axial trapping frequency w, significantly smaller than the radial one, this equation still
holds in a wide range of parameters, provided that wtz > 1and w, t3 < 1[33]. In the present case, the first
condition is well satisfied as wtp ~ 80 on resonance, while we have @, tg ~ 1, which does not satisfy the second
condition. Thus the comparison between the quantities extracted from the measurements of energy and
momentum transfer is not straightforward. In order to address quantitatively this issue, we fit AP (g, @) witha
gaussian function G (), where center, width and amplitude are free parameters, and AE (g, w) with w G (@), as
follows from equation 1. The gaussian centers obtained from the measured spectra are respectively (4.5 + 0.2)
kHz for the momentum transfer, and (4.3 + 0.3) kHz for the energy transfer, with their widths being

(2.5 £ 0.2)kHzand (2.3 + 0.2) kHz, respectively. These results are consistent within the error bars, allowing us
to conclude that, with this choice of parameters, both these experimental approaches measure the same
quantity.

2.3. Comparison with the response of a 3D condensate

As areference system, we also measured the transferred momentum of a 3D expanded condensate, since its
response is well described by a non-interacting model. Before performing the scattering experiment, we switch
off the trapping potential and let the BEC fall freely for 5 ms of time-of-flight, so that density decreases by a factor
of ~3, and the chemical potential drops to ~h X 170 Hz, hence the interparticle interactions can be neglected.
For direct comparison, in figure 3 we show the experimental spectrum of the array of 1D gases obtained as
previously described (figure 3(a)), and the spectrum of the 3D non interacting condensate (figure 3(b)). In both
figures 3(a) and 3(b), the signal is normalized to the Bragg strength V3 t5. In this Figure, we also report the exact
solution for a free-particle system (continuous red line), which shows an excellent agreement with the
experimental data. This prediction is obtained by solving the Schrodinger equation [34] in the presence of the
Bragg potential V' (x, t) = 6 (t — tg) Vp cos(gx — wt) (for t > 0), and does not contain any fitting parameter.

4
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Figure 3. Comparison between the transferred momentum AP to (a) an array of trapped 1D gases and (b) a non-interacting 3D
condensate. The horizontal scale represents the frequency difference between the Bragg beams. The spectrum of the array of 1D gases
has been obtained using Bragg parameters t5 = 3 msand Vg = h X 900 Hz, whereas the spectrum of the 3D condensate has been
obtained with t3 = 0.5 ms,and V3 = h X 540 Hz. The amplitude of both the spectra has been rescaled by the pulse strength V3t to
directly compare the susceptibility of the two systems. Note that the vertical scale in the first graph is 20 times smaller than in the
second one. A fit of the experimental spectrum of the 1D gases with a sum of two gaussian functions (blue curve) is shown in figure 3
(a) and reported also in figure 3 (b) for highlighting the comparison between the response of the two systems. The red continuous line
in figure 3 (b) is the solution of the time-dependent Schrédinger equation for a non-interacting gas, given the value of Vi/h, with no
free parameters (see text).
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Figure 4. Test of the linear response regime. We report the energy increase of the array of 1D gases due to a resonant Bragg
perturbation as a function of the amplitude of the Bragg grating, at fixed pulse duration ¢ = 3 ms. The continuous red line is a power-
law fit with free exponent m, resultingtobe m = (1.8 + 0.2), consistent with the quadratic behaviour expected in the linear response
regime [19]. The inset shows the same data in log-log scale. The error bars are the standard deviations of up to ten repeated measurements.

From the comparison of the two spectra, we can notice that the response of the 1D tubes is much broader. A
related work [16] shows that in the same regime of parameters the spectral broadening of the response of the
array of 1D gases comes from the dynamics of the interaction-induced excitations.

Moreover, the comparison between the two amplitudes shows that the susceptibility of the 1D tubes is about
35 times lower than the one of the 3D non-interacting condensate. The very low susceptibility of the array of 1D
tubes, with the Bragg parameters that we have used, is a first indication that the response of the system lies in a
regime of weak perturbation, where the relations in equation (1) and equation (3) are expected to hold. We have
also verified the behaviour of the experimental signal as a function of Bragg power in a range that includes the
used value. This indicates the dependence of the signal on V to be quadratic (see figure 4), as expected in the
framework of the linear response theory [19].

3. Effect of in-trap dynamics on the momentum transfer

As previously discussed, momentum is not a conserved quantity in the presence of a trapping potential.
Therefore, the measurement of the momentum following a Bragg excitation can in principle be affected by the




10P Publishing

NewJ. Phys. 17 (2015) 063012 N Fabbri etal

API(fiq)

lAwl/(27) (kHz)

Figure 5. In-trap dynamics after the Bragg excitation. AP/(hq) is reported as a function of |Aw |/(27), for different holding times in
the trap after the Bragg excitation: t¢c = 0, 1, 2, 4, 10 ms. The continuous blue lines are guides for the eyes. The curve corresponding
to tc=0msisalso reported in the other panels (as a dashed-dotted line) for comparing the signal shapes and amplitudes. Inset:
experimental time sequence. The total holding time in the lattices is kept constant (ty = 30 ms).

in-trap dynamics before the release [20, 33]. For the cases discussed so far (see figures 2 and 3), the momentum
transferred has been measured immediately after the Bragg pulse. for the 1D gases, evenif tg ~ T/5, as seenin
section 2.2, AP and AE—which is not affected by in-trap dynamics since energy is a conserved quantity—carry
the same information. Thus, we cannot infer appreciable effects of the dynamics during the Bragg pulse in the
momentum spectrum recorded immediately after the Bragg pulse.

Now, we characterize more in depth the effect of the in-trap dynamics on the response of the 1D gases. To
this purpose, we measure AP (g, w)/(hq) at variable time after the end of the Bragg perturbation. In figure 5(a)
we can observe a modification of the system response with time. The Bragg time-duration is fixed to the value
tp = 3 ms, and the total holding-time of the atoms in the lattice trap () is kept constant, while we vary the time
tcbetween the end of the Bragg pulse and the release of the trap from 0 ms up to 10 ms, as sketched in the inset of
the figure. During the first 2 ms after the Bragg pulse, the total spectral weight of the signal undergoes a
suppression with time (note that the vertical scale is the same in all the panels of the figure), which eventually
results in a negative amplitude at tc = 10 ms. Remarkably, the shape of the signal at tc = 4 ms is asymmetric
and qualitatively different from the other cases.

The latter behavior can be qualitatively interpreted by considering the effect of the in-trap dynamics during
the Bragg pulse. Let us consider a system of N interacting particles trapped in a harmonic potential, described by
the following Hamiltonian

N[ 42
p; »
H:Z $+Vho(xi)+ZV‘m(x,-—xj) : (4)
i=1 j<i
The evolution of the total momentum and position operators along each spatial directions can be easily obtained
from the Heisenberg equations as p, = (—i/A) [H, p,] = mw*%,and X, = (=i/h) [H, £,] = —ﬁa/m, with
A N . R . . .
Oy = 2i=1 Oi (@ =1, 2, 3,0 = %, p ). For the first relation we have used the fact that 9, V;™ = -0, V;""
Then, restricting the discussion to the 1D case, it is straightforward to get that the average momentum evolves in
the trap as
(P) () = —mawy (X)o sin(wyt) + m(f)o cos(myt), (5)

where (X )o and (X ) are the average position (center-of-mass) and velocity at time t = 0% immediately after the
end of the Bragg pulse. We remark that this result is valid in general for any interacting system, regardless of the

6
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temperature, the statistics (being the particles bosons or fermions) and the dimensionality of the system. In fact,
it is a well known result that the dynamics of the center of mass in the presence of harmonic trapping is
decoupled from the internal degrees of freedom of the system (seee.g. [17]).

Let us now turn to the effect of the Bragg pulse, that we assume of the form g (¢) Vi cos(qx — wt). First, let us
consider the case of a Bragg pulse duration t5 < T', which can be considered as instantaneous with respect to the
in-trap dynamics. After the pulse, at t = 0%, the density distribution is basically unperturbed ((X)o = 0). Then,
the Bragg perturbation only affects the initial velocity distribution 7 (X, ), so that its mean value is (X }o=
(Np/N)hg/m,where Ng/N is the ratio of the number of diffracted atoms to the total number of atoms. As
follows from equation (5), in this case (p) (¢) vanishes exactly for t = T/4, Tbeing the period of the trap, for any
excitation frequency.

Instead, for a finite duration of the Bragg pulse (and in particular, if t5 is comparable with the trap period),
even the spatial distribution of the atomic ensemble may undergo modifications during the Bragg perturbation,
depending on the excitation frequency. This makes the initial value of the center-of-mass (X ), in equation (5)
non vanishing and w-dependent, therefore affecting the following dynamics and changing the shape of the
signal.

As an example, let us consider the simple case of a Bose—FEinstein condensate in a single, quasi 1D tube, in the
mean-field regime. In this case, the response of the system to the Bragg pulse can be easily obtained by solving the
following 1D Gross—Pitaevskii equation (¢ > 0):

1
ihowy = [—% Vi+ Vho(x) + 0(t — t5) Vg cos(gx — wt) + g, Il//lz]w, (6)

where g, = g /(2ra ), g = 4wh*a/m being the 3D interaction strength, a the scattering length for *’Rb, and

a; = Jh/(mw ) the oscillator length in the transverse directions. In this specific example we consider

Va/h = 120 Hz, ty = 3ms, w, = 2w X 60 Hz, w; = 27 X 42 kHz, and an array of tubes that corresponds to the
typical experimental configuration. The response of the system at different evolution times in the trap is shown
in figure 6, where the meanfield predictions are also compared to the non-interacting case’. This figure shows
thatindeed, as follows from equation (5), the response patternat t = T/2 is reversed with respect to thatat t =0,
the evolution being periodic in time. For intermediate times, the shape of the signal is non trivial, depending on
the relative weight and on the specific shape of the transferred momentum and the center of mass position as a
function of the Bragg frequency |Aw|, at t = 0. In the non interacting case, (p)o (|Aw|) and (x)¢ (|Aw|) are
centered at the same value and almost symmetric around that point, so that the same symmetry property is
preserved during the evolution. Instead, the response of an interacting condensate is characterized by a
distribution of the center-of-mass position that is peaked at higher frequency with respect to the corresponding
transferred momentum, and this affects dramatically the shape at intermediate times. In particular, at t ~ 0.15T
the signal shape has a characteristic sinusoidal-like form, whereas at t = 0.257T it corresponds exactly to the
reverse of the initial center-of-mass distribution (x)o (|Aw|). Note that the signal at ¢ ~ 0.15T is analogous to
that observed experimentally at = 4 ms, see figure 5, though in that case the signal first reverses in the low
frequency region. In fact, as discussed above, according to equation 5 the specific shape of the response function
depends on the form and on the relative position (as a function of |Aw|) of (% )o and (X ), immediately after the
end of the Bragg pulse. Notice that a small displacement between the two distributions is sufficient to reverse the
shape of the signal observed at t ~ 0.157T in figure 6(b). Therefore, as the response of the system to the Bragg
perturbation in the strong-coupling regime is expected to be substantially different with respect to the mean field
case®, itis not surprising that the shape of the signal at t = 4 ms in figure 5 turns out to be reversed.

4, Conclusions

In conclusion, we have investigated the response of an array of 1D gases, comparing energy and momentum
transfer in Bragg spectroscopy experiments. In the presence of an external trapping potential along the axis of
the tubes, even if increasing the pulse time enhances the spectral resolution, the presence of the trap in principle
provides an upper limit to the pulse duration. Our experiment reveals that, in a regime of parameters well
described by the linear response theory, and for time-duration of the Bragg perturbation smaller than a quarter
of the trapping period, the proportionality relation between the momentum transfer and the dynamic structure
factor is well respected. We also show that the in-trap dynamics during the Bragg pulse affects noticeably the
response of the system. Since the in-trap dynamics could be affected by the regime of interaction of the system,
one may consider to use the momentum as a probe of the emergence of the strongly correlated regime. The

7 The value of the amplitude Vz/h of the Bragg pulse in the simulations is chosen in order to lie in the linear response regime for the non-
interacting case with a pulse length of t3 = 3 ms.

8 We remark thata precise simulation of the dynamics of strongly correlated 1D systems under the effect of a Bragg perturbation can be very
demanding, see e.g. [35], and goes beyond the scope of this work.
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Figure 6. In-trap dynamics of a condensate in the mean field regime. Theoretical prediction for the value of AP/(#q) (blue squares) as
a function of the Bragg frequency for an array of quasi 1D BECs, for different holding times in the trap after the Bragg excitation:

t =0, 0.15, 0.25, 0.5T (T being the trap period). The dotted-dashed (red) lines in the top panel represent the initial distributions of
the center-of-mass (x)o (|Aw|). The same line is shown inverted at t = T/4 (see text). The left and right columns correspond to (a)
the non interacting and (b) interacting case in the mean-field regime, respectively.

analysis performed in this work can be useful for interpreting the results of scattering experiments also in other
more complex settings of ultracold gases in optical lattices or disordered potentials, and can be also relevant for
further techniques such as lattice amplitude modulation [ 12] and photo-emission spectroscopy [36] in ultracold
gases experiments.
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