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Abstract
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and
dynamic properties at nonzeromomentum. In this work, we investigate an array of one-dimensional
trapped Bose gases, bymeasuring both the energy and themomentum imparted to the system via light
scattering experiments. Themeasurements are performed in theweak perturbation regime, where
these two quantities—the energy andmomentum transferred—are expected to be related to the
dynamic structure factor of the system.We discuss this relation, with special attention to the role of in-
trap dynamics on the transferredmomentum.

1. Introduction

Stimulated scattering of light or particles from condensed-matter systems—solids, liquids, and gases—is a
powerful tool for providing fundamental insight into the structure ofmatter. Elastic scattering of x-ray photons
has permitted to disclose the atomic order and electron distribution in crystalline solids, as well as the
arrangement of atoms inmolecules [1]. Similarly, inelastic neutron scattering has unveiled the phonon
spectrumof superconductors and the superfluidity of liquid helium [2].

In cold atomic systems, inelastic scattering of photons–also known as Bragg spectroscopy–has been used to
study Bose–Einstein condensates (BECs) in harmonic three-dimensional (3D) traps [3–5], quasi-condensates in
a quasi one-dimensional (1D) trap [6], BECs in shallow cubic optical lattices [7, 8], strongly interacting BECs
across a Feshbach resonance [9], and strongly interacting fermions [10, 11], through direct observation of the
netmomentum imparted to the system. The transferredmomentum is easilymeasured in this kind of settings,
since the atomic density distribution, observed after time-of-flight in the far-field regime, directly reflects the in-
trapmomentumdistribution.

Strongly correlated phases of bosons in optical lattices have been investigated bymeasuring the increase of
energy following the external perturbation. The quantumphase transition froma superfluid to aMott-insulator
state has been studied in 1DBose gases in the presence of a longitudinal lattice with experiments of lattice
amplitudemodulation, where the excitation has zeromomentum [12], andwith scattering experiments where
the excitation has non-zeromomentum [13, 14]. The latter technique has been also used for studying 1D gases
in optical lattices [15, 16]. The energy of a condensate, even in the presence of shallow lattices, is easily extracted
from the time-of-flight density distribution of the gas [17], whereas the energy of strongly-interacting systems
realized in deep optical lattices–as aMott insulator–is not directly accessible, unless with single-site resolution
experiments [18]. In the case of deep optical lattices, the energy excess produced by the Bragg perturbation can
bemeasured by lowering the lattice depth, i.e., driving the system in a less interacting regime, and letting it
thermalize [12, 13].
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In the linear response regime, both energy andmomentum transfer are related to the dynamic structure
factor [19], which carries key information about the dynamical behaviour and correlations of the system.
However in trapped condensates, while the energy is a conserved quantity,momentum is not conserved due to
the presence of the trap. Thus, if the Bragg pulse duration is not negligible compared to the inverse of the trap
frequency, themomentum imparted by the Bragg beams can be affected by the in-trap dynamics [19, 20],
complicating its connection to the dynamical structure factor. On the other hand, a short Bragg pulsewould
result in a limited spectral resolution.

In this work, we use inelastic light scattering for accessing the dynamic structure factor of an array of 1DBose
gases. The dimensionality of the systemplays a crucial role: in 1Dquantum systems, correlations—which
directly reflect on the dynamic structure factor—lead to peculiar phenomena, such as fermionization of
strongly-interacting bosons [21–23], or spin-charge separation of interacting fermions [24], which do not have
any higher-dimensional equivalent.Moreover, for 1D systems, themechanisms and characteristic times of
thermalization are currently under investigation [25, 26]. Thismay affect themeasurement of the energy
transferred via light scattering. On the other side,momentummeasurement of 1D trapped gasesmay be
influenced by the in-trap dynamics, as abovementioned. The purpose of this work is to investigate
experimentally the relation between energy andmomentum imparted to an array of 1D gases due to Bragg
scattering, in a typical regime of parameters [13, 16], and to discuss the effect of the in-trap dynamics on the
transferredmomentum.

The paper is organized as follows. In section 2we focus on the comparison of the response of the array of 1D
gases to the scattering experiments in terms of energy deposited andmomentumboost imparted to the system.
We present the experimental setup and discuss the results, obtained in a regime ofweak perturbation.We also
directly compare the susceptibility of this system to the one of a 3Dnon-interacting condensate. In section 3we
study the effect of the in-trap dynamics on themomentum transfer by recording the evolution of the response of
the system in time, after the Bragg excitation.

2. Energy andmomentum transferred to an array of 1D gases

2.1. Experimental setup
Weproduce an array of 1D gases by loading a Bose–Einstein condensate of about 2.5 105× 87Rb atoms in a two-
dimensional optical lattice created by twomutually orthogonal standing laserwaves of wavelength 765λ = nm.
The loading is performedwith an exponential rampof t 250r = ms,with time constant t 3r . Thefinal depth of

the lattice isV E30L r= , with E h m(2 )r
2 2λ= ,m being the atomicmass and λ the lattice wavelength. This value is

chosen to be high enough to freeze the transverse degrees of freedomof each 1D gas (the radial trapping
frequency is 2 (42 2)ω π= × ±⊥ kHz), and suppress the tunneling of particles between different tubes on the
timescale of the experiment.

The equilibrium state of the system is completely described by two dimensionless parameters [27], that is, (i)
the interaction parameter mg h( )D1

2γ ρ= , where g1D is the 1D interaction strength [29] and ρ the density, and

(ii) the reduced temperature mk T2 ( )B
2τ ρ= ℏ , which depends on both density ρ and temperatureT. In this

work, we explore a regime of 1γ ≃ and 1τ ≃ .
The significant parameters that characterize the 1D gases vary overall the array. Their distribution can be

estimated by rescaling the interparticle interaction strength g3D as in [16], given the overall trapping frequencies
in the presence of the lattices, 2 (63 13)xω π= ± Hz, 2 (60 10)yω π= ± Hz, 2 (76 15)zω π= ± Hz.We

estimate the array to consist of about 4 103× 1D tubes, and the central tube to have (0.9 0.2)γ = ± , density
(5 1)ρ = ± μm−1, and chemical potential h (3.9 0.7)μ = ± kHz. The average values of these parameters—

obtainedweighting the contribution of each tube of the arraywith its number of atoms—are (1.4 0.4)γ = ± ,
(3.7 0.8)ρ = ± μm−1, and h (3.6 0.6)μ = ± kHz.

The study of this system is carried out by imparting a perturbation to the array of 1D tubes given by two
simultaneous off-resonance laser pulses with time duration t 3B = ms,which determines an interaction-time
broadening of 150≃ Hz.Note that t T 5B ≃ , withT 2 xπ ω= being the trap period along the axis of the tubes.
The laser light is detuned by 200 GHz from the 87Rb resonance and thewaist of the Bragg beams is ≃ 900 μm.
The two beams have tunable relative detuning Δω (up to tens of kHz), and produce amoving Bragg gratingwith
amplitudeV h 900B = × Hz. Thewavevector of the Bragg grating is adjusted to be along the axial direction of
the tubes, and it isfixed at q (7.3 0.2)= ± μm−1. Comparing the Braggwavevector with the average value of the
healing length ξ [30], we have q 0.9ξ ≃ . Since in our case the healing length is about a half of the interparticle
distance, themean-field picture does not apply, and amore convenient length scale is given by the inverse of the
Fermiwavevector, which in our case is k q2F πρ= ≃ . In the experiments, we vary the energy ωℏ of the
excitation by tuning Δω (being ω Δω= ∣ ∣) andwemeasure the response of the system, in terms of energy and
momentum transfer.

2
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2.2. Results
Here, we present themeasurement of the energy transfer, which is a conserved quantity even in the presence of a
trapping potential. Formeasuring the energy transfer, after the Bragg pulsewe lower the lattice height to
V E5L r= , where the different lattice sites are coupled via tunneling of particles on a timescale of∼0.6ms, and the
temperatures of the different gases can re-equilibrate to a common value of the 3D system. After 5 ms the gas is
released and let expand ballistically for a time-of-flight t 25tof = ms, thenwe record the density distribution of
the atomic cloud. The experimental timing, see also [13, 28], is sketched in the figure 1(a). From the time-of-
flight images, we extract the squaredwidth of the central peak of the resulting interferogram 2x y

2 2 2σ σ σ= + 6

and subtract the background 0
2σ , corresponding to the valuemeasured in the absence of the Bragg pulse, in order

to obtain the experimental signal. This quantity is proportional to the energy imparted to the system, as
previously demonstrated [16]. The latter, in turn, is related to the dynamic structure factor S q( , )ω of the system
through the relation [31]

E q
V

t S q( , )
2

2
( , ), (1)B

B

2

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Δ ω π ω ω=

ℏ

valid in the linear response regime. Themeasured energy spectrum, normalized to its integral, is shown in
figure 1(b). In order to verify that the systemhas thermalized after the Bragg pulse, infigure 1(c)we plot
separately the increase of the rms size observed in each direction ( xΔσ and yΔσ ): in spite of the symmetry
breaking induced by the Bragg perturbation imparted along the axis of the 1D gases (x direction), xΔσ and yΔσ
show the same dependence on the Bragg frequency, indicating that an efficient thermalization process has
occurred during the ramping downof the lattices.

In the experiment, we alsomeasure the totalmomentum imparted to the same system. To this purpose, after
the Bragg pulse, the atoms are abruptly released directly from the trap, as represented infigure 2(a), so that in-
trapmomentum ismapped into the atomic density distribution after time-of-flight.When the Bragg
perturbation is on resonance,momentum is transferred efficiently, and the time-of-flight images of the density
distribution exhibit a small cloud of excited atoms ejected from themain cloud. Figure 2(b) shows the evolution
of the normalized density profiles n x( ) integrated along the line of sight and along the y direction (orthogonal to
the axis alongwhichmomentum is transferred) with the relative detuning between the Bragg beams. From the
time-of-flight images, the netmoment boost P q( , )Δ ω is obtained bymeasuring the displacement of the center
ofmass—relative to the unperturbed position—as [32]

Figure 1.Energy transfer. (a) Experimental timing used formeasuring the energy spectrum. The optical lattice is raised to E30 r in 250
ms. During the holding time the Bragg beams are shone onto the atoms, then thewhole system is let thermalize by lowering the lattice
depth to E5 r . After 5 ms the trap is released, and the energy ismeasured from the time-of-flight density distribution. (b) Energy
transferred via Bragg scattering to an array of 1D gases in an optical lattice of height V 30L = Er, as a function of the excitation
frequency. The signal is obtained from the squaredwidth of the central peak of the time-of-flight density distribution ( 2x y

2 2σ σ+ ). The
fitting curve is given by a gaussian functionmultiplied by the frequency G ( )ω ω . (c) Increase of the rms size along the axis of the tubes
( xσ ) and along a perpendicular axis ( yσ ), as a function of the excitation frequency.

6
Here, we have assumed y zσ σ= owing to the cylindrical symmetry of the system.
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P q
m

t
x n x y n x y x y( , ) ( ( , ) ( , )) d d , (2)

tof
0∫Δ ω = −

where n x y( , ) and n x y( , )0 are the density profiles integrated along the line of sight and normalized to the unity,
with andwithout the Bragg excitation, respectively. The experimental spectra normalized to themomentumof
the excitation qℏ , P q q( , ) ( )Δ ω ℏ , are shown infigure 2(c). Filled (empty) dots correspond to positive (negative)
momentum, along the axis of the tubes.

As remarked in [19, 20, 33],momentum is a conserved quantity only in the absence of any external trapping
potential. In this case, for a perturbation in the linear response regime andwith t 1Bω ≫ , P q( , )Δ ω is related to
the dynamic structure factor through the following relation

P q
V

t qS q( , )
2

2
( , ). (3)B

B

2

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Δ ω π ω=

ℏ

For a trapped gaswith axial trapping frequency xω significantly smaller than the radial one, this equation still
holds in awide range of parameters, provided that t 1Bω ≫ and t 1x Bω ≪ [33]. In the present case, thefirst
condition is well satisfied as t 80Bω ≃ on resonance, while we have t 1x Bω ≃ , which does not satisfy the second
condition. Thus the comparison between the quantities extracted from themeasurements of energy and
momentum transfer is not straightforward. In order to address quantitatively this issue, wefit P q( , )Δ ω with a
gaussian function G ( )ω , where center, width and amplitude are free parameters, and E q( , )Δ ω with G ( )ω ω , as
follows from equation 1. The gaussian centers obtained from themeasured spectra are respectively (4.5 0.2)±
kHz for themomentum transfer, and (4.3 0.3)± kHz for the energy transfer, with their widths being
(2.5 0.2)± kHz and (2.3 0.2)± kHz, respectively. These results are consistent within the error bars, allowing us
to conclude that, with this choice of parameters, both these experimental approachesmeasure the same
quantity.

2.3. Comparisonwith the response of a 3D condensate
As a reference system,we alsomeasured the transferredmomentumof a 3D expanded condensate, since its
response is well described by a non-interactingmodel. Before performing the scattering experiment, we switch
off the trapping potential and let the BEC fall freely for 5 ms of time-of-flight, so that density decreases by a factor
of∼3, and the chemical potential drops to h 170∼ × Hz, hence the interparticle interactions can be neglected.
For direct comparison, infigure 3we show the experimental spectrumof the array of 1D gases obtained as
previously described (figure 3(a)), and the spectrumof the 3Dnon interacting condensate (figure 3(b)). In both
figures 3(a) and 3(b), the signal is normalized to the Bragg strengthV tB B

2 . In this Figure, we also report the exact
solution for a free-particle system (continuous red line), which shows an excellent agreementwith the
experimental data. This prediction is obtained by solving the Schrödinger equation [34] in the presence of the
Bragg potentialV x t t t V qx t( , ) ( ) cos( )B Bθ ω= − − (for t 0⩾ ), and does not contain anyfitting parameter.

Figure 2.Momentum transfer. (a) Experimental timing. The optical lattices are abruptly switched off immediately after the Bragg
pulse, and themomentum transfer ismeasured from the center-of-mass shift of thewhole cloud. (b)Normalized density profile n x( )
along the axis of the 1Dgases—integrated along the line of sight z and the y direction—for different values of the relative detuning of
the Bragg beams (2 )Δω π (false colours). On resonance, the central peak is depleted and the atoms are ejected along the x direction.
(c)Momentum transferred to an array of 1D gases. Thefilled (empty) dots, at positive (negative)momentum along the axis of the
tubes, correspond to 0Δω < ( 0Δω > ). The Bragg parameters of thismeasurement are the same as described for themeasurement
of the energy transfer.

4

New J. Phys. 17 (2015) 063012 NFabbri et al



From the comparison of the two spectra, we can notice that the response of the 1D tubes ismuch broader. A
relatedwork [16] shows that in the same regime of parameters the spectral broadening of the response of the
array of 1D gases comes from the dynamics of the interaction-induced excitations.

Moreover, the comparison between the two amplitudes shows that the susceptibility of the 1D tubes is about
35 times lower than the one of the 3Dnon-interacting condensate. The very low susceptibility of the array of 1D
tubes, with the Bragg parameters that we have used, is afirst indication that the response of the system lies in a
regime of weak perturbation, where the relations in equation (1) and equation (3) are expected to hold.We have
also verified the behaviour of the experimental signal as a function of Bragg power in a range that includes the
used value. This indicates the dependence of the signal onVB to be quadratic (see figure 4), as expected in the
framework of the linear response theory [19].

3. Effect of in-trap dynamics on themomentum transfer

As previously discussed,momentum is not a conserved quantity in the presence of a trapping potential.
Therefore, themeasurement of themomentum following a Bragg excitation can in principle be affected by the

Figure 3.Comparison between the transferredmomentum PΔ to (a) an array of trapped 1D gases and (b) a non-interacting 3D
condensate. The horizontal scale represents the frequency difference between the Bragg beams. The spectrumof the array of 1D gases
has been obtained using Bragg parameters t 3B = ms and V h 900B = × Hz,whereas the spectrumof the 3D condensate has been
obtainedwith t 0.5B = ms, and V h 540B = × Hz. The amplitude of both the spectra has been rescaled by the pulse strength V tB B

2 to
directly compare the susceptibility of the two systems.Note that the vertical scale in thefirst graph is 20 times smaller than in the
second one. Afit of the experimental spectrumof the 1D gases with a sumof two gaussian functions (blue curve) is shown infigure 3
(a) and reported also in figure 3 (b) for highlighting the comparison between the response of the two systems. The red continuous line
in figure 3 (b) is the solution of the time-dependent Schrödinger equation for a non-interacting gas, given the value of V hB , with no
free parameters (see text).

Figure 4.Test of the linear response regime.We report the energy increase of the array of 1D gases due to a resonant Bragg
perturbation as a function of the amplitude of the Bragg grating, atfixed pulse duration t 3B = ms. The continuous red line is a power-
lawfitwith free exponentm, resulting to be m (1.8 0.2)= ± , consistentwith thequadratic behaviour expected in the linear response
regime [19].The inset shows the samedata in log–log scale. The error bars are the standarddeviations of up to ten repeatedmeasurements.
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in-trap dynamics before the release [20, 33]. For the cases discussed so far (see figures 2 and 3), themomentum
transferred has beenmeasured immediately after the Bragg pulse. for the 1D gases, even if t T 5B ≃ , as seen in
section 2.2, PΔ and EΔ —which is not affected by in-trap dynamics since energy is a conserved quantity—carry
the same information. Thus, we cannot infer appreciable effects of the dynamics during the Bragg pulse in the
momentum spectrum recorded immediately after the Bragg pulse.

Now,we characterizemore in depth the effect of the in-trap dynamics on the response of the 1D gases. To
this purpose, wemeasure P q q( , ) ( )Δ ω ℏ at variable time after the end of the Bragg perturbation. Infigure 5(a)
we can observe amodification of the system responsewith time. TheBragg time-duration isfixed to the value
t 3B = ms, and the total holding-time of the atoms in the lattice trap (tH) is kept constant, while we vary the time
tC between the end of the Bragg pulse and the release of the trap from0ms up to 10ms, as sketched in the inset of
thefigure. During thefirst 2ms after the Bragg pulse, the total spectral weight of the signal undergoes a
suppressionwith time (note that the vertical scale is the same in all the panels of the figure), which eventually
results in a negative amplitude at t 10C = ms. Remarkably, the shape of the signal at t 4C = ms is asymmetric
and qualitatively different from the other cases.

The latter behavior can be qualitatively interpreted by considering the effect of the in-trap dynamics during
the Bragg pulse. Let us consider a systemofN interacting particles trapped in a harmonic potential, described by
the followingHamiltonian

p
x x xH

m
V V

ˆ

2
( ) ( ) . (4)

i

N
i

i

j i

i j

1

2

ho
int

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑= + + −

= <

The evolution of the totalmomentum and position operators along each spatial directions can be easily obtained
from theHeisenberg equations as p i H p m xˆ̇ ( )[ ˆ , ˆ ] ˆ2ω= − ℏ =α α α and x i H x p mˆ̇ ( )[ ˆ , ˆ ] ˆ= − ℏ = −α α α , with

O Oˆ ˆ
i

N
i1

∑=α α=
( 1, 2, 3α = , O x pˆ ˆ, ˆ= ). For the first relationwe have used the fact that V Vx ij x ij

int int
j i

∂ = −∂α α .

Then, restricting the discussion to the 1D case, it is straightforward to get that the averagemomentum evolves in
the trap as

p t m x t m x t( ) sin( ) ˙ cos( ), (5)x x x0 0ω ω ω= − + 

where x 0〈 〉 and ẋ 0〈 〉 are the average position (center-of-mass) and velocity at time t 0= + immediately after the
end of the Bragg pulse.We remark that this result is valid in general for any interacting system, regardless of the

Figure 5. In-trap dynamics after the Bragg excitation. P q( )Δ ℏ is reported as a function of (2 )Δω π∣ ∣ , for different holding times in
the trap after the Bragg excitation: t 0, 1, 2, 4, 10C = ms. The continuous blue lines are guides for the eyes. The curve corresponding
to tC=0ms is also reported in the other panels (as a dashed-dotted line) for comparing the signal shapes and amplitudes. Inset:
experimental time sequence. The total holding time in the lattices is kept constant (t 30H = ms).

6

New J. Phys. 17 (2015) 063012 NFabbri et al



temperature, the statistics (being the particles bosons or fermions) and the dimensionality of the system. In fact,
it is a well known result that the dynamics of the center ofmass in the presence of harmonic trapping is
decoupled from the internal degrees of freedomof the system (see e.g. [17]).

Let us now turn to the effect of the Bragg pulse, that we assume of the form g t V qx t( ) cos( )B ω− . First, let us
consider the case of a Bragg pulse duration t TB ≪ , which can be considered as instantaneouswith respect to the
in-trap dynamics. After the pulse, at t 0= +, the density distribution is basically unperturbed ( x 00〈 〉 = ). Then,

the Bragg perturbation only affects the initial velocity distribution n x( ˙ )0 , so that itsmean value is ẋ 0〈 〉 =
N N q m( )B ℏ , where N NB is the ratio of the number of diffracted atoms to the total number of atoms. As
follows from equation (5), in this case p t( )〈 〉 vanishes exactly for t T 4= ,T being the period of the trap, for any
excitation frequency.

Instead, for afinite duration of the Bragg pulse (and in particular, if tB is comparable with the trap period),
even the spatial distribution of the atomic ensemblemay undergomodifications during the Bragg perturbation,
depending on the excitation frequency. Thismakes the initial value of the center-of-mass x 0〈 〉 in equation (5)
non vanishing andω-dependent, therefore affecting the following dynamics and changing the shape of the
signal.

As an example, let us consider the simple case of a Bose–Einstein condensate in a single, quasi 1D tube, in the
mean-field regime. In this case, the response of the system to the Bragg pulse can be easily obtained by solving the
following 1DGross–Pitaevskii equation (t 0⩾ ):

m
V x t t V qx t gi

1

2
( ) ( ) cos( ) , (6)t x B B D

2
ho 1

2⎡
⎣⎢

⎤
⎦⎥ψ θ ω ψ ψℏ∂ = − + + − − +

where g g a(2 )D1 π= ⊥ , g a m4 2π= ℏ being the 3D interaction strength, a the scattering length for 87Rb, and

a m( )ω= ℏ⊥ ⊥ the oscillator length in the transverse directions. In this specific examplewe consider
V h 120B = Hz, t 3B = ms, 2 60xω π= × Hz, 2 42ω π= ×⊥ kHz, and an array of tubes that corresponds to the
typical experimental configuration. The response of the system at different evolution times in the trap is shown
infigure 6, where themeanfield predictions are also compared to the non-interacting case7. This figure shows
that indeed, as follows from equation (5), the response pattern at t T 2= is reversedwith respect to that at t=0,
the evolution being periodic in time. For intermediate times, the shape of the signal is non trivial, depending on
the relative weight and on the specific shape of the transferredmomentum and the center ofmass position as a
function of the Bragg frequency Δω∣ ∣, at t=0. In the non interacting case, p ( )0 Δω〈 〉 ∣ ∣ and x ( )0 Δω〈 〉 ∣ ∣ are
centered at the same value and almost symmetric around that point, so that the same symmetry property is
preserved during the evolution. Instead, the response of an interacting condensate is characterized by a
distribution of the center-of-mass position that is peaked at higher frequencywith respect to the corresponding
transferredmomentum, and this affects dramatically the shape at intermediate times. In particular, at t T0.15≃
the signal shape has a characteristic sinusoidal-like form,whereas at t T0.25= it corresponds exactly to the
reverse of the initial center-of-mass distribution x ( )0 Δω〈 〉 ∣ ∣ . Note that the signal at t T0.15≃ is analogous to
that observed experimentally at t=4ms, see figure 5, though in that case the signal first reverses in the low
frequency region. In fact, as discussed above, according to equation 5 the specific shape of the response function
depends on the form and on the relative position (as a function of Δω∣ ∣) of x 0〈 〉 and ẋ 0〈 〉 immediately after the
end of the Bragg pulse. Notice that a small displacement between the two distributions is sufficient to reverse the
shape of the signal observed at t T0.15≃ infigure 6(b). Therefore, as the response of the system to the Bragg
perturbation in the strong-coupling regime is expected to be substantially different with respect to themeanfield
case8, it is not surprising that the shape of the signal at t= 4ms infigure 5 turns out to be reversed.

4. Conclusions

In conclusion, we have investigated the response of an array of 1D gases, comparing energy andmomentum
transfer in Bragg spectroscopy experiments. In the presence of an external trapping potential along the axis of
the tubes, even if increasing the pulse time enhances the spectral resolution, the presence of the trap in principle
provides an upper limit to the pulse duration.Our experiment reveals that, in a regime of parameters well
described by the linear response theory, and for time-duration of the Bragg perturbation smaller than a quarter
of the trapping period, the proportionality relation between themomentum transfer and the dynamic structure
factor is well respected.We also show that the in-trap dynamics during the Bragg pulse affects noticeably the
response of the system. Since the in-trap dynamics could be affected by the regime of interaction of the system,
onemay consider to use themomentum as a probe of the emergence of the strongly correlated regime. The

7
The value of the amplitude V hB of the Bragg pulse in the simulations is chosen in order to lie in the linear response regime for the non-

interacting case with a pulse length of t 3B = ms.
8
We remark that a precise simulation of the dynamics of strongly correlated 1D systems under the effect of a Bragg perturbation can be very

demanding, see e.g. [35], and goes beyond the scope of this work.
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analysis performed in this work can be useful for interpreting the results of scattering experiments also in other
more complex settings of ultracold gases in optical lattices or disordered potentials, and can be also relevant for
further techniques such as lattice amplitudemodulation [12] and photo-emission spectroscopy [36] in ultracold
gases experiments.
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