
Surface plasmons and effects of
losses in propagating modes in a

chain of silver nanoparticles

Author:
Xabier Inchausti Ezeiza

Supervisor:
Prof. dr. Jasper Knoester

Second supervisor:
Prof. dr. ir. Caspar van der Wal

Home university supervisor:
Dr. Jon Urrestilla Urizabal

June 26, 2015



Abstract

In this work a chain of 4000 silver nanoparticles embedded in a glass medium is considered, and
its leftmost particle is excited by an electric field pulse of Gaussian shape. Considering Drude’s
model, losses of the system are taken into account by γ factor, which stands for the Ohmic losses,
and different quantities, such as frequencies of excited modes and group velocities are calculated.
Besides, these results are compared to those obtained from the dispersion relation of an infinite
chain. The increase of losses affects the lifetime and propagation length of the plasmon; besides,
although the response dispersion relation for an infinite chain seems to remain invariable, this is
not the case for a finite chain. The mismatches are bigger for higher losses. Furthermore, plasmon
propagation velocities are analysed, and an explanation for the mismatch of longitudinal modes
close to the intersection point with the dispersion of light is suggested. Finally, some concepts to
treat this problem from the energy transport point of view are introduced.
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Chapter 1

Introduction

The interaction of electromagnetic radiation with an interface yields very interesting excitations
in the surface. More precisely, a light wave exerts an external force in a dielectric/conductor
interface, and this can lead to a collective oscillation of free electrons in the metal, in resonance
with the incident light: this interaction between the surface charge and electromagnetic field of
light create the so called surface plasmon polaritons (SPPs) [1]. Surface plasmon polaritons are
propagating electromagnetic waves trapped at the surface of the conductor, and they are believed
to have great potential in fields such as optics, magneto-optics and biosensing. In particular,
they help us concentrate light in miniaturized structures whose length scales are smaller than the
wavelength of light, which has given rise to a new research field in physics called plasmonics [1,2].

An example of these subwavelength structures can be a linear chain of metal nanoparticles
placed very close to each other. Embedding this chain into a dielectric material gives the desired
dielectric/conductor interface in which surface plasmon polaritons can be excited. By analysing
the response of the nanoparticles to an excitation caused by an electromagnetic field we can
derive interesting wave-guiding properties of this structure. In this work, we will simulate an
electromagnetic Gaussian pulse which excites only the leftmost metallic sphere of a chain consisted
of silver spherical nanoparticles. Assuming Drude’s model for dielectric relative permittivity the
damping factor γ is introduced, which quantifies the losses that happen in the system. Although
it does not take all losses into account, its variation already affects the response of the chain.
The effect and influences of the losses will be subject of interest in the propagation of plasmonic
modes along the chain. Its response will be compared to the wave-guiding properties obtained
from the dispersion relation of an infinite chain, and the variation produced by losses in the
previously mentioned dispersion relation will also be considered. Two quantities of interest will
be the imaginary part of the excited modes and the propagation velocities of them. Finally, some
concepts will be introduced in order to make an analysis of this problem from the energy transport
point of view, as plasmonic modes carry electromagnetic energy with themselves.

In chapter 2 some theory is developed in order to provide the reader the necessary background
to understand the mechanism of our system, including the models that have been taken into
account. All equations are given in SI units. Chapter 3 will show the parameters and methods
used in order to perform the simulations. The results of them will be given in chapter 4, along
with the comparison of the response obtained from the dispersion relation. A section will be
introduced about energy transport considerations. Finally, conclusions and interesting features
will be summarized in chapter 5, along with some suggestions for future research. Last two
chapters contain acknowledgements and the bibliography used throughout this project.
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Chapter 2

Theoretical foundations

2.1 Surface plasmon polaritons (SPPs)

Surface plasmon polaritons are collective oscillations of free electrons of the conductor that arise
from the interaction between an electromagnetic field and the electron plasma of the conductor
at a dielectric/conductor interface. In this kind of interface a surface mode is allowed whose
electromagnetic field decays into both media; nevertheless, the wave can propagate along the
surface: this mode is the surface plasmon. The momentum of the propagating surface plasmon is
bigger than the momentum of the incident light: as the coupled light and plasmon have the same
frequency, light momentum must be enhanced in order to generate propagating modes. There are
several techniques by which this mismatch can be solved, such as prism coupling or the use of
corrugated metal surfaces; more information about these methods can be found in references [1],[3]
and [4]. Besides, localized plasmons can be excited at confined regions, such as a small, conducting
single nanoparticle. The curved surface of the nanoparticle applies an effective restoring force to
the free electrons of the conductor, which leads to a resonance. This resonance is the so called
localized surface plasmon, since the plasmon is excited and remains in the particle [3]. The biggest
advantage of this mode is that the plasmon can be excited by direct illumination due to the
previously mentioned curved surface of the nanoparticle. Therefore, there is no need to enhance
the momentum of the incident light, which is the case for propagating surface plasmons, making
localized modes much easier to obtain.

2.2 Spherical conducting nanoparticle in
an electric field

2.2.1 Quasi-static approximation

As it has been stated in the abstract of this report, the system of interest is a linear chain of
silver nanospheres embedded in glass. The first particle is excited by an electric pulse. First, it is
wise to look at the response of a single nanoparticle under an electric field. For this purpose we
will first consider the quasi-static approximation developed in reference [3]. This is a simplified
problem of a particle in an electrostatic field: we assume that the particle is much smaller than
the wavelength λ of light in the surrounding medium, and that the phase of the electric field is
constant over the volume. Considering this model, we are able to obtain the expression for the
induced dipole moment in the particle:

~p = 4πε0εma
3 ε− εm
ε+ 2εm

~E (2.1)

where we can see that the dipole moment is proportional to the magnitude of the applied field.
Besides, the assumption of an electrostatic field implies that the nanoparticles can be replaced by
a point dipole located at the center of the sphere. If we introduce the definition for polarizability
~p = α(0) ~E, this last parameter is defined in the following way:

6



α(0) = 4πε0εma
3 ε− εm
ε+ 2εm

(2.2)

Note that in this expression εm is the relative permittivity of the medium which surrounds our
sphere, ω is the frequency of the oscillating field and that ε(ω) is the complex dielectric constant
of the particle, which will be stated in the following subsection. Looking at the polarizability, it is
clear that it is resonantly enhanced when the magnitude of the denominator reaches a minimum.
For the case of a slowly-varying Im[ε(ω)], this is obtained when

Re[ε(ω)] = −2εm (2.3)

This relationship is called the Fröhlich condition, and the mode that fulfills this condition in
the oscillating field is called the dipole surface plasmon of the nanoparticle [4].

Up to this point we can remark two important features. In the first place, we can see from the
Fröhlich condition that the real part of the dielectric constant must be negative. This is the case
for many metals, whose conduction electrons can be assumed to be reasonably free, at frequencies
smaller than plasma frequency [5]. On the other hand, although the frequency of the applied field
clearly plays a role in this system, we have only considered the electrostatic case. If we consider
that the incident field is a plane-wave of the form ~E(t) = ~E0e

−iωt, the induced dipole moment
is also multiplied by the same time-dependent factor, which yields the oscillating dipole moment
~p(t) = α(0) ~E0e

−iωt with the same frequency as the external field.
So far we have derived some important magnitudes in order to understand the physics involved

in our single-particle system. In order to do so the quasi-static approach has been considered,
which is very useful to understand the problem due to its simplicity. Unfortunately, it is not
very accurate regarding our system, since we are not dealing with electrostatic fields. This means
that we also have to include the radiation damping, as the oscillation amplitude is not constant
throughout time. Besides, the polarizabily should also be corrected for spatial dispersion [6].
Therefore, the polarizability of the nanoparticles can be expanded up to the mth order of the
wavenumber k of the driving field [7]. Including the corrections up to third order, we get the
following expression, as stated in reference [6], where α(0) is the bare polarizability derived from
the quasi-static approximation.

1

α
=

1

α(0)
− k2

4πε0εma
− ik3

6πε0εm
(2.4)

2.2.2 Drude model

The optical properties of a metal can be very well described by a complex dielectric function that
depends on the frequency of the incident light, as we have previously noted briefly. The dielectric
function is determined mainly by the motion of the conduction electrons that can move freely
within the metal. The presence of an external electric field displaces the electrons of our metal
nanoparticle: using Drude-Sommerfeld model and solving the equation of motion of free-electron
gas we will get an expression for the permittivity of the nanosphere, as described in reference [8].

As stated before, the applied electric field ~E(t) = ~E0e
−iωt causes a displacement of all electrons,

giving the dipole moment ~p = −e~r, which also creates a polarization vector in the particle, ~P = n~p,
where e is the absolute value of the charge of the electron and n is the free-electron density. Using
Drude’s model, which takes into account the collision of electrons and therefore includes a damping
frequency γ, the equation of motion is given by

me
d2~r

dt2
+meγ

d~r

dt
= −e ~E0e

−iωt (2.5)

which is a driven damped harmonic equation. Here me is the effective mass of the electrons
and ~r the displacement vector. By substituting ~r(t) = ~r0e

−iωt in the equation, we get the solution:

~r(t) =
e ~E

me(ω2 + iγω)
e−iωt (2.6)
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Finally, as

~P = n~p = −e~r (2.7)

~P = ε0χe(ω) ~E (2.8)

ε(ω) = 1 + χe(ω) (2.9)

the full expression of the complex dielectric function is given by

ε(ω) = 1−
ω2
p

ω2 + iγω
(2.10)

where ωp is the plasma frequency (ωp =
√
ne2/meε0). The previous equation is known as the

Drude model. In our simulations a more general Drude model fit to experimental data is used,
in which each newly introduced parameter depend on the material of the nanoparticle (extracted
from [9] and [10]):

ε(ω) = η −
βω2

p

ω2 + iγω
(2.11)

2.2.3 Electromagnetic fields of a points source

In the previous sections we have dealt with a metal nanoparticle being excited by a plane-wave
electric field, which is the cause of the motion of the free electrons. Since the field is oscillating,
so are the charges; consequently, the induced oscillating dipole moment oscillates with the same
frequency as the external field. The nanoparticles can be replaced by point dipoles placed in
the center of the particle. As oscillating charges create an electric field in the space, so will the
oscillating dipoles, which is expressed by the next equation [13]:

~Edip (~p, ~r, ω) =
1

4πε0εm

[
(1− iωr

v
)
3(r̂ · ~p)r̂ − ~p

r3
+
(ω
v

)2 ~p− (r̂ · ~p)
r

]
ei

ω
v r−iωt (2.12)

where ~r is the vector going from the dipole to any point in the space, ~p is the dipole moment,
ω is the frequency of the oscillating dipole and v the velocity of light in the medium. It is clear
that in both the external electric field and the oscillating dipole the time-dependent component is
given by the exponential ei

ω
v r−iωt. Due to this, in this subsection we will describe another method

to express the spatial-dependent electromagnetic fields created by a point source, bearing in mind
that time-dependence is given by the previous exponential.

In electromagnetic theory, the Green’s function is a very important concept in order to define
electromagnetic fields originated from a point source, which in our case is the point dipole. We
will first begin by defining the electric field in terms the dyadic Green’s function G [8]:

~E(~r) = ω2µ0µmG(~r, ~r0)~p (2.13)

where ω is the frequency of the oscillating dipole, µ0 and µm are the magnetic permeability in
vacuum and the relative permeability respectively; ~r is the coordinate where the field is created,
while ~r0 gives the position of the dipole, and ~p is the dipole moment. The Green’s function is
derived in full detail in reference [8]; we will only state the result here:

G(~r, ~r0) =

[
I +

1

k2
~∇~∇
]
G0(~r, ~r0) (2.14)

where k = ω
v is the wavevector of the field and G0 is the scalar Green’s function, given by:

G0(~r, ~r0) =
eik|~r−~r0|

4π|~r − ~r0|
(2.15)

8



If we perform the calculus of equation 2.14, the result gives the following definition for dyadic
Green’s function in Cartesian coordinates [8]:

G(~r, ~r0) =
eikR

4πR

[(
1 +

ikR− 1

k2R2

)
I +

3− 3ikR− k2R2

k2R2

~R~RT

R2

]
(2.16)

In this new expression ~R = ~r – ~r0 is the relative position vector and R = |~R| its magnitude.

Furthermore, the magnetic field ~H can also be written in terms of G. We start by writing the
Faraday equation for time-harmonic fields [8]:

~∇× ~E(~r) = −µ0µm
δ ~H

δt
= iωµ0µm ~H(~r) (2.17)

Introducing equation 2.13 in 2.17 and isolating ~H(~r) we get the following expression for the
magnetic field created by a point dipole [8]:

~H(~r) = iω[~∇×G(~r, ~r0)]~p (2.18)

2.3 Chain of metal nanoparticles

2.3.1 Coupling of dipoles

Now that the physics of a single metal nanoparticle excited by an external electric field have been
shown in detail, we will proceed by analysing a linear chain of metal nanospheres. The chain is
oriented along the direction x̂, and it is embedded in a medium whose relative permittivity is εm.
All the particles are identical, and the center-to-center distance among them is also the same,
defined by parameter d, as it can be seen in figure 3.1.

If any particle, denoted with index n, is excited by an external electric field, an oscillating
electric dipole moment is generated. This, according to equation 2.13, will induce an electric
field in the surroundings, resulting in the generation of induced electric dipole moments in the
other particles. The newly excited particles will subsequently produce electric fields around them,
affecting the other spheres. Note that the dipole moments of the spheres can be approximated as
point dipole moments under the conditions a� λ and d ≥ 3a, where a is the radius of the sphere
[12]. Finally, we will get a coupled system in which each particle influences the rest, and we will
ultimately turn our array of nanoparticles into a chain of oscillating dipole moments. According
to expression ~p = ε0εmα~E, the induced dipole moment in the nth particle is given by:

~pn = α

 ~Eext(~rn) +
∑
m 6=n

~Edip(~rn, ~rm)

 (2.19)

where ~Eext(~rn) is the applied external field in particle n and ~Edip(~rn, ~rm) is the electric field
induced by the dipole of mth sphere in the nth particle. According to the previous subsection, the
electric field generated by an electric dipole moment is given by equation 2.13; substituting this
in equation 2.19 we get the following result:

~pn = α

 ~Eext(~rn) +
∑
m6=n

ω2µ0µmG(~rn, ~rm)~pm

 (2.20)

We can write this equation for all N particles in the chain; by doing so, we will obtain a linear
system described below:
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− ~Eext(~r1)

− ~Eext(~r2)
...

− ~Eext(~rn)

 =


−I 1

α ω2µ0µmG(~r1, ~r2) · · · ω2µ0µmG(~r1, ~rN )
ω2µ0µmG(~r2, ~r1) −I 1

α · · · ω2µ0µmG(~r2, ~rN )
...

...
. . .

...
ω2µ0µmG(~rN , ~r1) ω2µ0µmG(~rN , ~r2) · · · −I 1

α



~p1
~p2
...
~pn


(2.21)

This is a simple matrix relation relating the external field applied on the chain and the induced
dipole moments, where the coupling matrix contains dyadic Green’s functions within it. Note that
the matrix is symmetric, since G(~rn, ~rm) = G(~rm, ~rn), as the distance between the points given
by vectors ~rn, ~rm is the quantity of interest in Green’s functions.

2.3.2 Polarizations

In the previous section we derived the coupling matrix of the chain’s electric field and electric
dipolar moments, where a three-dimensional Green’s tensor is included in the off-diagonal elements
of the matrix. At the beginning of the previous section we have stated that all nanoparticles are
identical, placed along a line and with the same center-to-center distance: this implies some
symmetries in the chain, so the coupling matrix can be simplified.

In this subsection we will turn Green’s tensors in scalars by taking polarizations into account.
There are two different main directions for the electric field: the longitudinal and the transversal
direction. The longitudinal polarization of the field is parallel to the linear chain, while the
transversal polarization is orthogonal to it, so that both polarizations can be decoupled. Consider
equation 2.16 in which Green’s tensor is given in terms of Cartesian coordinates, and assume
that the chain axis is the x̂-direction. These results in (~r ‖ ~pn) for longitudinal polarization, and
(~r ⊥ ~pn) in the transversal case. As a result, the term corresponding to longitudinal polarization
is:

Gl = 2

(
− iv

ωR2
+

v2

ω2R3

)
ei

ω
vR (2.22)

while the other two diagonal elements are the transversal component of Green’s tensor:

Gt =

(
1

R
+

iv

ωR2
− v2

ω2R3

)
ei

ω
vR (2.23)

Therefore, we can decouple the resulting electric and dipole moments in longitudinal and
transversal polarizations, which might be of interest in order to perform faster calculations. Be-
sides, one difference that can be seen between both expressions is that there is a term 1/R missing
in the longitudinal relation. This means that the contribution from longitudinal polarization does
not play a role in the far field interactions [11], so that we can expect that the longitudinal term
of the dipoles will decay faster in the chain.

2.4 Dispersion relation and damping

2.4.1 Derivation of dispersion relation

In this project we are interested in the chain’s response to an external electric field and the excited
surface plasmon waves, in order to look at the wave-guiding properties of our linear structure. For
that purpose we have performed simulations of the system; nevertheless, there is another tool
which encloses the properties we would like to find out more about: the dispersion relation. The
dispersion relation describes the properties of a wave travelling through a medium by relating
wavenumbers q and angular frequency ω of the wave. From here other quantities such as phase
velocity or group velocity can be derived. These calculations are done for an infinite chain.

We start by calculating the normal modes of the chain: for this purpose the external electric
field ( ~Eext(~rn) = 0, for all n) is switched off. Equation 2.12 (ref. [11]) is substituted in equa-
tion 2.19, and the resulting expression can be simplified further by considering that the distance
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between nearest-neighbour nanoparticles is the same.Including the corrected form of the polar-
izability as a function of frequency, which already includes corrections for spatial dispersion and
radiation damping (equation 2.4), we get the following result [12]:

~pn =
α(ω)

4πε0εm

{∑
m 6=n

[
(1− iω

v
|n−m|d)

3(r̂ · ~pm)r̂ − ~pm
|n−m|3d3

+

+
(ω
v

)2 ~pm − (r̂ · ~pm)r̂

|n−m|d

]
ei

ω
v |n−m|d

}
(2.24)

Now, considering an infinite chain, the normal modes can be expressed in the form of Bloch
waves with wavenumber q, such as ~pn ∝ eiqnd. Besides, longitudinal and transversal polarizations
can be separated, making calculations easier.

For the longitudinal polarization, (~r ‖ ~pn), scalar multiplications ~r · ~pn give a multiplication
between their magnitudes. Substituting the Block waves for the dipole moments and defining
index j = |n−m|, we get this identity:

0 = 1 +
α(ω)

2πε0εmd3

∞∑
m6=n

(
1

j3
− iωd

vj2

)(
ei(

ω
v +q)d + ei(

ω
v−q)d

)
(2.25)

We now define the polylogarithm function Lis(z), taken from [14]

Lis(z) ≡
∞∑
k=1

zk

ks
(2.26)

We finally get the dispersion relation for the infinite chain in longitudinal polarization [13]:

0 = 1− α(ω)

2πε0εmd3

{
Li3

(
ei(

ω
v +q)d

)
+ Li3

(
ei(

ω
v−q)d

)
−

− iωd
v

[
Li2

(
ei(

ω
v +q)d

)
+ Li2

(
ei(

ω
v−q)d

)]]}
(2.27)

Similarly, we derive the dispersion for transversal polarization by taking (~r ⊥ ~pn) condition, so
that (~r·~pn) = 0. Introducing Bloch waves for dipoles and the substitutions to get the polylogarithm
function, we get a different equation for the dispersion relation of the transversal polarization.

0 = 1 +
α(ω)

4πε0εmd3

{
Li3

(
ei(

ω
v +q)d

)
+ Li3

(
ei(

ω
v−q)d

)
−

− iωd
v

[
Li2

(
ei(

ω
v +q)d

)
+ Li2

(
ei(

ω
v−q)d

)]
)−

−ω
2d2

v2

[
Li1

(
ei(

ω
v +q)d

)
+ Li1

(
ei(

ω
v−q)d

)]}
(2.28)

The difference between equations 2.27 and 2.28 comes from the absence of 1st order polyloga-
rithm functions Li1(z) in the longitudinal dispersion relation. This comes from the missing 1/R
term as seen in equation 2.22, indicating that longitudinal modes have no far field interactions,
consequently differing from the transversal dispersion relation.

Solving this equations for real q we get their corresponding angular frequencies, ω(q), which
are complex numbers. The imaginary part of ω = ωr + iωi is related to the decay of the mode in
time, as we will show in a later section; as a result the harmonic wave e−i(ωr+iωi)t = e−iωrt+ωit

decays only if ωi < 0. On the other hand, the each member of the series converges only if ωi > 0.
A convergence problem arises from the mathematical shape of the equation, but we know that
physically the condition ωi < 0 must be satisfied. In order to sort out the mathematics, there is
a tool we can use to solve the problem: the analytical continuation.
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2.4.1.1 Analytical continuation

Analytical continuation is a technique to extend the domain of a function, so we can evaluate the
function at a point which is not included in the domain. The mathematical expression that we
want to analytically continue is the polylogarithm function, which converges if ωi > 0, while we are
interested in ωi < 0. In order to evaluate the function at negative imaginary angular frequencies,
we will use the following mathematical identity [15]:

Lis(z) + (−1)sLis(1/z) =
(2πi)s

Γ(s)
ζ

(
1− s, 1

2
+

ln(−z)
2πi

)
(2.29)

where z = ei(
ω
v±q)d, |z| < 1 for convergence and function ζ is the Hurwitz zeta function [14].

Therefore, if |z| > 1, we can calculate Lis(z) from the previous relation, as Lis(1/z) is convergent.
The Hurwitz zeta function is defined in the following way:

ζ(s′, C) =
Γ(1− s′)

2πi

∮
zs
′−1eCz

1− eCz
dz (2.30)

for Re(s’) ≤ 1, which it is fulfilled since s′ = 1–s and we are considering only s = 1, 2, 3; which
are the orders of the polylogarithm function. The contour integral is evaluated using Cauchy’s
residue theorem [16]. We will start by expanding the exponentials in the integral to obtain the
the value of the pole and its order, i.e. the point where the denominator of the function becomes
0, and its exponent.

I(z, s′) =

∮
zs
′−1eCz

1− eCz
dz =

∮
zs
′−1(1 + Cz + 1

2 (Cz)2 + 1
6 (Cz)3 + ...)

1− 1− z − 1
2z

2 − 1
6z

3 + ...
dz =

=

∮
zs
′−2(1 + Cz + 1

2 (Cz)2 + 1
6 (Cz)3 + ...)

−1− 1
2z −

1
6z

2 + ...
dz =

=

∮
(1 + Cz + 1

2 (Cz)2 + 1
6 (Cz)3 + ...)

−z2−s′(1 + 1
2z + 1

6z
2 + ...)

dz

(2.31)

So we have a pole at z = 0 of order 2 − s′. In general, considering a single pole of order n,
Cauchy’s residue theorem states:

I(z, n) =

∮
f(z)

zn
dz = 2πiResz=z0 f(z) (2.32)

The residue is calculated in the following way [16]:

Resz=z0 f(z) = lim
z→z0

1

(n− 1)!

dn−1

dzn−1
f(z)zn (2.33)

where n is the order of the pole. In our case,

f(z) = −
1 + Cz + 1

2 (Cz)2 + 1
6 (Cz)3 + ...

1 + 1
2z + 1

6z
2 + ...

(2.34)

and

n = 2− s′ =


2 if s = 1, s′ = 1− s = 0

3 if s = 2, s′ = 1− s = −1

4 if s = 3, s′ = 1− s = −2

(2.35)

The residue involves derivatives of function f(z) up to third order. This is a long calculation,
so we will just state the results:

Resz=0


1
2 (1− 2C) if n = 2, s = 1
1
12 (−1 + 6C − 6C2) if n = 3, s = 2
1
12 (−C + 3C2 − 2C3) if n = 3, s = 2

(2.36)
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Using 2.35 and 2.36 and substituting them in 2.32 we can compute the Hurwitz zeta function,
which gives:

ζ(1− s, C) =
Γ(s)

2πi

∮
z−seCz

1− eCz
dz =


1

4πi (1− 2C) if s = 1,
1

24πi (−1 + 6C − 6C2) if s = 2
1

12πi (−C + 3C2 − 2C3) if s = 3

(2.37)

And finally, the analytical continuation for orders of polylogarithm s = 1, 2, 3 are the following:

Li1(z)− Li1(1/z) =
1

2
(1− 2C) (2.38)

Li2(z) + Li2(1/z) =
π

12
(−1 + 6C − 6C2) (2.39)

Li3(z)− Li3(1/z) =
−π2i

16
(−C + 3C2 − 2C3) (2.40)

where C = 1
2 + ln(−z)

2πi . Equations 2.38-2.40 enable us to fix the divergence problem of the
dispersion relation raising from ωi ¡ 0, so we can fully solve our physical system. By plotting both
dispersion relations, we see that ω(q) is a continuous line for longitudinal polarization, while the
dispersion relation consists of two anti-crossing lines which meet the light dispersion line at one of
their ends. This splitting is caused by the retardation effects of the system ([13]). The dispersion
relations for longitudinal and transversal modes are presented below, using the parameters given
in [9], [10]. Graphs are shown in 2.1.

Figure 2.1: Dispersion relations for longitudinal and transversal polarizations, real and imaginary
parts, for an infinite chain.

2.4.2 Group velocity

The dispersion relation is a very useful relation that enables us to get some very interesting
wave-guiding properties of our system, for example, the group velocity [17]. The group velocity is
the propagation velocity of the wave that, in our case, consist of the different alignments of the
oscillating dipoles. It is defined as the slope of the dispersion relation:
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vg =
∂ω(q)

∂q
(2.41)

In order to get this physical quantity, we will derive the dispersion relations for the longitudinal
and transversal modes. Since the dispersion relation is a function of ω and q, and ω = ω(q), we
can use the chain rule in the derivation to get the group velocity. If we take the dispersion relation
function F (q, ω(q)) = 0, the group velocity is

vg =
∂ω(q)

∂q
= −

∂F
∂q

∂F
∂ω

(2.42)

For example, substituting z+ = ei(
ω
v +q)d and z− = ei(

ω
v−q)d, this is the equation of the group

velocity for longitudinal modes:

vg, l =
−iαd

{
Li2(z+)− Li2(z−)− iωd

v [Li1(z+) + Li1(z−)]
}

∂α
∂ω

{
Li3(z+) + Li3(z−)− iωd

v [Li2(z+) + Li2(z−)]
}
− αω

dv2 [Li1(z+) + Li1(z−)]
(2.43)

The same can be done for the transversal polarization, but due to its length we will omit this
derivation here.

2.4.3 Propagation length

The propagation length is a measure of how far can a mode can travel before it decays completely
and the signal is lost. It is defined by the fraction between the group velocity and the imaginary
part of the angular frequency of the mode. This means that if we increase the losses, which are
related to the imaginary part of the frequency, we will get shorter propagations. Its definition is
as follows:

` =
vg
ωi

(2.44)

2.4.4 Damping of the waves in the chain

We have stated earlier that the imaginary part of the angular frequency ω of the mode of the
chain is related to the decay of the wave or, in other words, to the damping of the system. Two
types of damping can be identified in our model:

� Radiative: our waves (plasmons) become photons due to interactions with light, so radiation
is emitted. These losses only happen for those modes which are above the light line in the
dispersion relation, since for the same frequency the wavenumber of the chain modes is
smaller than that of the light.

� Ohmic: damping which is related to the velocity of the electrons in the equation of motion,
given by parameter γ in the Drude model. It can be viewed as a counterpart of the damping
in harmonic oscillators, which are also linked to the velocity component. It describes how
the amplitude of the signal decreases in time.

The imaginary part of the mode frequencies gives the lifetime of the modes, since the lifetime
is defined as 1/ωi. Both radiative and Ohmic losses affect the lifetime of a mode; therefore, they
also contribute to ωi. As an example, we show how the Ohmic losses described by γ affect the
polarizability of the particles.

From α(0) (eq. 2.2), according to reference [18], we derive the following expression:

α(ω) = 4πε0εma
3

ω2
sp

ω2
sp − ω2 − iγω

(2.45)

where ωsp = ωp/
√

(3) is the surface plasmon frequency of electrons. Expanding around ω ≈
ωsp, which is the resonance frequency gives:
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|α(ω)|2 = 4π2ε20ε
2
ma

6
ω2
sp

(ωsp − ω)2 + γ2/4
(2.46)

This is a Lorentzian with a full width at half maximum of γ, which is the Ohmic damping
term. Therefore, larger damping terms result in a broader polarizability function.

2.5 Energy transport

Up to now we have seen that the oscillating dipole moments induced in each particle by the
external field leads to the generation of electromagnetic fields by the dipole moments; besides,
the pattern of the dipoles show us waves propagating in the chain. This oscillating trend goes
along the chain passing through all particles, changing the amplitude of each oscillation as it goes
by. Due to this, the electromagnetic field around each particle varies, and so happens to the
electromagnetic energy of the fields. In order to observe this trend, how electromagnetic fields
follow the wave and, consequently, how the electromagnetic energy behaves along the wave, we
will calculate a new physical quantity: the energy transport velocity, vE .

Firstly, it is convenient to introduce the Poynting vector, which represents the energy flux
density of the electromagnetic field [8]:

~S = ~E × ~H (2.47)

Besides, it is interesting to calculate the time average value of the Poynting vector, as it
describes the net power flux density taking into account the dissipation of energy in the system.
Considering time-harmonic fields and linear media, the time average Poynting vector is〈

~S
〉

=
1

2
Re[ ~E × ~H∗] (2.48)

On the other hand, the electromagnetic energy density is calculated as follows:

W =
1

2
(ε0εm|E|2 + µ0µm|H|2) (2.49)

where E = | ~E| and H = | ~H| are the magnitudes of the fields. In a non-dispersive medium,
and assuming harmonic time-dependence, the time average energy density is [20]:

〈W 〉 =
1

4
(ε0εm|E|2 + µ0µm|H|2) (2.50)

Finally, the velocity of energy transport through the medium is defined as [19]:

vE =

〈
~S
〉

〈W 〉
(2.51)

The value of the energy transport velocity is an interesting quantity to us, as it is the same as
the group velocity of the wave only in a non-absorbing medium [19].
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Chapter 3

Description of simulation

3.1 Chain parameters

Once that all the theoretical basis of this project has been clarified, we will now look at the physical
features we have assumed during the simulations. Our system is a linear chain of identical metal
nanoparticles embedded in a dielectric medium.

Figure 3.1: Chain of silver nanoparticles embedded in glass, with relative permittivity εm.

Our chain contains N = 4000 particles, so it gives us a good resolution in order to see the
excited modes. We have chosen glass to be our medium through which light propagates and
reaches the nanoparticles. As a result, the relative permittivity of the medium is εm = 2.25 and
the magnetic permeability is µm = 1. Consequently, the index of refraction in the medium is
n =
√
εmµm = 1.5. Regarding the spheres, we take silver as material and a radius of a = 25nm,

while the center-to-center distance is d = 75nm between the nearest spheres, so that the conditions
for point-dipole approximation are satisfied (a� λ and d ≥ 3a). In total, the chain’s length is L
= 299,975nm ≈ 0.3 µm. On the other hand, we will remember now the experimental fit to the
Drude model for the relative permittivity of silver given in equation 2.11, and we will define the
parameters of the silver nanospheres, according to references [9] and [10]:

η = 5.45 ; β = 0.73 ; ωp = 17.2 rad/fs ; γ = 0.0835 PHz (3.1)

3.2 Excitation of chain: Gaussian pulse propagation

We have initially mentioned that only the leftmost particle of the chain would be excited by an
external electrical field. In this section we will explain the method we have used to do so, and
also to calculate the time-dependence of the induced dipole moments in the chain in order to be
able to track the excited chain mode. We have chosen a Gaussian-shaped time-dependent electric
field pulse to excite a single particle of the chain. This pulse represents a real excitation of a laser
beam, which shines on the particle only for a short amount of time. These are the steps we will
follow in order to get the response of the chain to our pulse:
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1. The Gaussian pulse will have a suitable width in time domain in order to be able to track
the chain modes nicely.

2. Calculations in the time domain are quite tricky; due to this, we will perform a Fourier
transform to change the Gaussian from time domain to frequency domain and run our
calculations there. The Gaussian pulse will be a Gaussian also in the frequency domain, but
the excited dipole moments and the later generated electromagnetic fields will be harmonic
waves in the frequency domain, so calculations will be easier to make.

3. We will solve equation 2.21 for different frequencies in the grid and for the two polarizations:
longitudinal and transversal. We will assign a constant arbitrary value to the external electric
field for the first particle, which will be its amplitude, and the rest will be null: this way we
are only exciting the first particle. Solving the linear system in equation 2.21 we will get the
induced dipole moment of each particle.

4. We multiply the dipole response with the Gaussian of the frequency domain in order to get
the response of the whole chain to the Gaussian, as we solved the system for a continuous
width excitation in the previous step.

5. We perform the Fourier transform of all dipole moments back to time domain in order to
get the response of the chain in time domain, which is the result of interest.

3.2.1 Fourier transform

In this subsection we will describe the Fourier transforms and the algorithm we will use to calculate
them. First of all, we choose a Gaussian in the time domain, corresponding to our laser pulse.

~Eg(t) = ~E0e
−iω0t−( t−t0

∆t )
2

(3.2)

Here ~E0 is the amplitude of the gaussian electric field, which is given in arbitrary units. The
Gaussian pulse is centered around t = t0 in time domain and it has a duration of ∆t, which is
also the standard deviation of the Gaussian. The Fourier transforms relating time and frequency
domain are very useful in physics; in the following lines we will remember their expressions.

F (ω) =
1√
2π

∫ ∞
−∞

f(t)eiωt dt (3.3)

f(t) =
1√
2π

∫ ∞
−∞

F (ω)e−iωt dω (3.4)

Following equation 3.3 we get the Fourier transform of 3.2

~Eg(ω) =
~E0∆t√

2
e
i(ω−ω0)t0−

(
(ω−ω0)∆t

2

)2

(3.5)

This function is a propagating Gaussian, now centered at frequency ω0 and with a width of
∆ω = 2/∆t; therefore, if we choose a narrow pulse in the time domain, we will obtain a wide
Gaussian in the frequency domain, and vice versa. Since we already have defined both Gaussians,
we can proceed with the calculation of the chain’s modes.

We will analyse now the response of the chain in the frequency domain. When we have
calculated ~pn(ω) for each particle, we will multiply it with the frequency domain Gaussian for all
frequencies, in order to get the response to the pulse in this domain:

p̂n(t) = ~Eg(ω) · ~pn(ω), n = 1, 2, ..., N (3.6)

Finally, we will transform the chain’s response to time domain using equation 3.4:

p̂n(ω) =
1√
2π

∫ ∞
−∞

~pn(ω)e−iωt dω (3.7)
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3.2.2 Gaussian parameters

In this brief section the values of the parameters chosen for the Gaussian pulse are introduced.
All parameters will be invariant throughout this report except for the central frequency ω0, so
that different modes of the chain can be excited.

�
~E = 1, the amplitude of the Gaussian, given in arbitrary units []a.u.].

� t0 = 200 [fs], central time of the Gaussian in time domain, where the amplitude reaches its
maximum.

� ∆t = 80 [fs], the width of the pulse in time-domain. From its corresponding width in
frequency domain, ∆ω = 2/∆t, we can determine which other modes around the central
frequency are excited, so that a small value of ∆ω, or, in another words, a large value of
∆t, will give a sharp distribution function, so that only few modes will be excited. In our
simulations, ∆ω = 0.025 (rad/fs).

� ω0, the central frequency lies in a range of ω0 = 3.9-4.6 (rad/fs) for longitudinal polarization
and ω0 = 3.5-4.2 (rad/fs) for transversal polarization. We know previous calculations so
that plasmonic modes will be excited within these ranges.

3.2.3 Algorithm

To conclude this chapter we will precise a couple of details about the Fourier transform. In this
reseach we have used a numerical Fourier transform called Fast Fourier Transform (FFT), which
is an intrinsic function of MATLAB. Since the resolution was good enough, we have chosen to use
this method because it is much faster. This method uses the Discrete Fourier transform; however,
describing this method is not of our concern here: more information can be easily found in the
help command of MATLAB [21].

Finally we introduce the relation between the time and frequency in this kind of numerical
computations. If dω is the frequency step in the frequency grid, and there are Ngrid points in the
frequency grid, the time step of the Fourier transform is given by:

dt =
2π

dω ·Ngrid
(3.8)
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Chapter 4

Results

The necessary theory has been given and developed in the 2nd chapter, while the methods have
been described in the previous chapter; so it is time now to look at the results of this simulation.
The main goal of this project is to look at the influence of losses in the wave-guiding properties
of the chain, i.e. in the propagation of the plasmonic modes. The material we are using is silver,
and from the experimental fits of references [9] and [10], the damping factor is γ1 = 0.0835 (PHz),
as introduced in equation 3.1. In this chapter we will consider this value (from now on it will be
labeled as γ1), and we will also take its double, γ2 = 0.167 (PHz). Damping factor γ is proportional
to the lifetime of the plasmon, which is inversely proportional to the imaginary part of the angular
frequency of the excited mode. Therefore, we expect a smaller lifetime of the plasmon for bigger
damping γ2.The response of the excitation of the chain will be compared for both values, and the
same will be done for the dispersion relation. To conclude this chapter, plasmons will be analysed
from the point of view of energy transport .

4.1 First overview

In this chapter the first results will be shown to give a taste of what we expect. Our main interest
lies on the comparison between the response considering γ1 and γ2. The difference between them
can be seen in the polarizability of the silver nanoparticles. Drude’s model for polarizability
takes the Ohmic damping into account by introducing γ factor, as we have seen in equation 2.46.
Therefore, a system with γ2 has larger losses than that with γ1 (remember γ2 > γ1). The absolute
value of the polarizability is shown below for both γ1, γ2.

Figure 4.1: Polarizability calculated using Drude’s model, plotted for γ1 = 0.0835 (PHz) and
γ2 = 0.167 (PHz).

According to Drude’s model, the shape of the polarizability in frequency domain is a Lorentzian,

19



as it is clearly seen in figure 4.1. The plot corresponding to larger γ1 is broader than that of γ2,
so the polarizability for bigger damping factor yields lower values. Since this magnitude affects
quantities such as electric dipole moments, as seen in equations 2.1 and 2.2, a different behaviour
for both cases is expected. Further results concerning plasmon propagation for different γ values
will be shown later.

Besides, we also expect to have different results for different polarizations, longitudinal and
transversal, since the equations presented in chapter 2 make a difference between them. In order
to somehow anticipate the results, we have plotted in figure 4.2 the response of the chain for
central frequency ω0 = 4.0 and γ1 for the two polarizations.

Figure 4.2: Logarithm of the absolute value of electric dipole moments normalized with respect
to the dipole moment of the first particle at t = t0 as a function of time, in a chain of 4000 silver
nanoparticles of radius a = 25nm and nearest-neighbour distance d = 75nm, with damping factor
γ1 = 0.0835 (PHz), for longitudinal and transversal polarizations. Only the first particle is excited
with a Gaussian of central frequency ω0 = 4.0 (rad/fs).

In figure 4.2 we plot the normalized dipole moments of the particles in the chain with respect
to the dipole moment of the first particle at t = t0 as a function of time. For both polarizations
contours show a main signal propagating along the chain with decreasing amplitude until it is lost.
Since it is a straight line, it has a constant velocity. When this propagation reaches the last particle
of the chain (N = 4000), it is reflected, and the pattern repeats itself with lower intensity, due to
the losses in the propagation. However, this signal vanishes earlier in the longitudinal case, as it
can be seen comparing the intensity of the colours in the scales. On the other hand, there is a tiny
signal propagating near this main signal at the beginning of the chain. In both cases its velocity
is smaller than the other signal, and it also vanishes faster, both in time and space. Besides, this
second mode is slower in the transversal case, but it propagates during a longer time period. The
first signal we have described is called a forerunner, also named as precursor. The front of a
propagating wave sees no oscillations of electrons in the nanoparticles, so the effective medium
through which it propagates is not affected by any extra motion: the dielectric permitivitty ε(ω)
is constant at ω = 0 (equation 2.11). Therefore, it travels through the chain at the speed of the
light in the medium. This is easily verified by calculating the slope of the line from figure 4.2: a
velocity of v = 199.8 (nm/fs) is obtained, which matches the speed of light in glass, c/n, where n
= 1.5. The amplitude of the signal decays in space and time, so it is affected by loses. The second
and smaller signal is the surface plasmon, and this is the propagating mode we are looking at.
Its behaviour is different in longitudinal and transversal polarizations: the propagating velocity
and propagating length are not the same. The plasmon in the longitudinal mode has a higher
speed, but the signal is narrower, so it decays faster in time. The transversal plasmon is slower at
the same frequency, but it vanishes later in time. Therefore, different polarizations show different
plasmonic modes which are affected by losses in diverse ways, as it can be seen from the velocity
and the propagation length. The effects and influence of losses in plasmon propagation will be
presented in more detail in the following chapter
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4.2 Response of the chain to the pulse excitation

4.2.1 Longitudinal polarization

In this subsection the calculations for the response of the chain in the longitudinal polarization
are presented. We remind that the chain consists of 4000 particles, with d = 75nm between a
pair of particles, whose axis is parallel to the x̂-direction. We consider a limited time-period in
which the propagation of plasmonic modes happens before they completely decay. Since the we
are studying the effect of losses in plasmons, calculations are done considering damping factors γ1
= 0.0835 (PHz) and γ2 = 0.167 (PHz), which stand for Ohmic losses in the Drude model. The
first particle of the chain is excited by a pulse, and the resulting response of the chain is analysed
within the range ω0 = 3.9-4.6 (rad/fs) for central frequencies of the Gaussian, where we expect
to excite different plasmonic modes. This response is plotted along the particles in the chain as a
function of time in figures 4.3 and 4.4.

From this profiles many interesting features can be deduced. The first one is that, for fre-
quencies around ω0 = 4.0 – 4.1, there is a plasmon overlapping with the forerunner, which means
that their propagating velocities are very similar. Due to this, it is complicated to distinguish
between them. For the rest of the frequencies, we suggest that the propagation velocities for both
damping coefficients are nearly the same, since their shape and slope with respect to distance
and time seems to be very similar. The main difference comes from the propagation length: for
γ2 the plasmon decays faster, so the travelled distance is shorter under this condition. This is
also related to the lifetime of the plasmonic mode, which is shorter for bigger damping, and it is
inversely proportional to the imaginary part of the frequency. In order to determine mentioned
quantities such as velocity, we will plot the time profiles of the contour: how the normalized dipole
moments evolve as a function of distance at given times. These profiles, presented in figures 4.5
and 4.6, will be very useful in order to track our propagating modes.

Comparing figures 4.5 and 4.6 to 4.3 and 4.4 respectively, it is easy to identify both the
forerunner and the plasmon: The wider and nearly constant propagating peak is the forerunner,
while the sharper and fastly decaying peaks, depending on the central frequencies, are profiles of
the plasmon. The comparison between columns show that for γ2, i.e. for bigger losses, the plasmon
intensity decays faster, and the propagation length is also shorter. By tracking the second peak, we
are able to calculate the propagation velocity and the decay, related to the lifetime of the plasmon.
Plotting the position of the peak as a function of time yields the velocity of propagation of the
plasmon; while the representation of the normalized dipole moment with respect to time gives its
decay factor. Before moving on, note that these profiles also show an interesting characteristic
of the forerunners. At central frequencies ω0 = 4.5 and ω = 4.6, with γ1 (smaller losses), a
secondary peak or shoulder is discernible, which suggests that there are two precursors. In fact,
in literature there are two, named Brillouin and Sommerfeld forerunners. Nevertheless, a more
detailed analysis is beyond the scope of this project; for more information please check reference
[17].

We show some plots of the position of plasmon peaks with respect to time in figure 4.7. From
left to right, each column belongs to γ1 and γ2. For frequencies around ω0 = 4.0-4.2 (rad/fs), which
is the region in the vicinity of the crossing of light dispersion relation with the dispersion relation
of longitudinal modes it has been a difficult task to separate the plasmon and the forerunner,
since their velocities are very similar. As a result, those velocities contain bigger errors. Besides,
in the same frequency region we see that the line is not straight, as it is the case for the rest of
the frequencies, but they are curved. Each line with a different slope corresponds to a certain
mode. This means that more than one mode are excited there, coming from the term ∆ω. The
width of the Gaussian enables to excite modes not only with frequency ω0, but those modes whose
frequency lies within range ω0±∆ω. The thin red line is the linear fit of the plot. Looking at the
effect of losses, the shape of lines is very similar for both γ1 and γ2. When it comes to velocities,
the measured quantities are very different in the region around the light line, while the match is
good away from that region. Calculated quantities will be shown in the next section, comparing
with the group velocities (figures 4.22 and 4.23).

To conclude this subsection, we plot the magnitude of plasmon peaks as a function of time, in
order to determine the decay. Some of those are shown in figure 4.8. Taking the natural logarithm
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of the normalized dipoles, the plots show a perfectly linear decreasing slope. This is not surprising,
since the dipole moments are harmonic waves with e−i(ωr+iωi)t = e−iωrt+ωit, as seen in section
2.4.1; therefore, the slope of this lines is the imaginary part of the frequency ωi. The lifetime of
the plasmon is determined from here, as both quantities are inversely proportional, i.e. τ = 1/ωi.
Comparing the decay of both columns, given by coefficient m2, we see that for γ2 the absolute
value of the decay is bigger. This is in accordance with our expectations, since bigger γ means that
losses increase, leading to shorter lifetimes. Calculated decays will be shown in the next section,
comparing with the results calculated from dispersion relations (figure 4.17).
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Figure 4.3: Logarithm of absolute value of electric dipole moments normalized with respect to
the dipole moment of the first particle at t = t0 as a function of time in a chain of 4000 silver
nanoparticles, for central frequencies ω0 = 3.9-4.2 (rad/fs), with ∆ω = 0.025 (rad/fs) and longi-
tudinal polarization. On the left column, plots for γ1 = 0.0835 (PHz); on the right, results for γ2
= 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.4: Logarithm of the absolute value of electric dipole moments normalized with respect
to the dipole moment of the first particle at t = t0 as a function of time in a chain of 4000
silver nanoparticles, for central frequencies ω0 = 4.3-4.6 (rad/fs), with ∆ω = 0.025 (rad/fs) and
longitudinal polarization. On the left column, plots for γ1 = 0.0835 (PHz); on the right, results
for γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.5: Logarithm of the absolute value of electric dipole moments normalized with respect
to the dipole moment of the first particle at t = t0 as a function of distance, plotted at different
times, in a chain of 4000 silver nanoparticles, for central frequencies ω0 = 3.9-4.2 (rad/fs), with
∆ω = 0.025 (rad/fs) and longitudinal polarization. On the left column, plots for γ1 = 0.0835
(PHz); on the right, results for γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.6: Absolute value of electric dipole moments normalized with respect to the dipole
moment of the first particle at t = t0 as a function of distance, plotted at different times, in a
chain of 4000 silver nanoparticles, for central frequencies ω0 = 4.3-4.6 (rad/fs), with ∆ω = 0.025
(rad/fs) and longitudinal polarization. On the left column, plots for γ1 = 0.0835 (PHz); on the
right, results for γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.7: Propagation of longitudinal modes of a chain with 4000 particles as a function of time
at ω0 = 4.1/4.11 and 4.4 (rad/fs), with width ∆ω = 0.025 (rad/fs) and longitudinal polarization.
On the left column, plots for γ1 = 0.0835 (PHz); on the right, results for γ2 = 0.167 (PHz), i.e.
simulations with bigger losses.
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Figure 4.8: Natural logarithm of normalized dipole moments of longitudinal modes of a chain
with 4000 particles as a function of time at ω0 = 4.15 and 4.45 (rad/fs), with width ∆ω = 0.025
(rad/fs) and longitudinal polarization. On the left column, plots for γ1 = 0.0835 (PHz); on the
right, results for γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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4.2.2 Transversal polarization

In this subsection same quantities as for longitudinal polarization will be shown, but calculated
for the transversal polarization. The analysis will be done in the same way: first we show the
normalized dipole moments in space and time, then their time profiles, and finally some plots of
propagation and signal decay in time. Again, to check the effects of the increase in losses, results
for γ1 and γ2 will be shown together, and compared with each other.

It is wise to begin by showing the normalized dipole moments in time and space in the frequency
range ω0 = 3.5-4.2 (rad/fs) in figures 4.9 and 4.10. Note that this range is different from the range
of the longitudinal mode: this shows that each polarization has different modes. The rest of the
parameters are the same, and the response is also similar. We can see a forerunner and a plasmon
in the excited frequencies. At the lowest frequencies of the range both have similar velocities, and
at higher frequencies propagation velocity and length decrease for the plasmon. Looking at the
losses, it is clear that the propagation length and normalized dipole moment decay faster for γ2
than for γ1. At this point, we observe that comparing the transversal plots for each γ1, γ2 with
their longitudinal counterparts, the plasmon decays faster in the longitudinal case. This can be
stated looking at the contours, where the plasmons in the transversal polarizations (figures 4.9
and 4.10) are wider in space and time in the longitudinal case (figures 4.3 and 4.4). Therefore,
even though same γ factors are considered, it is concluded that losses for transversal polarization
are smaller than those in the longitudinal polarization. We will analyse this later in the section
corresponding to dispersion relations.

Time profiles are plotted in figures 4.11 and 4.12. In these profiles forerunners and plasmons
are easily distinguishable. Therefore, we can track the position and normalize dipole moment of
the plasmon peak in time to get propagation velocities and decays for each mode; some graphs for
those calculations are shown in figures 4.13 and 4.14. Looking at the propagation of forerunners,
we can see the structure suggesting two precursors at ω0 = 4.0 (rad/fs), γ1 plot and at ω0 = 4.1
(rad/fs) for both γ1,γ2. Note that in the longitudinal case we did not observe this structure in any
plot with γ2 (figures 4.5 and 4.6). Nevertheless, we will not study the behaviour of forerunners
any further.

We will end section describing the behaviour of the position and amplitude corresponding the
plasmonic peak as a function of time in figures 4.13 and 4.14.

In figure 4.13 we can see the position of the plasmon peak as a function of time. Presented
plots show a straight line, a wavy line and two curved lines. We attribute the waviness of the line
to numerical effects of calculations, while it has been stated before that the different modes come
from the ∆ω term, which allows to excite modes close to the central frequency ω0. An averaged
line is represented by the thin red line. Calculated velocities will be shown together with the
group velocities derived from the dispersion relation (figures 4.25 and 4.26). Finally, the decay of
the plasmonic peak’s amplitude is displayed by plotting the natural logarithm of the normalized
dipole moment of the propagating plasmon as a function of time. Analogously to the longitudinal
case (figure 4.8), decreasing lines are obtained. Besides, the absolute value of the slopes for γ2
are bigger than for γ1, leading to the enhancement of the absolute value of the imaginary part
corresponding to the mode, which is a negative quantity, since it is related to the decay of the
mode. Measured quantities will be shown in figure 4.20.
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Figure 4.9: Logarithm of the absolute value of electric dipole moments normalized with respect
to the dipole moment of the first particle at t = t0 as a function of time in a chain of 4000
silver nanoparticles, for central frequencies ω0 = 3.5-3.8 (rad/fs), with ∆ω = 0.025 (rad/fs) and
transversal polarization. On the left column, plots for γ1 = 0.0835 (PHz); on the right, results for
γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.10: Logarithm of the absolute value of electric dipole moments normalized with respect
to the dipole moment of the first particle at t = t0 as a function of time in a chain of 4000
silver nanoparticles, for central frequencies ω0 = 3.9-4.2 (rad/fs), with ∆ω = 0.025 (rad/fs) and
transversal polarization. On the left column, plots for γ1 = 0.0835 (PHz); on the right, results for
γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.11: Logarithm of the absolute value of electric dipole moments normalized with respect
to the dipole moment of the first particle at t = t0 as a function of distance, plotted at different
times, in a chain of 4000 silver nanoparticles, for central frequencies ω0 = 3.5-3.8 (rad/fs), with ∆ω
= 0.025 (rad/fs) and transversal polarization. On the left column, plots for γ1 = 0.0835 (PHz);
on the right, results for γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.12: Logarithm of the absolute value of electric dipole moments normalized with respect
to the dipole moment of the first particle at t = t0 as a function of distance, plotted at different
times, in a chain of 4000 silver nanoparticles, for central frequencies ω0 = 3.9-4.2 (rad/fs), with ∆ω
= 0.025 (rad/fs) and transversal polarization. On the left column, plots for γ1 = 0.0835 (PHz);
on the right, results for γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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Figure 4.13: Propagation of transversal modes of a chain with 4000 particles as a function of
time at ω0 = 3.7 and 4.0 (rad/fs), with width ∆ω = 0.025 (rad/fs) and transversal polarization.
On the left column, plots for γ1 = 0.0835 (PHz); on the right, results for γ2 = 0.167 (PHz), i.e.
simulations with bigger losses.
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Figure 4.14: Natural logarithm of normalized dipole moments of the transversal modes of a chain
with 4000 particles as a function of time at ω0 = 3.6 and 4.05 (rad/fs), with width ∆ω = 0.025
(rad/fs) and transversal polarization. On the left column, plots for γ1 = 0.0835 (PHz); on the
right, results for γ2 = 0.167 (PHz), i.e. simulations with bigger losses.
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4.3 Dispersion relations

4.3.1 Losses of plasmons

In this section we will use the theory introduced in section 2.4 in order to calculate the dispersion
relation for both γ1 = 0.0835 (PHz) and γ2 = 0.167 (PHz). This time an infinite chain is considered.
It has been previously stated that the imaginary part of the modes gives the decay of the mode,
and its inverse is the lifetime of the plasmon. For γ2 shorter lifetime is expected, since the plasmon
is more affected by losses. We hope to see this in an increase of the imaginary part of the frequency
regardless the polarization of the mode.

4.3.1.1 Longitudinal polarization

The starting point of our analysis on how longitudinal modes are affected by losses is the com-
parison between the dispersion relations for γ1 and γ2. In figure 4.15 we plot the real (image on
the left) and imaginary (on the right) parts of the modes separated, each for both values of the
damping factor.

Figure 4.15: Dispersion relation for an infinite chain, real and imaginary part, for both γ1 = 0.0835
(PHz) and γ2 = 0.167 (PHz), longitudinal polarization.

The figure on the right of 4.15 gives that the real part plots for both γ1, γ2 have a very good
match: this means that the same modes are excited, so the damping factor does not affect the
excited modes. This is in good agreement with figures 4.3 and 4.4, where the same plasmons are
seen for different central frequencies ω0. The difference between modes comes from the propagation
length, which is affected by the losses and, therefore, by the imaginary part of the frequency. Again,
the right plot in figure 4.15 offers a good explanation for this. The dispersion relation for γ2 is
bigger in terms of absolute value than the line for γ1, which means that the lifetime of modes
with γ2 is shorter, as expected. Both lines present the same trend: the values are decreasing
in the beginning (the plot is given in negative frequencies) and, after reaching a maximum, the
absolute value of the imaginary part of frequency increases slightly. The maximum matches the
intersection point of the light line with real frequencies, which means that radiative and Ohmic
losses are plotted to the left of the maximum, while purely Ohmic losses appear on the right.
Note that the lines have similar shapes, but they are displaced with respect to each other, since
γ2 includes more losses than γ1. In order to clarify this issue, a ratio between the two lines of the
imaginary parts is shown in figure 4.16.

We see that after the turning point, i.e. when the real part of the dispersion relation crosses
the light line, the ratio of losses increases to 2, which is also the ratio γ2/γ1. This means that
above the light line losses are not that easy to quantify by varying γ only, while below the light
line they are well described by the Drude model, which establishes γ as damping factor, and that
losses are purely Ohmic, as expected.

We will finish this subsection by comparing the results obtained from the chain and the dis-
persion relation. In the previous section we have calculated the decay factor of the amplitude of
plasmons by plotting the natural logarithm of the dipole moments as a function of time, as it can
be seen in figure 4.8. We claim that these factors are ωi = Im(ω). Here are the results of this
comparison.
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Figure 4.16: Im(ω, γ2)/Im(ω, γ1) ratio plot for an infinite chain, real and imaginary part, for both
γ1 = 0.0835 (PHz) and γ2 = 0.167 (PHz), longitudinal polarization.

Figure 4.17: Match of the imaginary parts of the frequency obtained from the simulation of
the chain’s response to the dispersion relations, for γ1 = 0.0835 (PHz) and γ2 = 0.167 (PHz),
longitudinal polarization.

Figure 4.17 shows that the match of the simulations and the imaginary part of the dispersion
relation are very accurate in the regime for Ohmic losses, i.e. for wavenumbers bigger than
that which matches the dispersion of light. This means that the simulation also give a ratio of
γ2/γ1 ≈ 2 for the losses. We remark that the ratio is approximately 2 because results for lower
γ and, consequently, for smaller losses, fits the dispersion relation better. In the region where
radiative losses must be included, near the peak in the dispersion relation, we see that the match
between the response of the chain and the dispersion relation is not very good. Here radiative
losses also play a role, so it can be argued that this is the origin of the mismatch. Besides, the
region close to the light line have yielded quite unclear calculations, as it will be shown in the group
velocities subsection (4.3.2). Furthermore, it seems that the match for γ2 is a bit less accurate
than that for γ1, although the difference is not very pronounced.

37



4.3.1.2 Transversal polarization

The same analysis as for the longitudinal polarization will be conducted here, but for the case of
the transversal polarization, considering the infinite chain. The analogous of figure 4.15 will be
plotted in 4.18 comparing the dispersion relation for transversal modes evaluated at γ1 and γ2.

Figure 4.18: Dispersion relation for an infinite chain, real and imaginary part, for both γ1 = 0.0835
(PHz) and γ2 = 0.167 (PHz), transversal polarization.

Transversal dispersion relation is splitted in two branches: we have modes excited above the
light line, and modes excited below the light line. Eventually, modes above the light line match
the light line itself, while modes below the line are separated from it. Therefore, we expect for the
modes above the line to have both radiative and Ohmic losses, while the damping for modes below
the light line are purely Ohmic. Analogously to what happens in figure 4.15, in figure 4.18 the
real parts of ω match very well with each other for both damping factors, while for the imaginary
part a displacement of the lines can be observed for both upper and lower branches, upper and
lower terms referring to the position of real part of the modes with respect to the light line. We
calculate the ratio Im(ω, γ2)/Im(ω, γ1) and show it in figure 4.19.

Figure 4.19: Im(ω, γ2)/Im(ω, γ1) ratio plot for an infinite chain, real and imaginary part, for both
γ1 = 0.0835 (PHz) and γ2 = 0.167 (PHz), transversal polarization.

The ratio for the upper branch is decreasing slightly, which includes that radiative losses
decrease as the modes approximate to light line. The ratio for the lower branch gives us a nearly
perfect line at 2, which indicates that the damping factor γ quantifies losses very well for these
modes.

Finally, the match of the results from the dispersion relations and simulations of the chain are
shown in figure 4.20. Since our plasmons travel slower than light, they are described by the lower
branch of the dispersion relation.

Figure 4.20 shows that the match is very good for γ1, while it is not very good for decays
computed for γ2. This is the same behaviour as presented in 4.17. Therefore, our chain yields
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Figure 4.20: Match of the imaginary parts of the frequency obtained from the simulation of
the chain’s response to the dispersion relations, for γ1 = 0.0835 (PHz) and γ2 = 0.167 (PHz),
transversal polarization.

modes closer to those that belong to an infinite chain in the regime of smaller losses, while the
accuracy is lost for higher γ.
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4.3.2 Group velocities

4.3.2.1 Longitudinal polarization

The definition of group velocity has been defined in equations 2.41 and 2.42. In order to get this
magnitude we have derived the real part of the dispersion relation for longitudinal modes (figure
4.15, left), because group velocity is a real quantity. Note that these calculations include the
assumption of an infinite chain. Our interest lies on the response of the chain for different γ, so
the initial point of this subsection will be to plot the group velocities for both factors.

Figure 4.21: Group velocities of infinite chain for γ1 = 0.0835 (PHz) and γ2 = 0.167 (PHz),
longitudinal polarization.

In figure 4.21 we see that both plots are similar in general, except for the values in the central
peak. Therefore, together with figure 4.15, it can be said that losses do not influence the real part
of the dispersion relation of the infinite chain. We look now to the match of group velocities for
an infinite chain and a finite, though long enough in the nanoscale, chain of 4000 nanoparticles
and length L ≈ 0.3µm. We will include calculations shown in figure 4.7, and plot them for the
corresponding damping factors. Note that for frequencies where diverse modes have been observed
(curved plots in figure 4.7) we have split the line in shorter straight lines and calculate their slope,
so that an approximate velocity for each mode is given. These velocities are plotted for the same
frequency ω, and the value of the linear fit is given as an average propagation velocity of the mode.
We think that its use is justified as it takes into account how far each mode propagates, taking it
as a weight when calculating the fitted velocity. The match is shown in figure 4.22.

The plot in 4.22 shows that the match is very good right after the central peak of the plot.
Near this peak, which is located around the point at which the light line crosses the dispersion
relation, results are more ambiguous: the peak of the group velocity plot is very sharp at around
ω = 4.1, decreasing fast to both sides, while calculations from the chain show that at ω = 4.0 –
4.1 we still have some plasmons propagating at a similar speed to that at the peak. The velocities
of the different modes seen at fixed frequencies also show that the speed variation is very broad,
where points are located below and considerably above the line, nearly at the velocity of light
in the medium. However, we still see propagating, guided plasmons in the central region, so two
possible explanations arise for the mismatch: either the plasmons in the vicinity of light line do
not propagate with the group velocity, or different modes are excited in the chain for the defined
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Figure 4.22: Group velocities of infinite chain compared with the velocities calculated from plas-
mon propagation in a finite chain of L ≈ 0.3µm, for γ1 = 0.0835 (PHz), longitudinal polarization.
Other velocities are shown for frequencies where various modes have been observed (figure 4.7).
A linear fit value is plotted for those cases as propagation velocity.

central frequencies, due to the ∆ω term in the Gaussian. Further analysis will be required in order
to confirm this hypothesis.

The overall trend is the same for γ2 in figure 4.23. The matches for velocities in the region
right from the peak are good again, and for frequencies where more than one mode were excited
results are close. Nevertheless, the mismatch is even bigger in the central region, close to light
line. As a result, we may argue that the increase of losses also enhance the mismatch between the
response of the finite and infinite chain, as it has been seen in figures 4.17 and 4.20.

Figure 4.23: Group velocities of infinite chain compared with the velocities calculated from plas-
mon propagation in a finite chain of L ≈ 0.3µm, for γ1 = 0.167 (PHz), longitudinal polarization.
Other velocities are shown for frequencies where various modes have been observed (figure 4.7).
A linear fit value is plotted for those cases as propagation velocity.

4.3.2.2 Transversal polarization

We will do the same calculations for the transversal polarization. We start by plotting the group
velocities for γ1, γ2 in an infinite chain in figure 4.24.

In these plots we see that the group velocity curve for smaller losses is more pronounced, while
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Figure 4.24: Group velocities of infinite chain for γ1 = 0.0835 (PHz) and γ2 = 0.167 (PHz),
transversal polarization.

the plot of γ2 starts decreasing later, until eventually both of them show the same trend. Figure
4.24 also shows that there are more transversal modes that travel at the speed of light in the
medium for higher losses. We now look at the comparison between the results of the infinite chain
and the finite chain for smaller damping factor γ1 in figure 4.25.

Figure 4.25: Group velocities of infinite chain compared with the velocities calculated from plas-
mon propagation in a finite chain of L ≈ 0.3µm, for γ1 = 0.0835 (PHz), transversal polarization.
Other velocities are shown for frequencies where various modes have been observed (figure 4.13).
A linear fit value is plotted for those cases as propagation velocity.

This figure shows that overall match is quite good, especially for higher frequencies. Besides,
the velocities of other modes coming from 4.13 do not vary much from the dispersion relation.
Finally, a similar figure is shown for γ2 in figure 4.26.

For higher losses the match is worse, as we have already seen in previous figures in this section
(4.23 for example). Some of the extra modes excited for one frequency match the frequency well,
but they are isolated cases. In general, we can confirm that higher losses produce bigger mismatch
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Figure 4.26: Group velocities of infinite chain compared with the velocities calculated from plas-
mon propagation in a finite chain of L ≈ 0.3µm, for γ2 = 0.167 (PHz), transversal polarization.
Other velocities are shown for frequencies where various modes have been observed (figure 4.13).
A linear fit value is plotted for those cases as propagation velocity.

between the responses of a finite and infinite chain.
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4.4 Energy transport of the chain

The previous section, in particular the analysis of group velocities, have shown that little can be
said about plasmonic modes which are close to the light line. We have suggested that at these
frequencies plasmons might have different propagation velocities than the group velocity. An
alternative was the energy transport velocity, which is calculated from the Poynting vector and
the energy density of the plasmon. Comparing this to the previous obtained results can give us
more insight in the physics of the problem.

We start by looking at the propagation of the Poynting vector. As it has been said in section
2.5, the Poynting vector describes the energy flux density along a particular direction. Since our
chain lies in the previously defined x̂-direction, we will look at the x̂-component of the Poynting
vector defined in Cartesian coordinates to see the energy transport in this direction. We set a
plane between particles 800 and 801, defined by coordinates y and z, and we will look at the values
calculated in different points in the plane. This plane has dimensions 400 × 400 (nm) and it is
centered at point (0,0). Due to retardation effects and signal decay, only the nearest 200 particles
near the plane contribute to the generation of electromagnetic fields in the plane.

4.4.1 Longitudinal polarization

In the longitudinal polarization, the dipole moments are polarized in x̂-direction. Therefore, we
do not expect to see any energy flux in the x̂-axis passing through the center of the plane (0,0),
as this is the line where the dipole moments lie. On the other hand, we need to make sure that
the plasmon passes through our plane: for this purpose, a central frequency of ω0 = 4.18 (rad/fs)
and the damping factor γ1 = 0.0835 (PHz) have been chosen as initial parameters, as from figure
4.3 we expect to see a plasmon there. We will now show the magnitude of the x̂-component of
the Poynting vector and the electromagnetic energy density as a function of time, evaluated in a
point of the plane close to the center.

From figures 4.27 and 4.28 we can see that there are two peaks that happen at similar times:
the first and highest peak corresponds to the main pulse propagating in the chain at the speed
of light in the medium, while the second peak represents the plasmon. The next step is to show
both quantities in the plain at both maxima.

The planar distribution of figure 4.29 looks similar in both cases; nevertheless, if we look
at the scales, the values for the plasmon are smaller, as we expect to see from figures 4.5 and
4.6. Departing from this results, we calculate the energy transport velocity: we have done so by
integrating numerically the Poynting vector and EM energy density over time. Nevertheless, we
have not obtained any coherent result from here which would match the propagation speed of
plasmons. As an alternative, the integrals of the Poynting vector and the electromagnetic energy
density have been calculated over the plane, but no improvement has been achieved. Consequently,
we will not be able to give more insight on the mismatch of plasmon velocities and group velocities,
as our alternative method has not been successful.

Figure 4.27: Logarithm of the amplitude of the x̂-component of the Poynting vector for a longi-
tudinal mode as a function of time in a chain of 4000 particles. The evolution of the vector in a
point near the center of the plane is shown. Note that ω0 = 4.18 (rad/fs) and γ = 0.0835 (PHz).
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Figure 4.28: Logarithm of the energy density for a longitudinal mode as a function of time in a
chain of 4000 particles. The evolution of the magnitude in a point near the center of the plane is
shown. Note that ω0 = 4.18 (rad/fs) and γ = 0.0835 (PHz).

Figure 4.29: Amplitude of the x̂-component Poynting vector and energy density represented in
a plane perpendicular to the chain of 4000 particles, placed between particles 800 and 801, for
longitudinal polarization. ω0 = 4.18 (rad/fs) and γ = 0.0835 (PHz).
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4.4.2 Transversal polarization

The analogous of the previous subsection for transversal modes is developed here. Since all
dipoles are polarized perpendicular to the chain, the Poynting vector and the electromagnetic
energy density can safely be evaluated at the center of the plane. The method is the same as we
have used for the longitudinal case, so we will just present the results now. The plane remains
between particles 800 and 801; the parameters chosen for the excitation of plasmons are ω0 =
3.9 (rad/fs) and the damping factor γ1 = 0.0835 (PHz), which stays invariant with respect to the
energy calculations of the longitudinal case. Figure 4.10 shows that for the defined parameters
the plasmon reaches our plane set between particles 800 and 801.

In general, figures 4.27 and 4.28 for longitudinal polarization and figures 4.30 and 4.31 show
both the forerunner and the plasmon peaks. Besides, plane contours (figures 4.29 and 4.32 show
nicely the different patterns of the propagating fields, which might be interesting and useful for
further research. Nevertheless, our aim of calculating energy velocities has not been fulfilled due
to failures in the developed methods.

Figure 4.30: Logarithm of the amplitude of the x̂-component of the Poynting vector for a transver-
sal mode as a function of time in a chain of 4000 particles. The evolution of the vector in a point
near the center of the plane is shown. Note that ω0 = 3.9 (rad/fs) and γ = 0.0835 (PHz).

Figure 4.31: Logarithm of the energy density for a longitudinal mode as a function of time in a
chain of 4000 particles. The evolution of the magnitude in a point near the center of the plane is
shown. Note that γ = 0.0835 (PHz).
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Figure 4.32: Amplitude of the x-component Poynting vector and energy density represented in
a plane perpendicular to the chain of 4000 particles, placed between particles 800 and 801, for
transversal polarization. ω0 = 3.9 (rad/fs) and γ = 0.0835 (PHz).
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4.4.3 New insight in the energy velocity problem

In order to try to compensate the lack of results regarding plasmon velocity of this section, we
will introduce a new method to calculate this quantity of interest. We argue that the origin of
our difficulties lies on the fact that the plasmon consists of the sumation of different oscillating
terms: it is a superposition of different modes. Due to its propagation in dispersive media, the
dispersion relation for these modes is a complicated expression involving wavevector k and its
frequency ω(k), as it has been shown in section 2.4 of this work. Figure 2.1 shows the shape of
this relation. Therefore, we introduce a new perspective for calculating propagation velocities by
considering the superposition of various modes, i.e. a wave packet.

We consider the electric field of the plasmon as a superposition of plane waves with unknown
dispersion relation ω(k). The vector is in ẑ-direction. The wave packet is given by the following
equation:

~E(x, t) =
ẑ

2π

∫ ∞
−∞

e−
(k−k0)2

4 eikx−iω(k)tdk (4.1)

This equation already takes into account the Gaussian amplitude of the wave packet, which
originates from the different coefficients of the superposing waves. Since the dispersion relation
ω = ω(k) is known, we claim that this method can help us obtain the exact velocities in the
dispersive medium, which in our system is a kind of effective media consisted of silver (dispersive)
and the glass between particles (non-dispersive).

We will now show the validity of this suggestion by assuming a linear dispersion relation:
ω = vk. Solving equation 4.33 gives that the electric field in the ẑ direction is:

~E(x, t) = e(x−vt)
2+ik0(x−vt)ẑ (4.2)

Inserting 4.2 in Faraday’s equation (eq. 2.17), the magnetic field is:

~H(x, t) = − 1

vµ0µm
e(x−vt)

2+ik0(x−vt)ĵ = − 1

vµ0µm
|E|ĵ (4.3)

where |E| is the magnitude of the electric vector. Since these are plane waves, we can use
equations 2.48, 2.49 and 2.51 in order to obtain the energy transport velocity. We remind that
v = c/n = 1/

√
ε0εmµ0µm. We finally develope the following equation:

vE =

〈
~S
〉

〈W 〉
=

1
2Re[

~E × ~H∗]
1
4 (ε0εm|E|2 + µ0µm|H|2)

=

=
2|E| 1

vµ0µm
|E|

ε0εm|E|2 + µ0µm

v2µ2
0µ

2
m
|E|2

î =

2
vµ0µm

ε0εm +
ε0εmµ2

0µ
2
m

µ2
0µ

2
m

î =

=

2
vµ0µm

ε0εm + ε0εm
î =

1

vε0εmµ0µm
î =

v2

v
î = vî

(4.4)

Therefore, we show that the energy transport velocity can be calculated using this analysis,
since the result agrees with what we expected: energy transport velocity vE is equal to the group
velocity v, which at the same time equals phase velocity.

Finally, the propagation of this wave packet in space and time is shown in figure 4.33, where
k0 = 0.023 (1/nm). The propagation with constant velocity is clear there.
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Figure 4.33: Propagation of wave packet with linear dispersion relation ω = vk, where v is the
group velocity and k the wave vector.
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Chapter 5

Conclusions

In this work a chain of 4000 silver spherical nanoparticles embedded in glass has been modeled,
and a propagating wave packet along the system has been simulated. The response of the chain to
a propagating signal has been compared to the wave-guiding properties of an infinite chain, derived
from the dispersion relation. The first particle of the chain has been excited with a electric field
pulse of Gaussian shape: the direction of the electric field vector was either parallel (longitudinal
polarization) or perpendicular (transversal polarization) to the axis of the chain. The propagation
of the electromagnetic fields along the chain and the consequent excitation of oscillating electric
dipole moments in each nanoparticle have been calculated using the dyadic Green’s functions.
In order to determine the properties of the silver particles, such as polarizability and dielectric
permittivity, an experimentally fitted Drude model has been taken into account. This model
includes Ohmic damping factor γ, which determines the losses of the system. A particular interest
have been shown in the influence of losses in the response of the chain; as a result, calculations
have been carried on for damping factors γ1 and γ2, being the value of the first half of that of the
second term.

The excitation of the first particle by a Gaussian pulse has yielded two propagating modes
along the chain. The first mode is the forerunner, which travels along the chain with the speed
of light in the medium. The second mode is the surface plasmon, which decays faster, thus has
a shorter lifetime. The influence and effect of losses in the propagation of plasmonic modes has
been analysed for two damping factors. In general, lifetime and propagation length decrease due
to an increase of the damping term. Conclusions are presented for different polarizations of the
plasmon: longitudinal and transversal.

The increase of losses in the dispersion relation of an infinite chain for longitudinally polarized
modes have shown no variation for the real part of the modes and the group velocities. Imaginary
parts of the modes have increased in magnitude, as expected. The comparison of the results from
the finite chain show a good match for the imaginary parts of the modes in the region below the
light line, but the fit for smaller losses suggested a better match. Near the intersection of the modes
with light dispersion results were worse for both cases, as it was expected due to the radiative losses
that arise in that region. Group velocities calculated from dispersion relation displayed a very
good match between them for both γ1 and γ2, with a slight difference in the light-crossing region.
The comparison with the results coming from the finite chain have shown more disagreements.
The match for group velocities of the dispersion relation and plasmon propagation velocities are
very good below the light line for both damping factors. Nevertheless, in the vicinity of the light
line, there is a big mismatch, the latter being bigger for larger losses. Therefore, it is suggested
that the plasmonic modes excited nearby the light-plasmon dispersion intersection in the chain are
not the same as the modes excited in the infinite chain. A support for this hypothesis comes from
the observation of different longitudinal modes at a given central frequency in the range ω0 = 4.0
- 4.2 (rad/fs), which give raise to velocities within a broad band around the group velocities. It is
noted that at this frequency range the chain modes are close to the dispersion of light. Another
option is that the plasmons travel with energy velocity transport.
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Transversal modes of the finite chain below the light line are in good agreement with dispersion
relations of the infinite chain. The real part of dispersion relation remains invariant under the
increase of losses, so excitation of the same modes is preserved. The expected increase in the
absolute value of the imaginary part is well followed by the response of the finite chain; however,
the results for bigger damping factor confirm that the match between the modes of the finite and
infinite chain are worse for higher losses.

Group velocities calculated from dispersion relation have shown some differences for the two
γ factors. Simulations in the finite chain show the same trend as the calculated group velocity,
results from smaller losses being in better agreement with the group velocities. Other excited
modes for single central frequencies disperse much less around the given group velocities than for
the longitudinal case. This shows that in the transversal case the velocity of plasmons agrees
well with group velocities of modes in an infinite chain for small losses. Besides, the additional
modes have been observed for frequency range ω0 = 3.9 - 4.1 (rad/fs), which corresponds to the
region where the dispersion relation of plasmon modes under the light line separates from the light
line. These results, along with the fact that the frequency range of various excited modes in the
longitudinal polarization is also close to the intersection with light, suggest that various modes
can be excited at this regime.

Finally, the basis for the calculation of energy transport velocity was set in order to perform
such calculations. The excited modes in the chain for a single central frequency, namely the
forerunner and the plasmon, show up themselves in the plots of the electromagnetic fields as a
function of time. Results of the plane show nicely the patterns for propagation of electromagnetic
fields along the chain. Interesting tools have been developed to treat the plasmon propagation from
the energy transport point of view; unfortunately, methods designed for calculating the energy
transport velocity have not been productive. It is suspected that the superposition of various
modes with frequencies to be determined from dispersion relations have been the origin of this
failure. Due to that, a wave packet solution has been introduced. Its validity have been shown for
linear dispersion relations, where no dissipation along the propagation is expected.

This chapter will be concluded with some suggestions for future research. Disagreement of
modes in finite and infinite chain for the longitudinal polarization arises close to the intersection
point between the dispersion relation of light and the chain, showing plasmons propagating at
different velocities. Furthermore, it has been seen that the width of the Gaussian in the frequency
domain generates other modes for central frequencies around the light line. It can be helpful to
check the veracity and the origin of this, and in the case of a positive response, try to calculate
these other modes, which might be in accordance with the unmatched plasmonic velocities of
the chain. On the other hand, fixing the problems of the calculations regarding energy transport
velocity is another strong candidate for future work, since it promises good insight into the physics
of the problem. The application of the wave packet analysis for the dispersion relation of the chain
seems to be a promising tool to obtain good results for propagation velocity calculations.
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