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Introduction

A topological group is a group G equipped with a topology for which the
product application (x, y) 7→ xy from G×G to G and inversion application
x 7→ x−1 from G to G are continuous. Thus in a topological group, the
algebraic structure allows us to operate with algebraic expressions and due
to the topology we may also talk about open sets, continuity, etc.

The main goal of this work is to give the reader a basic introduction into
the subject of topological groups, bringing together the areas of topology
and group theory. Even if the matter is as self-contained as possible, the
reader is supposed to have an elementary background on group theory and
topology. We have decided to omit most of the proofs given in the degree
in mathematics of UPV/EHU as well as some proofs of purely topological
results, to focus in those which are specific of topological groups. This
work (in exception of Chapter 6) is drawn out mostly following the first
two chapters of [3], with the aim of completing the proofs left to the reader
and setting out the theory in more detail to facilitate understanding. Many
other proofs, results and examples, such as the whole §6.2 and Appendix A,
are carried out by the author. Section 6.1 is extracted from [5].

The notes are arranged as follows. In Chapter 1 we give the definition of
a topological group and the most basic examples and properties. We show
that every topological group is a homogeneous space and so a neighbourhood
base at a fixed point suffices to describe the topology. In Chapter 2, we talk
about neighbourhood bases of the identity element and their properties.

Chapter 3 is dedicated to the construction of topological groups. In §3.1
we talk about subgroups of topological groups and we give their the basic
properties. In §3.2 we introduce the quotient groups and their properties,
such as the first and third isomorphism theorems for topological groups.
Section 3.3 is dedicated to the study of arbitrary products of topological
groups.

Chapter 4 talks about separation axioms. We show that every topologi-
cal space is regular and that the axioms T0, T1, T2 and T3 are equivalent for
topological groups.
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In Chapter 5 we recall basic results and notions on connectedness and we
show, among other results, that the connected component of any topological
group at the identity is always a normal subgroup.

Section 6.1 is extracted from [5]. Here we give a proof of Birkhoff-
Kakutani theorem, which states that a topological group is metrizable if
and only if it is T0 and first countable. In §6.2 we use the previous result
to show that the Sorgenfrey line, although it is an homogeneous space, does
not admit a group structure making it a topological group.

Chapter 7 is about compactness. In §7.1 we recall the basic defini-
tions and properties on compactness. Section 7.2 is completely dedicated
to give a proof of Tychonoff’s theorem, since in the degree in mathematics
of UPV/EHU it is only proved for a finite product. The proof is given by
means of lattices and ideals, but all the necessary definitions and results on
lattice theory are expounded so there is no need of previous knowledge in
this area. The last section (§7.3) is dedicated to discuss some properties
about compactness on topological groups.

Finally, in Appendix A we include some solved exercises, most of them
proposed in [3].

Although it is not included in the notes (in order not to exceed in length),
I’ve also worked in profinite groups and Haar integration. In the former
subject I’ve studied profinite groups as inverse limits of finite discrete groups
and worked in the particular examples of the p-adic integers and the Galois
correspondence for infinite field extensions. In the latter, I’ve dealt mostly
with the third section of [3] and completed some exercises and proofs left to
the reader.



Chapter 1

Main definitions and
properties

Definition 1. A topological group G is a group which is also a topological
space, such that the maps

µ : G×G −→ G

(x, y) 7−→ xy
and

ν : G −→ G

x 7−→ x−1

are both continuous. (G×G is provided with the product topology.)

Examples 1. (i) The additive groups R and C equipped with the usual
topology are topological groups.

(ii) The multiplicative groups R∗ and C∗ equipped with the usual topology
are both topological groups.

(iii) Any group provided either with the discrete or trivial topology is a
topological group.

(iv) The one-dimensional sphere S1 = {z ∈ C | |z| = 1} ⊆ C∗ together with
the subspace topology induced from the usual topology in C is a topological
group.

(v) The general linear group GLn(R) of all non-singular real n× n matrices
is a multiplicative group and if we identify each matrix of GLn(R) with an
element of Rn2

as follows,Ö
x11 . . . x1n

...
. . .

...
xn1 . . . xnn

è
←→ (x11, . . . , x1n, . . . , xn1, . . . , xnn),

we can regard to GLn(R) the induced topology from Rn2
.
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2

Multiplication is given by a polynomial µ : Rn2 × Rn2 → Rn2
so it is

continuous. Inversion is given by a rational function ν : Rn2 → Rn2
where the

denominator is the determinant function (which is non-zero for every element
of GLn(R)), so inversion is also continuous and it follows that GLn(R) is a
topological group.

(vi) The same argument shows that GLn(C) is a topological group.

Definition 2. A topological space X is said to be homogeneous if for any
x, y ∈ X there is an homeomorphism h : X → X such that h(x) = y.

The following proposition shows that every topological group is homoge-
neous. This is the main difference between topological groups and ordinary
topological spaces, and this fact will give us lots of new results and advan-
tages. For example, the fact that topological groups are homogeneous is
very useful when describing a topology on a group by neighbourhood bases
(see Proposition 2.1).

Proposition 1.1. All topological groups are homogeneous spaces.

Proof. Let G be a topological group with product function µ and inversion
ν. Since the identity map id : G → G and the constant map g 7→ x are
continuous for any x ∈ G, the application

ϕx : G −→ G×G
g 7−→ (g, x)

is also continuous and then so is the composition rx = µ ◦ ϕx, sending g
to gx. Clearly, rx and rx−1 are inverse to each other, both continuous,
hence rx is an homeomorphism. In particular, given x, y ∈ G, rx−1y is an
homeomorphism and rx−1y(x) = xx−1y = y for any x, y ∈ G.

The application rx is called the right translation, and in the same way we
can define the left translation lx, an homeomorphism given by lx(g) = xg.

The converse of Proposition 1.1 is not true. Indeed, the Sorgenfrey line
S cannot be a topological group although it is an homogeneous space. We
will prove this result in Section 6.2: after introducing some theorems on
metrization, assuming that S is a topological group will lead to contradic-
tion.

Proposition 1.2. Let G be a topological group, x ∈ G and A,B ⊆ G. Then,

(i) if A is open then so are Ax and xA;

(ii) if A is open then so are AB and BA;

(iii) if A is closed then so are Ax and xA;
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(iv) if A is closed and B finite then AB and BA are closed.

Proof. Ax and xA are the image of A under the homeomorphisms rx and lx
respectively. Hence, if A is open then so are Ax and xA, and if A is closed
Ax and xA are closed too.

Write AB =
⋃
b∈B Ab and BA =

⋃
b∈B bA. If A is open, AB and BA are

a union of open subsets, hence open. And if A is closed and B finite, AB
and BA are a union of finitely many closed subsets, hence closed.





Chapter 2

Neighbourhood bases

Recall that a family B of subsets of a topological space X is said to be a
neighbourhood base of x ∈ X if for each open subset U of X containing x
there exists B ∈ B such that x ∈ B ⊆ U .

Proposition 2.1. Let G be a topological group and B a neighbourhood base
of the identity element e. Then, for each x ∈ G the families Bx = {xB |
B ∈ B} and B′x = {Bx | B ∈ B} are both neighbourhood bases of x.

Proof. It is enough to notice that xB = lx(B) and that lx is an homeomor-
phism. Analogously, Bx = rx(B) and rx is an homeomorphism.

Now we give the fundamental properties of a neighbourhood base of the
identity element of a topological group.

Proposition 2.2. Let B be a neighbourhood base of e in G. Then, the
following properties are satisfied:

(B1) for each U, V ∈ B there exists W ∈ B such that W ⊆ U ∩ V ;

(B2) for each U ∈ B there exists V ∈ B such that V V ⊆ U ;

(B3) for each U ∈ B there exists V ∈ B such that V −1 ⊆ U ;

(B4) for each U ∈ B and x ∈ G there exists V ∈ B such that x−1V x ⊆ U .

Proof. Let G be a topological group with product function µ and inversion
ν and let B be a neighbourhood base of e.

(B1) Every topological space satisfies this property, in particular topological
groups.

(B2) Let U ∈ B. As µ is continuous, µ−1(U) is a neighbourhood of (e, e)
and so there exist V1, V2 ∈ B such that V1 × V2 ⊆ µ−1(U). By (B1) take

5
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V ∈ B such that V ⊆ V1 ∩ V2. Then, V × V ⊆ µ−1(U), and applying µ we
have that V V ⊆ µ(µ−1(U)) ⊆ U .

(B3) Let U ∈ B. Since ν−1(U) is a neighbourhood of e there exists V ∈ B
such that V ⊆ ν−1(U), and taking images by ν we have that ν(V ) = V −1 ⊆
ν(ν−1(U)) ⊆ U .

(B4) Let x ∈ G and let ϕx : G → G be given by ϕx(g) = x−1gx. ϕx is
continuous as is it equal to lx−1 ◦ rx, hence if U ∈ B then ϕ−1x (U) is a
neighbourhood of e. Take V ∈ B such that V ⊆ ϕ−1x (U) and finally, taking
images by ϕx,

ϕx(V ) = x−1V x ⊆ ϕx(ϕ−1x (U)) ⊆ U.

Remark 1. In Proposition 2.2, the statements (B2) and (B3) may be re-
placed by

(B′) for all U ∈ B there exists V ∈ B such that V −1V ⊆ U .

Proof. Assume (B2) and (B3). If U ∈ B, by (B2), there exists V1 ∈ B such
that V1V1 ⊆ U and by (B3) we may take V1 ∈ B such that V −12 ⊆ V1. By
(B1), take a V ∈ B such that V ⊆ V1 ∩ V2. Now we have that

V −1V ⊆ V −12 V1 ⊆ V1V1 ⊆ U

as required.

Assume now (B′). Let U ∈ B and take V ∈ B such that V −1V ⊆ U .
Then V −1 ⊆ V −1V ⊆ U , so that (B3) holds. By (B1), take a W ∈ B
such that W ⊆ V −1 ∩ V . Then, as W ⊆ V and W ⊆ V −1, we have that
WW ⊆ V −1V ⊆ U .

And conversely, a non-empty family of subsets of a group G satisfying
these properties generates a group topology on G, i.e., a topology on G
making in a topological group.

Proposition 2.3. Let B be a non-empty collection of subsets of G family e.
If B satisfies the properties (B1), (B2), (B3) and (B4) then there is a unique
group topology such that B is a neighbourhood base of e in G.

Proof. Let G be an arbitrary group and let B be a non-empty collection of
subsets containing e and satisfying (B1), (B2), (B3) and (B4). Define

τ = {U ⊆ G | ∀x ∈ U ∃B ∈ B such that xB ⊆ U}.

Our purpose is to show that τ is a group topology on G.



Neighbourhood bases 7

G and ∅ are clearly in τ . Let U, V ∈ τ with U∩V 6= ∅ and take x ∈ U∩V .
By definition of τ , there exists B1, B2 ∈ B such that xB1 ⊆ U and xB2 ⊆ V ,
and by (B1) we can take B3 ∈ B such that B3 ⊆ U ∩ V . Then

xB3 ⊆ x(B1 ∩B2) ⊆ xB1 ∩ xB2 ⊆ U ∩ V.

Thus U ∩ V ∈ τ . Let Ui ∈ τ for all i ∈ I and let x ∈ ⋃i∈I Ui. Then x ∈ Ui0
for some i0 ∈ I and so there exists B ∈ B such that xB ⊆ Ui0 ⊆

⋃
i∈I Ui.

Therefore,
⋃
i∈I Ui ∈ τ and it follows that τ is a topology on the set G such

that Bx = {xB | B ∈ B} is a neighbourhood base of x for any x ∈ G.

Let us see that the product application µ is continuous. Let U ∈ B and
(x, y) ∈ G × G. Since xyU is a neighbourhood of µ(x, y) = xy, it suffices
to find a neighbourhood of (x, y) in G×G contained in µ−1(xyU). By (B2)
there exists V ∈ B such that V V ⊆ U and then xyV V ⊆ xyU . By (B4) we
may take a W ∈ B such that y−1Wy ⊆ V and if we let W ′ = W ∩ V , then
W ′ is a neighbourhood of e such that y−1W ′y ⊆ V and W ′ ⊆ V . Then,

µ(xW ′ × yW ′) = xW ′yW ′ = xy(y−1W ′y)W ′ ⊆ xyV V ⊆ xyU.

By taking preimages, xW ′ × yW ′ ⊆ µ−1(xyU). So µ is continuous since
xW ′ × yW ′ is a neighbourhood of (x, y).

It remains to show that the inversion application ν is continuous. Let
U ∈ B and x ∈ G. It is enough to find a neighbourhood of x−1 contained
in ν−1(xU). By (B3) we can take V ∈ B such that V −1 ⊆ U . Then
ν(V x−1) = xV −1 ⊆ xU , and by taking preimages, V x−1 ⊆ ν−1(xU). Now,
by (B4) there exists W ∈ B such that x−1Wx ⊆ V . Then,

x−1W = (x−1Wx)x−1 ⊆ V x−1 ⊆ ν−1(xU),

and it follows that ν is continuous.

Examples 2. (i) The family {(−ε, ε) | ε > 0} generates a group topology
(the usual topology) on the additive group R.

(ii) For a fixed prime p we can consider the collection {pnZ | n ∈ N} of
subsets of Z. It is easy to see that this collection satisfies (B1), (B2), (B3)
and (B4), so it generates a group topology on Z. (This topology is called
the p-adic topology.)

(iii) Let G be an arbitrary group and B the family of all subgroups of finite
index of G, that is, B = {H ≤ G | |G : H| < ∞}. It can be shown that B
satisfies (B1), (B2), (B3) and (B4) and hence it generates a group topology
on G. (This topology is called the profinite topology.)





Chapter 3

Subgroups, quotient groups
and product groups

3.1 Subgroups

Let G be a topological group and H a subgroup of G. Considering H with
the topology induced from G we do not loss the continuity of the product
and inversion applications, so H is a topological group.

Proposition 3.1. Let G be a topological group and H ≤ G. Then,

(i) if H is open, then H is closed;

(ii) if H is closed and of finite index, then H is open;

(iii) if H contains a non-empty open subset, then H is open.

Proof. Let R be a set of representatives of the cosets xH other than H.
Then

GrH =
⋃
x∈R

xH.

If H is open, its complement is a union of open subsets (by Proposition 1.2),
therefore open. Hence H is closed. On the other hand, if H is closed and of
finite index, R is finite and the complement of H is a finite union of closed
subsets, so H is open.

Finally, if H contains an open subset U 6= ∅, then H = UH and by
Proposition 1.2 H is open.

9



10 3.2. Quotient groups

3.2 Quotient groups

Let G be a topological group and H a subgroup of G (not necessarily nor-
mal). Consider the equivalence relation in G given by

x ∼ y ⇐⇒ xH = yH.

For any x ∈ G, its equivalence class [x] is exactly the coset xH, so if we
denote by G/H the quotient space of G by ∼, then

G/H = {xH | x ∈ G}.

The space G/H has a natural topology (the quotient topology) induced by
the canonical projection

q : G −→ G/H

x 7−→ xH.
(3.1)

This topology is defined to be finest topology making q continuous, thus a
subset U ⊆ G/H is open if and only if q−1(U) is open in G.

Remark 2. The canonical projection is a quotient map, i.e., it is surjective
and a subset U of G/H is open if and only if q−1(U) is open in G.

If the subgroup H is normal, G/H has a natural group structure. We
see that the quotient topology makes G/H a topological group.

Suppose that the group G has product µ and inversion ν and assume
that H is a normal subgroup. Let µ∗ and ν∗ be the product and inversion
applications respectively in the group G/H. If we consider the map q × q
given by (q × q)(x, y) = (q(x), q(y)), then the following diagrams clearly
commute.

G G

G/H G/H

ν

q

ν∗

q

G×G G

G/H ×G/H G/H

µ

q × q q

µ∗

(3.2)

Recall the following result.

Proposition 3.2. Let X, Y and Z be topological spaces and let q : X → Y
be a quotient map. Then a map f : Y → Z is continuous if and only if
f ◦ q : X → Z is continuous.
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In our case, ν∗ is continuous if and only if so is ν∗ ◦ q. By commutativity
of (3.2), ν∗ ◦ q = q ◦ ν and as the latter is a composition of continuous
functions, ν∗ ◦ q is continuous. Therefore so is the inversion ν∗.

The application q is open an surjective (see Proposition 3.3) and then so
is q×q (see Proposition 3.10). Thus q×q is continuous, open and surjective,
hence a quotient map. By commutativity of (3.2), µ∗ ◦ (q× q) is continuous
and then, by Proposition 3.2 so is µ∗. Whence G/H is a topological group.

If X is a topological space and ∼ an equivalence relation on X, in general
it is not true that the canonical projection X → X/∼ is an open map. It is
shown in the following example.

Example 3. Take the closed interval X = [0, 1] and the equivalence relation
∼ identifying the points 0 and 1, together with the canonical projection
q : X → X/∼. Let us see that the image of the open subset U = [0, 12) under
q is not open in X/∼. As q is a quotient map it is enough to show that
q−1(q(U)) is not open in X. But

q−1(q(U)) = q−1(q((0, 12))) ∪ q−1(q({0})) = (0, 12) ∪ {0, 1}

and [0, 12) ∪ {1} is not open in X. Thus q is not an open map.

Nevertheless, for topological groups the canonical projection defined in
(3.1) is always open.

Proposition 3.3. Let H be a subgroup (not necessarily normal) of a topo-
logical group G and let q : G→ G/H be the canonical projection. Then q is
an open map.

Proof. Let U be an open subset of G. By definition of the quotient topology,
q(U) is open if and only if q−1(q(U)) is open in G. Expanding the expression,

q−1(q(U)) = q−1({xH | x ∈ U}) = {y ∈ G | yH = xH for some x ∈ U},

and yH = xH if and only if y ∈ xH. Then, clearly

q−1(q(U)) =
⋃
x∈U
{y ∈ G | y ∈ xH} =

⋃
x∈U

xH = UH,

which is open by proposition 1.2.

The converse of this proposition in general is not true in the following
sense: if G is a group and τ a topology on G such that for any subgroup
H of G the projection q : G → G/H is an open map, then (G, τ) is not
necessarily a topological group. It is shown in the following example.

Lemma 3.4. A subgroup of R which is not of the form tZ for some t ∈ R
is necessarily dense in R.
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Proof. Let H be a subgroup of R not of the form tZ. Let us see that there is
no least positive element in H. Suppose that r is the least positive member
of H, then nr ∈ H for any n ∈ Z and so rZ ⊆ H. Take x ∈ H such that
x 6∈ rZ and let m ≥ 0 be the integer part of x/r. |x−mr| is an element of H
and 0 < |x−mr| < r. Therefore H has no least element and in consequence
there is a strictly decreasing positive sequence in H,

x1 > x2 > · · · > xi > · · ·

converging to 0. Now, given any interval (a, b) we can take an element xi
of the sequence such that 0 < xi < b − a. For some n ∈ N, the element
nxi ∈ H lies in (a, b), thus H is dense.

Example 4. Let S denote the Sorgenfrey line, that is the real line R together
with the topology generated by all intervals of the form [a, b). We first see
that (S,+) is not a topological group. Indeed, the preimage of a basic open
subset [a, b) under the inversion application (given by x 7→ −x) is (−b,−a],
which is not open in S, thus the inversion application is not continuous.

Let us see now that for any subgroup H of (S,+) the projection q : S →
S/H is an open map. By Lemma 3.4, a subgroup of S may be either of the
form tZ or dense in R (with the usual topology), suppose first that H = tZ.
Then for an open subset [a, b) of S,

q−1(q([a, b))) = {x ∈ S | q(x) ∈ q([a, b))}
= {x ∈ S | kt+ x ∈ [a, b) for some k ∈ Z}

=
⋃
k∈Z

[a+ kt, b+ kt),

which is open as it is a union of open subsets. Thus q is an open map.

Suppose now thatH is dense in R. Our aim is to show that q−1(q([a, b))) =
S for any basic open subset [a, b) of S. For any x ∈ S, the subset (a−x, b−x)
is open in R and so there exists h ∈ H such that a − x < h < b − x. Then
a ≤ h + x ≤ b and so there exists y ∈ (a, b) such that h + x = y. Hence,
y − x ∈ H and

q(x) = q(y) ∈ q((a, b)) ⊆ q([a, b)),

implying that x ∈ q−1(q([a, b))). So q is an open map.

Proposition 3.5 (First isomorphism theorem). Let G and H be topological
groups and f : G → H a continuous, open and surjective homomorphism.
Then, the application

ϕ : G/ ker f −→ H

x(ker f) 7−→ f(x)

is an isomorphism and an homeomorphism.
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Proof. It is well known that the application

ϕ : G/ ker f −→ H

x(ker f) 7−→ f(x)

is a group isomorphism, so it is enough to show that ϕ is open and contin-
uous.

Note that if q : G→ G/ ker f is the canonical projection, then ϕ(q(x)) =
ϕ(x(ker f)) = f(x) for all x ∈ G. In other words, ϕ ◦ q = f . Now, as f is
continuous, by Proposition 3.2 so is ϕ.

We finally see that ϕ is an open map. For any open subset U ⊆ G/ ker f ,
as q is continuous and f open, f(q−1(U)) is open in H. But since q is
surjective,

f(q−1(U)) = (ϕ ◦ q ◦ q−1)(U) = ϕ(U),

thus ϕ is open.

Examples 5. (i) Consider the topological groups R and S1 and the expo-
nential application f : R → S1 given by f(x) = e2πix. f is clearly a group
homomorphism. Considering S1 ⊆ R2, f is defined by (cos 2πx, sin 2πx) and
since both components are continuous, so is f itself. The image of an open
interval (a, b) ⊆ R may be either the whole S1 (if b− a > 1), an open arc (if
b− a < 1) or S1 r {p} for some p ∈ S1 (if b− a = 1). But the image by f is
open anywise, as the following images show.

ba

f

ba

f
p

b− a < 1 b− a = 1

So that f is an open map.

Clearly f(R) = S1 and

ker f = {x ∈ R | e2πix = 1} = Z.

Hence, by Proposition 3.5 the topological group R/Z is isomorphic and
homeomorphic to S1.

(ii) Take the general linear group GLn(R) (as a subspace of Rn2
) together

with the topology induced from Rn2
as in Examples 1 (v). The determinant

function ϕ : GLn(R) → R∗ is an homomorphism and it is continuous since
it is given by a polynomial. Let us show that it is also open.

Let U be an open subset of GLn(R). Since {0} is closed in R and ϕ
is continuous, GLn(R) = Rn2 r ϕ−1({0}) is open in Rn2

. Then U is open
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also in Rn2
. To show that ϕ(U) is open, fix d ∈ ϕ(U) and take x ∈ U with

determinant d. Since x ∈ U and U is open, there is an open ball B(x, r)
contained in U . We affirm that there exists ε > 0 such that tx ∈ B(x, r) for
all t ∈ (1− ε, 1 + ε). Indeed,

tx ∈ B(x, r) ⇐⇒ ‖x− tx‖ < r

⇐⇒ |1− t| · ‖x‖ < r

⇐⇒ |1− t| < r

‖x‖
.

So that we can clearly take ε = r/‖x‖ > 0. Now by taking determinants,
ϕ(tx) = tnd ∈ ϕ(U) for all t ∈ (1 − ε, 1 + ε), that is to say ((1 − ε)nd, (1 +
ε)nd) ⊆ ϕ(U). Therefore ϕ is open.

For each d ∈ R∗, the matrixà
d 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

í
has determinant d, so ϕ is a surjection. And since

kerϕ = {x ∈ GLn(R) | ϕ(x) = 1} = SLn(R),

by Proposition 3.5, GLn(R)/SLn(R) is isomoprhic and homeomorphic to R∗.

Proposition 3.6 (Third isomorphism theorem). Let N E G and M E G
with N ≤M . Then

G/N

M/N
∼=

G

M

in the sense of being isomorphic and homeomorphic.

Proof. See Exercise 3.

At this point one can expect an analogue result to the second isomor-
phism theorem of group theory, but the following example shows that it
does not hold for topological groups.

Example 6. Consider the additive group R and its normal subgroups Z and
λZ, where λ is an irrational number. The third isomorphism theorem for
topological groups would say that (Z+ λZ)/Z is homeomorphic to λZ/(Z∩
λZ). Since λ is irrational, λZ/(Z∩λZ) = λZ/{0} is discrete. The subgroup
Z+ λZ of R is not of the type tZ, indeed, Z+ λZ = tZ would imply 1 = mt
and λ = nt for some m,n ∈ Z, whence λ = n/m and it would be rational.

Therefore, by Lemma 3.4 Z + λZ is dense in R and so the quotient
(Z + λZ)/Z is dense as a subspace of S1. Any open subset of (Z + λZ)/Z
contains infinitely many elements of (Z + λZ)/Z, so it is not discrete and
then not homeomorphic to λZ/(Z ∩ λZ).
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Proposition 3.7. Let G be a topological group and N,M E G with N ≤M .
If τ1 is the topology on M/N as subspace of G/N and τ2 the topology on M/N
as quotient space of M , then τ1 = τ2.

Proof. Let q : G→ G/N be the canonical projection. Note that q(x) = xN
lies in M/N if and only if x ∈M , so we may define

f : M −→ (M/N, τ1)

x 7−→ q(x),

which is clearly a surjective group homomorphism. Let us see that it is
continuous. If U ∈ τ1, there exists an open subset V of G/N such that
U = V ∩ M/N . Then f−1(U) = q−1(U) = q−1(V ∩ M/N) = q−1(V ) ∩
q−1(M/N) = q−1(V ) ∩M . Since q is continuous, q−1(V ) is open in G and
then f is continuous.

We show now that f is open. Let U be open in M and write U = M ∩V ,
with V open in G. Since M =

⋃
x∈M xN we have

U =
⋃
x∈M

(xN ∩ V )

and then,

f(U) = q
Ä ⋃
x∈M

(xN ∩ V )
ä

=
⋃
x∈M

q(xN ∩ V )) =
⋃
x∈M
{yN | y ∈ xN ∩ V }

=
⋃
x∈M

Ä
q(x) ∩ {yN | y ∈ V }

ä
= q(M) ∩ q(V ) = M/N ∩ q(V ).

Since q is open (by Proposition 3.3), q(V ) is open and we have that f is an
open map.

On the other hand, ker f = {x ∈M | xN = N} = N , so by Proposition
3.5 the application

(M/N, τ2) −→ (M/N, τ1)

xN 7−→ xN

is an homeomorphism. Thus τ1 = τ2.

Corollary 3.8. If N is a normal subgroup of a topological group G, then
every subgroup of G/N is isomorphic and homeomorphic to a quotient group
M/N , where N ≤M E G.

Proof. The result is well known for groups: if H is a subgroup of G/N then
there exists a normal subgroup M of G containing N such that H = M/N .
We have seen that H and M/N both have the same topology, so they are
also homeomorphic.



16 3.3. Product groups

3.3 Product groups

In order to introduce the concept of the product of topological groups, we
shall first recall how the product topology is defined. Let {(Xi, τi)}i∈I be a
family of topological groups (not necessarily finite), and consider the Carte-
sian product X =

∏
i∈I Xi = {(xi)i∈I | xi ∈ Xi,∀i ∈ I} together with the

projections pi : X → Xi. (When there is no danger of confusion we may
write (xi) instead of (xi)i∈I .) The product topology in X is the topology
generated by the sub-base

σ = {p−1i (Ui) | Ui ∈ τi, i ∈ I}.

In other words, U is open in X if and only if for each x ∈ U there exist
B1, . . . , Bn ∈ σ such that x ∈ B1 ∩ . . . ∩ Bn ⊆ U . The product topology is
the weakest topology on X for which each projection is continuous.

Now let {Gi}i∈I be a family of topological groups an let G =
∏
i∈I Gi.

G has a natural group structure derived by multiplying elements of G com-
ponent by component, i.e., for (xi), (yi) ∈ G the product of (xi) and (yi) is
given by (xiyi). In the following lines we show that the group G equipped
with the product topology is a topological group.

By how the group operation is defined in G, the following diagrams are
commutative for each i ∈ I.

G G

Gi Gi

ν

pi

νi

pi

G×G G

Gi ×Gi Gi

µ

pi × pi pi

µi

(3.3)

Recall the following result.

Proposition 3.9. Let {Xi}i∈I be a family of topological spaces and let X =∏
i∈I Xi be equipped with the product topology. If Y is a topological space,

a map f : Y → X is continuous iff pi ◦ f : Y → Xi is continuous for each
i ∈ I.

Since pi, νi and µi are continuous for each i, so are νi ◦ pi and µi ◦ (pi ×
pi). By commutativity of (3.3), pi ◦ ν and pi ◦ µ are continuous, and by
Proposition 3.9 so are ν and µ. Hence G is a topological group.

Proposition 3.10. Let {Xi}i∈I and {Yi}i∈I be two families of topological
spaces and let X =

∏
i∈I Xi and Y =

∏
i∈I Yi. If fi : Xi → Yi is an open

surjection for each i ∈ I, then the application

f : X −→ Y

(xi) 7−→ (fi(xi))
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is an open surjection. In other words, the product of open surjections is
again an open surjection.

Corollary 3.11. Let {Gi}i∈I be a family of topological groups and let Hi

be a normal subgroup of Gi for each i. Let G =
∏
i∈I Gi and H =

∏
i∈I Hi.

Then,
G

H
∼=
∏
i∈I

Gi
Hi

in the sense of being isomorphic and homeomorphic.

Proof. Denote by qi the canonical projection Gi → Gi/Hi. By Proposition
3.5 it suffices to show that the application

f : G −→
∏
i∈I

Gi
Hi

(xi) 7−→ (qi(xi))

is a surjective, open and continuous homomorphism with ker f = H. Since
canonical projections qi are open surjections, by Proposition 3.10 f is an
open surjection. It is clearly a group homomorphism since

f((xiyi)) = (qi(xiyi)) = (qi(xi)qi(yi)) = (qi(xi))(qi(yi)) = f((xi))f((yi)).

Consider now the diagram

G

∏
i∈I

Gi
Hi

Gi
Hi

f
pi ◦ f

pi

and note that pi ◦ f = qi ◦ pi. Since qi ◦ pi is continuous, by Proposition 3.9
so is f .

Finally, it is easy to see that ker f = H.

(qi(xi)) = (Hi) ⇐⇒ xi ∈ Hi for all i ∈ I ⇐⇒ (xi) ∈ H.

Example 7. The n-tours, defined as Tn = S1 × n· · · × S1 is a topological
group, and by Corollary 3.11, it is isomorphic and homeomorphic to Rn/Zn.





Chapter 4

Separation axioms

We will proceed by stating the main separation axioms: T0, T1, T2 and T3.

Definition 3. Let X be a topological space.

• X is said to be a T0 space if for any x 6= y ∈ X there exists an open
subset containing exactly one of them.

• X is said to be T1 if for any x 6= y ∈ X there exists two open subsets
U and V such that x ∈ U, y /∈ U and y ∈ V, x /∈ V .

• X is said to be T2 or Hausdorff if for any x 6= y ∈ X there exists two
disjoint open subsets U and V such that x ∈ U and y ∈ V .

• X is said to be T3 if it is T1 and for any closed subset F and x /∈ F
there exists two disjoint open subsets U and V such that F ⊆ U and
x ∈ V .

The following implications are well known for any topological space X:

X is T3 =⇒ X is T2 =⇒ X is T1 =⇒ X is T0.

The next results show that the previous implications are equivalences if X
is a topological group.

Definition 4. A topological space X is said to be regular if for any closed
subset F and x /∈ F there exist two disjoint open subsets U and V such that
F ⊆ U and x ∈ V . In this case we will say that U and V separate F and x.

This definition is easily seen to be equivalent to the following condition:
every neighbourhood of each point x ∈ X contains a closed neighbourhood
of x.

Remark 3. Note that the property T3 is equivalent to be T1 and regular.
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Proposition 4.1. Every topological group is regular.

Proof. Let G be a topological group. We will show first that if F is a closed
subset not containing e, then there exist open subsets U and V separating
F and e.

Since F is closed, GrF is an open neighbourhood of e and by Remark 1,
we can find a neighbourhood V of e such that V −1V ⊆ Gr F . Note that

V −1V ⊆ Gr F ⇐⇒ x−1y 6∈ F ∀x, y ∈ V
⇐⇒ y 6∈ xF ∀x, y ∈ V
⇐⇒ V ∩ V F = ∅.

Since V is open, so is V F , and we have that F ⊆ V F , e ∈ V and V F∩V = ∅.
Thus V and V F separate e and F .

Finally, if F is an arbitrary closed subset and x 6∈ F , then x−1F is a
closed subset not containing e, so there exist open subsets U and V sepa-
rating x−1F and e. Clearly xU and xV are two open subset separating F
and x.

Proposition 4.2. For a topological group the properties T0, T1, T2 and T3
are equivalent.

Proof. Since every topological group is regular, by Remark 3 it is enough
to show that a T0 topological group is T1. Suppose then that G is a T0
topological group. Let x 6= y ∈ G and without loss of generality suppose
that U is an open subset containing x but not y. Now, G r U is a closed
subset not containing x and by regularity we can find two open subsets V1
and V2 separating Gr U and x. We have that x ∈ V2, y ∈ Gr U ⊆ V1 and
V1 ∩ V2 = ∅, therefore G is Hausdorff and consequently T1.

The proposition below gives some characterizations of the Hausdorff
property for topological groups. The statements (i) and (ii) are equiva-
lent for topological spaces (note that the proof of (i)⇒(ii) does not use the
group structure of G), whereas the equivalence of (i), (iii), (iv) and (v) is
specific of topological groups.

Proposition 4.3. If G is a topological group and B a neighbourhood base
of e, then the following statements are equivalent:

(i) G is Hausdorff;

(ii) the diagonal map δ : G→ G×G given by x 7→ (x, x) is a closed map;

(iii) if H is a topological group and f : H → G a continuous homomor-
phism, then ker f is a closed subgroup of H;
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(iv) {e} is a closed subset of G;

(v)
⋂B = {e}.

Proof. (i)⇒ (ii) Let F be a closed subset of G. If (x, y) 6∈ δ(F ), then either
x 6= y or x = y. In the former case, since G is assumed to be Hausdorff,
there exist disjoint open subsets U and V such that x ∈ U and y ∈ V .
Therefore, U × V is an open neighbourhood of (x, y) and since U ∩ V = ∅,

(U × V ) ∩ δ(F ) = {(z, z) | z ∈ F and z ∈ U ∩ V } = ∅.

In the case x = y, since (x, x) 6∈ δ(F ), we have that x 6∈ F , being
F closed. Hence there exists an open subset U of G such that x ∈ U and
U∩F = ∅. U×U is an open neighbourhood of (x, x) and (U×U)∩δ(F ) = ∅.
So that, δ(F ) is closed in G×G.

(ii)⇒(iii) Let ϕ : G → G × G be defined by x 7→ (f(x), e), and note that
since f is continuous, so is ϕ. Now, ∆ = δ(G) is closed in G×G because it
is the image of a closed subset by a closed map. Therefore, by continuity

ϕ−1(∆) = {x ∈ H | f(x) = e} = ker f

is closed.

(iii)⇒(iv) The identity map id : G→ G is a continuous homomorphism and
ker id = {e} is closed by hypothesis.

(iv)⇒(v) Let x 6= e ∈ G. By homogeneity {x} is closed and then, there
exists B ∈ B such that x 6∈ B. So that x 6∈ ⋂B.

(v)⇒(i) Let x 6= y ∈ G. Since
⋂
B∈B

B = {e}, there exists B1 ∈ B such

that x−1y 6∈ B. Therefore, y 6∈ xB and G is T1. By Proposition 4.2, G is
Hausdorff.

Now we need to introduce a basic result in topology.

Proposition 4.4. (i) If X is a Hausdorff space and f : Y → X a continuous
injection, then Y is Hausdorff.

(ii) If {Xi}i∈I is a family of topological spaces, then
∏
i∈I Xi is Hausdorff if

and only if Xi is Hausdorff for each i ∈ I.

Proposition 4.5. Let {Gi}i∈I be a family of topological groups and let H
be a normal subgroup of a topological group G. Then,

(i) if G is Hausdorff so is H;

(ii) G/H is Hausdorff if and only if H is closed;
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(iii) if H and G/H are Hausdorff, then so is G;

(iv)
∏
i∈I Gi is Hausdorff if and only if Gi is Hausdorff for each i ∈ I.

In consequence, if H is closed and Hausdorff, by (ii) G/H is Hausdorff and
then by(iii) G is Hausdorff.

Proof. (i) The result follows from Proposition 4.4, since the inclusion map
is a continuous injection.

(ii) The identity element in G/H is H, so that, by Proposition 4.3

G/H Hausdorff ⇐⇒ {H} closed in G/H

⇐⇒ q−1(H) closed in G.

And q−1(H) = {x ∈ G | xH = H} = H.

(iii) If H is Hausdorff {e} is closed in H, so there exists a closed subset F
of G such that H ∩ F = {e}. If also G/H is Hausdorff, by (ii) H is closed
in G and then so is H ∩ F = {e}. Therefore, G is Hausdorff.

(iv) The result follows directly from Proposition 4.4.

Examples 8. (i) Since R is Hausdorff, so are Rn and all its subgroups for
each n ∈ N. Also Cn is Hausdorff as it is homeomorphic to R2n.

(ii) S1 = R/Z is Hausdorff as Z is closed in R. Alternatively, S1 is Hausdorff
since it is a subgroup of the Hausdorff group C∗.
(iii) GLn(R) and SLn(R) are Hausdorff groups as subsets of the Hausdorff
space Rn2

.

(iv) Since Q is not closed in R, the quotient R/Q is a non-Hausdorff topo-
logical group.



Chapter 5

Connectedness

Definition 5. A topological space X is said to be disconnected if there
exists U and V two non-empty open subset of X such that U ∪ V = X and
U ∩ V = ∅. In this case we say that (U, V ) is a disconnection of X.

Definition 6. A topological space X is said to be connected if it is not
disconnected.

We may give a clearly equivalent definition of connectedness: a topolog-
ical space X is connected if the only clopen (closed and open) subsets are ∅
and X.

Definition 7. A topological space X is said to be path-connected if for all
x, y ∈ X there exists a continuous function f : [0, 1]→ X such that f(0) = x
and f(1) = y. Such an f is called a path from x to y.

A well-known fact is that if a space is path-connected, then it is neces-
sarily connected. The converse is not always true.

Proposition 5.1. A connected topological group has neither proper open
subgroups nor proper closed subgroups of finite index.

Proof. It is enough to notice that open subgroups are closed and closed
subgroups of finite index are open (Proposition 3.1).

Proposition 5.2. If G is a connected group and U a non-empty open subset
of G, then G is the group generated by U . In other words, G = 〈U〉.

Proof. Since 〈U〉 is a subgroup of G containing a non-empty open subset,
by Proposition 3.1 it is an open subgroup. By Proposition 5.1, 〈U〉 cannot
be proper and it follows that 〈U〉 = G.

23
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Example 9. The subgroup R+ = (0,∞) of the multiplicative group R∗ is
connected. Then, any open interval (a, b) ⊆ R+ generates the whole R+. In
other words, given any x ∈ R+, we can write x as a product of finitely many
elements of (a, b) and its inverses.

Proposition 5.3. (i) If X is a connected space and f : X → Y continuous,
then f(X) is connected.

(ii) If {Xi}i∈I is a family of topological spaces, then
∏
i∈I Xi is connected if

and only if Xi is connected for each i ∈ I.

Proposition 5.4. Let {Gi}i∈I be a family of topological groups and let H
be a normal subgroup of a topological group G. Then,

(i) if G is connected then so is G/H;

(ii) if H and G/H are connected then so is G;

(iii)
∏
i∈I Gi is connected if and only if Gi is connected for all i ∈ I.

Proof. Since the canonical projection G→ G/H is a continuous surjection,
(i) and (iii) follows directly from Proposition 5.3.

(ii) By contradiction suppose that G and G/H are connected and that (U, V )
is a disconnection of G. Without loss of generality assume that e ∈ U . If for
some x ∈ X the coset xH is not contained in U nor in V , then xH ∩U 6= ∅
and xH ∩ V 6= ∅, so that (xH ∩ U, xH ∩ V ) is a disconnection of xH which
must be connected as it is homeomorphic to H. Therefore for all x ∈ X,
the coset xH is contained either in U or in V , so we can write

U =
⋃
{xH | x ∈ U} and V =

⋃
{xH | x ∈ V }.

Since the canonical projection q : G → G/H is an open map, q(U) and
q(V ) are both open in G/H. Also q(U) = {xH | x ∈ U} and q(V ) = {xH |
x ∈ V }, so that they are disjoint. Finally, q(U) ∪ q(V ) = q(U ∪ V ) = G/H
and it follows that (q(U), q(V )) is a disconnection of G/H, which contradicts
our hypothesis.

Proposition 5.5. Let {Ci}i∈I be a family of connected subspaces of a topo-
logical space X such that

⋂
i∈I Ci 6= ∅. Then

⋃
i∈I Ci is a connected subspace

of X.

Definition 8. Let X be a topological space and x ∈ X. The union of all
connected subspaces of X containing x is called the connected component of
X at x (or simply the component at x).

Proposition 5.6. The closure of a connected subspace is connected.
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Corollary 5.7. If X is a topological space and x ∈ X, then the connected
component at x is closed and connected.

Corollary 5.8. The connected components of a topological space X form a
partition of X.

Theorem 5.9. If G is a topological group and N the component at e, then
N is a closed and connected normal subgroup of G and for any x ∈ X, xN
is the component at x.

Proof. By Corollary 5.7, N is closed and connected. Let us show that N is
a normal subgroup of G. If n ∈ N and x ∈ G, both n−1N and x−1Nx are
homeomorphic to N so they are connected. Since e ∈ n−1N , by definition
of the connected component, n−1N ⊆ N and then N is a subgroup of G.
Similarly, e ∈ x−1Nx and x−1Nx ⊆ N . Therefore N is a normal subgroup
of G.

Finally, since the left translation lx : G→ G is an homeomorphism, xH
is the connected component of G at x for any x ∈ X.

Examples 10. (i) Any interval (a, b) ⊆ R is connected.

(ii) Since any interval is connected and R =
⋃
n∈N(−n, n), by Proposition 5.5,

R is a connected group.

(iii) The additive group R is connected, and its subgroup Z normal. Then,
by Proposition 5.4, S1 ∼= R/Z is also connected. Consequently, the n-torus
is also connected for any n ∈ N.

(iv) The multiplicative group R∗ is not connected as the subsets U = (−∞, 0)
and V = (0,∞) form a disconnection. U and V are clearly connected, so
they are the connected components of R∗.

(v) The group of all n×n non-singular complex matrices GLn(C) is connected,
(See Exercise 5). However, GLn(R) is not connected. Indeed, GLn(R) is
homeomorphic to Rn2 r ker(det), where det : Rn2 → R is the determinant
function, which is given by a polynomial and so it is continuous. The subsets
(−∞, 0) and (0,∞) are both open in R, then U = det−1((−∞, 0)) and V =
det−1((0,∞)) are open subsets of Rn2

. We have that U ∪V = Rn2rker(det)
and U ∩ V = ∅, thus GLn(R) is not connected.

In fact, it can be shown that U and V are the only two components of
GLn(C), but the proof requires some more background on linear algebra.
However, for the case n = 1, Rn2 r ker(det) is just R∗, so the result follows
from example (iv).





Chapter 6

Metrization of topological
groups

6.1 Birkhoff-Kakutani theorem

In this section we give a proof of Birkhoff-Kakutani theorem, which states
that a topological group is metrizable if and only if it is T0 and first-
countable. The proof is extracted from [5], however, we have tried to phrase
it in more detail to ease understanding.

Definition 9. A pseudometric on a set X is an aplication d : X × X →
[0,+∞) satisfying the following conditions:

(i) d(x, x) = 0 for all x ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

If d satisfies

(i)′ d(x, y) = 0 if and only if x = y

instead of (i), we will say that d is a metric.

If d is a pseudometric (note that every metric is also a pseudometric) on
X, define the open ball of radius r > 0 centered at x as

B(x, r) := {y ∈ X | d(x, y) < r}

and the topology generated by d as

τd = {U ⊆ X | ∀x ∈ U ∃r > 0 such that B(x, r) ⊆ U}.

It is easy to see that τd is a topology on X.

27
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Definition 10. A topological space (X, τ) is said to be metrizable (resp.
pseudometrizable) if there exists a metric (resp. pseudometric) generating τ .

Definition 11. A topological space X is said to be first-countable if every
x ∈ X has a countable neighbourhood base, and it is said to be second-
countable if it has a countable base for its topology.

Remark 4. Note that by Proposition 2.1, a topological group is first-
countable if and only if the identity element has a countable neighbourhood
base.

Lemma 6.1. If G is a first-countable topological group, then there exists a
neighbourhood base {Bn}n∈N of e such that each Bn is symmetric (Bn =
B−1n ) and Bn+1Bn+1Bn+1 ⊆ Bn for all n ∈ N.

Proof. Let {Un}n∈N be a neighbourhood base of e. By taking Vn = Un∩U−1n
we obtain a neighbourhood base {Vn}n∈N of e consisting all of symmetric
neighbourhoods.

Let i1 = 1. Since G is a topological group, by Proposition 2.2 we can find
j > i1 for which VjVj ⊆ Vi1 . Now by taking i2 > i1 for which Vi2Vi2 ⊆ Vj ,
we have that Vi2Vi2Vi2 ⊆ Vi2Vj ⊆ VjVj ⊆ Vi1 . In the same way we can find
an i3 > i2 such that Vi3Vi3Vi3 ⊆ Vi2 . Continuing in this fashion we obtain
an strictly increasing sequence (in)n∈N such that Vin+1Vin+1Vin+1 ⊆ Vin for
all n ∈ N.

By taking Bn = Vin for all n ∈ N, {Bn}n∈N is a neighbourhood base of
e (because (in) is strictly increasing) consisting of all symmetric neighbour-
hood and such that Bn+1Bn+1Bn+1 ⊆ Bn for all n ∈ N.

Lemma 6.2. Let A and B be subsets of R and consider the subset A+B =
{a+ b | a ∈ A, b ∈ B}. Then.

(i) if A ⊆ B then inf A ≥ inf B;

(ii) inf (A+B) = inf A+ inf B.

Theorem 6.3. A topological group is pseudometrizable if and only if it is
first-countable.

Proof. One implication is immediate: if (G, τ) is a pseudometrizable topo-
logical group, there is a pseudometric d on G generating τ . For each x ∈ G,
{B(x, 1/n)}n∈N is a countable neighbourhood base of x so that G is first-
countable.

Suppose now that G is first-countable. By Lemma 6.1 there exists a
neighbourhood base {Bn}n∈N of e consisting all of symmetric neighbour-
hoods and such that Bn+1Bn+1Bn+1 ⊆ Bn for all n ∈ N. Put B0 = G and
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define f : G×G→ [0,+∞) by

f(x, y) =


0, if x−1y ∈

⋂
n∈N

Bn,

2−n, if x−1y ∈ Bn rBn+1.

In other words, f(x, y) = 2−n if n is the greatest non-negative integer such
that x−1y ∈ Bn and f(x, y) = 0 if such an n does not exist. Note that
f(x, x) = 0, and since each Bn is symmetric, x−1y ∈ Bn if and only if
(x−1y)−1 = y−1x ∈ Bn. Hence f(x, y) = f(y, x) for all x, y ∈ G (in this case
we say that f is symmetric).

Now let

Fx,y = {f(x1, x2) + · · ·+ f(xk, xk+1) | k ∈ N, x1 = x, xk+1 = y}

and define the aplication

d : G×G −→ [0,∞)

d(x, y) 7−→ inf Fx,y.

Our aim is to show that d is a pseudometric generating τ .

If x, y, z ∈ G, evidently, d(x, y) ≥ 0 and d(x, x) = 0. And since f is
symmetric, so is d. For proving the triangle inequality, is enough to note
that Fx,y + Fy,z ⊆ Fx,z, and by Lemma 6.2,

d(x, z) = inf Fx,z ≤ inf(Fx,y + Fy,z) = inf Fx,y + inf Fy,z = d(x, y) + d(y, z).

Thus d is a pseudometric.

Note also that for all a ∈ G, x−1y = (ax)−1(ay) so that f is left-invariant
(f(x, y) = f(ax, ay)) and then so is d.

It remains to see that τd is equal to τ , where τd is the topology generated
by the pseudometric d. Since d is left-invariant,

B(x, r) = {y ∈ G | d(x, y) < r} = x{x−1y ∈ G | d(e, x−1y) < r} = xB(e, r)

so it is enough to check the neighbourhoods at the identity.

For showing that τ is finer than τd, fix r > 0 and take an n ∈ N ∪ {0}
such that 2−n < r. Let x ∈ Bn+1. Then f(e, x) ≤ 2−n−1 and by definition
of d, d(e, x) ≤ f(e, x) ≤ 2−n−1 < 2−n. Hence x ∈ B(e, 2−n) and then
Bn+1 ⊆ B(e, 2−n) ⊆ B(e, r).

The task is now to prove that τd is finer than τ , or equivalently, that for
each n ∈ N we can find an r > 0 such that B(e, r) ⊆ Bn. Let x ∈ B(e, 2−n).
Since d(e, x) < 2−n, there exists k ∈ N and x1, . . . , xk+1 ∈ G with x1 = e,
xk+1 = x for which



30 6.1. Birkhoff-Kakutani theorem

d(e, x) ≤ f(x1, x2) + · · ·+ f(xk, xk+1) < 2−n.

Note that as x−11 xk+1 = x, the proof is completed if we show that

x−11 xk+1 ∈ Bn. (6.1)

For proving (6.1) we proceed by induction on k. If k = 1, f(x1, x2) < 2−n,
then either f(x1, x2) = 0 or f(x1, x2) = 2−j for some j ≥ n. Anyway,
x−11 x2 ∈ Bj ⊆ Bn. So it holds for the base case.

Fix now k ≥ 2 and assume that if

f(y1, y2) + · · ·+ f(yl, yl+1) < 2−n,

then y−11 yl+1 ∈ Bn for arbitrary y1, . . . , yl+1 ∈ G and l < k.

Suppose that

f(x1, x2) + · · ·+ f(xk, xk+1) < 2−n. (6.2)

Clearly, for any i, f(xi, xi+1) < 2−n. Hence f(xi, xi+1) ≤ 2−n−1 and
x−1i xi+1 ∈ Bn+1. If f(x1, x2) ≥ 2−n−1, then f(x1, x2) = 2−n−1 and x−11 x2 ∈
Bn, so if we want to hold (6.2),

f(x2, x3) + · · ·+ f(xk, xk+1) < 2−n−1.

By inductive hypothesis, x−12 xk+1 ∈ Bn+1. Therefore

x−11 xk+1 = (x−11 x2)(x
−1
2 xk+1) ∈ Bn+1Bn+1 ⊆ Bn.

Suppose finally that f(x1, x2) < 2−n−1 and let 1 ≤ i ≤ k be the greatest
integer for which f(x1, x2) + · · · + f(xi, xi+1) < 2−n−1. We only need to
check two cases:

• If i = k or i = k − 1, then

f(x1, x2) + · · ·+ f(xk−1, xk) < 2−n−1,

and by inductive hypothesis x−11 xk ∈ Bn+1. Also x−1k xk+1 ∈ Bn+1,
then

x−11 xk+1 = (x−11 xk)(x
−1
k xk+1) ∈ Bn+1Bn+1 ⊆ Bn.

• If i < k − 1, by choice of i,

f(x1, x2) + · · ·+ f(xi+1, xi+2) ≥ 2−n−1
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and by (6.2),

f(xi+2, xi+3) + · · ·+ f(xk, xk+1) < 2−n−1.

By inductive hypothesis,

x−11 xi+1, x
−1
i+1xi+2, x

−1
i+2xk+1 ∈ Bn+1.

Hence,

x−11 xk+1 = (x−11 xi+1)(x
−1
i+1xi+2)(x

−1
i+2xk+1) ∈ Bn+1Bn+1Bn+1 ⊆ Bn.

We checked all possible cases, so we are finished with the proof.

Proposition 6.4. If d is a pseudometric on a T0 topological space, then d
is a metric.

Proof. Let d be a pseudometric on a T0 topological space X. Let x 6= y ∈ X.
Since X is T0, there exists r > 0 such that either x 6∈ B(y, r) or y 6∈ B(x, r).
Then d(x, y) > r > 0 and it follows that d is a metric.

Corollary 6.5 (Birkhoff-Kakutani theorem). A topological group is metriz-
able if and only if it is T0 and first-countable. In this case, G admits a
left-invariant metric generating its topology.

Proof. One implication is immediate, since every metrizable topological
space is T0 and first-countable. On the other hand, by Theorem 6.3, a
first-countable topological group is pseudometrizable and if it is also T0, it
must be metrizable by Proposition 6.4. Finally, if G is metrizable, it admits
a left-invariant metric since the pseudometric d (G is T0, so d is a metric) we
have construct in the proof of Theorem 6.3 is left-invariant and generates
the topology of G.

6.2 The Sorgenfrey line

Once seen this characterization of metrizability we can give a counter exam-
ple to the converse of Proposition 1.1. Indeed, we will see that the Sorgenfrey
line, being an homogeneous space, cannot be a topological group.

Until the end of the chapter we will denote by S the Sorgenfrey line,
that is the real line R together with the topology generated by all intervals
of the form [a, b). In Example 4 we have shown that the topological space
S together with the sum of R is not a topological group since the inversion
application is not continuous. In this section we will prove a stronger result:
for any operation ∗ : S × S → S, the space (S, ∗) is not a topological group.
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First, we need to show some properties of the space S. In the follow-
ing lines we show that it is separable and first-countable, but not second-
countable. (A space is said to be separable if it has a countable dense
subset.)

The subset Q of S is countable and clearly dense since for any interval
[a, b) there is a rational number lying on it; thus S is separable. It is also
first-countable as {[x, x + 1/n) | n ∈ N} is a neighbourhood base for each
x ∈ S.

We need a more elaborated argument to show that S is not second-
countable. Suppose by contradiction that β is a countable base for the
topology in S. For any x ∈ S the interval [x, x+ 1) is open and contains x,
so we may choose Bx ∈ β such that x ∈ Bx ⊆ [x, x + 1). Now for x 6= y,
(suppose that x < y) the subsets Bx and By are distinct as x 6∈ [y, y + 1) ⊇
By, hence the application

S −→ β

x 7−→ Bx

is injective. This is a contradiction since S has cardinality strictly grater
than the cardinality of β.

Then S is separable and first-countable, but not second-countable. The
last result we need is the following theorem.

Theorem 6.6. A metrizable space is second countable if and only if it is
separable.

Proof. Let X be a topological space and let d be a metric generating its
topology. If X is second countable it has a countable base β. Now for each
B ∈ β choose xB ∈ B and define D = {xB | B ∈ β}. The subset D of X is
clearly dense and countable, so X is separable.

Suppose now that X is a separable space. Let D be a countable dense
subset and define β = {B(x, r) | x ∈ D, r ∈ N}, where N = {1/n | n ∈ N}.
For showing that β is a base for the topology on X, let U be an open subset
and let x ∈ U . Since {B(x, r)}r∈N is a neighbourhood base at x, there
exists r0 ∈ N for which B(x, r0) ⊆ U . As D is dense, every open subset has
a point on it, in particular, there exists y ∈ D ∩ B(x, r0/2). Then by the
triangular inequality

y ∈ B(y, r0/2) ⊆ B(x, r0) ⊆ U,

and since B(y, r0/2) ∈ β, the proof concludes here.

Theorem 6.7. The Sorgenfrey line S does not admit any group structure
making it a topological group.
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Proof. Suppose by contradiction that S is a topological group. Since S is
T0 and first countable, by Theorem 6.3 S must be metrizable. On the other
hand, as S is separable, by Theorem 6.6 it would be second-countable, but
we have seen that S is not second countable, so it cannot be a topological
group.





Chapter 7

Compactness

7.1 Basic definitions and properties

In this section we give the most elemental definitions and results about
compactness.

Definition 12. A cover of a topological space X is a family U = {Ui}i∈I
of subsets of X such that

⋃
i∈I Ui = X. If each Ui is an open subset we will

say that U is an open cover. Finally, V is said to be a subcover of U if it is
a cover of X and V ⊆ U .

Definition 13. A topological space X is said to be compact if every open
cover of X has a finite subcover.

Examples 11. (i) Every finite space is compact.

(ii) A discrete space is compact if and only if it is finite.

(iii) R with the usual topology is not compact.

Proposition 7.1. (i) Any closed subspace of a compact space is compact.

(ii) Any compact subspace of a Hausdorff space is closed.

(iii) If X is a compact space and f : X → Y a continuous surjection, then
Y is compact.

(iv) If A and B are compact subspaces of a topological space X, then A∪B
is compact.

Below we state a well known characterization for compactness in the
Euclidean space Rn for which we will not give a proof.

Theorem 7.2 (Heine-Borel theorem). A subset of Rn is compact if and only
if it is closed and bounded.

35
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Once seen some results, we can give more examples of compact spaces:

Examples 12. (i) Any interval [a, b] ⊆ R is compact, as it is closed and
bounded.

(ii) The interval [0, 1] is compact and the application f : [0, 1]→ S1 given by
f(x) = ei2px continuous and surjective. Then, by Proposition 7.1, the one
dimensional sphere S1 is compact. Alternatively, S1 is compact as it is closed
and bounded in C ∼= R2. The same argument shows that the n-dimensional
sphere Sn is compact for any n ∈ N.

Proposition 7.3. Let X be a topological space. Then, the following state-
ments are equivalent:

(i) X is compact;

(ii) if {Ci}i∈I is a family of closed subsets of X such that every finite
sub-family has non-empty intersection, then

⋂
i∈I Ci 6= ∅.

Proof. (i)⇒(ii) Let X be a compact space and take a family of closed subsets
{Ci}i∈I such that every finite sub-family has non-empty intersection. By
contradiction, suppose that

⋂
i∈I Ci = ∅. Then, if we let Ui = X r Ci (note

that Ui is open for each i ∈ I), we have that

X = X r
⋂
i∈I

Ci =
⋃
i∈I

Ui.

Since X is compact, there exist a finite subset J ⊆ I such that
⋃
j∈J Uj = X,

and so
⋂
j∈J Cj = ∅.

(ii)⇒(i) Let {Ui}i∈I be an open cover of X. Then, if we let Ci = X r Ui,
{Ci}i∈I is a family of closed subsets of X such that

⋂
i∈I Ci = ∅. By hypoth-

esis, there exists a finite subset J ⊆ I such that
⋂
j∈J Cj = ∅, or in other

words,
⋃
j∈J Uj = X.

7.2 Tychonoff’s theorem

Thychonoff’s theorem states that any product of compact spaces is compact
with respect to the product topology and is known as one of the most im-
portant single result in topology. We will give a proof by means of lattices
and ideals so we need first to see some definitions.

Definition 14. Let (L,≤) be a poset (partially ordered set). We say that L
is a lattice if for each x, y ∈ L there exist both meet (x∧ y) and join (x∨ y)
in L. A lattice L is said to be distributive if for all x, y, z ∈ L

x ∧ (y ∨ z) = (x ∧ y) ∨ z.
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Definition 15. Let L be a lattice and a ⊆ L. a is said to be an ideal of L
if it satisfies the following conditions:

(i) if x ∈ a and y ≤ x, then y ∈ a;

(ii) if x, y ∈ a, then x ∨ y ∈ a.

We say that an ideal a is proper if a 6= L.

Definition 16. Let L be a lattice and F ⊆ L. F is said to be an filter of L
if it satisfies the following conditions:

(i) if x ∈ F and x ≤ y, then y ∈ F ;

(ii) if x, y ∈ F , then x ∧ y ∈ F .

We say that a filter F is proper if F 6= L. (Some authors include the
condition of being proper when defining filters.)

Remark 5. Let (L,≤) be a lattice and consider the opposite order ≤op that
is, x ≤op y if y ≤ x. Then (L,≤op) is clearly a lattice, ideals in (L,≤) are
filters in (L,≤op) and filters in (L,≤) are ideals in (L,≤op).

For proving the existence of maximal ideals, we first see that if A is a
chain of proper ideals of a lattice L with top element 1, then ∪A is a proper
ideal. Indeed, let x ∈ ∪A and y ≤ x. Then x ∈ a for some a ∈ A and since
a is an ideal, y ∈ a ⊆ ∪A. On the other hand, if x, y ∈ ∪A, x ∈ a and
y ∈ b for some a, b ∈ A. (Since A is a chain, we may suppose without loss
of generality that b ⊆ a). Since a is an ideal and x, y ∈ a, we have that
x ∨ y ∈ a ⊆ ∪A. Finally, as every ideal of A is proper, we have that 1 6∈ a
for all a ∈ A and so 1 6∈ ∪A. Thus ∪A is a proper ideal.

Now, by Zorn’s lemma we deduce that every proper ideal is contained in
a maximal one. A similar argument proves the existence of maximal filters
in lattices with bottom element. (Maximal filters are called ultrafilters.)

Definition 17. An ideal p of a lattice L is said to be prime if it is proper
and if whenever x ∧ y ∈ p then either x ∈ p or y ∈ p.

Dually, a filter F of L is said to be prime if it is proper and if whenever
x ∨ y ∈ I then either x ∈ I or y ∈ I.

Note that in the correspondence defined in Remark 5, prime ideals cor-
respond to prime filters and vice-versa.

Proposition 7.4. Let L be a distributive lattice, let m be a maximal ideal
of L and let F be a maximal filter of L. Then,

(i) if L has top element, m is prime;
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(ii) if L has bottom element, F is prime.

Proof. (i) Let (L,≤) be a distributive lattice with top element 1 and let m
be a maximal ideal. Suppose that a ∧ b ∈ m with a 6∈ m. Our aim is to see
that b ∈ m. It is easy to see that the subset

a = {x ∈ L | ∃m ∈ m such that x ≤ a ∨m}

is an ideal of L. Indeed,

• if x1, x2 ∈ a then there exist m1,m2 ∈ m such that x1 ≤ a ∨m1 and
x2 ≤ a ∨m2. Then

x1 ∨ x2 ≤ (a ∨m1) ∨ (a ∨m2) = a ∨ (m1 ∨m2),

and since m1 ∨m2 ∈ m it follows that x1 ∨ x2 ∈ a;

• if x ∈ a and y ∈ L with y ≤ x, then there exists m ∈ m such that
x ≤ a ∨m. Therefore y ≤ a ∨m and it follows that y ∈ a.

Note also that as a ≤ a ∨m for all m ∈ m, we have a ∈ a. Similarly, as
m ≤ a∨m, m ∈ a for all m ∈ m and then m ⊆ a. Thus a is an ideal strictly
contained in a maximal one since a ∈ a r m. Then a = L. In particular,
1 ∈ a, so there exists m ∈ m such that 1 = a ∨m. Hence

(a ∧ b) ∨m = (a ∨m) ∧ (b ∨m) = 1 ∧ (b ∨m) = b ∨m ≥ b,

and since both a∧b and m are in m, (a∧b)∨m ∈ m. Finally, as b ≤ (a∧b)∨m,
we have that b ∈ m.

(ii) By duality, F is a maximal ideal of (L,≤op), and as (L,≤) has a bottom
element, (L,≤op) has a top element. Now, applying (i), F is a prime ideal
of (L,≤op), hence it is a prime filter of (L,≤).

For introducing the next lemma we need first to notice that if X is a
topological space, then the family of open sets OX and the family of closed
sets CX are both lattices with respect to the inclusion order.

Lemma 7.5. Let X be a topological space. Then the following conditions
are equivalent:

(i) X is a compact space;

(ii) if a is a proper ideal in OX, then
⋃
a 6= X;

(iii) if F is a proper filter in CX, then
⋂
F 6= ∅.
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Proof. (ii) and (iii) are clearly equivalent by taking complements. Indeed,
assume (ii) and suppose that F is a proper filter in CX. Then a = {X rA |
A ∈ F} is a proper ideal in OX, so that

⋃
a 6= X and it follows that⋂

F = X r ⋃ a 6= X rX = ∅. In the same way is shown that (iii) implies
(ii).

We see now that (i) implies (ii). Let X be a compact space and let a
be a proper ideal in OX. By contradiction suppose that

⋃
a = X. Then

a is clearly an open cover of X, so it has a finite subcover, i.e., there exist
U1, . . . , Un ∈ a such that U1 ∪ . . . ∪ Un = X. Since ideals are closed under
finite union, X ∈ a, thus any open subset contained in X is in a. Hence,
a = OX and it is not proper.

We show finally that (ii) implies (i). Assume (ii) and suppose that
{Ui}i∈I is an open cover of X. Define a to be the family of all open subsets
A of X such that A can be covered by finitely many of the Ui. In other
words,

a =

®
A ∈ OX | ∃JA ⊆ I finite, such that A ⊆

⋃
i∈JA

Ui

´
.

Let us see that a is an ideal of OX. Let A,B ∈ a together with their finite
subsets JA, JB ⊆ I. Then JA ∪ JB is finite and

A ∪B ⊆
⋃

j∈JA∪JB

Uj .

So A ∪ B ∈ a. Also, if C ∈ OX and C ⊆ A, we have that C ∈ a since
C ⊆ ⋃j∈JA Uj . Thus a is an ideal in OX.

Clearly Ui ∈ a for all i ∈ I, and since {Ui}i∈I is a cover of X, then⋃
a = X. Hence, by assumption, a cannot be proper, that is, a = OX.

In particular, X ∈ a and there exists a finite subset JX of I such that
X =

⋃
j∈JX Uj .

Theorem 7.6 (Tychonoff’s theorem). Any product of compact spaces is
compact.

Proof. Let {Xi}i∈I be a family of compact subsets. Let X =
∏
i∈I Xi and

suppose that a is a proper ideal of OX. If we show that
⋃
a 6= X, the result

follows by Lemma 7.5.

Let m be a maximal ideal ofOX containing a and note that as
⋃
a ⊆ ⋃m,

it suffices to show that
⋃
m 6= X.

For each i ∈ I, define

mi = {A ∈ OXi | p−1i (A) ∈ m},

where pi : X → Xi is the i-th projection. We affirm that mi is an ideal of
OXi for all i ∈ I. Indeed,
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• if A,B ∈ mi, then both p−1i (A) and p−1i (B) are in m, and since m is
closed under unions,

p−1i (A ∪B) = p−1i (A) ∪ p−1i (B) ∈ m.

Then A ∪B ∈ mi;

• if A ∈ mi and B ∈ OXi with B ⊆ A, then p−1i (B) ⊆ p−1i (A) ∈ m, and
it follows that p−1i (B) ∈ m. So that B ∈ mi.

Thus mi is an ideal of OXi, and it is proper since p−1i (Xi) = X 6∈ m.

Now, since each Xi is compact, by Lemma 7.5,
⋃
mi 6= Xi. For each

i ∈ I take an element xi ∈ Xi not belonging to
⋃
mi and put x = (xi)i∈I .

Our aim is to show that x 6∈ ⋃m.

By contradiction, suppose that x ∈ ⋃m. Then there exists A ∈ m such
that x ∈ A. Since A is open in X, by definition of the product topology,
there exists an open subset V such that x ∈ V ⊆ A and V is of the form

V =
⋂
j∈J

p−1j (Vj),

where J is a finite subset of I and Vj ∈ OXj for all j ∈ J . In particular
for each j ∈ J , we have that x ∈ V ⊆ p−1j (Vj), and taking images by pj , we
obtain xj ∈ Vj .

Write Uj = p−1j (Vj) and note that since A ∈ m and V ⊆ A, then V ∈ m.
Further, as OX has top element X, by Proposition 7.4, m is a prime ideal.
By definition of prime ideal, since⋂

j∈J
Uj ∈ m

and J is finite, there exists k ∈ J such that Uk ∈ m. So that, by definition
of mk, we have that Vk ∈ mk. Thus xk ∈ Vk ∈ mk and then xk ∈

⋃
mk.

This contradicts the choice of xk, so x 6∈ ⋃
m and by Lemma 7.5, X is

compact.

The converse of Tyhchonoff’s theorem is also true: if X =
∏
i∈I Xi is

compact, then so is its image under any continuous surjection. In particular,
pi(X) = Xi is compact.

7.3 Compactness in topological groups

In this section we discuss some properties about compactness in topological
groups.
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Proposition 7.7. Let G be a topological group, C ⊆ G compact and U an
open subset containing C. Then there exists an open neighbourhood N of e
such that NC ⊆ U .

Proof. Since every point x ∈ C is an interior point of U , by Proposition 2.1,
there is an open neighbourhood Mx of e such that Mxx ⊆ U , and by (B2) in
Proposition 2.2, there is an open neighbourhood Nx of e such that NxNx ⊆
Mx. Since x ∈ Nxx, the family {Nxx}x∈C is an open cover of C, and since
C is compact we may take a finite number of subsets N1, . . . , Nn ∈ {Nx}x∈C
(corresponding to x1, . . . , xn) such that

C ⊆
n⋃
i=1

(Nixi).

Take N =
⋂n
i=1Ni, an open neighbourhood of e. Then,

NC ⊆ N
n⋃
i=1

(Nixi) =
n⋃
i=1

(NNixi).

And since
NNixi ⊆ NiNixi ⊆Mixi ⊆ U

for all i = 1, . . . , n, it follows that NC ⊆ U . (M1, . . . ,Mn are corresponding
to x1, . . . , xn.)

Proposition 7.8. Let {Gi}i∈I be a family of topological groups and H a
subgroup (not necessarily normal) of a topological group G. Then,

(i) if G is compact and H closed, then H is compact;

(ii) if G is compact, then G/H is compact;

(iii) if H and G/H are both compact, then G is compact;

(iv)
∏
i∈I Gi is compact if and only if each Gi is compact.

Proof. (i) follows directly from Proposition 7.1 (i), as H is a closed subset
of G. On the other hand, since the canonical projection p : G → G/H is
continuous, (ii) follows from Proposition 7.1 (ii). (iv) follows directly from
Tychonoff’s theorem.

We finally prove (iii). Let G be a topological group and suppose that
H is a normal subgroup of G such that both H and G/H are compact, and
let {Ui}i∈I be an open cover of G. For any x ∈ G, the coset xH is compact
and it is covered by {Ui}i∈I , so there exists Jx ⊆ I finite such that

xH ⊆
⋃
i∈Jx

Ui.
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Since
⋃
i∈Jx Ui is open, by Proposition 7.7 there exists a neighbourhood Nx

of e such that

NxxH ⊆
⋃
i∈Jx

Ui.

On the other hand, since the canonical projection q : G→ G/H is open
(Proposition 3.3) and since x ∈ NxxH, the family {q(NxxH)}x∈G is an open
cover of G/H. Hence there exist x1, . . . , xn ∈ G such that

n⋃
j=1

q(NxjxjH) = G/H

Note that NxxH is a union of cosets and so

q−1(q(NxxH)) = q−1
Ä
q
( ⋃
y∈Nxx

yH
)ä

=
⋃

y∈Nxx

q−1(q(yH))

=
⋃

y∈Nxx

yH = NxxH.

Thus

G = q−1(G/H) = q−1
Ä n⋃
j=1

q(NxjxjH)
ä

=
n⋃
j=1

q−1(q(NxjxjH))

=
n⋃
j=1

(NxjxjH) ⊆
n⋃
j=1

⋃
i∈Jxj

Ui.

We have found a finite sub-cover of G, so this completes the proof.

Proposition 7.9. Every open subgroup of a compact group has finite index.

Proof. Let H be an open subgroup of a compact topological group G. Then
{xH}x∈G is an open cover of G, and since any two cosets are either equal
or disjoint, it has no proper sub-covers. Thus {xH}x∈G must be finite and
it follows that H has finite index.

Examples 13. (i) The topological group S1 is compact. Thus by Proposi-
tion 7.8, the n-torus Tn = S1 × n· · · × S1 is compact.

(ii) Consider the orthogonal group On(R) = {A ∈ GLn(R) | AAt = In}
consisting of all orthogonal real n× n matrices as a subspace of Rn2

. If we
write A = (aij), the condition AAt = In is equivalent to

n∑
i=1

aijaik − δjk = 0, ∀j, k = 1 . . . , n, (7.1)
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where δjk is the Kronecker delta (δjk = 1 if j = k and δjk = 0 if j 6= k). Since

On(R) is the preimage of the closed subset {0} ⊆ Rn2
under a continuous

function Rn2 → Rn2
, it is closed.

Moreover, by taking j = k in (7.1), we obtain

n∑
i=1

a2ij = 1,

so that |aij | ≤ 1 for all i, j = 1, . . . , n, and it follows that On(R) is bounded

in Rn2
. Thus the orthogonal group On(R) is compact.





Appendix A

Solved exercises

Exercise 1. Let G be a topological group. Prove that

(i) A−1 = (A)−1 and (A)(B) ⊆ AB for any A,B ⊆ G;

(ii) if H is a subgroup of G, then so is H and if H, in addition, is normal
then H is also normal.

Solution. (i) The inversion application is an homeomorphism, so it preserves
the closure operator. Then A−1 = (A)−1.

Let B be a neighbourhood base of the identity element e and let x ∈ A
and y ∈ B. Our aim is to show that xy ∈ AB. Since {xyU | U ∈ B} is a
neighbourhood base of xy, fixed U ∈ B it suffices to show that xyU∩AB 6= ∅.
By Proposition 2.2, take V1, V2, V ∈ B such that V1V1 ⊆ U , y−1V2y ⊆ V1
and V ⊆ V1 ∩ V2. Then,

xV yV = xy(y−1V y)V ⊆ xy(y−1V2y)V ⊆ xyV1V1 ⊆ xyU.

Since x and y are in the closure of A and B respectively, there exist a ∈
xV ∩A and b ∈ yV ∩B, so ab ∈ xV yV and ab ∈ AB. Hence,

ab ∈ xV yV ∩AB ⊆ xyU ∩AB

and it follows that xy ∈ AB.

(ii) If H is a subgroup of G, H−1 = H. Then, using the first part of the
exercise, (H)−1 = H−1 = H. Also HH = H, so (H)(H) ⊆ HH = H. Thus
H is a subgroup of G.

Assume now that H is a normal subgroup of G. For any x ∈ G, the
conjugation application fx : G→ G given by g 7→ x−1gx is continuous, and
it has continuous inverse fx−1 , thus it is an homeomorphism. So fx preserves
the closure operator and then

x−1Hx = x−1Hx = H.
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Hence, H is a normal subgroup of G.

Exercise 2. Let A and B be topological groups and let G = A×B. Prove
that G/A0 is isomorphic and homeomorphic to B, where A0 = A× {eB}.

Proof. The projection p : G → B is an open, continuous and surjective ho-
momorphism, so by Proposition 3.5 is enough to show that ker p = A0.

ker p = {(a, b) ∈ G | b = eB} = A0.

Exercise 3. Prove that if N and M are normal subgroups of a topological
group G such that N ⊆M , then

G/N

M/N

is isomorphic and homeomorphic to G/M .

Solution. By first isomorphism theorem for topological groups (Proposition 3.5)
it suffices to show that the application

f : G/N −→ G/M

xN 7−→ xM

is a continuous and open homomorphism with kernel M/N .

Firstly, f is well-defined as

xN = yN =⇒ xy−1 ∈ N ⊆M =⇒ xM = yM,

and it is a group homomorphism since

f(xyN) = xyM = xMyM = f(xN)f(yN).

Also, ker f = {xN ∈ G/N | x ∈M} = M/N .

Secondly, to show that f is continuous, we consider the following dia-
gram, which is clearly commutative:

G G/N

G/M

q

p f

(p and q are the corresponding canonical projections). Now by Proposition
3.1, as p is continuous so is f .
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We finally see that f is open. Let U be an open subset of G/N . Since p
is a quotient map, f(U) is open if and only if p−1(f(U)) is open in G. We
have

p−1(f(U)) = {x ∈ G | xM = f(yN) for some yN ∈ U}
= {x ∈ G | xM = yM for some y ∈ q−1(U)}
= {x ∈ G | x ∈ yM for some y ∈ q−1(U)}

=
⋃

y∈q−1(U)

yM

= q−1(U)M,

and q−1(U) is open since q is continuous, so by Proposition 1.2, p−1(f(U))
is open. Thus, f is open and it follows that

G/N

M/N

is isomorphic and homeomorphic to G/N .

Exercise 4. Let G be a topological group with identity eG and let E denote
the closure of {eG}. Note that by Exercise 1, E is a normal subgroup of G.

(i) Show that G/E is the universal Hausdorff group on G, i.e., for any
continuous homomorphism f : G → H, where H is Hausdorff, there exists
a unique continuous homomorphism f∗ : G/E → H such that f = f∗ ◦ q,
where q : G→ G/E is the canonical projection.

G

G/E

H

q

f

f∗

(ii) Prove that if G0 denotes the group G together with the trivial topology,
then the map h : G → (G/E) × G0 given by x 7→ (xE, x) embeds G as a
topological group in (G/E)×G0.

Solution. (i) Since E is closed, by Proposition 4.5, G/E is Hausdorff. Let eG
and eH denote the identity elements in G and H respectively. For proving
the existence we define the application

f∗ : G/E −→ H

xE 7−→ f(x).

We first see that f∗ is well-defined. If xE = yE in G/E, then x−1y ∈ E and
so

f∗(xE)−1f∗(yE) = f(x−1y) ∈ f({eG}) ⊆ f({eG}) = {eH}.
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Since H is Hausdorff, {eH} = {eH}, hence f∗(xE) = f∗(yE). And f∗ is
clearly a group homomorphism since

f∗(xEyE) = f∗(xyE) = f(xy) = f(x)f(y) = f∗(xE)f∗(yE).

Note also that for all x ∈ G, f∗(q(x)) = f∗(xE) = f(x), so f∗ ◦ q = f .

Let us see now that f is continuous. If U is an open subset of H, f−1∗ (U)
is open if and only if q−1(f−1∗ (U)) is open in G. But

q−1(f−1∗ (U)) = (f∗ ◦ q)−1(U) = f−1(U),

and the latter is open since f is continuous. Then f∗ is a continuous homo-
morphism.

Suppose now that f ′ : G/E → H is another continuous homomorphism
such that f ′ ◦ q = f . Then, for any x ∈ G,

f∗(xE) = f(x) = (f ′ ◦ q)(x) = f ′(xE).

Hence, f ′ = f∗.

(ii) h is an embedding of topological groups if and only if it is a continuous
and injective homomorphism and if h(U) is open in h(G) for any open
subset U ⊆ G. The application h is given by x 7→ (xE, x) so it is clearly
injective and also a group homomorphism (since it is an homomorphism at
each component.)

To see that h is continuous, by Proposition 3.9, it suffices to show that
both p1 ◦ h and p2 ◦ h are continuous, but the former is continuous as it
is the canonical projection G → G/E. The latter is continuous since so is
every application G→ G0. (Because G0 has the trivial topology.)

It remains to show that if U is open in G, then h(U) is open in h(G) =
{(xE, x) | x ∈ G}. It is immediate that h(U) ⊆ h(G) ∩ (q(U) ×G0), let us
see that it is in fact an equality. Suppose that (xE, y) ∈ h(G)∩ (q(U)×G0).
From the condition (xE, y) ∈ h(G) we obtain that necessarily xE = yE. On
the other hand, since xE ∈ q(U), there exists z ∈ U such that xE = zE.

By Proposition 4.1, G is a regular space and then, since U is a neighbour-
hood of z, there exists a closed neighbourhood F of z such that F ⊆ U . But
as zE = z{eG} = {z} (because the left translation is an homeomorphism)
and {z} is the smallest closed subset containing z, then y ∈ yE = zE ⊆
F ⊆ U . Thus (xE, y) = (yE, y) ∈ h(U) and it follows that

h(U) = h(G) ∩ (q(U)×G0).

Finally, by Proposition 3.3, q is an open map and so q(U) is open. Then
q(U) × G0 is open in (G/E) × G0 and consequently h(U) is open in h(G).
Hence, h is an embedding of topological groups.
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Exercise 5. Prove that the topological group GLn(C) is connected.

Solution. For the basic case, when n = 1, the result is immediate, as GL1(C)
is homeomorphic to the connected space Cr {0}.

We now prove the result for an arbitrary n. Since GLn(C) is homeomor-
phic to Cn2rker(det) and the determinant function is given by a polynomial,
it is enough to show that for any polynomial p : Cn → C the space Cnrker p
is connected.

Let z, w ∈ Cn r ker p, where p : Cn → C is a polynomial. Define the
linear map

γ : C −→ Cn

t 7−→ (1− t)z + tw

and take A = ker(p◦γ). Note that as γ(0) = z 6∈ ker p and γ(1) = w 6∈ ker p,
then 0, 1 6∈ A. Since p ◦ γ : C→ C is a polynomial, A is a finite subset of C
and so CrA is path-connected. Thus there exists a path α : [0, 1]→ CrA
such that α(0) = 0 and α(1) = 1.

Finally, for all t ∈ [0, 1], we have that α(t) 6∈ ker(p◦γ), that is p(γ(α(t))) 6=
0. Or equivalently (γ◦α)(t) 6∈ ker p. So γ◦α is a path from z to w in Cnrker p
and it follows that it is path-connected, hence connected.

Exercise 6. Prove that if a finite topological group is connected then it
must have the trivial topology.

Solution. Let G be a finite topological group with a non-trivial topology.
Our aim is to show that G is not connected, that is equivalent (by Proposi-
tion 5.1) to find a proper open subgroup.

Let B be a neighbourhood base of the identity element and for each
B ∈ B let VB be an open subset such that e ∈ VB ⊆ B. We have that
V = {VB | B ∈ B} is a neighbourhood base of e consisting all of open subsets.

By hypothesis there is a non-empty open subset U0 6= G. For any x ∈ U0,
the subset x−1U0 is open, proper and contains e, so we may suppose without
loss of generality that e ∈ U0. By Remark 1, there exists U1 ∈ V such that
U−11 U1 ⊆ U0. (Note that e ∈ U−11 and so U1 ⊆ U0.) Take now U2 ∈ V
such that U−12 U2 ⊆ U1. Continuing in this fashion we obtain a decreasing
sequence

G 6= U0 ⊇ U1 ⊇ U2 ⊇ · · · ⊇ {e},

consisting all of open neighbourhoods of e and such that U−1n+1Un+1 ⊆ Un
for all n ≥ 0. Since G is finite, there exists an integer n0 ≥ 0 for which
Un0+1 = Un0 . Then

U−1n0
Un0 = U−1n0+1Un0+1 ⊆ Un0 ,
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thus Un0 is a subgroup of G. It is also proper and open, so by Proposition
5.1 G is not connected.

Exercise 7. Show that the topological group SLn(R) is not compact if
n ≥ 2.

Solution. For each k ∈ N take the n× n matrix

Ak =



1
k 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 k


which is clearly in SLn(R). If we identify the matrix Ak with an element ak
of Rn2

then

‖ak‖ =

 
1

k2
+ n− 2 + k2 ≥

 
1

k2
+ k2 ≥ k.

Therefore, SLn(R) is not bounded in Rn2
and then by Heine-Borel theorem

it is not compact.

Exercise 8. Show that Z is not a compact group with the p-adic topology
when p is a prime number other than 2.

Solution. The p-adic topology is generated by the family {pnZ}n∈N, then
{x + pnZ}n∈N is a neighbourhood base of x for any x ∈ Z. Each pnZ is a
closed subset. Indeed, if x 6∈ pnZ, then x + pnZ ∩ pnZ = ∅. Now, for each
n ∈ N let

Bn = 1 + p+ · · ·+ pn−1 + pnZ

and note that since translations are homeomorphisms, each Bn is a closed
subset. Since Bn = Bn + pn and pn+1Z ⊆ pnZ, we have that Bn+1 ⊆ Bn.
Then, if J is a finite subset of N,

⋂
j∈J Bj = Bmax J 6= ∅.

If we show that the family {Bn}n∈N have empty intersection, then by
Proposition 7.3 follows that Z is not compact.

Let rn = 1 + p+ · · ·+ pn−1 and ln = rn − pn. Since

ln = rn − pn =
pn − 1

p− 1
− pn < 0,

we have that rn and ln are the closest points of Bn to 0. Thus if ln < x < rx,
then x 6∈ Bn. It is immediate that for any n ∈ N, rn+1 > rn (because
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rn+1 = pn + rn). Also,

ln+1 < ln ⇐⇒ rn+1 − pn+1 < rn − pn

⇐⇒ pn + rn − pn+1 < rn − pn

⇐⇒ 2pn < ppn

⇐⇒ p > 2

.

Therefore, when p > 2, for any x ∈ Z there exists n ∈ N such that ln < x <
rn. Then x 6∈ Bn ⊇

⋂
i∈NBi and it follows that

⋂
i∈NBi must be empty.

Exercise 9. Prove that if G is a topological group and A and B are compact
subsets of G, then AB is compact.

Solution. Let {Ui}i∈I be an open cover of AB. Since the map

f : G×G −→ G

(x, y) 7−→ xy

is continuous and A×B ⊆ f−1(AB), we have that {f−1(Ui)}i∈I is an open
cover of A×B. By Tychonoff’s theorem A×B is compact, and then we can
take a finite subset J ⊆ I such that

A×B ⊆
⋃
j∈J

f−1(Uj) = f−1
Ä⋃
j∈J

Uj
ä
.

Now applying f we obtain a finite subcover of AB:

f(A×B) = AB ⊆ f
Ä
f−1
Ä⋃
j∈J

Uj
ää
⊆
⋃
j∈J

Uj .

Exercise 10. Let G be a topological group, A ⊆ G closed and C ⊆ G a
compact subset. Prove that AC is closed in G.

Solution. Fix x ∈ G r AC. Then, a−1x 6∈ a−1AC for any a ∈ A and since
C ⊆ a−1AC we have that a−1x 6∈ C for any a ∈ A. Thus A−1x ∩ C = ∅, or
equivalently, C ⊆ GrA−1x.

Now, since C is compact and GrA−1x is open, by Proposition 7.7 there
is an open neighbourhood V of e such that CV ⊆ GrA−1x.

CV ⊆ GrA−1x =⇒ CV ∩A−1x = ∅
=⇒ ACV ∩AA−1x = ∅
=⇒ ACV V −1 ∩ xV −1 = ∅
=⇒ AC ∩ xV −1 = ∅.

So xV −1 is an open subset containing x and disjoint with AC, hence AC is
closed.
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