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Abstract
In this paper, inspired by two very different, successful metric theories such us the real
view-point of Lowen’s approach spaces and the probabilistic field of Kramosil and
Michálek’s fuzzymetric spaces, we present a family of spaces, called fuzzy approach
spaces, that are appropriate to handle, at the same time, both measure conceptions.
To do that, we study the underlying metric interrelationships between the above
mentioned theories, obtaining six postulates that allow us to consider such kind of
spaces in a unique category. As a result, the natural way in which metric spaces can
be embedded in both classes leads to a commutative categorical scheme. Each
postulate is interpreted in the context of the study of the evolution of fuzzy systems.
First properties of fuzzy approach spaces are introduced, including a topology. Finally,
we describe a fixed point theorem in the setting of fuzzy approach spaces that can be
particularized to the previous existing measure spaces.

1 Introduction
The notion of metric has always been intimately related to a spatial conception. However,
it was not until the end of the first decade of the twentieth century that Fréchet presented
the currently accepted axioms on which this theory is based. After the appearance of the
concept of metric space, and mainly due to its potential applications, many researchers
have been interested in extending it to wider fields of knowledge. In this sense, in order to
model real-world experiments, many theories have been introduced over the last century.
In this manuscript we pay especial attention to two of them.

Some of the most productive extensions of the concept of metric were introduced in
the field of probability. Convinced of the difficulty of accurately measuring the distance
between two points in real life (for instance, between two subatomic particles), Menger
proposed in  the idea of a statistical metric space (see []). His main contribution was
to replace the distance between two points, which had traditionally been a real number,
by a random variable. Taking into account that, under uncertain environment, classical
approaches are unable to give a complete answer to many real problems in several areas,
Zadeh presented the notion of fuzzy set []. A number between  and  was employed to
express the imprecision/vagueness that arises in many real situations. Subsequently, many
authors, inspired by the notion of probabilistic metric space given by Schweizer and Sklar
[], have introduced their particular points of view about the definition of fuzzy metric
space (see [–], among others), to which we will refer as FM-space. See also [–].
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In , Kramosil and Michálek [] modified the axioms used until then and established
a new class of FM-spaces provided with a Hausdorff topology. Later, other authors have
considered certain modifications of this concept which are sufficient to verify new pecu-
liar qualities (see []). FM-spaces have many applications. For example, in [], the au-
thors used FM-spaces in order to predict access histories working on variations of the
fuzzy construction. In [], Colubi and González-Rodríguez analyzed a fuzzifying process
of finitely valued random variables by means of triangular fuzzy sets. Several studies of
fuzzy regression analysis can be found in [, ]. The concept of fuzzy number supposes a
generalization of the notion of real number and there exists a complete arithmetic among
them (see [, ]). Furthermore, there exists a complete theoretic and practical analysis
of fuzzy linear systems. In this field, inspired by Banach’s theorem, fixed point theory has
been intensively studied [–], even in frameworks like intuitionistic fuzzy metric spaces
[–].

With respect to non-probabilistic extensions of the notion of metric space, the perspec-
tive can be highlighted introduced by Lowen through his approach spaces (in the sequel,
A-spaces). Although they can seem, at first sight, simple generalizations of the necessary
conditions that distances between point and subsets must satisfy, these spaces have turned
out to have such good properties that they solved the problem of how to treat, in a unified
way, such different notions as metrics, topologies, and uniformities, especially from the
categorical view-point (see [, ]). In this sense, the main purpose for their introduction
was to fill some gaps concerning categorical aspects of metrizable spaces. They are useful
in many areas such as probability theory, functional analysis and function spaces. In his
referential book [], Lowen offered at least seven equivalent formulations of A-spaces.

With the aim of finding interrelationships between both successful theories, this paper
introduces the notion of fuzzy approach space, which is a mixture of the best advantages
of both conceptions. We also show some basic properties of this kind of spaces, and how
the categories of quasi-metric spaces, A-spaces, and FM-spaces (in the sense of Kramosil
and Michálek) can be naturally embedded in the supercategory of fuzzy approach spaces.
Moreover, under some conditions, we provide these spaces with a topology. Finally, the
study of contractions between fuzzy approach spaces leads to a first result in the field of
fixed point theory involving this new class of spaces, which illustrates that some metric
questions naturally arise in this ambiance.

2 Preliminaries
Let N = {, , , . . .}, R and R = [–∞,∞] denote the set of all non-negative integers, the
set of all real numbers, and the extended real line, respectively (for simplicity, +∞ will be
denoted as ∞). Given a real number r ∈ [,∞[, we use the notation t ≥ r if t ∈ [r,∞], t > r
if t ∈ ]r,∞], and t < ∞ if t ∈ [,∞[.

In the sequel, X will be a non-empty set and P(X) will denote the sets of all subsets of X.
A fuzzy set F on X is a map F : X → [, ]. A fuzzy set F is crisp if its image is included in
{, }.

An (extended) metric space (briefly, M-space) is a set X together with a function d : X ×
X →R (called extended metric or distance function) satisfying the following properties:

M. d(p, p) =  for all p ∈ X .
M. d(p, q) �=  if p �= q for all p, q ∈ X .
M. d(p, q) = d(q, p) for all p, q ∈ X .
M. Triangular inequality: d(p, q) ≤ d(p, x) + d(x, q) for all p, q, x ∈ X .
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If M is omitted, the function d is a quasi-metric (briefly, qM-space). The topology of a
qM-space (X,d) is completely determined by the distance function between two points.
In a metric space, the distance between a point p ∈ X and a subset A of X is the infimum
of the distances between p and all the points of the subset A. The analysis of the essential
properties of a function δ : X ×P(X) →R such as the previous one (considering the empty
infimum as ∞) leads to the following spaces.

Definition . (Lowen []) An approach space (briefly, A-space) is a pair (X, δ) where X
is a non-empty set and δ : X ×P(X) →R is a function satisfying the following properties:

A. δ(p, {p}) =  for all p ∈ X .
A. δ(p,∅) = ∞ for all p ∈ X .
A. δ(p, A ∪ B) = min(δ(p, A), δ(p, B)) for all p ∈ X and A, B ∈P(X).
A. δ(p, A) ≤ δ(p, A(s)) + s for all p ∈ X , A ∈ P(X) and s ∈ [,∞], where A(s) = {q ∈

X/δ(q, A) ≤ s}.

Lowen did a complete study of A-spaces in []. Condition A is analogous to the tri-
angular inequality for these spaces. Under property A, Lowen et al. [] proved that
condition A could be rewritten equivalently as follows:

A′. (A(α))(β) ⊆ A(α+β) for all A ∈P(X) and all α,β ∈ [,∞].

Lemma . (qM-space ↪→ A-space) Every qM-space (X,d) is an A-space (X, δd) consider-
ing the function δd : X ×P(X) →R given by:

∀x ∈ X,∀A ∈P(X), δd(x, A) =

{
infa∈A d(x, a), if A �= ∅,
∞, if A = ∅.

A binary operation ∗ : [, ] × [, ] → [, ] is a continuous t-norm if ([, ],∗) is a
topological monoid with unity  such that a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for
a, b, c, d ∈ [, ].

Definition . A fuzzy quasi-metric space in the sense of Kramosil and Michálek []
(briefly, FqM-space) is a triple (X, M,∗) where X is a non-empty set, ∗ is a continuous
t-norm and M : X × X × [,∞[→ [, ] is a fuzzy map such that, for all x, y, z ∈ X:

FM. M(x, y, ) = .
FM. x = y if, and only if, M(x, y, t) =  for all  < t < ∞.
FM. M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all  ≤ s, t < ∞.
FM. M(x, y, ·) : [,∞[→ [, ] is left-continuous.

If we additionally assume that M satisfies the condition of symmetry:

M(x, y, t) = M(y, x, t), for all x, y ∈ X and  < t < ∞,

then (X, M,∗) is called a fuzzy metric space (FM-space).

We point out that Kramosil and Michálek introduced a slightly different definition. If
M(x, y, t) is interpreted as the probability of the distance between x and y to be less than or
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equal to t, and inspired by the probabilistic framework of random variables, they assumed
that

lim
t→∞ M(x, y, t) =  for all x, y ∈ X. ()

However, the previous one is the most extended way to handle their fuzzy spaces.

Remark . In order to define a Hausdorff topology and to prove some existing results
(including Baire’s theorem), George and Veeramani [] slightly modified the concept of
fuzzy metric space introduced by Kramosil and Michálek. It is well known that all fuzzy
(quasi-)metric spaces in the sense of George and Veeramani are also fuzzy (quasi-)metric
spaces in the sense of Kramosil and Michálek. Hence, the results we will prove also include
fuzzy metric spaces in the sense of George and Veeramani (see also []).

Proposition . (Grabiec []) For all x, y ∈ X, M(x, y, ·) is a nondecreasing function on
[,∞[.

Proof If z = y and s >  in FM, we have M(x, y, t + s) ≥ M(x, y, t)∗M(y, y, s) = M(x, y, t)∗ =
M(x, y, t). �

If (X,d) is a M-space, we can consider the fuzzy set Ms : X × X × [,∞[→ [, ] given
by Ms(x, y, ) =  and

Ms(x, y, t) =
t

t + d(x, y)
, if t ∈ ],∞[, ()

for all x, y ∈ X and all t ∈ [,∞[. If ∗ = · is the usual multiplication in [, ], then (X, Ms, ·)
is a FM-space, called standard fuzzy metric space []. The following lemma presents an
alternative way to view a M-space as a FM-space.

Lemma . (qM-space ↪→ FqM-space) Every qM-space (X,d) is a FqM-space (X, Md, min)
considering the continuous t-norm ∗ = min and the fuzzy set Md : X × X × [,∞[→ [, ]
given, for any x, y ∈ X and t ∈ [,∞[, by

if d(x, y) < ∞, Md(x, y, t) =

{
, if  ≤ t ≤ d(x, y),
, if d(x, y) < t < ∞;

if d(x, y) = ∞, Md(x, y, t) =  for all t < ∞.

Proof FM, FM, and FM are trivial. Let x, y, z ∈ X be three different points. Note that

Md(x, y, t) ∗ Md(y, z, s) = min
(
Md(x, y, t), Md(y, z, s)

)
= min

({
, if t ≤ d(x, y) < ∞ or t < d(x, y) = ∞,
, if d(x, y) < t < ∞,

}
,

{
, if s ≤ d(y, z) < ∞ or s < d(y, z) = ∞,
, if d(y, z) < s < ∞,

})

=

{
, if d(x, y) < t < ∞ and d(y, z) < s < ∞,
, in any other case.
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To prove FM, we can reduce to consider the cases d(x, y) < t < ∞ and d(y, z) < s <
∞. Then t + s > d(x, y) + d(y, z) ≥ d(x, z), so Md(x, z, t + s) = . This proves that if
min(Md(x, y, t), Md(y, z, s)) = , then Md(x, z, t + s) = , and FM is true. �

3 Fuzzy approach spaces
In this section, the notion of approach space is generalized to the fuzzy setting and fuzzy
approach spaces are presented.

Definition . A fuzzy approach space (briefly, FA-space) is a pair (X, F) where X is a set
and F : X ×P(X) × [,∞] → [, ] is a fuzzy set satisfying the following conditions, for all
x ∈ X, all A, B ∈P(X) and all s, t ∈ [,∞]:

FA. F(x, A, ) = .
FA. F(x,∅, t) =  for all t < ∞.
FA. F(x, {x}, t) =  for all t > .
FA. F(x, A, ·) : [,∞[→ [, ] is a left-continuous function.
FA. F(x, A ∪ B, t) ≥ max(F(x, A, t), F(x, B, t)).
FA. If we denote, for all r ∈ [,∞[,

A(r) =
{

y ∈ X/F(y, A, t) = ,∀t > r
}

and

A(∞) =
{

y ∈ X/F(y, A,∞) = 
}

,

then

F(x, A, t + s) ≥ F
(
x, A(r), t

)
for all r ∈ [, s[ and

F(x, A,∞) ≥ F
(
x, A(∞), t

)
.

If FA is omitted, then (X, F) is a fuzzy semi-approach space (briefly, FsA-space). The
map F is symmetric (or the FsA-space (X, F) is symmetric) if F(x, {y}, t) = F(y, {x}, t) for all
x, y ∈ X and all t > . Finally, (X, F) is a crisp FA-space (or a crisp FsA-space) if the image
of F is in {, }.

Remark . In broad terms, considering s = ∞ in the first inequality of FA property and
joining with the second inequality, we have

F(x, A,∞) ≥ F
(
x, A(r), t

)
, for all r, t ∈ [,∞]. ()

Remark . The original definition of approach space establishes equality in condi-
tion A. However, it will be replaced in FA with inequality. In fact, it would be possible
to develop a similar theory for approach spaces by setting in A only the inequality ≥.

Kramosil and Michálek considered M(x, y, t) defined only for t ∈ [,∞[. In our definition
of a fuzzy approach space, ∞ must be included trying to generalize the approach spaces.
But it is not a problem because we can consider, in Definition ., M(x, y,∞) =  for all
x, y ∈ X.

When A = {y} is a single point, we denote F(x, {y}, t) by F(x, y, t), and, similarly, we will
use this notation with other maps.
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The following examples are given to illustrate a possible interpretation of the previous
conditions in order to study the dynamic of a fuzzy system that can appear in fuzzy deci-
sion making.

Example . Let X be a set of experts that express their opinions about one or more
questions. For instance, one may consider the level of satisfaction with respect to a product
that is going to come on to the market. This level can be expressed as a number between 
and . Experts discuss among themselves and, in the course of time, they reach agreement
about their points of view. In this way, an expert’s opinion is not constant in time and it
changes according the other experts’ opinions. Then it seems reasonable to measure the
‘degree of agreement (or disagreement) between an expert x ∈ X and a experts’ committee
A ⊆ X in the instant t’. This uncertainty can be interpreted as the difference between  and
the minor distance between the expert’s opinion x (a number between  and ) and the set
of opinions of the rest of members of A.

This interpretation leads to a fuzzy set on X × P(X) × [,∞], which could be a fuzzy
approach space when the following properties are satisfied:

• Property FA means that, at the beginning, there is not agreement between the
experts.

• Property FA establishes that it is necessary, at least, for a person in the committee to
reach an agreement.

• Property FA says us that an expert’s opinion is always coherent with himself/herself.
• Property FA shows that an expert’s opinion depends continuously on his/her opinion

in the past, but not in the future.
• Property FA guarantees that there being involved more participants, it will be easier

to persuade an expert to reach an agreement with the rest.
Previous properties are certainly natural. However, condition FA shows us that the

system evolves in the following way. If A ⊆ X is an expert committee and r ∈ [,∞[ is an
instant, the closure

A(r) =
{

y ∈ X/F(y, A, t) = ,∀t ∈ ]r,∞]
}

can be interpreted as the set of experts that are capable of reaching an agreement with
the members of the committee A before an instant r, that is, the set of experts that the
committee A could persuade before r units of time. In this case, condition FA,

F(x, A, t + s) ≥ F
(
x, A(r), t

)
,

means that, in the instant t + s (that is, spending s units of time), an expert x and the
committee A have reached a bigger agreement than the agreement reached by the expert
x with the committee A(r) in the instant t.

The next example is inspired by the previous one.

Example . Let X a set of three experts, that is, X = {x, y, z}. Let F : X × P(X) × [,∞] →
[, ] be the map defined as follows (only for non-trivial cases):

F(x, y, t) = F
(
x, {y, z}, t

)
= F

(
y, {x, z}, t

)
=

{
, if t = ,
, if t > ,
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F(x, z, t) = F(y, z, t) = F
(
z, {x, y}, t

)
=

⎧⎪⎨
⎪⎩

, if t = ,
/, if  < t ≤ ,
, if t > .

It is easy to show that (X, F) is a symmetric FA-space. The fuzzy system evolves in the
following way: experts x and y always agree among themselves, but there is a certain dis-
crepancy with the expert z. During a period of time, they discuss and their postures come
closer to coincide in a %. When a unity of time is spent, the agreement between the
three experts is complete.

4 Two families of FA-spaces and a commutative diagram
Firstly, we will show that there are two families of spaces satisfying the above six properties.

Let d : X × X → [,∞] be a map, x ∈ X, A ∈ P(X) and t ∈ [,∞]. Although d is not
necessarily a metric or a quasi-metric, it is easy to see that

sup
a∈A

{
, if t ≤ d(x, a),
, if t > d(x, a)

}
=

{
, if t ≤ infa∈A d(x, a),
, if t > infa∈A d(x, a)

()

even if infa∈A d(x, a) = ∞ (replacing ≤ by <) or A = ∅ (considering infa∈∅ d(x, a) = ∞). See
Proposition A. in the Appendix.

Taking into account the transformation from M-spaces to FM-spaces, associated with
an approach space (X, δ), the following FA-space can be built:

Fδ(x, A, t) =

⎧⎪⎨
⎪⎩

, if t = ,
t

t+δ(x,A) , if  < t < ∞,
, if t = ∞.

However, for our purposes, the following structure would be more interesting.

Theorem . (A-space ↪→ FA-space) Let (X, δ) be an A-space. We define a fuzzy set Fδ on
X ×P(X) × [,∞] given in the following way:

if δ(x, A) < ∞, Fδ(x, A, t) =

{
, if t ≤ δ(x, A),
, if t > δ(x, A);

if δ(x, A) = ∞, Fδ(x, A, t) =

{
, if t < ∞,
, if t = ∞.

Then (X, Fδ) is a crisp FA-space, satisfying the equality in FA, and A(∞) = X for all A ∈
P(X).

Proof FA, FA, FA, and FA are immediate and clearly Im Fδ = {, }. In order to prove
FA, if A, B ⊆ X, we can suppose δ(x, A ∪ B) = min(δ(x, A), δ(x, B)) = δ(x, A) ≤ δ(x, B). If
δ(x, B) < ∞, then

max
(
Fδ(x, A, t), Fδ(x, B, t)

)
= max

({
, if t ≤ δ(x, A) < ∞,
, if δ(x, A) < t < ∞,

{
, if t ≤ δ(x, B) < ∞,
, if δ(x, B) < t < ∞

)
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=

{
, if δ(x, A) < t < ∞ or δ(x, B) < t < ∞,
, in any other case

}

=

{
, if t > min(δ(x, A), δ(x, B)),
, in any other case

}

=

{
, if t > δ(x, A ∪ B),
, in any other case

}
= Fδ(x, A ∪ B, t).

Other cases are similar. See Remark A. in the Appendix for more details. In any case,
(X, Fδ) satisfies the equality in FA.

For every r ∈ [,∞], the set A(r) is the same as an A-space as a FA-space, since, for r < ∞,

A(r)
FA-space =

{
x ∈ X/Fδ(x, A, t) = ,∀t > r

}
=

{
x ∈ X/t > δ(x, A),∀t > r

}
=

{
x ∈ X/δ(x, A) ≤ r

}
= A(r)

A-space.

If r = ∞, as Fδ(x, A,∞) =  for all x ∈ X and all A ∈P(X), we have A(∞) = X for all A ∈P(X).
Then A(∞)

A-space = X = A(∞)
FA-space. For FA, we are going to prove that if Fδ(x, A(r), t) = , then

Fδ(x, A, t + s) = . In the finite case t, s ∈ [,∞[, if F(x, A(r), t) = , then t > δ(x, A(r)). If s > r,
then t + s > t + r > δ(x, A(r)) + r ≥ δ(x, A). Therefore, Fδ(x, A, t + s) = . See Remark A. in
the Appendix. This completes the proof. �

Theorem . (FqM-space ↪→ FA-space) Let X be a set and let M : X ×X × [,∞[→ [, ]
be any fuzzy set satisfying FM, FM, and M(x, x, t) =  for all x ∈ X and all t > . Let
FM : X ×P(X) × [,∞] → [, ] be the fuzzy set given by

FM(x, A, t) =

⎧⎪⎨
⎪⎩

, if A = ∅ and t < ∞,
supa∈A M(x, a, t), if A �= ∅ and t < ∞,
, if t = ∞.

Then (X, FM) is a FsA-space that verifies the equality in FA and A(∞) = X for all A ∈P(X).
Moreover, if (X, M,∗) is a FqM-space, then (X, FM) is a FA-space, FM|X×X×[,∞[ = M and

satisfies the following property:
• If x, y ∈ X verify that FM(x, y, t) =  for every  < t < ∞, then x = y.

Proof FA and FA are a direct consequence of the definition of F , FA is obtained from
the hypothesis M(x, x, t) =  for all x ∈ X and all t > , and FA is obtained from FM, since
FM(x, y, t) = M(x, y, t) for all  < t < ∞ and the supremum of left-continuous functions in
[,∞[ is a left-continuous function too. To prove the equality in FA, let A, B ∈ P(X). If
A = ∅, then

max
(
FM(x, A, t), FM(x, B, t)

)
= max

({
, if t < ∞,
, if t = ∞,

FM(x, B, t)

)

= FM(x, B, t) = FM(x, A ∪ B, t).
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Suppose that A, B �= ∅. If t =  or t = ∞, we trivially have the equality. If  < t < ∞, the
equality

sup
z∈A∪B

M(x, z, t) = max
(

sup
a∈A

M(x, a, t), sup
b∈B

M(x, b, t)
)

implies that FM(x, A ∪ B, t) = max(FM(x, A, t), FM(x, B, t)). In any case, (X, F) verifies the
equality in FA. So (X, F) is a FsA-space.

Now, suppose that (X, M,∗) is an FqM-space. Let us show that (X, F) satisfies property
FA. Let x ∈ X, A ∈ P(X) and r ∈ [,∞]. If A = ∅, the condition FA is trivial. It is sufficient
to show that the property FA holds true for every A �= ∅. Since, for all x, y, z ∈ X and all
 < t, s < ∞,

M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s);

in particular,

M(x, y, t + s) ≥ M(x, a, t) ∗ M(a, y, s)

for all x ∈ X, a ∈ A(r), y ∈ A, t > , and s > r ≥ . Taking the supremum over y ∈ A, then

FM(x, A, t + s) = sup
y∈A

M(x, y, t + s) ≥ M(x, a, t) ∗ sup
y∈A

M(a, y, s)

= M(x, a, t) ∗ FM(a, A, s).

Since a ∈ A(r), we have FM(a, A, s) = , for s > r. Thus, FM(x, A, t + s) ≥ M(x, a, t). Taking
the supremum over a ∈ A(r), we have FM(x, A, t + s) ≥ FM(x, A(r), t). So (X, F) is a FA-space.
Finally, the last property is a consequence of FM. �

The last property in the previous theorem will be really interesting in the sequel and we
will refer to it as FA.

FA. If x, y ∈ X are such that F(x, y, t) =  for every  < t < ∞, then x = y.

Corollary . The following diagram commutes in the category of sets, that is, Fδd = FMd :

(X,d) qM-space FqM-space (X, M,∗)

≡

(X, δ) A-space FA-space (X, F)

Therefore, if (X,d) is a qM-space, then (X, Fδd ) is a crisp FA-space which verifies property
FA, satisfies the equality in FA, and A(∞) = X for all A ∈P(X).
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Proof Let (X,d) be a qM-space. Then X is an A-space if we define δd as in Lemma .. As
a FA-space, the fuzzy map Fδd is:

if δd(x, A) = inf
a∈A

d(x, a) < ∞, Fδd (x, A, t) =

{
, if t ≤ δd(x, A),
, if t > δd(x, A);

if δd(x, A) = inf
a∈A

d(x, a) = ∞, Fδd (x, A, t) =

{
, if t < ∞,
, if t = ∞.

On the other hand, (X,d) is a FqM-space (X, Md, min) as in Lemma ., and then FMd is
given by

FMd (x, A, t) =

⎧⎪⎨
⎪⎩

, if t =  or (A = ∅ and t < ∞),
supa∈A Md(x, a, t), if A �= ∅ and  < t < ∞,
, if t = ∞.

It is easy to see that if A = ∅ or δd(x, A) = ∞ (in this case, d(x, a) = ∞ for all a ∈ A), then

Fδd (x, A, t) =

{
, if t < ∞,
, if t = ∞

}
= FMd (x, A, t).

It is always true that Fδd (x, A, ) =  = FMd (x, A, ) and Fδd (x, A,∞) =  = FMd (x, A,∞). Sup-
pose that A �= ∅, δd(x, A) < ∞ and  < t < ∞. Then, by property ()

FMd (x, A, t) = sup
a∈A

Md(x, a, t) = sup
a∈A

{
, if t ≤ d(x, a),
, if d(x, a) < t

}

=

{
, if t ≤ infa∈A d(x, a) < ∞,
, if infa∈A d(x, a) < t < ∞

}
= Fδd (x, A, t).

So Fδd = FMd in any case and the diagram commutes. �

5 Characterization of FA-spaces
Now, we ask about the fuzzy maps F : X × P(X) × [,∞] → [, ] that could provide X
with an FA-space structure. In these cases, it could be interesting to weaken the conditions
FA and FA.

Proposition . Let X be a set, and F : X ×P(X) × [,∞] → [, ] be a fuzzy set satisfying
the conditions FA and FA such that:

• F(x, A,∞) =  for all x ∈ X and all A ∈P(X).
• F(x, A, t) =  for all x ∈ A ⊆ X and all t > .
Then property FA is equivalent to

FA′. For every non-empty subsets A, B ⊆ X such that A �= B and A ∪ B ⊂ X , for all t > 
and for all x ∈ X�(A ∪ B), we have F(x, A ∪ B, t) ≥ max(F(x, A, t), F(x, B, t)).

The equality in FA is always true if, and only if, the equality is achieved in the previous
inequality.

Furthermore, condition FA is equivalent to
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FA′. For all t, s ∈ ],∞[, all r ∈ [, s[, all ∅ �= A ⊂ X and all x ∈ X�A, the following in-
equality holds: F(x, A, t + s) ≥ F(x, A(r), t).

Proof We are going to see that there exist some cases in which, under the above mentioned
hypotheses, the inequality (or the equality) trivially holds.

Property FA′. If A is empty, then F(x, A ∪ B, t) = F(x, B, t) and, by condition FA, for all
t < ∞,

max
(
F(x, A, t), F(x, B, t)

)
= max

(
F(x,∅, t), F(x, B, t)

)
= max

(
, F(x, B, t)

)
= F(x, B, t) = F(x, A ∪ B, t),

so we get the equality. If t = ∞, then the two last terms of the above identities are . Suppose
that A and B are non-empty. If x ∈ A ∪ B, then, by hypothesis, as x ∈ A or x ∈ B,

F(x, A ∪ B, t) =

{
, if t = ,
, if t > 

}
= max

(
F(x, A, t), F(x, B, t)

)
,

and the equality holds. If A ∪ B = X, then x ∈ A ∪ B, and this case leads to the equal-
ity. Therefore, we can reduce the inequality to the case in which ∅ �= A ∪ B ⊂ X and
x ∈ X�(A ∪ B). If A = B, the equality is trivial. In all of these cases, the equality holds.
So the equality in FA is equivalent to the equality in FA′.

Property FA′. If t = , by FA, F(x, A(r), ) = , and the inequality is obvious. The condi-
tion is empty if s = , because r ∈ [, s[. If t = ∞ or s = ∞, then F(x, A,∞) =  ≥ F(x, A(∞), t).
If A = ∅ then, by property FA,

∅
(r) =

{
x ∈ X/F(x,∅, t) = ,∀t > r

}
= ∅, for all r < ∞,

since r < s ≤ ∞, so F(x,∅(r), t) = F(x,∅, t) =  for all t ∈ [,∞[. If x ∈ A, we suppose that
F(x, A, t) =  for all t > , so F(x, A, t + s) =  ≥ F(x, A(r), t) for all t, s >  and r ∈ [, s[. If
A = X, then x ∈ A. So, we can reduce the inequality to the cases in which ∅ �= A ⊂ X,
x ∈ X�A, and t, s ∈ ],∞[. �

6 First properties of the FA-spaces
The following definition is possible even if the set X has not been provided with a topology.
In fact, in Section , we will show how to consider an appropriate topology on each FA-
space depending on the fuzzy map F .

Definition . The closure A of a subset A of a FsA-space (X, F) is

A = A() =
{

x ∈ X/F(x, A, t) = ,∀t > 
}

.

We say that A is closed if A ⊆ A.

The following properties hold even if F does not satisfy the condition FA.

Lemma . Let (X, F) be a FsA-space, x, a ∈ X, t, r, s ∈ [,∞], and A, B ∈P(X).
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() If a ∈ A, then F(a, A, t) =  for all t > .
() If a ∈ A, then F(x, a, t) ≤ F(x, A, t) for all t ≥ .
() If A ⊆ B ⊆ X , then F(x, A, t) ≤ F(x, B, t) for all t ≥ .
() If A �= ∅, supa∈A F(x, a, t) ≤ F(x, A, t) for all t ≥ .
() If A ⊆ B ⊆ X , then A(r) ⊆ B(r) for all r ≥ .
() If  ≤ r ≤ s ≤ ∞, then

A ⊆ A = A() ⊆ A(r) ⊆ A(s) ⊆ · · · ⊆ A(∞) ⊆ X.

In particular, F(x, A, t) ≤ F(x, A, t) for all t ≥ .
() A is closed if, and only if, A = A.
() ∅

(s) = ∅ for all s ∈ [,∞[.
() x ∈ A(r) if, and only if, x ∈ A(r+s) for every s > , i.e.,

A(r) =
⋂
s>r

A(s) =
⋂
s>

A(r+s).

() If �(x, A) = {s ∈ [,∞[ /x ∈ A(s)} is a non-empty set, then there exists a ∈ [,∞[
such that �(x, A) = [a,∞[. If �(x, A) �= ∅ then inf�(x, A) = min�(x, A).

() The following properties are equivalent:
(a) A(∞) = X for all A ∈P(X).
(b) F(x, A,∞) =  for all x ∈ X and all A ∈P(X).
(c) F(x,∅,∞) =  for all x ∈ X .
(d) ∅

(∞) = X .

Proof () By conditions FA and FA, if a ∈ A, we have, for t > ,

F(a, A, t) = F
(
a, A ∪ {a}, t

) ≥ max
(
F(a, A, t), F(a, a, t)

)
= max

(
F(a, A, t), 

)
= .

() It follows from condition FA.
() If A ⊆ B, then A ∪ B = B, and thus:

F(x, B, t) = F(x, A ∪ B, t) ≥ max
(
F(x, A, t), F(x, B, t)

) ≥ F(x, A, t), for all t ∈ [,∞].

() By item (), we find that if a ∈ A, then F(x, a, t) ≤ F(x, A, t). Taking the supremum,
supa∈A F(x, a, t) ≤ F(x, A, t).

() If A ⊆ B and r < ∞, by item (), F(x, A, t) ≤ F(x, B, t) for each t ≥ . If x ∈ A(r), that
is, F(x, A, t) =  for each t > r, we have F(x, B, t) =  for each t > r, i.e., x ∈ B(r). If r = ∞,
a similar argument can be used.

() If a ∈ A, by item (), F(a, A, t) =  for each t > . Thus a ∈ A. Let r ≤ s. If x ∈ A(r), i.e.,
F(x, A, t) = , for each t > r, then, in particular, F(x, A, t) =  for each t > s. Thus x ∈ A(s).
A similar argument is valid if r = ∞ or s = ∞. See Remark A. in the Appendix.

() It is trivial since A ⊆ A.
() From FA, F(x,∅, t) =  for all t < ∞. So ∅

(s) = {x ∈ X/F(x,∅, t) = ,∀t > s} = ∅ if
s < ∞.

() By definition, x ∈ A(r) if, and only if, F(x, A, t) =  for all t > r. This condition is equiv-
alent to the following: for each s ∈ ]r,∞[, we see that F(x, A, t) =  holds for all t ∈ ]r,∞[,
i.e., x ∈ A(r+s) for all s > .
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() Let r ∈ �(x, A), that is, x ∈ A(r). From the previous item, x ∈ ⋂
s>r A(s), i.e., x ∈ A(s) for

all s > r. So [r,∞[⊆ �(x, A). This proves that �(x, A) is a real non-bounded interval. Let
a = inf�(x, A). It is clear that  ≤ a < ∞. For all s > a we have s ∈ �(x, A), that is, x ∈ A(s).
The previous item implies that x ∈ A(a), so a ∈ �(x, A) and we deduce that �(x, A) = [a,∞[.
Its infimum is a, which is the minimum.

() Clearly, (a) ⇔ (b) ⇒ (c) ⇔ (d). To prove (c) ⇒ (b), suppose that F(x,∅,∞) =  for
all x ∈ X. Then, for all A ∈P(X), by item (), we have F(x, A,∞) ≥ F(x,∅,∞) = . �

The following properties refine the previous items in FA-spaces using property FA.

Lemma . Let (X, F) be a FA-space, x ∈ X, t ≥ , and A ∈P(X).
() F(x, A, t) = F(x, A, t) for all t ∈ [,∞].
() F(x, A, ·) is a nondecreasing function in [,∞].
() A is closed if, and only if, for each x ∈ X such that F(x, A, t) =  for all t > , we have

x ∈ A.
() (X, F) satisfies property FA if, and only if, points are closed subsets, that is, {x} = {x}.
() (A(r))(s) ⊆ A(r+s) for all r, s ∈ [,∞].
() A(r) is closed for all r ≥ .
() The closure A of A is a closed set, that is, A = A.
() F(x, A,∞) = F(x, A(r),∞) for all r ∈ [,∞].

Proof () As A ⊆ A, item () of Lemma . implies that F(x, A, t) ≤ F(x, A, t) for all
t ∈[,∞]. Let t ∈ ],∞[ and let ε ∈ ], t[. Using FA with s = ε >  = r and item () of
Lemma .

F(x, A, t) = F(x, A, t – ε + ε) ≥ F
(
x, A(), t – ε

) ≥ F(x, A, t – ε).

As F(x, A, ·) is left-continuous in t, limε→+ F(x, A, t – ε) = F(x, A, t), and as F(x, A, ·) is left-
continuous in t too, we deduce that

F(x, A, t) ≥ lim
ε→+

F(x, A, t – ε) ≥ lim
ε→+

F(x, A, t – ε)

⇒ F(x, A, t) ≥ F(x, A, t) ≥ F(x, A, t).

Finally, by FA with r =  and t = ∞, we have F(x, A,∞) ≥ F(x, A(),∞) = F(x, A,∞).
() Let t ∈ [,∞[ and s ∈ ],∞[ be arbitrary numbers. Items () and () of Lemma .

imply that, as A ⊆ A(s/), F(x, A, t) ≤ F(x, A(s/), t). Property FA implies that F(x, A, t + s) ≥
F(x, A(s/), t) ≥ F(x, A, t). Finally, by FA with r = , we have F(x, A,∞) ≥ F(x, A(), t) =
F(x, A, t) = F(x, A, t). Therefore, F(x, A, ·) is a nondecreasing function in [, ∞].

() Suppose that (X, F) satisfies the condition FA. Let y ∈ {x}, that is, F(y, x, t) =  for all
t > . So y = x. The converse is similarly true.

() Suppose that r, s ∈ [,∞[ and x ∈ (A(r))(s), that is, F(x, A(r), t) = , for all t ∈ ]s,∞]. If
z ∈ ]r + s,∞[, there exists ε >  such that z > r + s + ε, and then

F(x, A, z) ≥ F(x, A, r + s + ε) ≥ F
(
x, A(r), s + ε

)
= ,

so F(x, A, z) =  for all z ∈ ]r + s,∞]. This means that x ∈ A(r+s). Other cases can be proved
in a similar way. See Remark A. in the Appendix.
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() A(r) = (A(r))() ⊆ A(r+) = A(r).
() A = (A())() ⊆ A(+) = A() = A.
() Taking into account that A ⊆ A(r), F(x, A, t) ≤ F(x, A(r), t) for all t ∈ [,∞]. The op-

posite inequality follows from the condition FA. �

Property () of the previous lemma is not intuitive. Property () of Lemma . means
that the family of closures {A(r)}r≥ is increasing. However, F associates the same value to
all closures when t = ∞. Although it can be less than , the following proposition proves
that it is natural that this number takes the value .

Proposition . Let (X, F) be a FA-space and define the fuzzy set F : X ×P(X)× [,∞] →
[, ], for all x ∈ X, all A ∈P(X) and all t ∈ [,∞], by:

F(x, A, t) =

{
F(x, A, t), if t < ∞,
, if t = ∞.

Then (X, F) is a FA-space, F ≤ F and A(∞)
 = X for all A ∈P(X).

Proof FA to FA are trivial. To prove FA, if t = ∞ or s = ∞, then F(x, A, t + s) =  ≥
F(x, A(r)

 , t). If t, s ∈ [,∞[ and r ∈ [, s[, as F(y, A, ·) is a nondecreasing function in [, ∞],
then

A(r)
 =

{
y ∈ X/F(y, A, t) = ,∀t ∈ ]r,∞]

}
=

{
y ∈ X/F(y, A, t) = ,∀t ∈ ]r,∞[

}
=

{
y ∈ X/F(y, A, t) = ,∀t ∈ ]r,∞]

}
= A(r).

F verifies F(x, A, t + s) = F(x, A, t + s) ≥ F(x, A(r), t) = F(x, A(r)
 , t) = F(x, A(r)

 , t). �

7 The induced topology in FA-spaces
Let (X, F) be a FsA-space. A subset A ∈ P(X) is open (w.r.t. F) if its complementary X�A
is closed (w.r.t. F). The subsets ∅ and X are clearly open (w.r.t. F). Now consider the family
of all open subsets of X:

ϒF =
{

X�A/A ∈P(X)
}

.

To prove that ϒF is, in some cases, a topology on X, the following result is needed.

Proposition . Let (X, F) be a FsA-space, s ∈ [,∞] and A, B ∈P(X) subsets of X.
() A(s) ∪ B(s) ⊆ (A ∪ B)(s).
() If (X, F) verifies the equality in FA and F(x, A, ·) and F(x, B, ·) are nondecreasing in

[,∞], then (A ∪ B)(s) = A(s) ∪ B(s).

Proof () As A ⊆ A ∪ B and B ⊆ A ∪ B, item () of Lemma . implies A(s) ⊆ (A ∪ B)(s) and
B(s) ⊆ (A ∪ B)(s), and then A(s) ∪ B(s) ⊆ (A ∪ B)(s).

() Suppose that (X, F) verifies the equality in FA and F(x, A, ·) and F(x, B, ·) are non-
decreasing. Let x ∈ (A ∪ B)(s) be any point. If s = ∞, then max(F(x, A,∞), F(x, B,∞)) =
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F(x, A ∪ B,∞) = , and we see that x ∈ A(∞), if F(x, A,∞) = , or x ∈ B(∞), if F(x, B,∞) = .
Suppose that s < ∞. In this case:

max
(
F(x, A, t), F(x, B, t)

)
= F(x, A ∪ B, t) =  for all t ∈ ]s,∞].

As max(F(x, A, t), F(x, B, t)) =  for all t ∈ ]s,∞], we can define

t = inf
({

s ∈ [,∞[ /F(x, A, s) = 
})

and t = inf({s ∈ [,∞[ /F(x, B, s) = }), and we have t < ∞ or t < ∞ (even if one of the two
sets is empty; the other set is a non-empty and non-bounded real interval since F(x, A, ·)
and F(x, B, ·) are nondecreasing). Let t = min(t, t) < ∞. If t > s, there exists r ∈ ]s, t[.
As r > s, then max(F(x, A, r), F(x, B, r)) = , so F(x, A, r) =  or F(x, B, r) = . If F(x, A, r) = ,
then t ≤ r and if F(x, B, r) = , t ≤ r. In any case, t = min(t, t) ≤ r, but this contradicts
t > r. So t ≤ s. If t = t ≤ s, then F(x, A, t) =  for all t > t ≥ s, so x ∈ A(s). If t = t ≤ s,
then F(x, B, t) =  for all t > t ≥ s, so x ∈ B(s). In any case, x ∈ A(s) ∪ B(s). �

Theorem . Every FA-space (X, F) satisfies the following properties:
() ∅, X ∈ ϒF .
() The arbitrary intersection of closed subsets of X is also a closed subset of X .
() If (X, F) reaches the equality in FA, then a finite union of closed subsets of X is also a

closed subset of X .

Proof () Let {Ai}i∈I be a family of closed subsets of X and let B = ∩i∈IAi be the intersec-
tion. If B = ∅, B is closed. Suppose that B �= ∅ and let x ∈ B be a point. This is equiva-
lent to F(x, B, t) =  for all t > . As B ⊆ Aj, for each j ∈ I , item () of Lemma . implies
F(x, Aj, t) ≥ F(x, B, t) =  for all t > . As F(x, Aj, t) =  for all t > , we have x ∈ Aj = Aj for
all j ∈ I . So x ∈ ∩i∈IAi = B and B is closed.

() Let A, A ⊆ X be two closed and non-empty subsets of X. From item () of Propo-
sition ., we have A ∪ A = (A ∪ A)() = A()

 ∪ A()
 = A ∪ A = A ∪ A, so A ∪ A is

closed. The rest can be proved by induction. �

Taking the complement in X, the previous result has the following corollary.

Corollary . If an FA-space (X, F) verifies the equality in FA axiom, then the family ϒF

is a topology on X.
In fact, for all x ∈ X, the collection βx = {{x}(r), r > } is a basis of neighborhoods of ϒF at

the point x.

See Proposition A. in the Appendix.
If (X, F) is an FA-space which verifies the equality in the FA axiom, the (fuzzy) topology

in X induced by the fuzzy metric F is the topology ϒF defined in Corollary ..

8 Fixed point theory in FA-spaces
In this section, in order to show that the category of FA-spaces is appropriate to study
fixed point theorems, we present a simple but interesting result in this setting. Its main
advantage is that it can be particularized at the same time to the categories of metric
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spaces, quasi-metric spaces, approach spaces, and fuzzy metric spaces (both in the sense
of Kramosil and Michálek and in the sense of George and Veeramani). Before that, we
present the following notions, which are the natural definitions associated to the topol-
ogy ϒF . Notice that F is not necessarily symmetric, so we must distinguish right and left
notions.

Definition . Let (X, F) be a FsA-space, let x ∈ X be a point and let {xn} ⊆ X be a se-
quence. We say that {xn} is a:

• right-Cauchy sequence if for all r > , there exists n ∈N such that if m > n ≥ n, then
xn ∈ {xm}(r), in the sense that

F(xn, xm, t) =  for all t > r;

• left-Cauchy sequence if for all r > , there exists n ∈ N such that if m > n ≥ n, then
xm ∈ {xn}(r), in the sense that

F(xm, xn, t) =  for all t > r;

• Cauchy sequence if it is both right-Cauchy and left-Cauchy;
• convergent sequence to x if, for all r > , there exists n ∈N such that if n ≥ n, then

xn ∈ {x}(r) and x ∈ {xn}(r).
We say that (X, F) is complete if every Cauchy sequence in (X, F) is convergent to a point

of X.

Remark . Bound and semi-bound sets in FM-space are usually introduced as follows.
Given a non-empty subset A of a FqM-space (X, M,∗), let ϕA the function from [,∞[ into
[, ] defined by

ϕA(t) = inf
{

M(x, y, t) : x, y ∈ A
}

.

As ϕA is nondecreasing on [,∞[, it generates a unique left-continuous function DA from
[,∞[ into [, ] given by

DA() =  and DA(t) = lim
s→t– ϕA(s) for all t > .

The function DA is known as the probabilistic diameter of A. Following [], the subset A
is bounded if limt→∞ DA(t) = , and it is semibounded if  < limt→∞ DA(t) < .

Notice that a subset only containing a pair of points of X must be bounded. But two
possibilities arise when a M-space is seen as a FM-space. From a probabilistic point of view,
() shows that DA(t) does not take the value  when t ∈ [,∞[. But, from a deterministic
point of view, it seems to be reasonable that, when A is bounded, there must exist a point
t such that P(d(a, b) ≤ t) =  for all a, b ∈ A. In fact, our way to embed qM-spaces as FM-
spaces is closer to the second view-point (see Lemma .). Hence, in the following result,
the existence of x seems to be natural, because the set {x, Tx} must be bounded.

Next, we present the main result of this section.
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Theorem . Let (X, F) be a complete FA-space verifying condition FA and let T : X → X
be a self-mapping such that there exists λ ∈ (, ) satisfying

F(Tx, TA,λt) ≥ F(x, A, t) for all x ∈ X, all A ∈P(X)�{∅} and all t > .

If there exist x ∈ X and t ∈ (,∞) such that F(x, Tx, t) = F(Tx, x, t) = , then T has,
at least, a fixed point.

Furthermore, if for all x, y ∈ Fix(T) we have limt→∞ F(x, y, t) = , then T has a unique
fixed point.

Notice that, throughout the proof, we will only need that

F(Tx, Ty,λt) ≥ F(x, y, t) ()

for all x, y ∈ X and all t > . We also point out that the hypothesis for uniqueness is coherent
with Kramosil and Michálek’s original notion (recall ()).

Proof Given the points x ∈ X and t ∈ (,∞) such that F(x, Tx, t) = F(Tx, x, t) = ,
let us define

xn+ = Txn and tn+ = λtn for all n ∈N.

Using the fact that F(x, Tx, t) = , we are going to show that {xn} is a right-Cauchy se-
quence in (X, F). In a similar way, the reader can prove that {xn} is a left-Cauchy sequence
in (X, F) employing that F(Tx, x, t) = .

Notice that as t ∈ (,∞) and λ ∈ (, ), then

{tn} → + and tn+ < tn for all n ∈N.

Moreover, the series

∑
n∈N

tn =
∑
n∈N

λn–t = t
∑
n∈N

λn– ()

is geometric, so it is convergent. We claim that

F(xn, xn+, tn) =  for all n ∈N. ()

Indeed, for n = , it is obvious. Assume that () holds for some n ≥ . Therefore,

F(xn+, xn+, tn+) = F(Txn, Txn+,λtn) ≥ F(xn, xn+, tn) = . ()

Hence () holds for all n ∈N. In particular, () means that

xn ∈ {xn+}(tn) for all n ∈ N. ()
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We claim that

xn ∈ {xn+m}(tn+tn++···+tn+m–) for all n, m ∈N with m ≥ . ()

We proceed by induction on m. If m = , then () reduces to (). Assume that () holds
for some m and we will prove it for m + . Indeed, by (), we have

xn+m ∈ {xn+m+}(tn+m).

If we join this fact with the hypothesis of induction (), and using item () of Lemma .,
we deduce that

xn+m ∈ {xn+m+}(tn+m),
xn ∈ {xn+m}(tn+tn++···+tn+m–)

}

⇒ xn ∈ {xn+m}(tn+tn++···+tn+m–) ⊆ ({xn+m+}(tn+m))(tn+tn++···+tn+m–)

⊆ {xn+m+}(tn+tn++···+tn+m–+tn+m).

Hence, the induction is completed and () holds. In particular,

F(xn, xn+m, t) =  for all n, m ∈N and for all t > tn + tn+ + · · · + tn+m–.

Next, we show that {xn} is a right-Cauchy sequence. Let r >  be arbitrary. By (), as the
series

∑
n∈N tn is convergent, there exists n ∈ N such that

∞∑
n=n

tn < r.

Hence, for all n, m ∈ N such that n ≥ n and m ≥ , it follows from item () of Lemma .
that

xn ∈ {xn+m}(tn+tn++···+tn+m–) ⊆ {xn+m}(r),

which means that {xn} is a right-Cauchy sequence.
In a similar way, using the fact that F(Tx, x, t) = , it is possible to prove that {xn} is a

left-Cauchy sequence in (X, F). As a result, {xn} is a Cauchy sequence in (X, F). As (X, F)
is complete, there exists z ∈ X such that {xn} F-converges to z, that is,

∀r > ,∃n ∈N :
(
n ≥ n ⇒ xn ∈ {z}(r) and z ∈ {xn}(r)).

We claim that z is a fixed point of T . To prove it, let t >  be arbitrary. Since {xn} F-
converges to z, there exists n ∈N such that

xn ∈ {z}(t/) and z ∈ {xn}(t/) for all n ≥ n.

In particular, as

t


<
t


<
t

λ
,
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and z ∈ {xn}(t/), it follows that

F(Tz, z, t) ≥ F
(
Tz, {z}(t/), t/

) ≥ F(Tz, xn+, t/)

= F(Tz, Txn , t/) ≥ F
(
z, xn , t/(λ)

)
= .

This demonstrates that F(Tz, z, t) =  for all t > . By condition FA, we conclude that
Tz = z, that is, z is a fixed point of T .

Next assume that condition (U) holds and let x, y ∈ Fix(T) be two arbitrary fixed points
of T . Therefore, for all t > ,

F(x, y, t) = F(Tx, Ty, t) ≥ F(x, y, t/λ).

By induction, we obtain, for all t > ,

F(x, y, t) ≥ F
(

x, y,
t
λn

)
for all n ∈N.

Letting n → ∞, the sequence {t/λn} positively diverges, so that

F(x, y, t) ≥ lim
n→∞ F

(
x, y,

t
λn

)
= lim

s→∞ F(x, y, s) = 

for all t > . As a consequence, using condition FA, we conclude that x = y, which means
that T has a unique fixed point. �

The first two arguments of F are intrinsically different. Hence, it makes no sense to im-
pose the requirement that F is symmetric. However, to compensate the lack of symmetry
in F , we introduce the following condition.

Definition . Given M > , we say that a FsA-space (X, F) is M-symmetric if F(x, y, t) ≤
MF(y, x, t) for all x, y ∈ X and all t > .

Proposition . If {xn} is a sequence in a M-symmetric FsA-space, then the following state-
ments are equivalent.

() {xn} is a right-Cauchy sequence.
() {xn} is a left-Cauchy sequence.
() {xn} is a Cauchy sequence.

Theorem . Theorem . also holds if we replace the condition that there exist x ∈ X
and t ∈ (,∞) such that F(x, Tx, t) = F(Tx, x, t) =  by the following one:

(�) (X, F) is M-symmetric and there exist x ∈ X and t ∈ (,∞) such that F(x, Tx, t) = .

Proof Repeating, step by step, the arguments of the proof of Theorem ., and using
F(x, Tx, t) = , we deduce that {xn} is a right-Cauchy sequence in (X, F). As (X, F) is
M-symmetric, Proposition . guarantees that {xn} is a Cauchy sequence in (X, F). Then
the proof of Theorem . can be repeated point by point. �
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Example . Let X be the set of all real numbers, R, endowed with the Euclidean metric
dE(x, y) = |x–y| for all x, y ∈ X. Let us consider the mapping FE : X ×P(X)× [,∞] → [, ]
given, for all x ∈ X, all A ∈P(X), and all t ∈ [,∞], by

FE(x, A, t) =

{
, if  ≤ t ≤ δdE (x, A),
, if δdE (x, A) < t or t = ∞,

where δdE is the approach metric defined in Lemma . corresponding to dE . Then (X, FE)
is a FA-space. Furthermore, as (X,dE) is complete, then (X, FE) is also complete. Given
λ ∈ (, ) and μ ∈ R, let T : X → X be the mapping Tx = λx + μ for all x ∈ X. Therefore,
for all x ∈ X, all A ∈P(X)�{∅}, and all t > ,

FE(Tx, Ty,λt) =

{
, if  ≤ λt ≤ δdE (Tx, Ty),
, if δdE (Tx, Ty) < λt

}
=

{
, if  ≤ λt ≤ dE(Tx, Ty),
, if dE(Tx, Ty) < λt

}

=

{
, if  ≤ λt ≤ |(λx + μ) – (λy + μ)|,
, if |(λx + μ) – (λy + μ)| < λt

}

=

{
, if  ≤ λt ≤ λ|x – y|,
, if λ|x – y| < λt

}
=

{
, if  ≤ t ≤ |x – y|,
, if |x – y| < t

}

= FE(x, y, t).

Then T satisfies (). Taking into account that every point x ∈ X verifies F(x, Tx, t) =
F(Tx, x, t) =  for all t > dE(x, Tx), then Theorem . guarantees that T has a unique
fixed point.

Appendix: Some remarks about the proofs
For the sake of completeness, this appendix includes the proofs of some statements used
in this manuscript.

Proposition A. Let d : X × X → [,∞] be a map. Let f , g : X × P(X) × [,∞] → [, ]
be the crisp fuzzy sets of X × P(X) × [,∞] defined, for all x ∈ X, all A ∈ P(X), and all
t ∈ [,∞], as follows:

if inf
a∈A

d(x, a) = ∞, f (x, A, t) =

{
, if t < ∞,
, if t = ∞;

if inf
a∈A

d(x, a) < ∞, f (x, A, t) =

{
, if t ≤ infa∈A d(x, a),
, if infa∈A d(x, a) < t;

g(x, a, t) =

{
, if d(x, a) < t < ∞ or t = ∞,
, in any other case;

g(x, A, t) =

⎧⎪⎨
⎪⎩

, if A = ∅ and t < ∞,
, if A = ∅ and t = ∞,
supa∈A g(x, a, t), if A �= ∅,

considering infa∈∅ d(x, a) = ∞. Then f = g .
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Proof If A = ∅, then

f (x,∅, t) =

{
, if t < ∞,
, if t = ∞

}
= g(x,∅, t).

Suppose that A �= ∅. If infa∈A d(x, a) = ∞, then d(x, a) = ∞ for all a ∈ A. Then

f (x, A, t) =

{
, if t < ∞,
, if t = ∞

}
= g(x, A, t).

Now suppose that infa∈A d(x, a) < ∞. Then

f (x, A, t) =

{
, if t ≤ infa∈A d(x, a),
, if infa∈A d(x, a) < t ≤ ∞ and

g(x, A, t) = sup
a∈A

{
, if t < d(x, a) = ∞ or t ≤ d(x, a) < ∞,
, if t = ∞ or d(x, a) < t < ∞.

Clearly, f (x, A, ) =  = g(x, A, ) and f (x, A,∞) =  = g(x, A,∞). Let t ∈ ],∞[ be a real
number.

If  < t ≤ infa∈A d(x, a), f (x, A, t) = . For all a ∈ A, t ≤ infa∈A d(x, a) ≤ d(x, a), and the
equality occurs if, and only, if, d(x, a) = infa∈A d(x, a) = t < ∞. Then g(x, A, t) = supa∈A  =
 = f (x, A, t).

If t > infa∈A d(x, a), then f (x, A, t) = , and taking into account that infa∈A d(x, a) < t < ∞,
it follows that there exists a ∈ A such that d(x, a) < t. So g(x, A, t) =  = f (x, A, t). In any
case, f = g . �

Remark A. (FA in Proposition .) If δ(x, A ∪ B) = ∞, then δ(x, A) = δ(x, B) = ∞ and

max
(
Fδ(x, A, t), Fδ(x, B, t)

)
= max

({
, if t < ∞,
, if t = ∞

}
,

{
, if t < ∞,
, if t = ∞

})

=

{
, if t < ∞,
, if t = ∞

}
= Fδ(x, A ∪ B, t).

If δ(x, A ∪ B) = δ(x, A) < ∞ = δ(x, B), then

max
(
Fδ(x, A, t), Fδ(x, B, t)

)
= max

({
, if t ≤ δ(x, A) < ∞,
, if δ(x, A) < t < ∞

}
,

{
, if t < ∞,
, if t = ∞

})

=

{
, if t ≤ δ(x, A) < ∞,
, if δ(x, A) < t < ∞

}
= Fδ(x, A ∪ B, t).

Remark A. (FA in Proposition .) If t = ∞ or s = ∞, then Fδ(x, A, t + s) = Fδ(x, A,∞) =
, and this value is trivially greater than or equal to Fδ(x, A(r),∞).

Remark A. (item () of Lemma .) For the cases r < ∞ and s = ∞, given a point x ∈
A(r), it follows that F(x, A, t) =  for all t ∈ ]r,∞]. As F(x, A,∞) = , then x ∈ A(∞) = A(s). If
r = s = ∞, the result is obvious.
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Remark A. (item () of Lemma .) If r = ∞ and s < ∞, clearly A(∞) ⊆ (A(∞))(s). If x ∈
(A(∞))(s), F(x, A(∞), t) =  for all t > s. Using FA, F(x, A,∞) ≥ F(x, A(∞), s + ) = , so x ∈
A(∞).

If r < ∞ and s = ∞, as A ⊆ A(r), then A(∞) ⊆ (A(r))(∞) by item () of Lemma .. Con-
versely, let x ∈ (A(r))(∞), that is, F(x, A(r),∞) = . By FA with t = s = ∞, F(x, A,∞) ≥
F(x, A(r),∞) = , so x ∈ A(∞).

If r = s = ∞ and x ∈ (A(∞))(∞), then F(x, A(∞),∞) = , and by FA, F(x, A,∞) ≥
F(x, A(∞),∞) = , so x ∈ A(∞).

Proposition A. (see []) Let X be a set and, for all x ∈ X, let βx be a non-empty family
of subsets of X verifying the following properties:

() x ∈ N for all N ∈ βx.
() For all N, N ∈ βx, there exists N ∈ βx such that N ⊆ N ∩ N.
() For all N ∈ βx, there exists N ′ ∈ βx such that for all y ∈ N ′, there exists N ′′ ∈ βy

verifying N ′′ ⊆ N .
Then there exists a unique topology τ on X such that βx is a neighborhood system at x.
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