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Prologue

The work presented in this Thesis explores and tests the observational signatures of cosmic strings.
The Thesis is composed by several different projects made in collaboration with my supervisor
Jon Urrestilla and our collaborators: David Daverio, Mark B. Hindmarsh, Martin Kunz, Andrew
R. Liddle and Irene Sendra.

The cosmological standard model has successfully been confirmed by increasingly accurate
observations as the correct description of the universe. Nevertheless there are still several unan-
swered questions regarding the fundamental physics behind some of the processes taking place
at the early universe, which mainly lie in the connection between the cosmological and high en-
ergy physics descriptions of the universe. One of the most promising candidates to provide such
an answer are topological defects. They are predicted in many well motivated high energy and
inflationary models, and could survive the cosmological evolution and have observational conse-
quences. Topological defects could be formed at cosmological phase transitions that occurred in
the primitive universe. Thus determining the nature and properties of the cosmic defects would
provide an invaluable window towards the physics governing the early universe.

In Part I of this Thesis the required theoretical background is introduced. It is composed of two
separate Chapters. In the first, Chapter 1, we review the most important aspects of the standard
cosmological model, detailing the theory of the Cosmic Microwave Background and data analysis
techniques. Cosmic defects, including cosmic strings, are discussed in Chapter 2. In the first
part of this Chapter we describe the basic properties of several defects and their formation at
cosmological phase transitions. In the second part, in turn, we focus on field theory simulations
of defects and the computation of their observational signatures. These two Chapters are based
on previous articles, reviews and books in the literature.

The original investigations performed during the PhD research period are presented in Part II of
the Thesis. In Chapters 1 and 2 we compare CMB power spectra predictions with measurements,
mainly CMB. It has to be noted that the analyses of these Chapters were based on datasets and
results available in those years, and hence some assumptions might have changed and results have
to be interpreted in that context. For instance, what the cosmological community understands as
the standard model has evolved during these years, and now includes some ingredients that were
not considered then, such as the non-zero sum of the mass of the neutrinos. On the other hand,
in Chapters 3 and 4 we explore different numerical simulations towards a better characterization
of the properties of field theoretical models for cosmic strings.

The discussion of Chapter 1 is centered on the possible relation between cosmic strings and
the apparent excess of relativistic components. The work, performed in 2012, was motivated
by measurements of the CMB anisotropies available then, which indicated that the number of
relativistic species present at the primitive universe was higher than predicted by the standard
particle model. We investigated whether cosmic strings through the stochastic gravitational wave
background induced by them could be the responsible for the measured excess. In order to try to
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answer that question, we performed a parameter space likelihood analysis fitting CMB (WMAP7
and SPT) and non-CMB (HST and BAO) data with models containing non-standard ingredients
such as defects and/or other relativistic species. The procedure and results of this chapter are
published in the following paper:

• Correlations between cosmic strings and extra relativistic species
J. Lizarraga, I. Sendra, J. Urrestilla, Phys. Rev. D 86, 123014 (2012). arXiv:1207.6266.

Chapter 2 discusses and analyzes B-mode polarization contributions of different cosmic defects:
cosmic strings, semilocal strings and textures. The work presented in this Chapter tried to answer
questions placed soon after the release of the BICEP2 data and contributed also in the fast moving
research atmosphere of the moment. It is based on two published works:

• Can Topological Defects Mimic the BICEP2 B-Mode Signal?
J. Lizarraga, J. Urrestilla, D. Daverio, M.B. Hindmarsh, M. Kunz, A.R. Liddle, Phys. Rev.
Lett. 112 171301 (2014). arXiv:1403.4924.

• Constraining topological defects with temperature and polarization anisotropies
J. Lizarraga, J. Urrestilla, D. Daverio, M.B. Hindmarsh, M. Kunz, A.R. Liddle, Phys. Rev.
D 90, 103504 (2014). arXiv:1408.4126.

In the first, which was made public just a week after BICEP2 announcement, we explored
qualitatively the possibility of cosmic string being responsible for the total signal measured by the
BICEP2 experiment. The second work complemented the previous qualitative paper by providing
a comprehensive analysis of the defect contribution to the microwave anisotropies, both in tem-
perature and polarization. In order to accomplish that, we performed Markov Chain Monte Carlo
analyses of the parameter space fitting BICEP2 data with and without other CMB experiments
(Planck, WMAP9 polarization, SPT/ACT), using models where the contribution of defects were
added to other possible B-mode sources such as inflationary gravitational waves and astrophysical
dust.

In Chapter 3 we present updated energy-momentum correlations and CMB power spectra for
Abelian Higgs cosmic strings. We revisit approximations and assumptions done in previous field
theoretical works towards a better characterization of the CMB predictions for cosmic strings. The
biggest field theory simulations to date are employed to obtain energy-momentum correlators. The
evolution of correlators across cosmological transitions, which had been a source of uncertainties
in previous works, has also been addressed in order to get a correct description of the source
functions required for CMB power spectra calculations. Finally updated CMB power spectra
predictions are shown. The work done in this chapter can be found in the following two papers:

• Energy-momentum correlations for Abelian Higgs cosmic strings
D. Daverio, M.B. Hindmarsh, M. Kunz, J. Lizarraga, J. Urrestilla, Submitted to Phys. Rev.
D. arXiv:1510.05006.

• Improving CMB power spectra predictions for Abelian Higgs cosmic strings
D. Daverio, M.B. Hindmarsh, M. Kunz, J. Lizarraga, J. Urrestilla, In preparation.
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In the last chapter of this work, Chapter 4, field theoretical simulations are used to describe and
understand the cosmological evolution of interconnected superstrings. Interconnected superstring
networks composed of fundamental F -string, string-like D-branes and composed bound states are
predicted in brane inflation models. Field theory simulations, using effective models, are one of
the most interesting ways to try to characterize the evolution of superstring networks. We perform
the biggest and most accurate field theory simulation to date, so as to analyze the origin of some
discrepancies between the outcome of simulations and theoretical predictions found in previous
works. In order to accomplish that, we propose a new initial configuration for the network, where
pq-bound strings are present from the beginning of the simulation, coexisting with another string
network. Velocities of the network and bound states are also calculated. This Chapter is based
on the following article:

• Survival of pq-superstrings in field theory simulations
J. Lizarraga, J. Urrestilla, Submitted to JCAP arXiv:1602.08014.
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1 Cosmology and early universe

1.1 Cosmological background
The humanity, during its whole history, has observed and studied with curiosity the sky. The
complete understanding of its details requires a proper mathematical structure where predictions
can be compared with observations. Newtonian mechanics and the newtonian theory of gravity
were the first theories that provided the indispensable mathematical structure with remarkable
results, predicting successfully the dynamics of celestial bodies and their orbits.

Cosmology is the branch of physics that studies and describes the universe as an entity. Using
the most possible general statements, cosmology explores the structure and the formation and
evolution of the universe using different perspectives. Newtonian description of the universe
was restricted in this regard and such general questions about the universe remained beyond its
applicability. It was in the beginning of the last century, when Einstein proposed his theory of
general relativity, when cosmology was provided with the ideal mathematical framework to develop
a predictive and reliable model for the description of the universe.

Within the framework supplied by general relativity, it has been possible to establish a model
for the universe that is successful in its predictions, which englobes all its evolution and is widely
accepted by the cosmological community. The standard cosmological model is based on two
fundamental hypotheses, encapsulated in the so-called cosmological principle. In the literature,
the cosmological principle has been treated as the generalization of the Copernican principle and
states the following:

1. The universe is isotropic. The universe has rotational invariance and hence it is the same
in all directions of the sky.

2. The universe is homogeneous. The universe has translational invariance and thus all points
are equivalent, i.e. there are no privileged points in the universe.

It is worthwhile to note that these two hypotheses should not be taken strictly at all scales.
It is evident that the observable stars or galaxies do not follow an isotropic and homogeneous
formation and clustering pattern. In other words, the cosmological principle does not hold locally
and must be considered as a global feature of the universe at very large scales. Therefore, it is
desirable to define our universe as isotropic and homogeneous except for local irregularities. A
very robust evidence of the isotropy of the universe is given by cosmic microwave background
experiments, confirming the existence of such radiation background which is highly isotropic and
is composed of photons that decoupled when the universe was really hot and dense (see section
1.2).
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1.1 Cosmological background

On the other hand, our universe is not homogeneous in time, i.e. the universe is not static,
instead, it is expanding. This was firstly pointed out by E. Hubble in 1929 when he discovered,
by analyzing the relative motion of galaxies, that the universe was indeed expanding [113]. What
Hubble measured was that the velocity at which galaxies were moving away from us increased
with distance and proposed the so-called Hubble’s law:

v = H0d , (1.1)

where H0 is the Hubble’s constant and d is the physical distance to the galaxy.
The expansion of the universe places an interesting scenario: if the universe is and has been

expanding, it must have been smaller. Consequently extrapolation inevitably yields to a very
important conclusion: it must have initiated from a singular point, the big bang singularity. The
current cosmological standard model, or similarly the hot big bang model, assumes that the current
evolution of the universe started from very energetic singular point and evolved and cooled down
due to the expansion. CMB radiation is again one of the central pillars of the hot big bang model.

1.1.1 FLRW metric and Friedmann equations
Einstein’s theory of gravity is a geometrical theory, where the space-time is perturbed by the
presence of matter, but at the same time dictates how the matter content has to move. Both
sectors are related by the Einstein’s field equations [143]:

Rµν −
1
2gµνR = 8πGTµν , (1.2)

where G is the Newton’s constant. The metric of the space-time is gµν ; Rµν and R are the Ricci’s
tensor and scalar respectively and can be calculated from the expression of the metric. Tµν , in
turn, is the energy momentum tensor of the constituents of the universe, which are described by
perfect fluids in an homogeneous and isotropic universe [217].

The basic ingredient of the space-time sector of the general relativity is the metric, which
dictates how distances have to be measured. In relativistic cosmology the metric that describes
the global features of the universe, i.e. the isotropy, homogeneity and expansion, are encapsulated
in the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric (ηµν). Essentially the FLRW metric
includes the isotropy and homogeneity of the universe considering spherically symmetric spaces at
each time slicing, which are the most symmetric possible spaces. The line element in the FLRW
metric reads [217],

ds2 = ηµνdx
µdxν = −dt2 + a(t)2

(
dr2

1−Kr2 + r2(dθ2 + sin2 θdφ2)
)
, (1.3)

where a(t) is the scale factor and K is the curvature of the space. The metric represents a slicing
of space-time with spatial slices that are rescaled by the scale factor a(t), which is directly related
to the expansion. Depending on the curvature parameter the geometry of the space varies:

• K < 0 Hyperbolic space or open universe.

• K = 0 Flat space.

• K > 0 Sphere or closed universe.

The equations of motion are obtained solving Eq. (1.2) considering a FLRW universe and
the perfect fluid expression of the energy momentum tensor. In principle without symmetry
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Chapter 1. Cosmology and early universe

assumptions there are 10 such equations, however since the FLRW metric is highly symmetric
they reduce just to 2:

(
ȧ

a

)2
= 8πG

3
∑
i

ρi −
K

a2 , (1.4)

ä

a
= −4πG

3
∑
i

(ρi + 3pi). (1.5)

where ρ and p are the energy density and pressure of each cosmic specie.

These are the so-called Friedmann equations. The first relates the evolution of the different
forms of energy to the expansion of the universe. Based on this equation, it it is customary to
define the Hubble parameter H = ȧ/a. With this definition the Hubble constant (H0) is just the
Hubble parameter evaluated today. The second equation, in turn, describes the acceleration of
the expansion.

Combining both equations we can obtain the continuity equation or the covariant conservation
of the energy-momentum tensor:

− ρ̇− 3 ȧ
a

(ρ+ p) = 0 . (1.6)

Most of the relevant fluids in cosmology obey the barotropic equation of state: p = ωρ. Under
this consideration, the energy densities evolve as:

ρ ∝ a−3(1+ω) . (1.7)

The ordinary matter content of the universe is composed by ultra-relativistic particles or radi-
ation and non-relativistic particles. In the case of ultra-relativistic particles one can prove that
ω = 1/3 and therefore Eq.(1.7) becomes,

ρm ∝ a−4. (1.8)

For the non-relativistic matter, the pressure is negligible comparing to the density, hence ω ≈ 0.
Therefore,

ρr ∝ a−3. (1.9)

The non-relativistic content of the cosmos is divided into 2 categories. On the one hand, part
of the non-relativistic energy density is stored in ordinary matter, that is, baryonic matter that
can interact electromagnetically. The rest of the energy, on the other hand, is stored in cold
dark matter. Dark matter was hypothesized to account for discrepancies between the motion
of large astronomical objects and theoretical predictions based on ordinary matter composition.
However, nowadays it is indispensable for the standard model and would account for most of the
non-relativistic matter of the universe, though the fundamental physics behind it is still unknown.

Equations (1.8) and (1.9) show that the radiation dominates over other species at early times,
while non-relativistic matter become more important at latter times. The history of the universe
and the most important epoch of the evolution of the universe will be briefly described in Sec. 1.1.4.
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1.1 Cosmological background

Accelerated expansion and dark energy

In the nineties two independent group of astronomers discovered that not only is the universe
expanding, but the expansion is also accelerated. They measured the luminosity of several distant
supernovae and found that they were dimmer than expected in an non-accelerated or decelerated
universe. Nowadays the acceleration of the expansion has been evidenced and confirmed by
a variety of experiments: supernovae [94, 100, 167, 195], measurement of cluster properties
[34, 35, 83, 211], anisotropies of the CMB [20, 21, 110], cosmic shear measured by weak lensing
[168, 208] and Lyman-α forest absorptions [58, 141].

The acceleration could not be explained by ordinary species of the standard model, hence it
was evident that an extension of the standard model was required. The most common approach
is to consider an additional ingredient into the picture, dark energy, a energy component with
negative pressure that would counteract the gravitational attraction and drive the acceleration of
the expansion. It has to be noted that there exist alternatives that try to explain the observa-
tions within modified gravity structures without dark energy, but they require the breakdown of
Einstein’s gravity at large scales.

1.1.2 The concordance model: ΛCDM

The simplest description of the dark energy is given by a perfect fluid with ω = −1, which
historically has been referred as the cosmological constant (Λ). It was Einstein himself who
postulated in the first place the need of the cosmological constant so as to get a static universe,
but abandoned the concept after Hubble’s discovery of the expansion of the universe. Life’s
coincidences, Λ was recovered to account for the accelerated expansion of the universe. It can be
included naturally in Einstein’s equations in the following way:

Rµν −
1
2gµνR = 8πGTµν + Λgµν , (1.10)

and the modified Friedmann equations are:(
ȧ

a

)2
= 8πG

3
∑
i

ρi −
K

a2 + Λ
3 , (1.11)

ä

a
= −4πG

3
∑
i

(ρi + 3pi) + Λ
3 . (1.12)

It is also convenient to define the dimensionless energy densities for each species:

Ωi = ρi
ρc
, (1.13)

which are defined in terms of the critical energy density: ρc = 3H2

8πG .

With this re-parametrization Eq. (1.11) becomes:

(Ωm + Ωr + ΩΛ)− 1 = K

(aH)2 , (1.14)

where ΩΛ = Λ
3H2 and Ωm = Ωb + Ωc is the sum of the baryonic and dark matter energy densities.

Given Eq. 1.14 we can relate the spatial curvature with the total energy content of the universe.
Indeed, current observations from the CMB [21] give a value |ΩK| = |K/(aH)2| < 0.005, which
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Chapter 1. Cosmology and early universe

means that the universe is really close to spatial flatness and that the total energy density of the
universe is almost 1.

Currently accurate CMB observations have depicted a detailed picture of the matter content
of the universe. According to these measurements, the percentual energy density of the universe
today is dominated by dark energy (68.3%), followed by dark matter (26.8%), and ordinary matter
(4.9%).

In accordance with Occam’s razor, six is the minimum number of independent parameters that
is is required to describe properly the concordance model:

1. Ωbh
2: Physical baryon density.

2. Ωch
2: Physical cold dark matter density.

3. θ: Approximation to the ration of the sound horizon at recombination to the angular
diameter distance. It is directly related to the position of the first acoustic peak and very
sensitive to changes in the geometry of the universe.

4. κ: Reionization optical depth to last scattering. κ provides information about the ionization
state of the universe and gives the probability that a given photon scatters once. In the
literature it is also referred as τ .

5. ns: Spectral index of scalar perturbations.

6. As: Amplitude of the primordial super-horizon power in the curvature. Usually re-parametrized
as ln(1010As).

The last two parameters of the ΛCDM set are inflation parameters that will be defined in the
next section. In principle any other cosmological parameter is either fixed by the model or derived
from the independent parameters. Moreover, sometimes it is common to vary the set and include
different parameters, for instance a typical alternative set would also include the Hubble’s constant
H0 (or its reduced version h) or the age of the universe t0.

Ωbh
2 0.02225 ± 0.00016

Ωch
2 0.1198 ± 0.0015

θ × 100 1.04077 ± 0.00032

κ 0.079 ± 0.017

ns 0.9645 ± 0.0049

ln(1010As) 3.094 ±0.034

H0 67.27 ± 0.66

Table 1.1: Mean and standard deviations of the PL parameters as determined by Planck [21]. We also
include the value of H0 for completeness.

We adopt the nomenclature introduced in [44] and we will denominate the set of parameters
that define the ΛCDM cosmology as the Power-Law (PL) model. Table 1.1 shows the most
up-to-date values for the PL parameters as determined by the Planck experiment [21], where
we also include the value of H0 for completeness. Throughout this Thesis in order to explore
possible scenarios beyond the standard model, we will add some extra parameter to the PL model:
relativistic degrees of freedom Neff , amount of inflationary gravitational waves r (introduced in
the next section) and/or defects parametrized as Gµ (the exact definition of Gµ can be found in
the next Chapter).
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1.1 Cosmological background

1.1.3 Inflation

Inflation is an extension of the standard cosmological model that considers a period of very rapid
and accelerated expansion in the initial stages of the universe [95, 129]. It was initially proposed
in order to avoid some of the shortcomings of the standard Big Bang scenario. The description
of the initial phases of the universe given by a universe filled only with ordinary matter (ω ≥ 0)
does not fit with current observations.

Let us now review the shortcomings of the Big Bang model and how inflation can avoid them.

1. The flatness problem or fine tuning of the initial conditions.

ΩK is defined as:

ΩK = − K

a2H2 . (1.15)

It scales as a−2 and comparing to how radiation (a−4) and matter (a−3) scale, it means
that its relevance is greater at late times than at earlier ones. Currently, however, the nearly
flat universe picture is robustly confirmed by observations (|ΩK | < 0.005). Thus, if the
curvature parameter is so small today, it must have been much smaller in the early universe,
e.g. 10−18 at big bang nucleosynthesis. A possible solution to this problem is that the
universe started from a very precise, but highly unlikely, initial state K = 0, which is usually
referred as the fine tuning problem.

Inflation proposes a natural and elegant solution to this problem. Assuming that the early
universe was dominated by the inflaton field or equivalently by a fluid with negative pressure
or ω = −1/3, Eq. (1.11) can be written as:

H2 ≈ Λ
3 , (1.16)

and this means:

a(t) = exp

√Λ
3 t

 ⇒ |ΩK | ∝ exp

−
√

4Λ
3 t

 . (1.17)

Therefore with the above expression there is no need to fine tune the initial conditions.
Regardless of the initial value of the curvature, inflation forces it to be very small.

2. Horizon problem.

The horizon problem comes from the similarity of regions that apparently had never been
causally connected. If we look at the CMB, patches of the background that did not have
time to causally connect before recombination, look surprisingly similar. So how can such a
similarity be explained? As in the previous point, a possible explanation could be that the
universe chose ultra-homogeneous initial conditions, which is again a very unlikely possibility.

However, the problem disappears if we adopt the inflationary point of view. In an exponen-
tial expansion, causal horizons do not grow with time as would do in radiation or matter
dominated universes, instead, they decrease. In other words, regions that had once been
in causal contact before inflation were moved away rapidly. Therefore regions that appear
to be causally uncorrelated in the last scattering surface, could have previously been in
contact.
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Chapter 1. Cosmology and early universe

3. Magnetic monopole or relic particle abundance problem.

Grand unified theories predict the formation of extremely heavy particles at the phase transi-
tions that took place in the early universe. Those non-relativistic relics, such as the magnetic
monopole, would immediately dominate the evolution of the universe, i.e. the domination
of radiation and ordinary non-relativistic mater could never took place.

Inflation could solve the problem provided that it took place after the creation of such
dangerous relic particles. Hence, monopoles and other relics dilute away in the exponential
expansion and became irrelevant comparing to radiation and matter.

As with the late accelerated expansion of the universe, we need an extra component that could
drive this initial exponential expansion. In the simplest description of inflation the exponential
expansion is driven by the vacuum energy of a scalar field, the inflaton, with a self-interacting
potential. In essence, the inflation rolls slowly towards its ground state and under this peculiar
conditions acquires negative pressure.

Inflation is also very powerful in its predictions and has successfully been supported by modern
and accurate observations as the best model for the origin of density fluctuations that lead to
the observed large-scale structure. According to it, quantum fluctuations of the inflaton field
were stretched by the exponential expansion and became of macroscopic size. In this sense, the
confirmation of inflation will relate for the first time quantum and general relativistic theories.

Quantum fluctuations of the inflaton field perturb the background space-time. These perturba-
tions are classified into density perturbations (scalars) or gravitational waves (tensors). In principle,
vector perturbations are also present but they decay and so they are not considered. Scalar and
tensor perturbations are characterized by their power spectra, which typically are written as:

PR(k) = As

(
k

k∗

)ns−1+ 1
2dns/d ln k ln(k/k∗)

, (1.18)

Pt(k) = At

(
k

k∗

)nt

. (1.19)

where k∗ is the pivot comoving wavenumber. As and At are the scalar and tensor amplitudes, and
ns and nt represent the spectral index of both power spectra and determine the tilt of it. Note
the different definitions for the spectral indexes, while ns = 1 gives the Harrison-Zel’dovich model
for scale invariant scalar perturbations [97, 221], nt = 0 gives the scale invariance for tensors.
Finally, dns/d ln k ln(k/k∗) is the running of the scalar spectral index1.

In principle the total amount of scalar and tensor perturbations produced by inflation are
totally independent, up to a consistency relation for single-field inflation models. Thus, with
these definitions, it is very useful to define the tensor-to-scalar ration, r, the relative ratio of
tensor with respect the scalar perturbations.

r = PR(k∗)
Pt(k∗)

. (1.20)

The exact amount of tensor perturbations is strongly model dependent, ranging from almost neg-
ligible contributions in string theory (typically O(10−23)), to fairly measurable amounts (O(10−2)
or O(10−3)) in single field inflation models.

1Sometimes the running of the running of the scalar spectral index and the running of the tensor spectral index
are also included.
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1.1 Cosmological background

1.1.4 Brief thermal history
In this section we will briefly summarize the most important and relevant events of the formation
of the current universe from the thermal point of view. The thermal history is the high energetic
analysis of the evolution of the universe, which explores how fundamental particles and forces
acting on them have evolved. As such, some definitions of cosmological events acquire different
meaning. The most characteristic, and sometimes confusing, example is the big bang. In the
general relativistic description the big bang represents the hypothetical initial singularity of the
space-time. The thermal or high energy interpretation, however, often calls big bang to the
moment when the universe filled (or re-populated) with all particles, which in the inflationary
cosmology is represented by the reheating.

The events are ordered chronologically following the decreasing of the temperature of the
universe. We include also the energy scale and the approximate age of the universe for the events
relevant for this Thesis.

• Planck epoch: initial singularity predicted by the standard cosmological model, which cannot
be properly studied without a consistent quantum theory of gravity. Hypothetical separation
of gravity from other fundamental forces of nature, also known as graviton decoupling. The
gravitational wave background formed by primordial gravitons would provide the picture of
the first instants of the universe.

• Inflation and reheating (t ∼?, duration unknown): inflation is the early accelerated expan-
sion process that solves the flatness, horizon and relic particle abundance problems. In
principle driven by a scalar field with negative pressure. Reheating is the hypothetical pro-
cess that filled the universe with all the particles. Although the theoretical and experimental
status of inflation is better stablished, the exact realization of both processes is still very
model dependent. The universe after inflation/reheating was composed by a very relativis-
tic and thermalized fluid, the primordial plasma, where all the particles were in thermal
equilibrium.

• Non-standard model phase transitions and baryogengesis (1016GeV. T . TEW ∼ 100GeV):
from the unification of all forces described by Grand unification theories (GUT), splitting
of the fundamental forces in strong and electroweak nuclear forces through different phase
transitions. GUT theories are motivated by the unification of all forces, however there exist
many possible realizations for the unified interaction that consider different gauge symme-
tries: SU(5), SO(10)... Topological defects might have been created at such symmetry
breakings, though the exact sequence of them is still unknown. Moreover, possible origin
of the matter/anti-matter asymmetry or baryogenesis. It was between the reheating and
the electroweak phase transition when the hypothetical supersymetry also may have broken
down.

• Standard model phase transitions: particles acquired mass in the electroweak phase transi-
tion (TEW ∼ 100GeV) through the Higgs mechanism. Quark and gluons, previously free at
high temperatures, formed bound states and are confined to form baryons and mesons. This
process is usually known as quantum chromodynamics phase transition (TQCD ∼ 200MeV).

• Neutrino decoupling (t ∼ 0.2 s, T ∼ 0.8− 2 MeV): weak interaction fell out of equilibrium
and neutrinos, which only interact weakly with other particles, decoupled from the primordial
plasma. Those primordial neutrinos formed the cosmological neutrino background, which
could allow probing deeper than the CMB in the early universe.

10



Chapter 1. Cosmology and early universe

The role played by the neutrinos at early physics goes beyond that. Neutrinos, due to their
extreme low masses, act as massless particles and contribute considerably to the radiation
energy density. Typically it is defined as,

Ωr = Ωγ

(
1 + 7

8

( 4
11

)4/3
Neff

)
, (1.21)

where Ωγ is the dimensionless energy density of photons and Neff is the number of relativistic
species.

The standard model predicts 3 neutrino families and gives Neff = 3.046, which also accounts
for corrections due to non-instantaneous neutrino decoupling. In principle, any other possible
relativistic specie present at the early universe would contribute to Neff , e.g. another neutrino
family would contribute one unit to Neff . In Chapter 1 of Part II, we explore extra radiation
contributions and their relation with gravitational waves seeded by networks of cosmic
strings.

• Electron-positron annihilation: temperature fell below the electron mass threshold and
electron-positron pairs began to annihilate. After that a tiny excess of electrons over
positrons were left in equilibrium with photons. The temperature of the photons increased
due to the energy transferred by the electrons.

• Big Bang nucleosynthesis: temperature decreased so that bound nuclear structures could
be formed: mainly Helium-4 nuclei as well as tiny amounts of other light elements such as
Helium-3, Deuterium, Lithium-6... The prediction of the abundances of light elements has
been one of the most successful predictions made within the hot big bang model.

• Radiation-matter equality (t ∼ 60.000 years, T ∼ 1 eV): transition from radiation dominated
universe to matter dominated universe happened when the energy densities of radiation and
matter equated.

• Recombination and photon decoupling (t ∼ 380.000 years, T ∼ 0.3 eV): electrons and
protons of the primordial plasma recombine to form neutral hydrogen atoms. Due to the low
density of free electrons left by recombination, Thomson scattering was no longer efficient.
Photons decoupled from the primordial plasma and the universe become transparent to
them. The CMB is composed by photons from decoupling and the moment at which
photons decoupled is called the last scattering surface. The theory of the CMB will be
reviewed in the next section.

• Structure formation (t ∼ 1 − 13.7 Giga-years): inhomogeneities of the primordial plasma
evolved via gravitational instability and formed large scale structure: stars, galaxies, clus-
ters...

• Today (t ∼ 13.7 Giga-years): current situation, experiencing a transition from matter
domination to dark energy domination, characterized by the accelerated expansion of the
universe. Total energy is distributed in the following way: 68.3% dark energy, 26.8% dark
matter, 4.9% baryonic matter and negligible radiation contribution.

11



1.2 Cosmic Microwave Background

1.2 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a relic radiation composed of photons that decou-
pled from the primordial plasma when the universe was approximately 380.000 years old. It is
characterized by a thermal blackbody spectrum of T = 2.725± 0.001K which is isotropic up to
O(10−5) deviations. Although it had been theoretically predicted within the hot big bang model,
it was not measured until the 60’s by Penzias and Wilson [156]. Its discovery confirmed the idea
of a very hot and dense early universe and ever since it has been one of the most important probes
of the standard cosmological model.

Most of the information of the underlying physics of the CMB, nonetheless, is not contained
in its isotropy, but in its anisotropies. The CMB essentially is a snapshot of the universe at
decoupling, when the photons dropped out from the primordial plasma because they were no
longer able to ionize atoms. Anisotropies are just the projection of the density inhomogeneities in
the primordial photon-baryon plasma predicted by inflation that lead to the large scale structure
of the universe. Moreover, the relic photons travelled almost unperturbed until today, thus CMB
provides an invaluable window into the physics governing the early universe.

The experimental confirmation of the CMB anisotropies did not come until 1992, when the
COBE satellite [191] measured them. Subsequent more accurate experiments [15, 21, 110, 121],
improved the measurements producing high precision maps as well as power spectra of the
anisotropies. In Fig. 1.2 we show the CMB map measured by the Planck collaboration and
released in 2015.

CMB anisotropies can be calculated evolving the primordial inhomogeneities within the cosmo-
logical perturbation theory. The evolution of the metric perturbations is governed by the linearized
Einstein’s equations, whereas the evolution of the distribution function of the constituents of the
universe by the Boltzmann equation (see [134] and [76] for a wider view of this topic in different
gauges). There exist several numerical Einstein-Boltzmann equation solvers publicly available.
The most commonly used are CAMB [127] and CLASS [49, 126].

Temperature anisotropies are usually described by the multipole expansion of the temperature
field, which given the spherical symmetry can be expanded in spherical harmonics (Y m

` ):

∆T
T

(n̂) =
∑
`

∑̀
m=−`

Θ`mY
m
` (n̂) , (1.22)

where ` is the multipole moment and n̂ is an unitary vector pointing in the line of sight. T is
the average temperature and ∆T are the deviations from it. The coefficients Θ`m describe the
temperature perturbation and obey:

〈Θ∗`mΘ`′m′〉 = δ``′δmm′C` , (1.23)

where δ``′ is the Kroenecker’s delta function.

In the Gaussian approximation, anisotropies can be fully characterized by the 2-point correla-
tion function or the power spectrum. One should explore higher order correlations, such as the
bispectrum, in order to analyze deviations from gaussianity. The power spectrum in function of
the C`’s is written as, 〈∣∣∣∣∆TT

∣∣∣∣2
〉

= 1
4π

∞∑
`=0

(2`+ 1)C` . (1.24)

The coefficients of the spherical harmonic expansion, Θlm, are the analogous of the fourier
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Chapter 1. Cosmology and early universe

Figure 1.1: CMB temperature anisotropies measured by the Planck satellite, in red, regions hotter than
the average and in blue, colder ones. The equatorial noise produced by our galaxy has been
removed from the picture. Picture from the Planck collaboration [11]

transform coefficients but in spherical surfaces. When we work on small patches of the sky, the
curvature can be neglected, thus the relation between the angular wavelength and the multipole
moment simplifies to: θ = 2π

` .

The possible contributions to the CMB power spectrum can be distinguished between primary
and secondary sources. Primary sources of anisotropies are those produced directly in the early
universe and mainly as a consequence of the inflationary initial conditions. In this sense, the most
important feature of the inhomogeneities of the primordial plasma are the acoustic oscillations
which converted into acoustic peaks in the power spectrum. Secondary sources on the other hand,
perturbed the path and properties of the photons in their travel to us, though to a lesser extent.
They are classified as the Sunyaev-Zel’dovich effect, the integrated Sachs-Wolfe effect, lensing
and Doppler effect caused by the motion of cluster gas. Briefly, the thermal Sunyaev-Zel’dovich
effect is the energy boost transferred from high energy cluster electrons to photons, via inverse
Compton scattering. The integrated Sachs-Wolfe effect, in turn, is the gravitational redshift
suffered by the CMB because of the evolution of the gravitational potentials.

Beyond the standard cosmological model there are other possible primordial, but subdominant,
anisotropy sources. Topological defects are one of the most interesting candidates and the ones
analyzed in this Thesis. They could have been produced at primordial phase transitions in the
primitive universe, e.g. GUT phase transitions. As opposed to inflationary perturbations that are
set just by the inflationary initial conditions, defects perturb continuously the CMB, i.e. they are
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Figure 1.2: CMB temperature anisotropy power spectrum using the ΛCDM best fit values and calculated
with CLASS. The most distinctive features are also indicated: the Sach-Wolfe plateau in green,
the region of the acoustic peaks in red and the damping tail at small scales in purple.

active perturbation seeds. One of the main differences is that while inflationary vector modes
decay due to the expansion of the universe, vector modes of active sources are continuously being
created and contribute considerably to CMB anisotropies. In Sec 2.1.1 of the next Chapter we
will review the theory of CMB anisotropies produced by cosmic defects.

Figure 1.2 shows the schematic description of the CMB temperature power spectrum. The
most distinctive feature of the temperature power spectrum are the mentioned acoustic peaks,
which are located between 100 . ` . 1000. The amplitude of the peaks is related to the energy
content (proportion matter/radiation) before recombination, whereas the position of the first
peak is strictly linked to the spatial curvature of the universe. The small scale or high multipole
(` & 2000) behavior of the spectrum is characterized by the damping tail. The damping affects
multipole momenta that correspond to characteristic scales before recombination and is caused by
the imperfect couplings of the photon-baryon fluid that decrease the amplitude of the spectrum.
Finally the spectrum at very large scales (` . 100) is nearly flat (the Sach-Wolfe plateau),
describing a nearly scale invariant spectrum for the temperature anisotropies.

1.2.1 Polarization: B-modes
Perturbations of the space-time also affected the polarization distribution of CMB photons. The
magnitude of the polarization anisotropies is smaller O(10−6) than the temperature ones O(10−5)
and thus their detection is more challenging.

The polarization anisotropy pattern of the CMB photons is described by the polarization field
which is decomposed into E- and B-modes. They correspond to the scalar (divergence-free) and
pseudoscalar (curl-free) fields that are distinguished by parity. As in the temperature channel, the
fluctuation gaussianity assumption enables to describe the two polarization modes via the 2-point
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Chapter 1. Cosmology and early universe

correlation function of their coefficients of the multipole expansion. Polarization modes can be
auto-correlated as well as cross-correlated between them and also with the temperature channel,
so there could be 3 different cross-correlation channels: TE, EB and TB. However, if parity is not
violated in our universe, B-mode polarization has no correlation with temperature and E-modes,
and CMB temperature and polarization power spectra are fully described by TT, TE, EE and BB
channels.

Regarding their origin, polarization anisotropies can only be produced by Thomson scattering
of the CMB photons with free electrons in presence of a local quadrupole temperature anisotropy.
Essentially the observed polarization is a projection of the local quadrupole at last scattering sur-
face and reionization, and any quadrupole source would leave its imprint in the polarization. The
most important contribution comes from recombination, where the breaking of the tight coupling
produced quadrupoles through gradients in the velocity of the primordial fluid and gravitational
waves. Free electrons that were present at reionization also contribute to B-modes.

Scalar perturbations produce positive parity polarization and generate directly only E-mode
polarization and can produce B-modes indirectly through lensing of the E-modes. Vector and
tensor modes, on the other hand, produce directly E and B-mode polarization. It is noteworthy to
recall again that though inflationary vector modes are neglected, they can be actively generated
by scaling seeds such as cosmic defects and could also contribute to the total CMB polarization
anisotropy.

The absence of the dominant scalar perturbations in B-modes makes the detection of such a
polarization channel an invaluable tool to explore the physics beyond the stablished cosmological
standard model. It could not only confirm the presence of inflationary gravitational waves and set
the energy scale of inflation, but uncover also the existence of more exotic objects such as the
aforementioned defects or primordial magnetic fields.

Figure 1.3 shows the typical B-mode spectrum produced by inflationary tensor modes (black
line), where r = 0.2 and the contribution of the lensing of E-modes added (dashed grey line). We
also show the total spectrum in blue. As can be seen from the picture, the spectrum of primordial
origin have two differentiated main peaks that correspond to the epoch were the contribution to the
polarization were higher due to the presence of high amount of free electrons: recombination and
reionization. Specifically the first is related to reionization whereas the second to recombination
and the positions are given by the horizon size at each epoch.

The detection of B-mode polarization at relatively low-`’s (` . 100), where the signal is almost
uncorrelated with the lensing contribution, would open an unique opportunity to explore the
physics beyond the standard model that governed those early times.

1.2.2 CMB experimets

In this section we will review the most important modern CMB experiments. Since the detection
of the CMB radiation by Penzias and Wilson, there have been a huge variety of different CMB
experiments that have tried to characterize the primordial radiation as precisely as possible.

The selection of experiments is composed of satellites and ground-based experiments. The main
difference between space-based and earth-based receivers is their capability to scan the sky. While
satellites have been designed to scan most of the sky and obtain as widest angular amplitude as
possible, the objective of ground based experiments has been to perform the most accurate small
angle measurements concentrating on small patches of the sky.
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Figure 1.3: B-mode polarization spectrum produced by inflationary tensor modes for r = 0.2 (black line)
plus the lensing of the E-modes, calculated using the ΛCDM best fit values, (dashed grey
line) and the total spectrum in blue. The power spectrum has been calculated using CLASS.
The two main peaks of the black line are associated with reionization (`5) and recombination
(`100) and their position, with the horizon size at each epoch.

Satellites

Satellite experiments provide accurate whole sky anisotropy maps, which allow to calculate high
precision CMB power spectra. The first satellite, and in fact the first experiment that could
measure anisotropies, was COBE [191]. It was able to uncover the first peak of the acoustic
sequence of the power spectrum. Subsequent satellites, principally WMAP and Planck, improved
considerably those initial measurements. Figure 1.4 shows an illustrative evolution of the precision
of whole sky temperature anisotropy maps: starting from COBE, passing through WMAP and
ending in Planck.

• Wilkinson Microwave Anisotropy Probe (WMAP) [4]. The successor of the COBE satellite
and developed in a collaboration between NASA and Princeton University. WMAP operated
from 2001 to 2010, measuring CMB anisotropies in the temperature as well as in the
polarization channel (E-modes).

The WMAP power spectra cover the 2 ≤ ` ≤ 1200 multipole range and determines with
high accuracy the acoustic pattern of the CMB. The binned power spectra points of the
TT channel can be seen in Fig. 1.5 (red points with black error bars).

• Planck [2]. The Planck spacecraft was designed by the European Space Agency (ESA) and
operated between 2009 and 2013. The Planck mission scanned the whole sky improving
the accuracy of WMAP measurements and reaching much smaller scales.
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Figure 1.4: Evolution of the whole sky CMB temperature maps. From left to right: COBE, WMAP and
Planck. Credits (2013): www.lefigaro.fr
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Figure 1.5: CMB temperature power spectrum given by the WMAP 9-year (red points with black error-
bars), SPT (yellow points) and ACT (green points).

Planck power spectrum ranges a wider multipole region 2 ≤ ` ≤ 2500, combining 2 indepen-
dent detectors that covered the low-` sector and high-` sector. The CMB temperature power
spectrum measured by Planck can be seen in Fig. 1.6, where the low-` and high-` parts of
the mission have been divided in logarithmically and linearly spaced regions respectively.
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Figure 1.6: CMB temperature power spectrum as measured by the Planck experiment. The spectrum is
divided according to the different detectors used to measure the signal: low multipole region
(in logarithmic scale) and the high-` data (linearly spaced).

Ground based experiments

In general ground-based experiments aimed to complement whole sky surveys with accurate mea-
surements of small patches of the sky. Some of them, however, specifically designed to be able to
measure the still undetected B-mode either at high multipoles, i.e. lensing (SPTPol, PolarBear), or
at low-`s, i.e. primordial B-modes (BICEP2/Keck). A compilation of the B-mode measurements
made by different experiments can be found in Fig. 1.7.

Such telescopes are usually located in clean parts of the earth such as the south pole so as to
minimize atmospherical contamination sources. Here we will list some of them:

• South Pole Telescope (SPT/SPTPol) [96, 194]. Composed of two different experiments
that measured the very high-` temperature power spectrum (yellow points in Fig. 1.5) and
the lensing profile of the B-modes (SPTPol) (red error bars in Fig. 1.7).

• Atacama Cosmology Telescope (ACT) [149, 188]. Located at the Atacama Desert, it
measures high resolution CMB anisotropies both in temperature in polarization (green points
in Fig. 1.5).

• PolarBear [19]. First measurement of B-mode lensing polarization (green error bars in
Fig. 1.7).

• BICEP2/Keck [16, 22]. It was claimed to be the first experiment that measured the B-
modes relevant for primordial cosmology (black error bars in Fig. 1.7). Subsequent combined
analysis with Planck showed that the measured signal could have astrophysical origin [18].
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Figure 1.7: CMB B-mode polarization power spectrum as measured by BICEP2 (black error bars), SPTPol
(red error bars) and PolarBear (green error bars).

1.3 Data analysis
In the last few decades, the amount and quality of cosmological experimental data has considerably
increased and observational cosmology has become one of the best scenarios to compare and test
theoretical predictions with precise measurements. Along with this, the corresponding statistical
tools have also been improved and new techniques developed so as to efficiently analyze the wide
variety of cosmological datasets.

The data analysis of cosmological data is based on Bayesian statistics, which tries to reproduce
observations of the universe with theoretical predictions produced by models under study. The
goals of the statistical analysis are in general twofold: first to determine the most likely values of
the parameters that the models depend on (parameter estimation) and similarly to evaluate the
quality or goodness of fit provided by the best fit parameters (model selection).

In this section we will review the most important aspects of parameter estimation procedures in
cosmology. In this sense, after a short statistical description of the parameter estimation theory,
we will describe one of the most used methods to explore the parameter space in cosmology:
Markov Chain Monte Carlo.

1.3.1 Parameter estimation
The likelihood function is the basic tool for the Bayesian data analysis. The likelihood function
(L(x|αM)) is the probability of measuring the data or event x given the model M and the set
of parameters of that model αM = {α1, ..., αn}. In other words, it measures the ability of our
model, with its parameters, to predict the observed data.

Parameter estimation in the Bayesian framework is performed simulating posterior distributions
or probability density functions of the parameters given the data and assuming the model under
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consideration is the correct. Hence, it is provided by Bayes’ theorem [69]:

P(αM|x) = L(x|αM)π(αM)∫
L(x|αM)π(αM)dαM , (1.25)

where P(αM|x) is the posterior distribution. π(αM) is the prior probability density function
where we include all our previous knowledge on the limits of the parameters of the model.

In cosmology there is a unique realization of the measurements, i.e. there is only one universe
where we can perform our observations. Therefore, while in the frequentists approach the pa-
rameter estimation procedure maximize the posterior distribution by repetition of the experiment,
the Bayesian approach maximizes the likelihood function. It is customary to define the chi-square
function, which in terms of the likelihood function can be written as:

χ2(αM) ∝ −2 log(L(x|αM)). (1.26)

Sometimes instead of maximizing the likelihood, we will minimize the chi-square function, which
of course is equivalent.

In our specific case we will compare measurements of the CMB power spectra given by Ĉ`’s
with predictions made by our models Cα` , therefore the likelihood function will be

L(x|αM) ⇒ L(Ĉ`|Cα` ), (1.27)

where the parameters will be given by the usual 6 PL parameters plus additional extra parameters
coming from our models.

1.3.2 Markov Chain Monte Carlo

When a large amount of parameters are involved in the analysis, the exploration of the whole
likelihood parameter space can become a very painful and implausible objective. The Markov
Chain Monte Carlo (MCMC) method [40] offers the most commonly used procedure to avoid that
problem. It optimizes the exploration by drawing samples, i.e. chains of points of the parameter
space, rather than exploring the parameter space by brute force. The advantage of the MCMC
method is that from a relatively small amount of samples the most important features of the
likelihood surface can be obtained: marginalized posterior distributions, correlations between
different parameters and best-fit configuration of the parameters. Furthermore, the inclusion of
extra parameters into the analysis implies small additional cost, adding valuable flexibility to the
analysis.

The parameter space is scanned by Markov chains, which consist of stochastic processes that
examine the parameter space jumping from point to point following a probability given by a
transition kernel. Although the kernel varies from method to method, a general feature of Markov
chains is that they are memoryless. The future step in parameter space does not depend on the
past history, but only in the current point. The chain moves from a point in parameter space
α1
M, which is a vector containing all parameters, to the next α2

M with transition probability
T (α1,α2), where we have omitted the subscript M that refers to the model under study.

The most commonly used algorithm for MCMC processes in cosmology is the Metropolis-
Hastings algorithm [99, 142]. According to it, a new point αn+1 is proposed using a symmetric
proposal density distribution q(αn,αn+1), considering that the system is in the αn point. The
transition kernel T (αn,αn+1) satisfies the balance equation to ensure that the process recovers
the posterior distribution:
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P(αn|x)T (αn,αn+1) = P(αn+1|x)T (αn+1,αn). (1.28)

The balance equation is fulfilled if the new point is accepted with the following probability:

P(αn,αn+1) = min
[
1, P(αn+1|x)q(αn+1,αn)
P(αn|x)q(αn,αn+1)

]
, (1.29)

where the transition kernel is defined as:

T (αn,αn+1) = P(αn,αn+1)q(αn,αn+1). (1.30)

The new point is accepted if the likelihood is improved. If the new likelihood is worse than
the current, the new point is accepted with a probability given by the ratio inside brackets of
Eq. (1.29).

A schematic representation of the MCMC procedure used throughout this Thesis is shown in
Figure 1.8, where the acceptance or rejection criteria set by the Metropolis-Hastings algorithm
is described by a flow-chart. A point in parameter space is picked randomly and sent to the
Einstein-Boltzmann equation solver to obtain the corresponding power spectra prediction (C`).
Then, the quality of the prediction is evaluated, using the likelihood function, by comparing it
with the experimental data. The new point is accepted if the new likelihood is better than the
previous or momentarily rejected if it is worse. In the latter case, it can still be accepted if the
ratio of the two likelihoods is greater than a randomly chosen number. The point is then stored
as a new piece of the chain and the process reseted. Finally, once the code has collected enough
points or the chain has converged, we can calculate marginalized posterior distributions and/or
best-fit points.

When do we know we have sampled enough? In principle the Markov process will reach the
exact unknown probability distribution asymptotically, that is, in infinite steps and computational
time. The convergence criterion determines whether the Markov chain is a good representation
of the likelihood space and can describe it accurately. The convergence ratio is the magnitude
that encapsulates that information and is defined as the ratio of the variance of the mean of the
samples and the variance of the underlying distribution, which is usually 1 if we assume standard
deviations. Typically convergence of the chains is thought to be guaranteed with r = 0.01.

Due to the randomness of the choice of the initial point, it is probable that the initial region
explored by the chain could be far form the high probability region and take too long to get
the correct description of the asymptotic posterior distribution. This initial period is called burn
in period. It is thus highly desirable to run short initial chains that not only would help to
decide the best starting point, but would also set the correct correlations of the parameters via
the covariance matrix. The covariance matrix technique ensures that longer chains will sample
properly the likelihood space and increases considerably the effectivity of the MCMC.

Provided the flexibility of the MCMC method to include new partakers into the analysis, it has
widely been used to study models beyond the standard cosmological model through the small
details and windows that extremely accurate cosmological data still offer. There are a couple
of different publicly available codes that perform the parameter estimation procedure and can
be easily modifiable: CosmoMC [127] and Monte Python [1, 28]. Although they are written in
different languages (Fortran and Python ) and use different Einstein-Boltzmann solvers for the
evolution of the cosmological perturbations (CAMB and CLASS respectively), they are equivalent.
Throughout the different projects of this Thesis we use modified versions of both codes that
account for the possible contribution of cosmic defects in CMB power spectra. Schematically
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CAMB

PL (+extra : Ne↵ , r...)

 CAMB/CLASS Defects

Figure 1.8: Schematic summary of the MCMC process and the Metropolis-Hastings algorithm. It de-
scribes the most general setup used in this work, where we include the contribution of cosmic
defects into the analysis.

the structure of the codes is summarized in Figure 1.8. As we will see in the next section, the
back-reaction induced by the defect perturbations in the usual cosmological parameters can be
neglected, therefore the defect spectra is calculated for a fixed set of values of the parameters
(usually the ΛCDM best fit parameters). These fixed spectra are normalized using an appropriate
normalization factor, which indeed is part of the parameter space and is randomly set, and added
to the inflationary contribution before calculating the likelihood.
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2 Cosmic strings and defects

2.1 Topological defects

The Hot Big Bang describes an universe that from a very hot and energetic configuration expanded
and cooled down. It is believed that this cooling process leaded to phase transition that altered
the underlying symmetry of the universe. Topological defects are relic energetic objects that
could have been formed at phase transitions occurred in the early universe. They can play a
very important role in connecting the particle and cosmological standard models, since they are
predicted in high energy models and their implications can be cosmologically relevant.

Phase transitions are intrinsic in high energy models for particle physics. The standard model
for particle physics already establishes some low-energy phase transitions such as the electroweak
transition at about T ∼ 102GeV. Phase transitions are also typical in fundamental models beyond
the standard model, e.g. the supersymmetry breaking or the breaking of the symmetry of Grand
Unified Theories at about T ∼ 1016GeV. Topological defects are commonly predicted in the phase
transitions occurred at GUT theories [214], where the symmetry of the universe is transformed,
in a sequence of different spontaneous symmetry breakings, from an unified symmetry down to
the current symmetry of the universe as described by the standard model,

G→ ...→ SU(3)× SU(2)×U(1)→ SU(3)×U(1)EM (2.1)

where G is a larger and still undetermined symmetry group.

Spontaneous symmetry breaking occurs when the vacuum state of a physical system is not
invariant under a given symmetry transformation, but the physical laws remain symmetric. This
is easily illustrated considering the so-called Goldstone model which is invariant under a U(1)G
global symmetry and is described by the following Lagrangian at zero temperature:

L = (∂µφ)†(∂µφ) + 1
4λ(φ†φ− φ2

0)2 , (2.2)

where φ is a complex scalar field, φ0 its vacuum expectation value (vev) and λ the self-coupling
constant. The last term is the potential of the system typically called the mexican-hat potential.

The ground state of the system lies on a circle in the complex plane (|φ| = φ0) and its
expectation value is characterized by a non-zero value:

〈φ〉 = φ0e
iθ . (2.3)

It is evident that even though the Lagrangian is invariant under global phase transformations
φ→ φeiα (U(1)G), its ground state is not. When the fields drops from the top of the potential
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2.1 Topological defects

Figure 2.1: Mexican-hat potential.

it chooses a concrete ground state (determined by the value of θ) spontaneously.

It can easily be proven that the vacuum state of the system is composed by a massive and a
massless particle. Let us re-parameterize one of the vacuum states, in this case we chose θ = 0.
The result is, of course, valid for any other ground state since all of them are equivalent. The
re-parametrization reads

φ =
(
φ0 + 1√

2
ψ

)
eiη , (2.4)

where ψ and η are real scalar fields with vev equal to zero. Substitution of this into Eq. (2.2)
gives,

L = 1
2(∂µψ)2 + φ2

0(∂µη)2 − 1
2λφ

2
0ψ

2 + Lint . (2.5)

where Lint is the interaction part that include higher order terms in ψ and η. The form of the
re-parametrization expresses clearly what the role of each real scalar field is: ψ represents radial
oscillations around the ground state, hence it is massive with mψ =

√
λφ0. On the other hand, η

describes the motion around the circle of minima and is massless. The massless particle is called
the Goldstone boson and their existence is inevitable in systems with broken global symmetries.

In the universe symmetries can be spontaneously broken at thermal phase transitions due to
thermal effects. Generally the system tends to minimize the free-energy F = E − TS, where S
is the entropy and E the internal energy. At high temperatures the second term dominates over
the first, hence minimizing the free-energy and minimizing the internal energy are not equivalent.
Nevertheless, as the universe expands and cools down, the entropy term become less important
and internal energy dominates. Thermal effects are typically included in the effective potential of
the system, which in the case of the Goldstone model reads [214]

Veff = V (φ) + λ+ 3e2

12 T 2|φ|2 − 2π2

45 T
4 (2.6)
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Figure 2.2: Effective potential.

At zero temperature the mexican-hat potential is recovered (V (φ) = 1
4λ(φ†φ − φ2

0)2), but at
finite temperatures thermal effects become relevant. Fig 2.2 shows the evolution of a typical
effective potential during a cosmological thermal phase transition. At very high temperatures the
expectation value of the field vanishes, i.e. the minimum of the effective potential lies at φ = 0
(T � Tc line in the picture). In other words, the symmetry is not broken and the ground state is
as symmetric as the system. When the temperature drops, however, the barrier of the potential
becomes increasingly more relevant and the ground state acquires a non-zero expectation value
(T � Tc line in the picture). The limit temperature that separates the two different phases is
called the critical temperature Tc (represented as the line in the middle of the picture). As the
temperature falls below Tc, the ground state is not longer invariant under rotations, though the
total symmetry of the Lagrangian itself is maintained. The field sits at a specific ground state
and the symmetry between different vacua is lost, i.e. the symmetry is spontaneously broken.

Symmetries can also be broken during inflation or at the end of it. An interesting and different
mechanism for symmetry breaking is placed by some inflationary models, such as hybrid inflation
scenarios, where the breaking of the symmetry is a consequence of a vacuum phase transition
rather than a thermal phase transitions. The complex scalar field is coupled to the inflaton
field, which replaces the temperature as the parameter that controls the phase transition. During
inflation, i.e. when the inflaton is slowly rolling, the field is at φ = 0. At the end of the slow-
roll period, the complex field becomes unstable and rolls towards its real vacuum (V (|φ|) = 0),
where it has to chose between equivalent minima and the symmetry is spontaneously broken. The
formation of defects is well justified in these inflationary models [181, 216, 219, 220].

Topological defects appear whenever the vacuum state has a non-trivial configuration. Defect
formation is directly linked to the nature and topology of the vacuum manifold (M), which can
be analyzed studying homotopy groups. The homotopy group classifies distinct mappings of the
n-dimensional sphere Sn in the vacuum manifoldM. Strictly speaking topological defects arise as
a consequence of a non-trivial homotopy of the vacuum manifold, which means that the vacuum
manifold can have disconnected components, unshrinkable loops or unshrinkable surfaces (see
[214] for a detailed analysis of the homotopy groups and defect formation). Table 2.1 shows
different topological defects that can arise depending on the topology of the vacuum manifold.

As an illustrative example the formation of string-like defects in the Goldstone model will be
explored. Let us consider a closed path in a plane in physical space. If we move along this
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2.1 Topological defects

π0(M) 6= 1 M disconnected Domain walls

π1(M) 6= 1 non-contractible loops in M Cosmic strings

π2(M) 6= 1 non-contractible 2-spheres in M Monopoles

π3(M) 6= 1 non-contractible 3-spheres in M Textures

Table 2.1: List of different topological defects and the topology of the vacuum manifold M.

path the field is at its ground state everywhere, the only difference between points of the closed
trajectory is the complex phase. Since the path is closed the change of the phase along the curve
can only vary in ∆θ = 2πn. Strings appear when there is a net winding of the complex phase, i.e.
n 6= 0. One can try to locate such a twist in the complex phase by drawing smaller and smaller
trajectories, until at some point the phase is no longer well defined. This can only be explained if
there the field leaves the vacuum manifold and rises to the top of the potential (φ = 0) in order
to ensure field continuity. Figure 2.3 shows a typical representation of a string-like defect located
where the complex phase has a non-continuum jump. The string is formed at points where the
complex field is at the top of the potential, where the energy density is higher and the symmetry
is also higher. In other words, topological defects retain the properties and symmetries of the old
phase, embedded in the new one. This is why defect detection and their study could enlighten
the unknown phase evolution of the universe and provide a unique way to explore the physics on
those previous stages of the universe.

Figure 2.3: Physical space representation of the core of a cosmic string and the complex phase pointing
outwards. Figure from [68]

This model contains string-like topological defects due to a non-trivial fundamental homotopy
group of the vacuum manifold π1(M) 6= 1, i.e. non-trivial mappings of S1 to the vacuum manifold.
The topology does not allow to remove the defect points. One can imagine that the same process
occur at every two-dimensional plane and obtain the string profile by continuity of the field. The
topological nature of the defects imposes several interesting properties, for instance: since net
windings cannot be removed, strings cannot have a definite end, they are either infinitely long or
form closed loops.
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Interestingly there are cases where defect formation is not governed by the topology of the
vacuum manifold. Non-topological defects are also highly energetic extended objects, which also
form in cosmological symmetry breaking processes, but which do not have topological restrictions.
Their existence is linked to energy arguments rather than to topology. For instance, they can form
when the system prefers to leave M and rise to the top of the potential because it is the most
energetically favorable choice. Once such configurations are not so favored, they can decay and
disappear. As we will see, however, non-topological defects can also be of cosmological interest.

Interestingly, the existence of defects is not restricted only to cosmology. They are very common
in condensed matter physics, where they were firstly studied. Domain walls can be formed in
ferromagnetic materials which develop a non-trivial vacuum structure after a symmetry breaking.
Similarly, magnetic flux lines can appear in Type II superconductors, quantized vortex lines in 4He
and complicated textures in 3He superfluids. Moreover, line defects in the form of dislocations
are formed in some crystal liquids [214].

Defects in cosmology: Kibble-Zurek mechanism

The Kibble-Zurek mechanism for defect formation [119, 222, 223] provides an intuitive and qual-
itative way to understand how stochastic networks of defects can be formed in our universe. A
region of the space where a spontaneous symmetry breaking happened would tend to smooth
the complex phase distribution and decrease field gradients so as to minimize the energy of the
system. Such a region therefore would acquire a energetically favorable aligned distribution of the
phases and in principle avoid defect formation.

Causality is the key ingredient for defect formation in cosmology. Causality imposes a maximum
correlation length, above which different regions of the space are not causally connected and can
follow different paths towards their vacuum state. In terms of cosmological phase transitions, one
can expect that the transitions could not have occurred simultaneously at regions that are not
causally correlated. Each region would approach gradually its ground state choosing the vacuum
state independently from other regions. The Kibble-Zurek mechanism predicts that when these
uncorrelated region come to causal contact, there is some probability of forming defects at the
boundaries of those regions.

Fig 2.4 shows a schematic representation of the Kibble-Zurek mechanism in 3 steps. In the
upper part the spatial representation is shown, while the lower is the complex space representation
of the potential of the system. The spatial representation includes regions of the space that
underwent phase transitions; the old phase configuration in shown in grey, whereas the patches in
the new one in white. Initially due to causal disconnection each white region choses the vacuum
state independently from the other regions, the vacuum choice is shown below. As time goes
by, horizons grow in a bubble-like manner and regions that were uncorrelated come to causal
connection. Due to the nature of the initial choice of phases, drawing a closed path in physical
space (dashed lines in the upper part) a non-zero winding of the phase is obtained. This winding
cannot be removed, topology forbids it, and thus the field rises to the top of the potential since
it is the only way to guarantee field continuity. In regions where the field leaves the vacuum
manifold defects are formed, which as we mentioned earlier retain the properties of the old hotter
phase (grey circle inside the dashed closed path in the upper part of the last picture). Kibble-
Zurek mechanism claims that there is always a possibility to develop such non-trivial winding
configurations and therefore defect formation in cosmology is an unavoidable possibility.

Even though defect formation a la Kibble-Zurek is very intuitive, it has to be noted that its
applicability beyond systems with global symmetries has been doubted. It has been argued that
for models with continuum gauge symmetries the mechanism is somewhat different, since not only
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Figure 2.4: Pictorial representation of the Kibble-Zurek mechanism. The upper part describes a spatial
region of the universe where phase transitions took place at different moments and horizons
of regions in the new phase (in white) grow with time. In the lower part the complex phase
representation of the potential is shown. The sequence evolves from left to right. Initially
regions choose independently the vacuum state since they are not causally connected. As time
goes by, horizons keep growing and come to causal contact. In the end, a non-zero winding
of the complex field appears (topological defect) as a consequence of the initial choice of the
phases. Picture courtesy of M.B. Hindmarsh [104]

the scalar field has to be taken into account, but also the effect produced by the presence of the
gauge field. In [105, 163–165] the authors propose an alternative mechanism for defect formation,
which would be more suitable for more complicated gauged theories. Essentially the formation
of local vortices is linked to the confinement of the magnetic flux into tubes with quantized flux,
which tend to be aligned in scales smaller than the characteristic scale, as opposed to what occurs
in Kibble-Zurek [105].

Cosmological viability: Scaling

Historically some type of defects, such as magnetic monopoles or domain walls, have been regarded
as problematic. For instance, networks of monopoles and domain walls formed at typical GUT
scales would contain at least one defect per horizon volume and would inevitably end dominating
the universe. One of the initial reasons to propose the inflation mechanism was indeed to avoid
the problems caused by such unwanted relics (see Sec. 1.1.3).

The reason why some cosmic defects, e.g. cosmic strings, textures or global monopoles, have
been so extensively studied is that they exhibit a feature known as scaling. Scaling implies that
characteristic scales of the network, such as the correlation length or inter-string distances, grow
linearly with time, i.e. their characteristic length remain constant with respect to the horizon. It
not only prevents defects from dominating the universe, but ensures also that they will never
disappear. Therefore if such scaling sources have once formed at the end of inflation, they should
still be around today.

Scaling is the key ingredient that makes scaling defects cosmologically viable and compatible
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with the description of the universe provided by different observations. Furthermore, scaling is
an immensely valuable property, as it allows to extrapolate numerical simulations to required
cosmological scales. Logically it is impossible to perform simulations that would cover the whole
cosmological evolution of a given defect network. Neither is it possible to simulate defects at
the exact moment they have been created, since the energy scale of the phase transition is
beyond our knowledge. Instead, one considers relatively small periods of time, as compared to
the cosmic time, and obtains statistical samples of the observables of the system. Scaling enables
the extrapolation of such limited statistics to cosmological scales, a concrete example is the CMB
anisotropy calculation, which will be reviewed in detail in Sec 2.3.

Observational consequences

Cosmic defects interact mainly via gravitational interaction. This is why typically the properties
of the perturbations generated by them are characterized by the strength of their gravitational
field, encapsulated in the dimensionless parameter Gµ. G is the Newton’s constant while µ is
directly related to the energy scale at which the phase transition took place and defects could
have been produced, roughly µ ≈ φ2

0. In the case of string-like defects µ is directly related to
another physical property: it is the string tension or the energy per unit length. Any detection of
observational signal produced by defects would determine Gµ and unequivocally set the energy
scale of the phase transition.

One of the most studied phenomena induced by the presence of cosmic defect networks is the
generation of CMB temperature and polarization anisotropies. Defects are considered to have
formed at the end of inflation or in a later phase transition. If formed, they would perturb the
cosmological fluid and their contribution to CMB anisotropies should be added to the dominant
contribution produced by inflationary perturbations. Despite their relation to inflation, the highly
non-linear evolution of defect networks removes any correlation with initial conditions, thus they
can be regarded as independent signals. Defects perturb the primordial photon-baryon plasma
and induce inhomogeneities in the last scattering source. However, as opposed to the inflationary
perturbations, defects would continue creating perturbations and actively seeding anisotropies to
the CMB during its path towards us. The theory of CMB anisotropy generation by defects will
be reviewed in Section 2.3.

The production of gravitational waves by defects has also attracted huge interest in the defect
community. The analysis has mainly been focused on gravitational wave production by cosmic
string [6, 70, 111, 152, 187, 206, 213]. String networks contain loops, that soon after formed
decay radiating in different manners. The gravitational distortions that occur at such decays is
accompanied by several violent high energetic events, such as kinks or cusps, that could addition-
ally create bursts of gravitational radiation [61–63, 186]. It is noteworthy, however, that the exact
gravitational wave production mechanism is still very model dependent and ranges from relatively
small amounts expected in field theories to larger contributions from Nambu-Goto (see next sec-
tion) models. Gravitational wave backgrounds are also expected from other type of defects, such
as self-ordering scalar fields or O(N) models [85, 88, 93].

Furthermore, cosmic defects are also candidates for the generation of other observable astro-
physical events including gravitational lensing, high-energy cosmic rays and gamma ray burst by
strings [50, 104, 178, 214], creation of cosmic magnetic fields [71] or generation of non-Gaussian
signatures in cosmological perturbations [87, 107, 109, 169].
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2.1.1 Cosmic strings

Cosmic strings are probably the most studied and most relevant topological defects. They were
considered as a possible candidate, together with inflation, for structure formation in the uni-
verse. Accurate CMB observations established inflation as the correct paradigm for the creation
of primordial perturbations and downgraded the possible role played by the cosmic strings. Nev-
ertheless, they can still play a secondary role in a mixed inflation-defect scenario, even more when
they are predicted by many inflationary models.

As it has been mentioned before, cosmic strings are one dimensional topological defects where
the energy density is confined in a string-like configuration. The simplest model that leads to
local cosmic string formation is the Abelian Higgs model (AH). The Lagrangian of the AH model
reads:

L = − 1
4e2FµνF

µν + (Dµφ)∗(Dµφ)− λ

4 (|φ|2 − φ2
0)2 , (2.7)

where Dµ = ∂µ + iAµ, Fµν = ∂µAν − ∂νAµ and Aµ is the vector gauge field. e is the charge
of the scalar field with respect to the gauge field and λ the self-coupling constant. The system
is equivalent to that presented in the previous section, with the exception of the gauge field and
covariant derivatives that appear as a consequence of promoting the symmetry to local. It obeys
the local U(1)L symmetry:

φ → φ eiα(x) (2.8)

Aµ → Aµ − ∂µα(x), (2.9)

The low-energy states of this system, as opposed to what happens in the global case, are
two massive particles. Applying the same procedure one can obtain that the vacuum solution is
composed by a charged scalar field with mSca =

√
λφ0 and a massive gauge field with mGauge =√

2eφ0. Gauge symmetry imposes the existence of the vector gauge field, which absorb the
Goldstone boson of the global case, and acquires mass.

Similarly to the global case it is possible for the field to wrap around the circle of minima,
developing a non-zero winding of the phase ∆θ = 2πn. Although the system is invariant under
local phase transformations, this solution cannot be rotated to the vacuum by a gauge transfor-
mation if n 6= 0. In other words, the non-trivial topology of the vacuum enables the creation of
unremovable defect points. Local strings, just like global ones, cannot have ends and are either
infinite or closed.

The AH model admits infinite, axisymmetric and stable solutions, string-like solitons called
Abrikosov-Nielsen-Olesen vortex lines [5, 150]. The solution is built around the following cylindrically-
symmetric and straight ansatz for a string with arbitrary winding number n:

φ = φ0f(r)einθ , Ai = n

er
Aθ(r)θ̂i , A0 = 0 . (2.10)

where r and θ are the radial and azimuthal angle coordinates.

Substituting this into the Euler-Lagrange equations of Eq. (2.7),
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d2f

dr2 + 1
r

df

dr
− n2f

r2 (Aθ − 1)2 − λ

2 f(f2 − 1) = 0 (2.11)

d2Aθ
dr2 −

1
r

dAθ
dr
− 2e2f2(Aθ − 1) = 0 . (2.12)
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Figure 2.5: Solutions of the Euler-Lagrange equations (Eq. (2.12)) of the Abrikosov-Nielsen-Olsen vortex
lines in the Bogolmon’yi limit: f in blue and Aθ in red.

Fig. 2.5 shows the numerical solutions of Eqs. (2.12) in the critical coupling (see next paragraph)
obtained using relaxation techniques with proper boundary conditions that ensure finite energy
requirement. It can be seen that the scalar field (blue line) and the gauge field (red line) leave
the vacuum at small radius, where in fact most of the energy is concentrated. Moreover, the
size of this region is approximately given by m−1

Sca = (
√
λφ0)−1 for the scalar function and

m−1
Gauge = (

√
2eφ0)−1 for the massive gauge function. In other words, the string is composed by

two well defined but independent cores, where the complex scalar field and the massive vector are
confined. Far from the cores, both functions approach gradually the vev, as they should.

The only relevant parameter of this model is β = λ/2e2 = mSca/mGauge [214]. When both
masses become identical, β = 1, the equations are in the critical coupling or in the Bogomol’nyi
limit and the equations of motion simplify considerably. Furthermore, the scalar core and the
vector core have same size. Local vortices with β < 1 are always stable, whereas strings with
n > 1 and β > 1 tend to split into simple or n = 1 vortices [104, 150]. The forces acting between
strings depend also on β. When β > 1 the forces between strings are repulsive. In this case the
vector core is bigger than the scalar core, thus the forces between different strings are governed by
the repulsion of the vector fields. When β < 1 on the other hand, the scalar core is bigger and the
force between strings is attractive. In the Bogomol’nyi limit the AH model can be promoted to a
supersymmetric model. In other areas like the superconductivity theory β = 1 distinguishes Type
I and Type II behaviours. For the remainder of this Thesis we will consider the critical coupling
β = 1.

An important distinction must be made between strings of gauge origin and global strings.

31



2.1 Topological defects

Whilst global defects exhibit long range interaction driven by Goldstone bosons, local defects are
screened by the presence of massive gauge fields that appear because of the gauge symmetry
breaking.

String networks: global properties and scaling

The string network is not a static entity, it is evolving and changing continuously. It is formed
by infinitely long strings and closed loops. Strings interact with each other and new loops and
new strings are formed due to the partner exchange that occurs at string collisions. Usually the
probability of string reconnection when different strings cross is determined by the parameter p.
For solitonic strings like AH strings examinations of numerical simulations [145, 182] reveal that
at every string collision new string configurations are formed. Therefore the usual assumption is
to take p = 1 for solitonic strings. Nevertheless, there are situations in which the probability of
intercommutation of solitonic strings is less than one [7, 41, 210].

The evolution of a cosmic string network towards the scaling regime can be understood exploring
the interactions of the strings inside the network and their energy loss mechanisms. In a realistic
cosmological scenario, that is, in an expanding universe infinite string would be stretched. In
absence of any energy loss mechanism the string energy would be proportional to the scale-factor
and the string network would soon dominate the universe. However, due to the high reconnection
probability of cosmic string, infinite strings intercommute and loops also can be generated. Loops
soon after created radiate and decay, via several channels which can include gravitational radiation,
electromagnetic radiation or particle emission. Therefore, the energy growth coming from the
stretching of infinite strings, is compensated by a highly efficient energy loss by loop radiation,
which enables scaling of the networks. Moreover, though it will not be demonstrated here, it can
be proven that scaling is an attractor solution for string networks (for more details we refer the
reader to [214]).

Nambu-Goto approximation

The Nambu-Goto (NG) approximation is applied to situations when the width of the string is
negligible comparing to the curvature radius of the string [25, 26, 53, 90]. In such situations
the cosmic string could be thought as an infinitesimally thin object that has a cosmological
length. Based on that, the Nambu-Goto model approximates cosmic strings to one dimensional
objects and describes them by the Nambu-Goto action [104, 214]. The action of the NG string
is proportional to the area of the world-sheet formed by the string as it travels and it reads:

S = −µ
∫
dσdτ

√
−γ , (2.13)

where σ and τ are the spatial and temporal coordinates and γ is the determinant of the induced
metric.

An interesting feature of the NG model is that in Minkowski space the equations of motion
reduce just to wave equations of the 4-dimensional coordinate variables of the string. Therefore
all the dynamics of the string can be described by left- and right-moving solutions of the wave
equation. Such a simplification implies that NG simulations require less computational power than
field theory simulations and obtain bigger dynamical ranges. As a counterpart of this simulation
time gain, NG simulations are not able to account for strings interactions since the microphysical
details are ignored. For instance, reconnection and intercommutation have to be included ad hoc
in the NG action by rules supplemented by the underlying field theory.
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The most controversial difference between field theoretical simulations and NG simulations is
the amount and evolution of string loops. There is no consensus in the cosmic string community:
NG model string loops appear to oscillate more and live longer (see [48] for a recent study in
NG loops) than the field theoretical ones, which decay soon after they are formed. One of the
main reasons for such a difference might come from the fact that NG strings could only decay
via gravitational radiation of loops. Massive modes that appear to be relevant in field theoretical
models are absent in the NG case. We refer the reader to [103, 108] for detailed discussions on
the relevance of small-scale structure and loop generation in AH cosmic strings.

Nambu-Goto loops also exhibit high energy events known as kinks and cusps, which given their
violence could be perfect for gravitational wave creation. This is why NG models have extensively
been used to determine the hypothetical stochastic gravitational wave background produced by
string networks [61, 62, 152], which is more developed than the field theoretical case even though
there have been some attempts [74]. NG gravitational wave probes are the ones that put the
strongest constraints in NG string tensions, Gµ < 10−9 [48].

Unconnected segment model

The unconnected segment model (USM) is a phenomenological model for the description of cosmic
strings. It is based on the velocity-dependent one-scale (VOS) model [139, 140], which models
analytically the large scale behavior of the string network. Essentially VOS model macroscopical
equations for the energy and the velocity distribution of the system are derived averaging the
microphysical effects of the network. As in the NG case, defect interactions must be included
using phenomenological considerations.

The string networks as described by the USM model is composed by extremely thin and moving
time-like segments of length proportional to the horizon size. It fundamentally introduces an extra
layer of modeling, since the length of the strings and their velocity depend on two undetermined
parameters: ξ and v [23, 24, 38, 215]. Moreover, it has also been extended to account for the
small-scale structure of the string via the wiggliness parameter β [158]. Finally, the scaling regime
is achieved by removing periodically certain amount of segments.

The USM model was proposed in the context of computation of CMB anisotropies by strings
[23, 24, 38]. Provided it high degree of modeling, the USM model is able to mimic the evolution
and CMB pattern produced by a network of NG strings as well as to reproduce the results obtained
using field theoretical simulations (see [36] for a detailed comparison of models).

Nevertheless, it has to be noted that the USM model is not a predictive model, i.e. the model is
not able to determine general properties of string networks and produce CMB power spectra based
on those results. Instead, experimental data can be used to infer the values of the parameters of
the model, which will determine which is the string model that explains best the observed signal.

2.1.2 Semilocal strings

A minimal extension of the Abelian-Higgs model, promoting the single scalar field to a SU(2)G
doublet, yields to the semilocal model [8, 101, 205]. The semilocal model is described by the
following Lagrangian:

L = − 1
4e2FµνF

µν + (DµΦ)†(DµΦ)− β

4 (Φ†Φ− φ0)2 , (2.14)

where Φ = (φ, ψ) is a doublet composed by two complex scalar fields. The covariant derivative
Dµ and the field strength tensor Fµν are defined just as in the Abelian-Higgs case. It can be
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easily proven that removing one scalar field, the Abelian-Higgs model is recovered.
The vacuum manifold in this case is a three-sphere S3 and its first homotopy group is trivial

π1(S3) = 1. Therefore, topology does not enforce Φ to leave the vacuum manifold and defect
formation is not as straightforward as in the AH model. One can prove, however, that one
dimensional flux tubes exist as a solution of this model. In order to smooth the complex phase
configuration the system either rotates the phases or leaves the vacuum and rise to the top of the
potential. The difference in this case is that the choice depends on what the most energetically
economic process is. If gradient terms associated to the rotation exceed the energy barrier of
the potential, the system prefers to leave M and semilocal strings will be formed. The stability
of semilocal strings is not trivial and like in the previous example it is mainly governed by β =
λ/2e2 = m2

Sca/m
2
Gauge. For β < 1 semilocal strings are stable and for β = 1 they are neutrally

stable [101]. For β > 1 on the other hand, they are unstable and if they form, they decay.
The symmetry breaking sequence that produces such defects is: SU(2)G × U(1)L → U(1)G.

This is why the semilocal model can be thought as a particular case of the electroweak model,
where the SU(2) symmetry is local instead of global. Alternatively one can obtain the semilocal
model setting to zero the gauge coupling to the gauge field associated to the SU(2)L symmetry in
the Glashow-Weinberg-Salam model. Defect formation has also been studied in the electroweak
model [204]. Nevertheless, it was found that for realistic values of the electroweak symmetry
breaking, electroweak strings are unstable and thus unviable [114].

Semilocal strings are the typical example of non-topological and stable defects. As such, they
exhibit special features that cannot be observed in topological strings. Unlike AH strings which
are either infinite or closed due to topology restrictions, semilocal strings are finite in size and
can have ends. Indeed, interestingly, the ends of such strings behave as global monopoles that
can interact via long range interactions. Because the attraction of the effective monopoles it
is possible for two strings to meet and form a longer string, and also for a segment to form
a loop. Moreover, semilocal strings can suffer longitudinal oscillations, i.e. they can stretch or
shrink, depending on the forces acting on their ends. Recently some effective models have been
proposed, which take advantage of the fact that semilocal strings can be considered as composite
string-global monopole defects [9].

2.1.3 Textures

Topological textures arise in models with broken non-Abelian OGlobal(4) global symmetries. The
Lagrangian of the model reads,

L = 1
2(∂µΦi)(∂µΦi)−

λ

4 (ΦiΦi − φ2
0)2 , (2.15)

where i = 1, ..., 4. Models with broken OGlobal(N), where N > 4, produce non-topological
textures in three spatial dimensions where the dynamics is dictated by the evolution of non-linearly
coupled Goldstone bosons.

Non-trivial mappings of S3 spheres into the vacuum manifold yields to texture formation. The
imposition of spatial uniformity at infinity effectively compactifies the physical space (R3) to S3,
which maps non-trivially into the vacuum manifold since π3(M) 6= 1. In contrast to other defects,
in a texture the scalar field Φ is at the vacuum manifold everywhere, in other words, it is not
topologically constrained to leave the minimum of the potential.

Imposition of spatial uniformity at infinite is what makes non-trivial windings of the complex
scalar phase possible and enables the creation of textures. Unlike cosmic strings, whose energy
comes from the potential term, the energy of textures comes entirely from the gradient energy of
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the field. However, when textures enter into the horizon their knots collapse at relativistic speed.
When the gradient of the field becomes sufficient, the field lifts over the potential barrier, the
non-trivial windings around the vacuum manifold unwinds and textures decay radiating Goldstone
bosons.

There exist different approaches to simulate the dynamics described by Eq. 2.15. One of the
most famous one is the so-called non-linear sigma model [78, 79, 155]. As we mentioned the
textures are formed even though the field never leaves the vacuum manifold, i.e. ΦiΦi − φ2

0 = 0
everywhere. In the non-linear sigma model the dynamics of the scalar fields is dictated by the
kinetic term, and the previous condition is included as a constraint of the system by considering
λ a Lagrange multiplier. In other words, the field is forced by hand to be in the vacuum manifold.
Alternatively, full field theory simulations have also been performed, which solve the equations
of motion derived from the original Lagrangian [201]. Interestingly, it has been observed that in
terms of CMB anisotropies the predictions of both models are very close [201].

Textures before unwinding and collapsing could induce background perturbations that could
eventually produce observable effects in CMB anisotropies. In this sense, textures has been
proposed as a possible candidate for the cold spot region measured by WMAP and Planck satellites
[52, 59, 60, 84, 192, 212]. Furthermore, as with cosmic strings, their power spectra can be
calculated from numerical simulations of an underlying field theory in an expanding cosmological
model (see next section). The spectra have been calculated for O(4)G non-linear [78, 79, 155] or
linear [201] σ-model. In Ref. [201] a comparison between the linear and non-linear σ-model can
be found, showing that they are very close. There is also an analytic approximation in the large
N limit of the O(N) non-linear σ-model [122].

2.1.4 Interconnected strings: pq-strings
Interconnected string models arise in brane inflation models, where fundamental strings or F -
strings and string-like objects such as D-branes could form due to brane-antibrane annihilation
processes [56, 81, 116, 136, 177]. Such superstrings could survive the cosmological evolution and
can have cosmological sizes [68, 159], which implies that they can play a similar role of cosmic
strings. Nevertheless, unlike solitonic strings, cosmic superstrings do not necessarily intercommute,
instead they can join together forming heavy and stable bound states composed of p F-strings
and q D-strings and called pq-strings [56, 81]. The boundaries of these segments are determined
by 3-way Y-junctions where 3 different strings meet.

The evolution and description of F and D interconnected networks is rather complicated and
approximations are highly desirable. Early works on cosmic superstring networks analyze non-
Abelian field theories of the kind G→ Z3, where 3-way type junctions can form, both analytically
[27, 207] and numerically [106, 193]. More sophisticated analytical models include effective field
theories such as VOS models, see for instance [30, 199], where different type of strings with
different tension ranges can be considered.

Field theories have also been employed to describe interconnected string networks [166, 174,
176, 200]. The evolution of F and D-strings is approximated by ordinary solitonic cosmic strings,
which are formed by usual spontaneous symmetry breaking mechanisms. Obviously field theories
do not represent the totality of the properties of fundamental interconnected string networks, but
they can be very useful in trying to study their possible cosmological or measurable consequences.
The main differences between ordinary cosmic strings and cosmic superstrings are essentially the
following: firstly the intercommutation probability of solitonic strings is of order 1, while it is
expected to be lower for cosmic superstrings that live in more dimensions. Secondly, ordinary
cosmic string networks are composed by infinitely long strings and loops, but do not have stable
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bound states where 3 different type of strings meet, which are characteristic of interconnected
superstring networks. Finally, there is a whole range of different possible tensions for cosmic
superstrings, whereas networks of ordinary cosmic strings are composed by strings with same
tension, unless strings with different windings are considered.

There are several field models that try to reproduce the dynamics of FD networks [166, 174].
These models are built considering a pair of complex scalar fields coupled to two U(1)L gauge fields
and an attractive potential term so as to induce stable bound states. Field theory simulations of
interconnected cosmic strings will be analyzed in Chapter 4 where we use the first model [174].
Let us briefly review the most important features of this model: it is invariant under U(1)L×U(1)L
gauge symmetry. The Lagrangian thus reads,

L = (Dµφ)∗(Dµφ) + (Dµψ)∗(Dµψ)− 1
4e2FµνF

µν − 1
4g2FµνF

µν − V (|φ|, |ψ|) , (2.16)

where φ and ψ are the two complex scalar fields, which represent each sector of the double U(1)L
gauge symmetry. Each of them is independently charged with respect to its U(1)L gauge field:
Aµ with coupling constant e (φ) and Bµ with g as the coupling constant (ψ).

The potential takes into account the symmetry breaking of each sector as well as the interaction
between the two sectors:

V (|φ|, |ψ|) = λA
4 (|φ|2 − η2

A)2 + λB
4 (|ψ|2 − η2

B)2 − Vint(|φ|, |ψ|) , (2.17)

where λA and λB are dimensionless coupling constants and ηA and ηB the vacuum expectation
values for each kind of scalar fields.

Unless the last interaction term is considered, this Lagrangian describes the evolution of two
independent networks of local cosmic strings. The last term includes the interaction between both
type of fields, enabling the formation of stable bound states.

2.2 Defect dynamics in expanding universes: field theory
simulations

Field theory simulations are aimed to reproduce defect’s physics in realistic cosmological situations.
Unlike other models, such as the Nambu-Goto model, the procedure to derive the equations of
motion is not based on any approximation. Instead the full field equations of the underlying theory
are considered in order not to leave any physical effect behind. In this section we will explain the
procedure behind field theory simulations of Abelian-Higgs cosmic strings. The cosmic string case
will be regarded as the characteristic example, but the theory and procedures explained below can
be applied to any other scaling defect.

The equations of motion of the AH model in a spatially flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) cosmology with scale factor a and choosing the temporal gauge (A0 = 0) read:

φ̈+ 2 ȧ
a
φ̇−DjDjφ = −a2λ

2 (|φ|2 − φ2
0)φ , (2.18)

Ḟ0j − ∂iFij = −2a2e2Im(φ∗Djφ) , (2.19)
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where F0i = Ȧi, which are supplemented with the Gauss law constraint

− ∂iF0i = −2a2e2Im(φ∗φ̇) . (2.20)

In these equations, the dot represents derivatives with respect to the conformal time; and the
spatial derivatives are taken with respect to the comoving coordinates.

The dynamics of string networks, as can be seen in Eqs. (3.1) and (3.2), is highly non-linear.
They cannot be analyzed analytically and thus numerical simulations are necessary. The approach
to solve such equations and obtain general properties of string networks is to solve them on dis-
cretized lattices. Lattices are typically represented in comoving coordinates, where the comoving
distance between points remains constant but the physical distance grows with time, due to the
expansion of the universe. On lattices one reproduces small copies of the real universe and solve
the equations of motion so as to analyze the cosmological evolutions of defects. A limitation
always present in cosmological simulations is that in practice it is not possible to simulate exactly
our universe. However, despite this uncertainty, numerical experiments can easily be repeated and
an averaged statistical description of the universe obtained. Moreover, taking advantage of the
scale-invariant evolution of cosmic string networks one can extrapolate such statistical samples
to cosmological sizes of interest.

The discretization of the field equations on lattices is based on the lattice link variable method,
which preserves the gauge invariance of the equations and recovers the original equations of
motion in the continuum limit. The lattice link variable approach includes gauge invariance by
taking literally the nature of gauge fields as affine connections which parallel transports the scalar
fields. For further details on the lattice link variable approach see [120, 145]. Strings can be
localized in the lattice by calculating the magnetic flux or equivalently calculating the windings
of the complex phase. Gauge invariant winding identification is based on the method proposed in
[117].

The equations of motions are not directly discretized, instead the Hamiltonian or, in the method-
ology adopted in this Thesis and proposed in [42], the action is discretized. The equations of
motion are then derived varying the action with respect to the complex and gauge fields. Dis-
cretized field equations are then solved using the leapfrog method. The leapfrog method solves
the equations of motion for the canonical conjugate of the complex field (similarly for the equation
of the gauge field) and afterwards the complex field is updated from the value of the conjugate.
This process must be made simultaneously in all the points of the cubic lattice, i.e. the values
of the Higgs field and gauge fields are updated in the whole simulation space at each step. The
reason for that is that the next time-step requires information of the actual as well as of the
surrounding lattice points to update due to the presence of spatial derivatives.

Computationally the cost of updating the whole lattice at every time step is really high. Field
theoretical simulations require efficient parallelization schemes that enable feasible implementa-
tions in current computational resources. Parallelization offers an economic way to separate the
cubic lattice in small mini-lattices that can be distributed among different nodes of a computer
and evolved independently, up to a step to step update of the boundaries of the mini-lattices. One
of the most interesting parallelization structure for field theoretical models on lattices is provided
by the publicly available LATField2 library [67]. Based on the C++ programming language, among
other interesting options LATField2 proposes an asymmetric lattice separation framework very
useful for Fourier based massive calculations.

The most challenging task of lattice field simulations is to balance the computational cost/time
and the dynamical range of the network evolution. In this sense, one of the main source of
uncertainties of cosmic string simulations in expanding universes is to resolve simultaneously the
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Figure 2.6: Snapshot of a simulation of AH cosmic strings on a lattice with 10243 points.

string core and the expansion of the universe. While the cosmic string core width is set by the
mass scale of the field theory and remains unaltered by the expansion, the equations of motion
are solved on lattices with comoving coordinates. As the universe expands the comoving string
width shrinks. At some point in the evolution the comoving string width becomes less than the
separation of adjacent lattice points, and we can no longer resolve the string core on the grid.

In order to be able to simultaneously resolve the width of the string and the expansion of the
universe in comoving coordinates, the equations of motion can be modified so that the physical
width grows, and the comoving width does not shrink as fast as it should [42, 144, 162]. Field
equations are derived from a gauge-invariant action with time dependent coupling constants so
as to not violate energy conservation and Gauss’s law [42, 45]. Writing the time varying coupling
constants as

λ = λ0
a2(1−s) , e = e0

a(1−s) , (2.21)
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where we call s the core growth parameter, leads to the equations

φ̈+ 2 ȧ
a
φ̇−DjDjφ = −a2sλ0

2 (|φ|2 − φ2
0)φ, (2.22)

Ḟ0j + 2(1− s) ȧ
a
F0j − ∂iFij = −2a2se2

0Im(φ∗Djφ). (2.23)

These equations preserve Gauss’s law and reduce to the true field equations when s = 1. With
the help of the core growth parameter we can write the comoving string width as:

w = w0
as

. (2.24)

If s < 1, the strings have growing physical width. However, the string mass per unit length and
tension is preserved, and therefore the string dynamics are unaffected for configurations where
the width can be neglected. The extreme case is given by s = 0 in which the width of the
string is constant in comoving coordinates. Extensive testing showed that taking s = 0 is an
acceptable approximation, which improves considerably the dynamical range of the simulations
and with errors which are subdominant to those introduced by the finite size and finite duration
of the simulations [42].

As an illustrative example, we include a snapshot of a AH cosmic string field theory simulation
on a lattice in Fig. 2.6, where the simulation box has 10243 points.

2.3 CMB: UETC approach

The evolution of the string network perturbs the background space-time; those perturbations
evolve and affect the contents of the universe, eventually producing cosmologically observable
effects. Among them, CMB anisotropy creation has been one of the most analyzed defect effect.
In contrast to the inflationary perturbations, which were seeded primordially and then evolve
“passively”, defects induce perturbations actively during their whole existence. As we mentioned
previously, those are estimated to be roughly of the order of the magnitude of Gµ.

Therefore, in principle, in order to calculate the anisotropy pattern induced by string networks
we have to solve the Einstein-Boltzmann equations with active sources, which account for scaling
seeds such as cosmic strings. Fortunately, however, given the high degree of gaussianity of CMB
anisotropies their properties are fully characterized by the 2-point correlation function. This means
that unequal time correlators (UETCs) of the energy momentum tensor are the only object needed
to derive the power spectrum of CMB anisotropies [122, 155, 197]. Let us briefly review the UETC
approach: the system of dynamical equations for the evolution of cosmological perturbations in
Fourier space can be summarized in the following way:

D̂ab(k, a, ȧ, ...)Xa(k, τ) = Sb(k, τ) (2.25)

where the differential operator D̂ab includes the FLRW background quantities and acts upon the
metric, matter and photon perturbations described by the vector Xa. The active seed presence
is included in Sb (see [42] for exact expressions of the source functions in the AH model and
[76–78] for detailed implementation of scaling seeds in gauge invariant perturbation formalism).
If Sb is known from network simulations, then the power spectra can be calculated solving the
inhomogeneous set of equations using Green’s functions (Gac(k, τ, τ ′)):
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〈XaX
∗
b 〉 =

∫ ∫
dτ ′dτ ′′Gac(τ ′)Gbd(τ ′′)〈Sc(τ ′)Sd(τ ′′)〉 . (2.26)

This equation shows that the only quantity needed from simulations to compute the CMB power
spectrum is the bracketed term on the r.h.s., which is strictly related to UETCs. By definition
UETCs of the energy momentum tensor are,

Uλκµν(k, τ, τ ′) = 〈Tλκ(k, τ)T ∗µν(k, τ ′)〉 , (2.27)

where Tαβ(k, τ) is the AH energy-momentum tensor. In principle considering all possible degrees
of freedom of the energy-momentum tensor (2.27), there seem to be 1

210(10 + 1) = 55 such
correlators that would be functions of 5 variables (3 components of k plus two times). Fortu-
nately, rotational symmetry simplifies the problem considerably and reduces the UETC group to
5 independent correlators that depend on 3 variables [42, 77, 78]: k (the magnitude of k), τ and
τ ′.

The source terms of Eq (2.25) and (2.26) are then just the projections of the energy momentum
tensors:

Sa(k, τ) = Pµνa (k)Tµν(k, τ), (2.28)

where Pµνa (k) project onto scalar, vector and tensor parts. In principle there are two of each,
but the two vector and the two tensor components are related by parity for a symmetric source
like Abelian Higgs strings [42]. Hence, we may consider that the indices a, b take four values
corresponding to the independent components of the energy momentum tensor: two scalar, one
vector and one tensor. Usually the scalar indices are denoted by 1 and 2 (corresponding to the
longitudinal gauge potentials φ and ψ), the vector component with ’v’ and the tensor component
with ’t’.

Taking everything into account, we can write

Uab(k, τ, τ ′) = φ4
0√
ττ ′

1
V
Cab(k, τ, τ ′), (2.29)

where φ0 is the symmetry breaking scale, V a formal comoving volume factor, and the functions
Cab(k, τ, τ ′) defined by this equation are dimensionless. Note that the scalar, vector and tensor
contributions are decoupled for linearized cosmological perturbations, and therefore cross correla-
tors between them vanish, except in the scalar sector: hence the 5 independent correlators. Note
also that we adopt the definition of Cvv used in [64] that differs by a factor (kτ)2 from other
works.

A further simplification occurs when the times τ and τ ′ are both in epochs during which the
scale factor grows with the same constant power of conformal time, that is, when the network is
expected to be in scaling regime. In this case the correlation functions do not depend on k, τ
and τ ′ separately, but only on kτ and kτ ′ (or k

√
ττ ′ and τ ′/τ) [77, 154]. Scaling correlators can

be written as,

Uab(k, τ, τ ′) = φ4
0√
ττ ′

1
V
C̄ab(kτ, kτ ′) . (2.30)

Here, the over-bar represents the scaling form of the UETC in a FLRW background.

Whilst our approach measures UETCs from network simulations, we do not in fact use Eq. (2.26)
with such quadratic terms. Instead we decompose the scaling correlators, which are positive
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definite and symmetric, into their eigenfunctions cn(k, τ) defined through [54, 155]∫ τnow

τi
dτ ′C̄ab(kτ, kτ ′)cnb (k, τ ′) = λnc

n
a(k, τ). (2.31)

The scaling UETC is recovered through the sum

C̄ab(kτ, kτ ′) =
∑
n

λnc
n
a(k, τ)cn∗b (k, τ ′) . (2.32)

Formally, the power spectra and cross-correlations of a perturbation in a cosmological variable
Xa can be written

〈Xa(k, τ)Xb
∗(k, τ)〉 = φ4

0
V

∑
n

λnI
n
a (k, τ)In∗b (k, τ) , (2.33)

where the contribution of each linear term, Ina (k, τ), is

Ina (k, τ) =
∫ τ

ti
dτ ′Gab(k, τ, τ ′)

cnb (k, τ ′)√
τ ′

, (2.34)

and G is the Green’s function for the quantity X as in Eq. (2.26). The integration is performed
numerically, using a modified version of one of the standard Einstein-Boltzmann (EB) integrators
CMBEASY [72], CLASS [49, 126], or CAMB [127]. Hence, if UETCs are decomposed into their
eigenfunctions, they can be used as sources for an EB solver. In practice, the square root of the
eigenvalue (which should be positive) and the eigenfunction are combined together into an object
called the source function. The total power spectra is reconstructed by taking the sum of the
power spectra obtained for each source function:

CTot
` =

∑
n

λS
nC

S
`,n +

∑
n

λV
nC

V
`,n +

∑
n

λT
nC

T
`,n . (2.35)

Scaling is an immensely valuable property, as it allows to extrapolate numerical simulations to
the required cosmological scales. However, perfect scaling is not a feature of the true UETCs,
as the universe undergoes a transition from radiation-dominated to matter-dominated expansion
during times of interest, and more recently to accelerated expansion. Hence the UETCs also
depend explicitly on τeq and τΛ, the times of equal radiation and matter density, and equal matter
and dark energy density. Exploring UETCs with broken scaling, and improving the previous method
of accounting for cosmological transitions, will be an important part of Chapter 3.

The UETC method has widely been used in field theory simulations to calculate CMB power
spectra. In the case of cosmic strings the calculation of power spectra is a particularly active
research area, which is adapting to new computational and technical resources. CMB power
spectra of cosmic strings calculated using field theory simulations were first published in [42, 43],
and updated in [45]. In addition to cosmic strings, the possible CMB contributions of other cosmic
defects have been similarly calculated: semilocal strings and textures in [201] and self-ordering
scalar fields in [86]. An important part of this Thesis, Chapter 3 and [64], is devoted to update
and extend the cosmic string power spectra predictions using the biggest simulations to date. The
UETC method has also been adapted to other simulation schemes such as NG [125] and USM
[32]. Roughly, NG, USM and field theory calculations predict the same pattern for the CMB
power spectrum, except for a global normalization factor [36].

For a proper parameter estimation analysis that aims to determine the cosmological parameters
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in models containing defects, the power spectra of defects should be calculated for every set
of possible cosmological parameters, i.e. for a huge number of different cases. Moreover, CMB
calculations for active perturbing objects like scaling seeds require much more computational
time and cost than those produced passively by inflation. It is clear that such calculations are
not feasible in current computational systems. Nevertheless, the relative contribution of defects
to the total temperature perturbations has been restricted to be no more than a few percent,
corresponding to an upper bound on Gµ < 10−6 or on the symmetry-breaking scale of about
4× 1015 GeV [14, 125, 132, 203], and the back-reaction of defects in the background cosmology
is expected to be of order O((Gµ)2). In other words, the result of a possible change in the
cosmological parameters produced by the presence of defects would produce a second order effect
and would be negligible. Hence, the defect contribution needs only to be calculated once, using
currently favored values of the cosmological parameters.

The shape and profile of the spectra can be determined by simulations, but not the overall
normalization. It is customary to represent defect power spectra in ∝ (Gµ)−2 units. This choice
exhibits our lack of knowledge about when the string network was formed. Higher energy scale
of the symmetry breaking implies higher Gµ and thus strings would produce bigger perturbations
which translate into higher amplitude of the anisotropy power spectrum. In fact, it is the nor-
malization of defects (Gµ) what parameter fitting analyses including models with defects try to
determine. Alternatively to Gµ, it is also typical to determine the string contribution to the total
CMB using f10. f10 measures the relative contribution of strings to the total, i.e. inflation plus
strings, at multipole ` = 10. In CMB contexts Gµ and f10 are equivalently used and for small
contributions from defects f10 ∝ (Gµ)2.
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Figure 2.7: CMB temperature anisotropy power spectrum of AH strings decomposed into scalar (blue
line), vector (red line) and tensor (green line) perturbations together with the total in thick
black line. The power spectra were calculated in [45].

Fig. 2.7 shows the temperature power spectrum produced by a network of cosmic strings.
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Chapter 2. Cosmic strings and defects

The spectrum was calculated following the UETC approach and published in [45]. We show
in different color the decomposition into scalar (blue), vector (red) and tensor (green) together
with the total contribution (thick black line). As it can be seen from the picture, the dominant
contribution comes from scalar perturbations, while the amplitude of the vector and tensor spectra
are significantly smaller. The total contribution is characterized by a single peak at ` ∼ 500 and
a decay at high-`-s which follows a power-law behaviour.
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Figure 2.8: CMB B-mode polarization anisotropy power spectrum of AH strings decomposed into vector
(red line) and tensor (green line) perturbations together with the total in thick black line. The
power spectra were calculated in [45].

As mentioned in the previous chapter of the Introduction, defects are considered one of the few
cosmological objects that can directly produce B-mode polarization of the CMB. The detection of
B-modes is referred as the smoking gun for inflation, which can produce B-modes via primordial
gravitational waves; but it could also be for defects. The amount of inflationary gravitational
waves predicted can vary enormously from model to model (from r ∼ O(10−2) to O(10−23)).
Furthermore, the scalar perturbations that are dominant in the temperature channel are absent
in B-modes, they only contribute via lensing of E-modes. Indeed primordial contributions to B-
modes, inflation gravitational waves and defects, will not be masked by such lensing signal, as can
be seen in Fig 2.9 and Fig 1.3 of Chapter 1. This is why even though the relative contribution of
defects to temperature anisotropies is highly constrained by accurate measurements, they could
still be dominant in the B-mode channel.

Cosmic defects perturb continuously the cosmological fluid. Vector and tensor modes are contin-
uously seeded and both contribute significantly to CMB B-modes, as opposed to the inflationary
case where only tensor can produce directly B-modes. Another interesting difference between
inflation and defects, is that the amplitude of the temperature perturbations and polarization
perturbations are completely correlated in defects, i.e. they depend upon a single parameter Gµ,
whereas they are almost independent in the inflationary, apart from the inflationary consistency
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2.3 CMB: UETC approach

relation [128]. It essentially means that any bound derived for one of the channels must be
applied and imposed in all of them. As we will see in Chapter 2 of Results, this has important
consequences when fitting CMB polarization data with defect predictions.

B-mode spectra predictions are shown in Fig. 2.8 and Fig 2.9. In Fig. 2.8 we show the decompo-
sition of the prediction for AH strings into vector (red line) and tensor (green line) together with
the total contribution (thick black line). Vectors peak at smaller scales, while tensors do at lower
multipoles. Both of them contribute almost at the same level to B-modes. Figure 2.9, in turn,
shows the comparison of the CMB B-mode power spectrum calculated for different defects: AH
strings in blue, semilocal strings in black and textures in red. The semilocal and texture spectra
were calculated in [201].

101 102 103
10-3

10-2

10-1

`(
`
+

1)
C

B
B

`
/2

⇡
[µ

K
2
]

`

Figure 2.9: CMB B-mode polarization anisotropy power spectra of AH strings (blue line), semilocal strings
(black line) and textures (red line). The lensing of the E-modes obtained using Planck best
fit values for the cosmological parameters is also included (thin grey line).

As can be shown from the picture, different defects produce roughly the same spectrum pattern
for the polarization. The most significant difference is the position of the peak, which is located
at higher multipoles for AH strings ` ∼ 500, at ` ∼ 300 for semilocal strings and at ` ∼ 200
for textures. A future B-mode detection made by a experiment with enough precision, similar
to already proposed ones such as CORE or QUIJOTE, would be able to distinguish between the
signal of inflationary gravitational waves and defects, and also to discriminate between different
type of defects [92, 148, 202]. Determining the nature of cosmic defects would provide invaluable
information on high-energy symmetry breaking.
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1 Correlations between cosmic strings and
extra relativistic degrees of freedom

Increasingly accurate cosmological measurements, specifically analysis of the cosmic microwave
background, have stablished the Standard Cosmological model as the description of the universe
that the community agrees upon. Yet there exist some unanswered questions, which mainly lie
between the link of the standard cosmological model and the standard model for high energy
physics. It is in the small details and small windows that the data allow us to try different
approaches where a promising road to understanding the constituents of the cosmological standard
model lies.

An interesting example of that is the presumable excess on the relativistic species present at
the early universe. The standard model for high energy physics predicts 3 neutrino flavours, giving
Neff = 3.046 (see section 1.1.1 for exact definitions) which also accounts for some corrections
from incomplete decoupling [137]. However, some cosmological measurements seem to indicate
that this number is bigger, which in fact would be a signal of extra relativistic energy in the early
universe. The excess could be a hint of the existence of an extra neutrino flavour, or even it could
be a hint of other kinds of relativistic energy present at those early stages of the universe.

As we mentioned, the high energy physics standard model predicts three neutrino flavours,
giving Neff = 3.046. However, when this work was accomplished, analysis on Neff from some
cosmological data seemed to prefer values greater than 3.046 indicating the presence of an extra
relativistic energy component at the early universe: a value of Neff = 4.34+0.86

−0.88 at 68% C.L. can
be found for the combination of CMB data from Wilkinson Microwave Anisotropy Probe 7-year
(WMAP7) with Baryon Acoustic Oscillation (BAO) data presented in [121] and the value of H0
given by the Hubble Space Telescope (HST) [171]. Also the inclusion of CMB data at small
scales, which provides tighter constraints, still showed a preference for the existence of an extra
component of radiation different from neutrinos. In combination with WMAP7 data, BAO and
the value of H0, an Neff = 4.56 ± 1.5 at 68% C.L was published from the Atacama Cosmology
Telescope (ACT) [75] and Neff = 3.86± 0.42 from the South Pole Telescope (SPT) data [118].

Along these lines, some groups investigated the option of gravitational waves being the extra
component [190]. Those gravitational waves could account for the extra radiation component
needed to explain the observed Neff . The Cosmic Gravitational Wave Background (CGWB)
behaves as noninteracting massless particles [143], so their effect on the CMB is the same as
massless neutrinos when their energy-density perturbations are adiabatic, as one would expect
from inflation.

One important question, though, is to give the source of those gravitational waves. If they were
there at the early Universe, what was creating them? One of the possible answers put forward in
the literature has been that cosmic strings could be the source of this CGWB [180]. Besides CMB
anisotropies, cosmic strings would also be (active) sources of gravitational waves. There have
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1.1 Theoretical Background

been several works trying to obtain the gravitational wave spectra coming from cosmic strings,
although there is still some debate in the community [61, 62, 152, 184–187]. A full field theory
simulation would be very helpful. The loop distribution of strings is not completely understood
either [46, 47, 73, 108, 133, 153, 160, 161, 172, 173, 209], and that parameter could be key
in estimating the gravitational wave production from strings. Besides, the decay products of
strings are also important, since strings could be decaying directly into gravitational modes or
could decay into other particles. For example, pulsar timing bounds on cosmic string tension
can change significantly due to those factors mentioned above, i.e., loop production and decay
mechanisms.

All in all, the excess energy stored in relativistic components could come from gravitational
waves originated in cosmic strings. In Ref. [180] the authors discussed this possibility and gave
an upper bound on the cosmic string tension (Gµ)2 < 10−7 at 95% confidence level (C.L.).
However, that zero order approach can be improved by noting the following: If the excess in
Neff comes from cosmic strings, cosmic strings were there in the early Universe. Then, cosmic
strings would have also contributed to the temperature (and polarization) CMB anisotropies, and
thus the parameter estimation should be done by including the contribution from string from the
beginning.

It is also known that cosmic strings have degeneracies and correlations with other parameters
in the ΛCDM model. For example, it was shown in Refs. [39, 44] that an ns = 1 was possible
with the (then) current data if strings were included in the analysis, due to a suite of degeneracies.
Thus, it is interesting to investigate whether such correlations exist between the string contribution
and Neff and what implications this may have in both the string tension and the extra neutrino
species.

In this Chapter we present the work performed in [130], where we addressed the presented
issue exploring the cosmological parameter space through a likelihood analysis. We performed a
Markov Chain Monte Carlo type analysis to estimate cosmological parameters, including cosmic
string contributions, either letting Neff be a free parameter or inferring it from the value obtained
by the cosmic string parameter. We used CMB data both for relatively small ` (WMAP7 [123])
and for larger ` (SPT data [118]). We will also considered non-CMB experimental data given by
HST measurement of the Hubble constant (H0) by Riess et al [171] and BAO data by Percival
i.e. [157].

1.1 Theoretical Background

1.1.1 Effective Number of Neutrinos

The amplitude and the position of the acoustic peaks of the CMB power spectrum are determined
by the energy content of the Universe before recombination, i.e. by the matter and radiation
content. According to the standard cosmological model the relativistic matter content at Big
Bang Nucleosynthesis (BBN) consisted of photons, electrons and three neutrino flavours, which
in term of degrees of freedom can be written as:

43
4 = 2 + 7

8(4 + 6), (1.1)

where photons, electrons and positrons have 2 helicity states, while neutrinos and antineutrinos

only one. The factor
7
8 appears because these last are fermions.

The effective number of neutrinos (Neff) encapsulates the contribution of any extra radiation
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Chapter 1. Correlations between cosmic strings and extra relativistic degrees of freedom

component: for instance, an extra neutrino specie would contribute one unit to Neff . In general,
however, Neff is not an integer and any extra relativistic specie contributes in the following way:

43
4 +

∑
i

gi

(
Ti
Tγ

)4

+ 7
8
∑
j

gj

(
Tj
Tγ

)4

= 2 + 7
8(4 + 2Neff), (1.2)

where i and j stand for any extra boson and fermion contribution respectively, and gi and gj
represent the internal degrees of freedom of each extra specie. Out of thermal equilibrium, the
temperature of the extra particle (Ti) differs from the temperature of the photons (Tγ).

The main effect produced by a change of the radiation density before recombination comes
from the shift of the redshift of the matter-radiation equality, zeq. The more (less) relativistic
contributors present at recombination, the later (sooner) enters the Universe in the matter domi-
nation, which translates into smaller (bigger) zeq. Therefore, Neff can be represented equivalently
as:

Neff = 3.04 + 7.44
(

Ωmh
2

0.1308
3139

1 + zeq
− 1

)
. (1.3)

An increase in Neff also affects the evolution of the acoustic oscillations of the primordial
baryon-photon plasma, and thus also the acoustic peaks of the power spectrum. On the one
hand, higher values of Neff heighten the first two peaks: due to the shift in the matter-radiation
equality, modes that entered earlier in the horizon enhance their amplitude [112]. On the other
hand, such a change also affects the damping tail of the spectrum, which causes the decrease of
the amplitude of the higher peaks and displacement of them to higher multipoles. A graphical
representation can be found in Fig. 1.1.

1.1.2 Cosmological Gravitational Wave Background

Gravitational Waves are solutions of the linearized Einstein equations [143]:

gµν = ηµν + hµν , (1.4)

where ηµν is the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric and hµν the perturbation,
|hµν | � 1. In the isotropic, homogeneous and expanding universe, the spatial-spatial Transverse-
Traceless degrees of freedom of the perturbation verify the wave equations [143]:

ḧij + 3Hḣij −
1
a2∇

2hij = 16πGΠTT
ij , (1.5)

where hkk = hik,k = 0. ΠTT
ij is the source of the perturbations.

It is assumed that the detection of a stochastic gravitational wave background of cosmological
origin would open a window to the very high energy physics. Its constituent particles, the gravitons,
decoupled very soon from the primordial plasma with an extremely small cross section. Even
though their weak interaction is the reason for the difficulties in their detection, it is also what
makes them so interesting towards the understanding of the physics of the early universe, since the
weaker the interaction of the particles, the higher the energy scale when they drop out of thermal
equilibrium. In other words, they have travelled nearly unperturbed and thus they have not lost
the memory of the conditions in which they had been produced carrying invaluable information.

The stochastic background is expected to be isotropic, stationary and unpolarized [135]. Under
these assumptions, it can be fully characterized by the spectrum of its dimensionless energy
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Figure 1.1: CMB temperature power spectra using three different values of Neff , Neff = 3 in black,
Neff = 4 in blue and Neff = 5 in green, other cosmological parameters fixed to the ΛCDM
best-fit value given in [21]. As we increase Neff the amplitude of the first peak increases while
the higher peaks shift toward smaller scales.

density:

ΩGW(f) = 1
ρc

dρGW
d log f , (1.6)

where f is the frequency and ρc is the present value of the critical energy density for a flat universe.

Gravitational wave contribution to Neff

Gravitational waves of cosmological origin have been considered as a plausible candidate to be
responsible for the excess of relativistic degrees of freedom. For perturbations inside the horizon,
GW can be considered to be propagating in Minkowski background [143]. In this case, the equation
of motion for the tensor perturbation of the metric becomes ∂σ∂σhµν = 0, whose solution is a
plane-wave hµν = R{Aµνeikσx

σ}, with a wave vector k. We can then obtain an expression of the
effective energy-momentum tensor:

TGWµν = A2kµkν
32π , (1.7)

which is the same as the energy-momentum tensor of a beam of non-interacting massless particles.
Thus, the effects on the CMB and the matter power spectra of CGWB are equal to those produced
by massless neutrinos. If gravitons, particles with spin= 2 or equivalently g = 2, are one of the
possible sources of the extra signal, Eq. (1.2) can be written as:(

ρGW
ργ

)
BBN

≤ 7
8(Neff − 3), (1.8)
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Chapter 1. Correlations between cosmic strings and extra relativistic degrees of freedom

which under standard evolution of the photon and graviton densities (for detailed derivations see
[135]), the relation can be written in terms of present densities in the following way:

ρGW
ργ
≤ 0.227(Neff − 3), (1.9)

where ρ ∝ T 4 for each species. The relation between Neff and the spectrum of gravitational
waves is obtained rewriting the last equation using Eq. (1.6):∫

d(log f)h2ΩGW (f) ≤ 5.6× 10−6(Neff − 3). (1.10)

This allows us to translate any constraint on the Neff into an upper bound on the gravitational
wave energy density Ωgwh

2, for those with a frequency larger than ∼ 10−15Hz which correspond
to the size of the sound horizon at decoupling. This bound, of course, holds only for tensor
modes already present at BBN. It does not apply to any other background produced latter, like
backgrounds of astrophysical origin.

1.1.3 Gravitational wave background produced by cosmic strings
Active perturbation sources such as cosmic strings produce CMB anisotropies and could also be
source of gravitational waves that contribute to the stochastic cosmological gravitational wave
background. The theory of anisotropy production has been widely studied during years and there
exists a standard procedure for the calculation of their contribution to the CMB power spectra
(see detailed discussion on this issue in Sec. 2.3 of the Introduction); however the contribution
from cosmic strings to the gravitational wave background is less understood than their CMB
imprints. The production of tensor modes from strings has been studied for a number of years
now [61, 62, 186, 213], where the cusps and kinks on the strings where considered, mostly in a
Nambu-Goto approximation. For those predictions, the size and distributions of loops are also
of crucial importance. One of the main focus of some of those works was to study how the
gravitational wave contributions from strings would change when considering cosmic superstrings,
and more specifically the probability of intercommutation of the strings p. For the present work,
we only consider solitonic cosmic strings, and will consider p = 1, that is, the string segments
always reconnect when they meet, which is an excellent approximation.

Even though the form of the GW spectra coming from strings is still under study (see [74] for
a different approach), as is also the size and distribution of loops [108, 133, 183], for the present
work we will use the approach put forward in [152, 187] since it is one of the few that gives a
direct translation from Gµ to gravitational waves (and hence, to Neff via Eq. (1.10)).

The authors of [152, 187] show that under adiabatic initial conditions, incoherent superposition
of cusp bursts from a network of cosmic strings (or superstrings) can produce a spectrum of
gravitational waves. The procedure used in the paper is summarized in the following lines.

It is assumed that kinks and cusps in strings would be the only measurable events in terms of
gravitational wave emissions. Hence, the authors calculate the form of the spectrum of the metric
perturbation for such energetic events and showed that for both cases the emission only happens
in a cone and that the perturbation per loop length and per redshift is proportional to Gµ. They
give the following expression for the spectrum:

ΩGW(f) = 4π2

3H2
0
f3
∫
dz

∫
dlh2(f, z, l)d

2R(z, l)
dzdl

, (1.11)

where f is the frequency, l the loop length, z redshift, h the trace of the perturbation and
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1.2 Method and implementation

d2R(z, l)
dzdl

the observable burst rate per l and per z, which is proportional to the loop density.

The last terms distinguishes between the observability of cusps and kinks. Indeed, kinks travel
around string loops emitting in a strip, whereas cusps are instantaneous events whose radiation
can only be measured when the line of sight and the cone of radiation coincide.

Finally the Eq. (1.11) is integrated for loops created at radiation domination era. The authors
find that both kinks and cusps contribute at almost the same level, though the results are quite
different for different loops. For those smaller than the horizon we have:

ΩGW(f) ≈ 5× 10−2Gµ

p
, (1.12)

while the spectra given by loops of the size of the horizon:

ΩGW(f) ≈ 3.2× 10−4
√
Gµ

p
. (1.13)

Different hypothesis on the creation of different sized loops lead to the different dependence on
Gµ: small loops are supposed to emerge due to gravitational backreaction, which implies that the
density is proportional to (Gµ)−1. As for the large-loops, backreaction is assumed to be irrelevant
and they appear as a consequence of large-scale dynamics of the network. For this case assuming
an scaling network they obtain that the density is proportional to (Gµ)−5/2.

Therefore, once we have a value for Gµ we can link it to a ΩGWh
2 which in turn is linked

to an effective number of relativistic species NCS
GW whose effect would be analogous to the one

produced by the gravitational waves produced for those strings, all according to [152]. In order
to get the correspondence between Gµ and Neff we would need to integrate Eq. (1.10) using
Eqns. (1.12) or (1.13) for sub-horizon or horizon sized loops respectively, as done in [180]. The
limits for the integral can be obtained approximately as follows: the lower-bounds determine the
range of validity of the approximations given in [152] where the GW spectra is almost flat and
gets the main contribution from the loops in the radiation era. The upper limit is given by the
horizon size at the time of the phase-transition which produced the string network.

The lower-bound to the spectrum is fmin ∼ H0z
1/2
eq for sub-horizon sized loops and fmin ∼

3.6 × 10−18/Gµ Hz for horizon-sized loops. The upper-bound for both cases is given by the
horizon size at the time of the phase-transition fmax ∼ MplGµ, giving for the sub-horizon sized
loops

Gµ ln
(
GµMpl

H0z
1/2
eq

)
∼ 5.6× 10−6NCS

GW
5× 10−2h2 . (1.14)

For horizon-sized loops, it gives

√
Gµ ln

(
(Gµ)2Mpl

3.6× 10−18 Hz

)
∼ 5.6× 10−6NCS

GW
3.2× 10−4h2 , (1.15)

where Mpl is the reduced Planck mass and zeq is the redshift of matter-radiation equality.

1.2 Method and implementation

We explore the multi-parameter space using the Markov Chain Monte-Carlo (MCMC) parameter
estimation and likelihood space exploration procedure. The base model considered is that of a
ΛCDM with the usual six parameters (PL):
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{Ωch
2,Ωbh

2, τ,H0, As, ns} (1.16)

In order to consider non zero extra relativistic contribution, we add one more parameter: the
effective number of neutrino species Neff (or equivalently the extra radiation component). These
parameters are fed into CAMB [127] to get the corresponding power spectrum. Depending on the
case under study, the cosmic string contribution is added to the power spectrum using a previously
calculated spectrum template, which is normalized by the parameter (Gµ)2 (see Sec. 2.3 of the
Introduction for explanations of this procedure). As we will show later, for certain cases we find
that the data prefers ns = 1, in a similar way to what the authors in [37, 39, 44, 201] found.
Therefore, we will also consider a model with ns fixed to one. We will refer to this model as
the Harrison-Zel’dovich (HZ) model. Once again, Neff and Gµ will be added to the HZ model.
Thus by permutation of the free parameters, we build four different models in combination to
those base parameters of the PL and HZ models,

1. PL + Gµ: When the string normalization parameter is added.

2. PL + Neff : When relativistic degrees of freedom are left to vary freely.

3. PL + Gµ + Neff : When both are considered.

4. HZ + Gµ + Neff : The Harrison-Zel’dovich (HZ) model, ns = 1, with both parameters
freed. This fourth case corresponds to a base model consisting of 5 base parameters, since
ns = 1 is fixed.

We use flat priors with gaussian probability distribution at each step that can be found in
Table 1.1.

Parameter Prior

Ωbh
2 [0.005, 0.1]

Ωch
2 [0.01, 0.99]

θ [0.5, 10]
κ [0.01, 0.8]
ns [0.5, 1.5]

ln(1010As) [2.7, 4]
Neff [1.047, 10.0]

(Gµ)2 [0, 4× 10−12]

DPS
3000 [0, 100]

DCL
3000 [0, 100]

DSZ
3000 [0, 100]

Table 1.1: Priors for the parameters used in our analysis,
in the most general case with all parameters left
free. For the different models we considered,
some of this parameters will be kept fixed, as
explained in the text.

Besides the parameters mentioned above, we consider some derived parameters that are also
shown on the following tables. One of them is the Hubble constant (H0) or equivalently its
reduced version (h = H0/100) in km s−1 Mpc−1. We also show the contributions of strings
using their relative contribution to the total power spectrum at ` = 10 f10. Finally, we include
two extra relativistic numbers: NCS

GW, which is the contribution to the effective number of extra
species solely coming from strings, and N∗eff , which is the contribution needed once the three
neutrinos and the cosmic strings contribution has been subtracted. These last two numbers are
given for both, horizon sized and sub horizon sized loops.
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1.3 Results

Our models will be compared with both CMB and non-CMB experimental data with the help of
the MCMC method, using a modified version of CosmoMC (version 2012) [127] that accounts for
the string spectra contribution. Specifically we compare our predictions to the following datasets
(see Section 1.2.2 of the Introduction for detailed analysis of the CMB datasets):

• WMAP 7-year [123] for the relatively low-` region l ≤ 1300.

• High-`: SPT [118]. When data from the SPT experiment is used, foreground contaminants
have to be taken into account, therefore three extra parameters are used (normalized, as
usual, at ` = 3000): Poisson point source power DPS

3000; Clustered point source power DCS
3000;

and the Sunyaev-Zel’dovich power DSZ
3000.

• Non-CMB data: Hubble Space Telescope (HST) measurement of the Hubble constant
(H0 = 74.2± 3.6) by Riess et al [171] and the Baryon Acoustic Oscillation measurements
by Percival et al [157].

The analysis of the likelihood surface data compiled for the Markov chains have been statistically
analyzed. We obtain 2D marginalized distributions, 68% (1σ) and 95% (2σ) Confidence Contours
(C.C), to find correlations between different parameters under study. In some cases the 2σ is out
of the bounds, e.g. cosmic string amount that is compatible with no contribution at all; in such
cases we express 95% Confidence Limits (C.L) in order to illustrate upper bounds. The goodness
of fit of each model is explored using the temperature parameter, which controls the size of the
step in parameter space and allows to sample from P 1/T rather than from P . Therefore, low
temperature chains are very useful to explore accurately local maxima and to get precise best-fit
parameters as well as likelihood values.

1.3 Results

1.3.1 WMAP 7-year

First of all, we started by fitting relatively low multipoles using the simplest model containing
strings: PL+ Gµ. We have been able to identify how strings correlate with usual cosmological
parameters. The two-dimensional likelihood confidence contours of the correlations between
strings and some standard cosmological parameters are illustrated in Fig. 1.2. They show that
strings are positively correlated with Ωbh

2 and ns. As in previous works, when we fitted WMAP7
data with the PL+Gµ model, the value of string normalization just got an upper limit with
value: f10 < 0.107 at 95% (C.L.), very close to what points out [203]. The contours also show
that the Harrison-Zel’dovich scale invariant model for scalar perturbations (ns = 1) is well inside
the 1σ contour, confirming that when fitting data with cosmic strings it is a plausible model, as
noted in [44]. In the analysis non-CMB data (HST+BAO) was also added for later convenience;
comparison between the upper and the lower part of Fig. 1.2 shows that the results are quite
similar in both cases.

The results of fitting WMAP7 data to the PL model with Neff and/or Gµ is shown in Table 1.2.
When we only allow Neff to be a free parameter and set Gµ to zero, it is clear that, as it was
pointed in previous works [75, 118], the preferred value for Neff is larger than three, indicating that
there is a preference for some extra radiation component in the early universe. When including
cosmic strings also into the analysis, the preferred value is found to be still larger than three, but
smaller than when considering only Neff . Thus, not only would cosmic strings be the source for
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Figure 1.2: Two-dimensional likelihood contours where degeneracies of the string parameter f10 with
Ωbh

2 and ns are shown when fitting for WMAP7 and WMAP7+HST+BAO, using the PL+
Gµ model. The 1σ contour is represented in light grey, whereas the 2σ in dark grey. The
figure shows that the there exists a positive correlation of strings with such parameters when
both datasets are considered.

the extra radiation component by means of creating gravitational waves, but they also lower the
need of the extra component; that is, Gµ and Neff are anticorrelated. However, the value of Neff
is quite poorly constrained by using only WMAP7 data [123]. As an explanatory example the
upper pane of Fig. 1.3 shows that it is almost impossible to form a judgment about what happens
with Neff and its correlations with other cosmological parameters, especially with Gµ.

It is customary therefore to include other type of data. As mentioned before, we use H0 and
BAO data, and the results can be seen in Table 1.2. The first noticeable feature is that in
general the inclusion of non-CMB data reduces the uncertainties of the parameters, see lower
pane of Fig. 1.3. The BAO and the H0 data push most of the parameters in different ways; more
specifically, BAO pushes the string contribution down and the Neff up; whereas H0 pushes Neff
down. When considering both data sets together, the tension between the two data comes into
play, but the contribution from H0 is more important in that the overall value of the parameters
are tilted towards the preferences of the HST value of H0; maybe because when fitting the
data without the H0 prior, the value of h is rather high, and including the prior pushes it down
considerably. Comparing the results from fitting to WMAP7 only, to WMAP7+H0+BAO, we see
that the mean value for the extra neutrino species is significantly lower. When this last dataset
is fitted by the most general model, PL + Gµ + Neff , the previously mentioned anticorrelation
between Neff and cosmic strings is clearly confirmed, as can be seen from the lower pane of
Fig. 1.3.

Table 1.2 also shows the best-fit χ2 differences between different models and data-sets, taking
as the base model the one corresponding to PL+Gµ+Neff fitting for CMB data only. In other
words, we compare all the other models to this one, and give the difference in χ2 in the table.
In order to compare the best-fit values, one should be careful about the number of parameters
and the data-sets used to perform the likelihood analysis. For example, the first two columns
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Figure 1.3: Two-dimensional likelihood contours where degeneracies of Neff with f10 as well as with Ωbh
2

and ns are shown when fitting for WMAP7 and WMAP7+HST+BAO, using the PL+Gµ+
Neff model. The 1σ contour is represented in light grey, whereas the 2σ in dark grey.

Dataset WMAP7 +H0+BAO +H0 +BAO +H0+BAO
Model PL+Gµ PL+Neff PL+Gµ+Neff PL+Gµ PL+Gµ+Neff

100Ωbh
2 2.4±0.1 2.21±0.06 2.3±0.1 2.35±0.01 2.32±0.09 2.29± 0.07 2.31±0.01

Ωch
2 0.108±0.006 0.18±0.03 0.16±0.04 0.11±0.04 0.12±0.02 0.19± 0.03 0.12± 0.02

θ 1.041±0.003 1.029±0.005 1.034±0.007 1.041±0.003 1.039±0.006 1.028± 0.004 1.038± 0.006
κ 0.09±0.02 0.09±0.02 0.09±0.02 0.09±0.02 0.09±0.02 0.09± 0.02 0.09± 0.02
ns 0.99±0.02 1.00±0.02 1.00±0.02 0.98±0.01 0.99±0.02 1.02± 0.02 0.99± 0.02

ln(1010As) 3.10±0.05 3.12±0.04 3.10±0.07 3.10±0.05 3.12±0.06 3.13± 0.05 3.13± 0.07
1012(Gµ)2 0.18 (< 0.37) – 0.15 (< 0.33) 0.15 (< 0.33) 0.15 (< 0.33) 0.10 (< 0.26) 0.15 (< 0.34)

Neff – 7±2 6±2 – 3.6±0.9 8±2 4±1
h 0.74±0.04 0.84±0.08 0.83±0.08 0.74±0.02 0.74±0.02 0.88± 0.07 0.75± 0.02
f10 0.05 (< 0.107) – 0.04 (< 0.096) 0.05 (< 0.093) 0.04 (< 0.091) 0.03 (< 0.073) 0.04 (< 0.096)

NCS
GW(sm) 0.16±0.06 – 0.18±0.08 0.15±0.06 0.14±0.05 0.15±0.07 0.14±0.05

NCS
GW(lar) 2.2±0.6 – 2.8±0.8 2.3±0.6 2.1±0.4 2.5±0.7 2.1±0.4
N∗eff(sm) – 4±2 3±2 – 0.4±0.9 4±2 0.3±0.9
N∗eff(lar) – 4±2 0±2 – -1±1 1±2 -2±1

∆χ2 -0.78 -0.45 0 -0.94 -0.36 -1.55 -0.68

Table 1.2: Marginalized likelihood constraints on model parameters, for three different models and with
different datasets. The models differ in that Neff and/or Gµ are parameters that we fit for, or
are fixed parameters. The first three columns corresponds to the fitting to WMAP7 data, the
fourth to the fitting of WMAP7+H0+BAO with PL + Gµ and the last three correspond to
WAMP7+H0, WMAP7+BAO, and WMAP7+H0+BAO, respectively. The table shows the 6
usual parameters, plus the cosmic string contribution Gµ and the extra radiation component
Neff . We also give the derived parameters h (the Hubble parameter) and f10 (the contributions
of strings to the total power spectrum at ` = 10). Following the discussion in Section 1.1.3,
the values of NCS

GW and N∗eff are given for two cases: subhorizon-sized string loops (sm) and
horizon-sized loops (lar). The goodness-of-fit is characterized by ∆χ2, where the difference is
taken with respect to the model in the third data column. The values shown are the means
and standard deviations, whereas the ∆χ2 shown corresponds to the case that best fits the
data. In the cases where only upper limits can be placed, we give the mean value and next to
it the 95% confidence limit in parenthesis.
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Chapter 1. Correlations between cosmic strings and extra relativistic degrees of freedom

of the table have the same number of parameters (7) and fit to the same data-set (WMAP7),
so the χ2 can be directly compared, showing that they are similar, with a slight preference for
the model with Neff . The third column has one more parameter (8) so the comparison is not
as straightforward. A similar situation happens in the last three columns, where the number of
parameters is the same in all of them (8) but the data-sets change from case to case; rendering
the comparison of the goodness of fit by the best-fit likelihood value more difficult. However, note
that the ∆χ2 numbers are only a rough tool to compare different scenarios; in order to compare
different models a proper model selection analysis should be done, and moreover, models fitting
different data sets should not strictly be compared this way.

1.3.2 WMAP7 + SPT
The relative importance of the contribution of cosmic strings to the power spectrum is higher
at very-small scales, due to a slower damping. Thus little changes in Gµ lead to significant
alterations in this sector of the spectrum, which could be translated into considerable changes of
the posterior distributions. In order to measure such changes, we include SPT data to the CMB
dataset expanding the spectrum up to ` = 3000.

Dataset WMAP7+SPT +H0+BAO +H0 +BAO +H0+BAO
Model PL+Gµ PL+Neff PL+Gµ+Neff PL+Gµ PL+Gµ+Neff

100Ωbh
2 2.21± 0.05 2.27±0.05 2.37±0.08 2.22±0.04 2.25± 0.05 2.40±0.07 2.25±0.05

Ωch
2 0.108± 0.005 0.13±0.01 0.15±0.02 0.106±0.004 0.13± 0.01 0.14± 0.01 0.13±0.01

θ 1.040± 0.002 1.040±0.002 1.036±0.002 1.040±0.001 1.038± 0.002 1.037±0.002 1.038±0.002
κ 0.08± 0.01 0.09±0.02 0.09±0.02 0.08±0.01 0.09± 0.02 0.09±0.02 0.08±0.01
ns 0.96± 0.01 0.98±0.02 1.01±0.02 0.96±0.01 0.97± 0.01 1.01±0.02 0.98±0.01

ln(1010As) 3.17± 0.05 3.14±0.07 3.06±0.07 3.16±0.04 3.16± 0.04 3.01±0.06 3.16±0.04
1012(Gµ)2 0.11 (< 0.22) – 0.24±0.09 0.12 (< 0.22) 0.14 (< 0.27) 0.26±0.06 0.14 (< 0.25)

Neff – 3.9±0.6 6±1 – 3.9± 0.5 5.7±0.9 4.0±0.5
DSZ

3000 6± 3 6±3 5±3 5±2 6± 2 5±3 6±3
DPS

3000 20± 3 20±3 19±3 20±3 20± 3 21±3 20± 3
DCL

3000 5± 2 5±2 5±2 4± 2 4± 2 6±2 5±2
h 0.72± 0.03 0.75±0.04 0.87±0.07 0.73± 0.02 0.75± 0.02 0.89±0.06 0.75±0.02
f10 0.03(< 0.057) – 0.07±0.03 0.03 (< 0.058) 0.04 (< 0.072) 0.08±0.02 0.04 (< 0.067)

NCS
GW(sm) 0.11±0.04 – 0.25±0.08 0.12±0.05 0.14±0.04 0.25±0.07 0.14±0.04

NCS
GW(lar) 1.8±0.4 – 3.4±0.7 2.0±0.5 2.1±0.4 3.3±0.8 2.2±0.3
N∗eff(sm) – 0.9±0.6 2±1 – 0.8±0.5 2.2±0.9 0.8±0.5
N∗eff(lar) – 0.9±0.6 -0.6±0.6 – -1.3±0.5 -0.8±0.6 -1.2±0.5

∆χ2 -6.54 -8.01 0 -6.93 -2.78 -0.08 -4.03

Table 1.3: Analogous table to Table 1.2, but in this case the CMB data sets used are WMAP7 and SPT
data. Because of the presence of the SPT data, we have to incorporate 3 more parameters,
responsible for taking care of foreground effects.

As in the preceding section, we first ran several chains fitting the data using the PL + Gµ
model in order to seize the effect of the inclusion of the high ` data in models containing only
strings; the results can be found in the fourth column of table 1.3 and the confidence contours in
Fig. 1.4. The first thing that drew our attention was the similarity between the results obtained
with and without non-CMB data. Regarding the correlations, we saw that taking into account
small-scale CMB data, those are still positive. However the correlation between Gµ and ns is
nearly broken or inexistent when adding HST+BAO. Moreover ns = 1 is not longer endorsed by
these models, since that value is not even inside the 2σ contour. We found that the addition of
SPT lowered the value of f10 giving an upper bound of f10 < 0.057 at 95% (C.L.).

The constraints on the number of effective neutrinos, on the other hand, gets tighter by the
inclusion of high ` data as compared to when no high ` data is considered. The results can be
found in Table 1.3, both with and without non-CMB data. It is noticeable that when adding the
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Figure 1.4: Two-dimensional likelihood contours where degeneracies of the string parameter f10 with
Ωbh

2 and ns are shown when fitting for WMAP7+SPT and WMAP7+SPT+HST+BAO,
using the PL + Gµ model. The 1σ contour is represented in light grey, whereas the 2σ in
dark grey. The figure shows that the there still exists a positive correlation of strings with
Ωbh

2, but the correlation of string with ns is gone with the addition of SPT into the dataset.

high ` data to the analysis, the effective number of neutrinos stays roughly the same or decreases.
Another difference is that the string contribution is favoured in this case: when comparing the
model with only a string contribution (PL+Gµ), and the model with only Neff (PL+Neff), the
likelihood is better for the model with strings (note that both models have the same number of
parameters). Moreover, the model that fits both strings and neutrinos gives a 2σ preference for
strings.

One striking difference from the case where only WMAP7 data was used is the fact that now
the string contribution and the effective number of neutrinos are correlated, that is, when the
contribution of strings is pushed up, so is the effective number of neutrinos. Fig. 1.5 shows the
two dimensional likelihood plots for some combinations of the parameters, for two sets of data:
on the one hand WMAP7+H0+BAO, and on the other WMAP7+SPT. The figure shows clearly
that whereas f10 and Ωbh

2 are correlated in the same way for both datasets, Neff is correlated or
anticorrelated with the other two, depending on the datasets that are being fitted for. Thus, when
fitting for the WMAP7+SPT dataset, an increase in the number of neutrinos brings an increase
in the string contribution. Likewise, by allowing for strings to be present in the analysis, we not
only pick up a string contribution, but the string contribution prompts the neutrino contribution
to rise.

The inclusion of the non-CMB data, and most importantly of the HST value of H0, constrains
the parameters drastically better, and most of the degeneracies are broken. Fig. 1.6 shows two
dimensional likelihood contours for some of the parameters, when fitting for WMAP7+SPT with
and without non-CMB data included. The shaded lines correspond to only CMB data, whereas
the solid and dashed lines take into account also the H0+BAO data. It is very clear how the
available parameter space has shrunk considerable, and also how the degeneracies are broken,
specially between Neff and f10. Note that the 2σ preference for strings is lost when non-CMB
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Figure 1.5: Two dimensional likelihood contours, where degeneracies between f10, Neff and Ωbh
2 are

shown, when fitting for WMAP7+H0+BAO, and when fitting for WMAP7+SPT. The shaded
contours correspond to 1σ and 2σ contours. The figure shows that Ωbh

2 and f10 keep the
same correlation for both datasets; but Neff is correlated with the other two for one case, and
anticorrelated for the other.

data are included.
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Figure 1.6: Two dimensional likelihood contours for some of the parameters in the model PL+Neff+Gµ.
The shaded regions correspond to 1σ and 2σ confidence levels, where only CMB data are used
for the analysis (i.e., WMAP7+SPT). The smaller contours depicted by solid and dashed lines
correspond also to 1σ and 2σ confidence levels, but when also non-CMB (i.e., BAO+H0) data
are included.

The shrinking of the parameter space can be understood if one considers what is happening
to the Hubble parameter. The inclusion of the HST value of H0 narrows the prior space for the
Hubble parameter h ∼ 0.742 ± 0.036, and the values of h that the parameter fitting prefers for
the cases where the H0 prior is not included are much higher. Fig. 1.7 shows the two dimensional
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likelihood contours for h versus Neff and f10. It is clear that the HST value of H0 just catches
the lower end of the contour, and it is this effect which shrinks so noticeably the parameter space.
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Figure 1.7: Two dimensional likelihood contours for Neff and f10 with respect to h. The shaded region
represents the 1σ and 2σ results obtained when only CMB data are used. Note that the
mean of h is higher than the value that the HST experiment gives. That is why the allowed
parameter space shrinks considerable when the h prior is also included (solid and dashed lines).

1.3.3 Harrison-Zel’dovich (HZ), ns = 1

Harrison-Zel’dovich (HZ) model for the scalar perturbation has been supported in some of the
cases in previous section, specifically when SPT is considered and for the model PL+Gµ+Neff
ns = 1 lies right in the center of the confidence contours for the CMB only case, and inside the
2σ level for the other case, see Fig. 1.6. A similar phenomenon was studied in some previous
papers [37, 39, 44, 201] where the Harrison-Zel’dovich model was then considered as a viable
model to explain the data. We have performed the same exercise, and the result is shown in
Table 1.4, where a model with ns = 1 (HZ) plus strings and Neff is used to fit the CMB data
(WMAP7+SPT). The values of the parameters change slightly from the case where ns was a free
parameter, all within 1σ, which is expected since ns = 1 was right in the middle of the confidence
contours. Thus, it is not surprising that in this case the value of the likelihood is very similar;
but bear in mind that the number of parameters is different: PL has one more parameter than
HZ. If one wishes to compare models with the same number of parameters, one should compare
HZ +Gµ+Neff with PL+Gµ or with PL+Neff ; and in both those cases, the likelihood of the
former is much better. Note, however, that also in this case the value of h is rather higher than
what the HST value of h prefers, so the inclusion of non-CMB data will disfavour this model.

1.3.4 N∗eff = 0

In all the analysis above there is one point of view that has not been taken into account: the
strings that the different models prefer do in fact produce gravitational waves which will contribute
to the Neff , but that extra contribution is not taken into account as yet. In all three tables we
have included NCS

GW for subhorizon-sized and horizon-sized loops, which is the effective number
of relativistic species analogous to the gravitational waves coming from the strings. The numbers
that we are quoting are the ones obtained following the procedure of [152, 180], and the big
difference between the numbers of subhorizon-sized and of horizon-sized loops is already clear.
As we have mentioned before, this is a very rough estimate; therefore we only use it as a hint of
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Dataset WMAP7+SPT

Model HZ +Gµ+Neff
100Ωbh

2 2.31±0.04
Ωch

2 0.14±0.01
θ 1.037±0.002
κ 0.09±0.01
ns 1

ln(1010As) 3.11±0.04
1012(Gµ)2 0.19±0.07

Neff 5.3±0.6
DSZ

3000 6±2
DPS

3000 20±3
DCL

3000 5±2

h 0.84±0.02
f10 0.05±0.02

NCS
GW(sm) 0.20±0.04

NCS
GW(lar) 2.9±0.4
N∗eff(sm) 2.0±0.6
N∗eff(lar) -0.6±0.6

∆χ2 -0.25

Table 1.4: Analogous table to Tables 1.2 and 1.3. In this case, the
model we are fitting for is a HZ model, i.e., the scalar
index is fixed to one (ns = 1). The data we are fit-
ting for is CMB only (WMAP7+SPT). This model fits
the data better than any of the other models considered
so far, even taking into account the number of parame-
ters. Including non-CMB data would render this model
less successful, partly because of the high value of h that
the model prefers.

Dataset WMAP7 WMAP7+H0+BAO WMAP7+SPT WMAP7+SPT+H0+BAO

Loops Subhorizon Horizon Subhorizon Horizon Subhorizon Horizon Subhorizon Horizon

100Ωbh
2 2.4±0.1 2.37±0.08 2.34±0.07 2.22±0.05 2.22±0.05 2.34±0.08 2.22±0.05 2.20±0.05

Ωch
2 0.109±0.006 0.160±0.009 0.110±0.004 0.142±0.009 0.110±0.005 0.16±0.01 0.108±0.004 0.14±0.01

θ 1.040±0.003 1.032±0.002 1.040±0.003 1.033±0.003 1.039±0.002 1.036±0.001 1.040±0.001 1.036±0.002
κ 0.09±0.02 0.09±0.02 0.09±0.02 0.08±0.01 0.08±0.01 0.09±0.02 0.08±0.01 0.08±0.01
ns 0.99±0.02 1.02±0.02 0.99±0.01 0.98±0.01 0.96±0.01 1.01±0.02 0.96±0.01 0.98±0.01

ln(1010As) 3.10±0.07 3.08±0.06 3.11±0.05 3.18±0.04 3.18±0.05 3.09±0.06 3.16±0.04 3.19±0.04
1012(Gµ)2 0.18(<0.37) 0.21 (<0.33) 0.17 (<0.31) 0.06 (<0.13) 0.11 (<0.22) 0.18±0.08 0.12(<0.22) 0.05 (<0.14)
NCS

GW 0.16±0.06 3.1±0.6 0.14±0.05 1.6±0.4 0.11±0.04 3.1±0.7 0.12±0.04 1.5 ± 0.5
DSZ

3000 - - - - 5±2 7±2 5±2 8±2
DPS

3000 - - - - 21±3 20±3 20±2 22± 3
DCL

3000 - - - - 5±2 5±2 5±2 6±2

h 0.75±0.04 0.87±0.05 0.74±0.02 0.75±0.02 0.73±0.03 0.87±0.06 0.73±0.02 0.76 ± 0.02
f10 0.05(<0.108) 0.06(<0.095) 0.05 (<0.088) 0.02(<0.037) 0.03 (<0.058) 0.05±0.02 0.03(<0.059) 0.01(<0.037)

∆χ2 -0.62 -0.04 -0.69 -0.77 -5.11 -0.66 -5.41 -4.96

Table 1.5: Marginalized likelihood constraints on model parameters, analogous to Table 1.2 and 1.3. In
all these cases N∗eff = 0, implying that there is a possibility of extra radiation, but all that extra
radiation comes from the cosmic strings. For each different set of data, we study the cases of
subhorizon-sized loops (1.14) and horizon-sized loops (1.15).
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what could be happening and the rich information we could obtain with it once the uncertainties
are more under control.

In other words, the Neff that we are obtaining from the parameter fitting has three possible
sources: one that comes from the three species of neutrinos, another one given by NCS

GW, and a
third one that is not accounted for in the ingredients of our model. The parameter N∗eff gives
a measure of the level of those unaccounted effects. Note that the predictions for smaller sized
loops need a higher level of N∗eff . If N∗eff were exactly zero it would mean that the model is able to
produce all the Neff it needs to fit the data. Note that even though the errors in these parameters
are rather large, most cases show no need for yet another contribution from another relativistic
particle or source (at 2σ), though do not exclude it. The cases were N∗eff is negative indicate that
the model is not good: the amount of cosmic strings predicted is too high since their gravitational
wave production is too high.

As we have just mentioned, the case with N∗eff = 0 is an interesting case, because it corresponds
to the case where all the extra relativistic signal needed to fit the data comes from the strings,
which is a possibility that most models accommodate. Therefore, we study a new set of models,
where N∗eff is set to zero, i.e., we allow for the possibility of having an extra radiation component,
but the extra radiation comes only from the cosmic string contribution. This way, the direct
link between strings and gravitational waves is fully taken into account. The results are shown
in Table 1.5. There is some complicated dynamics between the parameters and the datasets.
When no h priors are used, the models with horizon-sized loops allow for a larger value of Gµ,
but with the penalty of a higher value of h. They fit the data rather well, and their respective
χ2 are roughly the same as their base model (PL+ Gµ + Neff), but remember that these have
one parameter less. The NCS

GW contribution from horizon-sized loops is always larger than for
subhorizon-sized loops for the same value of Gµ (see Eqns (1.14) and (1.15)). Therefore, when
the h prior is included, since in general lower values of h prefer lower relativistic components,
the string contribution from models with horizon-sized loops is suppressed with respect to the
models with subhorizon-sized loops. Nevertheless, the extra radiation component is higher for
horizon-sized loops in all cases.

1.4 Discussion and Conclusions

In this chapter we have studied the correlation between cosmic strings and extra relativistic species
(or effective number of neutrino species) by fitting different models to cosmological data. We
considered the possibility of cosmic strings being the source of a cosmological gravitational wave
background, which in turn act as the extra relativistic species which the data seem to favor over
the usual three neutrino species. Cosmic strings are predicted in several inflationary scenarios,
and therefore, they seem to be perfect candidates to seed GW and account for the extra radiation.
The idea of cosmic strings being the sources of CGWB is not new, but this work expands the
previous works in that the cosmic string contribution is included from the beginning, already in
the parameter fitting process, and thus we are able to study different correlations between the
different ingredients in these models. The inclusion of strings in the parameter fitting changes
the value of Neff that the data needs.

We have shown that the correlation between cosmic strings (Gµ) and extra neutrino species
(Neff) depends on the data sets used. When relatively low ` data is used (WMAP7) these two
components are anticorrelated; thus, the inclusion of cosmic strings into the model not only
did account for the extra radiation species needed, but it actually lowered the need for them.
However, when relatively higher ` are included, the anticorrelation becomes correlation, and an
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extra cosmic string component asks for a higher contribution from extra relativistic species. This
(at first sight) unexpected effect may be understood by noting that a change in Neff changes
the CMB temperature anisotropies power spectrum basically in two ways: the height of the first
peak and the position of the higher peaks. When only WMAP7 data are taken into account,
only the height of the first peak is of importance, and cosmic strings are used to help in this
endeavor. However, when higher `-s are taken into account, the position of the higher peaks
gains more relative importance, and this is counteracted by a correlation with cosmic strings.
This correlation/anticorrelation effect not only happens between Gµ and Neff , the same effect
can be observed also between Ωb and Neff .

When non-CMB data are taken into account, the available parameter space shrinks considerably.
This effect comes mostly from the HST value for h. Typically, when the HST value of h is not
taken into account in the analysis, rather high values of h are favoured, and this is why adding
the more stringent prior given by HST the parameters get much more constrained. The non-CMB
data help constrain Neff considerably better when only WMAP7 data are used, and they break
most of the degeneracies when also SPT data are used. Apparently something similar happens
when Planck data is included [14, 15], where most of the degeneracies are broken. Interestingly,
however, the same correlation behaviour between cosmic strings and Neff has been observed [14].

The analysis also shows other remarkable results. CMB data alone prefer a high value for Neff ,
higher than the standard three neutrino species, when strings are present. However, when the
HST value of h is included, the results are consistent with only three neutrinos. In most cases,
the string contribution is small, and models with no strings are consistent with the data; the
case where WMAP7+SPT are used is the most permissive with strings, since a 2σ preference (or
rather, hint) is obtained. In many cases an ns = 1 is perfectly consistent with the data. In fact,
we studied what the goodness of fit is for a HZ +Gµ+Neff model, fitting to all the CMB data,
and found that the model fits the data extremely well. Actually, the likelihood for HZ+Gµ+Neff
is actually very similar to a PL + Gµ + Neff , even though the latter has one more parameter.
However, the inclusion of non-CMB data will also disfavour this model.

A certain number of cosmic strings are preferred to fit the data, and those cosmic strings would
create some gravitational waves that are responsible for part of the Neff . We have tried to factor
out this contribution, as well as the contribution of the standard three neutrinos, to estimate
whether some other source to Neff was still needed, and encoded it in N∗eff . A value N∗eff = 0
would mean that all the players in the model are enough to account for all the Neff needed to fit
the data, i.e., the three neutrinos and the cosmic strings present do the job. We find that, even
though the errors are rather high, in most cases the strings can account for all the extra radiation
component, although the need for yet another extra relativistic source is not excluded. More
importantly, sometimes N∗eff is negative, hinting for some incongruence: the amount of strings
chosen from the fitting is too high. It could be a good measure to disqualify models as not viable,
but unfortunately our feeling is that the uncertainties in obtaining NCS

GW are too high to make any
kind of claim. One measure for the level of uncertainty could be the big difference in numbers for
smaller and bigger cosmic strings loops. After this work was published, among other works in the
field, the gravitational wave production of string loops using numerical simulations was presented
in [48]. Essentially, it was found that the main contribution to gravitational waves come from
large loops, and that the contribution of small loops can be neglected.

In order to fully exploit the direct link between cosmic strings, gravitational waves and Neff ,
models with N∗eff = 0 were also studied. These models allow for an extra radiation component,
but consider that all the extra radiation come from the cosmic string contribution. Thus, these
models have only seven parameters, but include cosmic strings and an extra radiation component.
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1.4 Discussion and Conclusions

In general terms, these models fit the data rather well (in many cases their goodness of fit is similar
to models with one parameter more), and if, as mentioned before, the gravitational radiation from
cosmic strings was more under control, these models would be excellent candidates to fit the data
well, with fewer parameters.

As already mentioned several times, the main source of uncertainty comes from the production
of gravitational waves from cosmic strings. There is intense work in this subject from different
groups, using different approaches, and there is no consensus in the community. Unlike in the case
of CMB predictions from strings, where different approaches give relatively fairly similar results,
the loop production and decay process of strings is still a very open issue. One could guess
that the outcomes from Nambu-Goto type approaches or from Abelian-Higgs like approaches will
be rather different, since the string density, decay mechanisms and loop density and sizes seem
to be rather different. In this work we have used one of the few works which give a recipe to
translate from cosmic string Gµ to gravitational waves, which in turn we transform into Neff , but
we believe there are many uncertainties and assumptions that need to be checked an improved.
We, therefore, consider this work as a first step into the analysis of the role of cosmic strings as
sources of extra radiation component in the universe, which demands further understanding of
the underlaying cosmic string dynamics.
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2 Fitting BICEP2 with defects, primordial
gravitational waves and dust

The detection of B-mode polarization on large angular scales [16] opened a new window to test and
constrain models that predict primordial perturbations. The leading candidate for such measured
signal, as claimed by the BICEP2 team, is primordial inflationary gravitational waves: for a tensor-
to-scalar ratio r of around 0.2, these give a good match to the spectral shape in the region
` ≈ [40 150]. The claim by the BICEP2 collaboration generated great excitement, and stimulated
the search for other possible B-mode polarization sources signaling new physics, such as cosmic
defects [131, 132, 147], self-ordering scalar fields [80] or primordial magnetic fields [51].

The alternative explored in this chapter is cosmic defects, which produce B-mode polarization
through both tensor and vector modes (see e.g. Refs. [55, 79, 88, 103, 104, 214] for reviews). The
relative proportions of scalar, vector and tensor perturbations are essentially fixed for a given type
of defect, so a constraint on one of the modes will imply constraints on the others. It is worth
noting that even though defects are highly constrained via the CMB temperature anisotropies
[14, 31, 36, 44, 75, 203, 218], they can still contribute importantly to the B-mode polarization.

In our analysis we study three types of cosmic defects: Abelian Higgs strings [150], O(4) global
textures [198], and semilocal strings [8, 101, 102, 205]. Other defect models exist, such as self-
ordering scalar fields, global monopoles, and global strings. However, with the three types of
defects under consideration we are able to obtain a global view of the interplay between cosmic
defects and the other signals, and can also study where the differences between the different defect
predictions are important. The imprints of defects on the temperature and polarization power
spectra are qualitatively similar [42, 43, 45, 78, 79, 155, 201, 202], though there are important
quantitative differences.

Alongside possible primordial contributions, B-modes could have non-cosmological contribu-
tions. In this sense, when the project of this Chapter was being done, it became subsequently more
apparent that conventional astrophysics can plausibly account for the entire observed B-mode sig-
nal with polarised dust emission [89, 146]. At the very least it is clear that dust contamination
must be explored.

This chapter is based on two published works [131] and [132]. Both of them tried to answer
questions placed soon after the release of the BICEP2 data and contributed also in the fast moving
research atmosphere of the moment. The first [131] analysis was motivated by the BICEP2 data
release and it was soon published in Physical Review Letters. There we explored qualitatively
the possibility of cosmic defects being responsible for the total signal measured by the BICEP2
experiment. The second work [132] (published in Physical Review D), in turn, complemented
the previous short paper by providing a comprehensive analysis of the defect contribution to the
microwave anisotropies, both in temperature and polarisation, allowing all three of the above
signal sources, i.e., inflationary gravitational waves, dust, and cosmic defects.
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2.1 B-modes of cosmological origin

We thus adopt a chronological approach to present both works into this chapter: we start by
showing qualitative results published in the first work, which will be complemented later by the
quantitative statements obtained in the second work.

2.1 B-modes of cosmological origin

2.1.1 Inflationary tensor modes: r

The inflationary process in addition to the initial scalar perturbations (responsible for the large
scale structure) could also produce tensor perturbations, as explained in Section 1.2.1 of the
Introduction. Those perturbations, usually known as primordial tensor modes, are encoded in
the cosmological parameter r which measures the amount of those with respect to the scalar
perturbations (see Eq. (1.20) of the Introduction).

Inflationary tensor modes produce CMB anisotropies both in temperature and in polarisation.
Specifically, they are one of the few ingredients of cosmological (or primordial) origin that can
produce directly B-modes. The relative amount of tensor perturbations has been constrained by
analysis of the CMB temperature channel to be: r < 0.11 at k∗ = 0.002Mpc−1 [17, 18]. In
Fig. 2.1, we show a typical B-mode spectrum produced by inflationary tensor modes for a value
r = 0.2. The two main peaks associated with reionization and recombination are evident as
stated in Sec. 1.2.1 of the Introduction.
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Figure 2.1: B-mode polarisation (BB) spectrum produced by inflationary tensor modes with r = 0.2. The
two main peaks are associated to reionization (first) and recombination (second) and their
position to the horizon size at each epoch.
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Figure 2.2: Temperature (TT) and B-mode polarization (BB) defect spectra, normalized to make the
temperature spectra match Planck data at ` = 10. Different lines correspond to textures (red
line), semilocal strings (black line), and Abelian Higgs strings (blue line).

2.1.2 Cosmological defects

As with inflationary tensors, a distinctive signature of topological defects lies in the B-mode po-
larization. Figure 2.2 shows the power spectra obtained from the field theoretical simulations of
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2.2 Method and implementation

Gµ10 Gµ (< 95%) f10 (< 95%)

Abelian Higgs strings 19× 10−7 3.2× 10−7 0.024

Semilocal strings 53× 10−7 11× 10−7 0.041

Textures 44× 10−7 11× 10−7 0.054

Table 2.1: Gµ10 is the normalization of different defects to match the observed ` = 10 multipole value
(i.e. to explain the full temperature signal at that multipole, f10 = 1). The last two columns
show the 95% confidence upper limit obtained by the Planck collaboration [14] for the Planck
+ WP + High-` dataset.

Abelian Higgs strings (AH) [45], semilocal strings (SL), and textures (TX) [201], for the temper-
ature and B-mode polarization spectra, normalised to the Planck temperature power spectrum
at ` = 10. The values of Gµ needed to fit the Planck data at ` = 10 (i.e. the value for which
f10 = 1), and the Planck 95% upper bounds for Gµ and f10, can be found in Table 2.1. Note
that Gµ10 is calculated as the normalization of strings needed to match the observed power at
` = 10, whereas the limit on f10 is the upper bound on the ratio of the power in defects to the
total power in the best-fit model at ` = 10.

There are important differences between the power spectra obtained from defects or from
inflation. As can be seen in Fig. 2.1 and in the lower panel of Figure 2.2, the defect spectrum
have a quite different shape to the inflationary tensors, peaking towards smaller scales. On the
other hand, defects produce scalar, vector and tensor perturbations in proportions which are fixed
for a given defect model, while in inflationary models vector modes are absent and the tensor
contribution can vary almost independently of the scalar, apart from the inflationary consistency
relation [128]. In addition, defect-induced polarization is suppressed on large angular scales, as
causality requires their fluctuations to be uncorrelated beyond the horizon distance at decoupling
[80].

2.2 Method and implementation

We faced the questions placed in this work from two separate points of view which require the use
of different methodologies. While in the first part we discuss our results from an observational
and qualitative point of view, in the second we complement those preliminary predictions with
parameter fittings. Therefore in order to accomplish such a quantitative approach, we perform
a set of parameter estimations for models where defects coexist with other sources of B-mode
polarisation, namely inflationary gravitational waves, dust and lensing. E-modes inevitably convert
to B-modes through lensing, thus the lensing signal is always present in our analysis.

In order to reliably explore the parameter space we perform Markov Chain Monte-Carlo (MCMC)
runs with the publicly-available Monte Python code [1, 28], which uses Class [49, 126] as its
Einstein-Boltzmann equation solver for the inflationary component of the power spectrum. We
compare our predictions to the following CMB datasets (see Section 1.2.2 of the Introduction for
detailed analysis of different experiments):

• Planck+WP: Planck 2013 data [15] (low-` and high-`), including WMAP 9 year [110] low-`
polarisation data.1

1Lensing B-modes had already been detected by POLARBEAR [12, 19]. However, the extra constraining power
of the POLARBEAR data is weak, and for clarity we did not include it in our analysis.
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Chapter 2. Fitting BICEP2 with defects, primordial gravitational waves and dust

• High-`: SPT [170, 194] and ACT [188].

• BICEP2: BICEP2 BB polarization data [16].

The likelihoods are the official codes provided by each experiment.2

Our base model is the inflationary ΛCDM model (PL) and as introduced in Section 1.1 of the
Introduction is represented by the following set of parameters:

{Ωch
2,Ωbh

2, τ,H0, As, ns} (2.1)

We add a number of extra ingredients to the PL model, sometimes by themselves, sometimes
in combinations. Our main extra ingredient is given by topological defects parametrized as (Gµ)2,
for each of the three defect models considered: Abelian Higgs cosmic strings AH, textures TX, or
semilocal strings SL. We also show the contributions of defects using their relative contribution
to the total power spectrum at ` = 10, namely f10. The defect spectra used in this paper were
calculated in Refs. [45, 201] using a modified version of CMBeasy [72], with the best-fit parameters
of the WMAP 7-year analysis [121] (see Sec. 2.3 of the Introduction).

Another parameter describing an extra ingredient is r which parametrises the amount of in-
flationary gravitational waves through the tensor-to-scalar ratio (at k = 0.002 Mpc−1). Scalar
perturbation quantities are also specified at a pivot scale k = 0.002 Mpc−1.

The BICEP2 collaboration included also the running of the scalar spectral index αs in order
to improve the agreement between the BICEP2 and Planck data [16]. Although several papers
[29, 138, 189], showed that there is no worrying tension between BICEP2 and Planck data, we
nevertheless also study the impact of αs here.

As mentioned in the introduction of this chapter, the observed B-mode polarization signal may
have a contribution from polarised dust emission [89, 146]. We characterized this B-mode channel
by Adust:

CBB,dust
` = Adust`

−2.3 . (2.2)

Another parametrisation of dust is used in the literature, given by ∆2
BB, which is related to

ours via

∆2
BB,dust,` = `2

2πC` = Adust
2π `−0.3 ,

using the dust model proposed by the Planck collaboration [3].

Our models are constructed using those building blocks, starting from the models with just one
extra ingredient, and moving to more complex models where several additional ingredients are
present simultaneously.

The results showed in the Tables in the subsequent sections state only the relevant parameters
for the given case. In all cases flat parameter priors were used, in the case of defects the prior being
flat in (Gµ)2 which is proportional to the fractional defect contribution to the power spectra f10.
The prior ranges were 0 < 1012(Gµ)2 < 4 and 0 < Adust/(µK)2 < 0.75. All other parameters,
including foreground parameters with the exception of the new polarised dust amplitude, were
modelled as in the Planck collaboration papers [13, 15].

2Although there may be minor differences between the likelihood used by the BICEP2 collaboration in their
publication [16] and the public version [29], we expect that this is not important for our main conclusions.
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Figure 2.3: B-mode polarization power spectra compared to the BICEP2 B-mode polarization data. All
curves show the combined contribution from defects (blue AH, black SL and red TX) and the
lensing of the scalar perturbations, and match the BICEP2 B-mode polarization at ` = 80
(solid lines for f10 = 0.24, 0.17, 0.09 respectively) and at ` = 250 (dashed lines for f10 =
0.08, 0.06, 0.04 respectively)

2.3 Results

2.3.1 Can topological defects mimic the BICEP2 B-mode signal?

We first attempt to match the cosmic defect B-mode spectra to the BICEP2 data, the results
are shown in Figure 2.3. It is clear that the defect spectra have the wrong shape, and could only
match the low-multipole data at ` < 100 by substantially over-predicting the high multipole data
(` > 100). In detail, we see that we need f10 ' 0.24 (AH), f10 ' 0.17 (SL) and f10 ' 0.09 (TX)
to generate the necessary power at ` = 80, which in turn leads to a B-mode amplitude which is a
factor of about 5 too large at higher `. On the other hand, if we try to fit relatively high-` data
using defect spectra, we significantly underestimate the prediction of the large scale region.

CMB data, mainly through the increasingly accurate measurement of the temperature power
spectrum to higher and higher multipoles [14, 31, 36, 44, 75, 203, 218], already puts strong
constraints on the defect contribution in models which combine it with a primordial inflationary
power spectrum. Figure 2.4 shows the temperature and B-mode spectra for AH, SL and TX at
the upper 95% level for defects obtained in Ref. [14] and shown in Table. 2.1. Even though the
shapes of the spectra are similar (see Fig. 2.2) the peaks are not exactly at the same `, and they
fall off at different rates at high `. The cosmic string model (AH) has the slowest fall-off, and
its amplitude is the most tightly constrained by the temperature data. As a result, the possible
B-mode contribution is the smallest at low ` (blue line in the upper panel).

We can therefore immediately conclude that the shape of the power spectrum of the defects is
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Figure 2.4: Defect spectra normalised to the 95% upper limits obtained using Planck + WP + High-`.
Different lines correspond to textures (red line), semilocal strings (black line), and Abelian
Higgs strings (blue line).

qualitatively wrong, and cannot give a good fit to BICEP2 data.

A similar conclusion was obtained in Ref. [80] for self-ordering scalar fields, which is understand-
able since self-ordering scalar fields are closely related to the O(4) model under study here (see
Section 2.1.3 of the Introduction). An apparently contradictory conclusion was obtained in Ref.
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2.3 Results

Dataset BICEP2 (only BB)

Model PL+Gµ PL+ r +Gµ PL+ r

Param AH SL TX AH SL TX -

r - - - 0.14+0.04
−0.06 0.14+0.04

−0.06 0.14+0.04
−0.06 0.21+0.04

−0.05
1012(Gµ)2 0.40+0.07

−0.08 1.73+0.29
−0.32 0.86+0.14

−0.16 0.20+0.08
−0.09 0.87+0.34

−0.39 0.43+0.17
−0.20 -

− lnLmax 8.1 7.4 6.8 1.6 1.6 1.8 4.3

Table 2.2: Parameter estimations and best-fit likelihood values for various cosmological models, fitting
for the BICEP2 data. Only the B-mode is used for these estimations.

[147], where the BICEP2 data was fitted to the USM (see Sec. 2.1.1 of the Introduction), allowing
the inter-string distance parameter to vary. They found that a string-only model fitted well the
data and differed only slightly from the best-fit model with primordial tensor modes, albeit for
inter-string distance values larger than the causal horizon at decoupling. It was suggested that
the spectrum of the model was representative of global strings or textures. Numerical simulations
of textures do show that they have a larger correlation length than the other defects, and hence
a B-mode peak at lower `, but it is also apparent from a comparison of Fig. 2.4 to Fig. 1 of Ref.
[147] that the shape of the texture power spectrum at low ` is not accurately modelled by the
USM. For example, at ` = 70, the best-fit USM spectrum is approximately 50% higher than the
texture spectrum, and twice as high at ` = 40, which will tend to make the texture spectrum a
worse fit to the data.

2.3.2 Constraints from the Monte Carlo Analysis

Having discarded the role of cosmic defects as primary source of BICEP2 B-modes, we change
the perspective and explore how they could assist, as a secondary player, the primary contribution
coming from inflationary tensor modes or dust. As an explanatory example we include Figure 2.5,
where we consider a mixture of inflationary tensor modes and AH strings. Defects peak at smaller
scales, i.e. they contribute more significantly at higher multipoles than gravitational waves, hence
a mixture of both ingredients could improve the fitting. We indeed observe that the fit is improved,
an AH string fraction of around 0.04 would explain the excess signal at ` ≈ 200, while a fraction
above about 0.06 is disfavoured. We can anticipate a similar effect will occur when considering
a mixture of dust and defect contribution, since as it is shown in Figure 2.6 the most important
contribution of the foreground dust coincides with the spectrum coming from r.

Prompted by this preliminary results, we extend the qualitative observations of the previous
section with a quantitative analysis of the datasets. Therefore we fit different combinations of
datasets with various cosmological models. First we fit CMB data with our basic model (PL)
with defects Gµ and/or with r. The CMB data chosen are the BICEP2 data alone (for which we
only fit for the B-mode spectrum), or all the CMB data. We also considered the case where the
data used did not include the High-` data, but the results for both these two choices of data (with
and without High-`) were identical, so we only show the parameter constraints with all the CMB
data. In the second part we consider a model where the running of the scalar spectral index αs
is also free. The last case, corresponds to models which include a dust contribution as described
previously.

72



Chapter 2. Fitting BICEP2 with defects, primordial gravitational waves and dust

50 100 150 200 250 300 350

0.01

0.02

0.03

0.04

0.05

0.06

0.07

`

`(
`
+

1
)C

B
B

`
/2

⇡
[µ

K
2
]

Figure 2.5: A contribution from AH strings (blue dashed) is added to the prediction from r = 0.15 plus
scalar lensing (solid grey) to give a total spectrum shown in solid blue. The data points are
from BICEP2. From bottom to top the string fractions are 0.015, 0.03, 0.04, and 0.06. A
marginal improvement to the overall data fit is given for a string fraction around 0.04, which
is about the maximum permitted by current constraints from Planck .

Primordial tensor modes and defects

All results, using only BICEP2 BB data and using the full CMB set, can be found in Tables 2.2
and 2.3 respectively. The structure of the tables is the following: on the left we show results from
chains containing defects; on the right-hand side, we show results from models without defects,
included here as reference values.

The values in Table 2.2, especially best-fit likelihoods, show that the fit is rather poor, as
suggested in the previous section. Actually, for a model with only one extra component, none
of the defect models (PL + Gµ) provides a fit that is comparable to the model including only
inflationary gravitational waves (PL+ r), although the texture fit is only moderately worse.

We then fit the BICEP2 data with a model which contains both defects and gravitational waves
(PL+r+Gµ), in order to assess whether defects could assist tensor modes. As mentioned before,
at low ` defects cannot explain the power measured. Nevertheless, defects peak at higher `, which
might help to fit those points that lie above the lensing curve. The fit is improved (the likelihood
is better), although it should be noted that this last model has 2 extra ingredients compared to
PL.

As a next step we use the full CMB dataset (Planck + WP + High-` + BICEP2) and include
the contributions to temperature and polarization (both E- and B-modes) from the different
ingredients. If we compare models with only one extra ingredient, we find that PL+Gµ[AH] fits
the data quite poorly, whereas PL+ r, PL+Gµ[TX] and PL+Gµ[SL] fit the data at roughly
the same level, with r being the best model followed closely by TX.

The Gµ constraint obtained from the full set of CMB data is tighter than that from only

73



2.3 Results

Dataset Planck + WP + High-` + BICEP2

Model PL+Gµ PL+ r +Gµ PL+ r

Param AH SL TX AH SL TX -

ns 0.955+0.007
−0.008 0.964+0.007

−0.008 0.962+0.007
−0.007 0.963+0.007

−0.008 0.966+0.008
−0.008 0.965+0.007

−0.007 0.962+0.007
−0.007

r - - - 0.14+0.03
−0.04 0.10+0.03

−0.04 0.09+0.03
−0.04 0.15+0.03

−0.04
1012(Gµ)2 0.084+0.026

−0.025 1.34+0.27
−0.29 0.73+0.14

−0.15 < 0.083 < 1.3 < 0.74 -

f10 0.021+0.006
−0.006 0.044+0.009

−0.010 0.035+0.006
−0.007 < 0.020 < 0.042 < 0.035 -

− lnLmax 5280.1 5268.8 5266.8 5264.4 5262.9 5263.0 5265.8

Table 2.3: Parameter estimations and best-fit likelihood values for various cosmological models, fitting
for all the CMB data.

BICEP2, especially for the AH case. For this case, Planck bounds are strong enough to push
the corresponding BB spectrum far below the BICEP2 data, in other words, the BICEP2 data
do not constrain further the AH model in the combined Planck + BICEP2 case. By contrast,
temperature bounds for SL and TX [14] leave their BB power spectra around the values of BICEP2
(for high `), such that BICEP2 alone is able to put comparable constraints on the level of allowed
defects. Our results are consistent with the observation that accurately-determined B-modes can
distinguish between different types of defects [148].

The final possibility is the mixture of inflationary gravitational waves and cosmic defects, PL+
r + Gµ. We observe that there is less room for defects, and we only obtain upper 95% bounds.
Roughly, the mean values in the previous cases become 95% values now. Here again SL and TX
do marginally better than AH strings, which are not able to lower r. The reason has already been
mentioned: their contribution is so suppressed by the constraints from the Planck data that the
effect on tensor modes is negligible.

Running of the scalar index

In this case we fit to the full CMB dataset and not BICEP2 alone, since the running of the scalar
spectral index affects mainly the temperature channel. The results from a fit to the full CMB
dataset can be found in Table 2.4.

The model which contains gravitational waves plus running is slightly preferred over PL+r+Gµ,
possibly because if one also allows for running, r could take higher values (e.g. see PL+r+αs of
Table 2.4) and therefore a better fit of B-modes. Another typical effect of including αs is that the
scalar spectral index is pushed up, which in principle implies more room for a defect contribution,
though in this case it only affects AH strings. Running also changes the tilt of the temperature
spectrum, causing an unexpected anticorrelation between Gµ and f10.

It is worth noting that for the TX and SL cases, allowing for the running of the scalar index
does not increase the value of r; it remains around the same values as for cases without αs. At
the same time, allowing for defects does not reduce the magnitude of the running.
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Dataset Planck + WP + High-` + BICEP2

Model PL+ r +Gµ+ αs PL+ r + αs

Param AH SL TX -

ns 1.061+0.028
−0.028 1.048+0.026

−0.031 1.049+0.030
−0.032 1.055+0.031

−0.031
αs −0.032+0.008

−0.009 −0.027+0.010
−0.008 −0.027+0.010

−0.010 −0.030+0.010
−0.010

r 0.19+0.04
−0.05 0.15+0.04

−0.06 0.14+0.04
−0.06 0.20+0.04

−0.05
1012(Gµ)2 < 0.10 < 1.3 < 0.71 -

f10 < 0.030 < 0.047 < 0.038 -

− lnLmax 5260.3 5259.2 5258.6 5261.6

Table 2.4: Parameter estimations and best-fit likelihood values for different cosmological models, fitting
for all the CMB data when the running of the scalar index is included.

Dataset BICEP2 (only BB)

Model PL+Gµ+Adust PL+ r +Gµ+Adust PL+ r +Adust PL+Adust

Param AH SL TX AH SL TX - -

r - - - < 0.11 < 0.10 < 0.18 < 0.22 -

1012(Gµ)2 0.17+0.08
−0.10 0.74+0.40

−0.40 0.37+0.16
−0.24 0.17+0.05

−0.08 0.72+0.32
−0.41 0.36+0.16

−0.21 - -

Adust [µK2] 0.20+0.06
−0.08 0.20+0.06

−0.08 0.19+0.06
−0.09 < 0.26 < 0.25 < 0.25 0.19+0.10

−0.10 0.30+0.06
−0.07

− lnLmax 1.7 1.7 1.8 1.5 1.5 1.7 3.3 3.3

Table 2.5: Parameter estimations and best-fit likelihood values for different cosmological models, fitting
for the BICEP2 data. This is similar to Table 2.2, but in this case a dust model is included.

Dust

As discussed in Section 2.2, we consider a dust model proposed by the Planck collaboration [3],
given by3

CBB,dust
` = Adust`

−2.3 (2.3)

A similar model has been used by Mortonson and Seljak [146] and Flauger et al. [89] to examine
the robustness of the BICEP2 result’s interpretation as primordial, and we follow their approach.

In Fig. 2.6 we show the contributions to the B-mode power spectrum from inflationary tensors,
AH strings, textures, and dust, together with the data points from BICEP2. The normalization
is the one obtained from fitting only the BICEP2 data to a model PL plus one extra ingredient
(see Tables 2.2 and 2.5). Note that the lensing spectrum is added in all cases. In the figure it
can be seen that dust and r have more importance for lower `; therefore, in B-modes dust is in
more direct competition with r than with defects.

We start analyzing BICEP2 B-mode data only. The first thing we notice is that a model
including just dust as an extra ingredient is able to improve the fit of PL + r. Moreover, if we
consider a composite model (PL + r + Adust), the gravitational wave detection disappears and
the fit does not improve (as previously found in Ref. [146]). The best-fit value for r is at r = 0,
i.e. a model with dust alone provides the best fit.

Dust combined with defects gives better results than with gravitational waves. Note that in

3While this work was being refereed the Planck collaboration submitted a paper [10] where they update their
dust model to CBB` ∝ `−2.45. We do not expect our results to change significantly with this new power law.
We tested the case of PL + Gµ[AH] + Adust fitted to the full CMB dataset, and found that the upper 95%
confidence limit in Gµ moves from 2.7× 10−7 to 2.9× 10−7 (see Table 2.7), which supports our expectations.
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Figure 2.6: B-mode spectra, including the lensing contribution, using best-fit normalization values given
in Tables 2.2 and 2.5, for tensors (grey), dust (green), AH strings (blue) and textures (red).
BICEP2 data points are also shown.

all cases (be it with r or with any Gµ) the dust contribution is at the same level. However, dust
lowers the amount of defects to about half the one obtained using PL + Gµ, and more or less
at the level of PL + r + Gµ. This last set of models does not improve the best-fit likelihood.
Finally, in a model with all ingredients (PL + r + Gµ + Adust), we find that a model with no
dust is possible at one-sigma, and thus we quote an upper 95% confidence limit. This is due to
the fact that dust and inflationary tensors can both account for the low ` part of the spectrum,
whereas defects account for the higher `.

Considering the full CMB dataset, the picture is roughly the same. Dust does a very good
job on its own, and any other combination improves only marginally the best-fit likelihood. Once
again, since the temperature power spectrum is also constraining the defect contribution, we find
only 95% upper bounds for defects. The bounds for SL and especially TX are tighter than those
from Planck (see Table 2.1). In all cases, the combination PL + Gµ + Adust does better than
the equivalent PL+ r +Gµ.

Note that the different mean values of Adust are due to the differences in the lensing spectra
due to different cosmologies used in Tables 2.5 and 2.6.

2.4 Discussion and conclusions
Motivated by the detection of B-mode polarization by the BICEP2 collaboration, we study the
possible implications of such measurements on models considering cosmic defects. We perform
the analysis from two complementary points of view: from an observational or qualitative point
of view and form a quantitative approach, where we explore the likelihood parameter space in
order to constrain models containing defects.
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Dataset Planck + WP + High-` + BICEP2

Model PL+Gµ+Adust PL+ r +Gµ+Adust PL+ r +Adust PL+Adust

Param AH SL TX AH SL TX - -

r - - - < 0.10 < 0.09 < 0.10 < 0.11 -

1012(Gµ)2 < 0.074 < 0.97 < 0.54 < 0.075 < 0.97 < 0.56 - -

f10 < 0.019 < 0.031 < 0.026 < 0.019 < 0.032 < 0.027 - -

Adust [µK2] 0.24+0.05
−0.06 0.21+0.06

−0.06 0.19+0.06
−0.07 0.20+0.06

−0.07 0.16+0.07
−0.07 0.15+0.06

−0.07 0.21+0.07
−0.06 0.25+0.05

−0.06
− lnLmax 5259.6 5259.4 5258.5 5259.5 5259.3 5258.4 5259.6 5260.0

Table 2.6: Parameter estimations and best-fit likelihood values for different cosmological models, fitting
for all the CMB data. This is similar to Table 2.3, but in this case a dust model is included.

Specifically, in the first part of this chapter we have shown that cosmic defects on their own
are a poor fit to the signal. Hence, the need of an additional contribution (gravitational waves
or polarized dust) is manifest. Nevertheless, we also evidenced that defects can help the possible
gravitational wave contribution to lift the spectrum at high multipoles. The analysis shows that
when a defect contribution is added the overall fit is improved.

We also investigate quantitatively the impact of the recent detection of B-mode polarisation
by the BICEP2 collaboration on models containing topological defects, extending the results of
our earlier study. In accordance with our qualitative expectations we confirm the results obtained
in the first part of this work, i.e. that topological defects on their own are a poor fit to the signal
and that we need an additional contribution, either inflationary gravitational waves or polarised
dust emission.

When considering only the BICEP2 B-mode polarization data, we find that the combination of
topological defects and inflationary gravitational waves (PL+ r+Gµ) or topological defects and
dust (PL+Gµ+Adust) slightly improves the fit over inflationary gravitational waves alone (PL+r)
or dust alone (PL + Adust). This is because topological defects help to fit the BICEP2 data
points at ` & 200, which lie above the lensing B-mode contribution (Fig. 2.6). The combination
of inflationary gravitational waves and dust on the other hand does not improve the fit over either
contribution alone. We note that there are hints in the cross-correlation between BICEP2 and
Keck array data [16] that the central values of the B-mode power spectrum will decrease in the
future, which will have the effect of more strongly constraining the defect contribution.

The situation changes slightly when we consider the full CMB dataset, consisting of Planck
+ WP + High-` + BICEP2. In this case the texture model on its own (PL + Gµ[TX]) is only
slightly worse than inflationary gravitational waves (PL+r), while cosmic strings (PL+Gµ[AH])
are ruled out as the sole source of B-modes. Dust on the other hand is much better, so that
PL+Adust is the globally-preferred model, and neither defects nor inflationary gravitational waves
are able to improve the goodness of fit significantly.

Gµ at < 95% f10 at < 95%
Abelian Higgs strings 2.7× 10−7 0.019

Semilocal strings 9.8× 10−7 0.031

Textures 7.3× 10−7 0.026

Table 2.7: 95% confidence limits for Gµ and f10 obtained using PL + Gµ + Adust and the full CMB
dataset.
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When considering parameter constraints on Gµ, we find that BICEP2 on its own constrains the
SL and TX models to roughly the same level as Planck data do. In other words, the constraints
obtained from BICEP2 alone for SL and TX are as strong as the ones obtained from Planck data.
On the other hand, Planck data constrains AH strings more strongly than BICEP2. The reason
is that the combined temperature anisotropy dataset constraints on defects come from ` & 100,
where the string-induced power spectrum peaks higher and decays more slowly than those of the
other defects for a given Gµ.

The constraints become tighter when including a contribution from inflationary gravitational
waves or dust. For the full CMB dataset and for a model with defects and dust (see Table 2.7), we
find Gµ < 2.7× 10−7 for AH, Gµ < 7.3× 10−7 for TX and Gµ < 9.8× 10−7 for SL (all at 95%).
These constraints are tighter than ones found by the Planck collaboration for the temperature
data alone [14] (especially for texture, see Table 2.1), which shows the importance that even the
current B-mode polarisation data has for constraining topological defects.
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3 Improving CMB power spectra from
Abelian Higgs cosmic strings

Cosmic strings [57, 103, 104, 214] are relics of the possible phase transitions occurring in the
earliest stages of the universe, predicted in many well-motivated models of high energy parti-
cle physics and cosmology [115, 116, 177]. Increasingly accurate observations of the cosmic
microwave background (CMB) [14, 15, 82, 110] and increasingly robust theoretical predictions
[36, 39, 44, 91, 124, 202, 203, 218] have established that strings do not contribute more than a few
percent to the temperature perturbations, corresponding to an upper bound on the symmetry-
breaking scale of about 4 × 1015 GeV. The majority of the temperature perturbations can be
accounted for by an inflationary model with scalar spectral index ns = 0.968± 0.006 and tensor-
to-scalar ratio r < 0.12 (95% CL) [17].

Since the contribution of defects to CMB temperature fluctuations is small, accurate measure-
ments of the CMB polarization channels, especially B-modes, acquire major importance to detect
strings, where they could still contribute at the same level as inflation. The continuing improve-
ment in data motivates us to reduce the remaining theoretical uncertainties in the cosmic string
CMB calculations. In previous works [42, 43, 45] energy-momentum and CMB power spectra con-
tributions from cosmic string networks using field theory simulations of the Abelian Higgs (AH)
model were calculated. The principal uncertainties in this approach are due to approximations
used to handle a field theory in an expanding universe; modelling of the strings across cosmolog-
ical transitions between the radiation, matter and Λ eras; and extrapolations to large times and
small angular scales.

In order to get a complete description of the CMB anisotropies produced by defects, numerical
simulations compute the unequal time correlators (UETCs) of the energy-momentum tensor of
the strings, from which CMB power spectra can be computed (as we show in Section 2.3 of the
Introduction) [78, 79, 104, 155, 196]. The UETC approach has been widely used in field theory
simulations, and in recent years, it has also been adapted to other cosmic string simulation schemes
such as the Unconnected Segment Model (USM) [32] and the Nambu-Goto (NG) approximation
[125].

In this chapter we present updated energy-momentum correlations and CMB power spectra
obtained from the largest field theory simulations performed to date. Thanks to a considerable
increase in computational resources and in their programming management through the LATField2
[67] framework, significant progress has been possible. These improvements enabled us to tackle
the challenges outlined above. We have been able to increase the size of the simulation box from
10243 to 40963 lattice sites (“4k” simulations), so that we cover a patch of the universe 64 times
bigger than in [45], and to simulate for four times longer. Therefore, some of the scales that
could only be accessed by extrapolation in previous works can now be directly simulated.

The first uncertainty mentioned above comes from the requirement that we simulate a massive
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3.1 UETCs from the simulations

field theory in an expanding universe. While the cosmic string core width is set by the mass
scale of the field theory and remains unaltered by the expansion, the field equations are solved on
lattices with comoving coordinates. As the universe expands the comoving string width shrinks.
At some point in the evolution the comoving string width becomes less than the separation of
adjacent lattice points, and we can no longer resolve the string core on the grid.

An effective proposal to avoid that situation has been to change the equations of motion so that
the cosmic strings have an artificially growing physical core width, so that they can be resolved
on a comoving lattice throughout the simulation [42, 162] (see Section 2.2 of the Introduction).
It was shown that the uncertainties thereby introduced were less than those originating from the
limited volume and time of the simulations. However, the great increase in both volume and time
of the simulations demand a re-examination of the core growth technique. Our new resources
have made it possible to simulate string networks following the true equations of motion for both
matter and radiation eras, at the cost of some dynamic range, as the system takes longer to settle
into its scaling evolution. We find that, as argued previously, the differences in the UETCs with
and without core growth are small, in the range 10− 20% near the peak of the correlators.

The new simulations extend the wave-number range of previous measurements both at low
and high wave-number. We measure correlators at the horizon scale more accurately, and we are
able to measure directly at values of k a factor four higher than before, which we had previously
reached only by extrapolation. We confirm the power-law behaviour of the scalar correlators at
large wave-numbers, although the behaviour of the vector and tensor correlators is less clear.

We also address the modeling of the cosmological transitions in our simulations, not only
the transition from radiation to matter but also that to a universe dominated by a cosmological
constant. We perform the first simulations of Abelian Higgs strings across cosmological transitions,
essential for checking and improving previous modelling. We find that string networks evolve in
a close to adiabatic way across the radiation-matter transition; their properties are at all times
close to those of a network simulated with a constant expansion rate equal to the instantaneous
rate.

We introduce a new technique for deriving the source functions for Einstein-Boltzmann integra-
tors, which are a crucial step in the pipeline for calculating CMB and matter perturbations, and
a source of significant uncertainty in the past. We call our new method fixed-k UETC interpola-
tion. We compare it to previous methods [42, 86], finding that it is significantly more accurate
in reproducing the UETCs at cosmological transitions.

Finally and considering all innovations introduced in this work, we calculate new CMB power
spectra. The new CMB predictions are derived from the correlators of the real equations of motion
and in the new fixed-k interpolation framework for cosmological transitions, which uses the new
interpolation functions derived in this work.

The chapter is structured as follows. We show how we merge the data from our simulations
and correct for the effects of the finite string width in Sec 3.1. In Sec 3.2 we describe the
three methods for deriving transition-era source functions from the correlators, including our new
fixed-k UETC interpolation method, comparing to new numerical simulations of transition-era
correlators. New CMB power spectra and comparisons between different cases are presented in
Sec 3.3. Finally, we discuss and conclude in Sec 3.4.

3.1 UETCs from the simulations

In this section we present the details of the numerical simulations from which the UETC data was
collected, and how the data was merged into a set of 10 scaling UETCs, 5 each in the matter
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Chapter 3. Improving CMB power spectra from Abelian Higgs cosmic strings

and radiation eras. These merged scaling UETCs are the inputs for the next section, in which
the eigenvector decomposition methods are discussed. Remember that the Abelian-Higgs model
as well as the UETC formalism and eigenvector decomposition method have been introduced in
Sections 2.1.1 and 2.3 of the Introduction.

3.1.1 Simulation details

The data was obtained from two years of production on the supercomputers Monte Rosa and Piz
Daint, the two largest systems of the Swiss National Supercomputer Center (CSCS). On both
of those systems we have used 34816 cores/MPI processes, 32768 for computation and 2048 for
efficient output operations. Of the order of 35 M CPU hours have been used for this project.

The equations of motion of the Abelian-Higgs model in a spatially flat FLRW universe are (see
Sections 2.1.1 and 2.2 of the Introduction):

φ̈+ 2 ȧ
a
φ̇−DjDjφ = −a2λ

2 (|φ|2 − φ2
0)φ , (3.1)

Ḟ0j − ∂iFij = −2a2e2Im(φ∗Djφ) . (3.2)

These field equations were evolved on 40963 lattices with comoving spatial separation of dx =
0.5 and time steps of dt = 0.1, in units where φ0 = 1. The simulation volume therefore has
comoving size L = 2048. The couplings were λ0 = 2 and e0 = 1, chosen so that the mass of the
gauge and scalar fields, λφ0/

√
2 and

√
2eφ0, are the same, and equal to

√
2φ0 at the end of the

simulation. The inverse mass of the fields sets the length scale of the string width. With these
couplings, the mass per unit length of the string in the continuum is µ = 2πφ2

0.

We performed 7 individual runs in pure radiation and in pure matter domination eras to deter-
mine the scaling form of the UETCs, for two values of the string core growth parameter, s = 0
and s = 1 (see Section 2.2 of the Introduction for the definition of s). We also performed runs
across the radiation-matter and matter-Λ cosmological transitions on 10243 lattices, with s = 0.
In total, we used UETCs from 28 4k and 35 1k production runs. Each 4k run took approximately
400k core-hours.

In the initial field configuration, only the scalar field is non-zero, and set to be a stationary
Gaussian random field with a power spectrum

Pφ(k) = A

1 + (kLφ)2 , (3.3)

with A chosen so that
〈
|φ2|

〉
= φ2

0, and Lφ = 5φ−1
0 .

The UETCs cannot be calculated until cosmic strings are formed and reach their scaling con-
figuration. These early phases contain a huge amount of excess energy induced by the random
initial conditions, therefore we smoothed the field distribution by applying a period of diffusive
evolution

φ̇ = DjDjφ−
λ

2 (|φ|2 − φ2
0)φ , (3.4)

F0j = ∂iFij − e2Im(φ∗Djφ) , (3.5)

between the start time of the simulation τstart = 50 and a time τdiff = 70. The timestep was
1/30, in units where φ0 = 1.

We followed the same technique as in Ref. [42] to accelerate the formation of the strings in the
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s = 1 case, by setting s negative, so that the cores of the strings grow with the comoving horizon
until a time τcg, staying at most 1/10 of the horizon size at all times. The cooling and the core
growth optimize the speed of approach to a scaling field configuration. The run is stopped soon
after half a light-crossing time of the simulation volume, to ensure there are no artefacts from
the periodic boundary conditions.

With our current computing power we are able to get scaling string configurations following
the real equations of motion, i.e. , equations with s = 1, even in the matter era where the string
width shrinks as the square of conformal time in comoving coordinates. However, in general, the
closer the evolution to the true dynamics, the larger the initial relaxation period where UETCs
cannot be collected, and the shorter the period during which they exhibit scaling. Conversely,
s = 0 simulations reach the scaling regime much more quickly: in our current simulation box
s = 0 simulations scale for a period 4 times longer than s = 1 networks.

We measured the UETC by recording the mean value of Cab(k, τref , τ) (see Eq. (2.29) of the
Introduction) for wavevectors binned in the range 2π(n − 1)/L < |k| ≤ 2Nb/L (1 ≤ n < Nb),
with Nb = 3458, and 150 logarithmically-spaced times between τref and τend = 1100. The
wavenumber of the nth bin kn is set to the mean value of |k| in that bin. Table 3.1 shows the
values of τref taken.

Model s = 1 s = 0
Cosmology Radiation Matter Radiation Matter

τcg 204 366 – –

scg -1 -0.5 – –

τref 450 600 200 200

τmax 600 800 1100 1100

rmax 1.33 1.33 5.5 5.5

xmin 1.38 1.84 0.61 0.61

xmax/103 4.90 6.53 2.18 2.18

Table 3.1: Core growth time τcg, and the value of the core growth parameter s during the core growth
phase of the simulation. Also given are UETC reference times τref , the maximum time at
which data is taken for the UETC τmax, the ratio between the two rmax, and the minimum
and maximum values of x = kτref , x

min and xmax, for each of the sets of 4k simulations
in the radiation and matter eras, without (s = 1) and with (s = 0) the string core growth
approximation. Times are given in units where φ0 = 1.

We also recorded the equal time correlators (ETCs) at each time the UETC is evaluated, with
which we can monitor the quality of the scaling. Perfect scaling would mean that the ETCs
collapse to a single line when plotted against x = kτ . As mentioned above, the network takes
some time to relax to scaling, and in the s = 1 case we see some evidence that the vector ETCs
depart from scaling towards the end of the simulation, which we believe is a lattice resolution
effect. We therefore conservatively take UETC data up to a time τmax. Table 3.1 also shows τmax,
and derived parameters which describe the dynamic range of the simulation.

Despite the modest scaling range of the s = 1 simulation, it is enough to characterize the region
around the peak of the UETCs. This region contains the ETC obtained at the reference time and
its surrounding area, where the maximum correlation within the network is set. Although it does
not supply all the information required for a CMB calculation, it gives the major contribution to
the power spectra. In contrast, because s = 0 simulations scale earlier and for a longer period of
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time, they probe higher time-ratios and larger length scales.

We will see that the s = 0 and s = 1 ETCs are very similar, when networks with the same
string separation are compared. This similarity motivates a new merged structure for the UETCs,
incorporating contributions from simulations with maximum fidelity and with maximum dynamic
range: the s = 1 measurements establish the central part of the UETCs, while the s = 0 are used
at large time ratios and large length scales (low kτ).

3.1.2 Scaling

In the merging process special care must be taken concerning the role of the simulation time
parameter τsim. Simulations for different values of the core growth parameter follow different
equations of motion (see Eqs. (3.1) and (3.2) which depend explicitly on s). In addition, each
simulation starts from different initial conditions and applies different amounts of core growth,
depending on the expansion rate and the value of s (see Table 3.1). For these reasons, one cannot
directly compare simulations with different s at the same simulation time τsim.

Hence it is better to define the physical time based on the state of the string network itself,
and in particular to use a length scale in the network. Specifically, the comoving string separation
ξ has been identified as a useful quantity to determine compatible simulation stages. The string
separation is defined in terms of the mean string length Ls in a horizon volume V as

ξ =
√
V

Ls
. (3.6)

The mean string length is usually derived by directly measuring the comoving length of each
string (see details in [42, 45, 66, 117, 179]). One way of obtaining the length of string is by
summing the number of plaquettes pierced by strings. Such plaquettes are identified from the
winding of a gauge-invariant phase around them [117]. We correct the Manhattan length so
obtained by a factor π/6 [179]. An alternative way, and the one we use in this work, is to use
local field theory estimators to get the above ratio. In our case we employ the mean Lagrangian
density L̄, with

Ls = −L̄V/µ. (3.7)

We show the measured values of ξ inferred from the mean Lagrangian density in the matter era
in Fig. 3.1.

As it was found in previous works, the asymptotic behaviour of the string separation is very
close to linear,

ξ → β(τsim − τoffset) , (3.8)

where τoffset is the time offset of the ξ curve (see Fig. 3.1). The time offset as well as the slope of
ξ in the linear regime are different for each realization due to the random initial conditions. We
define the mean slope β as the average of all different slopes from different realizations. Numerical
values of the slopes can be found in Table 3.2.

Simulations at same ξ can be considered to be at the same stage of the evolution. Hence, in
order to merge the UETCs from different runs, they should be converted to functions of ξ and ξ′

rather than τsim and τ ′sim, according to

C
(ξ)
ab (k, ξ, ξ′) = C

(sim)
ab (k, τsim, τ

′
sim)

√
τsimτ ′sim
ξξ′

. (3.9)
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Figure 3.1: Average string separation ξ from s = 1 (top line) and s = 0 (bottom line) simulations in
the matter era, with ξ obtained from the Lagrangian length measure (3.7). Shaded regions
correspond to the 1σ and 2σ deviations from the mean value obtained by averaging over all
seven realizations. We also included the linear fit of the function (dashed black line) where
the time intervals fitted have been τsim ∈ [600, 800] (s = 1) and τsim ∈ [500, 1100] (s = 0).

s = 1 s = 0
Radiation Matter Radiation Matter

βW 0.265± 0.005 0.277± 0.009 0.244± 0.005 0.247± 0.008
βL 0.254± 0.005 0.261± 0.008 0.234± 0.006 0.235± 0.008

Table 3.2: Values of the slope of the average string separation (see Eq. 3.8). In the s = 1 case, the
time intervals used to fit the function are τsim ∈ [600 800] for matter and τsim ∈ [450 600]
for radiation. In the s = 0 case, the time intervals are τsim ∈ [500 1100], both for matter
and radiation. The quantity βW is obtained by measuring the string length using the number
of plaquettes pierced by strings (see text), whereas βL is obtained by using the Lagrangian
density (3.7).

Besides allowing comparison of the s = 0 and s = 1 networks, it is found that the variance

between simulations of the ETCs C
(ξ)
ab (k, ξ, ξ) plotted against kξ is thereby reduced.

3.1.3 UETC merging

The schematic representation of which UETC contributes to the merged UETC can be found in
Fig. 3.2, displayed in the variables

zξ = k
√
ξξ′ and rξ = ξ′/ξ . (3.10)
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Figure 3.2: Top view of the scheme of the merged UETC. ETCs and its surroundings are covered by s = 1
simulations, while s = 0 are used to extrapolate data both to large time ratios and very large
scales. The variables are defined in Eq. (3.10).

Fig. 3.3 and 3.4 show how each simulation contributes to the merged UETC: the s = 1
simulations provide the central part of the correlation and the s = 0 simulations extend it to
higher time-ratios. The numerical values of the limits of the different regions in the merged
UETC can be found in Table 3.3.

Model s = 1 s = 0
Cosmology Radiation Matter Radiation Matter

ξ(τref) 146.7 198.0 55.8 55.9

ξ(τmax) 183.3 248.4 269.5 270.1

rmax
ξ 1.26 1.26 4.83 4.83

xmin
ξ 0.45 0.60 0.17 0.17

xmax
ξ /103 1.60 2.16 0.61 0.61

Table 3.3: Mean string separations ξ at τref and τmax, the ratio between the two, and the minimum and
maximum values of xξ = kξ(τref), xmin

ξ and xmax
ξ , for simulations in the radiation and matter

eras, without (s = 1) and with (s = 0) the string core growth approximation. Lengths are
given in units where φ0 = 1.

The resulting UETC is shown in the upper pane of Fig. 3.5, viewed along the zξ axis. It can be
seen that the s = 0 and s = 1 UETCs differ by less than 20% at the junction at rlim

ξ , demonstrating
that the s = 0 simulations capture the near-equal time energy-momentum correlations rather well.

The equal-time correlations are also close. A comparison of the ETCs and the relative factor
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Figure 3.3: The C11 correlator in the matter era, simulated with s = 1, in the (zξ, rξ) region indicated in
Fig. 3.2 and Table 3.3.
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Figure 3.4: The C11 correlator in the matter era, simulated with s = 0, in the (zξ, rξ) region indicated in
Fig. 3.2 and Table 3.3.

between them,

γab(zξ) = C
(s=1,ξ)
ab (zξ, 1)

C
(s=0,ξ)
ab (zξ, 1)

, (3.11)

can be found in Fig. 3.6. One can see that the s = 0 ETC is approximately 20% higher near the
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Figure 3.5: Merged scalar C
(ξ)
11 matter correlator. The upper pane shows the C11 before ETC normaliza-

tion, whereas the lower pane represents the final merged and normalized case.

peak, although it dips below the s = 1 ETC at higher kξ where the correlators are small.

The normalization factor γab(zξ) is applied to the UETC of the s = 0 case, we call this
procedure ETC normalization. Therefore, the final representation of the merged UETCs for
zξ > 1.29 exp(| ln(rξ)|) reads as:

C
(tot,ξ)
ab (zξ, rξ) = C

(s=1,ξ)
ab (zξ, rξ)θ(ln(rlim

ξ )− | ln(rξ)|)

+ γab(zξ)C
(s=0,ξ)
ab (zξ, rξ)θ(| ln(rξ)| − ln(rlim

ξ )) . (3.12)

Here the values of zξ are defined from the s = 0 simulations, with the values of the s = 1 UETCs
obtained by interpolation. The normalised and merged C11 is plotted in the lower pane of Fig. 3.5.

It is remarkable that the normalization of the ETC produces a UETC which is very close to
continuous at the merging boundary rlim

ξ . This means that the width of the UETCs, which
depends on the speed with which the strings move, is very similar.

Finally, we use s = 0 UETC data in the range 0.17 < zξ exp(−| ln(rξ)|) < 1.29, i.e. the lowest
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Figure 3.6: Upper pane: ETCs corresponding to the C
(ξ)
11 for s = 0 (green line) and s = 1 (black line), in

the matter era. The lower pane represents the correction factor γ11(kξ) between them.

C11 C12 C22 Cvv Ctt

Matter 0.76 0.42 0.77 0.94 0.91

Radiation 0.71 0.60 0.73 1.23 0.89

Table 3.4: Normalization factor γ̄ab for low zξ s = 0 data, obtained from weighted average of the first 6
bins of γab(zξ).

region of Fig. 3.2 delimited by a solid line (bottom) and a dashed line (top), normalised by the
average of γab(zξ) in the first six bins, weighted by the number of k values contributing to each
bin, or

C
(tot,ξ)
ab (zξ, rξ) = γ̄abC

(s=0,ξ)
ab (zξ, rξ) . (3.13)

The values of γ̄ab are given in Table 3.4.

3.1.4 UETC fitting and small-scale correction

We extend the small scale correction performed in [45] (see section III-D). There it was argued
that equal-time correlators decay on small scales (deep inside the horizon, kτ � 1, but above the
scales at which the string width becomes relevant) approximately as 1/kτ (1/kξ in terms of the
string separation scale).

In Fig. 3.7 we show power-law fits of kξC(ξ) over the range kξ ∈ [15 90] (s = 0) and kξ ∈ [15 70]
(s = 1), denoted by vertical lines, giving the numerical values of the power law in Table 3.5. We
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Chapter 3. Improving CMB power spectra from Abelian Higgs cosmic strings

have been able to confirm that the power-law is a reasonable fit to our current ETCs, for both
s = 0 and s = 1 simulations, although the power law is less clear for the vector and tensor cases.
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Figure 3.7: Power law fit for all five correlators for s = 0 at the end of the simulation τsim ≈ 1100
(upper pane) and s=1 at the end of the scaling regime τsim ≈ 800 (lower pane). Both cases
correspond to the matter era. Fitting ranges lie between the vertical lines: kξ ∈ [15 90]
for s = 0 and kξ ∈ [15 70] for s = 1. In both pictures the color election is the same, the
uppermost line is the ETC of C11, the middle pair of lines correspond to C22 (black line) and
|C12| (grey line) and finally the lower pair of lines are Cvv (grey line) and Ctt (black line).

The power-law behaviour applies between the string separation scale ξ and the string width w.
In our simulations, the ratio ξ/w reaches a maximum of approximately 300. In the true Universe,
the power-law behaviour would hold for much longer as the string width at late times is over 50
orders of magnitude smaller than the string separation. Thus using the extrapolation to very high
kξ could be used to improve our estimates of the scaling functions at high values of kτ .

We use the information of the decay trend to correct the behaviour of the UETCs at high
values of the binned wave numbers kn, covering scales between the string width and the lattice
spacing. We conservatively do not extrapolate the UETCs beyond the wave vectors contained in
time simulations. The UETCs are in any case very small at high kτ .

In order to accomplish that, we follow the procedure presented in [45] and define the attenuation
level:

R(k, ξ) = Q(kξ)p

C(ξ)(kξ, 1)
(3.14)

where Q and p represent constants of the power-law fit.

This is a measure of how far the equal time correlators are from their corresponding power-law
form. As mentioned above, the power-law form is not clear for the tensor and vector ETCs in
either s = 0 or s = 1 simulations, and it is conceivable that there are contributions from the
massive radiation which prevent it from ever appearing. Still larger simulations are required to
establish the asymptotic form of the vector and tensor ETCs at high kτ . The power laws are at
least clear for the scalar correlators.

As the UETCs are quadratic functions relating two separate times, we apply the correction in
the following manner:

C(ξ)
c (k

√
ξξ′, ξ′/ξ) =

√
R(k, ξ)R(k, ξ′)C(ξ)(k

√
ξξ′, ξ′/ξ) , (3.15)
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3.2 Eigenvector decomposition at cosmological transitions

s = 1 s = 0
Radiation Matter Radiation Matter

C11
−0.22± 0.01 −0.14± 0.01 −0.14± 0.01 −0.10± 0.01
2.78± 0.01 2.60± 0.02 2.60± 0.02 2.47± 0.01

C12
−0.60± 0.02 −0.48± 0.03 −0.51± 0.03 −0.43± 0.03
2.89± 0.03 2.56± 0.06 2.66± 0.06 2.37± 0.06

C22
−0.37± 0.02 −0.29± 0.03 −0.40± 0.03 −0.34± 0.03
2.63± 0.03 2.35± 0.07 2.51± 0.07 2.26± 0.07

Cvv
−0.134± 0.005 −0.11± 0.01 −0.059± 0.006 −0.059± 0.003
1.662± 0.008 1.49± 0.03 1.35± 0.01 1.23± 0.02

Ctt
0.076± 0.004 0.009± 0.003 0.045± 0.003 0.021± 0.003
1.153± 0.007 1.25± 0.02 1.183± 0.008 1.21± 0.01

Table 3.5: Values of the parameters p and Q as defined in Eq. (3.14) for each correlator in matter and
radiation, and for s = 0 and s = 1 at τ = τend. The top line gives the value of p and the
second of log10Q. The fitting range for the values are the same as in Fig. 3.7, except for the
s = 1 radiation case, where the range is kξ ∈ [10 60].

whenever kξ > 30, for every rξ (see the upper dashed line in Fig. 3.2).
We show the set of final UETCs in the matter era in Fig 3.8. Note that there is no extrapolation

in rξ: the UETCs are set to zero for | ln(rξ)| > ln(rmax
ξ ).

Finally, we transform back from ξ to a scaling time variable τ , by noting that ξ and τ are
proportional at large times. Hence we use Eq. (3.8) to write τ = ξ/β. Our estimates of the
scaling UETCs are therefore

C̄ab(k
√
ττ ′, τ/τ ′) = β−1C

(ξ)
ab (k

√
ξξ′/β, ξ/ξ′) , (3.16)

where β is the mean slope obtained from the s = 1 simulations, as given in the βL row of
Table 3.2.

3.2 Eigenvector decomposition at cosmological transitions
In this section we derive the source functions needed by Einstein-Boltzmann integrators and used
to calculate the CMB power spectra presented in the next section. All the information needed to
obtain the power spectra of CMB and matter perturbations is encoded in the UETCs [78, 155, 196].
In general, a UETC is a function of three variables

C(k, τ, τ ′), (3.17)

and the correlator is non-vanishing in the region

τi ≤ (τ ′, τ) ≤ τ0, (3.18)

where τ0 is the current (conformal) time, and τi is the time at which the defect-forming phase
transition takes place.
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Figure 3.8: Full set of merged scaling UETCs the matter era, calculated from the average of 7 s = 0 and
7 s = 1 runs.

91



3.2 Eigenvector decomposition at cosmological transitions

The UETCs can be decomposed into their eigenfunctions cn(k, τ) defined through∫ τ0

τi

dτ ′Cab(k, τ, τ ′)cnb (k, τ ′) = λn(k)cna(k, τ). (3.19)

Note that the eigenvalues λn, which are real and positive, are functions of the wavevector k. As
the domain is finite, there are a countable infinity of eigenvalues for each wavevector. The UETC
is recovered through the sum

Cab(k, τ, τ ′) =
∑
n

λnc
n
a(k, τ)cn∗b (k, τ ′) . (3.20)

Formally, the power spectra and cross-correlations of a perturbation in a cosmological variable
Xa can be written

〈Xa(k, τ)Xb
∗(k, τ)〉 = φ4

0
V

∑
n

λnI
n
a (k, τ)In∗b (k, τ) , (3.21)

where the contribution of each linear term, Ina (k, τ), is

Ina (k, τ) =
∫ τ

τi

dτ ′GXab(k, τ, τ ′)
cnb (k, τ ′)√

τ ′
, (3.22)

and GX is the Green’s function for the quantity X. The integration is performed numerically,
using a modified version of one of the standard Einstein-Boltzmann (EB) integrators CMBEASY
[72], CLASS [49, 126], or CAMB [127]. Hence, if UETCs are decomposed into their eigenfunctions,
they can be used as sources for an EB solver, and the power spectra reconstructed by taking
the sum of the power spectra obtained for each eigenfunction, weighted by the eigenvalue. In
practice, the square root of the eigenvalue (which should be positive) and the eigenfunction are
combined together into an object we call the source function.

The EB time integration range is generally much larger than the range of any conceivable defect
simulation. However, the scaling property of the UETCs allows us to reconstruct the eigenvectors
in an economical way. Scaling means that

Cab(k/σ, στ, στ ′) = Cab(k, τ, τ ′), (3.23)

and therefore scaling UETCs can be written as a function of two variables, which when diagonal-
ising are most conveniently chosen to be x = kτ , x′ = kτ ′,

Cab(k, τ, τ ′) = C̄ab(x, x′). (3.24)

The overbar represents the scaling form of the UETC in a FLRW background (see Section 2.3 of
the Introduction).

Scaling is an immensely valuable property, as it allows to extrapolate numerical simulations to
the required cosmological scales. However, perfect scaling is not a feature of the true UETCs,
as the universe undergoes a transition from radiation-dominated to matter-dominated expansion
during times of interest, and more recently to accelerated expansion. Hence the UETCs also
depend explicitly on τeq and τΛ, the times of equal radiation and matter density, and equal matter
and dark energy density.

Strictly speaking, scaling is broken by τeq and τΛ, but given that UETCs decay quickly for
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(x, x′)� xp, where the peak of the UETC is xp = O(10), they will closely approximate radiation
era scaling UETCs for k � xpτ

−1
eq , matter era scaling UETCs for xpτ

−1
Λ � k � xpτ

−1
eq , and

Λ-era UETCs for xpτ
−1
Λ � k. The eigenfunctions of the scaling UETCs will approximate the true

eigenfunctions under the same conditions. Scaling eigenfunctions are functions of kτ , and so we
infer that the eigenfunctions of the true UETCs will be well approximated by radiation era scaling
eigenfunctions for τ � τeq, by matter era scaling eigenfunctions for τeq � τ � τΛ, and Λ-era
scaling eigenfunctions for τΛ � τ .

These observations underlie our discussion of methods to construct the true eigenfunctions from
the scaling UETCs, which are derived from numerical simulations as discussed above. We will
discuss two existing methods, based on interpolating between sets of eigenfunctions in time, and
introduce a third, which interpolates between UETCs in k-space. The new method is superior:
it reproduces better the actual (non-scaling) UETC during the radiation-matter transition, which
we have measured for the first time, and also maintains the orthogonality of the approximate
eigenfunctions.

3.2.1 Simple eigenvector interpolation
In the simple eigenvector interpolation method [42, 45, 78], scaling UETCs are extracted from
radiation and matter cosmologies separately. Each correlator is diagonalised to obtain two sets of
eigenfunctions.

The diagonalisation proceeds by sampling the numerically measured UETCs C̄ab(x, x′) at a
number of values of x in the range available from the numerical simulations. For the results from
our 4k simulations we took Ni = 2048 linearly spaced values in the interval 0.6 ≤ (x, x′) ≤ 2300.

The two sets of eigenvectors, one from the radiation era and one from the matter era, are ordered
by the magnitude of their eigenvalues, so that the first ones correspond to the most important
contributions. We assume that the eigenvectors ordered by eigenvalue size form matching pairs
(one from radiation with one from matter), and choose their relative sign by requiring that the
scalar product of the two eigenvectors is positive. Through this pairing we then define the source
function for the EB integrator as

√
λncn(k, τ) = eΛ(τ)

(
e(τ)

√
λRnc

R
n(x) + (1− e(τ))

√
λMn c

M
n (x)

)
. (3.25)

Note that the eigenfunctions at Λ domination are assumed to be zero. The eigenvector inter-
polation functions e(τ) and eΛ(τ) for radiation-matter and matter-Λ transitions respectively are
taken to be [42, 45],

e(τ) = 1
1 + χ[a(τ)] , (3.26)

eΛ(τ) = 1
1 + χΛ[a(τ)] , (3.27)

where χ[a] = aΩm/Ωr and χΛ[a] = a3ΩΛ/Ωm are the ratio between the density fractions at the
given value of the scale factor.

For a given k, the source function is defined only at a set of times which are in general not
those used by the EB integrator. The values of

√
λncn(k, τ) at an arbitrary time τ are found by

spline interpolation, with all eigenfunctions set to zero at τ = 0 and for x > 2000.
Recently some inconsistencies of this approach have been highlighted [86]. First, the signs of

a set of eigenvectors are undetermined, and so a rule must be applied to decide on the relative
sign when interpolating between a radiation-era eigenvector and a matter-era one. As described
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above, the nth radiation and the nth matter eigenvectors are matched, and their relative sign
chosen so that their scalar product is positive. Abrupt jumps in the shape of the functions are
reduced, although the qualitative similarity between the two matched eigenvectors does not hold
in all cases. However, if one goes beyond the nth to nth eigenvector sign matching and explores
the whole eigenvector scalar product space, usually there are cases where the nth eigenvector in
radiation has the biggest scalar product (≈ 1) with the mth eigenvector in matter (n 6= m). Even
worse, for the higher eigenvectors there is often no clear partner and the matching scheme breaks
down.

Finally, even if eigenvectors can be paired off successfully, the set of interpolated source func-
tions are not in general orthonormal, and therefore not eigenvectors.

3.2.2 Multi-stage eigenvector interpolation

A second method of generating a set of source functions [86] (see also [155]), which we call
multi-stage eigenvector interpolation, improves on simple eigenvector interpolation by generating
a set of linear combinations of the pure radiation and pure matter UETCs, whose eigenvectors
can be more easily matched. We write the ”transition” UETCs as

Ci
RM(kτ, kτ ′) = fiC̄

R(kτ, kτ ′) + (1− fi)C̄M(kτ, kτ ′) , (3.28)

with 0 ≤ i ≤ NU, f0 = 1, fi+1 < fi, and fNU
= 0. For every transition UETC Ci

RM we will
have a set of orthonormal eigenvectors. We can have as many transition UETCs as we want:
in practice we choose NU so that there is no arbitrariness in the eigenvector matching left: the
scalar products between the ith and the (i+ 1)th sets of eigenvectors are close to one or close to
zero. Each set of eigenvectors cni (kτ) can then be uniquely mapped to its neighbours i− 1 and
i+ 1, with i = 0 being the pure radiation eigenvectors and i = NU the pure matter eigenvectors.

We then divide up the radiation-matter transition era into NU + 1 intervals with a set of NU

times τi, and define a monotonically decreasing interpolating function f(τ), which will define the
linear combination in (3.28) according to

fi = f(τi). (3.29)

We discuss the interpolating function in Section 3.2.4.

The transition basis functions cn(k, τ) are then defined from the set of eigenvectors cni (kτ)
with the help of a set of indicator functions Ji(τ)

J0(τ) =
{

1 0 ≤ τ ≤ τ1
0 otherwise ,

Ji(τ) =
{

1 τi ≤ τ ≤ τi+1
0 otherwise , (3.30)

JNU
(τ) =

{
1 τNU

≤ τ ≤ ∞
0 otherwise .

The source functions are then

√
λnc

n(k, τ) =
NU∑
i=0

Ji(τ)
√
λn,ic

n
i (x) . (3.31)
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We see that the simple eigenvector interpolation is related to multi-stage interpolation with NU =
1, and would be identical with a step function e(τ).

This process can also be generalized in the obvious way to take into account the transition
from matter domination to Λ domination.

0.1695 0.17 0.1705 0.171
10.965

10.967

10.969

f(⌧)

Figure 3.9: Evolution of the 34th and 35th eigenvalues of the tensor correlator, as a function of the
interpolation parameter f (Eq. (3.28)). The thin grey lines show eigenvalue crossings, which
happen when the time region is divided into few intervals (in this case, 3 intervals). The thick
black line, on the other hand, represents the situation when the time region is divided into 18
intervals. It is apparent that the eigenvalues avoid crossing each other, as they should.

Before discussing the choice of the function f(τ), we study how the eigenvectors evolve with
f , the parameter determining the linear combination of the UETCs according to Eq. (3.28). In
particular we can check that a radiation eigenvector evolves into a unique matter eigenvector. We
can also plot the value of the corresponding eigenvalue. As each eigenvector is uniquely associated
to its eigenvalue, and as the eigenvalues evolve also in a continuous way with f , the order of
matching eigenvectors can only change if the associated eigenvalues cross along their evolution.
However, the eigenvalues of a Hermitian matrix which is a continuous function of a parameter
f do not in general cross, unless a symmetry appears at a particular value of f . Hence we can
expect that the eigenvectors can be uniquely ordered and matched by their eigenvalues.

In order to illustrate this point, we show explicitly an example in Fig. 3.9, where we consider
the 34th and 35th eigenvalues of the tensor correlator. Judging only by the scalar product method
of the corresponding eigenvectors, the eigenvector corresponding to the larger eigenvalue on the
left (34th) has the largest dot-product with the eigenvector of the lowest eigenvalues on the right
(35th). Following the eigenvalue evolution, they appear to cross. If we split this time region into
three intervals, and perform a UETC interpolation, we find exactly the same situation (thin grey
lines). However, if we split the time region into more intervals (in our example, 18) to perform the
UETC interpolation, the crossing of the eigenvalues is avoided. This is apparent in the eigenvalue
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3.2 Eigenvector decomposition at cosmological transitions

evolution: the lines repel (thick black lines).

We conclude that we can select an eigenvector cni unambiguously in the sum (3.31), and that
corresponding eigenvectors can be found by ordering them by eigenvalue λn,i, and that there is
no ambiguity about the construction of the source function

√
λnc

n
a(k, τ). However, the source

functions are still not orthogonal, a property which is possessed by the eigenfunctions of the true
UETC. We will see how the third method addresses this problem in the next section.

3.2.3 Fixed-k UETC interpolation

Going back to the whole (non-scaling) UETCs Cab(k, τ, τ ′) we see that it is natural to think of
them as symmetric functions of τ and τ ′ for a given k. They contain the full information about
the cosmic transitions, and can be discretised and then diagonalised as discussed above. This
approach also fits very naturally into the scheme used by Einstein-Boltzmann codes, which solve
the perturbation equations with an outer loop over k and an inner time integration for fixed values
of k.

In fixed-k UETC interpolation we construct approximations to Cab(k, τ, τ ′) from the scaling
matter and radiation sources, at each value of k. The relative mixture of matter and radiation
UETCs is determined by τ/τeq and τ ′/τeq. First, we display how a real UETC changes with k
in Fig. 3.10. The figure shows C11 obtained from our seven transition era simulations, plotted
against (τ/τeq, τ

′/τeq), for the values of kτeq ' 600, 10 and 1.

⌧/⌧eq

⌧
0 /
⌧ e

q

Figure 3.10: The UETC C11 plotted for values of kτeq nearest to 600, 10 and 1, obtained from the
radiation-matter transition simulations listed in Table 3.6.

To obtain this graph, we simulated string networks at intermediate stages of the radiation-
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matter transition, where the scale factor evolves as

a(τ) = aeq

[(√2− 1
)( τ

τeq

)
+ 1

]2

− 1

 . (3.32)

These 1k (10243) numerical simulations had the same Lagrangian parameters as the 4k simu-
lations, with lattice spacing dx = 0.5, core growth parameter s = 0, and the same τstart and τdiff .
There is limited range between the time when correlator data taking starts at τref = 150 and the
end of the simulation τend = 300, so each simulation spans only a part of the transition. UETC
and ETCs are written at Nτ = 50 logarithmically-spaced intervals between these times.

We performed five independent simulations for seven values of τeq (Nτeq = 7), so that the
simulations covered most of the transition epoch. Table 3.6 shows the values of τeq and the time
periods that we have simulated, five of which are used in Fig. 3.12. We also give the expansion
rate parameter

α(τ) = d ln a
d ln τ . (3.33)

τeq 600 300 150 80 40 10 3

τref/τeq 0.25 0.5 1.0 1.875 3.75 15 50

τend/τeq 0.5 1.0 2.0 3.75 7.5 50 100

α(τref) 1.05 1.09 1.17 1.28 1.44 1.76 1.91

α(τend) 1.09 1.17 1.29 1.44 1.60 1.86 1.95

Table 3.6: Selected parameters for simulations across the radiation-matter transition. The parameters
are τeq in units of φ−1

0 , the ratio of the reference time τref for UETC data-taking and the
simulation end time τend to τeq, and the expansion rate parameters α = d ln a/d ln τ at τref
and τend. In the simulations with constant α (see Section 3.2.4), we take the value of α at
τref .

In Fig. 3.10, data is taken from the unique UETC which contains a value of k whose product
with each of the seven values of τeq is nearest to the chosen values 600, 10 and 1. For each of
these three values of kτeq, we therefore have a Nτeq ×Nτ array. We plot this array with τ ′ = τref ,
and also its transpose.

The general behaviour as a symmetric function peaked near (τ/τeq, τ
′/τeq) ∼ (10/kτeq, 10/kτeq)

is clear. It is also clear that the height of this peak makes a smooth transition from higher values
at kτeq � 1, where the UETC resembles the UETC in a radiation-dominated universe, to lower
values at kτeq � 1, where the UETC resembles the UETC in a matter-dominated universe.

A proposal for the UETCs which models this behaviour across the radiation-matter transition
is

Cab(k, τ, τ ′) = f

(√
ττ ′

τeq

)
C̄M
ab(kτ, kτ ′) +

(
1− f

(√
ττ ′

τeq

))
C̄R
ab(kτ, kτ ′). (3.34)

This is manifestly symmetric in τ, τ ′. It approximates the UETC in the entire region ττ ′ ∼ τ2
eq by

the linear combination of pure radiation and pure matter era scaling correlators at extreme values
of τ/τeq. At sufficiently unequal times bracketing τeq the true UETC may depart significantly
from the model, but this should not matter in practice as the UETC is very small there for any
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value of k. We will see in Sect. 3.2.6 that of the UETCs reconstructed from the source functions,
the fixed-k UETC interpolation method gives the most accurate results.
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Figure 3.11: First (black solid line), second (green dotted line) and third (blue dash-dotted line) source
functions for kτeq = 1000, 1 and 0.001 from left to right. The two left figures show scalar φ
(upper pane) and ψ (lower pane) components, whereas the top-right figure is for vector and
the bottom-right one for tensors.

We note that the source functions for the EB integrators at a given k are now just the eigen-
vectors of these model UETCs, multiplied by the square root of the associated eigenvalues, and
so they are indeed orthogonal, unlike in the previous two methods. In Fig. 3.11 we show the first
three source functions extracted by this method as a function of τ/τeq, for kτeq = 1000, 1 and
10−3. The corresponding UETCs are therefore largest in the radiation, transition, and matter eras
respectively. It can be seen that the source functions are indeed peaked in different ranges of τ ,
at around τ ∼ 10/k, and that the peak amplitude decreases as k gets smaller, consistent with
the matter-era UETCs having a smaller amplitude that the radiation era ones.

3.2.4 Interpolating functions f(τ) and fΛ(τ)
We adopt the recipe given in [86] to define the interpolating function such that it reproduces the
equal-time correlators Eab(k, τ) = Cab(k, τ, τ). First we define

fab(k, τ) = ERM
ab (k, τ)− ĒM

ab(kτ)
ĒR
ab(kτ)− ĒM

ab(kτ)
∀k , (3.35)

where ĒR(kτ) and ĒM(kτ) are the scaling ETCs in the radiation and matter eras respectively,
and ERM (k, τ) is the true ETC during the transition.
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Parameters E11 E12 E22 Evv Ett Mean and σ

ζ 0.232± 0.006 0.244± 0.012 0.246± 0.010 0.242± 0.006 0.203± 0.010 0.235± 0.004
η −1.01± 0.02 −1.01± 0.04 −1.03± 0.03 −0.96± 0.01 −1.10± 0.05 −0.984± 0.008

Table 3.7: Mean values together with the standard deviations for the parameters ζ and η of Eq. (3.36)
needed to reproduce the radiation-matter transition.

We will see that the functions fab(k, τ) extracted from our simulations are consistent with
being independent of k and thus the above definition will reproduce Eq. (3.28) when evaluated
at equal times. We will also see that it is a good approximation to take the same function f(τ)
for each of the five ETCs.

We extracted ETCs from 1k simulations with τeq = 3, 10, 40, 150 and 300, and used Eq. (3.35)
to compute the function f(τ). As illustrative examples, Fig. 3.12 shows the results obtained for
correlators E11 and Evv; the results for the other correlators are very similar. The five grey shaded
regions represent the raw transition functions (3.35) obtained during the five transition periods
simulated. The two grey levels indicate 1σ and 2σ deviations from the mean value calculated
averaging over a set of wavevectors much less than the inverse string width: 0.12 < |k| < 2.
We also include in the pictures the best-fit line (solid red line) obtained fitting data using the
following functional form:

f(τ) =
(

1 + ζ
τ

τeq

)η
. (3.36)

The narrowness of the shaded regions confirms the initial assumption of the scale independence
of the function.

Table 3.7 shows the mean values and standard deviations for the parameters of Eq. (3.36); it
is clear that the transition applies in a very similar form for all correlators, implying that they
evolve in a similar way across the transition. In order to simplify further calculations we consider
the following function as the radiation-matter transition UETC interpolation function that applies
equally to all correlators of the Abelian-Higgs cosmic string model:

f(τ) =
(

1 + 0.24 τ

τeq

)−0.99

, (3.37)

We note that function (3.37) is almost the square root of the interpolation function for large-N
self-ordering scalar fields obtained in [86]

fN (τ) =
(

1 + 1
4
τ

τeq

)−2

. (3.38)

The conjecture [86] that the interpolation function is universal is therefore not supported by our
findings.

We also compared the transition-era ETCs at time τn with scaling ETCs evaluated with a
constant expansion rate parameter α(τn). We performed five simulations with constant α chosen
to coincide such that the expansion rate fell within the range of expansion rates explored by our
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Figure 3.12: UETC interpolation functions derived from simulations performed during the radiation-matter
transition (thick grey line). The five patches correspond to simulations with τeq = 3, 10, 40,
150 and 300. The shaded regions represent the 1σ and 2σ deviations from the mean value
of the function obtained from Eq. (3.35) calculated from the averaging over k. In the upper
pane the correlator used is E11, while in the lower pane is Evv. The red line, in both cases,
corresponds to the best-fit function obtained using the functional form of Eq. (3.36). The
black points (with error bars) correspond to constant α simulations, which would mimic the
adiabatic cosmology transition.
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simulations across the radiation-matter transition (values can be found in Table 3.6). Defining

fαab(k, τ) = Ēαab(kτ)− ĒM
ab(kτ)

ĒR
ab(kτ)− ĒM

ab(kτ)
, (3.39)

we can plot the average values of fαab in Fig. 3.12, where the five points (black dot points
with corresponding 1σ bars obtained from k-averaging) come from the constant expansion rate
simulations.

Interestingly, the best-fit function lies almost on top of the constant expansion rate points fα.
We therefore conclude that the string network reacts quickly to changes in the expansion rate, and
we can treat the ETCs as being adiabatic: in other words, the properties of the string network
at any given time during the radiation-matter transition corresponds well to the properties of
a scaling network at the same instantaneous expansion rate. In principle we expect the same
behavior for other types of defects, therefore, a good approximation could be found by performing
a series of smaller/shorter simulations at intermediate constant expansion rates.

3.2.5 Matter-Λ interpolation

We also applied the same procedure to incorporate the effects of the accelerated expansion of
our universe, extending our analysis to the matter-Λ transition. In a Λ dominated universe, one
expects the string velocity to decay and the network effectively to freeze with a length scale ξfr.

The metric perturbations induced by a straight string moving with a velocity v were computed
in [151], and from the expressions in that article we can see that for v → 0 the scalar potential ψ
as well as the vector perturbations vanish, while the scalar potential φ and the tensor perturbations
remain finite. Based on this we expect that the tensor and the E11 UETCs do not vanish, while
E12, E22 and Evv go to zero.

Therefore, the counterpart of Eq. (3.35) is

fab(k, τ) = EMΛ
ab (k, τ)− ĒΛ

ab(kτfr)
ĒM
ab(kτ)− ĒΛ

ab(kτfr)
, (3.40)

where τfr is a time derived from the length scale ξfr of a frozen string network in de Sitter
space, and ĒΛ

12 = ĒΛ
22 = ĒΛ

vv = 0. We show the decay of the correlators EMΛ(k, t) in Fig. 3.13,
based on simulations evolving in a ΛCDM background. These simulations covered mainly the
late matter dominated era and the beginning of the dark energy domination. Table 3.8 shows the
cosmological parameters at the end of each of the regimes simulated. We have been able to go
farther towards the ΛCDM singularity where the conformal time reaches its asymptotic de Sitter
value, and where therefore the scale factor diverges as a function of τ (around τ ≈ 1.35τ0 for a
value of Ωm = 0.315). As our estimate of the de Sitter correlators we measure the functions ĒMΛ

11
and ĒMΛ

tt at τend = 1.33, and take τfr = β−1ξfr, where β is the slope of the relation between
time and network length scale (see Eq. (3.8)), and we use its value during the matter era, given
in Table 3.2.

The interpolation functions related to each of the different correlators can be fitted by the
following set of functions:

fΛ(τ) =
(

1 + ζ

(
τ

τ0

)η)
, (3.41)

where the best fits of the parameters ζ and η for each case are shown in Table 3.9.

101



3.2 Eigenvector decomposition at cosmological transitions

τ0 300 225
τref/τ0 0.5 0.665
τend/τ0 1 1.33

Ωm(τend) 0.315 1.29 · 10−4

Ωr(τend) 9.24 · 10−5 2.81 · 10−9

Table 3.8: Values of the current conformal time τ0 in simulation time units, the ratio of the reference
time τref for UETC data-taking and the simulation end time τend to τ0. Also given are the cos-
mological parameters Ωm and Ωr at the end of each simulation across the matter-Λ transition.
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Figure 3.13: Matter-Λ UETC interpolation function for different correlators plotted against the conformal
time relative to current time (τ0), from top Evv and bottom E11. The other two scalar cor-
relators, E12 and E22, lie roughly between the two red lines. The different shades correspond
to 1σ and 2σ confidence limits, and the red line corresponds to the best fit.

Parameters E11 E12 E22 Evv Ett

ζ -0.302±0.003 -0.276±0.003 -0.292±0.003 -0.241±0.001 –

η 5.2±0.1 5.4±0.1 5.3±0.1 5.63±0.03 –

Table 3.9: Best fit values for parameters ζ and η in Eq. (3.41) corresponding to the Matter-Λ transition
function.

It can be seen that there is greater variation in the parameters than in the radiation-matter
case. Note that Ett changes little during the transition and so the errors in ftt are very large.
Hence it is a good approximation not to interpolate Ett at all.

We can anticipate that the effect of taking into account a ΛCDM background cosmology will
slightly decrease the amplitude of the late time correlators. Consequently, this decay will affect
the power spectra at lower multipoles, decreasing the contribution at scales that entered late the
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Chapter 3. Improving CMB power spectra from Abelian Higgs cosmic strings

horizon.

3.2.6 Comparison of interpolation methods

In this section we compare simple and multistage eigenvector interpolation, as used in [42] and
[86], with the fixed-k UETC interpolation introduced in this paper. We perform the comparison
by reconstructing the UETC from the interpolated source functions

Crc(k, τ, τ ′) =
∑
n

λncn(k, τ)c∗n(k, τ ′). (3.42)

This is then compared with a measured transition correlator. We choose an intermediate stage of
the radiation-matter transition, 1 < τ/τeq < 1.5 and restrict the analysis to scales around the peak
of the correlator (8.3 < kτ < 30), where the most important contribution is encapsulated. Note
that though the eigenvectors of the time-interpolated UETCs do not strictly form an orthonormal
set, their product forms an effective UETC, see Eq. (3.42). Time evolving eigenvectors for the
eigenvector interpolation method, in turn, are calculated using (3.25) and (3.26).

We show in Fig. 3.14 the relative difference of the reconstructed UETC using 128 eigenvec-
tors for the scalar C11 function for the three proposed methods. There can be seen that the
resemblance of the fixed-k interpolation to the real case is the highest and is clearly better than
the multi-stage eigenvector interpolation method, which is in turn better than simple eigenvector
interpolation. The values of the relative differences at z = 10, near the peak of the UETCs, are
approximately 0.03, 0.09, and 0.2 respectively.

3.3 New power spectra and error assessment

In this section we present updated CMB power spectra contributions from AH cosmic string. The
power spectra have been calculated using the source enabled version of CMBEASY [72]. In order
to account for source functions of the multi-stage eigenvector and fixed-k UETC interpolation
methods the program has been additionally modified. The cosmological parameters used for
these calculations are the best-fit values obtained by the Planck collaboration [21]: h = 0.6726,
Ωbh

2 = 0.02225, ΩΛ = 0.6844 and optical depth to last-scattering κ = 0.079. As it has
been mentioned previously, we interpolate UETC matrices to Ni = 2048 points. After the
diagonalisation, the total contribution of strings to temperature and polarization anisotropies
is calculated summing the contribution of each individual source function. We observe that
convergence of 1% is obtained for ∼ 200 eigenvectors and so as to avoid uncertainties we set the
standard number of eigenvectors to 256.

This section contains the final power spectra and their corresponding error assessments obtained
bootstrapping over realizations in the merging process. However, its aim is not only to present
those new results, but also to analyze separately the changes introduced by the innovations
proposed during this work. Therefore, we compare the differences introduced by the new UETCs
from the real equations of motion, which are described by the new merged structure, with the
previous CMB predictions from [45]. On the other hand, the new cosmological transition handling
has been one of the most important and innovative aspects of this work, hence we also want to
measure the changes created by the incorporation of the new interpolation framework as well as by
the new interpolation functions. In this sense, we compare multistage and fixed-k interpolation
methods with each other and with the simple eigenvector interpolation method. The effects
produced by the new matter-Λ transitions are also studied.
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Figure 3.14: Relative difference of the reconstructed scalar C11 UETC with respect to the measured
UETC. The UETCs are reconstructed using three different methods: simple eigenvector
interpolation (first pane), multi-stage eigenvector interpolation (second pane) and fixed-
k UETC interpolation (third pane). In the simple eigenvector interpolation method the
interpolating function is (3.26), whereas for the multi-stage eigenvector interpolation at the
correlator level we use (3.37). Only the region around the peak of the correlator, 1/1.5 <
r < 1.5 and 8.3 < kτ < 30, is shown. Note that in order to represent the relative difference
as neatly as possible, we remove values greater than 1 from the two top pictures.
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3.3.1 Comparison with 2010: s = 1
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Figure 3.15: Comparison of the spectra obtained in [45] (grey line) and in this work (black line). The
latter are obtained using UETCs from new simulations constructed following the merging
scheme and interpolating eigenvectors by the simple eigenvector interpolation method.

Energy-momentum correlations of this work have been derived from the biggest field theoretical
simulation of AH cosmic string to date. Current simulations cover a spatial patch 64 times bigger
than in [45], thus we have been able to simulate for four times longer and scales that previous works
could only reproduce by extrapolation can now be directly simulated. Specifically, new simulations
extend the data both in low and high wavenumber, measuring more accurately horizon scale
correlations and the small scale power-law behavior. Moreover, it has been possible to reproduce
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3.3 New power spectra and error assessment

the real equation of motion, i.e. s = 1, and reach the scaling regime both in matter and radiation
domination eras. Everything is taken into account in the new merged UETC functions.

In this section we compare the changes produced by the new set of UETCs, produced by the
new merging method, and the previous CMB predictions form [45]. The aim of this comparison is
to capture the effect created by the change in data obtained from new simulations and separate
it from the eigenvector derivation method. This is why the spectra of this section have been
calculated using the same simple eigenvector interpolation method used in [45], where transition
is driven by a density weighted interpolation function (see Eq. (3.25), (3.26) and (3.27)).

Figure 3.15 shows the comparison of the temperature and B-modes for this case. The 2010
spectra are in grey whereas the new ones in black. As it can be seen the difference is not significant:
only the peaks in both channels are slightly increased, which can be a direct consequence of higher
correlators. Note also that the new spectra are smoother and the small details around the peak
of the temperature spectrum have disappeared. Considering the new UETCs are derived from the
biggest simulations of the AH model to date and from the real equations of motion (s = 1), it is
noteworthy to highlight that the 2010 guesses are remarkably accurate.

3.3.2 Effects of the new radiation-matter transition function and multi-stage
method

Once having determined the effect caused by the new UETC data, the next effect to study is
the multi-stage cosmological transition treatment and the new interpolation function of Eq.(3.37).
From here on, all spectra are calculated using the new merged s = 1 and s = 0 dataset. The multi-
stage interpolation method was proposed in [86] and it interpolates between eigenvectors of UETCs
calculated at intermediate time intervals between radiation and matter, see Eq. (3.28). The most
important difference comes from the fact that now we have an orthonormal set of eigenvectors at
each time slicing, while in the simple eigenvector interpolation method only the eigenvector of the
pure radiation and matter correlators are considered. Regarding the interpolation function, the
density weighted interpolation function has been substituted by an ETC weighted interpolation
function Eq. (3.37), which has been calculated following the recipe of Eq. (3.35). The matter-Λ
transition will be analyzed in the next section.

We show the comparison for this case in Figure 3.16. The spectra obtained by the simple
eigenvector interpolation method is represented in black and the multi-stage case in green. For
the multi-stage case we observe that NU = 11 time slices are enough to reach convergence. As it
can be seen in Fig. 3.16, in contrast to the previous case, the differences are substantial. The most
drastic change is the increase of the amplitude of the spectra both in temperature and in B-mode
channels. The matter-radiation transition depicted by the ETCs and described by f(τ), is much
slower than previous transition functions. The slower transition reflects in more contribution to
the total from radiation correlators, which are higher in amplitude than the matter ones.

Table 3.10 shows the percentual changes of the height of the peak for the different UETC
interpolation methods with respect to the simple eigenvector interpolation. It reflects that the
increase affects all channels, but more considerably the polarization channels, which is a signal
that the slower transition affects in higher degree vector and tensor perturbations than scalars.

3.3.3 Effects of the matter-Λ transition function

The effect of including the matter-Λ transition with its corresponding ETC based interpolation
function function (Eq. (3.41) and Table 3.9) is represented in Figure 3.17, where the spectra
that includes this latter transition is plotted in red against the case without Λ transition in
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Figure 3.16: Comparison of spectra obtained using same UETC data but different eigenvector interpolation
method. The black line represents the simple eigenvector decomposition and the green line
is for the multi-stage interpolation method.

green. In accordance with our previous expectations the inclusion of the matter-Λ transition only
affects scales that entered late into the horizon, i.e. very low multipoles, decreasing slightly their
amplitude.

3.3.4 Effects of fixed-k UETC interpolation

Finally we calculate the spectra for the fixed-k UETC interpolation method. This method in-
terpolates UETCs in k-space rather than in time (see Eq. (3.34) and similarly for the matter-Λ
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3.3 New power spectra and error assessment

TT EE BB

Multistage +25% +37% +37%
Fixed-k +29% +37% +36%

Table 3.10: Percentual changes of the height of the peak of CMB power spectra in TT, EE and BB
calculated using the multistage and fixed-k interpolation methods with respect to the simple
eigenvector interpolation method.
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Figure 3.17: Effect of including the matter-Λ transition into the multi-stage eigenvector interpolation
structure, in green without the Λ transition and in red with it.

transition). Conceptually this method fits naturally into usual Einstein-Boltzmann integrators
and reproduces better the transition UETCs. The effect of switching from the multi-stage inter-
polation method to the fixed-k interpolation is shown in Figure 3.18, where the spectra of the
multi-stage eigenvector set is plotted in red and the result of the source function of the fixed-k
interpolated UETCs in blue. The matter-Λ interpolation has also been included in both cases.
By inspection we get that the minimum number of k intervals needed to reach convergence in
spectra is Nk = 55.

Figure 3.18 and Table 3.10 show that the change introduced by the new interpolation method
is small, only the amplitude of the spectra around the peak is affected. Interestingly, as the lower
panel of Fig. 3.18 and Table 3.10 show, whilst the new interpolation framework increases the
temperature peak, it decreases slightly the height of the peak in B-modes.

3.3.5 Final C`’s

This section contains the final CMB anisotropy power spectra of this work. This new baseline set
of C`’s is based on the following ingredients:

1. UETCs from s = 1 and s = 0 4k simulations and combined by the new UETC merging

108



Chapter 3. Improving CMB power spectra from Abelian Higgs cosmic strings

101 102 103
0

100

200

300

400

500

600

`

`(
`
+

1)
C

T
T

`
/
(G

µ
)2

101 102 103

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

`

`(
`
+

1)
C

B
B

`
/(

G
µ
)2

350 400 450 500 550 600 650 700 750 800 850

0.165

0.17

0.175

0.18

0.185

Figure 3.18: Comparison of spectra obtained using different cosmological transition interpolation methods:
multi-stage eigenvector interpolation (red line) and fixed-k UETC interpolation (blue line).
The difference in the height of the peak in B-modes has been highlighted by zooming.

scheme.

2. Fixed-k UETC interpolation for the cosmological transitions: radiation-matter and matter-
Λ.

3. Interpolation functions for radiation-matter Eq. (3.37) and matter-Λ Eq. (3.41) (Table 3.9)
transitions.
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The evolution of the temperature spectrum by the inclusion of new improvements is shown in
Figure 3.19. We maintain the same color scheme as in previous plots: the spectrum of [45] is
the grey line, while the spectra obtained using new UETCs are shown in black (single eigenvector
interpolation), red (multistage eigenvector interpolation) and blue (fixed-k interpolation). The
upward trend is clear and as we mentioned the main change is due to the new and slower radiation-
matter interpolation function.
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Figure 3.19: Evolution of the effects produced by the improvements of this work. On the one hand, the
change produced by the merged UETCs of the new simulations (black line) as compared to the
[45] spectra (grey line). On the other, the effect of different treatment of the cosmological
transitions: simple eigenvector interpolation (black), multi-stage eigenvector interpolation
(red) and fixed-k UETC interpolation (blue).

Our final power spectra with their corresponding error bars are included in Figure 3.20. The
black line represents the mean curve and the grey regions systematic errors obtained by bootstrap-
ping 10 times over 7 radiation and 7 matter realizations in the UETC merging process.

3.4 Discussion and Conclusions

In this work we compute the unequal time correlators (UETCs) from numerical simulations of
Abelian Higgs strings, and describe and implement a new method of deriving source functions
from them. We use those source functions in source-enabled versions of Einstein-Boltzmann
integrators to obtain new and more accurate CMB anisotropy power spectra.

Our numerical simulations have been improved considerably from previous works due to improve-
ments in both the hardware resources and the software used. The Abelian Higgs code uses the
recently-released LATfield2 [67], allowing the efficient numerical integration of the field equations
in parallel, and portable parallel fast-fourier transforms on large grids.

Our new production runs took place on lattices of 40963 sites, distributed over 34816 CPUs,
a great improvement over previous lattice sizes of 10243 of [45]. Bigger lattices mean larger
dynamical ranges: our simulations cover a larger portion of the evolution of the universe, both in
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Figure 3.20: Temperature and all polarization channels for the final CMB power spectra with all improve-
ments implemented: merged UETCs from new simulations, fixed-k UETC interpolation and
new radiation-matter and matter-Λ transition functions. Black lines correspond to the mean
spectra while grey regions represent 1σ and 2σ confidence limits obtained by bootstrapping
10 times over 7 radiation and 7 matter realizations in the UETC merging process.

space and time. As the space simulated is 64 times larger, we can obtain more accurate statistics.
A factor of 4 longer evolution time allows for a more accurate study of the scaling of the network,
and we can explore regions of the UETCs that could only be reached by extrapolation in previous
work. Not only that, one of our key approximations in earlier works, the string core growth, can
be dropped, and thus the true equations of motion have been solved, for the first time in the
matter era. We confirm the extrapolations from older simulations.

In summary, our new UETC measurements span a much larger time ratio than in previous
Abelian Higgs string simulations when using string core growth, and solve the true equations
of motion over a long enough period to achieve scaling and measure the UETCs. We have
combined two complementary sets of simulations, one with string core growth, and one with the
true equations of motion, to obtain our final correlation functions.

Close to the peak of the UETCs, at near-equal times, we use the simulations with the true
equations of motion. Outside this region we use the simulations with string core growth. In order
to merge the UETCs, their normalization at equal times was matched, but no other adjustment
was necessary. The new UETCs are consistent with previous measurements near the peak of the
correlators, reach the horizon scale for the first time, and confirm the power-law behaviour of the
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correlators at large wave-numbers. The normalization is slightly higher in the high wave-number
tails, due to a small increase in the string density.

Numerical simulations of Abelian Higgs strings across cosmological transitions have been per-
formed for the first time. The radiation-matter transition is particularly important for the accurate
computation of CMB perturbations at around a degree scale. We also performed simulations
across the matter-Λ transition, important for large angular scales. We have introduced and in-
vestigated a new method for calculating the source functions for Einstein-Boltzmann integrators,
which better accounts for cosmological transitions. The method is more accurate than two previ-
ous methods [42, 86], and is also consistent with the underlying idea of decomposing the UETC
into its component eigenvectors. It is also easier to implement.

Armed with the new simulations and an improved procedure to overcome the difficulties of the
cosmological transitions, we compute new and more accurate predictions for the temperature and
polarization anisotropies in the CMB due to cosmic strings. We present our new CMB predictions
and their corresponding errors calculated in the innovative fixed-k interpolation framework and
using the radiation-matter and matter-Λ transition functions derived in this work. Furthermore,
this has been done using for the first time energy-momentum correlations derived from simulations
following the real equations of motion. We also study how different improvements in simulations
and cosmological transitions presented in this work affect the CMB power spectra. We observe
that the main effect is produced by the new matter-radiation transition function which makes the
contribution of the radiation correlators more important and increases considerably the amplitude
of the anisotropy power spectra.
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4 Survival of pq-superstrings in field
theory simulations

The inflationary scenario has successfully been supported by modern and accurate observations
[14, 15, 82, 110] as the best model for the origin of density fluctuations and the observed large-scale
structure formation. However, the fundamental physics behind inflation still remains as one of the
main unanswered questions of modern cosmology. Brane inflation models, proposed in the context
of superstring theories, are interesting candidates to provide such an answer. It is expected that
fundamental strings as well as string-like objects, such as D-branes, could form at the end of brane
inflation due to brane-antibrane annihilation processes [56, 81, 116, 136, 177]. Such superstrings
could survive the cosmological evolution and can have cosmological size [68, 159], which implies
that they can play a role similar to ordinary cosmic strings. Therefore, their possible observational
signal could be measurable, which would be invaluable towards an experimental verification of
string theories and a remarkable window into the physics behind inflation.

Superstring networks produced after brane annihilation processes differ from ordinary cosmic
string networks. Unlike solitonic strings, cosmic superstrings do not always intercommute, instead
they can join together forming heavy and stable bound states composed of p F -strings and q D-
strings called pq-strings [56, 81]. The boundaries of these segments are determined by 3-way
Y-junctions where 3 different strings meet. Y-junctions are particularly interesting because they
can perturb and modify the expected evolution of the network, producing observable effects or
even preventing the network from achieving the scaling regime [175].

The evolution and description of F and D interconnected networks is rather complicated and
numerical explorations are highly desirable. Early works on cosmic superstring networks analyze
non-Abelian field theories of the kind G → Z3, where 3-way type junctions can form, both
analytically [27, 207] and numerically [106, 193]. More sophisticated analytical models include
effective field theories such as the velocity-dependent one-scale models (VOS), see for instance
[30, 199], where different type of strings with different tension ranges can be considered. However,
there is no consensus among those works on the physics behind the energy loss mechanism that
leads to scaling of FD-networks, specifically whether the excess energy is radiated or, in turn,
goes to increase the kinetical energy of the strings.

The evolution of F and D-strings can also be modeled by field theoretical ordinary solitonic
strings, which are formed by usual spontaneous symmetry breaking mechanisms [166, 174]. These
models consider a system composed by a pair of complex scalar fields, which is invariant under
U(1)L ×U(1)L. The formation of stable bound states is typically accomplished by modifying the
form of the potential of the system.

Full field theory simulations have been employed to explore the validity of these field theoretical
models in reproducing the interconnected string dynamics [166, 176, 200]. Using the previously
mentioned models, field theory simulations demonstrated that interconnected string networks can
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form at spontaneous symmetry breaking phase transitions. The main goal of the works [166, 176]
was to measure the effects produced by long range interactions in the overall dynamics of the
network and bound states. Long range interactions were included in the analysis considering that
one of the two U(1)L symmetries of the system was global. They also performed simulations
were an already-formed network of pq-strings was present from the beginning. They found that,
regardless of the initial conditions, the relative amount and significance of the bound states was
considerably low, i.e. long range effects mediated by massless Goldstone bosons tend to break
bound states. Conversely, they observed that in absence of long range interactions, strings of
the initial pq-network remain in bound states for much longer. Scaling of such networks was also
confirmed in [176].

Field theoretical simulations of the model presented in [174] were analyzed in [200]. In this
work only the cases where short range interactions were present were studied, since long range
interactions other than gravity are expected to be of little relevance in FD-networks. The authors
successfully confirmed that interconnected string networks modeled by this model reach the scaling
regime, which is an indispensable requisite for the cosmological viability of defects. However, as
in previously mentioned works, it was observed that bound states constitute only a small fraction
of the total string length of the system, of about ∼ 2%. Moreover, it was found that the length
and lifetime of the bound states were shorter than expected from theoretical predictions.

All these early works, thus, put forward an interesting debate regarding the amount, lifetime
and relevance of pq-strings. The observed formation rate and abundance of heavy strings are
below the values expected theoretically. This discrepancy has recently been linked to the role
played by Y-junctions in the networks, whose importance in the formation and shrinking of bound
states may be relevant. Motivated by the tendency exhibited by field theory simulations, in [33]
the stabilization and unzipping process conditions have been explored. Unzipping of heavy strings
might be an extra ingredient to take into account in the development of effective models.

The main goal of this work is to extend previous field theoretical simulations performing the
biggest and most accurate field theory simulations of cosmic superstrings. In order to give a more
detailed insight on the late time evolution and relative amount of bound states, we investigate a
set of simulations called combined simulations, which incorporate an artificial whole network of
bound states coexisting with a network of single cosmic strings from the very beginning, similar
to the initial conditions used in [166]. This perspective provides a wider view of the decay or
unzipping of bound states as well as the interaction with individual strings. The average velocity
distributions of the network and pq-segments have also been explored for the first time, which,
together with the unzipping mechanism, could be fundamental in order to build proper effective
theories.

This chapter is structured in the following way: in Sec.4.1 we review the model and explain
the numerical procedures utilized in this work to perform the numerical simulations and identify
pq-segments. After that, in Sec. 4.2 we introduce the new string combination procedure and
present the results in Sec. 4.3. Finally we discuss the results in Sec 4.4.

4.1 Model

4.1.1 Model and parameter choice

The model considered in this work was proposed in [174] and posseses a U(1)L × U(1)L gauge
symmetry, which leads to a pair of independent local cosmic strings. In addition to the usual
mexican hat potential for the symmetry breaking, doubled in this case, the potential of this
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model also contains an extra interaction term which leads to the formation of stable bound states
where both complex fields wind simultaneously. The whole Lagrangian reads,

L = (Dµφ)∗(Dµφ) + (Dµψ)∗(Dµψ)− 1
4e2FµνF

µν − 1
4g2FµνF

µν − V (|φ|, |ψ|) , (4.1)

where φ and ψ are the two complex scalar fields, which represent each sector of the double U(1)
gauge symmetry. Each of them is independently charged with respect to its U(1) gauge field:
Aµ with coupling constant e (φ) and Bµ with g as the coupling constant (ψ). The covariant
derivatives and the field strength tensors are then,

Dµφ = ∂µφ− iAµ , (4.2)

Fµν = ∂µAν − ∂νAµ , (4.3)

Dµψ = ∂µψ − iBµ , (4.4)

Fµν = ∂µBν − ∂νBµ . (4.5)

The potential takes into account the symmetry breaking of each sector as well as the interaction
between the two sectors:

V (|φ|, |ψ|) = λA
4 (|φ|2 − η2

A)2 + λB
4 (|ψ|2 − η2

B)2 − κ(|φ|2 − η2
A)(|ψ|2 − η2

B) , (4.6)

where λA, λB and κ are dimensionless coupling constants and ηA and ηB the vacuum expectation
values for each kind of scalar fields.

Unless the last interaction term is considered, this potential describes the evolution of two
independent networks of local cosmic strings. The last term includes the interaction between
both type of fields, enabling the formation of stable bound states. As it can be seen from its form,
it is only relevant where both fields are zero simultaneously. Nevertheless, the exact nature of
the critical points of the potential, i.e. whether they are minima (stable) or maxima (non-stable),
depends strongly on the value of κ; it is only in certain values of the parameter κ where stable
bound states are formed. As pointed out in [174] stable bound segments appear only if κ obeys
the following relation:

0 < κ <
1
2
√
λAλB. (4.7)

Under same conditions, the existence of gravitating bound states has also been demonstrated
[98].

Field equations of motion are derived in the temporal gauge (A0 = B0 = 0) and evolved in a
spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) background:

φ̈+ 2 ȧ
a
φ̇−DjDjφ = −a2

(
λA
2 (|φ|2 − η2

A)− κ(ψ2 − η2
B)
)
φ , (4.8)

ψ̈ + 2 ȧ
a
ψ̇ −DjDjψ = −a2

(
λB
2 (|ψ|2 − η2

B)− κ(φ2 − η2
A)
)
ψ , (4.9)

Ḟ0j − ∂iFij = −2a2e2Im[φ∗Djφ] , (4.10)

Ḟ0j − ∂iFij = −2a2g2Im[ψ∗Djψ] , (4.11)
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− ∂iF0i = −2a2e2Im[φ∗φ̇] , −∂iF0i = −2a2g2Im[ψ∗ψ̇] . (4.12)

Here, a is the scale factor of the expanding universe, the dot derivatives represent derivatives
with respect to the conformal time and the spatial derivatives are taken with respect to the
comoving coordinates. The last couple of equations are Gauss’s law for each complex scalar field
and rather than equations of motion they are constraints of the system. Note that the Eq. (4.1)
is totally symmetric on both scalar and gauge field inversion, i.e. φ ↔ ψ and Aµ ↔ Bµ; so are
the equations of motion.

4.1.2 Simulation details

In this section we give explicit details of the simulation setups. We discretize the field equations of
motion (Eqs. (4.8)-(4.11)) on a lattice using the standard lattice link variable approach [42, 145].
We perform simulations on radiation and matter dominated FRLW background cosmologies. One
of the most important challenges of such simulations in expanding universes is to resolve the
string core and the expansion of the universe simultaneously. As the universe expands, the
physical distance between adjacent points of the lattice increases, but the physical string width
remains constant. Thus, strings will eventually shrink between lattice points and we will not be
able to track them. As it was explained in Sec. 2.2 of the Introduction, one of the most used
approaches to avoid such an undesirable situation is to consider time varying coupling constants:

λA = λA0
a2(1−s) , e = e0

a1−s , (4.13)

and equivalently for λB and g. In this model, since the potential contains an extra interaction
coupling constant κ, it has to also be made time dependent,

κ = κ0
a2(1−s) . (4.14)

This procedure is also known as fat-string approach, since the parameter s governs the relative
width of the string. If s = 1 we recover the original equations and the equations of motion give
the true dynamics of the system. In the other extreme, if s = 0 the physical width of the string
grows with the expansion of the universe, or in other words, we obtain constant comoving width
strings. The modified equations of motion are obtained including the time dependent coupling
constants into the gauge-invariant action and varying it with respect to the fields, which assures
self-consistency of the equations [42, 45]. They read as:

φ̈+ 2 ȧ
a
φ̇−DjDjφ = −a2s

(
λA0
2 (|φ|2 − η2

A)− κ0(ψ2 − η2
B)
)
φ , (4.15)

Ḟ0j + 2(1− s) ȧ
a
F0j − ∂iFij = −2a2se2

0Im[φ∗Djφ] , (4.16)

and the same for ψ and Fµν .

Several previous works on field theoretical simulations showed the acceptability of s = 0 to
describe the dynamics of the system of this approximation [42, 45]. Based on this, we choose this
extreme case s = 0 for this works so as to extend as much as possible the scaling period. On the
other hand, since one of our aims was to improve previous works on the field we tried to balance
between dynamical range and precision, hence we have increased the size of the simulation box
to 10243 and decreased the comoving spatial separation to dx = 0.5, with time steps of dt = 0.1,
which had been shown to yield good resolution. Simulations were parallelized through the publicly
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available LatField2 library for parallel field theory simulations [67] and performed at the COSMOS
Consortium supercomputer and i2Basque academic network computing infrastructure.

Our initial conditions set the modulo of the complex scalar fields at their corresponding vacuum
expectation value and distribute randomly the complex scalar phases along the simulation box.
On the other hand, gauge fields and canonical conjugates of the scalar as well as the vector fields
are set to zero. This choice of initial conditions yields a very energetic configuration, mainly due
to high gradient contributions. In order to smooth this initial situation we applied a combined
diffusive-dissipative phase for the first quarter of the simulation, specifically for a time period of
∆τ = 64. The first diffusive period (between τstart = 50 and τ = 60) consists of a cooling of the
equations of motion where we use fake time-steps of 1/30 rather than dt = 0.1. The dissipative
period, in turn, is performed by applying a non-physical damping of 0.4 between the end of the
diffusive phase and the beginning of the natural or core growth evolution of the system (between
τ = 60 and τCG = 114). After tCG = 114 the system has been evolved following the usual
equations of motion for s = 0 until τend = 303 set by causality.

Throughout this work, we restrict ourselves to the Bogomol’nyi limit where the parameters are
related in the following way:

λA0 = 2e2
0 , λB0 = 2g2

0. (4.17)

We also treat both type of strings identically, hence we set e = g and ηA = ηB. Moreover, the
typical parameter rescaling procedure is adopted and the parameters are reduced to:

e0 = g0 = 1
2λA0 = 1

2λB0 = 1 , (4.18)

ηA = ηB = 1 . (4.19)

4.1.3 Output treatment: pq-segment identification

Local cosmic strings on a lattice can be identified in several ways, e.g. using the energy density, the
value of the potential or windings of the field phase. In this work, we use the latter procedure and
localize strings calculating the winding of the complex phase of each field in every lattice placket.
In order to accomplish that, we use the gauge invariant definition of the winding presented in
[117]. A snapshot of a 10243 simulation is shown in Fig. 4.1. Blue and green lines represent raw
individual p- and q-strings respectively, while red points are the points of the lattice where both
fields wind simultaneously.

Essentially pq-strings are created as a consequence of the attraction produced by the interaction
term in the potential and in theory they are located at points where both complex scalar fields
wind simultaneously. However, due to the finite resolution of our simulations there are cases
where though individual p- and q-string cores overlap, the winding is not located exactly at the
same plaquette and might be displaced by dx distance within a individual pq-segment, giving
the impression they do not form a bound state. In order to avoid this confusion, we set a new
criterium to identify pq-segments: in addition to points where we find exactly double windings,
segments will also be composed by regions where p- and q-strings are separated by less than 2
physical width units or in our lattice units by less than dAB = 4, regardless they contain exact
double winded points or not. This approach is somewhat different of that proposed in [200],
where segments are determined considering the intersegment distance, i.e. gap distance between
segments, rather than considering the transverse distance between p- and q-strings.

117



4.1 Model

0

500

1000

0
500

1000
0

500

1000

0

500

1000

0
500

1000
0

500

1000

0

500

1000

0
500

1000
0

500

1000

0

500

1000

0
500

1000
0

500

1000

Figure 4.1: Windings obtained from a 10243 combined simulation. Left panel shows raw windings where
red points represent double winding points and blue and green lines windings of the φ and
ψ fields respectively. Right panel shows the same snapshot after the segment identification
treatment explained in Sec. 4.1.3.

In order to complement our segment localization method we perform an approximate consistency
check. Besides winding identification, pq-strings can also be located using the interaction potential
that is responsible for their formation. By inspection, we observed that pq-strings can be localized
in the simulation box for values of the interaction potential greater than a threshold value of
V th

int = 0.855. In the right panel of Fig. 4.2 we show an example of a simulation where we plot every
point that exceeds that threshold value. This picture is accompanied by the corresponding winding
identification method in the left panel of Fig. 4.2. Comparing the output of both methods, we
find a remarkable agreement between both approaches, which supports our segment identification
treatment based on windings. We believe that the few differences between both pictures are
caused by the uncertainty produced by the arbitrary choice of the threshold value.

Finally we have to discriminate between actual pq double strings and small segments produced
as a consequence of crossings of different p- and q-strings. Following the criterium set in [200], we
get rid of crossing removing segments smaller than LAB = 20 in lattice units. Taking everything
into account, the final result is shown in the lower part of Fig 4.2 and 4.1.
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Figure 4.2: Comparison of pq-segments calculated in 2 different manners for a 10243 lattice. In the left
panel of the upper part the winding representation is shown where segments are identified
following the recipe given in Sec. 4.1.3. In the right panel, in turn, segments are found by
the interaction potential. Grey regions correspond to points where the interaction potential is
bigger than the threshold value V th

int = 0.855. In the lower panel every segment smaller than
20 lattice-points has been discarded following the winding-based method.

4.2 Procedure to combine strings

Interconnected string networks contain three different types of strings: individual p- and q- strings
and composed bound states. In order to ensure bound string formation in field theories, an
interaction term is typically included (last part of Eq. (4.6)) which favors the individual string
joining. Even though previous works have confirmed that bound strings can constantly form under
the influence of this interaction term, it has been observed that their amount and length at the
end of numerical simulations is below theoretical expectations. Moreover, it appear that their
lifetime is also relatively short indicating that they tend to unzip as the different p- and q- strings
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pull them in different directions.

One of the principal reasons for these discrepancies might be the limited dynamical range
of numerical experiments, which is restricted by causality and computational resources. Initial
conditions are typically set for the scalar and gauge fields of the system (or equivalently for their
complex conjugates) and lead to the formation of the couple of ordinary Abelian gauge strings
of the system. Therefore, in general, pq-strings are not present in numerical simulations from
the beginning, instead one must wait until the formation of the bound states is energetically
and dynamically favorable for the system. This is why it would be desirable to analyze whether
discrepancies between numerical experiments and theoretical predictions are caused by the limited
dynamical range or there is something more fundamental behind them.

In order to enlighten and analyze these issues we explore a different technique to simulate
interconnected string networks: string combination. The idea is to have a whole pq-string network
interacting with an ordinary solitonic cosmic string network (q-strings in this case). In order to
accomplish this, we create a new fake pq-string network superposing conveniently p- and q-strings.
Essentially the q-string network is doubled and an extra set of q-strings placed on top of the already
existing p-strings. Hence the whole p-string network is converted into the desired bound and
heavier pq-string network. An illustrative example can be seen in Fig 4.3, where we have included
a snapshot of a string network before (left panel) and after (right panel) string combination. It can
be seen that combination converts individual p-strings (in blue) of the left panel into pq-strings
(in red) of the right one. String combination procedure introduces an innovative perspective into
the analysis of the evolution of pq-bound states. Using an artificial initial configuration we will
be able to determine if the system is comfortable with a high amount of heavy strings or on the
contrary it prefers to break them into small pieces and decrease their relative relevance.

The procedure must be applied when the Abelian Higgs strings of the system are already
formed. It would be meaningless to try to superpose fields before strings are formed, since it
would not lead to a string combined scenario but to something different. This technique to
combine different strings is somewhat different to that used in [166]. In that work the authors
used a totally aligned phase distribution for the scalar fields to begin the simulation with a totally
formed pq-string network. In our case, however, we apply the combination procedure to strings
that are already formed. Indeed, given the symmetry of the equations of motion of our model,
such initial conditions would lead to a totally indistinguishable pair of AH cosmic strings evolving
in the same way, that would not reproduce the evolution of interconnected networks. Moreover,
the initial pq-network of our combined simulations coexist with another single string network, as
opposed to in [166] where the system was solely composed by pq-strings.

Step by step, the combination mechanism applied to fields can be summarized as follows: the
system before combination of strings is composed by two (nearly) independent complex scalar
fields, φ and ψ, set at their corresponding vacuum and with their corresponding strings (p and q
respectively). String combination procedure leaves the first complex scalar field φ and its canonical
conjugate unaltered:

φ→ φ = |φ|eiθA , (4.20)

ΠA → ΠA , (4.21)

the gauge field associated to φ also remains unaltered.

The second field ψ, however, is substituted by a precise combination of both initial scalar fields:
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Figure 4.3: Comparison of a patch of the simulation box before (left) and after (right) string combination.
p-strings (in blue) of the left panel are completely converted in pq-strings (red strings) after
combination.

ψ → ψ = |φ||ψ|ei(θA+θB) . (4.22)

This new scalar field vanishes when φ and/or ψ are zero, i.e. the strings associated to this new
combined scalar field are located wherever original p- and q-strings are present. In some sense,
we double the q-string network by adding a new set of q-strings at the position of the original
p-strings.

The canonical conjugate of ψ must also be modified:

ΠB → ΠB = φΠB + ψΠA . (4.23)

Finally, the new gauge field is the linear superposition of the original gauge fields:

Bi → Bi = Bi + Ai , (4.24)

EBi → EBi = EBi + EAi . (4.25)

We have observed that the evolution and the scaling dynamical range are optimized when the
string combination is performed at the end of the dissipative phase, at τcomb = 105, but before
the beginning of the core growth phase. On the one hand, we let the system remove the energy
excess caused by the random initial conditions, on the other we ensure that at the combination
strings are already formed.

4.3 Results

In this section we present the most relevant results obtained in our simulations. We performed 5
matter plus 5 radiation realizations for both combined and normal simulations, using the param-
eters values as described in Sec. 4.1.2 and for κ = 0.9. The analysis will be mainly focused on
combined simulations in the matter era (the results in radiation domination will be shown later),
where one of the complex scalar fields of the model has been substituted by a combination of
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both field in the initial stages of the simulation, in order to produce a whole network of bound
pq-strings. We will explore the effects produced by these new initial conditions in the amount and
evolution of different types of string and the new results will be combined with those obtained
from normal simulations, where string combination has not been utilized. In addition, average
velocity distributions of different networks will be analyzed. Velocities of interconnected networks,
and specially velocities of pq strings, have been measured for the first time using field theory based
velocity estimators. We will show as well as compare results of different type of simulations.

Any reasonable and useful description of string networks must be derived from simulations
evolving in the scaling regime. Scaling ensures cosmological viability of such objects and enables
extrapolation of the results to scales of cosmological interest. In the scaling regime characteristic
lengths of the network evolve proportionally to the cosmic time, i.e. they grow linearly with the
horizon. In the specific case of interconnected pq-networks, the scale invariant evolution was
confirmed by different works [176, 200]. In order to confirm scaling of our different simulations,
we calculate the typical length of the strings using two different methods.

The string separation or the characteristic length of the network is typically defined in terms of
a reference volume V and the length of the strings within it L,

ξ =

√
V

L
. (4.26)

One way to derive L is to measure the length of each string summing the number of plaquettes
pierced by them. This is the typical method and what we use to study the scaling of the different
ingredients of our model and which we call ξW. However, when the object to be explored is
the whole system, one can estimate that value using field theoretical estimators such as the
Lagrangian, with

L = −L̄V/µ , (4.27)

where µ is the string tension. The string separation determined by this method will be represented
as ξL.

Figure 4.4 shows characteristic lengths of the whole system measured using the two different
methods mentioned in previous lines: Lagrangian method ξL (in black) and winding method
ξW (in purple). The left panel shows the results for combined simulations, while the right panel
shows the results for the normal case. The normal simulation achieves the scaling regime, as it was
proven in previous works [176, 200], for τ ≥ 150. Remarkably, a similar result is obtained for the
combined case, which reaches the scale invariant evolution more or less at the same simulation
stage. A sudden step in ξW around τ ∼ 100, just before the start of the core growth phase,
represents the string combination moment. Apparently it does not affect the latter evolution of
the network towards scaling.

Interconnected string systems, however, are composed by three different type of strings. Hence
a full confirmation of the scaling of the network requires further analysis and the study of the
behavior of each individual set of strings. We start analyzing the behavior of individual p- and
q-string systems, i.e. networks composed of loops or segments that are not forming pq-bound
segments. We define the string separation for such cases as,

ξp
W =

√
V

Lp
, ξq

W =
√
V

Lq
, (4.28)

where Lp and Lq are the total length of p- and q-strings where the length corresponding to
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Figure 4.4: Characteristic string length, ξ, measured using the Lagrangian (black line) and windings (pur-
ple line) for combined (left) and normal (right) simulations in the matter era. Shaded regions
correspond to 1σ and 2σ confidence limits obtained averaging over 5 realizations.

pq-segments has been subtracted.
Figure 4.5 includes the curves associated to those quantities: the blue colored region represents

ξp
W (p-strings), whereas the green is for ξq

W (q-strings). It has to be noted that the starting point
of the axis in this case is different, while global statistics of the system (total L, L...) are collected
for the whole simulated time, pq-segment identification procedure, and hence the calculation of
Lp and Lq, is only applied in the core growth phase, i.e. τ ≥ 114.

The blue line of the combined simulation reflects clearly that the p-string network is far from
being scaling in the initial stages. The system approaches gradually the linear regime and it is
achieved approximately at τ ∼ 200. On the contrary, individual string networks in the normal case
appear to be scaling in the whole measured range. The difference between the blue and green
curves in the left panel comes from the fact that the field ψ has been doubled and an extra set
of q-strings created on top of the already existing p-strings. Hence, the initial length of p-strings
is approximately zero Lp ∼ 0 (there is no free p-strings) and thus ξp

W enormous. Nevertheless,
the profile of the blue curve suggests that as time goes by the total length of p-strings increases
considerably until the system starts following the linear dependence at τ ∼ 200.

It is evident that the p network needs a relaxation period after string combination, where part of
the total length in bound states is transferred to p-strings. Such a period is clearer observed and
understood analyzing the evolution of the pq-string fractions. We define two different fractions:

1. We measure the ratio of the total length of pq-strings to the length of the individual p-
strings:

fp
pq = Lpq

Lp
, (4.29)

where Lpq is the sum of the length of all pq-segments.

2. Alternatively we want to measure what the fraction of the total length of pq-segments is
with respect to the total length of the whole system:

fTot
pq = Lpq

Lp + Lq + Lpq
. (4.30)
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Figure 4.5: Characteristic length of individual p- and q-strings measured using string windings for combined

(left) and normal simulations (right). Shaded regions correspond to 1σ and 2σ confidence
limits obtained averaging over 5 realizations.

These two magnitudes are represented in Figure 4.6, fp
pq in blue and fTot

pq in black. The figure
corresponding to the normal simulation shows what previous works found: the total length of the
pq-strings as compared to the total length of the whole system is really small, giving fTot

pq ∼ 0.02
[200]. The blue line in this case is approximately twice the grey one because the lengths of p- and
q-strings contribute at the same level to the total.

The trend exhibited by the string combined case is very different. Initially fp
pq is forced to be

1 by the combination process, that is, all p-strings are in pq states. However, the curve followed
by this fraction shows that most of the length of pq-strings is converted into p-string’s length.
In other words, the system seems to not feel comfortable with such a high amount of bound
states and wants to break them. For instance, by the time the network has finished the relaxation
period τ ∼ 200, the fraction decreases to fp

pq ∼ 0.4. Apparently, the evolution of the individual
strings provokes the unzipping of the bound states. The final evolution of the fraction after the
relaxation period is smoother and approaches an asymptotic value of fTot

pq ∼ 0.05, which is twice
the quantity observed in normal simulations.

Scaling of the pq-segments has also been explored separately. We define the correlation length
of pq-strings in the following way:

ξpq
W =

√
V

Lpq
. (4.31)

Figure 4.7 shows that scaling is remarkably well achieved in simulations where strings have
been combined. Furthermore, the linear proportionality is significantly better in this case than in
normal simulations, where the characteristic length could barely be approximated to a straight line.
The linear regime is reached at around τ ∼ 200, which is consistent with the relaxation behavior
exhibited by the system in other observables. If we compare both simulations, one can see that
the correlation length of bound states in the combined case is smaller than in normal simulations,
which indicates that the pq-strings are in general more and longer in combined simulations. In
both cases these correlation lengths are much bigger than the functions shown in Fig. 4.5.

Another interesting characteristic length of the pq-bound segments its their average physical
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Figure 4.6: pq-string fraction in combined (left) and normal simulations. The blue line corresponds to
fp

pq, while the black corresponds to fTot
pq . Shaded regions represent 1σ and 2σ errors obtained

by averaging over 5 different realizations.
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Figure 4.7: Characteristic length of pq-segments measured using windings for string combined (left) and
normal simulations.

length. It is defined in the following manner:

`pq = Lpq
Npq

, (4.32)

where Npq is the total number of pq-segments. Figure 4.8 shows `pq for both type of simula-
tions. The profile of the curves is very different: whilst the average length in the normal case is
approximately a linearly increasing function of time, the average physical length of the pq-strings
in string combined simulations tends to an asymptotic constant value. The asymptote is located
at `pq ∼ 55 in the matter case and the curve is almost flat in the period of time after the system
relaxation, i.e. τ ≥ 200. Interestingly, the average length in normal simulations remains below
that value. The scale invariant evolution is generally better and faster acquired by combined
simulations, where not only the whole system scales, but also p, q and pq-networks separately.
One could expect that bigger simulations of the normal case with more dynamical range, would
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Figure 4.8: pq-string average physical length in combined (left) and normal simulations. Shaded regions
correspond to 1σ and 2σ errors obtained by averaging over 5 different realizations.

tend towards the asymptotical evolution depicted by combined simulations.
We have also performed simulations in radiation dominated scenarios. We observe that in

general the results extracted from matter dominated and radiation dominated cosmologies are
very similar and no significant distinction can be made between both cases.

150 200 250 300
-50

0

50

100

150

200

250

⌧

⇠p
q

W

Figure 4.9: Correlation length of pq-strings in combined simulations in the radiation domination era.

The differences come mostly from the lower damping in the equations of motions produced by
the different expansion rate of universes evolving in radiation domination. The lower damping
term affects the relaxation period of string combined simulations. Figs. 4.9 and 4.10 show ξpq

W
and the average physical length of pq-strings in radiation domination eras. As it can be seen, both
pictures reproduce essentially the evolution depicted in the matter case, but with the difference
that the scale invariant evolution is acquired later. Scaling of the bound segments is also observed
in radiation domination era and the scaling regime is achieved at τ ∼ 225. As it happened in
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Figure 4.10: Average physical length of pq-strings in combined simulations in radiation domination era.

matter domination, the scaling exhibited by combined simulations is better than the behavior of
the normal simulations.

The average physical length also tends towards an asymptotic value, as Fig. 4.10 shows. How-
ever, as with the scaling, the network in radiation domination needs more time to relax and the
asymptote is reached later τ ∼ 250. The value for this case `pq ∼ 45 is slightly below the
asymptotic value obtained in matter domination.

Finally, we have also modified the coupling parameter of the interaction potential responsible
for the pq-string formation, κ, so as to explore its relevance in the creation, evolution and amount
of bound states. We increased its value to κ = 0.95 and performed simulations in both normal
and combined scenarios. In fact, such value of κ is really close to the maximum value allowed for
this model, as it is in indicated in Eq. (4.7).

On the one hand, our normal simulations confirm previous results of [200]: increasing the value
of the coupling constant from κ = 0.9 to κ = 0.95 only produce a marginal increase of the
fractions of the bound states and in general did not produce remarkable changes in the evolution
of them. On the other hand, combined simulations with κ = 0.95 show that, despite the higher
coupling constant of the attractive potential term, the overall dynamics of the system tends to
split bound states and as in the case with κ = 0.9 their relative fraction decreases rapidly. In
terms of numbers, we only observe minimal changes, which translate into slightly bigger values of
the asymptotic length of the bound states, `pq ∼ 70, and asymptotic total fraction fTot

pq ∼ 0.12,
in both matter and radiation eras.

4.3.1 Velocities

Average velocities of the network have been measured using the gauge invariant field theoretical
velocity estimators proposed in [65, 108], which exploit the fact that the electric field and canonical
momentum of the scalar field in moving strings can be obtained by boosting the static field
distribution. The velocity estimators have the following form:
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〈v2〉F = E2
L

B2
L
, (4.33)

〈v2〉G = 2GL
1 +GL

, (4.34)

where,

GL = Π2
L

(Dφ)2
L
. (4.35)

The subscript L denotes a Lagrangian density weighting of each magnitude. This is used to
ensure that only regions with non-vanishing Lagrangian density contribute to velocities, i.e. only
strings, where the Lagrangian density is peaked, contribute to the calculation of the estimators.
For a given quantity A the weighting is applied in the following way [108]:

AL =
∫
d3xAL∫
d3xL

. (4.36)

All values obtained are shown in Table 4.1. Fig. 4.11 also shows the evolution of the two
velocity estimators in the matter domination era, field based in green and gradient based in red,
for combined simulations (left panel) and normal simulations (right panel). The curves of the
velocities are nearly flat for the whole core-growth phase, i.e. natural evolution of the equations of
motion. Furthermore, for both estimators the curves are very similar, pointing to a mean value of
〈v2〉F ∼ 〈v2〉G ∼ 0.26 (see Table 4.1). There is no difference in the velocity distribution between
combined cases and normal simulations.

Matter Radiation

Combined Normal Combined Normal

κ = 0.9 κ = 0.95 κ = 0.9 κ = 0.95 κ = 0.9 κ = 0.95 κ = 0.9 κ = 0.95
〈v2〉F 0.259±0.005 0.261±0.006 0.261±0.007 0.264±0.006 0.306±0.004 0.307±0.006 0.303±0.004 0.305±0.006

〈v2〉G 0.259±0.005 0.260±0.006 0.264±0.007 0.266±0.006 0.307±0.004 0.307±0.005 0.306±0.004 0.310±0.006

〈v2〉pq
F 0.28-0.37 0.29-0.35 0.28-0.35 0.28-0.34 0.36-0.44 0.36-0.41 0.35-0.41 0.35-0.40

〈v2〉pq
G 0.27-0.34 0.27-0.32 0.28-0.33 0.27-0.31 0.33-0.39 0.33-0.38 0.33-0.37 0.33-0.37

Table 4.1: Mean values of the velocity estimators of the whole network (〈v2〉F and 〈v2〉G) and of pq-
strings (〈v2〉pq

F and 〈v2〉pq
G ) for the different possibilities simulated averaged over 5 realizations.

In the case of system velocity estimators we also include 1σ errors obtained by averaging the
standard deviations in the range τ > 200. The two values of the pq estimators correspond to
the minimum and maximum mean values respectively.

We also propose a similar estimator for the velocity of the pq-strings, 〈v2〉pq. This estimator is
based on the previous ones, but the Lagrangian weighting has been substituted by the interaction
potential weighting. Hence Eq. (4.37) converts into:

AVint =
∫
d3xAVint∫
d3xVint

. (4.37)

We have previously observed that pq-strings can be well located finding places where the
value of the interaction potential is bigger than a threshold value Vint = 0.8551 obtained by

1It has to be noted that this is an approximated value motivated by trial and error inspections and thus results
might suffer small changes if this number is different.
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Figure 4.11: Field (green) and gradient (red) Lagrangian weighted velocity estimators of the whole system
in matter domination era. Left panel shows the result for combined simulations and right
panel for normal simulations.

inspection. Therefore we use this value to focus only on the velocity contribution made by bound
states. Nevertheless, the pq-string velocity estimator is a mere tentative and as such the values
associated to it should not be interpreted as exact estimations.

The results can be found in Table 4.1. In Fig. 4.12 we again compare combined simulations
(left panel) with normal simulations (right panel), both in matter era.
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Figure 4.12: Field (green) and gradient (red) velocity estimators weighted by the interaction potential for
the pq-string network, in matter domination era. Left panel shows the result for combined
simulations and right panel for normal simulations.

In contrast to the estimators of the whole system, velocity estimators of the pq-strings show a
decreasing tendency. Nevertheless their values lie always above those of their global counterparts,
as Table. 4.1 shows. This decreasing trend can be understood taking into account that the
interaction potential weighting also accounts for contributions of crossings of individual p- and
q-strings, this is why their value is higher initially (more crossings, O(103)) and lower in the final
stages of the simulation (O(102)), where the contribution is mainly due to the velocity of the
segments. The difference between 〈v2〉pq

F and 〈v2〉pq
G might be caused by the uncertainty of the
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interaction term weighting approximation.

Similarly to the global case, we observe little differences between combined simulations and
normal simulations. The only difference is that the maximum peak in the velocity is slightly
higher in the combined case, which might be a consequence of significantly higher density of
pq-segments at the initial phases of the combined scenario.

As it can be seen in Table 4.1, simulations in radiation dominated cosmologies show 10%−15%
higher velocities, which have also the same evolution pattern of the matter dominated simulations.
We also computed velocities for κ = 0.95, showing no differences with those obtained for κ = 0.9,
all within 1σ.

4.4 Discussion

Interconnected FD-string networks are predicted in several brane inflation models. Such networks
of fundamental strings can play a similar role of cosmic strings, but they differ in several aspects
from ordinary solitonic strings. The main difference is the existence of heavy and stable bound
states that form as a consequence of the joining of individual p F -strings and q D-strings and
are called pq-strings. Theoretical models predict that the relative abundance of bound states can
be comparable to that of their individual constituents and that the evolution of the whole system
can be significantly affected by their presence.

Field theoretical simulations are one of the most interesting methods to explore some of the
properties of superstrings networks. In this work we have simulated interconnected string networks
using the effective model proposed in [174]. The model reproduces the evolution of interconnected
superstring networks using a pair of ordinary Abelian Higgs strings coupled with an interaction
term, which produces composed bound states. Bearing in mind the differences between solitonic
string networks and superstring networks, e.g. different intercommutation probabilities or different
tension scales, such effective proposals can be very useful to reproduce some of the dynamical
features of superstrings.

Previous works on full field simulations of this model [200], confirmed the formation of pq-
strings and observed that the evolution of the network is compatible with the scaling solution.
Nevertheless, the authors also indicated the existence of some discrepancies between the results
of the numerical experiments and theoretical predictions. On the one hand, the relative abun-
dance and length of pq-strings were below theoretical expectations, which questioned the relative
importance of the bound string in the evolution of the whole system. On the other hand, al-
though bound strings form continuously due to the interaction potential their lifetime was small,
indicating the existence of a efficient unzipping mechanism.

One of the main objectives of this work has been to determine whether the mentioned discrep-
ancies appeared because the dynamical range of the numerical simulations, imposed by limited
computational resources, was too short to properly mimic the evolution of realistic superstring
networks, or on the contrary, there was a fundamental issue behind them. In order to enlighten
this questions, we analyze the problem from an alternative (or even opposite) point of view. We
explore a scenario where pq-strings are present nearly from the beginning of the simulations, in-
stead of waiting for their formation from individual p- and q-strings. We call this procedure string
combination, where one of the individual string networks is replaced by a whole network of bound
states interacting with the remaining individual network. The objectives are twofold: first to see
if the low relevance of the bound states is just a consequence of the initial conditions or on the
contrary it is product of the natural evolution of this model. Second to determine the efficiency
of the unzipping of the composed bound states into individual vortexes, comparing the initial and
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Chapter 4. Survival of pq-superstrings in field theory simulations

final bound string abundances. We have performed combined simulations in matter and radiation
domination eras and compared them with simulations where strings were not combined.

The main conclusion that can be extracted from combined simulations is that the system is not
able to retain a high number of pq-strings in the system and tends to split the composed bound
states into its constituents. Even though one of the two string networks of the system initially
is completely at bound states fp

pq ∼ 1 (see left panel of Fig. 4.6), the pq-string fraction soon
starts drastically to decrease. It is evident that the system does not feel comfortable with that
configuration, and prefers to break the composed bound states into individual p- and q-strings.
By the end of the simulation the relative length on bound states with respect to the total length
of the system falls to fTot

pq ∼ 0.05, i.e. only 5% of the total length is at pq-strings. The splitting
of the pq-strings evidences the unzipping ability of the system. The dynamics of the Y-junctions
at the boundaries of the pq-strings is more influenced by the tension applied by the individual free
p- and q-strings than by the dynamics of the heavy string. Therefore we believe that an efficient
unzipping mechanism should also be included in any reasonable effective model that aims to
describe interconnected string networks.

Combined simulations, as simulations of [176, 200] did, also exhibit scale invariant evolution.
The path towards the scaling regime, though, is somewhat different of that followed by normal
simulations. Soon after strings have been combined, the system passes through a relaxation
period where most of the pq-segments disappear and are converted into ordinary p- and q-strings.
We observe several hints that point to this relaxation period such as the evolution of the fractional
amount of pq-strings, the characteristic length of p-strings or the scaling of pq-segments. After
the system relaxes the scaling regime is achieved. Remarkably, not only the whole system evolve
in a scale invariant manner, but scaling is also achieved by every separate sub-network of the
system, especially by the pq-string network. In this last case, the characteristic length of the pq
network (ξpq

W ) evolves in an almost perfectly linear way, whereas for the normal simulation it can
be barely approximated to a straight line (see Fig. 4.7). We think that in general string combined
simulations are able to improve the evolution of the network as well as of the sub-networks towards
the scaling regime.

Another interesting outcome of combined simulations is that the average physical length of
the pq-strings tends to an asymptotic value of `pq ∼ 55 in matter domination and `pq ∼ 45 in
radiation domination. Its evolution is also clearly compatible with the relaxation period mentioned
in previous lines. Conversely, the evolution of this quantity in normal simulations is clearly an
increasing function of time, nearly linear. However, it can be observed that its value lies always
below the asymptotic value obtained in the combined case. Considering scaling evolution has been
improved by combined simulations, we expect that the outcome of a larger normal simulation
would converge to the asymptotic evolution described by combined simulations. Furthermore, we
think that the innovations introduced by this new method can be very useful to optimize the
dynamical range/computational cost of such numerical experiments. In this direction, it would
be really desirable to perform bigger normal simulations in order to determine whether both
approaches converge.

Velocities of interconnected string networks and pq bound states have also been analyzed for
the first time. We measure the root mean square velocities ∼ 0.5 for the average velocity of the
whole system and depending on the estimator between ∼ 0.5− 0.6 for the velocities of the bound
states. Whilst the curves of the average velocities of the system are nearly flat, the velocities of
the bound states exhibit a decreasing trend. Comparisons of the combined and normal simulations
show no differences, which enforces our opinion of the validity of string combination method to
describe interconnected networks.
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In order to increase the binding energy of the bond states, we have also simulated cases for a
larger value of the interaction potential coupling constant. We found that increasing the value
from κ = 0.9 to κ = 0.95, which is close to the allowed maximum value, does not produce
significant changes neither in the amount and lifetime nor in the relative relevance of the pq-
strings in the global network evolution. Clearly the dynamics of the bound states is dictated by
the evolution of the lighter individual strings, i.e. p- and q-strings. As it was pointed in [174], the
formation of stable pq-strings is more favorable for strings with higher winding number than unity.
However, no simulation performed during this work produced strings with winding number greater
than one. These facts evidence that even though the model, through its interaction potential,
is able to produce pq-strings, for the values of the model chosen in this work it is not able to
produce bound states with binding energy as high as to make the existence of pq-strings in the
network energetically favorable.

Nevertheless, it worthwhile to point that this model is not only limited to the parameter values
employed during this work. On the contrary, it can be easily extended to different scenarios
which could possibly increase the binding energy of bound states. For instance, simulations with
different coupling constants would lead to the departure from the Bogomol’nyi limit. It would be
interesting to investigate whether simulations out of the Bogomol’nyi bound are able to produce
strings with higher winding numbers. An alternative set of models can be obtained by variation
of the vacuum expectation values of the complex scalar fields. Systems composed by scalar fields
with unequal vacuum expectation values would produce interconnected string networks composed
of individual strings with different tensions, which would lead to the formation of heavier bound
states. Moreover, networks of strings with different masses are expected to be closer to realistic
superstring networks. It would be desirable that future field theoretical simulations exploit the
limits of the parameter space of the model in order to produce more stable bound states that
would play a relevant role in the dynamics of the system. Other effective field theory models can
also be used in this regard.
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5 General Conclusions

The central objective of this Thesis has been to investigate the properties and possible observa-
tional signatures of cosmic defects, mainly cosmic string, in cosmology. In order to accomplish
this task, in the first half of the Thesis we have studied their observational effects through the
small experimental windows that the extremely accurate data still allows. On the one hand, the
relation between cosmic strings and the measured excess of relativistic species has been explored
in Chapter 1. On the other, the role played by cosmic defects in the CMB B-mode polarization
measurements has been determined in Chapter 2. In both works we have compared theoretical
predictions with experimental observations. The second part of the Thesis has been more fo-
cused on extending the characterization of cosmic string networks via numerical simulations. We
have updated energy-momentum correlations and CMB power spectra for Abelian Higgs strings
in Chapter 3. Finally, in Chapter 4, we have employed field theory simulations to reproduce, using
effective models, the cosmological evolution of interconnected cosmic superstrings.

As mentioned, the data when the work of Chapter 1 was performed suggested that the number
of the relativistic species at the early universe was higher than predicted by the standard particle
model. In this Chapter we have explored the origin of this apparent excess and link it to the
existence of cosmic strings. The cosmological gravitational wave background induced by cosmic
strings could be the responsible for the high number of relativistic species required to fit the data.
We have found that cosmic strings can account for part of the excess, but that the correlations be-
tween them and the extra relativistic species depend on the dataset analyzed: if the dataset cover
the low multipole region they are correlated, whereas if small scale data is included, correlation
becomes anti correlation. The inclusion of non-CMB datasets, principally direct measurements of
the Hubble parameter, induce a drastic reduction of the available parameter space and almost all
correlations vanish. In most of the cases, the contribution of cosmic strings can be considered as
the unique source of the excess, but the need of extra contributors is not rejected in either case.
It has to be noted that all numerical results of this Chapter carry a considerable amount of un-
certainty, mostly coming from the big differences in the prediction of the amount of gravitational
waves of horizon sized and sub-horizon sized loops.

Motivated by the measurements of the CMB anisotropy B-modes at angular scales made by the
BICEP2 collaboration, in Chapter 2 we have investigated the possibility that this signal could be
created by cosmic defects. Even though the contribution of defects to CMB anisotropies is highly
constrained by accurate temperature measurements, their contribution to polarization B-modes
can still be dominant. We address the issue from two separate but complementary points of
view: firstly we have tried to determine, qualitatively, whether cosmic defects could be the only
responsible for the entire measured signal. In order to complement the qualitative statements,
in the second part we performed a quantitative analysis of the parameter space fitting BICEP2,
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alone and in combination with other CMB measurements, using models containing defects. The
conclusion of the first part of the analysis has been clear: defects in general give a poor fit to the
signal and thus the measured B-modes cannot be solely produced by cosmic defects. However, as
we have determined, they can assist other primary sources such as primordial gravitational waves
or astrophysical dust in fitting high-` points. In general, as it was observed in previous works,
astrophysical dust gives the best-fit to data, indicating that the ordinary astrophysics can account
for the BICEP2 measurements. New and improved constraints are obtained for different defects
considering a mixed dust plus defect model: Gµ < 2.7 × 10−7 at 95% C.L. for Abelian Higgs
strings, Gµ < 9.8× 10−7 at 95% C.L. for semilocal strings and Gµ < 7.3× 10−7 at 95% C.L. for
textures. These constraints are tighter than ones found by the Planck collaboration, which shows
the importance that even the current B-mode polarization data has for constraining topological
defects.

In Chapter 3 we have presented updated energy-momentum correlations and CMB power spectra
for Abelian Higgs cosmic strings. Approximations and assumptions of previous works have been
revisited and re-examinated in order to update predictions of field theory simulations of AH cosmic
strings, mainly motivated by the increasingly accurate observational measurements of the CMB
anisotropies in both temperature and polarization channels. We have performed the biggest
field theory simulations of the AH model to date, which lead to a considerable increase in the
simulated volume (x64) and dynamical range of the simulations. This has several effects, on the
one hand we have been able to simulate four times longer in the core growth approximation, which
enabled to directly simulate regions that could only be reached by extrapolation in previous works.
Approximation of previous works has been successfully confirmed by the outcome of our longer
simulations. On the other, the scaling regime has been achieved for the first time following the real
equations of motion, both in radiation and in matter eras. We have observed that correlators of
different simulations, with and without core growth approximation, compared at same simulation
stages determined by the characteristic length of the system, are very similar. Taking advantage
of this, the most reliable correlations from simulations of the real equations of motion and data
from small-scales and high time ratios are incorporated in the new merged structure for the energy-
momentum correlators. The treatment and computation of source functions, essential for CMB
calculations, at cosmological transitions have also been improved. We have performed the first
numerical simulations at cosmological transitions, i.e. radiation-matter and matter-Λ transitions,
with which a new UETC interpolation method at transitions as well as new transition functions
have been derived. The new method avoids inconsistencies of previous procedures, fits naturally
into the structure of Einstein-Boltzmann integrators and is more accurate than previous methods
in reproducing the real transition UETCs. Finally, armed with all innovations listed above we
have update CMB power spectra predictions for AH cosmic strings. They differ considerably from
previous results, mostly in the amplitude where new predictions are significantly higher, due to
the new interpolation function that makes the radiation-matter transition significantly slower.

The final Chapter focuses on field theory simulations of interconnected superstring networks.
In order to characterize some of the properties of such fundamental string networks, field theory
simulations, based on effective models, can be used to reproduce the cosmological dynamics of
interconnected string networks and bound states. Previous numerical simulations confirmed that
bound states are constantly formed in field theoretical models and that such networks are compat-
ible with the scale invariant evolution, which is an indispensable requirement for the cosmological
survival of defect networks. Nevertheless discrepancies with theoretical predictions were indicated:
the length and lifetime of pq bound states and their relevance in the overall dynamics were smaller
than expected. We have tried to determine whether these discrepancies appear as a consequence

134



Chapter 5. General Conclusions

of limited dynamical range of previous works or something more fundamental was behind. Such
a investigation has been performed using a new type of simulation, where strings have been com-
bined so as to produce an entire network of bound states from the beginning of the simulations,
coexisting with another cosmic string network. From combined simulations we have found that the
overall evolution of the networks forces pq-strings to unzip into its constituents, but the left-over
population of bound states is higher than the one in previous simulations, where strings were not
combined. Combined simulations also scale better than normal simulations where strings are not
combined. We also observe some hints indicating that the evolution of the combined simulations
tend to an asymptotic evolution, where, for instance, the physical length of pq-strings remains
constant. We expect that bigger normal simulations, i.e. without string combination, eventually
would reach this asymptotic evolution. Moreover, we believe that the procedure of string com-
bination could be very useful in saving computational time and cost, since the network archives
scale invariant regime faster and better. Finally we also measure, for the first time, velocities of
the network and pq-strings, using field theoretical estimators.
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