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Abstract. In this work we show the results obtained applying a Unified Dark Matter (UDM)
model with a fast transition to a set of cosmological data. Two different functions to model
the transition are tested, and the feasibility of both models is explored using CMB shift data
from Planck [1], Galaxy Clustering data from [2] and [3], and Union2.1 SNe Ia [4]. These new
models are also statistically compared with the ΛCDM and quiessence models using Bayes factor
through evidence. Bayesian inference does not discard the UDM models in favor of ΛCDM.

1. Introduction
In Unified Dark Matter (UDM) models the role of the dark energy and dark matter are played
by a single fluid. The Equation of State w = p/ρ changes through time, usually from a matter
like era in the past (w ' 0) to a cosmological constant form (w ' −1) or to an effective dark
energy content (w < −1/3). The best known example is the so-called Chaplygin gas [5][6].

Among the different UDM models, the ones with fast transitions are very interesting. In
principle these models can be clearly distinguished from a standard ΛCDM without being ruled
out by observational data. Whereas this is not the case for the generalized Chaplygin gas [7].
Thus, UDM models with fast transitions can provide an alternative explanation of the acceler-
ated expansion of the universe [8], as they can fit the experimental data quite well, while they
provide interesting and different new features. Besides, fast transition UDM models with scalar
fields are also compatible with observational data [9].

A simple set-up parametrizing directly the energy density term [10], instead of the equation
of state parameter wUDM [8], is computationally lighter in likelihood calculations because most
of its important variables required for the numerical calculations are expressed analytically (less
integrals are involved). Here we present two parametrizations for this UDM set-ups with fast
transition and constrain them using CMB, Galaxy Clustering and Supernovae Ia data. Then
we discuss whether they are statistically favoured or not as compared to ΛCDM.
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2. UDM Models
The background geometry considered for the phenomenological UDM models in this case is a
flat Friedman-Lemâıtre-Robertson-Walker (FLRW) metric, ds2 = −dt2 + a2(t)δijdxidxj , where
a(t) is the scale factor as a function of the cosmic time t. We will consider perfect fluids with
fractional densities Ωi as sources; and taking 8πG = c = 1, the Friedman equation takes the
form,

E2(a) = H2/H2
0 =

∑
i

Ωi(a), (1)

where H = ȧ/a is the Hubble function with the dot denoting differentiation with respect to the
cosmic time and H0 being the Hubble constant today.

Being more specific about the sources, we need to clarify the role and form of our proposed
UDM fluid: we want an UDM fluid which exhibit a fast transition from the dark matter stage
to a scenario that resembles a ΛCDM. We propose the analytical form

ΩUDM = Ωt

(
at
a

)3

+ ΩΛ

[
1−

(
at
a

)3
]

Θ(a− at), (2)

being Θ(a− at) a Heaviside function and at the value of the scale factor at which the transition
happens. We can easily see that for a < at the fluid behaves like a pure dark matter fluid, with
energy density Ωt

(at
a

)3
. For a > at, the fluid will behave like (Ωt − ΩΛ)

(at
a

)3
+ ΩΛ, resembling

a ΛCDM scenario.

Given the properties of the Heaviside function, one can identify the usual dark matter density
Ωc with the term Ωta

3
t . Thus, the total matter component will be Ωm = Ωta

3
t + Ωb when the

baryonic matter term is also considered. In principle, there would be a degeneracy between
the Ωc and Ωb terms if we were using only low redshift observational data. As long as we are
going to use high redshift CMB data, this degeneracy is broken. Moreover, using CMB data
makes necessary the introduction of a radiation term too, Ωr(a), which has no influences on the
late-time expansion, but is fundamental in the early stages of the Universe history. Resuming,
the Friedmann equation 1 can be finally written as

E2(a) = Ωca
−3 + ΩΛ

[
1−

(
at
a

)3
]

Θ(a− at) + Ωba
−3 + Ωra

−4 . (3)

The last ingredient missing to model this UDM transition is what Heaviside-like functions to
consider. We will consider two different functions; the first model for the transition will be :

Θ(a− at) =
1

2
+

1

π
arctan (βπ(a− at)) . (4)

The second transition function considered will be:

Θ(a− at) =
1

2
[1 + tanh (2β(a− at))] . (5)

In both cases, the parameter β mainly controls the velocity of the transition, being exactly the
value of the first derivative with respect to the scale factor of the transition function, evaluated
at the transition point at.

3. Observational data
In this section we specify the observational data sets we have used for our analysis, and the
analytical expression of the χ2 we are going to minimize in order to perform our statistical
analysis.
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3.1. CMB data
CMB data are taken from [1], where distance priors are derived from Planck first release data.
The CMB shift parameters are the scaled distance to photon-decoupling surface and angular
scale of the sound horizon at the photon-decoupling epoch

R ≡
√

ΩmH2
0

r(z∗)

c
, la ≡ π

r(z∗)

rs(z∗)
, (6)

where r(z∗) is the comoving distance

r(z∗) =
c

H0

∫ z∗

0

dz′

E(z′)
(7)

and rs(z∗) is the comoving sound horizon

rs(z∗) =
c

H0

∫ ∞
z∗

dz′
cs

E(z′)
≡ c

H0

∫ a∗

0

da′√
3(1 +Rba′)a′4E2(a′)

, (8)

where Rba = 3ρb/(4ργ) = 31500Ωbh
2(TCMB/2.7K)−4a and E(a) is given by eq. 3. Both shift

parameters are evaluated at photon-decoupling epoch z∗. The last shift parameter is the baryon
density Ωbh

2.

The mean values for these shift parameters, their standard deviations and the corresponding
normalized covariance matrix are obtained by [1], from where is possible to construct the co-
variance matrix CCMB.

In order to write the CMB contribution to the χ2, we first define

XCMB =

 la − 〈la〉
R− 〈R〉

Ωbh
2 − 〈Ωbh

2〉

 , (9)

and using the inverse of the covariance matrix CCMB, the CMB contribution to the χ2 term is

χ2
CMB = XT

CMBC−1
CMBXCMB . (10)

3.2. GC data
The Galaxy Clustering (GC) data we use are the measurements of H(z)rs(zd)/c and
DA(z)/rs(zd) from the two dimensional two-point correlation function measured at z = 0.35
by [2] using a SDSS DR7 Luminous Red Galaxies sample, and at z = 0.57 by [3] using the
CMASS galaxy sample from BOSS. Here, H(z) is the hubble parameter; DA(z) is the angular
diameter distance

DA(z) =
c

1 + z

∫ z

0

dz′

H(z′)
; (11)

and the comoving sound horizon rs(zd) is evaluated at the drag epoch.

The Galaxy Clustering contribution is calculated independently for each redshift, χ2
GC =

χ2
GC1 + χ2

GC2, where in each point the term is

χ2
GCi =

1

1− r2
i

(
X12

GCi

σ2
1i

+
X22

GCi

σ2
2i

− 2ri
X1GCi
σ1i

X2GCi
σ2i

)
, (12)

where ri is the correlation between the two functions at each redshift, and

X1GCi =
H(zi)rs(zd)

c
− 〈H(zi)rs(zd)

c
〉, X2GCi =

DA(zi)

rs(zd)
− 〈DA(zi)

rs(zd)
〉 . (13)
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3.3. SNe Ia data
The SNe Ia dataset used is the Union2.1 compilation, made of 580 Type Ia Supernovae
distributed in the redshift interval 0.015 < z < 1.414. The dataset provides the distance
modulus µ(zi) for each supernovae and the full statistical plus systematics covariance matrix.
The distance modulus µ(z) = 5 log10 dL(z) + µ0 is defined using the dimensionless luminosity
distance, which is given by

dL(z) = (1 + z)

∫ z

0

dz′

E(z′)
, (14)

and µ0 is a nuisance parameter involving the value of the Hubble constant H0 and the SNe Ia
absolute magnitude. We will marginalize over µ0 (see ref. [11]). Defining the difference vector
between the model and the observed magnitudes

XSN =

 µ(z1)− µobs(z1)
. . .

µ(zN )− µobs(zN )

 , (15)

and the covariance matrix C given by [4], we construct the terms a ≡ XSN
T · C−1 · XSN,

b ≡ XSN
T ·C−1 ·1, and d ≡ 1T ·C−1 ·1, being 1 the unitary vector. With these terms, the SNe

Ia contribution to the χ2 marginalizing over µ0 is

χ2
SN = a+ log

d

2π
− b2

d
. (16)

4. Discussion
The statistical analysis will be performed by minimizing the χ2 function using Markov Chain
Monte Carlo (MCMC) Method [12][13][14]. The statistical convergence of each MCMC case has
been tested using the method described in [15]. We have tested a fast transition UDM model,
with two type of Heaviside-like functions. In order to state the effective statistical weight and
validity of our models, we have also analysed the ΛCDM model and the quiessence model as to
be compared with.

The priors for the free parameters are: a positive matter density Ωm > 0 (or Ωc > 0 for
UDM models), proper baryonic bound 0 < Ωb < 1, a positive Hubble function E(a) > 0, and
0 < at < 1 because we want the transition have happened. A gaussian prior for the Hubble
constant is taken around H0 = 100 h kms−1Mpc−1 = 69 kms−1Mpc−1. In order to show the
same parameters in all the models, the parameter Ωc is used in both ΛCDM and quiessence
models, simply transforming Ωc = Ωm − Ωb.

Table 1. Median values for the free parameters using CMB, GC and SN data. The
median value for the χ2

red and evidence in favour of ΛCDM is also shown.

Model Ωc Ωb parameter ]3 χ2
red lnBiΛ

arctan(β = 500) 0.2432+0.0067
−0.0064 0.04602+0.00088

−0.00090 at = 0.161+0.074
−0.094 0.9525 +0.010

tanh(β = 500) 0.2433+0.0070
−0.0065 0.04606+0.00081

−0.00095 at = 0.159+0.078
−0.094 0.9522 −0.015

ΛCDM 0.246+0.010
−0.010 0.04696+0.00097

−0.00097 − 0.9472 0

Quiessence 0.242+0.013
−0.013 0.0460+0.0024

−0.0023 w = −1.028+0.064
−0.067 0.9488 −0.330
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Figure 1. Confidence regions for the arctan (upper row) and tanh (lower row) models, dark
grey areas are 1σ region and light grey areas are 2σ region.

Preliminary fits have been carried out using MCMC chains in which the tuning parameter
β was left free, but convergence issues occurred. In the end, in order to get reasonable results,
it was fixed around a possible minimum. The value of around β = 500 for both models were
hinted by those runs, which is also supported theoretically by [10].

Figures 1 show the constrains of the free parameters of the UDM models, and figure 2 for
quiessence and ΛCDM models. The table 1 shows the mean value of the constrained parameters.

A more robust conclusions for model selection can be made with the Bayes factors using the
evidence. For the computation of the evidence a nested sampling algorithm has been used [16].
With the resulting evidence, the Bayes factor is obtained comparing the models to the ΛCDM,
where the results are shown in the last column of table 1.

All the Bayesian approach shows that the proposed UDM model is worth of consideration, as
it can be seen in the table 1 where all the models get a very similar evidence and the difference,
according to the so-called “Jeffreys’ scale”, is inconclusive for all of them. The Arctan model
gets even a slightly better evidence than ΛCDM model.

In this work we have analysed two possible functions for the Heaviside function of the fast
transition UDM model, both with a quite good results. Due to these results, it could be
interesting to analyse deeper other possible Heaviside-like functions in a further research. In
any way, the results show that UDM models could be interesting.
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Figure 2. Contour plots for the quiessence (first 3 images) and ΛCDM (last) models, dark grey
areas are 1σ region and light grey areas are 2σ region.
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