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Se estima que el 40% de las nuevas moléculas farmacoldgicamente activas
descubiertas mediante las técnicas actuales (técnicas de screening in vitro, quimica
combinatoria) son insolubles o poco solubles en agua'-3. Es bien conocido que tanto
la solubilidad como la permeabilidad son factores limitantes de la biodisponibilidad
de un farmaco# 5.

De acuerdo con el sistema de Clasificacion Biofarmacéutica® 7, los farmacos de
la clase Il'y de la clase IV son los que presentan una baja solubilidad. Los farmacos
clase IV presentan, ademas, una baja permeabilidad. Los principales problemas
asociados a los farmacos que presentan baja solubilidad son?. ®:

- Precipitacion del farmaco tras la administracién
- Baja biodisponibilidad

- Variabilidad en la biodisponibilidad

- Ausencia de proporcionalidad dosis-respuesta

- Con frecuencia se requiere utilizar excipientes poco seguros, por ejemplo
cosolventes

- Necesidad de condiciones acidas o basicas extremas para aumentar la
solubilidad

Estos factores han hecho que moléculas potencialmente activas no hayan
pasado a clinica debido a las dificultades para disefiar formulaciones adecuadas
para su administracién por via oral. El reto es formular dichas moléculas en
sistemas de administracion oral que les confieran una biodisponibilidad adecuada.

Los sistemas de administracion de farmacos basados en lipidos estan
adquiriendo en la ultima década un gran interés para la vehiculizacion de farmacos
poco solubles? 5 715, Las formulaciones lipidicas pueden favorecer la absorcion del
farmaco mediante diferentes mecanismos, entre los que destacan el aumento de la
solubilidad del farmaco, el aumento de la permeabilidad de la membrana intestinal,
la inhibicién de los transportadores de salida del farmaco hacia el lumen intestinal,
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la reduccion de la actividad metabolica, el aumento de la produccion de
quilomicrones o la estimulacién del transporte linfatico® 7. 9. El éxito clinico y
comercial de varias formulaciones lipidicas que contienen farmacos lipéfilos, como
es el caso de la ciclosporina (Sandimmun Neoral®) y el ritonavir (Norvir®), ha
despertado el interés por el desarrollo de nuevas formulaciones de tipo lipidico.

Durante la pasada década, ha habido un gran avance en el desarrollo de
nuevos sistemas de liberacion de farmacos. El desarrollo de la nanotecnologia y la
microtecnologia, junto con la protedmica, la gendmica y la quimica combinatoria, ha
permitido un gran avance en el disefio de nuevos sistemas de administracion de
farmacos. Los nuevos sistemas de liberacion de farmacos deben proporcionar una
biodisponibilidad adecuada, una cinética de liberacion controlada, minima respuesta
inmune, facil administracién a los pacientes, y la posibilidad de liberar farmacos
tradicionalmente dificiles como son los lipéfilos, anfifilicos y las biomoléculas.

La cinética de disolucién es la principal responsable de la mejora de las
propiedades biofarmacéuticas de compuestos con baja solubilidad acuosa
incorporados en formulaciones micro y nanoparticulares. El perfil de disolucion de
un farmaco incorporado en estos sistemas esta condicionado, entre otros, por el
tipo de particula y por caracteristicas como la forma, tamafio de particula, carga
superficial y eficiencia de encapsulacion, de tal manera que podemos modular el
proceso de disolucion controlando estas variables.

1.-EFECTO DE LOS LIiPIDOS EN LA ABSORCION DE FARMACOS

El interés por la administracién de farmacos mediante el uso de formulaciones
lipidicas es relativamente reciente y esta relacionado con el desarrollo de las
mismas en los Ultimos 10-15 afios, en respuesta a la necesidad de vehiculizar
nuevos compuestos quimicos de baja solubilidad y/o baja permeabilidad*". 12,

Los lipidos y los excipientes lipidicos mejoran la absorcién y disposicion del
farmaco® 5 mediante tres mecanismos:

a) Elaumento de la disolucion del farmaco en el tracto gastrointestinal
b) La modificacién del transporte y disposicion del farmaco en el enterocito
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c) La estimulacién del transporte linfatico y, por tanto, reduccion del
metabolismo de primer paso hepatico

La figura 1 recoge el efecto de los lipidos y excipientes lipidicos en la absorcion de
farmacos.

Circulacion sistémica

Figura 1. Efecto de los lipidos y excipientes lipidicos en la absorcion de farmacos.
Procesos mediante los cuales afectan a la absorcion: (a) incremento de la disolucion del
farmaco (F) en el lumen intestinal mediante la alteracion de la composicion y caracteristicas
coloidales del entorno del farmaco- por ejemplo, mediante la formacion micelas, micelas
mixtas o vesiculas; (b) interaccién en los procesos metabdlicos y de transporte que tienen
lugar en el enterocito; (c) también pueden alterar el mecanismo de transporte hacia la
circulacién sistémica mediante la estimulacion del transporte linfatico, que puede conllevar
una reduccion en el efecto de primer paso que sufren algunos farmacos, evitando el paso
del mismo a través del higado.

Los lipidos provenientes de la dieta o de la formulacién incrementan la
capacidad de solubilizacién del fluido gastrointestinal. La accién combinada de
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componentes exdgenos y endoégenos (secrecion de sales biliares, fosfolipidos y
colesterol) favorecen el proceso de solubilizacion del farmaco®. El conocimiento del
efecto que los lipidos producen en el tracto gastrointestinal es imprescindible para
entender el papel que juegan como excipientes en una formulacion.

I.  Efecto de los lipidos en el tracto gastrointestinal

Los lipidos en el tracto gastrointestinal estimulan la contraccion de la vesicula
biliar y las secreciones biliares y pancreéticas, incluyendo las sales biliares, los
fosfolipidos y el colesterol® 4. 16. 17 La secrecion biliar promueve la formacién de
diferentes especies coloidales, incluyendo micelas mixtas y vesiculas (ver figura 1).
El papel de estas especies coloidales es el de favorecer la disolucién de los
compuestos poco solubles resultantes de la digestion de lipidos, como por ejemplo,
los acidos grasos o los monoglicéridos!”.

En condiciones de ayuno, las “especies solubilizantes” presentes en el
contenido intestinal son las sales biliares, fosfolipidos y colesterol. En ausencia de
lipidos exdgenos, la capacidad de disolucion del intestino delgado es baja y
depende de la concentracion de sales biliares mas que de la estructura de la
especie coloidal.

La adicion de lipidos exdgenos (provenientes de la ingesta de comida o de la
formulacion) aumenta de forma significativa la capacidad de solubilizar el farmaco y
es dependiente de la naturaleza de los productos de la digestion, por ejemplo la
longitud de cadena de los &cidos grasos, y de las caracteristicas de las especies
coloidales que se forman®. Depende, ademas, de la concentraciéon de lipido,
aumentando la capacidad de solubilizacion al aumentar la concentracion de éste8.
En un estudio llevado a cabo por Kossena y cols. en humanos, se demostrd que
incluso la presencia de una pequefia cantidad de triglicéridos de cadena larga (LCT)
en el tracto gastrointestinal, estimula la secrecién biliar'”. Se observaron también
cambios en el vaciado gastrico, pero estos cambios en el vaciado y en la secrecidn
no se observaron cuando se administrdé la misma cantidad de lipidos de cadena
media (MCT). Los mecanismos mediante los cuales los lipidos reducen el vaciado
gastrico se desconocen aunque parece que estan involucrados factores como la
osmolaridad o el pH®.
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Estudios llevados a cabo con farmacos poco solubles como la cinarizina o la
halofantrina®20 ponen de manifiesto los beneficios del uso de acidos grasos de
cadena larga debido al aumento de la disolucion y la biodisponibilidad con respecto
a acidos grasos de cadena media. Sin embargo, otros estudios demuestran un
mayor aumento de la biodisponibilidad con la administracion de lipidos de cadena
media que con la administracién de lipidos de cadena larga, como es el caso de
farmacos como la griseofulvina?! o la progesterona?2. Un estudio llevado a cabo por
Dahan y cols con dexametasona incorporada en formulaciones lipidicas?' con LCT y
MCT, puso de manifiesto que el uso de uno u otro tipo de lipido no modificaba la
absorcion del farmaco. Estos resultados vuelven a sugerir que el aumento de la
biodisponibilidad o de la disolucién de un farmaco en el tracto gastrointestinal es
dependiente del farmaco utilizado y de las propiedades fisicoquimicas del mismo.

Tras la ingesta, la digestion de triglicéridos provenientes de la dieta y los lipidos
de la formulacién tiene lugar en el estébmago gracias a la secreciéon de lipasa
gastrica. El peristaltismo del estomago contribuye también a esta digestion. Este
movimiento mecanico, sumado a la presencia de productos anfifilicos resultantes de
la digestion inicial de los lipidos (diglicéridos y acidos grasos), facilita la formacion
de una emulsion. En el intestino delgado, la lipasa pancreatica, junto con la co-
lipasa, completan la ruptura de los ftriglicéridos a diglicéridos, monoglicéridos y
acidos grasos, produciendo posteriormente 2-monoglicéridos y acidos grasos libres.
La presencia de lipidos exdgenos en el intestino delgado también estimula la
secrecion de lipidos biliares endégenos como las sales biliares, fosfolipidos o
colesterol desde la vesicula biliar. En presencia de sales biliares, los productos
resultantes de la digestion de los lipidos (monoglicéridos, acidos grasos y
lisofosfolipidos) son incorporados a una serie de estructuras coloidales, incluidas
vesiculas multilamilares o unilamilares, micelas o micelas mixtas. Esta union
aumenta significativamente la capacidad de solubilizacién en el intestino delgado de
productos de digestion lipidica y farmacos.

[l Disposicién y transporte del farmaco en el enterocito

Tras el paso a través de la membrana apical del enterocito, los productos de la
digestion lipidica -monoglicéridos y acidos grasos- pueden difundir a través del
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enterocito y entrar en el sistema portal 0 pueden ser transformados nuevamente a
triglicéridos por la via del 2-monoglicérido (2-MG) asociada al reticulo
endoplasmatico liso (REL) o por la via del oc-glicerol-3-fosfato (G3P) asociada al
reticulo endoplasmatico rugoso (RER). Los triglicéridos formados por estas vias
entran al reticulo endoplasmatico y se asocian a lipoproteinas (LPs). Estas
lipoproteinas son transportadas al aparato de Golgi, exocitadas desde el enterocito
y captadas por el sistema linfatico intestinal. Como las lipoproteinas estan formadas
principalmente por lipidos y el aparato de Golgi participa en el transporte a
circulacion sistémica a través del sistema linfatico intestinal, a este pool de lipidos
se le llama “pool lipidico precursor linfatico” (lymph lipid precursor pool) (figura 2).
Existe otro pool lipidico citosélico dentro del enterocito. Este pool esta formado por
excedentes de triglicéridos provenientes de la via G3P y de lipidos enddgenos
captados del suministro sanguineo intestinal en forma de acidos grasos o
remanentes de quilomicrones (CM). Los lipidos citosélicos pueden ser hidrolizados
por la lipasa citosdlica y los productos de digestion resultantes pueden ser
incorporados a las vias de resintesis de triglicéridos. Sin embargo, la mayor parte
de estos lipidos son captados en forma de TG o acidos grasos libres y llevados
hasta el sistema portal; estos lipidos se conocen como “pool lipidico precursor
portal” (portal lipid precursor pool)® (linea punteada, figura 3). El transporte y salida
de estos lipidos dentro del enterocito parecen influir en la disposicién intracelular de
los farmacos lipofilicos?3. En la figura 3 se presenta un esquema con las diferentes
vias de absorcion y vehiculizacion de lipidos dentro del enterocito.
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Figura 2. Absorcién y disposicion de lipidos en el interior del enterocito.

Gl: tracto gastrointestinal; MG: monoglicérido; AG: &cidos grasos; 2-MG: 2-
monoglicérido; G-3P: glicerol-3-fosfato; REL: reticulo endoplasmatico liso;
RER: reticulo endoplasmético rugoso; TG: triglicéridos

Los mecanismos mediante los cuales los farmacos se unen a los quilomicrones
no se conocen y poco se conoce acerca de los centros de unidn intracelulares, la
contribucion de los lipidos o el farmaco al modelo de distribucion dentro del
enterocito o el papel de diferentes proteinas de union y transporte24 25, Lo que si se
conoce es que farmacos como la halofantrina, anfotericina B o la ciclosporina A se
asocian a lipoproteinas®. Una de las hipotesis es que los farmacos son
transportados en linfa asociados al nucleo triglicérido de los quilomicrones (junto

con las VLDL, las lipoproteinas mayoritarias secretadas desde el enterocito)?4. 27,
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Ill.  Eltransporte intestinal linfatico

Como se ha comentado anteriormente, los lipidos estimulan el transporte
linfatico. Charman y cols® 23. 25 sugieren que el transporte linfatico de farmacos
lipdfilos tiene lugar de manera mayoritaria cuando estos tienen un coeficiente de
reparto octanol/agua mayor de 5 y una solubilidad en triglicéridos de cadena larga
de mas de 50 mg por gramo.

El sistema linfatico es una red de vasos, nodulos y tejidos linfoides distribuidos
por el organismo siguiendo el recorrido del sistema vascular. La principal funcion del
sistema linfatico es mantener el balance de fluidos corporales devolviendo el exceso
de liquidos, proteinas y productos de desecho desde el tejido intersticial a la
circulacién sanguinea. Asimismo, el tejido linfoide es un componente primordial del
sistema de defensa inmunitario®.

El sistema linfatico intestinal (mesentérico) es el responsable del transporte de
los lipidos provenientes de la dieta y de ciertos componentes altamente lipéfilos
(como son las vitaminas o farmacos liposolubles) desde las células epiteliales del
intestino delgado hasta la circulacion sistémica. Lo interesante de esta via, en
cuanto a biodisponibilidad y absorcién de farmacos se refiere, es que la linfa
proveniente del conducto toracico y mesentérico no pasa a través del higado antes
de acceder a circulacion sistémica, con lo que proporciona una via de transporte de
farmacos que evita los problemas asociados al metabolismo de primer paso
hepatico®.

2.- FORMULACIONES LIPIDICAS

El creciente numero de nuevos farmacos de baja solubilidad junto con el
conocimiento de efecto de los lipidos como promotores de la absorcion de farmacos
poco solubles, ha propiciado que el interés por el desarrollo de formulaciones
lipidicas se haya incrementado significativamente durante los Ultimos afios. Tanto
es asi que la “American Association of Pharmaceutical Scientists” ha formado un
grupo de trabajo denominado “Lipid-based Drug Delivery Systems Focus Group”
(www.aaps.org/inside/focus group/Lipid/index.asp).
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Teniendo en cuenta la gran variedad de excipientes y sistemas de
administracion de naturaleza lipidica que se pueden utilizar, es necesario un
exhaustivo conocimiento de las propiedades fisico-quimicas tanto del farmaco como
de los excipientes lipidicos, asi como del proceso de digestion en el tracto
gastrointestinal de estos ultimos. Ademds, es necesaria una adecuada
caracterizacion de los sistemas de administracion basados en lipidos, su
estabilidad, clasificacion y aspectos regulatorios. De esto dependera el numero de
formulaciones que potencialmente pueden alcanzar el mercado?.

Clasificacion de los lipidos y tensioactivos utilizados en las formulaciones lipidicas

Los lipidos utilizados para preparar formulaciones lipidicas, incluidos los
tensioactivos, fueron ya clasificados por Small?® en lipidos polares y no polares,
segun su interaccidn con el agua y su comportamiento en la interfase agua-aire. Los
lipidos no polares no se extienden para formar una monocapa sobre la superficie
del agua, y son insolubles en ella. Ejemplos de lipidos no polares son los alcanos,
aceite de parafina, ésteres de colesterol y ésteres de acidos grasos, incluidas las
ceras. Los lipidos polares se dividen en 1) lipidos insolubles que no se hinchan
(clase 1), que son los mas hidrofdbicos, 2) lipidos insolubles que se hinchan (clase
) y 3) lipidos polares, que a su vez, se dividen en dos subclases (IlIA y IlIB)
dependiendo de si forman o no liquidos cristalinos a altas concentraciones. En la
tabla 1 se recoge la clasificacion de los lipidos de acuerdo con este sistema.
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Tabla 1. Clasificacién de lipidos segun su carécter polar o no polar®.

Clase

Ejemplos

Comportamiento

No polares

Alcanos, aceite de parafina,
ésteres de colesterol vy
ésteres de é&cidos grasos,
incluidas las ceras

No se extienden para formar
monocapas sobre la superficie del
agua.

Insolubles en agua

Polares

Insolubles que no se
hinchan
(Clase I)

Triacilglicéridos,
diacilglicéridos, ~ colesterol,
acidos grasos de cadena
larga

Insolubles en agua que no se
hinchan por captacion de agua.
Forman monocapas estables sobre
la superficie del agua

linsolubles que se
hinchan (Clase II)

Fosfolipidos y 2-
monoacilglicéridos

Forman monocapas estables sobre
la superficie del agua.

Insolubles en agua

Por encima de la temperatura de
transicion de fases, pueden
incorporar agua entre el grupo
polar, formando una estructura
lipidica hinchada (estado cristalino
liquido)

Polares solubles
(Clase IlIA)

Liso-fosfolipidos, sales
sodicas o potasicas de
acidos grasos de cadena
larga, tensioactivos
aniénicos, catiénicos y no
ibnicos

Forman monocapas estables in la
interfase y forman micelas cuando
su concentracion esta por encima
de la concentracién critica micelar

Polares solubles (Clase
IB)

Sales biliares, saponinas y
compuestos  solubles en
agua con anillos aromaticos

Son capaces de formar micelas,
asi como monocapas inestables.
No forman liquidos cristalinos a
altas concentraciones

Ademas, existe una clasificacién empirica de los lipidos polares en funcién
del balance hidrofilia-lipofilia (HLB), que ha sido utilizado para la preparaciéon de
emulsiones. El HLB considera la contribucidn relativa de los fragmentos hidrofilicos
e hidrofébicos de las moléculas. Puede tomar valores del 1 al 20, de tal forma que
los tensioactivos hidrofilicos presenta valores altos de HLB, mientras que los
tensioactivos hidréfobos tienen valores de HLB bajos28.
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Clasificacion de los sistemas de liberacion basados en lipidos y tensioactivos

El término “formulacién lipidica” incluye una gran variedad de formulaciones.
C.W.Pouton® % clasific las formulaciones lipidicas en funcion de la capacidad
solubilizante de las mismas (LFCS, “Lipid formulation classification system”). Divide
las formulaciones lipidicas en cuatro clases. La clase | incluye lipidos que requieren
ser digeridos. Las formulaciones de la clase Il son sistemas de liberacion de
farmacos auto emulsionables (SEDDS; Self- emulsifying drug delivery systems)
insolubles en agua. Las formulaciones de la clase Ill son SEDDS o sistemas de
liberacion de farmacos auto microemulsionables (SMEDDS; Self microemulsifying
drug delivery systems) que contienen tensioactivos insolubles en agua y/o
cosolventes 0 una gran cantidad de componentes solubles en agua. Las
formulaciones de la clase IV no contienen lipidos y estan formadas por tensioactivos
hidréfilos y cosolventes®. En la tabla 2 aparecen resumidas las caracteristicas,
ventajas y desventajas de las formulaciones lipidicas segun el sistema de
clasificacion de Pouton.
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Tabla 2. Clasificacion de las formulaciones lipidicas de Pouton’.
GRAS: Generally Recognized as Safe; SEDDS:Self Emulsiying Drug Delivery System;
SMEDDS: Self Micro Emulsiying Drug Delivery System

Clase

LECS Caracteristicas Ventajas Desventajas
GRAS; simples; Baja capacidad
Tipo | No dispersables compatibilidad con solvente si el farmaco
Requieren digestion capsulas no es muy lipdfilo
. Pérdida de Dispersion o/w turbia
Tipo Il SEDDS sin comgo[}gntes solubles en capacidad solvente (tamafio de particula
g improbable 0.25-2 um)
Dispersiones . .
Tipo SEDDS/SMEDDS con componentes  transparentes o casi; POS'b.le pérdida de.
. capacidad solvente;
M solubles en agua absorcién de g
peor digeridas

farmaco sin digestion

Pérdida de capacidad
solvente sobre la
dispersion; puede no
ser digerida

Capacidad solvente
para la mayoria de
farmacos

Tipo  Formulaciones sin lipidos formadas por
v tensioactivos hidréfilos y cosolventes

La clasificacién de Pouton es un sistema muy practico y Util para ordenar la
gran cantidad de lipidos y tensioactivos que pueden ser utilizados para administrar
farmacos poco solubles. Miillertz y cols2® han propuesto modificar esta clasificacion,
teniendo en cuenta el sistema de clasificacion de Small?. Estos autores proponen
clasificar los lipidos teniendo en cuenta las diferencias en su interaccién con el
agua, su comportamiento en la interface agua-aire y el HLB, de tal forma que
quedarian divididos en las siguientes categorias:

- Lipidos no polares y lipidos polares clase |

- Lipidos polares clase Il

- Lipidos polares clase llIA con bajo HLB

- Lipidos polares clase lllA con alto HLB y cosolventes
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A continuacién se describiran brevemente los sistemas lipidicos mas utilizados:

Soluciones oleosas

Son formulaciones a base de excipientes lipidicos que mantienen el farmaco en
solucion. Entre los lipidos mas comunmente utilizados estan los acidos grasos de
cadena media y de cadena larga. Como se ha comentado en los apartados
anteriores, existen evidencias de que las soluciones de &cidos grasos de cadena
larga son mas eficientes que los de cadena media, aunque debido al limitado
numero de estudios y a que el tipo de farmaco también influye, es dificil sacar
conclusiones. Existen numerosos estudios en los que la biodisponibilidad de
farmacos poco solubles se incrementa significativamente cuando se utilizan este
tipo de formulaciones?!.

Emulsiones

Otra opcién para incrementar la absorcién de compuestos poco solubles es la
preparacion de emulsiones. Se han hecho numerosos estudios para demostrar la
utilidad de las emulsiones para incrementar la biodisponibilidad de farmacos poco
solubles, entre ellos, griseofulvina®2, ubiquinone, retinil palmitato3. En el caso de
4-hidroxylfenilretinamida (Avanti® Polar Lipids 2006), la formulacién en una emulsion
lipidica permitié reducir la dosis al 20% de la dosis utilizada en la formulacién
convencional, obteniéndose concentraciones maximas en sangre equivalentes.

Sistemas autoemulsionables (SEDDS)

Debido a su estabilidad termotrdpica, los sistemas autoemulsionables forman una
emulsion burda y lechosa cuando se dispersan en agua. También se han
denominado sistemas microautoemulsionables (SMEDDS) y
nanoautoemulsionables (SNEDDS), dependiendo del tamafio de la emulsion que
forman. La microemulsién es termodinamicamente estable, mientras que una
nanoemulsion sufre espontaneamente el fendmeno de coalescencia, aunque
pueden tener una alta estabilidad cinética. Por ello, es dificil distinguir las micro de
las nanoemulsiones. Las microemulsiones presentan un gran potencial para
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incrementar la biodisponibilidad de farmacos de las clases Il y IV. Sin embargo, el
desarrollo de estos sistemas puede ser complicado y se requiere un gran
conocimiento a nivel fisico-quimico, termodindmico y del proceso de digestion
gastrointestinal. Miillertz ha publicado recientemente un articulo en el que describe
una estrategia para el desarrollo de sistemas autoemulsionables?.

Saquinavir (Invirase®) y ritonavir (Norvir®) son ejemplos de farmacos cuya
biodisponibilidad por via oral se incrementé notablemente cuando se formularon en
sistemas autoemulsionables®!. Las formulaciones lipidicas de ciclosporina A
Sandimmun® y Sandimmun® Neoral®, son quiza los sistemas a base de lipidos y
tensioactivos mas conocidos®®. Sandimmun® es una formulacion autoemulsionable
que contiene Labrafil M 1944 CS (acidos grasos polioxietilados), aceite de oliva y
etanol® que cuando se diluye en agua se dispersa dando lugar a una
macroemulsion. En 1994, aparecié una nueva formulacion (Sandimmun® Neoral®),
también un sistema autoemulsionable, que se emulsiona espontaneamente dando
una microemulsion con un tamafio inferior a 100 nm. Esta formulacion contiene
Cremophor RH40 (aceite de castor polyoxil hidrogenado), glicéridos de aceite de
maiz, propilenglicol y etanol®8. Varios estudios han demostrado la mayor
biodisponibilidad de la ciclosporina con Sandimmun® Neoral®37,

Liposomas

Los liposomas fueron los primeros sistemas compuestos por una bicapa de
fosfolipidos y los sistemas lipidicos nanoparticulados pioneros®. Desde su
descubrimiento en 1965, se han logrado numerosos avances como la obtencién de
liposomas de circulacién porlongada (pegilados), liposomas para la administracion
de acidos nucleicos, liposomas dirigidos mediante ligandos, liposomas que
contienen combinaciones de farmacos, efc.

Un ejemplo destacado del éxito de estos se encuentra en la
comercializacién los mismos; es el caso del Ambisome®/Caelyx®, liposomas de
anfotericina B/ doxorrubicina clorhidrato.

Sin embargo, a pesar de la comercializacion y el éxito de esta formulacion,
los liposomas siguen teniendo asociados problemas de inestabilidad quimica y
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fisica que pueden llevar a la agregacion de los liposomas y la precipitacién del
farmaco durante su almacenamiento®.

Sistemas lipidicos nanoparticulados

Las nanoparticulas solidas lipidicas (SLNs) surgieron en los afios 90 como sistemas
alternativos a otros sistemas coloidales (nanoemulsiones, liposomas y
nanoparticulas poliméricas)#0. 4!, Generalmente son de forma esférica, con un
diametro comprendido entre 50 y 1000 nm, y estan compuestas mayoritariamente
por lipidos biocompatibles y biodegradables, capaces de incorporar tanto farmacos
lipofilos como hidréfilos. Al igual que emulsiones y liposomas, son fisiologicamente
compatibles y, al igual que las nanoparticulas poliméricas, es posible modular la
liberacion del farmaco desde la matriz lipidica. Ademas, poseen ciertas ventajas
adicionales como es la proteccion del farmaco en su matriz. Sin embargo,
presentan las siguientes desventajas:

- Capacidad de carga de farmaco relativamente baja
- Expulsion del farmaco desde la matriz durante el almacenamiento

En la figura 3 se observan nanoparticulas sélidas lipidicas elaboradas en nuestro
laboratorio con Precirol ATO®3.

Figura 3. Fotografia obtenida mediante microscopia de fuerza atomica de

nanoparticulas sdlidas lipidicas elaboradas con Precirol ATO®5,
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Debido a las desventajas que presentan las SLNs, surgieron los lipidos
nanoestructurados (Nanostructured Lipid Carriers, NLCs)4245, Los NLCs estan
formados por moléculas lipidicas de diferente naturaleza, de tal manera que
contienen lipidos solidos y liquidos a temperatura ambiente. La matriz lipidica
resultante presenta un punto de fusién menor que las SLNs, pero sigue siendo
solida a la temperatura corporal. En las NLCs, la matriz lipidica esta mas
desestructurada, pudiendo englobar una mayor cantidad de farmaco. Ademas, evita
o reduce la expulsién del mismo durante el almacenamiento3?. 45,

En la figura 4 se recoge una fotografia obtenida por microscopia electrénica
de transmisién (TEM) de nanoparticulas lipidicas de saquinavir preparadas en
nuestro laboratorio con Precirol ATO®5, Mygliol 812, Tween 80 y Poloxamer 188.

Figura 4. Fotografia de Nanostructured Lipid Carriers (NLCs) con saquinavir

obtenida con microscopia electrénica de transmision.

La diferencia basica entre la estructura de las SLNs y las NLCs, es que en
el caso de estas ultimas, la matriz lipidica estd mas desestructurada, pudiendo
englobar una mayor cantidad de farmaco. Asi, el uso de formulaciones lipidicas en
forma de NLCs puede incrementar la biodisponibilidad de farmacos poco solubles
combinando los beneficios de las formulaciones lipidicas con el hecho de ser
formuladas en forma de nanoparticulas#6. En la figura 5 se recoge un esquema con
la estructura de las SLNs y NLCs.
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Figura 5. Representacidn de las estructuras correspondientes a SLNs y NLCs.

Las hipdtesis que se barajan para explicar el incremento en la absorcion de
farmacos a partir de nanoparticulas lipidicas se recogen en la figura 6. Una
hipétesis es que las nanoparticulas se adhieran a la pared de la mucosa intestinal y
sean captadas en su totalidad, produciéndose después el metabolismo de los
lipidos en el interior del enterocito. Posteriormente, debido al caracter lipofilo del
farmaco, éste se anclaria en el interior del nucleo de las lipoproteinas. Otra
hipétesis es la degradacion en el lumen intestinal de los lipidos que forman parte de
las nanoparticulas por las lipasas y co-lipasas secretadas en el intestino, lo que
supondria la expulsién del farmaco desde las nanoparticulas. La unién del farmaco
libre a sales biliares da lugar la formacion de micelas solubles que atraviesan mas
facilmente la pared intestinal.
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Figura 6. Mecanismos que justifican el aumento de absorcion de farmacos a partir de
nanoparticulas lipidica. A) Mucoadhesién de las nanoparticulas que irian liberando el
farmaco por la degradacién con el paso del tiempo B) Degradacion de las nanoparticulas
lipidicas por parte de las lipasa y co-lipasas pancreaticas y posterior formacién de micelas
mediante la emulsificacion por sales biliares, que accederian a linfa o sangre
posteriormente C) Las NLCs atravesarian la barrera mucosa, accediendo al interior de los
enterocitos donde serian procesadas; el farmaco se uniria a lipoproteinas y pasarian a linfa
0 a sangre.

Debido al caracter lipdfilo de las SLNs y NLCs, la capacidad de carga de
farmacos hidréfilos es limitada. Por ello, surgieron los conjugados lipido-farmaco
(LDC). Un farmaco hidrofilico es transformado en una molécula méas hidrofébica,
insoluble, al conjugarla con un compuesto lipidico. La conjugacion puede llevarse a
cabo mediante una union covalente, o simplemente por formacién de una sal con un
acido graso (por ejemplo, si el farmaco tiene grupos funcionales protonables)*2.

En resumen, las formulaciones lipidicas son una prometedora alternativa
para administrar farmacos poco solubles. Actualmente existen comercializadas
varias formulaciones lipidicas en forma de emulsiones, liposomas, SEDDS,
SMEDDS. Algunos ejemplos destacados son el Ambisome®/Caelyx® (liposomas de
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anfotericina B/ doxorrubicina clorhidrato), Diprivan®Stesolid® (emulsién lipidica
coloidal de propofol/ diazepam), Sandimmun® (SMEDDS de ciclosporina) o
Konakion MM® (dispersion micelar de vitamina K)#7. Sin embargo, a pesar de los
avances, todavia quedan algunos problemas por resolver y son muchos los
farmacos poco solubles que siguen sin poder ser formulados. Los esfuerzos que
actualmente se estdn dedicando al estudio de las formulaciones lipidicas
contribuiran sin duda al incremento del niumero de este tipo de formulaciones en los
proximos anos.
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La nanotecnologia ofrece grandes oportunidades en medicina en el campo
de la imagen, el diagnostico y la terapéutica*®-5'. Actualmente se estan llevando a
cabo numerosos avances en el campo de la llamada “nanoteracndsticas23. Los
sistemas de administracion de farmacos nanoparticulados representan una
alternativa para la mejora de las terapias actuales por su capacidad de superar
multiples barreras biologicas y liberar el compuesto terapéutico en el lugar de
accion a los niveles necesarios; como resultado, se obtiene una mayor eficacia
terapéutica, una reduccion o mejora de los efectos adversos y un mayor
cumplimiento del tratamiento por parte de los pacientes®.

Muy frecuentemente, los sistemas basados en nanoparticulas se
administran por via parenteral. Hay que tener en cuenta que el desarrollo de las
nanomedicinas no es diferente del desarrollo de cualquier producto farmacéutico,
en este sentido, no solamente hay que demostrar su eficacia sino que también es
necesario certificar su seguridad mediante ensayos preclinicos o clinicos, antes de
poder ser aprobados por las autoridades regulatorias®.

A pesar del potencial de las nanoparticulas lipidicas para la administracion
intravenosa de farmacos, son necesarios todavia estudios in vivo para confirmar su
seguridad®. Entre otros, son necesarios estudios de biodistribucion de las
nanoparticulas en modelos animales. La biodistribucion de las nanoparticulas esta
determinada, entre otras, por sus propiedades fisico-quimicas, como el tamafio, la
carga o la naturaleza quimica de la superficie de las mimas. Nystrom y Fadeel5® han
publicado recientemente una revision de los desafios pendientes en el campo de la
nanomedicina para la correcta valoracion de la eficacia y seguridad de las
nanomedicinas, enumerando seis puntos claves a solventar en un futuro proximo:

1. Diseflar métodos de estudio in vitro validados, como tests de
nanoseguridad;

2. Establecer modelos ex vivo relevantes para las diferentes vias de
administracion;

3. Desarrollar modelos in silico para predecir la respuesta bioldgica y
toxicologica de las nanomedicinas;
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4. Mejorar el conocimiento de los procesos de absorcion, distribucion,
metabolismo y excrecion (ADME) de los nanomateriales in vivo;

5. Mejorar el conocimiento de las interacciones entre los nanomateriales y los
diferentes componentes del organismo;

6. Aumentar el conocimiento interdisciplinar y la creaciéon de grupos de
investigacion interdisciplinares para mejorar los procesos de desarrollo de
nanomedicinas desde el punto de vista tecnolégico, clinico, bioldgico y
toxicoldgico.

1-FACTORES DETERMINANTES DE LA BIODISTRIBUCION DE
NANOPARTICULAS TRAS LA ADMINISTRACION INTRAVENOSA

Conocer el comportamiento y la biodistribucién de las nanoparticulas in vivo
se ha convertido en una cuestion de gran interés dentro de la comunidad cientifica
ya que resulta de gran utilidad para predecir la eficacia y la seguridad de las
nanoparticulas.

Una vez en el torrente circulatorio, una de las principales causas de la
desaparicion de las nanoparticulas es el llamado proceso de opsonizacion. Este
fendomeno consiste en el anclaje de proteinas plasmaticas en la superficie de la
nanoparticula y su posterior reconocimiento por parte de los macréfagos, conocidos
como sistema reticuloendotelial (RES) o sistema fagocitico mononuclear (SFM)>'.
Normalmente, la mayoria de las particulas opsonizadas son eliminadas mediante un
mecanismo mediado por un receptor en tan sélo unos minutos debido a la alta
concentracion de células fagociticas en el higado o el bazo, o son excretadas®.
Durante los ultimos 20 afios, se han estudiado numerosas estrategias para
incrementar el tiempo de residencia de las nanoparticulas en el torrente sanguineo
y su acumulacién en tejidos especificos segun el tratamiento para el que han sido
desarrolladas. Las propiedades de superficie de la nanoparticulas pueden favorecer
0 impedir el anclaje de proteinas plasmaticas y asi minimizar la pérdida de
particulas e incrementar el tiempo de circulacion de las mismas. La carga
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superficial, asi como la hidrofobicidad de las nanoparticulas, pueden afectar a la
interaccidn de las particulas con proteinas plasmaticas y el aclaramiento debido a la
accion de los macrofagos, jugando un papel importante en la biodistribucion de las
nanoparticulass4%7,

La interaccion de las nanoparticulas con el sistema bioldgico depende,
entre otros factores, de parametros como el tamafio de particula, la carga
superficial, la composicion, etc...y puede ser modulada mediante diferentes
estrategias como la funcionalizacién de las particulas con diferentes ligandos como
el polietilenglicol (PEG).

Tamarno

Teniendo en cuenta determinados procesos fisioldgicos como la filtracién
hepatica, la extravasacion de tejidos y la excrecion renal, parece obvio que el
tamafio de particula es un pardmetro determinante en la biodistribucion de las
nanoparticulas. Las nanoparticulas con un tamafio de particula medio préximo a
100 nm presentan un tiempo de residencia en sangre prolongado y una relativa baja
captacion por parte del RES. Liu y cols.%® investigaron la biodistribucién de
liposomas con tamafios comprendidos entre 30-400 nm en sangre, higado, bazo y
tumores tras la administracion intravenosa de los mismos. A las 4 h post-inyeccion
observaron que el 60% de los liposomas con tamafios comprendidos entre 100-200
nm se detectaban en sangre, mientras que solo el 20% de la dosis inyectada de
liposomas >250 nm ¢ <50 nm se detectd en sangre. Nanoparticulas poliméricas no
pegiladas de acido polilacticoglicélico, de policaprolactona y de co-polimeros de las
mismas, de tamafos comprendidos entre 90-105 nm, son secuestras rapidamente
del torrente sanguineo en cuestion de minutos y se acumulan mayoritariamente en
el higado y el bazo%®, aunque la pegilacion de las mismas da como resultado una
mayor permanencia de las mismas en el torrente sanguineo®?. Gaumet y cols. en su
revision sobre la influencia del tamafio en la biodistribucion de las nanoparticulas
exponen que nanoparticulas poliméricas (poloxamer 407, PEG-PLGA) o
compuestas de quitosanos, con tamafos entre 30-150 nm, se localizan
principalmente en la médula 6sea, corazdn, rifion y estomago tras su administracion
intravenos 1.
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La acumulacién selectiva de nanoparticulas esté favorecida en algunos
tejidos debido a la presencia de una vasculatura porosa. Entre estos tejidos se
encuentran el higado, el bazo, la médula dsea o los tumores®!, estos Ultimos debido
al denominado fenémeno de permeabilidad y retencion aumentado (EPR). Decuzzi
y cols.®? enfatizan la importancia del tamafio y la forma en la distribucion de las
particulas, sugiriendo el uso de particulas de pequefio tamafio para garantizar una
mayor uniformidad en la biodistribucién de las mismas en modelos tumorales. La
figura 7 muestra la acumulacion en tejidos de particulas de silicona esféricas y no-
esféricas tras su administracion intravenosa en un modelo tumoral de raton.

Cerebro O piscoidales
B Esfirioas
' O Hemiestirioas

B Cilindricas

Rifiones
Bazo
Higado "
Pulmones
Corazbn
0 4 8 14 19 74
% partioulns

Figura 7. Acumulacion en tejidos de particulas de silicona segun su forma en un
modelo tumoral de raton. Re-impreso con permiso de [62].

Carga superficial

La carga superficial juega un papel muy importante en la entrada celular no
especifica y en la adsorcion de proteinas en circulacion sobre la superficie de las
nanoparticulas circulantes. En general, las nanoparticulas cargadas positivamente
se espera que presenten una mayor internalizacion celular no especifica y corta
semivida en sangre®. Ademés, la carga superficial de ciertos tipos de
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nanoparticulas, como las compuestas por éxido de hierro u oro, permite aumentar la
estabilidad y prevenir de una posible agregacion en solucion acuosa por medio de
la repulsion electroestatica®65. He y cols. evaluaron la captacion celular y
biodistribucién de nanoparticulas cargadas negativamente (nanoparticulas de
carboximetil-quitosanos marcadas con rodamina-B) y positivamente (nanoparticulas
de hidroclorhidro-quitosanos)26, Las particulas con carga superficial >-15 mV
presentaron una captacion fagocitica mayor por parte de los macréfagos murinos, y
las particulas con cargas superficiales menores de este valor promovian un mayor
tiempo de residencia de las nanoparticulas en sangre y mayor acumulacion en
tumores en un modelo de ratén tumoral.

Yamamoto y cols. evaluaron el efecto de la carga superficial en micelas
compuestas por co-polimeros de PEG-PLGA mediante ligandos de carga neutra
(tirosina) y negativa (tirosina-glutamina). No observaron ninguna diferencia en el
aclaramiento sanguineo; sin embargo, las micelas cargadas negativamente
presentaron una acumulacién 10 veces menor en el higado y en el bazo 4 horas
después de la administracion intravenosaf’”. Sin embargo, Juliano y cols.
observaron que liposomas neutros y cargados positivamente eran eliminados del
torrente sanguineo mas lentamente que los cargados negativamente, lo que podria
ser explicado por la tendencia a la coalescencia de los liposomas cargados
negativamente en presencia de proteinas e iones calcio en el plasma sanguineo®é.
La inconsistencia de estos resultados ha sido atribuida a los diferentes tipos de
nanoparticulas, a la variacion en la estabilidad de las nanoparticulas en funcién de
la carga superficial, a la naturaleza de los grupos responsable de la carga y a otros
factores, como la falta de homogeneidad en los tamafios de particula.

Composicion

La composicion es un factor determinante de las propiedades
fisicoquimicas de las nanoparticulas. Asi, el tipo de tensoactivo utilizado determina
la carga superficial de las nanoparticulas, la hidrofobicidad de las mismas
determinando la estabilidad de la formulacion. La composicion de las nanoparticulas
condiciona factores involucrados en la biodistribucién de las nanoparticulas
mencionados anteriormente como la carga o el tamafio. De ahi que la composicion
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de las nanoparticulas determine la interaccion de las nanoparticulas sobre los
sistemas bidlogicos. Son estas interacciones las que determinaran el destino de las
nanoparticulas una vez administradas dentro del organismo.

Es conocido que la unidn a proteinas plasmaticas es la mayor causa que
provoca cambios en el tamafio y carga superficial de las nanoparticulas. Este hecho
condiciona, por tanto, el perfil de biodistribucion de las nanoparticulas?™1. El
concepto de corona nanoparticula-proteina esta basado en el hecho de que ciertas
proteinas plasmaticas se unen a la superficia de las nanoparticulas, provocando
cambios conformacionales en la superficie y favoreciendo la fagocitosis por parte
del RES7273, Es un hecho demostrado el que la inestabilidad de las nanoparticulas
in vivo puede llevar a la agregacion de las mismas en el torrente sanguineo e
interferir en su biodistribucién. Los tensioactivos previenen de esta agregacion de
las nanoparticulas y, asi, también disminuyen la formacién de complejos
nanomaterial-proteina que pueden influir en la disposicién y captacién de las
nanoparticulas, pudiendo tener una variedad de implicaciones biologicas y
toxicologicas’ 7>

i. las proteinas unidas a la superficie de las nanoparticulas pueden
enmascarar dicha superficie y asi reducir la respuesta del sistema
inmune sobre las nanoparticulas, reduciendo su toxicidad

i.  la union de proteinas a la superficie de las nanoparticulas puede dar
como resultado una vehiculizacion de proteinas activas ancladas a la
superficie de las nanoarticulas hacia las células

ii.  las proteinas ancladas pueden sufrir cambios conformacionales en su
estructura, desnaturalizandose y previniendo asi de una posible
interaccidn con las células y previniendo de su toxicidad

iv.  la presencia de proteinas a nivel superficial puede interferir en la
deteccion de las nanoparticulas en los ensayos de toxicidad (por
ejemplo, la deteccion de la produccion de citoquinas 7)

v. la adsorcion de proteinas a la superficie de las nanoparticulas puede
mejorar la dispersion de las suspensiones nanoparticuladas (por
ejemplo, previniendo la aglomeracion y agregacion entre
nanoparticulas).
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Por tanto, parece esencial identificar las moléculas bioldgicas que “cubren’
la superficie de las nanoparticulas y cdmo la formacion de complejos nanoparticula-
proteina puede condicionar su eficacia y toxicidad.

La superficie de las nanoparticulas es frecuentemente modificada con la
intencidn de controlar las interacciones nanoparticula-proteina. Por ejemplo, la
pegilacidn es una estrategia consolidada para lograr un aumento de la semivida de
las nanoparticulas en sangre, ya que esta demostrado que disminuye el
reconocimiento de las mismas por parte del RES mediante la introduccion de
propiedades de ‘enmascaramiento” y la reduccién de la adsorcion de proteinas
(opsonizacién)’”. Gref y cols.> fueron los primeros en descubrir las ventajas de la
pegilacién de las nanoparticulas poliméricas. Los autores observaron que una
proporcidn de tan sélo un 0,5% de polietilenglicol (PEG) en nanoparticulas de acido
polilacticoglicolico (PLA) era suficiente para disminuir significativamente la cantidad
de proteinas plasmaticas adsorbidas a la superficie en comparacion con
nanoparticulas no pegiladas. Este mismo efecto del PEG ha sido también descrito
en liposomas’® y nanoparticulas lipidicas’80. En la figura 8 se representa un
esquema con la distribucién preferencial de nanoparticulas condicionadas por una
diferente naturaleza fisicoquimica de superficie y una cantidad de proteinas variable
unida a su superficie’.
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Figura 8. Biodistribucién de nanoparticulas segun las propiedades fisicoquimicas y
la cantidad de proteinas plasmaticas unidas a su superficie. Re-impreso con
permiso de [70].

Se puede concluir que las propiedades fisico-quimicas de las
nanoparticulas (por ejemplo, el tamafio, la carga superficial, la hidrofobicidad, el tipo
y cantidad de tensioactivo) determinan el perfil de unién a proteinas plasmaticas de
las mismas (por ejemplo, la composicién cualitativa y cuantitativa de las proteinas,
la conformacién de las mismas) y condicionan su biodistribucions’.
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2.-NANOPARTICULAS LIPIDICAS PARA LA ADMINISTRACION INTRAVENOSA
DE FARMACOS POCO SOLUBLES

En el afio 1960, Wretlind desarrollaba la primera emulsion lipidica de uso
parenteral (Intralipid®). Este era el comienzo de un nuevo sistema de administracion
de farmacos lipéfilos, en los que estos podian ser faciimente incorporados en
goticulas lipidicas. Diazelmus® (1970) y Diprivan® (1980) son ejemplos de productos
comercializados con éxito basados en este sistema de administracion de farmacos.
La mayor ventaja de las emulsiones lipidicas es la reduccién de efectos adversos
en el lugar de administracidn. Sin embargo, presentan una gran desventaja: la baja
estabilidad fisica del farmaco contenido en estas emulsiones debido a la
disminucion de la carga, puede provocar la agregacion del farmaco, la expulsion del
farmaco o, eventualmente, la ‘rotura” de la emulsions2,

Al igual que para la administracion oral de farmacos lipéfilos poco solubles,
los liposomas son también utilizados para la administracién de farmacos por via
intravenosa. Formulaciones liposomales de uso parenteral comercializadas con
éxito son el Ambisome® (1990, Europa; 1997, EE UU), el DaunoXome® (1996,
Europa y EE UU) y el Doxil® (1995, EE UU; 1996, Europa). Las mayores
desventajas que presentaban estas formulaciones, no totalmente resueltas, era la
limitada estabilidad fisica de las dispersiones, la expulsion del farmaco, la baja
actividad debida a la baja especificidad por los érganos tumorales, el aclaramiento
por parte del RES vy las dificultades en el escalado®.

Las nanoparticulas poliméricas podrian ser consideradas la primera
generacion de sistemas coloidales cuyo objetivo era el de mejorar la administracion
parenteral de farmacos. Su tamafio nanoparticulado, su capacidad para controlar la
liberacion del farmaco y la flexibilidad de su superficie para sufrir modificaciones
fueron las principales caracteristicas que motivaron el estudio de éstas para su
administracién intravenosa. Sin embargo, debido a ciertas desventajas como los
problemas en el escalado a la hora de prepararlos a nivel industrial, el elevado
precio de los polimeros biodegradables, la potencial toxicidad y efecto alérgeno de
los polimeros biodegradables, no existe aun un producto comercializado basado en
‘nano’ particulas poliméricas 35 afios después de ser descritas por primera vez por
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Speiser y Birenbach®. Sin embargo, si que existen en el mercado sistemas
basados en ‘micro” particulas poliméricas como formulaciones depot, como es el
caso del Lupron® para la administracion de leuprolide o Parlodel® para la
administracion de bromocriptina.

Desde los afios 90, un gran numero de investigadores ha centrado también
su interés en la formulacién de farmacos poco solubles basados en SLNs para su
administracién intravenosa. Como se ha mencionado anteriormente, las SLNs
combinan las ventajas de los liposomas, nanoparticulas poliméricas y las
emulsions, pero, al mismo tiempo, minimizan o carecen de las desventajas
asociadas con los mencionados anteriormente. Entre sus ventajas se encuentran el
que, sea posible la encapsulacion tanto de farmacos hidréfilos como lipéfilos, su
habilidad para la liberacién sostenida del farmaco incorporado, su capacidad de
prevenir la degradacion quimica, fotoquimica y oxidativa del farmaco, la
inmovilizacion del farmaco en su matriz solida, el facil escalado para la produccion y
elaboracion de las SLNs y el uso de lipidos solidos de bajo coste en comparacion
con fosfolipidos y polimeros biodegradablesss.

La encapsulacion o la asociacion de farmacos a nanoparticulas altera los
perfiles farmacocinéticos intrinsecos de los farmacos. Factores como la carga de
farmaco, la concentracion del farmaco o la agregacion del farmaco en el nucleo
lipidico, afectan a la cinética de liberacién del farmaco, pudiendo mejorar el perfil de
eficacia y seguridad, la frecuencia de administracion y las fluctuaciones en las
concentraciones plasmaticas del farmaco. En el caso concreto de las SLNSs, el
estado solido de su matriz lipidica a temperatura ambiente favorece la estabilidad
de las mismas, por lo que representan una atractiva estrategia cuando se necesite
una liberacion del farmaco durante tiempos prolongados®®.

Las nanoparticulas lipidicas, ademas de constituir un vehiculo seguro para
incrementar la solubilidad y la estabilidad del farmaco encapsulado, pueden también
ayudar a reducir drasticamente la toxicidad asociada al farmaco mediante la
reduccion de la biodistribucion no especifica mediante su transporte pasivo y activo,
previniendo su secuestro por parte del RES mediante modificaciones de superficie
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de la particula (por ejemplo, pegilacién) y minimizando la interaccion del farmaco
con otros componentes del sistema circulatorio actuando como una barrera fisica.

Las nanoparticulas lipidicas inyectables han sido utilizadas para encapsular
agentes anticancerigenos (por ejemplo, doxorrubicina, etoposido, idarrubicina),
agentes de imagen (6xido de hierro, CdSEe/ZnS)8, antiparkinsonianos
(bromocriptina)??, antiVIH (azidotimidina), antirreumaticos (actarit)®8, antiparasitarios
(diminazene)8?, antihipertensivos (nitrendipino)® y antibiéticos (tobramicina), entre
otros. Entre las ventajas, un aumento del area bajo la curva concentracion-tiempo
(AUC) y del tiempo medio de residencia (MRT), un aumento en la eficacia
anticancerigena, una mayor capacidad de llegada al cerebro y una mayor
concentracién de nanoparticulas en el érgano/célula diana®. En la figura 9
aparecen representados los primeros estudios in vivo de SLNs encapsulando un
agente anticancerigeno (camptotecina) llevados a cabo por Yang y cols. en el afio
199991, En la grafica aparecen representados los perfiles de concentracion
plasmatica del farmaco a lo largo del tiempo. EI AUC y el MRT de la camptotecina
en SLNs resultaron ser 18 veces mayores que las de la camptotecina en solucion.

g

—o— CA-Sal Flasma (1.2 mg CAfcg)
—¥— CA-SLM Zangre (3.3 mg CAkD)
—=— GCA-SLMN Plasma (2.3 mg CAMKg)
—=— CA-SLM Plasma (1.3 mg CAMKg)

Concentracion CA (ng/mL)

5 20 40 60 80 100 130
Tiempo (horas)
Figura 9. Curvas concentracion-tiempo de camptotecina (CA) tras la

administracion intravenosa de camptotecina en solucion (CA-sol) y encapsulada en
SLNs (CA-SLNs). Re-impreso con permiso de [86].
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Por tanto, las nanoparticulas lipidicas constituyen una formulacion
prometedora para la formulaciéon de farmacos poco solubles para administracion
parenteral, sin embargo aun son necesarios numerosos estudios in vivo que
garanticen su uso.
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As mentioned in the introductory section, many efforts are being made for the
development of new technologies to overcome the crescent problem related with
poorly water-soluble drugs. As an alternative, formulations based on lipid
nanoparticles have emerged during the last decade as promising vehicles for poorly
water-soluble compounds. It is important to note that nanomedicines are not
different from other pharmaceutical products insofar as the safety of any new drug or
drug carrier always has to be carefully assessed, through preclinical and clinical
trials, prior to its approval by the regulatory agencies.

Taking into account these considerations, the main objective of the present study
was to design and evaluate NLCs as a vehicle for the delivery of poorly water-
soluble drugs following both the oral and the intravenous routes.

To fuffill this goal, three more specific objectives were considered:

1. To evaluate the tissue distribution of three lipid formulations based on
nanostructured lipid carriers (NLCs) after intravenous administration to rats.
The formulations varied in terms of particle size, surface charge and
surfactant content. The ultimate scope of this work was to gain insight into
how the biodistribution is affected by these physicochemical properties in
order to better optimize new formulations for specific biomedical
applications.

2. To investigate the potential of NLCs as an oral delivery system for poorly
water-soluble compounds. For this purpose, we encapsulated
spironolactone a drug with low solubility (class Il drug according to the
Biopharmaceutic Classification System) that undergoes efficient first-pass
effect. These characteristics made it a good candidate as for being
formulated in lipid nanoparticles.
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3. To investigate the mechanism of transport of NLCs across the intestinal
barrier. The nanocarriers containing saquinavir (SQV), a class IV drug and a
P-glycoprotein (P-gp) substrate, were evaluated in an in vitro Caco-2 model,
simulating the enterocyte barrier, and a Caco-2/Raji cell M inverted culture
model, simulating the intestinal follicle-associated epithelium (FAE model).
The influence of particle size, surface charge and surfactant content of the
NLCs on SQV transport was studied along with the ability of NLCs to
overcome the P-gp efflux.
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ABSTRACT

Nanoparticles for medical applications are frequently administered via parenteral
administration. In this study, the tissue distribution of three lipid formulations based
on nanostructured lipid carriers (NLCs) after intravenous administration to rats was
evaluated. NLCs were prepared by a high-pressure homogenization method and
varied in terms of particle size, surface charge and surfactant content. The %*mTc
radiolabeled NLCs were intravenously administered to rats and radioactivity levels in
blood and tissues were measured. Cmax, AUCo.24 and MRTo.24 were obtained from
the radioactivity level versus time profiles. The radiolabeled nanocarriers exhibited a
long circulation time since radioactivity was detected in blood even 24 h post-
injection. No differences on the MRT values in blood among the NLCs were
observed, inspite of the different particle size and surface charge. The highest
radioactivity levels were measured in the kidney, followed by the bone marrow, the
liver and the spleen. In the kidney there was a higher accumulation of the positive
nanoparticles and, in the liver, negative nanoparticles were more uptaken than
positive ones. NLCs with the largest particle size showed a higher uptake in the lung
and lower accumulation in liver and bone marrow, in comparison with the smaller
ones.

Keywords: size, charge, surfactant, nanostructured lipid carriers, biodistribution, high-pressure homogenization,
mean residence time
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1.-Introduction

Nanotechnology provides important
opportunities in imagining, diagnostics
and therapeutics [1-4].

Nanoparticulated  drug  delivery
systems have the potential to improve
current disease therapies due to their
ability to overcome multiple biological
barriers and to release a therapeutic
compound in the optimal dosage
range. This may result in an
increased  therapeutic  efficacy,
reduced side effects and a better
patient compliance [5]. After the
successful  development of the
submicron  parenteral  emulsions,
continuous efforts have been made to
develop novel colloidal nanocarriers
in order to improve the parenteral
delivery. Nanocarriers have been
employed for the delivery of
anticancer agents [6], imaging agents
[7], antiparasitics [8] agents for liver
[9], the cardiovascular and central
nervous system targeting [10, 11] or
gene therapy [12], among others .

Polymeric nanoparticles were the first
generation of novel colloidal carriers
developed to improve the parenteral
delivery [13]. However, they present
certain disadvantages such as a high

cost of biodegradable polymers,
difficulties when scaling-up, and
potential toxicity [14]. Lipid-based
nanoparticles represent an alternative
to polymeric nanoparticles as they are
generally  composed  of lipid
components that are mostly extracted
from natural sources and are
biocompatible and biodegradable in
vivo. Moreover, numerous lipid
excipients used to prepare lipid
nanoparticles have been employed in
FDA  approved  pharmaceutical
products and have well-established
safety profiles and toxicological data
[15]. Although the potential of lipid
nanoparticles for the intravenous
delivery of drugs has been stated,
there is still a necessity of in vivo
studies establishing their parenteral
acceptability  for  their  further
commercialization [14].

It is important to note that
nanomedicines are not different from
other pharmaceutical products insofar
as the safety of any new drug or drug
carrier always has to be carefully
assessed, through pre-clinical and
clinical trials, prior to its approval by
the regulatory agencies [16]. Nystrom
and Fadeel [16] have recently
postulated  six  challenges to
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overcome in the foreseeable future for
the  safety  assessment  of
nanomaterials, and among these, the
understanding of the absorption,
distribution, metabolism and excretion
(ADME) of the nanomaterials in vivo
is a mainstay. The biodistribution of
nanoparticles is mainly determined by
their ~ chemical and  physical
properties, such as size, charge, and
surface chemistry [17]. Decuzzi et al.
[18] emphasized on the importance of
size and shape in the determination of
particle biodistribution.

Nanoparticles for medical applications
are frequently administered via
parenteral administration. In this
study, the tissue distribution of three
lipid  formulations  based  on
nanostructured lipid carriers (NLCs)
after intravenous administration to
rats was evaluated. The formulations
varied in terms of particle size,
surface charge and surfactant
content. The ultimate scope of this
work was to gain insight into how the
biodistribution is affected by these
physicochemical properties in order to
better optimize new formulations for
specific biomedical applications.

2. Materials and methods
2.1. Materials

Precirol ATO®5 was kindly provided
by Gattefossé (Madrid, Spain). Tween
80 and cetyl trimethyl ammonium
bromide (CTAB) were provided by
Vencaser (Bilbao, Spain). Poloxamer
188 was a gift of BASF (Madrid,
Spain). Miglyol 812 N/F was
purchased from Sasol (Germany).
Na®*mTcO4 was obtained from a
9Mo/*mTc  generator  (Drytec™)
purchased from GE Healthcare Bio-
Sciences.  Ultrapure water was
obtained from a Milli-Q® Plus
apparatus (Millipore). Other chemicals
were all analytical grade.

2.2. Preparation of NLCs

NLCs were prepared by the high
pressure homogenization technique
[19]. Precirol ATO®5 (5 g) (10% wiv)
(solid lipid) and Miglyol 812 (0.5 mL)
(1% wlv) (liquid lipid) were chosen as
lipid matrix. The lipid phase was
melted at 75 °C until a uniform and
clear oil phase was obtained. The
surfactant solution was composed by
Tween 80 (2 or 1% whv) and
Poloxamer 188 (1 or 0.5% wi/v) which
provided negative surface charge (N3
or N1.5, respectively), or Tween 80
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(1% w/v) and CTAB (0.5% wiv)
(P1.5), which provided positive
surface charge. The hot aqueous
phase was then added to the oil
phase and the mixture was sonicated
for 15 seconds to form a hot pre-
emulsion, which was subsequently
homogenized at 80°C and 500 Bar
using a Stansted nG12500
homogenizer (SFP, Essex, UK) for
ten homogenization cycles. In order to
obtain particles with a larger particle
size (N1.5 formulation), the pre-
emulsion undergoing no homo-
genization process was assayed. The
composition  of the evaluated
formulations is summarized on Table
1.

2.3. NLC characterization: size and
zeta potential measurements

The size of NLCs was determined by
photon  correlation  spectroscopy
(PCS) and the zeta potential was
measured by Laser  Doppler
Velocimetry (LDV) using a Malvern
Zetasizer Nano ZS  (Malvern
Instruments  Ltd., Worcestershire,
U.K). Samples were diluted in
MilliQ™ water before measurement.

2.4 Radiolabeling of NLCs

NLCs were labeled with %mTc by
direct labeling method  using
SnClo-H20 as reducing agent under
nitrogen atmosphere [20]. Ascorbic
acid was incorporated as antioxidant
and due to the weak acid pH, to
prevent the hydrolysis of Snz* and
formation of radiocolloids (reduced
and hydrolysed %mTc). Briefly, 100 uL
of an aqueous solution containing
SnClH20 (1%) and ascorbic acid
(5%) were added to 3 mL of NLC
suspension (839 mg/mL) in a vial
under nitrogen atmosphere and
mixed. Then, 1 mL of %mTc-eluate (1-
1.5 mC;), derived from a commercial
99Mo/*mTc generator (Drytec™), was
added to the vial maintaining the
nitrogen atmosphere. The reaction
mixture was gently stirred and
incubated at room temperature for 10
min under slow orbital shaking at 150
rom (Grant-bio, Grant Instruments).
Afterwards, 100 uL of NaHCOs; 0.5M
were added to the labeled NLC
suspension in order to achieve a pH
of 5 (the pH of the original NLC
suspension).
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2.5 Labeling efficiency

Labeling efficiency and stability of the
radiolabeled  formulations  was
performed by two methods, instant
thin layer chromatography (iTLC) and
ultrafiltration. ~ The  radiolabellig
stability was checked for a period of
24h after initial NLCs radiolabeling

The iTLC was carried using silica gel
(SG)-coated strips (Varian Iberica,
S.L.) with acetone as the mobile
phase. Briefly, 5 uL of the labeled
formulation was applied at 1 cm from
the end of the strip and was allowed
to migrate 8 cm from the point of
application. The radioactivity was
quantified by cutting the strip in two
equal halves and then measuring the
radioactivity in a gamma counter
(Packard, Cobra IlI). Free 9mTcOs
migrates with acetone to the front of
the strip while the radiolabeled
formulation remains at the application
point.

By the ultrafiltration method, the
radiolabeled NLC suspension was
centrifuged (3000 rpm, 20 min) using
Millipore (Madrid, Spain) Amicon®
ultra  centrifugal filters (molecular
weight cutoff, MWCO, 100,000 Da).
Free 9mTcOs, was quantified by

measuring the radioactivity in the
filtrate using the gamma counter
(Packard, Cobra Il).

In vivo labeling efficiency was
corroborated by comparing the
radiolabeled NLC biodistribution with
the biodistribution of a mixture
composed by free 9mTcOs and
unlabeled NLCs.

2.6 Biodistribution studies of 99mTc-
NLCs in rats

Biodistribution studies were carried
out in triplicate in Sprague-Dawley
male rats (250-300 g). Animals were
obtained from the University of La
Laguna (Spain). Animals were
handled in accordance with the
Principles of Laboratory Animal Care
[20]. Each rat received 250 ulL (60-65
uCi) of 9mTc-NLCs suspension
intravenously or 1 mL (150-160 uCj)
orally administered under fasted
conditions. At prefixed times (0.25,
0.5, 1, 2, 4, 8 and 24 h) rats were
sacrified. Blood samples were
collected (by cardiac puncture) and
the heart, liver, lungs, kidneys,
spleen, small intestine, brain and one
femur were removed. Bone marrow
was estimated as a 16% (w/w) of the
femur [21]. Organ and blood
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associated activity was counted using
a gamma counter (Packard, Cobra Il).
Thyroid was also removed as a target
organ for free #mTcOy4- detection [22].
Results are expressed as a
percentage of the total administered
dose per gram of tissue and are a
mean of the three rats £ S.D.

In order to check the in vivo
radiolabeling stability, a mixture of
free 9¥mTcOy4 (1-1.5 mC) and the NLC
suspension was injected to establish
the thyroid uptake in rats. At different
time intervals (0.25, 1 and 2h) rats
were sacrificed and radioactivity
measured in blood and organs as
detailed above.

2.7 Pharmacokinetic analysis

Plasma radioactivity levels were
obtained from mice and were pooled
to provide mean concentration data.
Tissue concentrations were equally
obtained.

Pharmacokinetic parameters were
calculated by a non-compartment
method using  WinNonlin 4.1
(WinNonlin Professional version 4.1;
Pharsight Corp.; Mountain View,
California). The maximum
radioactivity levels (Cmax), the mean
residence time (MRTo.24) and the area

under the curve (AUCoy) of
radioactivity  concentration  versus
time up to the last quantificable time
point parameters were used to
compare the different formulations.
The tissue to blood radioactivity ratio
was calculated as the AUC,.
ttissue/AUCo-tplood ratio.

2.8 Statistical analysis

Statistical analysis was performed
using SPSS 17.0 (SPSS®, Chicago,
IL, USA). Normal distribution was
assessed with the  Shapiro-Wilk
normality test. One-way ANOVA in
multiple comparisons followed by
Tukey’s post-hoc test were applied
according to the result of the Bartlett’s
test of homogeneity of variances for
the tissue distribution results. All other
analyses were performed using a
Student’s t-test. Differences were
considered statistically significant at
*p<0.05. Results are expressed as
mean £ SD.

3. Results

3.1 NLCs characterization

In this study, different NLCs were
prepared by the high-pressure
homogenization technique. Previous
studies carried out in our laboratory
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allowed us to set the premises for the
nanocarriers preparation employing
this technique. NLCs composed by
Tween 80 (2%) and Poloxamer 188
(1%) (N3) showed a zeta potential of -
202 mV, particle size of 1506 nm
and polidispersity index (P.l.) of 0.2
(Table 1). When Poloxamer 188 was
replaced by CTAB (1% Tween 80 and
0.5% CTAB) (P1.5) cationic NLCs
(+44+£5 mV) were obtained with a
particle size of 180£7 nm and P.I. of
0.26. When the pre-emulsion was not
subjected to  high  pressure
homogenization, the NLCs,
composed by the surfactants Tween

80 (1%) and Poloxamer 188 (0.5%)
(N1.5), showed a zeta potential of -
19+3 mV, particle size of 424+16 nm
and P.l. of 0.4.

Regarding to radiolabeled particles, a
good radiolabeling efficiency was
obtained with all the formulations.
Particularly, efficiency was 94+3 %
and 93+4 % when it was measured
by ultrafiltration and by iTLC,
respectively. The percentage of free
9mTc in the labeling NLC suspension
did not increase throughout 24 hours
at room temperature, being lower
than 9% for the three formulations.

Table 1. Characterization of the nanoparticles evaluated in the study. The amounts of
Mygliol (1% w/v) and Precirol ATO®5 (10% wi/v) were the same in the preparation of all the
formulations. Data are expressed as mean + S.D. (n=3; S.D: standard deviation). § Higher
than N3 and N1.5 (p<0.05). * Higher than N3 and P1.5 (p<0.001). ¥ Higher than N3

(P<0.05).
N3 N1.5 P1.5

Tween 80 (% wiv) 2 1 1
Poloxamer 188 (% w/v) 1 0.5 -
CTAB (% wiv) - 0.5
Zeta (mV) -20+2 -19+3 +44455
Size (nm) 15016 424+16* 18017
Pl 0.240.03  0.4+0.04* 0.3+0.01
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3.2 Pharmacokinetics of NLCs in
blood

The pharmacokinetic profile of 9mTc
radiolabeled formulations in blood
after intravenous administration to
rats is shown in Figure 1. The highest
radioactivity levels (0.25 h post-
administration) ranged from 2.26 to
069 %ID/g depending on the
administered  formulation.  Radio-
activity was detected 24 h after the
administration of the formulations,
although the levels at this time were
low (approximately 0.1% ID/g). These
results show that the nanocarriers last
in circulation for at least 24 h.
Radioactivity levels measured after
the administration of the P1.5
formulation were higher for the first 2

10.00

ID/gorgan (%)

12
Time (h)

hours than levels measured after the
administration  of the  negative
nanocarriers. No significant difference
was found between the two NLC
formulations with negative charge, N3
and N1.5, in spite of the significant
differences in particle size.

Cmax, AUCo.24 and MRTo.24 obtained
from the radioactivity levels in blood
after the administration of the
formulations are presented in Table 2.
Higher Cmax and AUCo24 were
obtained with the formulation P1.5
than those obtained with the negative
nanocarriers; however, no difference
in MRTo.24 was detected among them.
In all cases, MRTo.24 was around 7 h.

T BT -

16 20 24

Figure 1. Biodistribution profile of %mTc-NLCs in blood after intravenous administration to

rats.
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Table 2. Pharmacokinetic parameters (Crax, AUCo24, MRTo.24) estimated for the *mTc-
NLCs (N3, N1.5 and P1.5) after intravenous administration to rats.

Cmax AUC.24 MRTo.24
%ID/g h %ID/g h

Blood 0.73 4.48 7.02
Spleen 1.40 10.05 8.92
Pancreas 0.19 1.16 7.54

Small intestine 0.32 1.84 7.19

N3 Liver 2.33 22.05 9.32
Kidney 3.90 72.29 9.87

Heart 0.30 1.68 6.56

Lung 0.45 2.51 7.13

Bone marrow 3.38 37.46 9.21

Blood 0.69 4.61 7.44
Spleen 1.18 6.94 6.81
Pancreas 0.37 1.40 6.57

Small intestine 0.41 1.98 6.22

N1.5 | Liver 1.15 7.38 6.57
Kidney 4.59 77.97 9.38

Heart 0.31 1.63 6.74

Lung 2.70 9.02 4.94

Bone marrow 1.49 20.47 9.41

Blood 2.26 7.41 6.61
Spleen 2.10 2.87 9.90
Pancreas 0.74 3.04 6.75

Small intestine 0.93 4.17 6.65

P1.5 | Liver 2.57 11.25 8.69
Kidney 7.41 112.93 10.76

Heart 0.85 2.85 6.71

Lung 1.78 5.69 7.37
Bone marrow 6.75 56.80 10.20
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3.3 Biodistribution of NLCs

The biodistribution of %mTc labeled
formulations  over  time  after
intravenous injection is shown in
Figure 2. After 24 h, radioactivity was
detected in all organs after the
administraton ~ of  the  three
formulations, although nnegligible
radioactivity (<0.01%ID/g from 2 h)
was detected in brain; this is the
reason why Figure 2 does not show
levels in this organ.

Table 2 resumes Cmax, AUCo-24 and
MRTo24 data obtained with the N3,
N1.5 and P1.5 nanocarriers. The
kidney and the bone marrow were the
organs that exhibited greater
exposition to NLCs, since the highest
values of AUCo.24 were measured in
these organs. Moreover, the positively
charged formulation (P1.5) presented
higher accumulation in these organs
than the anionic nanoparticles (N3
and N1.5). The liver and the spleen
presented also high radioactivity
levels, being higher for the
formulation with negative surface
charge and smaller particle size (N3).
The formulation that showed higher
accumulation in the lung was the
anionic formulation with greater size

(N1.5). The organs that showed the
lowest exposition to the nanoparticles
were the pancreas, the small
intestine, the heart and the thyroid,
regardless of the formulation.

The radioactivity measured in thyroid
after the administration of free
9mTcO4 was significantly higher than
that measured after the administration
of the radiolabeled formulations. After
the administration of free 9mTcOg,
radioactivity levels at 0.25 h, 1 h and
2 h were 15.96, 23.66 and 21.80
%ID/g, respectively.  After the
administration of the nanocarriers,
radioactivity levels were in all cases
lower than 1 %ID/g (figure 2). These
results indicate that the radioactivity
measured after the administration of
the formulations corresponds to the
radiolabeled nanoparticles.
Concerning the MRTo.24, the kidney
was the organ for which this value
was the highest for the three
formulations, and in the case of the
cationic NLCs (P1.5) the value was
also elevated in the bone marrow.
The lowest value for the MRTo.24 was
observed in the lung with the anionic
formulation N1.5.
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Figure 2 Biodistribution profile
administration to rats.

Figure 3 shows the AUCiissue/AUChiood
the
formulations. As it can be observed,

radioactivity ratio for

Small intestine

ID/g organ (36)

Time ()

Thyroid

ID/g organ (%)

Time (h)

of 9mTc-NLCs in the removed organs after intravenous

three
formulation).

with all the three formulations the
highest values were retrieved in the
kidney and the bone marrow. The
radioactivity ratio was higher than 1 in
these organs and also in the liver, the

spleen (except the P1.5 formulation),
and the lung (except for the N3
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Figure 3. AUCissue/AUCh004 ratios for the assayed formulations.

4. Discussion

Particulate agents are useful as
carrier systems of drugs, vaccines
and imagining agents, among others.
The knowledge of the biodistribution
profile of the nanoparticles and, more
specifically, how the biodistribution is
influenced by their physicochemical
properties, such as the size or the
surface charge, can be very useful
when  attemping to  design
nanoparticle-based drugs. However,

very few trends have been still
identified [18]. In this study we
elaborated NLCs differing on particle
size, surface charge and surfactant
content and administered them
intravenously to rats. As expected,
the application of the high pressure
homogenization technique allowed us
to obtain NLCs with a lower particle
size and lower polidispersity index
(Table 1). The higher particle size
was obtained when the NLCs were
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not subjected to the high pressure
homogenization process, although the
increment on particle size could also
be due to the lower surfactant
content. Regarding to the surfactants
employed during the preparation of
the NLCs, we obtained positively or
negatively charged nanoparticles: the
combination of Tween 80 and
Poloxamer 188 provided negatively
charged NLCs (N3 and N1.5),
whereas the combination of Tween 80
and CTAB provided positively
charged nanoparticles (P1.5). The
different amount of surfactants in the
negative formulations did not modify
nanoparticle surface charge (-20+2
mV in the N3 formulation vs. -19+3
mV in the N1.5 formulation; p>0.05).
On the contrary, the use of CTAB
instead of Poloxamer 188 resulted on
a significant increase on nanoparticle
surface charge, from negative to
positive (-19£3 mV in the N1.5
formulation vs. +44+5 mV in the P1.5
formulation; *p<0.05).

After intravenously administered, the
radiolabeled nanocarriers exhibited a
long  circulaton  time  since
radioactivity was detected in blood
even 24 h post-injection. Actually, it is
known that the solid state of the lipid
matrix present in these nanoparticles

at body temperature results in a much
slower degradation, making NLCs
attractive carriers for the formulation
of long-acting controlled release
preparations over extended periods of
time [23]. The small particle size of
our nanoparticles (from 150 nm to
424 nm), along with the presence of
hydrophilic surfactants (Poloxamer
188 and Tween 80) could also justify
the prolonged circulation time.
Polyethylene glycol chains (PEG) in
the Tween 80, and the Poloxamer
188 provide “stealth® properties to
nanoparticles [24-26], which may
justify the high MRT values obtained.
Surface modification by pegylation is
a well-established strategy for
prolonging nanoparticle half-life, as it
is known to decrease their recognition
by the reticulo-endothelial system
(RES) [27]. Gref et al. [28] were the
first to report the advantages of
pegylation on nanoparticles, resulting
in a substantial increase in blood
residence of nanoparticles. These
authors observed that a PEG content
in PLA nanoparticles as low as 0.5 wt
% on the surface of the nanoparticles
was able to significally reduce the
total amount of blood protein
absorbed  when compared to
nonpegylated PLA nanoparticles. The
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effect of PEG was previously reported
also for PEG-coated liposomes [29]
and lipid nanocapsules [30, 31]. Due
to all these properties, lipid-based
nanoparticles help to stabilize drugs,
such as peptides, proteins and
nucleic acids, from plasma enzymes
inactivation, providing an enhanced
and significally prolonged biological
activity [32-37].

No differences on the MRT values in
blood among the NLCs were
observed, in spite of the different
particle size, surfactant content, and
surface charge. However, cationic
nanoparticles provided higher
radioactivity levels during the first 2 h
when  compared to  anionic
nanoparticles and, consequently,
higher AUCo.24 (Table 2). This may be
due to a lower uptake of the positive
nanoparticles by the RES organs,
such as the liver or the spleen. The
tissue/blood radioactivity ratio (Figure
3) confirmed the low uptake of the
cationic nanocarriers by the spleen,
and, in the case of the liver, these
positively charged NLCs (P1.5) were
less uptaken than negatively charged
nanoparticles holding similar particle
size (N3). These results are in
accordance to previously reported
studies where positively charged solid

lipid nanoparticles exhibited a low
uptake by the RES system [38, 39].

The highest radioactivity levels,
expressed as %ID/g tissue, were
observed in the kidney, followed by
the bone marrow, the liver and the
spleen (figure 2). In a previous study,
pegylated liposomes were also
detected mainly in these organs after
the intravenous administration to mice
[40]. The uptake into these organs is
largely attributed to the macrophages
residing in these tissues [17]. Taking
into account the weight of the
complete organ, the liver and the
kidney accumulated more
radioactivity, and therefore, higher
amount of nanoparticles. Other
authors  also  reported  higher
radioactivity levels in the kidney after
intravenous administration of
radiolabeled  nanoparticles  and
liposomes [41-43]. The accumulation
of the nanoparticles in the kidney
could be related to their excretion in
urine. The discontinuous endothelium
is a characteristic of the liver and
bone marrow and explain the high
levels of radioactivity in these organs
[17]. In our study, the distribution in
bone marrow was clearly influenced
by the particle size (figure 2), being
higher for the smaller particles (N3
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and P1.5). Snehalatha et al., [42]
found high levels of PLGA 85/15
nanoparticles (105 nm) in the bone
following intravenous administration
of 9mTc labeled nanoparticles to
mice. In the authors opinion, the high
radioactivity levels measured in the
bone were attributed to nanoparticle
uptake by the phagocytic reticulo-
endothelial cells lining the vascular
sinusoids of the bone marrow. As the
particle size increases, more difficult
is the access to bone marrow through
the vascular sinusoids and explain the
lower distribution of the formulation
N1.5 in this tissue.

Overall, brain uptake was negligible
when comparing with other organs
(<0.01%ID/g). Thus, although lipid
nanoparticles have been considered
for brain targeting [44], certain factors
such as particle size, surface
properties (e.g surface charge) or the
presence of hydrophilic surfactants in
these nanoparticles (Tween 80 and
Poloxamer 188) seem not to be
suitable for brain targeting.
Nanoparticles were also found in the
lung (Figure 2). The N1.5 formulation
was the most extensively distributed
in this organ, as indicated by the Cmax
and AUCo24 (Table Il). This
phenomenon could be attributed to

the fact that this nanocarrier
presented a higher particle size and,
thus, the retention in the capillaries
and latter removal from the lung is
likely to happen. The MRT value and
the uptake of this formulation were
lower in the liver and the spleen in
comparison with the smaller particle
size nanoparticles. Likewise, these
low values could be explained by their
retention and elimination in the lung.
When comparing NLCs of similar
particle size and different surface
charge (N3 and P1.5) both
formulations were mainly located in
the kidney and the bone marrow,
although the positively charged
nanocarriers in a higher extension
(Figure 3). It can be also elucidated
from  Figure 3 that anionic
nanoparticles were more uptaken by
the RES (liver and spleen) than the
cationic ones.

The MRT values in most tissues were
closely to those in plasma, which
indicated that unexpected
accumulation should not occur in
these  tissues  with  repeated
administration.  Actually, prolonged
circulation time also entails slow
tissue  accumulaton  of  the
nanoparticles and very slow drug
release [17]. A rapid release
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formulation (within a few hours) would
be more desirable for the NLCs we
have designed

Nanoparticles presenting an electrical
charge, that can be either positive or
negative, when intravenously
administered, bind nonspecifically
many products into their surface,
especifically  blood  components.
Protein binding has been pointed as a
main cause of change in nanoparticle
size and surface charge which leads
to alterations in the biodistribution
profiles and influences pathway-
specific uptake following intravenous
administraton ~ [4, 45].  The
‘nanoparticle-protein corona” concept
is focused on the basis that certain
serum proteins are  wrapping
nanoparticle surface, evoking
conformational changes in the surface
and enhancing phagocytosis by the
RES [27, 41]. Therefore, the influence
of particle size, surface charge and
surfactant content on the
biodistribution profile observed in our
study will be also conditioned by
differences in the binding pattern to
blood components, which make
difficult to stablish a relationship
between the physicochemical
properties of the nanoparticles and
the biodistribution profile.

Taking into account the results
obtained in our study, the potential
clinical  application  of  these
nanocarriers could be focused on the
preparation of long-acting controlled
release formulations. The capacity to
protect against plasma enzymes
inactivation make these nanoparticles
very useful for the administration of
peptides, proteins and nucleic acids,
prolonging their biological activity.

5.- Conclusions

After intravenous administration to
rats, a long permanence of the
nanocarriers in blood and tissues was
observed. The particle size, surface
charge and surfactant content of the
nanoparticles affected to their tissue
biodistribution profile; however, no
differences in the MRT values in
blood among the three formulations
were found. The higher accumulation
of radioactivity after the administration
of the three formulations was
observed in kidney, liver, bone
marrow, and spleen. Comparing the
nanoparticles  presenting  similar
particle size and different surface
charge, we observed a difference on
the biodistribution profile. In the
kidney there was a higher
accumulation  of  the  positive
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formulation and, in the liver, negative
nanoparticles were more uptaken
than positive ones. The nanoparticles
with the largest particle size showed a
higher uptake in the lung and lower
accumulation in liver and bone
marrow, in comparison with the
smaller ones.
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ABSTRACT

The aim of this study was to develop an NLC formulation containing spironolactone
(SPN-NLCs), and to investigate its potential for the oral delivery of poorly water-
soluble compounds. SPN-NLCs were orally administered to rabbits and the
pharmacokinetics of spironolactone and its metabolites was evaluated. As reference
formulation, we administered a syrup. Spironolactone was only detected in a few
plasma samples; hence, metabolite levels were employed for the pharmacokinetic
analysis. The absolute bioavailability of 7a-TMS was significantly higher with the
syrup than those obtained with the SPN-NLCs (0.7 vs 0.4, p<0.05). However, no
significant differences were observed in the bioavailability of canrenone, revealing a
different canrenone/7a-TMS ratio depending on the administered formulation. Orally
administered mTc-radiolabeled SPN-NLCs were mainly detected in the small
intestine. These results suggest the retention of the nanocarriers in the underlying
epithelium and further uptake by the epithelial cells.

Keywords: NLCs, nanoparticles, lipids, bioavailability, biodistribution, spironolactone
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1. Introduction

Among the new chemical entities
identified by current drug discovery
techniques, over a 40% are poorly
water soluble compounds (Dahan and
Hoffman, 2007, Merisko-Liversidge
and Liversidge, 2008, O'Driscoll and
Griffin, 2008, Porter et al., 2008,
Merisko-Liversidge et al., 2003,
Merisko-Liversidge and Liversidge,
2011). From the early nineties
onwards, many efforts have been
made for the development of new
technologies to overcome the
crescent problem related with poorly
water soluble drugs (Trevaskis et al.,
2008, Hauss, 2007, Krishnaiah,
2010).

Lipid-based drug delivery systems
have emerged during the last decade
as promising vehicles for poorly water
soluble compounds (O'Driscoll and
Griffin, 2008, Porter et al., 2008,
Porter et al., 2007, Trevaskis et al.,
2008, Pouton and Porter, 2008,
Jannin et al., 2008, Chen, 2008,
Hauss, 2007, Dahan and Hoffman,
2008, Chakraborty et al., 2009,
Pouton, 2006, Millertz et al., 2010,
Hauss, 2007b). Lipid formulations
enhance drug absorption, and hence,
drug bioavailability, through different

mechanisms. Special attention should
be paid to the ability of lipids to
enhance drug solubilization in the
gastrointestinal  tract, promote
intestinal lymphatic drug transport and
modify enterocyte-based transport
processes (Porter et al., 2007).
Nanosized particles have been shown
to present several advantages such
as increasing solubility, enhancing
dissolution rate and improving
bioavailability (Teeranachaideekul et
al., 2007, Maller et al., 2000,
Florence, 2005). The combination of
nanoparticulated devices with lipids
resulted in the development of a new
class of nanoparticles commonly
known as solid lipid nanoparticles
(SLNs) (Mller et al., 2000). SLNs are
particles made from a lipid being solid
at room temperature and also at body
temperature. They combine
advantages of different colloidal
systems.  Like  emulsions  or
liposomes, they are physiologically
compatible and, like polymeric
nanoparticles, it is possible to
modulate drug release from the lipid
matrix. Moreover, SLNs possess
certain advantages like the lack of
organic solvent usage during the
production process, when prepared
by means of high pressure
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homogenization techniques, and ease
of scale production
(Teeranachaideekul et al., 2007).
However, they present associated
disadvantages such as a relatively
low loading capacity for several
drugs, possible expulsion of the drug
during storage and a high water
content (Muchow et al., 2008).

A second generation of SLNs was
developed to overcome these
limitations: ~ nanostructured lipid
carriers (NLCs). In these
nanoparticles the solid matrix is mixed
with a liquid lipid (oil) to form an
unstructured matrix ~ full  of
imperfections, which flatters an
increase in drug loading capacity of
nanoparticles and avoids or reduces
drug expulsion from the matrix during
storage (Muller et al., 2002, Muchow
et al., 2008, Miller et al., 2000).

Lipid nanoparticles are, therefore, one
of the most promising delivery
systems for the enhancement of
bioavailability of highly lipophilic drugs
(Venishetty et al., 2012) and are also
an alternative drug delivery system to
bypass the first pass metabolism
(O'Driscoll and Griffin, 2008, Porter et
al., 2008, Merisko-Liversidge and
Liversidge, 2008, Venishetty et al.,

2012) Spironolactone is a poorly
soluble drug (class Il according to the
Biopharmaceutics Classification
System) that undergoes efficient first-
pass effect (Overdiek and Merkus,
1987). These characteristics make
spironolactone a good candidate as
for being formulated in lipid
nanoparticles. Although the
absorption of this drug may be
improved by using syrups as
suspending agents, this strategy is
not alwas useful, as in the case of
neonatal patients (Limayem Blouza et
al. 2006).

The aim of this study was to develop
an NLC formulation containing
spironolactone, and to investigate its
potential as an oral delivery system
for poorly water-soluble compounds.
In vivo studies were performed in
order to evaluate the
pharmacokinetics of the drug and the
biodistribution of the nanoparticles.

2. Materials and methods
2.1 Materials

Spironolactone (SPN), lorazepam,
pancreatin from porcine pancreas
(4xUSP) and pepsin were purchased
from Sigma-Aldrich Chemical Co.
(Madrid, Spain). Canrenone and
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lorazepam were obtained from LGC
Standards (Barcelona, Spain) and 7a-
thiomethylspironolactone  (7a-TMS)
from Toronto Research Chemicals Inc
(Toronto, Canada). Precirol ATO®5
(Glyceryl palmitostearate) was kindly
provided by Gattefossé (Madrid,
Spain). Tween 80 was provided by
Vencaser (Bilbao, Spain). Poloxamer
188 was a gift of BASF (Madrid,
Spain). Miglyol 812 N/F (C8-C12
triglyceride) was purchased from
Sasol (Germany). Methanol (gradient
HPLC grade) was obtained from
Scharlau (Barcelona, Spain). Formic
acid was purchased from Panreac
Quimica (Barcelona, Spain). Ultrapure
water was obtained from a Milli-Q®
Plus apparatus (Millipore). Other
chemicals were all analytical grade.
Plasma to prepare standard and
quality controls for the HPLC-MS/MS
analysis was provided by the Basque
Biobank  for  Research-OEHUN
(www.biobancovasco.org) and was
processed following standard
operation procedures with appropriate
ethical approval.

2.2 Preparation of NLCs

SPN-NLCs were prepared by a high
pressure homogenization technique

(Muller et al., 2000). Briefly, precirol
ATO®5 (5 g), Miglyol 812 (0.5 mL)
and spironolactone (250 mg) were
blended and melted at 75 °C to form
a uniform and clear oil phase.
Meanwhile, the aqueous phase was
prepared by dispersing surfactants
tween 80 (2%) and poloxamer 188
(1%) in water (50 mL) and heating to
the same temperature as the lipid
phase. The hot aqueous phase was
then added to the oil phase and the
mixture was sonicated during 15
seconds to form a hot pre-emulsion.
This pre-emulsion was subsequently
homogenized at 80°C and 500 Bar
using a  Stansted nG12500
homogenisizer (SFP, Essex, UK). The
procedure was optimized, being
necessary 10 homogenization cycles
to obtain SPN-NLCs with a
polydispersion index (P.l) lower than
0.2.

2.3 NLC characterization

2.3.1 Size and zeta potential
measurements

Size of SPN-NLCs was determined by
photon  correlation  spectroscopy
(PCS) and zeta potential was
measured by Laser  Doppler
Velocimetry (LDV) using a Malvern
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Zetasizer Nano ZS  (Malvern
Instruments  Ltd., Worcestershire,
U.K). Samples were diluted in
MilliQ™ water before measurement.

2.3.2 Morphology of NLCs

Morphology of SPN-NLCs was
studied using a transmission electron
microscopy (TEM, Philips EM208S).
A negative staining technique with a
2% phosphotungstane acid solution
was performed.

2.3.3 Drug encapsulation efficiency

Encapsulation efficiency (EE) of SPN-
NLCs was calculated by determining
the amount of free drug using a
filtration technique. The SPN-NLCs
suspension was placed in the upper
chamber of Amicon® centrifugal filters
(molecular weight cutoff, MWCO,
100,000 Da, Millipore, Spain) and
centrifuged for 20 min at 3,000 rpm.
The unencapsulated spironolactone in
the filtrate was determined by HPLC-
MS/MS. The total drug content in
SPN-NLCs was determined by
dissolving the ~ SPN-NLCs in
acetonitrile in order to release trapped
spironolactone. The resulting solution
was analyzed by HPLC-MS/MS. The
drug loading content was the ratio of
incorporated drug to lipid (w/w). The

EE and drug loading were calculated
by the following equations:

EE(%) = Wtotal _Wfree
(%) = —22 T 3100

total

. o/ Wtotal _Wfree
Drug loading(%) = —————x100

lipid

where Wiota, Wiee, Wipia Were the
weight of total drug in SPN-NLCs, the
weight of unentrapped drug in
ultrafiltrate and the weight of lipid
added in system, respectively.

2.4 Lyophilization study

Lyophilization was performed for
particle preservation during storage.
SPN-NLCs were firstly frozen at -
20°C and secondly at -80°C before
the lyophilization step. After 24 h,
frozen samples were lyophilized at -
55°C and 0.2 mbar for 48 h (Telstar
Cryodos freeze-dryer). Lyophilized
samples were resuspended in Milli
Q™ water, and then analyzed by
usual inspection for freeze-drying
appearance, rehydration rate and by
measuring the mean particle size and
zeta potential. Trehalose, sucrose
and sorbitol, as most commonly used
cryoprotectors (del Pozo-Rodriguez et
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al., 2009, Mehnert and Mader, 2001,
Konan et al., 2002, Abdelwahed et al.,
2006), were used at three different
concentrations, 5, 10 and 15%, to
evaluate the most suitable stabilizer
for freeze drying our
nanosuspensions.

2.5 In vitro dissolution assay

The in vitro dissolution assay was
performed in simulated gastric fluid
(SGF), with and without pepsin, and
in simulated intestinal fluid (SIF) with
and without pancreatin (European
Pharmacopeia, 2007) using Quix-
Sep® cells (Membrane Filtration
Products Inc, TX, USA) at 37°C under
magnetic ~ stirring. A dialysis
regenerated  cellulose  membrane
having a MWCO between 6,000 and
8,000 Da was used. Previously we
proved the stability of the drug in all
dissolution media and that cellulose
was not a rate limiting membrane for
spironolactone. Membrane was first
soaked in medium for 24 h before
placing it in a Quix-Sep® cell. Five
hundred pL of the SPN-NLCs
suspension was placed in the cell and
introduced into 250 mL of the
medium. At fixed time intervals,
samples were withdrawn from the
medium and analyzed by HPLC-

MS/MS using a previously validated
method. The dissolution test was
carried out under sink conditions.

2.6 In vivo studies

2.6.1 Pharmacokinetic studies in
rabbits

2.6.1.1 Drug administration and
sample collection

The in vivo pharmacokinetic study
was carried out in male New Zealand
rabbits (n=6) (Harlan Laboratories
Models, S.L., Barcelona, Spain) in
accordance with the Principles of
Laboratory Animal Care (Guide for
the Care and Use of Laboratory
Animals,2011)

These  rabbits were  housed
individually and fasted overnight with
free access to water when orally
administered.  Three  formulations
were assayed: 1) spironolactone
solution intravenously administered at
a 0.5 mg/kg dose in the marginal ear
vein of the rabbit (briefly, 10% EtOH,
(viv), 30% polyethylene glycol 400
(viv) and 10% propylene glycol (v/v)
in buffer solution were used to
prepare the spironolactone solution
(Langguth et al., 2005), 2)
spironolactone  suspension  as
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reference  formulation (0.5% in
simplex syrup) orally administered at
a 2 mgkg dose, and 3)
spironolactone loaded NLCs at a 2
mg/kg dose.

Each  animal  received each
formulation in a crossover study. A 7-
day washout period was performed
between the different treatments. At
predefined times (pre-dose, 0.5, 1, 2,
3, 4,6, 10 and 24 h) blood samples
were collected from the other
marginal ear vein of the rabbits in
heparinized tubes. Blood samples
were centrifuged at 3,000 rpm for 10
min at 4°C and the plasma was kept
frozen at -80 °C until analysis.

2.6.1.2 Determination of SPN and its
active metabolites, canrenone and
7a-TMS, by HPLC-MS/MS

HPLC-MS/MS  determination  of
spironolactone  and its  active
metabolites, canrenone and 70-TMS,
was performed with a Waters HT
Alliance 2795 (Waters Corp., Milford,
USA) coupled with a Micromass
Quattro  triple-quadrapole  mass
spectrometer operated in positive
mode and the analytical method was
validated (Food and Drug
Administration, 2001). The system

was controlled by Masslynx 4.1
software (Waters, UK). A reversed-
phase HPLC column (Symmetry C18
4 um, 4.6 x 150 mm) was used at
room temperature. The mobile phase
contained 60% methanol and 40%
(v/v) of aqueous formic acid solution
(0.1%). The flow rate was set at 1
mL/min in isocratic elution and it was
split, with 0.50 mL entering the mass
spectrometer. Electrospray ionization
in the sample introduction and
detection was operated in the
multiple-reaction monitoring (MRM)
mode. Nitrogen was used at flow
rates of 600 L/h. Argon was used as
collision gas at a pressure of 0.35
mL/h. The cone voltage and the
collision energy were optimized for
the MRM ftransitions. The chosen
values were 30 eV for the collision
energy and 40 V for the cone voltage.
The optimum source and desolvation
temperature were set at 150 and
350°C, respectively. Transition ions
miz 340,90—107,30 were selected
for spironolactone, canrenone and
7a-TMS and 320,90—275,20 for
lorazepam  (used as internal
standard). Liquid-liquid extraction was
employed for the plasma sample
preparation with dichloromethane.
The injected sample volume was 25
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uL and the autosampler was set at
4°C. The assay was linear over the
concentration range of 2-80 ng/mL for
spironolactone, and 2-200 ng/mL for
canrenone and 7a-TMS. The intra-
and inter-day coefficients of variation
were both within £ 10%. The bias of
the three analytes at three
concentration levels (low, medium
and high) was within £ 15%. The limit
of quantification was considered the
lowest level included in the calibration
curve (2 ng/mL), where measures of
intra-day coefficient of variation and
bias were always lower than 20%. No
interfering peaks were detected within
the assay.

2.6.1.3 Pharmacokinetic analysis

Pharmacokinetic parameters were
calculated by a non-compartment
method using  WinNonlin 4.1
(WinNonlin Professional version 4.1;
Pharsight Corp.; Mountain View,
California). The maximum plasma
concentration  (Cmax) and  the
necessary time to reach Cmax (Tmax)
were estimated directly from the
observed concentration versus time
profiles. The area under the curve of
plasma concentration versus time up
to the last quantificable time point,

AUCo, was obtained by the linear
trapezoidal method. The AUCo- was
extrapolated to infinity (AUCo_-) by
adding the quotient Ciast/Ke, Where
Cist represents the last measured
concentration and Ke represents the
apparent terminal rate constant. Kg
was calculated by the linear
regression of the log-transformed
concentrations of the drug in the
terminal phase. The half-life of the
terminal  elimination phase was
obtained using the relationship ti=
0.693/ Ko Mean residence time
(MRT) was determined by division of
AUMC (area under the first moment
curve) by AUCp. Absolute oral
bioavailability (F) was calculated from
plasma data of the two metabolites,
as there were not detectable drug
plasma levels, using the following
relationship F = [(dosew x AUCo-
«,0ral)/(d0S€oral X AUCq-1v)] X 100.

2.6.2 Biodistribution studies in rats
2.6.2.1 Radiolabeling of SPN-NLCs

SPN-NLCs were labeled with 9mTc
using SnCl>'H20 as reducing agent
and ascorbic acid as antioxidant (100
uL of a 1% and 5% solution,
respectively), under nitrogen
atmosphere. Labeling was carried out
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adding 0.8 mL of saline solution
containing 1-1.5 mG; of %mTc, derived
from a commercial molybdenum
generator, to a 3 mL volume of SPN-
NLCs. The suspension was shaken
for 10 min at 150 rpm. The labeled
suspension was buffered with 100 pL
of NaHCO3 0.5 M in order to achieve
approximately a pH of 5, which is the
pH of the original suspension.

2.6.2.2 Labeling efficiency

Labeling efficiency of the radiolabeled
formulations was performed by instant
thin layer chromatography (iTLC)
using silica gel (SG)-coated strips
(Varian Iberica, S.L.) with acetone as
the mobile phase. Briefly, 5 L of the
labeled formulation was applied at 1
cm from the end of the strip and was
allowed to migrate 8 cm from the
point of application. The radioactivity
was quantified by cutting the strip in
two equal halves and counting in a
gamma counter (Packard, Cobra Il).
Free 9mTcO4 migrates with acetone
to the front of the strip while the
radiolabeled formulation remains at
the application point. Radiolabeling
efficiency was also confirmed by
filtration: the radiolabeled SPN-NLCs
suspension was placed in the upper
chamber of Amicon® centrifugal filters

(molecular weight cutoff, MWCO,
100,000 Da, Millipore, Spain) and
centrifuged for 20 min at 3000 rpm.
Free 9mTcO4 was quantified in the
filtrate. In all cases, the labeling
efficacy was >90%. The stability of
the labeled formulations was checked
over a period of 24h by iTLC, as
described above.

2.6.2.3 Biodistribution study
performance

Biodistribution studies were carried
out in triplicate in Sprague-Dawley
male rats (250-300 g). Animals were
obtained from the University of La
Laguna (Spain). As previously,
animals were handled in accordance
with the Principles of Laboratory
Animal Care (Guide for the Care and
Use of Laboratory Animals, 2011).
Each rat received 1 mL of the
radiolabelled SPN-NLCs suspension
(150-160 pCi) orally administered
under fasted conditions. At prefixed
times (0.25, 0.5, 1, 2, 4, 8 and 24 h)
rats were sacrificed. Blood samples
were collected (by cardiac puncture)
and the heart, liver, lungs, kidneys,
spleen, small intestine, thyroid, brain
and one femur were removed. Organ
and blood associated activity was
counted using a gamma counter
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(Packard, Cobra Il). The radioactivity
in the organ/tissues was expressed
as the percent of the total measured
radioactivity.

2.7 Statistical analysis

Statistical data were performed with
SPSS 17.0.1 for Windows® (SPSS®,
Chicago, USA) using the Student’s t-
test.

Differences were considered
statistically significant at p<0.05. Data
are presented as mean % standard
deviation (S.D).

3. Results
3.1. NLC characterization

We obtained SPN-NLCs with a
particle size of 150 £ 5 nm and a
surface charge of -20 £ 2 mV with a
P.l lower than 0.2. Figure 1 shows a
SPN-NLC photograph obtained by
TEM. Encapsulation efficiency was
higher than 99% and the drug loading
was 2.46%.

Fig 1. SPN-NLC photograph obtained by TEM.
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3.2 Lyophilization study

Lyophilization of SPN-NLCs without
cryoprotectors  resulted in  the
aggregation of these particles forming
a cake with rubbery aspect. When
sorbitol and sucrose were used as
stabilizers, the lyophilized samples
showed a powdery aspect but
redispersion in  water was not
feasible. By  contrast,  when
lyophilization was carried out with
trehalose as cryoprotector, aspect
was powdery and redispersion in
water was optimum. Figure 2 shows
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the increase in particle size of NLCs
after lyophilization with the three
cryoprotectors at 5% (A) and the
influence of trehalose concentration
on particle size variation (B). The
increment in particle size was lower
when using trehalose as
cryoprotective agent in comparison
with sorbitol or sucrose. No significant
difference was observed in particle
size when using different trehalose
concentrations. In all cases, surface
charge did not change and was
around -20 mV.
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Fig 2. A) Changes on particle size of non-lyophilized and lyophilized NLCs in the
presence of trehalose, sorbitol and sucrose cryoprotectors. B) Influence of trehalose
concentration on particle size variation. FD: Freeze-drying; CR: cryoprotector
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3.3 In vitro dissolution assay

Figure 3 shows spironolactone
dissolution profiles in SGF with pepsin
and in SIF with and without
pancreatin. Drug released levels in
SGF without pepsin were under the
limit of quantification and, thus, data
are not represented in the graph.

A

% SPN released

05 1

% SPN released

a

Time (h)

Time (h)
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Spironolactone release appeared to
be 0.5% in SGF after 2 hours and
less than 5% in the SIF after 8 hours.
As Figure 3 shows, the presence of
enzymes in the SIF dissolution media
did not modify the release profile.

——SGF(presence)

15

——SIF(absence )

eeeeeee

Fig 3. Dissolution profiles of spironolactone from NLCs after their incubation in SGF
in the presence of pepsin (A) and SIF (B) medium in the presence and absence of
pancreatin. SGF: simulated gastric fluid; SIF: simulated intestinal fluid; SPN:

spironolactone
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3.4 In vivo studies

3.4.1 Pharmacokinetic studies in
rabbits

After the oral administration of the
SPN-NLCs and the intravenous
administration of spironolactone, the
parent drug was only detected in a
few plasma samples, and in most
cases, levels were under the limit of
quantification (2 ng/mL). Hence,
plasma  concentrations of its
metabolites, canrenone and 7a-TMS,
were used as surrogates for
biopharmaceutical comparison of the
administered formulations.

Figure 4 shows the mass
chromatograms of drug-free plasma
sample indicating that no endogenous
peaks are present at the retention
times of spironolactone and the two
metabolites, canrenone and 7a-TMS.
This figure also shows that the mass
chromatograms of plasma spiked with
2 ng/mL of spironolactone, canrenone

and 70-TMS. Metabolites were
properly separated under the above-
mentioned conditions.

Figure 5 shows plasma concentration-
time profile of both metabolites after
intravenous administration of
spironolactone (0.5 mg/kg). It is
remarkable that 7a-TMS levels in
plasma were higher than canrenone
levels, with a concentration of 8.56
ng/mL for canrenone and 44.66
ng/mL for 7a-TMS at 0.5 h. In a study
performed by Langguth et al
(Langguth et al., 2005) in rats, the
authors also found higher 7a-TMS
levels than canrenone levels.

Figure 6 shows plasma concentration-
time profiles of both metabolites after
oral administration (2 mg/kg) of
spironolactone as syrup or as SPN-
NLCs. In both cases, 7a-TMS plasma
levels were also higher than
canrenone levels.
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Fig 4. Chromatograms corresponding to drug-free plasma (A) and plasma spiked
with 2 ng/mL of spironolactone (B), canrenone (C), and 7a-TMS (D). On the right the
channel corresponding to the internal standard (lorazepam).
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Fig 5. Concentration-time profiles of both spironolactone metabolites, canrenone
and 7a-TMS, after intravenous administration of spironolactone.
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Fig 6. Concentration-time profiles of both metabolites, canrenone and 7a-TMS, after
oral administration of SPN-NCLs and the syrup.
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Table | shows the pharmacokinetic
parameters (+ SD) of canrenone and
7a-TMS calculated by a
noncompartmental analysis. Absolute
bioavailability (F) of spironolactone,
measured in terms of canrenone, did

91

not show significant differences
between syrup (0.8) and SPN-NLCs
(0.6) (p>0.05). However, F calculated
from plasma levels of 70-TMS was
0.7 for the syrup and 0.4 for NLCs
(p<0.05).

Syrup NLCs v
Canrenone 70-TMS Canrenone 70-TMS Canrenone 70-TMS
tn h 6.01£1.07 597£102 6761106 8091294 6311264 4564099
T h 5204179 5801319 5401134 488+409 0504000 0.50£0.00
Crax ngmL 14901607 442641574 871£223 21761478 847+274 36541883
AUC,  hngimL 1635943513 4786419837 1130542476 2901417494  BTT+724 1379811848
AUC,..  hngmL 177323457 523.92£10380 127153243 34873111618 55184843 172681 27.4
MRT h 10302142 1058219 1079+1.92 12794375 845£277 5921164
F 08102 07401 06102 04102

Table I. Pharmacokinetic parameters of canrenone and 7 a-TMS obtained by a

noncompartmental analysis.*p<0.05
3.4.2 Biodistribution studies in rats

Figure 7 shows the results obtained in
the biodistribution study with the SPN-
NLCs labeled with 9mTc. After oral
administration to rats, radioactivity

was mainly detected in the small
intestine. In the liver and kidney, a
significant level of radioactivity was
also detected. Radioactivity was also
detected in feces in to a significant
degree (data not  shown).
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Fig 7. %radioactivity measure per organ/tissues after oral administration of SPN-

NLCs labeled with 9%mTc.
4. Discussion

The clinical use of many new
chemical compounds is limited due to
their poor water solubility. New lipid
fomulations are emerging in order to
solve this drawback and enhance
drug absorption. In this study, we
have developed a formulation based
on NLCs for spironolactone delivery
by a high pressure homogenization
method. This procedure allowed us to
obtain without the use of any organic
solvent, spherical and homogeneous

in size nanoparticles with an
encapsulation efficiency above 99%.
The lipids employed for the
preparation of the SPN-NLCs, mygliol
and precirol, are recognized as totally
biocompatible, reducing the possibility
of side effects appearance after the in
vivo admistration. Tween 80 and
Poloxamer 188 were used as
surfactants. On the one hand,
poloxamer is an sterically stabilizing
polymer and due to the stearic
hindrance,  induces a  slow
degradation of the nanoparticles
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(Maller et al., 2006). On the other,
hand Tween 80 has been identified as
a lymphotropic excipient due to the
ability to solubilise lipophilic drugs,
inhibit the P-gp and stimulate
chylomicron production (Williams et
al., 2012).

In order to improve the storage
stability of the SPN-NLCs, they were
liophylized. A cryoprotector agent was
neccesary and 5% trehalose showed
to be the most appropriate.

The in vitro dissolution study carried
out under sink conditions showed a
very slow release of spironolactone
from the nanocarriers; this seems to
indicate a high stability of the SPN-
NLCs in the dissolution media.
However, it has to be taken into
account that under the conditions
used for the test, it is unlikely to occur
the hydrolysis of lipids due to the
absence of bile salts (Bakala N'Goma
etal., 2012).

Once the  SPN-NLCs  were
characterized, we evaluated the
pharmacokinetic behavior of the drug
after oral administration to rabbits. As
reference formulation, we prepared a
spironolactone  syrup  for  oral

administration and a solution was
administered intravenously.  Only
spironolactone  metabolites, can-
renone and 7a-TMS, could be
quantified in collected samples.
Plasma half-life of both metabolites
did not show statistical differences
between intravenous and oral
administration of the drug, which
demonstrates that the elimination rate
of both metabolites was not affected
by the absorption process. The levels
of 7oa-TMS, in comparison with
canrenone levels, were higher in all
cases regardless the formulation. The
absolute bioavailability of 7a-TMS
was significantly higher with the syrup
than the absolute bioavailability
obtained with the SPN-NLCs (0.7 vs
0.4, p<0.05). However, no statistically
significant differences were observed
in the bioavailability of canrenone
among formulations. These results
reveal a different canrenone/7a-TMS
ratio depending on the administered
formulation, which could be explain by
differences in  the  absorption
mechanism of the drug.

Spironolactone is a poor water
soluble compound and, therefore, its
absorption is limited by the dissolution
in the gastrointestinal fluid. Lipids
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from the formulation can promote the
absorption of drugs through the
formation of micelles. During the
micelle formation process, the drug
dissolved in the lipid is taken up in the
micelles  (solubilization) and the
formed micelles interact with surface-
active bile salts (e.g. sodium cholate)
leading to the formation of so-called
‘mixed micelles” (Muchow et al.,
2008). This process could promote
the lymphatic absorption that avoids
the first-pass metabolism to a certain
degree, which could explain the
differences in the metabolic profile of
spironolactone between the syrup and
the nanoparticles. However, although
the primary mechanism by which lipid
formulations improve the
bioavailability of lipophilic drugs is the
increase of the dissolution rate
(Kesisoglou et al., 2007), the low
amount of spironolactone released in
the dissolution studies, along with the
lower pasma levels of spironolactone
metabolites obtained with the SPN-
NLCs than with the syrup, suggest
that this might not be the case for the
SPN-NLCs. In our opinion, the high
stability —of SPN-NLCs in the
gastrointestinal tract would lead to a
low dissolution rate of the
spironolactone from the nanoparticles

in vivo. In a previous study, Muller et
al. (Muller et al., 2006) formulated
cyclosporine A into SLNs and orally
administered them to pigs. The drug
bioavailability obtained was low and
the authors attributed it, among other
factors, to a low dissolution rate of the
drug/undissolved drug particles in the
gut.

Since NLCs seem not to improve the
dissolution rate of spironolactone,
another mechanism should be
involved in the absorption of the drug.
It is well known that the NLCs may
also be captured by the epithelial and
M cells and further processed into
blood circulation (Florence and
Hussain, 2001). If this occurs, a high
stability of the nanocarriers in the
gastrointestinal tract is desirable. The
mixture of Tween 80 and Poloxamer
188 in the SPN-NLCs lead to high
stable nanoparticles and, as it was
shown by the dissolution studies,
spironolactone was hardly released.
Therefore, and as it was previously
discussed, the degradation velocity of
lipid nanoparticles highly depends on
its chemical composition, particularly
on the stabilizer or the stabilizer
mixture of the nanoparticles (Muller et
al., 2006). In addition to the
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composition, the particle size also
affects the transport of nanocarriers
through the biological barriers. The
particle size of the SPN-NLCs was
about 150 nm and it is known that
particle size less than 300 nm is
advisable for the intestinal transport
(Charman and  Stella, 1992).
Therefore, the  absorption  of
spironolactone may occur by the
uptake of the SPN-NLCs by the
intestinal cells. This fact could also
justify the differences in the
canrenone/7a-TMS ratio depending
on the administered formulation,
syrup  or  SPN-NLCs.  When
nanoparticles are processed inside
the enterocyte, the drug absorption
may be influenced by the lipids of the
SPN-NLCs, which could favor the
lymphatic ~ pathway leading to
differences in the metabolic profile.

In order to know if SPN-NLCs were
able to be uptaken by the intestinal
wall, a biodistribution study with mTc
radiolabeled nanocarriers was carried
out. The radiotracer technique was
chosen as it is one of the most
appropiate  to  investigate the
absorption, distribution, metabolism
and excreton (ADME) of these
nanomaterials (Zhang et al., 2010).

Following oral administration of
radiolabeled SPN-NLCs, radioactivity
was mainly detected in the small
intestine (figure 7). The intestine of
the rats was cleaned of all food and
waste material and thus, the
radioactivity measured in this organ
corresponded to labeled
nanoparticles trapped in the mucosa.
The lack of radioactivity in the thyroid
confirms  the stability of the
nanocarriers in the gastrointestinal
tract; the opposite would lead to the
absorption of the free 9mTc
(Szymendera and Radwan, 1974;
Saha, 2010) and the radioactivity
levels in the thyroid would be
significantly higher. The presence of
the SPN-NLCs in the intestine along
with the their adhesive properties
(Chen et al, 2010), suggest a
retention of the nanocarrier in the
underlying epithelium. (Das and
Chaudhury, 2010, Chen et al., 2010,
Tarr  and  Yalkowsky,  1989).
Therefore, the  absorption  of
spironolactone and the change in its
metabolic profile when comparing to
the syrup (reference formulation)
could be explained, at least in part, by
the adhesion of SPN-NLCs to the gut
wall and their subsequent uptake by
the epithelial cells.
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5. Conclusion

A new formulation based on NLCs for
the oral administration of
spironolactone  was  developed.
Although  the  bioavilability  of
spironolactone was not enhanced
when administered as SPN-NLCs, a
shift in the metabolic profile was
observed when compared to the
reference formulation. Radioactivity
studies indicated that the SPN-NLCs
were trapped in the intestinal mucosa.
However, and in order to optimize this
formulation, further studies should be
carried out for a better understanding
of the transport across the
gastrointestinal wall.
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ABSTRACT

The aims of this work were (i) to evaluate the potential of nanostructured lipid
carriers (NLCs) as a tool to enhance the oral bioavailability of poorly soluble
compounds using saquinavir (SQV), a BCS class IV drug and P-gp substrate as a
model drug, and (i) to study NLC transport mechanisms across the intestinal barrier.
Three different NLC formulations were evaluated. SQV transport across Caco-2
monolayers was enhanced up to 3.5-fold by NLCs compared to SQV suspension. M
cells did not enhance the transport of NLCs loaded with SQV. The size and amount
of surfactant in the NLCs influenced SQV permeability, the transcytosis pathway and
the efflux of SQV by P-gp. An NLC of size 247 nm and 1.5% (w/v) surfactant content
circumvented P-gp efflux and used both caveolae- and clathrin-mediated
transcytosis, in contrast to the other NLC formulation, which used only caveolae-
mediated transcytosis. By modifying critical physicochemical parameters of the NLC
formulation, we were thus able to overcome the P-gp drug efflux and alter the
transcytosis mechanism of the nanoparticles. These findings support the use of
NLCs approaches for oral delivery of poorly water-soluble P-gp substrates.

Keywords: endocytosis, transcytosis, nanoparticle, P-gp substrate, Caco-2, M cell
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1. Introduction

Most of newly discovered chemical
entities are poorly soluble in water [1-
4]. Enhancing the oral bioavailability
of these poorly water-soluble
compounds is of great interest to the
scientific community and a key area
of pharmaceutical research. One of
the most widely studied strategies in
this regard is nanotechnology [2, 5-8],
because of the ability of nanoparticles
to pass multiple biological barriers
and to release a therapeutic
compound within the optimal dosage
range. Polymeric nanoparticles [9],
lipid nanocarriers [10-12], micelles
[13, 14], nanosuspensions [5, 15]
appear to be promising tools for
delivery of poorly soluble drugs, yet
few have been commercialized.

Among the wide variety of current
nanocarriers, solid lipid nanoparticles
(SLNs) present certain advantages
compared to other colloidal systems,
including that they can be prepared
without an organic solvent and using
suitable large scale production
method (e.g., high  pressure
homogenization) [16]. However, SLNs
have a relatively low loading capacity
for several drugs compared to other
nanocarrier systems, are associated
with possible expulsion of the drug

during storage, and have a high water
content. Nanostructured lipid carriers
(NLCs) are a second generation of
SLNs, which have a solid matrix
mixed with a liquid lipid (oil) to form
an unstructured matrix that helps
increase the drug loading capacity of
nanoparticles and avoids or reduces
drug expulsion from the matrix during
storage [17, 18].

Nanoparticle size and  surface
properties, among other
physicochemical ~ properties  of
nanoparticles, strongly influence the
mechanisms involved in nanoparticle
cell internalization [19-21]. The non-
phagocytic ~ pathways,  involving
clathrin-mediated endocytosis,
caveolae-mediated endocytosis and
macropinocytosis, are the most
common mechanisms of nanoparticle
absorption/transcytosis by the oral
route [22]. Nevertheless, designing
tunable nanocarriers in order to
control the endocytic pathway
remains a challenge. Increasing our
understanding of the mechanisms
and  processes  involved in
nanoparticle transport across the
intestinal barrier and the factors
limiting their transport across this
barrier could help improve the
formulations to enhance drug
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absorption [23-26]. Improved
knowledge of these processes can
help them fulfill their potential as tools
for delivery of poorly water-soluble
drugs by the oral route and provide
new insights in their potential
application for the treatment of
different pathologies using this route.
The aim of this work was, first, to
evaluate NLCs as tools to enhance
the oral bioavailability of poorly water-
soluble compounds using saquinavir
(SQV), a class IV drug in the
Biopharmaceutical Classification
System (BCS), and a P-glycoprotein
(P-gp) substrate, as a model drug
and, second, to study NLC transport
mechanisms across the intestinal
barrier. We evaluated SQV transport
and then conducted a mechanistic
study of NLC transport across an in
vitro Caco-2 model, simulating the
enterocyte barrier, and a Caco-2/Raji
cell M inverted culture model
simulating, the intestinal follicle-
associated epithelium (FAE model)
[27]. The influence of controversial
parameters that could affect
nanoparticle transport, such as the
size and the surfactant content of the
aforementioned nanoparticles, was
investigated and their contribution to
nanoparticle endocytosis and

transcytosis evaluated using
endocytosis inhibitors. Finally, the
ability of these nanocarriers to
overcome P-gp efflux was also
assessed.

2. Materials and methods
2.1. Materials

Saquinavir mesylate (SQV) was
kindly provided by Roche (Mannheim,
DE). Verapamil, chlorpromazine,
nystatin, methyl-R-cyclodextrin
(MRCD), lovastatin, coumarin-6, Rose
Bengal and propidium iodide (PI)
were purchased from Sigma-Aldrich
(St. Louis, MO). Precirol ATO®5 was
kindly provided by Gattefossé
(Madrid, SP). Tween 80 was
purchased from Vencaser (Bilbao,
SP). Poloxamer 188 was a gift from
BASF (Madrid, Spain). Miglyol 812
N/F was purchased from Sasol

(Hamburg, DE). Potassium
dihydrogen phosphate (KH2PQs) and
disodium  hydrogen  phosphate

(Na2HPOs4) were obtained from Merck
(Darmstadt, DE). Acetonitrile
(gradient HPLC  grade) was
purchased from VRW (Leuven, BE).
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2.2. Preparation of the formulations
2.2.1 NLC preparation

SQV-NLCs were prepared using the
high  pressure ~ homogenization
technique [28]. Briefly, Precirol
ATO®5 (5 g), Miglyol 812 (0.5 mL)
and SQV (50 mg) were blended and
melted at 75 °C until a uniform and
clear oil phase was obtained. The
aqueous phase was prepared by
dispersing Tween 80 (2%) (w/v) and
poloxamer 188 (1%) (w/v) or Tween
80 (1%) (w/v) and poloxamer 188
(0.5%) (w/v) in water (50 mL) and
heating to the same temperature as
the lipid phase. The hot aqueous
phase was then added to the oil
phase and the mixture was sonicated
for 15 seconds to form a hot pre-
emulsion, which was subsequently
homogenized at 80°C and 500 Bar
using a Stansted nG12500
homogenizer (SFP, Essex, UK) for
ten homogenization cycles. To obtain
NLCs with an increased particle size,
one of the batches was not
homogenized and the pre-emulsion
was used.

To track the entry of nanoparticles
into the cells, SQV-NLCs were
labeled with the fluorescent dye
coumarin-6.  Briefly, 5 mg of

coumarin-6 were incorporated in the
lipid phase of the formulation and the

preparation continued as
aforementioned.
2.2.2 SQV suspension

To evaluate free SQV transport
compared to nanoparticle transport,
an SQV suspension was prepared.
SQV (50 mg) was dispersed in a
transport buffer (Hank’s Balance
Solution Buffer, HBSS) (50 mL). The
concentration of SQV was calculated
by dissolving the SQV suspension in
acetonitrile  and  analyzing the
resultant solution by HPLC.

2.3. NLC characterization

231 Size and zeta potential
measurements

The size of the NLCs was determined
using photon correlation spectroscopy
(PCS) and the zeta potential was
measured using Laser Doppler
Velocimetry (LDV) with a Malvern
Zetasizer Nano ZS  (Malvern
Instruments Ltd., Worcestershire,
U.K). Samples were diluted in
MilliQ™ water before measurement.

2.3.2 Surface hydrophobicity of
nanoparticles
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The surface hydrophobicity of the
NLCs was evaluated using the Rose
Bengal method [29].  Briefly,
increasing nanoparticle
concentrations were diluted to a
constant 20 pg/mL Rose Bengal
solution. The surface of the
nanoparticles and the aqueous phase
were considered as two phases. The
absorption of the hydrophobic dye to
the  nanoparticle  surface  was
measured by calculating the
partitioning coefficient (PQ). The PQ
values were plotted versus the
increasing nanoparticle
concentrations. The surface
hydrophobicity of the nanoparticles
was quantified by the slope of the
line. The slope increases with
increasing surface hydrophobicity.

2.3.3 Drug encapsulation efficiency

The encapsulation efficiency (EE) of
SQV-NLCs was calculated by
determining the amount of free drug
using a filtration technique. The SQV-
NLCs suspension was placed in the
upper chamber of Amicon® centrifugal
filters  (molecular weight cutoff,
MWCO, 100,000 Da, Millipore, Spain)
and centrifuged for 20 min at 1500 g.
The unencapsulated SQV in the
filtrate was determined using HPLC.

The total drug content in the SQV-
NLCs was determined by dissolving
the SQV-NLCs in acetonitrile to
release trapped SQV. The resulting
solution was analyzed using HPLC.
The drug loading content was the
ratio of incorporated drug to lipid
(Wiw).

Encapsulation efficiency and drug
loading, each determined in triplicate,
were calculated as follows:

EE(%)= Am.o.untof NVInNLCs 100
Initial amount of SQV

Amountof SQVinNLCs ¥100

Drug loading(%) = —~—
Amountof lipidinNLCs

Coumarin-6  encapsulation ~ was
assessed by ultracentrifuging
coumarin-6-SQV-loaded NLC

suspension (1,500 g, 20 min) using
Millipore (Madrid, Spain) Amicon®
ultra centrifugal filters (molecular
weight cutoff, MWCO, 100,000 Da).
Free coumarin-6 present in the filtrate
was then measured using fluorimetry
(SFM 25  fluorometer,  Konton
Instruments).
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2.3.4. Determination of saquinavir by
HPLC

HPLC for SQV was performed with a
Waters 1525 HPLC Binary Pump
(Waters Corp., Milford, USA). The
detector was a Waters 2487. The
system was controlled by Breeze
software (Waters, UK). A Nucleodur
100-5 C18 5 ym (4 mm x 125 mm)
was used at room temperature. The
mobile  phase contained 46%
acetonitrile and 54% (v/v) of 70mM
KH2PO4 adjusted to pH 5 with 80 mM
NazHPOs, as previously reported by
Albert et al. [30]. The flow rate was
set at 1 mL/min in isocratic elution
and the injected sample volume was
50 L, except for the analysis of SQV
under certain inhibitors for which a
sample volume of 100 pL was
necessary to reach the limit of
quantification. The assay was linear
over the SQV concentration range of
0.025-15 ug/mL. The intra- and inter-
day coefficients of variation were both
within £ 5%. The limits of detection
(LOD) and of quantification (LOQ) of
SQV were 0.0125 pg/mL and 0.025
Mg/mL, respectively. No interfering
peaks were detected within the assay.

2.4. In vitro dissolution assay

The in vitro dissolution assay was
performed in HBSS (transport buffer
during the in vitro assays) using Quix-
Sep® cells (Membrane Filtration
Products.Inc, TX, USA) at 37°C under
magnetic  stirring. A dialysis
regenerated cellulose membrane with
an MWCO between 6,000 and 8,000
Da was used. The membrane was
first soaked in medium for 24 h before
placing it in a Quix-Sep® cell. Five
hundred microliters of the SQV-NLCs
suspension was placed in the cell and
introduced into 200 mL of HBSS.
After 2 h, samples were withdrawn
from the medium and analyzed by
HPLC using the abovementioned
method. The dissolution test was
carried out in triplicate for each
formulation under sink conditions.

In addition, in order to assess the
stability of the nanoparticles in the
gastrointestinal tract, the in vitro
dissolution assay was performed in
simulated gastric fluid (SGF) and in
simulated intestinal fluid (SIF) as
described in  the  European
Pharmacopeia (European Pharma-
copeia, 2010) and performed as
abovementioned. Samples  were
withdrawn after 2 h and 8 h in SGF
and SIF, respectively.
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2.5. In vitro culture studies

2.5.1 Cell cultures: Caco-2 and FAE
monolayers

All cell culture media and reagents
were purchased from Invitrogen
(Merelbeke, BE). Caco-2 cells (clone
1) were kindly provided by Dr Maria
Rescigno, University of Milano-
Bicocca (Milano, Italy) [31] and used
from passage x+12 to x+30. Human
Burkitt's lymphoma Raji B cell line
was purchased from American Type
Culture Collection (Manassas, VA,
USA) and used between passages
102-110. Caco-2 cells were grown in
DMEM supplemented with 10% (v/v)
inactivated fetal bovine serum, 1%
(v/v) non-essential amino-acids, and
1% (v/v) L-glutamine, at 37°C under a
10% CO2/90% air atmosphere. Caco-
2 cells were grown on inserts in the
same  medium,  but  further
supplemented with 1% (v/iv) of
penicillin-streptomycin  (PEST). Raiji
cells were grown in a suspension
culture, cultivated in RPMI medium
supplemented  with  10%  (v/v)
inactivated fetal bovine serum, 1%
(v/v) non-essential amino-acids, 1%
(v/v) L-glutamine, and 1% (v/v) PEST,
at 37°C in a 5% CO0295% air
atmosphere.

Caco-2 cells were seeded at a density
of 5x105 cells/well on Transwell®
polycarbonate inserts (12 mm insert
diameter, 3 ym pore size) (Corning
Costar, Cambridge, U.K.) and
cultivated over 21 days. The medium
was replaced every second day. The
inverted FAE model was obtained by
co-culturing Raji and Caco-2 as
previously reported by des Rieux et
al. [27, 32]. Briefly, after 3 to 5 days of
Caco-2 seeding, inserts were
inverted, a piece of silicone tube was
placed into the inserts and maintained
until day 21 in large petri dishes. The
medium was replaced every other
day, until day 9-11 when Raji cells
were then added to the basolateral
compartment for the conversion of
Caco-2 cells into M cells at a density
of 2.5x10° cells/well.

2.5.2 Cytotoxicity studies

Cell viability was assessed after the
co-incubation of 20,000 Caco-2
cells/well on a 96-well tissue culture
plate (Costar® Corning® CellBIND
Surface) with the aforementioned
formulations by the  3-(4,5-
dimethylthiazol-2-yl)-2,5  diphenylte-
trazolium bromide (Sigma-Aldrich,
BE) assay (MTT assay) and the
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measurement of lactate  dehy-
drogenase (LDH) activity released
from the cytosol of damaged cells
(LDH assay) (Roche Diagnostics
Belgium, Vilvoorde, BE) following
manufacturer’s instructions [33].

The ICsos for the different
formulations were calculated using
the GraphPad Prism 5 program (CA,
USA). All MTT assays were repeated
in triplicate.

The LDH release induced by the
different nanoparticles did not exceed
25%, even for the highest
concentration.

The integrity of the monolayer was
also corroborated by measuring the
trans-epithelial electrical resistance
(TEER) before and after the transport
studies on day 21. The mea-
surements were carried out at 37°C
using an epithelial voltohm meter
(EVOM, World Precision Instruments,
Berlin, DE). TEER values over 200 Q
cm? for Caco-2 monolayers and over
100 © cm? for Caco-2/Raiji coculture
were used. TEER values were not
significantly different to initial values
unless otherwise stated.

2.5.3 Evaluation of SQV permeability
across intestinal in vitro models

The permeability of SQV across
gastrointestinal in vitro models was
evaluated by comparing free SQV
with SQV-NLC formulations, in Caco-
2 and Caco-2/Raji co-culture cells.
The experiments were conducted at
37°C or 4°C by adding a volume of
400 pL at 44 pg/mL SQV
concentration in HBSS on the apical
side and 1 mL of HBSS on the
basolateral side. After 2h of
incubation, samples were collected
from the basolateral side and SQV
concentration was measured by
HPLC: The apparent permeability
coefficient  (Papp, Cm 1) was
calculated according to the following
equation [23, 34]:

Papp= dQ/dt x 1/ACo
where dQ/dt is the transport rate
(ngfs), Co is the initial drug
concentration on the apical side
(ng/mL), and A is the surface area of
the membrane filter (cm2).
After transport experiments, cell
monolayers were washed twice in
cold HBSS and fixed in
paraformaldehyde (PFA) 4% for
subsequent staining.
For the assessment of FAE model
functionality in each experiment
transport studies were conducted
under the aforementioned conditions
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with commercial fluorescent
carboxylated nanoparticles (0.2 um)
(Gentaur, BE) [26, 35]. A nanoparticle
suspension (400 puL) with final
concentraton of 45 x 109
nanoparticles/ml was added on the
apical side and inserts were
incubated at 37°C for 2 h. After this
incubation time, basolateral solutions
were then sampled and the number of
transported nanoparticles measured
using a flow cytometer (BD
FACSCalibur). Nanoparticle transport
was expressed as mean = S.D.

2.5.4 Mechanisms of transport of
SQV-NLCs across Caco-2 cells

In order to evaluate the endocytosis
mechanisms involved in SQV-NLC
transport across Caco-2 cells, the
monolayers were pre-incubated for 1
h at 37°C with 400 pL of a solution
consisting of different concentrations
of endocytosis inhibitors in transport
buffer. After 1 h, SQV-NLC were
added into the inhibitor solution on the
apical side and co-incubated for 2 h.
Chlorpromazine 10 ug/mL was used
as an inhibitor of receptor-mediated
and clathrin-mediated endocytosis
[23, 34]. The endocytic pathway of
caveolae/lipid raft mediated

endocytosis was inhibited  with
nystatin 50 pg/mL [36, 37]. MRCD 10
mM in the presence of lovastatin 1
ug /mL, an inhibitor of de novo
synthesis of cholesterol [38], was
used for the inhibition of caveolae and
clathrin-mediated ~ pathways by
cholesterol depletion [38].

As mentioned previously, SQV is a
well-known P-gp substrate [39, 40].
To evaluate the role of SQV-NLCs in
the inhibition of P-gp, cells were
pretreated with a solution of 100 uM
verapamil, a well-known P-gp inhibitor
[40, 41], for 1h and nanoparticles
were subsequently added on the
apical side and incubated for 2 h in
the presence of verapamil. The
evaluation of SQV suspension Papp
was also carried out under P-gp
inhibition to confirm that SQV was a
P-gp substrate in our Caco-2 cell
model.

In all the assays carried out in the
presence of inhibitors, several inserts
were kept as controls and the
transport studies were carried out in
transport buffer instead of in inhibitor
solutions.

2.5.5 Intracellular  uptake  of
nanoparticles by Caco-2 cells
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Entry of nanoparticles into Caco-2
cells was studied quantitatively by
flow cytometry and qualitatively by
confocal laser scanning microscopy
(CLSM), for which coumarin-6 (Aem=
505 nm) loaded nanoparticles were
employed.

For the flow cytometry study, Caco-2
cells were seeded in 24-well cell
culture plates at a density of 5x10°
cells per well and allowed to adhere
for 48 h until confluency. As for the
transport studies, cells were co-
incubated with 400 L of a coumarin-
6 loaded nanoparticles suspension in
transport buffer (17.5 uL per 100 pL
of buffer). After 2 h of incubation with
fluorescent nanoparticles, cells were
washed three times with PBS and
detached from the plates by
trypsinization.  Cells were then
centrifuged at 1,500 x g, the
supernatant was discarded, the cells
were resuspended in PBS and
fluorescence was measured using a
BD FACSCalibur flow cytometer and
BD CellQuest software (Becton
Dickinson Biosciences, San Jose, CA,
US). Cell fluorescence was quantified
by measuring the fluorescence of
coumarin-6 at 525 nm (FL1). To avoid
fluorescence overestimation inside
the cells from free dye entry,

coumarin-6 was added as a solution
(100 pg/mL) and prepared as
described by Rivolta et al. [42]. For
cell viability ~measurements, the
propidium iodide reagent was
employed. The reagent was added to
each sample at a final concentration
of 10 pg/mL, and, after 10 min of
incubation, the fluorescence
corresponding to dead cells was
measured at 620 nm (FL2). For each
sample, 10,000 events were
collected. The data were
subsequently analyzed using the
FlowJo data analysis software
package (TreeStar, USA). In the case
of inhibition studies, cells were pre-
treated 1 h with the inhibitors used for
the transport mechanisms studies
(section 2.5.4).

For the CLSM study, the Transwell®
inserts fixed in PFA 4% were gently
washed in HBSS. Actin was stained
with 200 pL of rhodamine-phalloidine
(1:50) in buffered HBSS+0.2% (v/v)
Triton X-100 for 10 min in the dark to
reveal cell borders, as described by
des Rieux et al. [26]. Cell nuclei were
stained  with DAPI (1:20).
Subsequently, inserts were washed in
HBSS, cut and mounted on glass
slides. Images were captured using a
Zeiss™ confocal microscope (LSM
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150). Data were analyzed by the Axio
Vision software (vs 4.8) to obtain y-z,
x-z and x-y views of the cells
monolayers.

2.6. Statistical analysis

Statistical analysis was performed
using the GraphPad Prism 5 program
(CA, USA). Normal distribution was
assessed with the Shapiro-Wilk
normality test. One-way ANOVA in
multiple comparisons followed by
Tukey’s post-hoc test were applied
according to the result of the Bartlett's
test of homogeneity of variances for
the 37°C and 4°C transport
comparison. All other analysis were
performed using a Student’s t-test.
Differences were considered
statistically significant at *p<0.05.

Results are expressed as mean *
SD.

3. Results and discussion

3.1 NLC characterization

Three lipid formulations differing in
particle size and surfactant content,
all negatively charged. Particle
characterization and compositions of
the different formulations are
summarized in Table 1.

The composition of  these
nanoparticles was based on results
from previous studies on lipid
nanoparticles carried out in our
laboratory [43].



Journal of Controlled Release 166 (2013) 115-123 113

Table 1. Summary of formulation composition and particle size, zeta potential and
polydispersity index (P.l.) per formulation (n=3; data are expressed as mean £ SD).

NLC
formulations
A B C
Composition Tween 80 (g) 1 0.5 0.5
Poloxamer 188 (g) 0.5 0.25 0.25
Precirol ATO® 5 (g) 5 5 5
Mygliol 812N/F (mL) 0.5 0.5 0.5
SQV (mg) 50 50 50
H,O (mL) 50 50 50
Homogenization Yes Yes No
Characterization Size (nm) 165+6 247+4 1,090+6
Zeta (mV) 22148 -33+7 -3145
P.l. 0.16 0.35 0.6
Surface
hydrophobicity
(slope) 0.054 0.040 0.008
EE (%) 99+0.2 99+0.02 99+0.14
Drugloading (%)  0.90+0.00 0.90+0.00 0.90+0.00

All the formulations had an EE of
~100% and drug loading of ~1%.
Reduction in the amount of surfactant
present in the formulation led to an
increased particle size (1656 nm vs
247+4 nm for formulations A and B,
respectively). ~ Moreover,  when
formulation B was prepared without
further homogenization (formulation
C), the particle size varied from the
nanometer to the micrometer range
(24724 nm vs 1090+6 nm for
formulations B and C, respectively),
highlighting the importance of the
preparation method in obtaining
different nanoparticle size. Although

SQV is considered a model drug, the
low drug loading of SQV (~0.90%;
therapeutic dose 1g twice a day)
compromises the foreseen application
of these nanocarriers to reach an
efficient  therapeutic dose (e.g.
budesonide, 9 mg once a day in
Crohn’s disease).

There were no differences in
nanoparticle parameters and EE of
SQV when incorporating coumarin-6
(5 mg) into the formulations (data not
shown). There was a difference in
nanoparticle surface hydrophobicity
between the three formulations:
formulation A had a greater slope
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and, thus, greater hydrophobicity
compared to formulations B and C.
Formulations B and C had the same
amount of surfactant but formulation
B had greater hydrophobicity than
formulation C, which can be explained
by the different surface areas of the
two formulations [29].

3.2 In vitro dissolution assays

An in vitro dissolution study was
performed to ensure that SQV was
not released from the NLC
formulations during the in vitro
transport studies. The amount of drug
released from the NLCs into the
transport buffer medium (HBSS)
during 2 h of incubation at 37°C was
analyzed by HPLC (n=3). For the
three formulations, SQV release was
less than 0.4% indicating that the
differences in the subsequent data
were not the result of greater
dissolution (maximum solubility of
SQV mesylate in HBSS ~50 pg/mL
[43]).

Moreover, for the three formulations,
the drug released from NLCs in SGF
media after 2 h of incubation at 37°C
was below the LOD
(LOD<0.0125ug/mL)  (n=3). SQV
release was below the LOD after 2 h

and less than 5% in SIF media after 8
h of incubation 37°C (n=3).

3.3 In vitro evaluation of SQV
transport across the intestinal barrier

3.3.1 SQV permeability evaluation
across enterocyte-like and M cells-like
models

The main aim of the present study
was to evaluate the potential of NLCs
as suitable carriers for poorly water-
soluble drugs using SQV as a BCS
class IV model drug. For this purpose,
we evaluated the permeability of SQV
across the enterocyte-like model
(Caco-2 monolayers) and the FAE
model (Caco-2/Raiji cell monolayers).
We confirmed the conversion of
Caco-2 cells into M-cells in the FAE
model by measuring the number of
commercial carboxylated particles
transported using a flow cytometer.
After 2 h of incubation, the number of
transported  nanoparticles ~ was
significantly higher in the M-cell model
than in the Caco-2 model
(82,633+6,443 nanoparticles, versus
108191, respectively; n=4, p<0.05).

We compared the permeability values
obtained for each nanoparticle
formulation with the permeability
values of free SQV as a suspension.
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Figure 1 represents the Pap, data
obtained for the assayed formulations
after 2 h of incubation in the

I —

5051059 "o
- —
(4] Fk
& 4.0x105
£
s
o 3.0x10-4
&
o
£ 2.0x10-°4
©
2 1.0x10°
3]
(73]

0-

Caco-2 monolayer

enterocyte-like Caco-2 model and the
FAE model.

free SQV

formulation A

formulation B
E=] formulationC

FAE monolayer

Fig 1. Saquinavir (SQV) Pap, values obtained after 2 h of incubation of the three NLC
formulations (A,B and C) with a SQV suspension in the Caco-2 model and the FAE model.
(n=9, mean * S.D, *p<0.05, **p<0.01, ***p<0.001).8p<0.05 versus Caco-2 monolayers.

In the Caco-2 model, the increase in
SQV Papp values for the nanoparticle
formulations compared to free SQV,
is highlighted. It is remarkable to note
the 3.5-fold increase in the SQV Papp
with formulation B compared to free
SQV  (p<0.001), and the 2-fold
increase compared with the two other
NLC formulations (A and C) (p<0.01).
These SQV Payp values are greater
than previously reported values
obtained across Caco-2 monolayers
and ex vivo transport studies using
different strategies for enhancing

SQV permeability [45, 46]. These
data confirm that NLCs are suitable
carriers ~ for  enhancing  the
permeability of poorly water-soluble
drugs.

The size of the nanoparticles did not
influence SQV Pgapp values in the
Caco-2 model, because there was no
significant difference between the Papp
values of formulation A (1656 nm)
and C (1,090£6 nm) (1.73 x 10-
5+2.23 x 106 cm/sec versus 1.73 x
10-5+£2.09 x 106 cm/sec, respectively;
n=9, p>0.05). However, in the M cell
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model, there was a significant
increase in the Papp of formulation C
compared to free SQV (p<0.095),
which  was not observed with
formulations A or B (p>0.05). The use
of microparticles for targeting M cells
has been studied previously by other
authors [47, 48].

In contrast to polymeric nanoparticles
[32], the permeability of the drug from
the submicron NLCs was not
increased in M cells. Hence, the
subsequent  evaluation of the
transport mechanisms and the
intracellular uptake was evaluated
only in the Caco-2 cell model.

3.3.2 Intracellular uptake in Caco-2
cells

In Figure 2 we can see the flow
cytometry results (Figure 2A) and the
CLSM images (Figure 2B and 2C)
corresponding to the cellular uptake
of the nanoparticle formulations and
free coumarin-6. Cell viability was
assessed by staining dead cells with
Pl and was greater than 90% in all
cases unless otherwise stated.
Untreated cells were used as
controls.
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Fig 2. Flow cytometry analysis of the cellular uptake study of coumarin-6 NLCs (green) in
Caco-2 cells (A) and CLSM images (B and C) of the inserts after 2 h of incubation with the
nanoparticles. A) Nanoparticles and free coumarin-6 entrance into the cell measured by flow
cytometry. Untreated cells are shown as control (n=3; ***p<0.001). B) a, b and ¢ correspond
to y-z sections of CLSM images of the inserts for formulations A, B and C, respectively. Cell
membranes are stained in red with rhodamine-phalloidine and cell nuclei in blue with DAPI.
C) y-z, x-y and x-z sections of formulation A CLSM images with which the higher uptake rate
was recorded.
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The cellular uptake of NLCs was size-
dependent (formulation A> B> C; n=3,
***p<0.001; Figure 2A). This finding is
consistent with Rejman et al. [19] who
also reported a tendency to
decreased internalization  with
increased particle size. These authors
studied the pathway of entry and
subsequent fate of commercial latex
nanoparticles inside the cell and
concluded that particles with a
diameter <200 nm enter the cell via
clathrin-mediated endocytosis
whereas larger particles (200 nm-1
um) enter preferentially via caveolae-
mediated endocytosis. Moreover, the
surface  hydrophobicity of the
nanoparticles may also determine
nanoparticle entrance into Caco-2 cell
because the larger uptake into the
cells is correlated with the higher
nanoparticle surface hydrophobicity
(formulation A>B>C) [27]. Gaumet et
al. [21] found that the surface
hydrophilicity of polymeric
nanoparticles was a critical factor for
nanoparticle uptake and Liang et al.
[49] reported that gold nanoparticles
were more efficiently taken up with
increasing hydrophobic interactions
with the membrane of Caco-2 cells. In
our study, nanoparticle size and
surface hydrophobicity were major

factors influencing NLC entrance into
the cell.

The Papp values for SQV formulated in
NLCs did not correlate with their
intracellular uptake. Formulation B
exhibited higher SQV Papp values than
did formulations A and C but did not
have a greater intracellular uptake.
Figure 2B shows that NLCs
penetrated inside the Caco-2 cells
whatever the formulation.

3.3.3 Mechanistic study of SQV-NLC
transport across Caco-2 cells

3.3.3.1 Influence of temperature on
NLC transport

The second objective of the present
study was to evaluate the
mechanisms of transport used by the
different NLC formulations to estimate
whether  the  differences  on
permeability were due to different
entry pathways. For this purpose, we
first focused on the type of transport:
passive or active. Although lipid
nanoparticles are known to enter into
cells in an active endocytic manner
[34], we assessed this phenomenon
in Caco-2 and FAE monolayers. It is
well-established  that at 4°C
pinocytic/endocytic uptake is
inactivated [50]. Figure 3 illustrates
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the influence of temperature on the
transport of nanoparticles and SQV

5.0%10 *-

S 4.0x10°- —
@

E =
< 3.0x10°% o
2 e
® -
T 2.0x107- &
= [
p =
£ ]
5 1.0x107 Z
[y L]
n o

suspension across Caco-2 and FAE
monolayers.

B re-sov

% form ulation A
E==) formulationB
E= formumntionc

-
s
=
=
I-I.
=24
-
=
=
o

LJ ¥ T 4 L] L) L
37°C 4°C 3T7°C 4°C 3T°C 4°C 3IT°C 4°C 3T°C 4°C 3T°C 4°C 3IT°C4°C 3I7°C4°C
L ;

Caco-2 monolayer

FAE monolayer

Fig 3. Influence of temperature on nanoparticle and free SQV transport in Caco-2 and FAE
monolayers after 2 h of incubation at 37°C and 4°C. (n=9; ***p<0.001) (ns: no significant

difference).

In all cases, nanoparticles penetrated
enterocyte and M cell-like models in
an active manner, whereas the
suspension  entered the cells
passively. In most cases, SQV was
not detected on the basolateral side
after nanoparticle incubation at 4°C
(LOD<0.0125ug/mL).

3.3.3.2 Characterization of NLC
endocytosis mechanisms

Taking the aforementioned results
together, we can conclude that NLCs

predominantly  enter cells by
endocytosis. Different mechanisms of
nanocarrier internalization in cells
have been described:
macropinocytosis,  clathrin-mediated
endocytosis, caveolae-mediated
endocytosis and  clathrin-  and
caveolae-independent  endocytosis
[22]. To evaluate the endocytic
mechanism used by NLCs, transport
studies were undertaken in the
presence of different inhibitors. We
quantified the intracellular uptake by
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FACs and the permeability of SQV
across Caco-2 cells by HPLC after
the transport study.

Figure 4 represents the intracellular
uptake of coumarin-6-SQV-loaded
NLCs in Caco-2 cells after 2 h of
incubation along with chlorpromazine,

Ftracellular uptake (4]
rtracellular uptake [%4)

!
Confrol Clopromagne  Nystin WRCDxlowtiin

an inhibitor of clathrin-mediated
endocytosis  [23,34], nystatin, an
inhibitor  of  caveolaellipid raft-
mediated endocytosis [36,37] and
MRCD+lovastatin, an inhibitor of both
clathrin-  and  caveolae-mediated
endocytosis [38].
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Fig 4. Intracellular uptake, measured by FACS, of coumarin-6-SQV-loaded NLCs in Caco-2
cells after 2 h of incubation with inhibitors. Formulations under no inhibition were considered
as controls and represent P4, values of 100%. (n=3, ***p<0.001).

There was no significant difference in
the presence of clathrin- or caveolae-
mediated  endocytosis  inhibitors
(chlorpromazine and nystatin,
respectively) regardless of the
nanoparticle formulation. In contrast,
there was a significant difference
when the cells were incubated in the
presence of MBCD and lovastatin. It
has to be remembered that, by
sequestering cholesterol, we not only
disrupt caveolae integrity but also

other endocytic mechanisms involving
cholesterol [51, 52], so that clathrin-
and caveolae-independent
cholesterol-dependent  mechanisms
may be involved in NLC endocytosis
[53]. Furthermore, clathrin-
independent endocytosis has been
related to so called lipid rafts, lipid-
based cholesterol-enriched
microdomains present on certain cell
surfaces. Whether caveolae and rafts
share a common pathway remains
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controversial [54-56], but both are
undoubtedly sensitive to cholesterol
depleton and share  common
machinery. Paillard et al. [57] also
reported a significant decreased
internalization of lipid nanocapsules
under MRCD and lovastation
inhibition regardless of nanoparticle
size, suggesting that endogenous
cholesterol was involved in lipid
nanoparticle internalization. Although
no significant differences were found
regarding nystatin  inhibition  or
chlorpromazine, during the
intracellular uptake study, one should
take into account the fact that the
internalization process occurs under
distinct mechanisms acting in parallel
and, thus, the different endocytic
pathways might tend to compensate
each other [58]. This factor could
explain, in part, why there were no
significant  differences in  the
endocytosis when incubating the
nanocarriers with one of these
specific  inhibitors,  but  their
involvement in nanoparticle
internalization should not be totally
discarded.

C viability was greater than 99%
when compared to untreated cells in
all cases except for formulation A co-
incubated with MBCD + lovastatin for

which viability was 65% (data not
shown).

3.3.3.3 Transcytosis

It is important to distinguish between
the mechanisms of endocytosis and
transcytosis. Endocytosis involves the
uptake or internalization of the
nanoparticles  inside the cells,
whereas transcytosis is the transport
across the cell from one membrane to
the opposite. To evaluate the
transcytosis of NLC formulations in
the enterocyte-like model, we
incubated the nanocarriers in the
Caco-2 cells monolayers along with
the clathrin-and caveolae-mediated
inhibitors,  chlorpromazine  and
nystatin, respectively. After 2 h of
incubation, SQV Papp was estimated
and results were expressed as
percentage of control values. The Papp
value of SQV-loaded NLCs under no
inhibition was considered as 100%
(control). Figure 5 features a diagram
of SQV Pap, after 2 h of incubation of
SQV-loaded  nanoparticles  with
chlorpromazine  (Figure 5A) or
nystatin (Figure 5B). Permeability
decreased significantly with
caveolaellipid rafts depletion in the
presence of nystatin regardless of the
formulation (Figure 5B). Simionescu
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et al. [59] suggest that endocytosis case of formulation B (Figure 5A),
and transcytosis share the same which means that clathrin is also
mechanisms  (receptor-independent involved in SQV transcytosis with this
and receptor-mediated) and caveolae. formulation. Roger et al. [24] also
Hence, regarding the results obtained reported a clathrin- and caveolae-
under caveolae/lipid raft inhibiton and mediated internalization of paclitaxel-
the existence of a caveolae loaded lipid nanocapsules involved in
transcytotic pool, caveolae vesicle- the transcellular transport of the drug
mediated transcytosis appears to be across Caco-2 cells, but in our study,
involved in SQV transcytosis across in the case of NLCs, this was not a
Caco-2 cells regardless of the steady phenomenon and depended
nanocarrier. The same decreased on nanoparticle size and the amount
permeability was observed under of surfactant employed in the
clathrin depletion exclusively in the formulation.
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Fig 5. Comparison of SQV Papp values under clathrin (A) and caveolae (B) inhibition
(chlorpromazine 10 ug/mL and nystatin 50 pg/mL, respectively) with untreated cell values
(n=3-5; *p<0.05, **p<0.01, ns: no significant difference). "-* absence of an inhibitor,“+” under
inhibition.

We relate the entry pathway of the did not assess the presence of the
nanocarriers with the transcytosis of nanoparticles in  the  receiver
the drugs itself, but we do not provide compartment.

information about the fate of the
nanoparticle inside of the cells as we
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3.3.3.4 Evaluation of the contribution
of P-gp inhibition to enhancement of
SQV permeability

SQV is known to be a P-gp substrate
[39]. To evaluate whether the NLCs
inhibited the P-gp drug efflux, we
conducted SQV permeability studies
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in Caco-2 cells under verapamil
inhibition, a well-known P-gp inhibitor
[41].

Figure 6 shows SQV Pap, values after
2 h of incubation in the presence of
100 uM verapamil, inhibiting P-gp, or
in a transport buffer, without P-gp
inhibition.
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-
&3
E=3
=

ormulation A
ormulation B

ormulation C

Verapamil

Fig 6. shows the SQV P4, values for free SQV and the nanoparticles after 2 h of incubation
with 100 uM verapamil, a P-gp inhibitor (n=9; ns: no significance;**p<0.01, ***p<0.001).

Formulations with no inhibition were considered as controls (n=3).

verapamil,“+” under verapamil inhibition.

Our results confirm that SQV is a P-
gp substrate. Indeed, incubating a
SQV suspension with verapamil for 2
h significantly increased permeability
(***p<0.001). Formulations A and C
also exhibited greater permeability
when the P-gp efflux was inhibited. In
contrast, there was no difference in

” oW

absence of

the permeability rates with formulation
B regardless of the presence or
absence of verapamil, suggesting that
this formulation circumvented the P-
gp efflux and, thus, enhanced SQV
permeability. A shift in the
internalization ~ mechanism  could
explain how formulation B overcomes
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the P-gp efflux. In this study, we have
already reported clathrin-mediated
transcytosis in addition to caveolae-
mediated transcytosis for formulation
B, which were not present with
formulations A and C. This finding
could explain the ability of formulation
B to circumvent the P-gp drug efflux.
P-gp is localized in caveolae [60],
where it is co-localized with Cav-1
[61], the principal component of
caveolae. Several immune-
precipitation studies have suggested
an interaction between P-gp and Cav-
1, which could modulate P-gp
transport activity. Barakat et al. [62]
reported that decreased P-gp/Cav-1
interactions led to increased P-gp
transport activity. Thus, one might
hypothesize that, as clathrin-mediated
endocytosis could contribute to the
entrance of formulation B into the cell,
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there may be decreased competition
for the caveolae pathway and, hence,
increased P-gp/Cav-1 interaction and
decreased P-gp activity. This ability of
formulation B to overcome P-gp efflux
could explain the 2-fold permeability
increase found with formulation B in
comparison to formulations A and C.
Interestingly, the same formulation
prepared by a different method and
with a different size (247+4 nm versus
1,090£6 nm; formulation B and C
respectively) did not have the same
ability to overcome the P-gp,
highlighting the importance not only of
the composition but also of the
method employed for the preparation
as it provided a different particle size.
Figure 7 features a schematic
representation of the NLC A, Band C
transport across Caco-2 cells.
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Caveolae

Fig 7. Scheme of the transport mechanisms used by the different NLC formulations.
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Previous studies reported competition
between lipid nanocapsules and P-gp
for paclitaxel transport across Caco-2
cells describing P-gp inhibition by the
nanoparticles ~ themselves  and
suggesting that P-gp may not only be
involved in drug efflux but also in the
regulation of endocytosis  [41].
However, the mechanisms used by
these nanoparticles to inhibit the P-gp
remained unclear. The mechanistic
study allowed us to demonstrate the
contribution  of  clathrin-mediated
transcytosis of NLCs to circumvent P-
gp, which resulted in a 2-fold increase
in permeability of SQV, and highlights
the importance of lipid nanoparticle
size and composition on their ability to
overcome the P-gp efflux.

These findings add to the large
number of approaches for delivery of
P-gp  substrates using  nano-
technology [63].

5. Conclusion

In this study, we evaluated three
different NLC formulations and
assessed their potential to increase
drug permeability using SQV (a BCS
class IV drug and P-gp substrate) as
a model drug. NLCs enhanced SQV
permeability up to 3.5-fold. SQV

transport across the intestinal barrier
was influenced by the size of the
NLCs and the amount of surfactant
used for their formulation. Transport
of NLCs was not increased by M
cells, in contrast to drug suspension.
Formulation B (247 nm and 1.5%
(wv)  of  surfactant  content)
circumvented the P-gp efflux and
used both a caveolae- and clathrin-
mediated transcytosis, in contrast to
formulations A and C, which followed
caveolae-mediated transcytosis. By
modifying critical physicochemical
parameters of the formulation we
were able to overcome the P-gp drug
efflux and alter the transcytosis
mechanism of the nanoparticles. To
our knowledge, this is the first time
that a mechanistic study of NLC
transport across intestinal in vitro
models has been described. Our
findings are encouraging for the
delivery of class IV drugs and P-gp
substrates by the oral route and
support  further  nanotechnology
approaches on this regard.
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TECHNOLOGICAL FACTORS AFECTING NLCs FATE AFTER INTRAVENOUS
ADMINISTRATION TO RATS

Nanoparticles for medical applications are frequently administered via
parenteral administration. Nanomedicines are not different from other
pharmaceutical products insofar as the safety of any new drug or drug carrier always
has to be carefully assessed, through pre-clinical and clinical trials, prior to its
approval by the regulatory agencies'. Although the potential of lipid nanoparticles for
the intravenous delivery of drugs has been stated, there is still a necessity of in vivo
studies establishing their parenteral acceptability for their further commercialization?.
The biodistribution of nanoparticles is mainly determined by their chemical and
physical properties, such as size, charge, and surface chemistry. In this study, the
tissue distribution of three lipid formulations based on nanostructured lipid carriers
(NLCs) after intravenous administration to rats was evaluated. The ultimate scope of
this work was to gain insight into how the biodistribution is affected by these
physicochemical properties in order to better optimize new formulations for specific
biomedical applications.
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We prepared three formulations based on NLCs and we evaluated the
kinetic biodistribution profile of the NLCs by radiolabeling them with 9mTc and
tracking them in vivo upon intravenous injection to rats in order to assess their
potential clinical use.

Physicochemical properties of nanoparticles like the size or the surface
charge are determinant parameters that highly influence nanoparticle
biodistribution®. However, very few trends have been still identified*. In an attempt to
make a step forward towards a better understanding of particle size and surface
charge influence on lipid nanoparticle biodistribution, we elaborated NLC differing on
these parameters (Table ).

Table I. Characterization of the nanoparticles evaluated in the study. The amounts of
Mygliol (1% w/v) and Precirol ATO®5 (10% w/v) were the same in the preparation of all the
formulations. Data are expressed as mean  S.D. (n=3; S.D: standard deviation). $§ Higher
than N3 and N1.5 (p<0.05). * Higher than N3 and P1.5 (p<0.001). ¥ Higher than N3
(P<0.05).

N3 N1.5 P1.5
Tween 80 (% wiv) 2 1 1
Poloxamer 188 (% w/v) 1 0.5 -
CTAB (% wiv) - 0.5
Zeta (mV) -20+2 -19+3 +44+5%
Size (nm) 15016  424+16*  180x7

Pl 0.2+0.03 0.4+0.04* 0.3+0.01
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As expected, the application of the high pressure homogenization technique
allowed us to obtain NLCs with a lower particle size and lower polidispersity index.
The higher particle size was obtained when the NLCs were not subjected to the
homogenization process, although the increment on particle size could also be due
to the lower surfactant content. Regarding to the surfactants employed during the
preparation of the NLCs, we obtained positively or negatively charged nanoparticles:
the combination of Tween 80 and Poloxamer 188 provided negatively charged NLCs
(N3 and N1.5), whereas the combination of Tween 80 and CTAB provided positively
charged nanoparticles (P1.5).

After intravenously administered, the radiolabeled nanocarriers exhibited a
long circulation time since radioactivity was detected in blood even 24 h post-
injection (Figure 1).
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Figure 1. Biodistribution profile of ®™Tc-NLCs in blood after intravenous
administration to rats. *P1.5 higher than N3 and N1.5 (p<0.05).

It is known that the solid state of the lipid matrix present in these
nanoparticles at body temperature results in a much slower degradation, making
NLCs attractive carriers for the formulation of long-acting controlled release
preparations over extended periods of time®. The small particle size of our
nanoparticles (from 150 nm to 424 nm), along with the presence of hydrophilic
surfactants (Poloxamer 188 and Tween 80) could also justify the prolonged
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circulation time. Polyethylene glycol chains (PEG) in the Tween 80, and the
Poloxamer 188 provide “stealth” properties to nanoparticles-, which may justify the
high MRT values obtained. Surface modification by pegylation is a well-established
strategy for prolonging nanoparticle half-life, as it is known to decrease their
recognition by the reticulo-endothelial system (RES)®. Gref et al.'® were the first to
report the advantages of pegylation on nanoparticles, resulting in a substantial
increase in blood residence of nanoparticles. These authors observed that a PEG
content in PLA nanoparticles as low as 0.5 wt % on the surface of the nanoparticles
was able to significally reduce the total amount of blood protein absorbed when
compared to nonpegylated PLA nanoparticles. The effect of PEG was previously
reported also for PEG-coated liposomes' and lipid nanocapsules'2'3. Due to all
these properties, lipid-based nanoparticles help to stabilize drugs, such as peptides,
proteins and nucleic acids, from plasma enzymes inactivation, providing an
enhanced and significally prolonged biological activity'4-18.

No differences on the MRT values in blood among the NLCs were observed,
in spite of the different particle size, surfactant content, and surface charge.
However, cationic nanoparticles provided higher radioactivity levels during the first 2
h when compared to anionic nanoparticles and, consequently, higher AUCo.24 (Table
Il). This may be due to a lower uptake of the positive nanoparticles by the RES
organs, such as the liver or the spleen. The tissue/blood radioactivity ratio (Figure 3)
confirmed the low uptake of the cationic nanocarriers by the spleen, and, in the case
of the liver, these positively charged NLCs (P1.5) were less uptaken than negatively
charged nanoparticles holding similar particle size (N3). These results are in
accordance to previously reported studies where positively charged solid lipid
nanoparticles exhibited a low uptake by the RES system19.20,
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Table II. Pharmacokinetic parameters (Cmax, AUCo-24, MRTo.24) estimated for the

99mTc-NLCs (N3, N1.5 and P1.5) after intravenous administration to rats.

C max AUC, >4 MRTo.24
%ID/g h %ID/g h

Blood 0.73 4.48 7.02
Spleen 1.40 10.05 8.92
Pancreas 0.19 1.16 7.54

Small intestine 0.32 1.84 7.19

N3 Liver 2.33 22.05 9.32
Kidney 3.90 72.29 9.87

Heart 0.30 1.68 6.56

Lung 0.45 2.51 7.13

Bone marrow 3.38 37.46 9.21

Blood 0.69 4.61 7.44
Spleen 1.18 6.94 6.81
Pancreas 0.37 1.40 6.57

Small intestine 0.41 1.98 6.22

N1.5 | | jver 1.15 7.38 6.57
Kidney 4.59 77.97 9.38

Heart 0.31 1.63 6.74

Lung 2.70 9.02 4.94

Bone marrow 1.49 20.47 9.41

Blood 2.26 7.41 6.61
Spleen 2.10 2.87 9.90
Pancreas 0.74 3.04 6.75

Small intestine 0.93 4.17 6.65

P1.5 | |iver 2.57 11.25 8.69
Kidney 7.41 112.93 10.76

Heart 0.85 2.85 6.71

Lung 1.78 5.69 7.37
Bone marrow 6.75 56.80 10.20

The highest radioactivity levels, expressed as %ID/g tissue, were observed
in the kidney, followed by the bone marrow, the liver and the spleen (figure 2). In a
previous study, pegylated liposomes were also detected mainly in these organs after
the intravenous administration to mice2!. The uptake into these organs is largely
attributed to the macrophages residing in these tissues??. Taking into account the
weight of the complete organ, the liver and the kidney accumulated more
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radioactivity, and therefore, higher amount of nanoparticles. Other authors also
reported higher radioactivity levels in the kidney after intravenous administration of
radiolabeled nanoparticles and liposomes?3-2, The accumulation of the
nanoparticles in the kidney could be related to their excretion in urine. The
discontinuous endothelium is a characteristic of the liver and bone marrow and
explain the high levels of radioactivity in these organs?2. In our study, the distribution
in bone marrow was clearly influenced by the particle size (figure 2), being higher for
the smaller particles (N3 and P1.5). Snehalatha et al.?3, found high levels of PLGA
85/15 nanoparticles (105 nm) in the bone following intravenous administration of
9mTc labeled nanoparticles to mice. In the authors opinion, the high radioactivity
levels measured in the bone were attributed to nanoparticle uptake by the
phagocytic reticulo-endothelial cells lining the vascular sinusoids of the bone
marrow. As the particle size increases, more difficult is the access to bone marrow
through the vascular sinusoids and explain the lower distribution of the formulation
N1.5 in this tissue.

Time (1)

Time (8]

Figure 2. Biodistribution profile of %mTc-NLCs in the removed organs after intravenous
administration to rats. n=3; *p<0.05, **p<0.01; ***p<0.001 for P.1.5 higher than N3 and
N1.5; 8p<0.05 for N3 vs. N1.5 formulation.
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Overall, brain uptake was negligible when comparing with other organs
(<0.01%ID/g). Thus, although lipid nanoparticles have been considered for brain
targeting?’, certain factors such as particle size, surface properties (e.g surface
charge) or the presence of hydrophilic surfactants in these nanoparticles (Tween 80
and Poloxamer 188) seem not to be suitable for brain targeting.

Nanoparticles were also found in the lung (Figure 2). The N1.5 formulation
was the most extensively distributed in this organ, as indicated by the Cmax and
AUCo.24 (Table ). This phenomenon could be attributed to the fact that this
nanocarrier presented a higher particle size and, thus, the retention in the capillaries
and latter removal from the lung is likely to happen. The MRT value and the uptake
of this formulation were lower in the liver and the spleen in comparison with the
smaller particle size nanoparticles. Likewise, these low values could be explained by
their retention and elimination in the lung.

When comparing NLCs of similar particle size and different surface charge
(N3 and P1.5) both formulations were mainly located in the kidney and the bone
marrow, although the positively charged nanocarriers in a higher extension (Figure
3). It can be also elucidated from Figure 3 that anionic nanoparticles were more
uptaken by the RES (liver and spleen) than the cationic ones.

]
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Figure 3. AUCissue/AUChiood ratios for the assayed formulations
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The MRT values in most tissues were closely to those in plasma, which
indicated that unexpected accumulation should not occur in these tissues with
repeated administration. Actually, prolonged circulation time also entails slow tissue
accumulation of the nanoparticles and very slow drug release?. A rapid release
formulation (within a few hours) would be more desirable for the NLCs we have
designed.

Nanoparticles presenting an electrical charge, that can be either positive or
negative, when intravenously administered, bind nonspecifically many products into
their surface, especifically blood components. Protein binding has been pointed as a
main cause of change in nanoparticle size and surface charge which leads to
alterations in the biodistribution profiles and influences pathway-specific uptake
following intravenous administration82%, The “nanoparticle-protein corona” concept
is focused on the basis that certain serum proteins are wrapping nanoparticle
surface, evoking conformational changes in the surface and enhancing phagocytosis
by the RES®30. Therefore, the influence of particle size, surface charge and
surfactant content on the biodistribution profile observed in our study will be also
conditioned by differences in the binding pattern to blood components, which make
difficult to stablish a relationship between the physicochemical properties of the
nanoparticles and the biodistribution profile.

Taking into account the results obtained in our study, the potential clinical
application of these nanocarriers could be focused on the preparation of long-acting
controlled release formulations. The capacity to protect against plasma enzymes
inactivation make these nanoparticles very useful for the administration of peptides,
proteins and nucleic acids, prolonging their biological activity.
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NANOSTRUCTURED LIPID CARRIERS (NLCs) FOR THE ORAL
ADMINISTRATION OF SPIRONOLACTONE

Due to the increasing number of insoluble compounds among the newly discovered
chemical entities, many efforts have been made for the efficient delivery of poorly
water-soluble compounds. The enhancement of the oral bioavailability of these
drugs remains a challenge in the drug delivery field. The administration of insoluble
drugs as lipid-based formulations has been exploited as an alternative to
conventional formulations. The combination of lipid-based formulations with
nanotechnology provides additional advantages to the first ones as not only the
lipids present in the formulation could help solubilizing the drug, but also lipid
nanoparticles provide protection of the drug from the gastrointestinal degradation
and the ability to target the drug to the specific site of effect by overcoming the
biological barriers. Thus, we carried out a pharmacokinetic and biodistribution study
of one of the previously studied NLC formulation following the oral route.
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In this study, we have developed a formulation based on NLCs for
spironolactone delivery by a high pressure homogenization method. This procedure
allowed us to obtain without the use of any organic solvent, spherical and
homogeneous in size nanoparticles with an encapsulation efficiency above 99%.
The lipids employed for the preparation of the SPN-NLCs, mygliol and precirol, are
recognized as totally biocompatible, reducing the possibility of side effects
appearance after the in vivo admistration. Tween 80 and Poloxamer 188 were used
as surfactants. On the one hand, poloxamer is an sterically stabilizing polymer and
due to the stearic hindrance, induces a slow degradation of the nanoparticles 3!. On
the other hand, Tween 80 has been identified as a lymphotropic excipient due to the
ability to solubilise lipophilic drugs, inhibit the P-gp and stimulate chylomicron
production32,

In order to improve the storage stability of the SPN-NLCs, they were
liophylized. A cryoprotector agent was neccesary and 5% trehalose showed to be
the most appropriate.

The in vitro dissolution study carried out under sink conditions showed a
very slow release of spironolactone from the nanocarriers and indicated a high
stability of the SPN-NLCs in the dissolution media.

Once the SPN-NLCs were characterized, we evaluated the pharmacokinetic
behavior of the drug after oral administration to rabbits. As reference formulation, we
prepared a spironolactone syrup for oral administration and a solution was
administered intravenously. Only spironolactone metabolites, canrenone and 7a-
TMS, could be quantified in collected samples (Table Ill). Plasma half-life of both
metabolites did not show statistical differences between intravenous and oral
administration of the drug, which demonstrates that the elimination rate of both
metabolites was not affected by the absorption process. The levels of 7a-TMS, in
comparison with canrenone levels, were higher in all cases regardless the
formulation. The absolute bioavailability of 7a-TMS was significantly higher with the
syrup than the absolute bioavailability obtained with the SPN-NLCs (0.7 vs 0.4,
p<0.05). However, no statistically significant differences were observed in the
bioavailability of canrenone among formulations. These results reveal a different
canrenone/7a-TMS ratio depending on the administered formulation, which could be
explain by differences in the absorption mechanism of the drug.
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Syrup NLCs v
Canrenone To-TMS Canrenone T0-TMS Canrenone Ta-TMS
tin h 6.01£1.07 5.97£1.02 6.76 £ 1.06 8.09+2.94 6.3112.64 456099
Tmax h 520£1.79 5.8013.19 5401 1.34 4.8814.09 0.50£0.00 0.50£0.00

Crax ngmL  14.90£6.07 44.26 £ 15.74 8.71£2.23 2176 £4.78 8.47+2.74 36.54£8.83

AUC,;  hng/mL 16359+3513  478.64£9837 113.05:2476 290.14£7494 3877:724 137.98 +18.48

AUC..  hngmL 177.32£3457 52392+103.80 127.15:3243 34873+116.18 5518843 17268 +27.24

MRT h 1031£142  1058:219  1079:¢192 12794375  845+277 592164
F 0802 07£0.1° 0602 04402"
Table Ill. Pharmacokinetic parameters of canrenone and 7a-TMS obtained by a

noncompartmental analysis.*p<0.05.

Spironolactone is a poor water soluble compound and, therefore, its
absorption is limited by the dissolution in the gastrointestinal fluid. Lipids from the
formulation can promote the absorption of drugs through the formation of micelles.
During the micelle formation process, the drug dissolved in the lipid is taken up in
the micelles (solubilization) and the formed micelles interact with surface-active bile
salts (e.g. sodium cholate) leading to the formation of so-called "'mixed micelles .
This process could promote the lymphatic absorption that avoids the first-pass
metabolism to a certain degree, which could explain the differences in the metabolic
profile of spironolactone between the syrup and the nanoparticles. However,
although the primary mechanism by which lipid formulations improve the
bioavailability of lipophilic drugs is the increase of the dissolution rate®, the low
amount of spironolactone released in the dissolution studies, along with the lower
pasma levels of spironolactone metabolites obtained with the SPN-NLCs than with
the syrup, suggest that this might not be the case for the SPN-NLCs. In our opinion,
the high stability of SPN-NLCs in the gastrointestinal tract would lead to a low
dissolution rate of the spironolactone from the nanoparticles in vivo. In a previous
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study, Miller et al.! formulated cyclosporine A into SLNs and orally administered
them to pigs. The drug bioavailability obtained was low and the authors attributed it,
among other factors, to a low dissolution rate of the drug/undissolved drug particles
in the gut.

Since NLCs seem not to improve the dissolution rate of spironolactone,
another mechanism should be involved in the absorption of the drug. It is well known
that the NLCs may also be captured by the epithelial and M cells and further
processed into blood circulation®. If this occurs, a high stability of the nanocarriers
in the gastrointestinal tract is desirable. The mixture of Tween 80 and Poloxamer
188 in the SPN-NLCs lead to high stable nanoparticles and, as it was shown by the
dissolution studies, spironolactone was hardly released. Therefore, and as it was
previously discussed, the degradation velocity of lipid nanoparticles highly depends
on its chemical composition, particularly on the stabilizer or the stabilizer mixture of
the nanoparticles3'. In addition to the composition, the particle size also affects the
transport of nanocarriers through the biological barriers. The particle size of the
SPN-NLCs was about 150 nm and it is known that particle size less than 300 nm is
advisable for the intestinal transport3®. Therefore, the absorption of spironolactone
may occur by the uptake of the SPN-NLCs by the intestinal cells. This fact could
also justify the differences in the canrenone/7a-TMS ratio depending on the
administered formulation, syrup or SPN-NLCs. When nanoparticles are processed
inside the enterocyte, the drug absorption may be influenced by the lipids of the
SPN-NLCs, which could favor the lymphatic pathway leading to differences in the
metabolic profile.

In order to know if SPN-NLCs were able to be uptaken by the intestinal wall,
a biodistribution study with %mTc radiolabeled nanocarriers was carried out. The
radiotracer technique was chosen as it is one of the most appropiate to investigate
the absorption, distribution, metabolism and excretion (ADME) of these
nanomaterials®”. Following oral administration of radiolabeled SPN-NLCs,
radioactivity was mainly detected in the small intestine (figure 4). The intestine of the
rats was cleaned of all food and waste material and thus, the radioactivity measured
in this organ corresponded to labeled nanoparticles trapped in the mucosa. The lack
of radioactivity in the thyroid confirms the stability of the nanocarriers in the
gastrointestinal tract; the opposite would lead to the absorption of the free
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99mT¢38.3%and the radioactivity levels in the thyroid would be significantly higher. The
presence of the SPN-NLCs in the intestine along with the their adhesive
properties??, suggest a retention of the nanocarrier in the underlying epithelium40-42,
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Figure 4. %radioactivity measure per organ/tissues after oral administration of SPN-NLCs
labeled with % Tc,

Therefore, the absorption of spironolactone and the change in its metabolic
profile when comparing to the syrup (reference formulation) could be explained, at
least in part, by the adhesion of SPN-NLCs to the gut wall and their subsequent
uptake by the epithelial cells.
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MECHANISM OF TRANSPORT OF SAQUINAVIR-LOADED NLCs ACROSS THE
INTESTINAL BARRIER

In order to understand the processes involved on the NLC transport across
the intestinal barrier, a mechanistic study was performed. Moreover, we also
evaluated critical physicochemical properties that could highly interfere on
nanoparticle uptake and drug permeability. In this case, we used saquinavir, a BSC
class 1V drug, a poorly water-soluble drug and P-gp substrate as model drug.
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Three lipid formulations differing in particle size and surfactant content were
obtained, all negatively charged. Particle characterization and compositions of the
different formulations are summarized in Table V. The composition of these
nanoparticles was based on results from previous studies on lipid nanoparticles
carried out in our laboratory*3.

Table V. Summary of formulation composition and particle size, zeta potential and
polydispersity index (P.l.) per formulation (n=3; data are expressed as mean x SD).

NLC
formulations
A B C
Composition Tween 80 (g) 1 0.5 0.5
Poloxamer 188 (g) 0.5 0.25 0.25
Precirol ATO® 5 (g) 5 5 5
Mygliol 812N/F (mL) 0.5 0.5 0.5
SQV (mg) 50 50 50
H,O (mL) 50 50 50
Homogenization Yes Yes No
Characterization Size (nm) 16546 24744 1,090+6
Zeta (mV) -21+8 -33+7 -31+5
P.1. 0.16 0.35 0.6
Surface hydrophobicity
(slope) 0.054 0.040 0.008
EE (%) 99+0.2 99+0.02 99+0.14
Drug loading (%) 0.90+0.00 0.90+0.00 0.90+0.00

All the formulations had an EE of ~100% and drug loading of ~0.90%.
Reduction in the amount of surfactant present in the formulation lead to an
increased particle size (165£6 nm vs 247+4 nm for formulations A and B,
respectively). Moreover, when formulation B was prepared without further
homogenization (formulation C), the particle size varied from the nanometer to the
micrometer range (24744 nm vs 109046 nm for formulations B and C, respectively),
highlighting the importance of the preparation method in obtaining different
nanoparticle size. Although SQV is considered a model drug, the low drug loading of
SQV (~0.90%; therapeutic dose 1g twice a day) compromises the foreseen
application of these nanocarriers to reach an efficient therapeutic effect of the drug
and it would be desirable to encapsulate more potent drugs with a lower therapeutic
dose (e.g. budesonide, 9 mg once a day in Crohn’s disease).
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There were no differences in nanoparticle parameters and EE of SQV when
incorporating coumarin-6 (5 mg) into the formulations (data not shown). There was a
difference in nanoparticle surface hydrophobicity between the three formulations:
formulation A had a higher slope and, thus, higher hydrophobicity compared to
formulations B and C. Formulations B and C had the same amount of surfactant but
formulation B had higher hydrophobicity than formulation C, which can be explained
by the different surface areas of the two formulations#4.

An in vitro dissolution study was performed to ensure that SQV was not
released from the NLC formulations during the in vitro transport studies. The amount
of drug released from the NLCs into the transport buffer medium (HBSS) during 2 h
of incubation at 37°C was analyzed by HPLC (n=3). For the three formulations, SQV
release was less than 0.4% indicating that the differences in the subsequent data
were not the result of greater dissolution (maximum solubility of SQV mesylate in
HBSS ~50 pg/mL45). Moreover, for the three formulations, the drug released from
NLCs in SGF media after 2 h of incubation at 37°C was below the LOD
(LOD<0.0125pg/mL) (n=3). SQV release was below the LOD after 2h and less than
5% in SIF media after 8 h of incubation 37°C (n=3).

The main aim of the present study was to evaluate the potential of NLCs as
suitable carriers for poorly water-soluble drugs using SQV as a BCS class IV model
drug. For this purpose, the permeability of SQV across the enterocyte-like model
(Caco-2 monolayers) and the FAE monolayers (Caco-2/Raji cell coculture) was
evaluated. The conversion of Caco-2 cells into M-cells in the FAE model was
confirmed by measuring the number of commercial carboxylated particles
transported using a flow cytometer. After 2 h of incubation, the number of
transported nanoparticles was significantly higher in the FAE model than in the
Caco-2 model (82,633+6,443 nanoparticles, versus 108+91, respectively; n=4,
p<0.05).

The permeability values obtained for each nanoparticle formulation was
compared with the permeability values of free SQV as a suspension. Figure 5
represents the Papp of SQV data obtained for the assayed formulations after 2 h of
incubation in Caco-2 monolayers and in FAE monolayers.
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Figure 5. Saquinavir (SQV) P4, values obtained after 2 h of incubation of the three NLC
formulations (A, B and C) and a SQV suspension in the Caco-2 monolayers and the FAE
monolayers. (n=9, mean = S.D, *p<0.05, **p<0.01, ***p<0.001).5p<0.05 versus Caco-2
monolayers.

In the Caco-2 model, the increase in SQV Papp values for the nanoparticle
formulations compared to free SQV, is highlighted. It is remarkable to note the 3.5-
fold increase in the SQV Payp with formulation B compared to free SQV (p<0.001),
and the 2-fold increase compared with the two other NLC formulations (A and C)
(p<0.01). These SQV Papp values are greater than previously reported values
obtained across Caco-2 monolayers and ex vivo transport studies using different
strategies for enhancing SQV permeability*647. These data confirm that NLCs are
suitable carriers for enhancing the permeability of poorly water-soluble drugs. There
was a significant difference between the Papp values of formulation B (247+4 nm)
and C (1,090£6 nm) (3.52x10-5£3.34x10-6cm/s versus 1.73x10-5+2.09x10-6 cm/s,
respectively; n=9, ***p<0.001).

In the M cell model, there was a significant increase in the Pap of
formulation C compared to free SQV in suspension (p<0.05), which was not
observed for formulations A or B (p>0.05). Enhanced microparticles uptake by M
cells has been previously reportedé49, In contrast to polymeric nanoparticles®, the
permeability of the drug from the submicron NLCs was not increased in M cells.
Hence, the subsequent evaluation of the transport mechanisms and the intracellular
uptake was evaluated only in the Caco-2 cell model.
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The diffusion of the particles through the mucus could also affect their
transports!. Peyer's patches, in particular M cells, are less protected by the mucus
barrier but account for only 1% of total surface area. The mucus penetrating
properties of lipid-based nanoparticles, including NLCs, have not been extensively
studied. NLCs are small enough (formulation A and B) to avoid being blocked
sterically in the mucin mesh. However, as the mucus is rich in lipids, mucoadhesion
of the NLCs could be promoted by their hydrophobic surface even if the surfactant
coating could make their surface partly hydrophilic and more mucus penetrating.
Mucus interaction with NLCs should be investigated.

Figure 6 shows the flow cytometry results (Figure 6A) and the CLSM images
(Figure 6B and 6C) corresponding to the cellular uptake of the nanoparticle
formulations and free coumarin-6. Cell viability was assessed by staining dead cells
with Pl and was greater than 90% in all cases unless otherwise stated. Untreated
cells were used as controls.
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Figure 6. Cellular uptake of coumarin-6 NLCs (green) in Caco-2 cells, measured by flow
cytometry, (A) and CLSM images (B and C) of the inserts after 2 h of incubation with the
nanoparticles. A) Nanoparticles and free coumarin-6 entrance into the cell measured by flow
cytometry. Untreated cells are shown as control (n=3; ***p<0.001). B) a, b and ¢ correspond
to y-z sections of CLSM images of the inserts for formulations A, B and C, respectively. Cell
membranes are stained in red with rhodamine-phalloidine and cell nuclei in blue with DAPI.
C) y-z, x-y and x-z sections of formulation A CLSM images with which the higher uptake rate
was recorded.
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The cellular uptake of NLCs was size-dependent (formulation A> B> C; n=3,
***p<0.001; Figure 2A). This finding is consistent with Rejman et al.52 who also
reported a tendency to decreased internalization with increased particle size. These
authors studied the pathway of entry and subsequent fate of commercial latex
nanoparticles inside the cell and concluded that particles with a diameter <200 nm
enter the cell via clathrin-mediated endocytosis whereas larger particles (200 nm-1
um) enter preferentially via caveolae-mediated endocytosis. Moreover, the surface
hydrophobicity of the nanoparticles may also determine nanoparticle entrance into
Caco-2 cell because the larger uptake into the cells is correlated with the higher
nanoparticle surface hydrophobicity (formulation A>B>C) %3. Gaumet et al. 5 found
that the surface hydrophilicity of polymeric nanoparticles was a critical factor for
nanoparticle uptake and Liang et al. 5 reported that gold nanoparticles were more
efficiently taken up with increasing hydrophobic interactions with the membrane of
Caco-2 cells. In our study, nanoparticle size and surface hydrophobicity were major
factors influencing NLC entrance into the cell.

The Papp values for SQV formulated in NLCs did not correlate with their
intracellular uptake. Formulation B exhibited higher SQV Pap values than did
formulations A and C but did not have a higher intracellular uptake. Figure 2B shows
that NLCs penetrated inside the Caco-2 cells whatever the formulation.

Another objective of the present study was to evaluate the mechanisms of
transport used by the different NLC formulations to estimate whether the differences
on permeability were due to different entry pathways. For this purpose, we first
focused on the type of transport: passive or active. Although lipid nanoparticles are
known to enter into cells in an active endocytic manner, we assessed this
phenomenon in Caco-2 cells and the FAE model. It is well-established that at 4°C
pinocytic/endocytic uptake is inactivated®”. Figure 7 illustrates the influence of
temperature on the transport of SQV-loaded nanoparticles and SQV suspension
across Caco-2 and FAE monolayers. In most cases, SQV was not detected in the
basolateral side after nanoparticle incubation at 4°C (LOD<0.0125ug/mL). These
data suggest that SQV loaded in NLCs might mainly permeate Caco-2 cells and
FAE monolayers in an active manner.
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Figure 7. Influence of temperature on nanoparticle and free SQV transport in Caco-2 and
FAE monolayers after 2 h of incubation at 37°C and 4°C. (n=9; ***p<0.001) (ns: no
significant difference).

Taking the aforementioned results together, we can conclude that NLCs
predominantly enter cells by endocytosis. Different mechanisms of nanocarrier
internalization in cells have been described: macropinocytosis, clathrin-mediated
endocytosis, caveolae-mediated endocytosis and clathrin- and caveolae-
independent endocytosis®. To evaluate the endocytic mechanism used by NLCs,
transport studies were undertaken in the presence of different inhibitors. We
quantified the intracellular uptake, measured by flow citometry, and the permeability
of SQV across Caco-2 cells by HPLC after the transport study.

Figure 8 represents the intracellular uptake of coumarin-6-SQV-loaded
NLCs in Caco-2 cells after 2 h of incubation along with chlorpromazine, an inhibitor
of clathrin-mediated endocytosis®:59, nystatin, an inhibitor of caveolael/lipid raft-
mediated endocytosis®%6! and methyl-B-cyclodextrin (MRCD) + lovastatin, an
inhibitor of both clathrin- and caveolae-mediated endocytosist2.
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Figure 8. Intracellular uptake, measured by flow citometry, of coumarin-6-SQV-loaded
NLCs in Caco-2 cells after 2 h of incubation with inhibitors. Formulations under no inhibition
were considered as controls and represent Pap, values of 100%. (n=3, ***p<0.001).

There was no significant difference in the presence of clathrin- or caveolae-
mediated endocytosis inhibitors (chlorpromazine and nystatin, respectively)
regardless of the nanoparticle formulation. In contrast, there was a significant
difference when the cells were incubated in the presence of MBCD and lovastatin. It
has to be remembered that, by sequestering cholesterol, is not only caveolae
integrity disrupted but also other endocytic mechanisms involving cholesterol 6364,
so that clathrin- and caveolae-independent cholesterol-dependent mechanisms may
be involved in NLC endocytosis®. Furthermore, clathrin-independent endocytosis
has been related to so called lipid rafts, lipid-based cholesterol-enriched
microdomains present on certain cell surfaces. Whether caveolae and rafts share a
common pathway remains controversial®8-68, but both are undoubtedly sensitive to
cholesterol depletion and share common machinery. Paillard et al. 8° also reported a
significant decreased internalization of lipid nanocapsules under MRCD and
lovastation inhibition regardless of nanoparticle size, suggesting that endogenous
cholesterol was involved in lipid nanoparticle internalization. Although no significant
differences were found regarding nystatin inhibition or chlorpromazine, during the
intracellular uptake study, one should take into account the fact that the
internalization process occurs under distinct mechanisms acting in parallel and,
thus, the different endocytic pathways might tend to compensate each other 70. This
factor could explain, in part, why there were no significant differences in the
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endocytosis when incubating the nanocarriers with one of these specific inhibitors,
but their involvement in nanoparticle internalization should not be totally discarded.
Cell viability was greater than 99% when compared to untreated cells in all cases
except for formulation A co-incubated with MBCD + lovastatin for which viability was
65% (data not shown).

It is important to distinguish between the mechanisms of endocytosis and
transcytosis. Endocytosis involves the uptake or internalization of the nanoparticles
inside the cells, whereas transcytosis is the transport across the cell from one
membrane to the opposite. To evaluate the transcytosis of NLC formulations in the
Caco-2 cell model, the nanocarriers were incubated in the Caco-2 cells monolayers
along with the clathrin-and caveolae-mediated inhibitors, chlorpromazine and
nystatin, respectively. After 2 h of incubation, SQV Pap, was estimated and results
were expressed as percentage of control values. The Papp value of SQV-loaded
NLCs under no inhibition was considered as 100% (control). Figure 5 features a
diagram of SQV Papp after 2 h of incubation of SQV-loaded nanoparticles with
chlorpromazine (Figure 9A) or nystatin (Figure 9B). SQV Papp was also evaluated
under MRCD and lovastatin inhibition. The presence of these inhibitors induced
TEER values of the monolayers less than 200 ©Q c¢m? after the transport study.
Therefore, because we could not guarantee the integrity of the monolayer, these
results were excluded and transcytosis was characterized exclusively under nystatin
and chlorpromazine inhibition. Permeability decreased significantly  with
caveolae/lipid rafts depletion in the presence of nystatin regardless of the
formulation (Figure 9B). Simionescu et al” suggest that endocytosis and
transcytosis share the same mechanisms (receptor-independent and receptor-
mediated) and caveolae. Hence, regarding the results obtained under caveolaellipid
raft inhibiton and the existence of a caveolae transcytotic pool, caveolae vesicle-
mediated transcytosis appears to be involved in SQV transcytosis across Caco-2
cells regardless of the nanocarrier. The same decreased permeability was observed
under clathrin depletion exclusively in the case of formulation B (Figure 9A), which
means that clathrin is also involved in SQV transcytosis with this formulation. Roger
et al.”2 also reported a clathrin- and caveolae-mediated internalization of paclitaxel-
loaded lipid nanocapsules involved in the transcellular transport of the drug across
Caco-2 cells, but in our study, in the case of NLCs, this was not a steady
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phenomenon and depended on nanoparticle size and the amount of surfactant
employed in the formulation.
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Figure 9. Comparison of SQV Papp values under clathrin (A) and caveolae (B) inhibition
(chlorpromazine 10 pg/mL and nystatin 50 pg/mL, respectively) with untreated cell values
(n=3-5; *p<0.05, **p<0.01, ns: no significant difference). “-” absence of an inhibitor,“+” under
inhibition.

We relate the entry pathway of the nanocarriers with the transcytosis of the
drugs itself, but we do not provide information about the fate of the nanoparticle
inside of the cell as we did not assess the presence of the nanoparticles in the
receiver compartment.

SQV is known to be a P-gp substrate’s. To evaluate whether the NLCs
inhibited the P-gp drug efflux, we conducted SQV permeability studies in Caco-2
cells under verapamil inhibition, a well-known P-gp inhibitor.

Figure 10 shows SQV Papp values after 2 h of incubation in the presence of 100 uM
verapamil, inhibiting P-gp, or in a transport buffer, without P-gp inhibition.
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Figure 10. SQV Py, values for free SQV and the nanoparticles after 2 h of incubation with
100 uM verapamil, a P-gp inhibitor (n=9; ns: no significance;**p<0.01, ***p<0.001).
Formulations with no inhibition were considered as controls (n=3). “" absence of
verapamil,“+” under verapamil inhibition.

Our results confirm that SQV is a P-gp substrate. Indeed, incubating a SQV
suspension with verapamil for 2 h significantly increased permeability (***p<0.001).
Formulations A and C also exhibited greater permeability when the P-gp efflux was
inhibited. In contrast, there was no difference in the permeability rates with
formulation B regardless of the presence or absence of verapamil, suggesting that
this formulation circumvented the P-gp efflux and, thus, enhanced SQV permeability.
A shift in the internalization mechanism could explain how formulation B overcomes
the P-gp efflux. In this study, it was already reported a clathrin-mediated transcytosis
in addition to a caveolae-mediated transcytosis for formulation B, which were not
present with formulations A and C. This finding could explain the ability of
formulation B to circumvent the P-gp drug efflux. P-gp is localized in caveolae’,
where it is co-localized with Cav-178, the principal component of caveolae. Several
immunoprecipitation studies have suggested an interaction between P-gp and Cav-
1, which could modulate P-gp transport activity. Barakat et al.’” reported that
decreased P-gp/Cav-1 interactions led to increased P-gp transport activity. Thus,
one might hypothesize that, as clathrin-mediated endocytosis could contribute to the
entrance of formulation B into the cell, there may be decreased competition for the
caveolae pathway and, hence, increased P-gp/Cav-1 interaction and decreased P-
gp activity. This ability of formulation B to overcome P-gp efflux could explain the 2-
fold permeability increase found with formulation B in comparison to formulations A
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and C. Interestingly, the same formulation prepared by a different method and with a
different size (247+4 nm versus 1,090+6 nm; formulation B and C respectively) did
not have the same ability to overcome the P-gp, highlighting the importance not only
of the composition but also of the method employed for the preparation as it
provided a different particle size.

Figure 11 features a schematic representation of the NLC A, B and C transport
across Caco-2 cells.

(& P-gp efflux

Figure 11. Scheme of the transport mechanisms used by the different NLC formulations.

Previous studies reported competition between lipid nanocapsules and P-gp
for paclitaxel transport across Caco-2 cells describing P-gp inhibition by the
nanoparticles themselves and suggesting that P-gp may not only be involved in drug
efflux but also in the regulation of endocytosis 74. However, the mechanisms used by
these nanoparticles to inhibit the P-gp remained unclear. The mechanistic study
allowed us to demonstrate the contribution of clathrin-mediated transcytosis of NLCs
to circumvent P-gp, which resulted in a 2-fold increase in permeability of SQV, and
highlights the importance of lipid nanoparticle size and composition on their ability to
overcome the P-gp efflux.

These findings add to the large number of approaches for delivery of P-gp
substrates using nanotechnology?s.
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Based on the results obtained from the experimental work, we can conclude

with the following conclusions:

1.

2.

3.

4.

The application of the high pressure homogenization technique to prepare
NLCs composed by Precirol ATO® 5, Poloxamer 188 and Tween 80 allowed
us to obtain nanoparticles with a lower particle size and lower polidispersity
index. The use of Tween 80 and Poloxamer 188 provided negatiely charged
NLCs, whereas the combination of Tween 80 and CTAB provided positively
charged nanoparticles.

After intravenous administration of NLCs with different particle size, surface
charge and surfactant content to rats, a long permanence in blood and
tissues was observed. The particle size, surface charge and surfactant
content of the nanoparticles affected to their tissue biodistribution profile;
however, no differences in the MRT values in blood were found. The highest
accumulation of NLCs was observed in the kidneys, liver, bone marrow and
spleen. Comparing the nanoparticles presenting similar particle size and
different surface charge, we observed a difference on the biodistribution
profile: in the kidneys there was a higher accumulation of the positive
nanocarriers and, in the liver, negative nanoparticles were more uptaken
than positive ones. The nanoparticles with the largest particle size showed a
higher uptake in the lung and lower accumulation in liver and bone marrow,
in comparison with the smaller ones.

A formulation based on NLCs composed by Precirol ATO® 5, Poloxamer
188 and Tween 80 was developed for spirinolactone (SPN). This
nanocarrier presented a particle size of 150 nm and surface charge of -20
mV. The in vitro dissolution study carried out under sink conditions showed
a very slow release of spironolactone from the nanocarriers and indicated a
high stability of the SPN-NLCs in the dissolution media.

After the oral administration of SPN-NLCs to rabbits, the bioavailability of
the drug was not enhanced; however, a shift in the metabolic profile was
observed when compared to a reference formulation (a syrup). Radioactivity
studies indicated that the SPN-NLCs were trapped in the intestinal mucosa.
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5.

CONCLUSIONS

In a Caco-2 model, NLCs of different particle size composed by Precirol
ATO® 5, Poloxamer 188 and Tween 80 were able to increase the
permeability of saquinavir, a BSC class IV drug and P-gp substrate, up to
3.5-fold. This increment was dependent on the size of the NLCS and the
amount of surfactant used for their formulation. However, NLC transport
was not increased in M cells.

NLCs composed by 1% Poloxamer 188 and 0.5% Tween 80, and prepared
by high-pressure homogenization (particle size 247 nm) circumvented the
P-gp efflux. Moreover, they used both a caveolae- and clathrin-mediated
transcytosis, in contrast to the formulation composed by the same
surfactants but in a higher proportion (particle size 165 nm) or prepared
without high pressure homogenization (particle size 1,090 nm), which
followed only caveolae-mediated transcytosis. Therefore, by modifying
critical physicochemical parameters of the formulation we were able to
overcome the P-gp drug efflux and alter the transcytosis mechanism of the
nanoparticles. Our findings are encouraging for the delivery of class IV
drugs and P-gp substrates by the oral route and support further
nanotechnoloty approaches on this regard.
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