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1 Introduction

1.1 General context of this Thesis

Nanoscience is a term broadly used, coined to name the study of matter
at the nanometer scale. One nanometer (nm) is one billionth of a meter
(10−9 meters). Typical interatomic distances in solids are of few tenths
of nm. This means that, beyond single atoms, the arrangement of a few
atoms in a composed system (molecule, cluster, etc.) already belongs to the
nanoscale. In a more general way, nanosystems are considered those systems
with dimensions ranging between few nm to several hundreds of nm. To
better understand the dimensions of the nanoscale, let us mention that one
sheet of paper is about 100000 nm thick, a red blood cell is about 8000 nm,
and viruses may vary in diameter from 20 nm to 400 nm.

Nanoscience is a highly multidisciplinary activity, in which concepts
originated in scientific fields such as physics, chemistry, materials sciences,
or biology are used, and often at the same time. In the nanometer scale, the
physical, chemical and biological properties of matter differ in fundamental
ways from the properties of individual atoms and molecules, as well as from
the properties of bulk matter. A textbook example of this is the chemical
and optical behaviour of gold. Chemically, gold becomes a good catalyzer
in the nanoscale and thus is not noble anymore [1]. Optically, the yellowish
color of gold is lost for nanometer-sized particles and different colors arise
depending on the exact size of the system.

The understanding of nanosystems is becoming increasingly possible
thanks to the development of new experimental tools. Characterization
techniques based on scanning microscopies with atomic resolution and
fabrication processes such as molecular beam epitaxy are emblematic
examples of this point. But the understanding of the nanoscale has been also
possible because of unprecedented advance in computational science. Huge
efforts in the improvement of theoretical methods and numerical algorithms,
together with the fast progress of computing capabilities, have allowed
theoretical scientists to describe the properties of nanosystems up to an
accuracy with no match in history.

The rising popularity of nanoscience is intimately linked to the vast
potential applications that systems of nanometer size may have in technology.
Research in nanotechnology is directed towards understanding and creating
improved materials, devices, and systems that exploit novel properties
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emerging in the nanoscale. For this purpose, a precise control of the
fabrication and characterization techniques of nanosystems is required.
Fabrication techniques are usually classified into the ”bottom-up” and
”top-down” approaches. In the former, the systems are built from molecular
components which assemble themselves chemically. In the latter, the systems
are built from larger entities without atomic-level control. A final goal in this
research activity is to design and fabricate systems in these tiny scales with
properties at wish: One important consequence of the tunable morphology
of nanosystems in terms of shape, size, and environment is the possibility to
adapt and tailor their properties relative to bulk crystals.

A crucial point in the scenario described above is thus to understand how
the properties of a given system of nanometer size depend on its size. If the
final goal is the design of objects with fit properties, an accurate control and
understanding of the variability of these properties on size and shape will be
necessary. Framed in this general context, this is the main goal of the research
activity presented in this manuscript: the analysis of the dependence in size
of some given electronic properties in metallic nanoparticles of variable size.

In the history of science, the dependence of a given property on the
size of a system of nanoscale dimension is not a recent discovery. The
first educated speculation on this issue is probably due to Faraday in 1857
[2]. Faraday was the first to talk about the optical properties of what later
become known as metallic nanoparticles, in the context of his research on
gold colloids. Faraday discovered that the optical properties of gold colloids
differed from those of the corresponding bulk metal, and that the color itself
could be easily modified by adding certain salts. Faraday attempted to
explain this conspicuous change by saying that ”a mere variation in the
size of [gold] particles gave rise to a variety of resultant colours”. Faraday’s
work was presumably the first reported observation of quantum size effects.
The controlled variation of a given physical property just by modifying the
size of the system in the nanoscale could be considered to be the birth of
nanoscience.

Another milestone in the control of the nanoscale, again in the field of
optics, is the work developed in the 20s and 30s of the XXth century by
Irving Langmuir and Katharine B. Blodgett. The two scientists developed
a methodology to deposit organic coatings on top of a surface. The big
advantage of these so-called Langmuir Blodgett films was that the adsorbed
material was deposited layer by layer, making it possible to control accurately
the number of layers (and hence the size) of the coating. In this way, the
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optical properties of the coatings could be carefully prepared, leading to
spectacular practical applications, such as non-reflecting glasses.

Focusing now into the main topic of this work, namely, gas-phase clusters,
the development of mass spectrometer ion sources and later molecular beam
setups triggered the interest on these systems. Laser vaporization technique
enabled to produce clusters of virtually any element in the periodic table,
exciting the curiosity of a large community of researchers that eventually
bloomed in the 1980s. The term cluster was then and is still used in scientific
literature to denote an aggregate containing from few atoms up to a few
thousand atoms (i.e., from 0.1 nm to 5 nm). It was coined for the first time
by the chemist F. A. Cotton in the early 1960s when referring to compounds
containing metal-metal bonds. Currently, however, it refers to compounds
in a broader perspective. Indeed, the type of chemical bonding established
among the cluster constituents can be used to classify the clusters in different
categories and metallic clusters, Van der Waals clusters, clusters of ionic
materials, or molecular clusters, for instance, can be distinguished [3, 4].

In the field of clusters, size effects have been a matter of continuous
investigation. One of the first clear signatures of size effects in gas-phase
clusters were the measurements of Schmidt-Ott et al. on the photoemission
yield from particles with radii smaller than 5 nm [5]. Schmidt-Ott and
coworkers showed that the number of photoelectrons reaching the detector
strongly depended on the size of the particles and explained their findings in
terms of surface/volume ratios.

In the particular case of metal clusters, another relevant finding to push
the field was the discovery of electronic shell structure in free alkali clusters
by Knight et al [6, 7]. As a consequence of this shell structure, clusters with
filled electronic shells are more stable and less reactive than clusters with
open shells. This is similar to the behavior of atoms in the periodic table,
with noble gases being an example of low reactive systems.

The dependence on size of the electrical, optical and mechanical
properties in nanometer-sized metal clusters is not always predictable. A
small variation in size (an addition of a single atom, in some cases) can
change dramatically some of these properties. One of the reasons for this
fluctuating behavior is that the geometry of clusters is often difficult to
elucidate, in particular for small sizes. In a simplified picture, one could
define two different regimes [8]:

- The scalable regime, in which the material properties and functionality
differ from the bulk counterpart, but the change is gradual with size and/or
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Figure 1.1: Scalability of a given property in a nanosized particle as a function
of size: Illustrative behavior

shape.
- The non-scalable regime, in which the material properties change with

every new atom added or subtracted from the syste, quantum size effects
come into play and the properties exhibit discontinuous behavior.

The regime of interest for possible applications is, in general, that in which
the properties vary smoothly and the variation is predictable. A question
which still lacks a convincing answer in many cases is the following: how
many atoms are needed in a cluster to behave like bulk matter? Furthermore,
as will be proven in this work, the answer to this question may depend on
the particular property under study.

1.2 Motivation for this Thesis work

The above section may be considered as a general and historical context
for this thesis work. Our goal in this research activity has been to study the
dependence on size of some electronic properties in metallic nanoparticles and
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to understand the reasons of those features that set a difference in behavior
with respect to bulk properties. We have focused into two different kind of
processes, both of which are linked to electronic excitations in the system.

Decay of electronic excitations

The first of the problems that we address in this thesis work is the decay
time of electronic excitations in metal nanoparticles. This is a problem of
large interest in the fields of optical spectroscopy and photochemistry. While
structural properties of materials depend on ground state features, electronic
and optical properties are largely determined by their electronic excitations.
Excited electrons are one of the most useful tools in physics to transfer charge
and energy. Photoexcited electrons convert light into chemical energy in the
photosynthesis process and light into electrical energy in solar cells. For
these processes and others to happen, the survival time of these electronic
excitations needs to be long enough to avoid the dissipation of the excitation
energy into heat.

Electronic excitations in metallic media can decay through various
mechanisms. In general, the most important of them are electron-electron
(e-e) and electron-phonon (e-ph) scattering. In practice, the scattering of the
electrons at defects can also be an important mechanism for the decay. Over
the last years, a large amount of theoretical and experimental work has been
devoted to understand and predict the time evolution of these excitations
in solids [9, 10, 11, 12, 13] and at surfaces [14, 15, 16, 17, 18]. This has
been helped by the development of new experimental techniques based on
femtosecond lasers: Electronic excitations with energies of few eV usually
decay in a time scale of the order of femtoseconds, making their analysis by
other techniques particularly difficult.

Scientific literature and understanding on electron scattering rates in
bulk and surfaces is broad, but the study and control of similar processes
in finite size systems is much reduced, partially because of the complexity
of the process. The drastic modifications in electronic properties that size
variation can induce make it involved to find some general leading trends.
However, the size-tuning of the electronic properties of metal systems and
the subsequent change in the lifetime of electronic excitations is not a
question of purely academic interest, but has important implications for many
technological applications. In photochemistry, for instance, electronically
excited states can act as intermediate steps in various chemical processes.
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Either enhancement or reduction of the reaction rate should be thus possible
through a proper design of the intermediate step lifetime. Finite systems of
nanometer size are very attractive for this purpose.

From a theoretical point of view, the decay of electronic excitations
in a metallic system is a tough many-body problem. The dynamic
screening of electrons in an interacting Fermi liquid lies behind the concept
of quasiparticle, one of the most useful models to describe theoretically
electronic excitations [19]. The interaction between quasiparticles determines
the time scales in which the corresponding quantum states retain their
identity. A quasiparticle is said to have a lifetime, which sets the duration
of the excitation. Furthermore, the lifetime determines the mean free path
of the quasiparticle, a measure of the range of influence of the excitation.

For any given system, two are the key features that determine the rate at
which electronic excitations decay: the dynamic screening among the medium
electrons and the density of electronic states at energies close to the Fermi
level. These two effects actually work in opposite directions and there is a
delicate balance between them. As summarized in Fig.1.2, a large density
of states at the Fermi level implies a large phase space for the electronic
excitations to decay, increasing the scattering rate. In parallel, a large density
of states at the Fermi level also implies an enhanced screening of the Coulomb
interaction between the medium electrons, decreasing the scattering rate. In
the first self-consistent calculation of the electron-electron scattering rates
in a free electron gas (FEG) perfomed by Quinn and Ferrell [20], it was
shown that the screening factor is actually stronger than the density of states
argument for the infinite system. Reference [20] showed that the lifetime τ

scales with the electronic density parameter rs as τ ∝ r
−5/2
s in the case of

the infinite FEG.
Focusing now into the particular case of clusters, the density of states

and the screening properties of metallic systems are profoundly affected by
their dimensionality. Confinement and surface effects are, among others, two
features that can drastically reduce the electronic screening as compared with
the bulk case. Confinement in finite systems brings forth an additional effect
relevant for the evaluation of lifetimes, namely, the quantization of levels and
the subsequent reduction in the number of initial and final states available
for the excitation and decay processes respectively. The interplay between
these two effects makes the analysis of electron dynamics in clusters and
nanoparticles both intricate and appealing.
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Figure 1.2: Schematic picture of the electron-electron scattering process in
a free electron gas (FEG). The two most relevant features determining the
rate, i.e., the dynamic screening among the medium electrons and the density
of states (DOS) in the vicinity of the Fermi level, are singled out.

The difference between the dynamics of hot electrons in nanoparticles
and in bulk has to be discussed taking into account the above mentioned
effects. First, the electron lifetime can be enhanced in metal nanoparticles
as compared to the bulk situation because of the discretization of levels
that reduces the number of final states to which the electronic excitation
can decay. However, the electron lifetime can decrease in the nanoparticle
because of the general reduction of dynamic screening. The latter effect is due
to the relatively lower mobility of the screening electrons in a finite system, as
well as to the time spent by the electrons in the vicinity of the surface. There
are no a priori reasons to choose any of these two effects as more important
than the other. Otherwise said, there is no a priori reason to predict whether
the lifetime of electronic excitations in clusters and nanoparticles is longer
than in bulk or not.

From the experimental point of view, collected information does not help
much either. Electron dynamics in metal clusters and nanoparticles is usually
addressed using laser-based techniques [21], although the acquired knowledge
is still scarce as compared to solids and surfaces. Particular attention has
been paid to the dependence on size of the electron-electron interaction
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Figure 1.3: Size dependence of the electron thermalization time for Ag
nanoparticles. Figure extracted from Ref. [22]. Dots and triangles show
the measured values in different matrices. Full line shows a calculated
thermalization time, computed taking into account both the spillout
(dash-dotted line) and d-electron (dotted line) localization effects. See
Ref. [22] for details.

processes [22, 23, 24, 25]. However, some of the conclusions extracted from
these works are puzzling. Let us give below a couple of examples.

Voisin et al. showed more than one decade ago that the electron
thermalization rate (i.e., a quantity that is very much linked, although in
an integrated manner, to the inverse of the electron-electron lifetime) is
increased for Ag nanoparticles of size smaller than 5 nm, as compared with
the bulk reference value [22]. Figure 1.3 shows the measured thermalization
times. The decrease of the deexcitation time with the nanoparticle size was
attributed to the induced reduction of the Coulomb interaction screening at
the nanoparticle surface [22]. In other words, the electron-electron interaction
in small nanoparticles is stronger due to large surface regions and this is the
effect that determines the rate.

Merschdorf et al., however, measured electron lifetimes in supported Ag
nanoparticles appreciably higher than those obtained for Ag bulk or Ag
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Figure 1.4: Inelastic electron lifetime as a function of the initial state
energy above the Fermi level. Figure extracted from Ref. [25]. The two
different experimental datasets correspond to data acquired with different
polarizations in the excitation. Theoretical predictions and experimental
results for a 15 nm thick Ag film are shown for comparison. See Ref. [25] for
details.

films [25]. Figure 1.4 shows the measured electronic lifetimes as a function
of the initial state energy above the Fermi level and compares them with
the corresponding quantities in Ag thin films, which can be considered as
a reference for the bulk. The results of Merschdorf et al. imply that the
deexcitation times in nanoparticles are larger than the corresponding ones
in bulk, at least for the range of energies considered. This is a conclusion
contradictory to the one discussed in the previous paragraph. It shows well
both the complexity of the problem of lifetimes in nanoparticles and the
necessity of further research on the subject.

Energy loss problems

The second process that we study is the energy loss of charged particles
colliding with metallic systems of nanometer size. Energy loss problems
belong to a large tradition in solid-state physics and have relevant connections
to some microscopy techniques, as well as important implications in medical
physics. The slowing down of charged particles in matter is a key
phenomenon in applied materials science, in medical physics, as well as
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being an important ingredient in many experimental techniques used in
fundamental research on solids, surfaces, and nanostructures. Among many
others, let us mention here Low Energy Ion Scattering, Rutherford Back
Scattering, and Elastic Recoil Detection Analysis. All these experimental
techniques provide information about the structural and electronic properties
of materials, as well as about the interaction process itself. Charge exchange
and electron emission are other important processes in which electronic
excitations of a few eV arise for incident ion energies in the keV/u range.

However, and despite numerous attempts, the complexity of the dynamic
interaction between charges and solids has made it difficult to apply
theoretical schemes at the level of accuracy achieved in other condensed
matter problems. For such accuracy, a detailed description of electronic
excitations, dynamic screening, and possible charge transfer processes is
required. In the case of metals, a common theoretical approach to describe
the electron excitation spectrum of the material is the use of the free electron
gas model (FEG).

In the weak coupling limit, first order approaches, such as first Born
approximation to treat the scattering and linear response to treat the
dynamic screening, are well justified. The weak coupling limit is achieved
for fast particles when their charge is much smaller than their velocity (in
atomic units). In first-order of perturbation theory, the energy loss per unit
path length suffered by such a particle in a free electron gas can be written in
terms of the dielectric function of the medium in which the particle moves (in
our case, the dielectric function of the FEG) [26], and is given by an integral
over the spectrum of excitations defined by energy and momentum.

In the strong coupling limit, when the velocity of the projectile is much
smaller than its charge, neither linear response theory to treat the screening
nor first-order Born approximation for the scattering process are justified.
A combination of scattering theory with the results of static DFT can
successfully describe the energy loss in this case [27, 28, 29, 30, 31]. The
starting point is the DFT formalism as applied to a static impurity of charge
that of the projectile embedded in a free electron gas [32, 33], and the
stopping power at low velocities can be written in terms of the transport cross
section at the Fermi level, or alternatively the so-called friction coefficient
[33, 34].

The above mentioned are well-established approaches to obtain the energy
loss in two well-defined limits, namely, the quasi-static situation and the
linear regime. Until very recently, there was no quantal self-consistent
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theoretical framework able to describe the stopping power of solids for
charged projectiles over a wider range of velocities. Only theories based
on classical mechanics [35, 36] had been applied. The case in which the
projectile velocity is similar to the Fermi velocity vF of the target electrons
is particularly challenging. But in this velocity range, quasi-static or
perturbative approximations break down even for unit-charge projectiles.

The development of time-dependent methods in recent years has opened
new perspectives in this respect. In particular, time-dependent density
functional theory (TDDFT) provides a self consistent, non-perturbative,
time-domain treatment of electron dynamics in many body systems. TDDFT
has been successfully applied to the calculation of energy transfer in collisions
between charged atomic particles and small molecules and clusters in the gas
phase [37, 38, 39, 40, 41]. Two-dimensional targets of finite size [42] and
metal surfaces [43] have been addressed as well.

In addition to these works, there is a growing interest on ultra-fast
processes triggered by the development of femto- and atto-second lasers.
Experimental work on this topic naturally puts forward the question on how
the electronic excitations caused by external radiation or an intruder in a
metallic system evolve in time. It has been demonstrated, for example, that
the screening response, one of the basic property of the electron media, needs
finite time to be established.

For targets of nanometer size, the interaction time between the projectile
and the target electrons might be much shorter than the time needed for the
electronic density excitation created in the target to reach its boundaries.
The latter time scale can be also interpreted as the characteristic time needed
for the many-body excited modes of the nano- object to completely develop.
From the point of view of the moving projectile the finite size object would
then behave in this time scale as an infinite system in which there will
be no quantum size effect for the projectile stopping. From the quantum
mechanical point of view, an alternative view would be that, if the spectrum
of the perturbation is broad enough to overlap many of the discrete excited
states of the system, the continuum limit is retrieved.

The time-domain study of the collision process of projectiles with
nanoparticles of variable size is not only a problem of interest in the context
of this thesis, but it will also allow us to calculate related properties over a
wide range of velocities, so far not achieved. This might give light to the
question of the similarities and differences of the slowing down of charges in
solids and that occurring in finite-sized systems.
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1.3 Outline of this Thesis

This thesis is presented in the form of compilation of publications.
Chapter 2 and Chapter 3 contain the fundamentals of the main theory
frameworks in which this work has been carried out. The main body of
the research activity is presented and discussed in detail in Chapters 4 to 7.
Each chapter includes the particular conclusions.

Chapter 2 summarizes the fundamentals of density functional theory
and its application to the characterization of metal clusters. In this work,
the description of metal clusters is simplified by means of the jellium
approximation. One of the main obstacles to obtain meaningful results in the
study of size effects is the necessity of analyzing systems of very different size
under the same approximation grounds. The jellium approximation allows
us cover a wide range of cluster radii under the same theoretical scheme.

Chapter 3 gives an overview of time dependent density functional theory
and its application to spherical jellium clusters under the action of a
time-dependent external potential with axial symmetry. TDDFT is treated
in this work in a fully non-perturbative way. The jellium model is used
to calculate the initial state of the system. Then real-time propagation is
performed to calculate the evolution of the electronic density of the system.

Chapters 4 and 5 are devoted to the study of the lifetimes of electronic
excitations in metal clusters, calculated within linear response theory and the
self-energy formalism. Chapter 4 contains a detailed description of the theory
employed and first results on the study of size effects. Chapter 5 complements
the study on the size dependence of lifetimes, including TDDFT tools for the
characterization of the one-electron states describing electronic excitations.
The energy dependence of the lifetimes in nanoparticles is analysed as well,
obtaining an unexpected result intrinsically different to the corresponding
one in bulk materials.

The study of the interaction of charged particles colliding with metallic
nanoparticles is addressed in Chapter 6. In this chapter, we calculate the
energy loss of protons and antiprotons traversing aluminium clusters. The
trajectory of the projectiles crosses the geometrical center of the (jellium)
cluster, so axial symmetry is fulfilled. In contrast to results extracted from
Chapter 4 and 5, we find out that the energy loss in bulk materials and in
nanosized systems have a comparable value.

To complete the study of the collision process of charges with
nanoparticles, we addres the calculation of the energy loss of charged
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projectiles colliding with metallic thin nanoshells. This is done in Chapter
7.

Last but not least, the general conclusions extracted from this work are
provided in Chapter 8. A complete list of the publications resulting from
this PhD. work can be found as well at the end of the manuscript.

Atomic units will be used throughout this work unless otherwise stated.
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2 DFT description of the ground state of a

jellium cluster

2.1 Fundamentals of density functional theory

Density functional theory (DFT) is currently the most widely used
method to perform accurate calculations of electronic properties in solid-state
physics. Recently, it has become popular in quantum chemistry as well.
The main reason for that is that DFT offers a reasonable balance between
precision and computational effort. Therefore it allows to treat systems of
size larger than those usually targeted in quantum chemistry. In addition,
the sophisticated wavefunction-based methods used in quantum chemistry,
when applied to small systems, can be ideal benchmarks to test the accuracy
of DFT calculations.

DFT is a theory to calculate the properties of the ground state of an
interacting system, with an external potential vext applied. Although more
general than that, the main success of DFT lies on its treatment of the
electronic many-body problem. Instead of focusing into the calculation of
the N-electron wave function Ψ(r1, r2, ..., rN), as other ab-initio methods do,
DFT is based on the calculation of a different basic quantity, namely, the
electronic density of the system n(r). An obvious advantage of this choice is
that n(r) is a function that depends only on three cartesian coordinates r,
simplifying very much the calculation.

The rigorous demonstration that the ground state properties of an
interacting system, and in particular the total energy E, can be obtained
from the density n(r) was given by Hohenberg and Kohn [1]. These authors
prove that the exact energy of the ground state of the system can be written
in terms a functional E[n(r)], which has a minimum value for the exact
density of the ground state. In addition, Hochenberg-Kohn theorem states
that there is a unique external potential vext (to within a constant) and a
unique ground state wave function (to within a phase factor) corresponding
to this density n(r). The variational principle can be expressed as:

δ

δn(r)

[
E[n(r)]− λ

∫
n(r)dr

]
= 0 , (2.1)

where the Lagrange multiplier λ is defined so that the density is normalized
to the total number of particles N in the system.
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In the particular case of a many-electron system moving in the field of a
static external potential, the functional E[n(r)] can be written as:

E[n(r)] = FHK[n(r)] +

∫
vext(r)n(r)dr , (2.2)

where FHK[n(r)] is a universal funcional of the density n(r), which applies to
all electronic systems in their ground state regardless of the external potential
vext.

Using this definition in Eq. 2.1, the variational principle by Hochenberg
and Kohn leads to the Euler equation:

λ =
δE[n(r)]

δn(r)
= vext(r) +

δFHK[n(r)]

δn(r)
. (2.3)

Although the Hohenberg-Kohn theorem provides a rigorous basis for
treating a many-electron system in terms of its electronic density, it does
not give a recipe to obtain the density itsef. The main difficulty lays in the
determination of the universal funcional FHK[n(r)], which accounts for the
kinetic energy of the electrons and the one associated to the electron-electron
Coulomb interaction.

In 1965, Kohn and Sham developed a method in which the intricate
many-body problem of interacting particles was mapped into a comparatively
easier problem of non-interacting particles [2]. The method asserts the
existence of a single-particle effective potential veff [n(r)] such that the ground
state density of the real system n(r) equals to that of a fictitious system of
independent particles. In this scheme, the wave function of the full system
is a simple product of one-electron wave functions φi(r), satisfying the KS
equations: {

−1

2
∇2 + veff [n]

}
φi = εiφi , (2.4)

where ϵi are the corresponding KS eigenvalues.
KS equations have to be solved in a self-consistent manner. At every step

of the iterative process, the density n(r) can be directly constructed from the
following sum over occupied KS wave functions:

n(r) =
∑
i∈occ.

|φi(r)|2 , (2.5)

and the effective potential veff [n] is calculated from n(r). Once the procedure
is converged, the KS wave functions yield not only the electronic density of
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the non-interacting KS system n(r), but also the electronic density of the
real system, which coincides with it. The KS wave functions do not have
a strict physical sense. However, they can be used in many cases as good
approximations to the one-electron wave functions of the electrons in the
system.

At first sight, KS equations seem to solve the difficult problem of the
many-body interacting system. KS equations are a set of single-particle
equations, much easier to solve than the coupled Schrödinger equation,
especially for large numbers of electrons. They are exact and unique, and
yield the exact density. However, the crucial point of the KS method is
the definition of the effective potential veff and, more precisely, of one of
its components, the exchange-correlation potential vxc which, in general, is
unknown.

In the Kohn-Sham scheme, the total energy of the system E can be
written as the sum of three terms:

E = T + Ecoul + Exc , (2.6)

where T is the kinetic energy of the non interacting system, formally:

T =
∑
i

ϵi −
∫
dr n(r) veff(r) , (2.7)

Ecoul is the electrostatic energy:

Ecoul =

∫
dr n(r)

{
vext(r) +

1

2

∫
dr′

n(r′)

|r− r′|

}
, (2.8)

and Exc is the exchange and correlation energy, which is formally defined as:

Exc =

∫
dr n(r) ϵxc[n(r)] . (2.9)

Here, ϵxc[n(r)] is the so-called exchange and correlation energy density.
The effective potential veff is given by:

veff = vext + vH + vxc , (2.10)

where vext is the external potential in which the electrons move, vH is the
Coulomb potential created by the electronic density

vH(r) =

∫
dr′

n(r′)

|r− r′|
, (2.11)
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and vxc is the exchange and correlation potential, which is formally defined as
the functional derivative of the exchange-correlation energy Exc with respect
to the density n(r):

vxc(r) =
δExc[n(r)]

δn(r)
. (2.12)

The exact form of the functional Exc[n(r)] is not known. Otherwise, we
would be able to solve all Coulomb-interacting electronic problems exactly.
A large number of approximations have been developed to account for this
term. The simplest and easiest one is the local density approximation (LDA),
in which the exchange-correlation energy is obtained as:

ELDA
xc [n(r)] =

∫
dr n(r) ϵxc(n(r)) , (2.13)

where ϵxc(n(r)) is the exchange-correlation energy density of a uniform
electron gas with density equal to the local electronic density at point r. Until
the early 90’s, the LDA was the standard approach for all density functional
calculations. By construction, it is a good approximation for those systems
with slow varying density. Unexpectedly, it has shown to be a reasonable
approximation even for some realistic and very inhomogeneous systems.
However, it does not provide sufficiently accurate values of quantities such
as semiconductor band gaps and energies of chemical reactions.

It can be shown that the LDA is in fact the first term in a
systematic expansion of the exchange-correlation functional in terms of
spatial derivatives with respect to the density. Inclusion of an additional
term in this expansion (the gradient of the density ∇n(r)) leads to the
generalized gradient approximation (GGA). By specifying different forms of
the pair-correlation function of the many-electron system and determining
the parameters in this function by sum rules and other constraints, several
GGA functionals have been proposed. These GGA functionals have led to
large improvements in molecular binding energies, as well as in atomic and
molecular adsorption energies at surfaces, as compared to LDA calculations.

Modern state-of-the-art calculations in DFT use exchange-correlation
functionals that go beyond GGA. Generally speaking, improvements in the
exchange-correlation terms follow two different and complementary schemes:
either designing more accurate functionals without modifying the variables
on which the functional depends or designing more accurate functionals
increasing the number of variables on which the functional depends [3].
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2.2 DFT and spherical jellium cluster

Valence electrons in metal clusters can be described as occupying discrete
levels determined by the cluster size and geometry. In the limit of very
large clusters, the difference in energy between the discrete levels becomes
negligible and the density of electronic levels can be safely approximated
by a continuum of states, as in bulk. Electronic shells similar to those
of atomic and molecular systems appear. Metallic clusters in closed-shell
configurations are more stable, as measured in pioneering experiments in
the field [4]. Certain ”magic numbers” of constituent atoms are thus more
abundant than others.

Because of their relatively simple electronic structure, the spherical
jellium model has been widely used in the description of small metallic
clusters [5, 6]. The jellium model is simple enough to be applied to the
description of metal clusters with sizes up to several thousand atoms, but
is still able to reproduce in a qualitative (and often also in a quantitative)
way many of their electronic properties [7]. Its success in describing the
complex ’supershell’ structure in large alkali clusters [8], superimposed over
the standard shell structure, is a good example of this.

A quite complete set of calculations for the electronic properties of
metallic clusters using the jellium model were performed in the ’80s of last
century by W. Ekardt [9, 10, 11, 12]. In these seminal works, Ekardt used
the jellium model to show that the ionization potential of clusters presents
a strong oscillatory behaviour with size. Whenever an electronic shell is
completely filled, the ionization potential is at a maximum, due to the strong
binding of the last electron filling this shell. The oscillations are damped with
size and the ionization potential ends up converging into the work function
of the corresponding metallic surface. The convergence to the surface work
function, however, is rather slow because of the high orbital degeneracy for
large values of the angular momentum l.

In the spherical jellium model, the background of positive ions is smeared
out over the cluster volume, and the valence electrons move in the attractive
potential created by the ionic background. The cluster is assumed to have
a spherical shape of radius R, and the positive background charge density
n+(r) is given by:

n+(r) = n0 r ≤ R

n+(r) = 0 r > R. (2.14)
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For the cluster to be neutral, the following relation holds:

1

n0

=
4πr3s
3

, (2.15)

where rs = R/N1/3 is the so called average one-electron radius in the cluster,
and N is the number of electrons in the system.

The external potential in which the electrons move is obtained by direct
integration of:

vext(r) = −
∫

dr′
n+(r′)

|r− r′|
, (2.16)

which yields an attractive external potential with parabolic behaviour up to
the cluster surface, and standard Coulomb-type decay from the surface up
to infinity.

With this specific external potential, we use Density Functional Theory
and the Kohn-Sham equations (2.4) to calculate the ground state properties
of spherical jellium clusters. The exchange and correlation potential
vxc(r) is calculated in the local density approximation (LDA) with the
parametrization of Reference [13].

Due to spherical symmetry, the KS wave functions are characterized by
the radial quantum number k, the angular momentum quantum number l
and the quantum number describing the angular momentum projection, m.
Expansion of the KS wavefunctions φi(r) in the spherical-harmonic basis set
Ylm(Ω):

φi(r) = Rkl(r)Ylm(Ω) (2.17)

where the index i stands for the full set of indexes (k, l,m), leads to the radial
KS equation:{

−1

2

∂2

∂r2
+
l(l + 1)

2r2
+ veff(r)

}
ukl(r) = εklukl(r), (2.18)

in which the radial wave function has been transformed into Rkl(r) =
ukl(r)/r.

Jellium clusters are finite-size objects in which the electrons are confined.
The spectrum of KS energy levels εi is thus discrete. Due to angular and spin
degeneracy, the energy levels are distinguished by k and l quantum numbers.
Each (k, l) shell accepts up to 2(2l + 1) electrons.

The set of KS equations are solved using an iterative process. For that
purpose, we define a one-dimensional grid of equidistant points in the radial
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Figure 2.1: Flow chart of the self-consistent process when solving Kohn-Sham
equations.

coordinate that extends far beyond the cluster radius R. In each iteration,
the radial KS equation (Eq. 2.18) has to be solved. Either the Numerov
algorithm [14] or direct diagonalization of the Hamiltonian matrix after
Fourier expansion of all quantities [15] have been used for this purpose.
Once the KS wave functions and energies are calculated, the radial electronic
density of the cluster n(r) and the effective potential veff(r) are recalculated.
The iterative procedure is stopped when the total energy of the system
E converges up to a certain tolerance (typically 10−4 a.u.). A simplified
flowchart illustrating the numerical self-consistent procedure is shown in
Fig. 2.1.
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Figure 2.2: Density functional calculation of a jellium cluster with N = 556
electrons and density parameter rs = 4. The upper panel shows the electronic
density in units of n0 = 3/(4πr3s) as a function of radial distance (in a.u.). A
dashed vertical line indicates the cluster surface. The lower panel shows the
Kohn-Sham potential (in eV) as well as the occupied Kohn-Sham levels.

2.3 Description of the ground state of a jellium cluster

During the development of this PhD. work, we have characterized clusters
ranging from a few to thousands of electrons and various screening radii, e.g.
rs = 2.07 (aluminum clusters) and rs = 4 (sodium clusters). The scheme and
numerical procedure is the aforementioned, where we have taken care that
electronic closed shell configurations are formed in the converged systems.
We include here a brief description of the main features of jellium clusters,
which set the basis for the studies presented in the following chapters.

Figure 2.2 shows the DFT calculation of a sodium cluster with N = 556
electrons. The upper panel shows the electronic density n(r), in units of the
average electronic density n0 = 3/(4πr3s), as a function of radial distance
from the center of the cluster. In general terms, the electronic density inside
the cluster is close to the average value n0. Friedel oscillations are observed
as a consequence of electron confinement, and an exponential decay of the
electronic density at the surface of the cluster is found as well. In the lower
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Figure 2.3: electronic density and Kohn-Sham or effective potential for
several metal clusters with electron density parameter rs = 4 (sodium
clusters)

panel, the effective potential potential veff(r) and the occupied KS electron
levels are represented, the upper level corresponding to the Fermi energy of
the system. Being the electronic density almost constant inside the cluster,
the Coulomb potential created by the electronic density and the Coulomb
potential of the positive background roughly compensate. Thus, inside the
cluster, the value of veff(r) is mostly determined by the exchange-correlation
potential vxc(r).

Figure 2.3 shows the evolution of the electronic density and the effective
potential for several Na clusters (rs = 4) of increasing size. One can observe
that the oscillations in the electronic density, which appear due confinement
effects, diminish with increasing cluster size. The electronic density at the
center of the sphere is controlled by the number of s (l = 0) electrons in
the cluster. Because of the boundary conditions of the KS wave functions at
the origin, all other electrons with l > 0 are repelled from the center region.
When a given s-shell is eventually filled, the electronic density at r = 0
decreases.

As the cluster grows in size, the discrete spectrum of energy levels is
densified. Otherwise said, the average energy step between two different
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energy levels is reduced. This effect is graphically shown in Fig. 2.4, in
which the energy level diagrams of Na clusters of increasing size are plotted.
For the smallest cluster, N = 58, the diagram is similar to a molecular
level diagram. For the largest one, N = 2018, the diagram shows nearly
a continuum of states, what is expected of bulk materials. To complete

Figure 2.4: Energy level diagrams for several sodium clusters (rs = 4) with
increasing number of electrons. Discontinous (continuous) lines represent
unnocupied (occupied) energy levels

the description of the ground state of a metal cluster, we show the radial
one-electron wave functions calculated for sodium clusters of very different
size, namely R = 15.48 a.u. (N=58 electrons) and R = 50, 55 a.u. (N=2018
electrons). This is shown in Figures 2.5 and 2.6 respectively. The right
panels show the diagram (k, l) energy shells with information of the angular
momentum l. In this representation, several branches appear, grouping wave
functions with a given number of nodes. These are represented on the left
panels. As we can observe in the figures, the one-electron wave functions have
an appreciable weight around the cluster surface, which will prove to have
an influence in the lifetime of electronic excitations. This will be addressed
to in Chapter 5.
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Figure 2.5: wavefunctions of a cluster with N=58 electrons and rs = 4.
Occupied states are displayed in grey, unoccupied states in brown, and
the outer unoccupied state in black. The right panel shows the branches
of the energy versus angular momentum graphs whose wavefunctions are
represented on the left panel.

29



Figure 2.6: wavefunctions of a cluster with N=2018 electrons and rs = 4.
Occupied states are displayed in grey, unoccupied states in brown, and
the outer unoccupied state in black. The right panel shows the branches
of the energy versus angular momentum graphs whose wavefunctions are
represented on the left panel.
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3 TDDFT description of excited states in a

jellium cluster

3.1 Fundamentals of time-dependent density
functional theory

The response of an interacting many-particle system to a time-dependent
field can be often treated within linear response theory. However, this is not
always the case. Let us mention as an example the interaction of matter
with ultra-short laser pulses of very high intensity, a tool which has become
available in recent years thanks to the advances in the field of laser physics.
When a system interacts with a laser of these characteristics, perturbation
theory is no longer valid to treat the dynamics of the system. Another
example in which linear response fails is the study of collision processes with
slow atomic charges, a topic which will be addressed in Chapter 6.

The non-perturbative quantum mechanical description of many-body
systems moving in a strong time-dependent external field is becoming a
problem of increasing interest in theoretical physics. In principle, this
problem requires a full solution of the time-dependent Schrödinger equation
for many-body systems, which is an exceedingly difficult task. In view of the
success of DFT in the treatment of the ground state of many-body systems, a
time-dependent version of density functional theory appears highly desirable.

One of the first steps towards a time-dependent Kohn-Sham scheme
was taken by Zangwill and Soven [1] although still in the linear theory
regime. These authors adopted the functional form of the static exchange
and correlation potential in LDA. The approximation can be expected to
be good only if the time dependence of the density is sufficiently slow. In
practice, however, it gives quite good results even for the case of rather rapid
time dependence. But the approach of Zangwill and Soven was valid under
the assumption that a time-dependent KS theorem exists. After several
derivations restricted to a narrow set of time-dependent potentials, a general
formulation was given by Runge and Gross [2].

Ordinary time-independent DFT is based on the existence of a one-to-one
mapping between densities and external potentials. In the ground state
formalism, the existence proof relies on the variational minimum of the
energy. Straightforward extension to the time-dependent domain is not
possible, since a minimum principle is not available in this case. However,
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Runge and Gross proved that there is actually a one-to-one mapping between
time-dependent external potentials and electronic densities. In other words,
if a given initial state with many-body function Ψ0 evolves in time under the
influence of two different potentials v(r, t) and v′(r, t), the resulting electronic
densities n(r, t) and n′(r, t) are different as well. Note that in this context,
two potentials are considered to be different if they differ by more than a
time-dependent, space-independent, constant.

A direct consequence from Runge-Gross theorem is that, for a given
interacting system, the expectation value of any time-dependent quantum
mechanical operator Ô(t) is a unique functional of the density n(t):

O(t) = < Ψ[n(t)]|Ô(t)|Ψ[n(t)] > , (3.1)

because the time-dependent many-body function Ψ[n(t)] is also a unique
functional of the system density (up to a time-dependent phase that cancels
out in Eq. 3.1).

The one-to-one correspondence between time-dependent densities and
time-dependent potentials can be established for any given interaction
between particles. In particular, it can be applied to a system of
non-interacting particles. Thus, for a non-interacting system, there is a
unique external potential which reproduces a given time-dependent density.

The previous statement allows to establish a time-dependent Kohn-Sham
scheme, following the same philosophy of ordinary time-independent DFT.
According to the time-dependent Kohn-Sham scheme, for a system of
interacting electrons initially in their ground state and subject to a given
time-dependent potential, there is an alternative system of non-interacting
identical fermions which gives rise to exactly the same time-dependent
electronic density. The non-interacting fermions are subject to an external
effective potential veff([n], r, t), and the one-particle wave functions fulfill the
so-called time-dependent KS equations. These are formally similar to a set of
time-dependent Hartree equations but include exchange-correlation effects,
in principle, in an exact way. In practice, however, approximations for the
exchange-correlation potential are required and happen to be the main source
of inaccuracy in real calculations.

Similarly to the KS version of DFT, in TDDFT the time-dependent
electronic density can be obtained as a sum over one-particle wave functions
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in the following way:

n(r, t) =
N∑
i=1

|φi(r, t)|2 , (3.2)

where N is the number of electrons in the system, and φi(r, t) are wave
functions that satisfy the following KS time-dependent equations:

i
∂

∂t
Ψi(r, t) =

(
−∇2

2
+ veff([n], r, t)

)
Ψi(r, t) . (3.3)

The time-dependent effective potential veff([n], r, t) is built from three terms,
namely, the external time-dependent potential vext(r, t), the Hartree potential
vH([n], r, t), and the exchange-correlation term vxc([n], r, t):

veff([n], r, t) = vext(r, t) + vH([n], r, t) + vxc([n], r, t) . (3.4)

The time-dependent Hartree term is obtained from the electronic density of
the system in the following way:

vH([n], r, t) =

∫
dr′ n(r′, t)

|r− r′|
. (3.5)

As in standard DFT, the exchange correlation term vxc([n], r, t) is the
one in which most of the problem complexity is included in practice. Several
approximations can be used to include dynamical exchange and correlation
effects. The simplest is the one that Zangwill and Soven employed: to
consider that vxc([n], r, t) is a local term that only depends on the value
of the electronic density at that given point of space r and at that given
point of time t. This is the so-called adiabatic local density approximation
(ALDA), which will be used all through this work with the exchange and
correlation functional of Ref. [3].

ALDA should be in principle accurate in the limit of low-frequency
and long-wavelength changes in the density. For other cases, the
exchange-correlation term should have a non-local dependence both in space
and in time. The non-local dependence in space was already discussed in
Chapter 2, when referring to the limitations of the static LDA approximation.
The non-local dependence in time implies that the exchange-correlation
functionals should take into account ’memory effects’ [4, 5, 6], i.e. the
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dependence of the functional on the value of the density at past times.
However, and in a way similar to what happens in static DFT with the
LDA approximation, ALDA is often able to provide suprisingly good results
in spite of the strong assumpltions implied.

3.2 TDDFT and spherical jellium cluster

In this PhD work, we use TDDFT to describe the time-evolution of the
electronic density of a metal cluster when different time-dependent external
perturbations are applied. As in the ground state described in Chapter 2, we
make use of the spherical jellim approximation, which enables us to study the
dynamics of clusters of very different sizes under the same theoretical scheme.
A common feature to all time-dependent external potentials considered in
this PhD. work is their display of axial symmetry, i.e. with respect to an
axis crossing the geometrical center of the cluster.

In Chapter 5, we briefly use TDDFT to identify the main features of the
electronic excitations when a short laser pulse is applied to the cluster. The
laser pulse that we use is of the following shape:

E(r, t) = E0 cos(Ωt) exp{−[(t− t0)/∆]2} uz (3.6)

Here, E0 is the field amplitude, Ω is the frequency of the laser, t0 the time
of maximum amplitude, and ∆ a parameter fixing the pulse duration.

In general, the wavelength of the laser fields considered is much larger
than typical cluster dimensions. We are thus allowed to work in the dipole
approximation. The external potential vext(r, t) associated to the pulse can
be calculated as:

vext(r, t) = E(r, t) · r. (3.7)

As uz is a unitary vector along the z-axis, the problem keeps axial
symmetry during the time evolution. Therefore,m is kept as a good quantum
number and KS wave functions with different m values evolve differently.

In Chapter 6, we consider the external potential created by a moving
bare chargeQ and study the electronic excitations created during the collision
process with a metal cluster. We also discuss the implications of the electronic
excitations in the the energy loss of the moving particle. The external
potential vext(r, t) can be written as:

vext(r, t) =
−Q

|R(t)− r|
, (3.8)
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where R(t) is the position of the moving charge at time t. In our case, we
consider that the trajectory of the charge follows a straight line that crosses
through the geometrical center of the cluster. In this way, axial symmetry is
kept again and m is still a good quantum number.

Because of the identical symmetry in the two problems, we use a
similar methodology and numerical implementation in both, which we outline
in the following paragraphs. Further details about the time-propagation
methodology can be found in [9].

The initial conditions for the TDDFT calculation correspond to the
ground state of the cluster. This way, the initial KS wave functions are taken
as the wave functions calculated within ordinary DFT, Ψi(r, t = 0) ≡ φi(r).
As shown in Chapter 2, these can be expressed in the spherical harmonics
basis set:

Ψklm(r, t = 0) = φi(r) = RklYlm(Ω), (3.9)

where the index i groups the set of quantum numbers (k, l,m).
Owing to the cylindrical symmetry of the problem, the projection of the

angular momentum m on the quantization z-axis is a good quantum number.
Thus, we use cylindrical coordinates, r = (ρ, z, ϕ), where the z-axis is set
along the symmetry axis of the system.

It is customary to reexpress the time dependent Kohn-Sham orbitals as

Ψklm(r, t) = ψm
j (ρ, z, t)

eimϕ

√
2π
, (3.10)

where the index j groups the set of quantum numbers (k, l). Note that each
Kohn-Sham orbitals is doubly degenerate with respect to the projection of
the electron spin s since we perform spin-restricted calculations.

Numerically, we use a uniform grid in z coordinate, but the convergence
can be greatly improved if we introduce a variable change in ρ coordinate,
ρ = f(ξ), such that the mesh in ρ is densified in the vicinity of the symmetry
axis. In our case, we have used the function ρ = ξ − (β/

√
α) atan(ξ/

√
α),

with α and β being arbitrary parameters in the range of α ≈ β ≈ 500,
depending on the particular situation.

The ψm
j (ρ, z, t) orbitals evolve according to the time-dependent

Kohn-Sham equations

i
∂

∂t
ψm
j (ρ, z, t) = Hmψ

m
j (ρ, z, t), (3.11)
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where Hm denotes effective m - dependent one-particle Hamiltonian of the
system:

Hm = −1

2

∂2

∂z2
− 1

2

1

ff ′
∂

∂ξ

f

f ′
∂

∂ξ
+
m2

2f 2
+ veff([n], ρ, z, t), (3.12)

and f ′ = df/dξ.
With the initial conditions defined by Eqs. (3.9) and (3.10), the time

dependent equations are solved via short-time propagation:

ψm
j (ρ, z, t+∆t) = e−i∆tHmψm

j (ρ, z, t). (3.13)

In practice, the time propagation is performed with the split-operator
technique [7], separating potential and kinetic energy terms.

e−i∆tHm = e−i∆t
2
veff(t+∆t/2)e−i∆tTze−i∆tTm

ξ e−i∆t
2
veff(t+∆t/2), (3.14)

where

Tz = −1

2

∂2

∂z2
, (3.15)

and

Tm
ξ = −1

2

1

ff ′
∂

∂ξ

f

f ′
∂

∂ξ
+
m2

2f 2
. (3.16)

Observe that the±m states are degenerate in the course of the time evolution.
We then only propagate the m ≥ 0 orbitals assuming double occupation for
the m = 0 states and quadruple occupation (±m-degeneracy times spin
degeneracy) for the m > 0 states.

The action of the exponential operator e−i∆tTm
ξ on the wave function is

calculated using the Cayley transform [8] and three point finite difference
techniques. A pseudo-spectral approach and Fast Fourier Transform is used
the calculate the action of e−i∆tTz .

To calculate the action of the exponential opertator e−i∆t
2
veff(t+∆t/2), we

follow an iterative procedure. This procedure involves veff(t) and consecutive
estimates of veff(t +∆t) in order to calculate veff(t +∆t/2). The procedure
is typically repeated 3-4 times to avoid divergences in the total energy of the
system.

For the processes encompassed in this PhD. work, typical time steps range
between ∆t = 0.01 and 0.08 a.u., depending on the particular process under
study.
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For completion of the study, an alternative code has been developed using
spherical coordinates, by means of expansion of the wave functions in a set
of spherical harmonics. The outcoming results are consistent with the ones
obtained with the cylindrical code.

The code used in the time-dependent work was designed and developed
by A.G. Borisov at CNRS-Universit Paris sud, Orsay.
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4 Lifetime of electronic excitations in metal

clusters

Abstract

Density functional theory and the self-energy formalism are used to
evaluate the lifetime of electronic excitations in metal clusters of
nanometer size. The electronic structure of the cluster is obtained
in the jellium model and spherical symmetry is assumed. Two effects
that depend on the size of the clusters are discussed: the change in
the number of final states to which the excitation can decay, as well
as the modification in the screened interaction between electrons. For
clusters with density parameter rs = 4 and few nanometers diameter, a
lifetime value of ≈ 5 femtoseconds is reached for electronic excitations
of ≈ 1 eV. This value is of the same order of magnitude of that
obtained in the bulk limit at the same level of approximation. For
smaller clusters, a distinct non-monotonic behaviour of the lifetime as
a function of the cluster size is found and the lifetime of excitations
of ≈ 1 eV can vary between 4 and 30 femtoseconds.
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4.1 Introduction

One of the most appealing features of nanometer-sized clusters is that
their electronic properties are midway between those of small molecular
systems and those of bulk condensed matter. This intermediate nature of
clusters makes most of their properties depend on size. Valence electrons
in metal clusters can be described as occupying discrete levels determined
by the cluster size and geometry [1, 2]. Electronic shells similar to those
of atomic and molecular systems appear. Metallic clusters in closed-shell
configurations are more stable, as measured in pioneering experiments in the
field [3]. In the limit of very large clusters, the difference in energy between
the discrete levels becomes negligible and the density of electronic levels can
be safely approximated by a continuum of states, as in bulk.

In the last years, the development of experimental techniques based on
femtosecond lasers has made it possible to study the dynamics of electronic
excitations in a wide variety of systems, including clusters [4]. Electronic
excitations with energies of few eV usually decay in a time scale of the order of
femtoseconds, making their analysis by other techniques particularly difficult.
In clusters, special attention has been paid to the dependence on size of the
electron-electron interaction processes [5, 6, 7].

There are two main effects that drastically modify the dynamics of
electronic excitations in clusters with respect to the bulk analogous situation.
First, the discretization of levels in the electronic structure of the cluster
reduces the number of final states to which an electronic excitation can decay
enhancing its lifetime. Second, the reduction of dynamic screening in the
proximity of the cluster surface changes the interaction potential between
electrons and decreases the excitation lifetimes. The interplay between these
two effects makes the analysis of electron dynamics in clusters both intricate
and appealing.

The theoretical study of electronic excitations in clusters is in general
less developed than the analysis of ground state properties. One of the
main obstacles is the necessity of analysing systems of very different size
under the same approximation grounds, in order to obtain meaningful
results. Here, we analyse the size dependence of electron lifetimes in metal
clusters. The description of the cluster is simplified by means of the jellium
approximation. In this way, we can cover a wide range of cluster radii
under the same theoretical scheme. We take as an example the lifetime
of ≈ 1 eV electronic excitations in jellium clusters of different size, keeping
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fixed the cluster average electronic density. We show that the lifetime of
electronic excitations in metallic clusters of few nanometers radii, due to
electron-electron scattering processes, are of the same order of magnitude
as those of metal bulk at the same level of approximation. This is due to
a rough compensation of the two cluster-specific effects mentioned above.
We also show that there is a non-monotonic behaviour of the lifetime as a
function of the cluster size for clusters with radii of 1 − 2 nanometers, due
to electron confinement effects. For clusters of bigger size, a lifetime value of
≈ 5 femtoseconds is reached.

The article is organized as follows: the theoretical model and numerical
details are provided in Section 4.2, Section 4.3 is dedicated to the presentation
and discussion of our results, and Section 4.4 contains our conclusions.
Atomic units are used throughout unless otherwise stated.

4.2 Theoretical model

4.2.1 Density functional theory of jellium clusters

The spherical jellium model has been widely used in the description of
small metallic clusters [1, 2]. In the jellium model, the background of positive
ions is smeared out over the cluster volume and the valence electrons move
in the attractive potential created by them. The positive background charge
n+(r) is approximated by a constant value n+(r) = n+

0 inside the cluster
(r < R) and made equal to zero outside it [n+(r) = 0 for r > R]. It
is also customary to define the average one-electron radius in the cluster
from rs = R/N1/3, where R is the radius of the cluster and N the number
of electrons in it. If the cluster is neutral, the equality 1/n+

0 = 4πr3s/3
holds as well. Despite its simplicity, the jellium model is able to describe
qualitatively (and even quantitatively in some cases) many experimentally
measured electronic properties of small metal clusters [8].

We use density functional theory (DFT) [9] and Kohn-Sham (KS)
equations [10] {

−1

2
∇2 + veff(r)

}
φi(r) = εiφi(r) (4.1)

veff(r) = vjellium(r) + vHartree(r) + vxc(r) (4.2)

to describe self-consistently the ground state properties of spherical jellium
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clusters. The effective potential veff(r) is composed of three terms:

veff(r) = −
∫
dr′

n+(r′)

|r− r′|
+

∫
dr′

n−(r′)

|r− r′|
+ vxc(r), (4.3)

where the first two terms account for the electrostatic potentials created
by the positive background and the electronic density n−(r) respectively.
The third term vxc(r) is the exchange-correlation potential, calculated in the
local density approximation (LDA) with the parametrization of Reference
[11]. The electronic density n−(r) is calculated as a sum over occupied wave
functions

n−(r) =
∑
i∈occ.

|φi(r)|2. (4.4)

Jellium clusters are finite-size objects in which the electrons are confined.
The spectrum of KS energy levels εi is thus discrete. Keeping spherical
symmetry, the KS wave functions φi(r) are characterized by the radial
quantum number k and the angular momentum quantum number l. Each
(k, l) shell accepts up to 2(2l + 1) electrons, due to angular and spin
degeneracy. The work function of the system reaches maximum values
whenever a closed-shell configuration is formed [12]. The KS wavefunctions
φi(r) are calculated numerically after expansion in the spherical-harmonic
basis set Ylm(Ω). The set of KS equations are solved self-consistently using
an iterative procedure.

4.2.2 GW calculation of electronic lifetimes

Calculating energies and lifetimes of electronic excitations in
many-electron systems is a difficult task. The GW method developed
by Hedin [13] has proven to be a useful tool to make such calculations. The
GW approximation is an improvement over Hartree-Fock-like schemes due
to the inclusion of dynamic correlation between electrons [14]. It takes into
account the medium polarization, which is an important physical ingredient
in extended systems. Despite its success in the description of lifetimes in
bulk metals [15] and surfaces [16], applications of GW to the study of cluster
excitations have been so far scarce [17, 18].

In the following, we restrict our discussion to neutral clusters in
closed-shell configurations. Let us consider one of these neutral clusters and
let us add an external electron to it. In a first-order approximation, the
one-electron wave function of the added electron can be approximated by
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the corresponding KS wave function φi(r) with KS eigenvalue εi, obtained
using the self-consistent effective potential veff(r) of the neutral cluster. In the
framework of many-body theory, the lifetime of this quasiparticle τi can be
obtained from the projection of the imaginary part of the electron self-energy
Σ(r, r′, εi) over the wave function of the electron [15]. The decay probability
Γ, i.e., the inverse of the lifetime, in the on-shell approximation, is:

Γi = τ−1
i = − 2

∫
drdr′φ∗

i (r)ImΣ(r, r′, εi)φi(r
′). (4.5)

We calculate Σ(r, r′, εi) in the GW approximation [13, 14]. The electron
self-energy Σ(r, r′, εi) can be obtained as a convolution over energies ω of two
functions, namely, the Green function G(r, r′, εi − ω) and the dynamically
screened interaction between electrons W (r, r′, ω). Further approximations
are used to calculate both of them. If the exact Green function G is replaced
by the independent-electrons Green function G0, one can show that [15]:

Γi = − 2
∑
f /∈occ.

∫
drdr′φ∗

i (r)φ
∗
f (r

′)ImW (r, r′, ω)φi(r
′)φf (r), (4.6)

where ω = εi − εf and the sum over f runs over all unoccupied KS states of
energy εf below the initial energy εi.

The screened interaction W (r, r′, ω) can be obtained in terms of the bare
Coulomb potential v(r, r′) = 1/ |r− r′| and the density-density response
function of the cluster χ(r, r′, ω)

W (r, r′ω) = v(r, r′) +

∫
dr1dr2 v(r, r1) χ(r1, r2, ω) v(r2, r

′) . (4.7)

We calculate χ(r, r′, ω) in the random-phase approximation (RPA), in which
the following self consistent equation has to be solved:

χ(r, r′ω) = χ0(r, r′, ω) +

∫
dr1dr2 χ

0(r, r1, ω) v(r1, r2) χ(r2, r
′, ω) , (4.8)

where χ0(r, r′, ω) is the independent-particle response function that can be
built from KS wave functions [19, 20].

At the level of approximation presented above, exchange-correlation
effects are included neither in the calculation of χ(r, r′, ω) [Equation (4.8)]
nor in the calculation of the screened interaction W (r, r′ω) [Equation
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(4.7)]. However, the omission of exchange-correlation effects at both places
may not introduce significant variations in the final results. Inclusion of
exchange and correlation effects in W (r, r′ω) reduces the electron-electron
dynamic interaction and hence increases the lifetime. Inclusion of exchange
and correlation effects in χ(r, r′, ω) reduces the screening supplied by the
many-body system and hence decreases the lifetime. A rough compensation
of both effects has been shown in bulk metals [15] and other low-symmetry
systems, such as metal surfaces [21].

In practice, the spherical symmetry of the problem reduces the complexity
of the calculation. Wave functions, response functions and interaction
potentials can be expanded in the spherical-harmonic basis set Ylm(Ω):

φi(r) = Rli(r)Ylm(Ωr)

χ(r, r′, ω) =
∑
lm

χl(r, r
′, ω)Ylm(Ωr)Y

∗
lm(Ωr′)

v(r, r′) =
∑
lm

vl(r, r
′)Ylm(Ωr)Y

∗
lm(Ωr′)

=
∑
lm

4π

2l + 1

rl<
rl+1
>

Ylm(Ωr)Y
∗
lm(Ωr′) , (4.9)

where r< (r>) is the minimum (maximum) between r and r′. Similar
expansions can be made for χ0(r, r′, ω) and W (r, r′, ω).

A simplified expression for the decay probability Γi is thus:

Γi =
∑
εf ,lf

(2lf + 1)γif , (4.10)

where the sum over εf and lf runs over unoccupied KS states with εf < εi.
The individual state contribution to the rate γif is

γif = − 1

2π

∑
l

(2l + 1)

(
l

0

li
0

lf
0

)2 ∫
drr2ϕ∗

l (r)ρl(r) . (4.11)

The values of l which give non-zero contributions to the partial rate γif are
fixed by the properties of the Wigner 3j coefficients. The function ϕl(r) is
calculated from:

ϕl(r) =

∫
dr′r′

2
R∗

lf
(r′)Rli(r

′)vl(r, r
′) (4.12)
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and ρl(r) is obtained from a self-consistent RPA-type integral equation:

ρl(r) =

∫
dr′(r′)

2
χ0
l (r, r

′, ω)ϕl(r
′) +

+

∫
dr′(r′)

2
dr′′(r′′)

2
χ0
l (r, r

′, ω)vl(r
′, r′′)ρl(r

′′). (4.13)

The decay probability written as a sum over εf and lf can be visualized
in a simple one-electron picture. An electron in an excited state can decay
to several one-electron states of lower energy εf and angular momentum
lf at the same time that electronic excitations are created in the medium.
The coupling between the angular momenta of the initial and final decaying
electron wave functions determines the multipole components of the response
function that play a role in the process. We emphasize here that multipole
moments with angular momentum higher than the dipolar moment (l = 1)
are necessary for most of the calculations.

Numerically, we follow a procedure similar to that of Reference [22]. We
build one-electron Green functions from the solutions of the KS equation for
every ω. We use these Green functions to calculate the multipole components
of χ0(r, r′, ω). Integral Equation (4.13) is solved in real space after matrix
inversion for every polar component l. Finally, integrals in Equations (4.12)
and (4.11) are solved by standard numerical methods.

4.3 Results and discussion

Our analysis is focused into metal clusters with a fixed average electronic
density. We choose a value for the one-electron radius rs = 4 a.u., that can
represent a free electron sodium cluster. As mentioned above, we restrict
our discussion to neutral clusters in closed-shell configurations. We have
performed calculations for clusters with these characteristics and a number
of electrons that varies from N = 34 to N = 2018.

The first step of the process is the calculation of the cluster ground state.
Our results are in agreement with those previously published in the literature
[12]. In Figure 4.1 we see the case of a cluster with N = 556 electrons.
The upper panel shows the electronic density n−(r) in units of the average
electronic density n−

0 = 3/(4πr3s). We observe Friedel oscillations due to
electron confinement and an exponential decay of the electronic density at
the surface of the cluster. In the lower panel, we represent the KS potential
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Figure 4.1: Density functional calculation of a jellium cluster with N =
556 electrons and density parameter rs = 4. The upper panel shows the
electronic density in units of n−

0 = 3/(4πr3s) as a function of the distance
from the centre of the cluster (in atomic units). The lower panel shows
the Kohn-Sham potential (in eV) as a function of the same variable. The
occupied Kohn-Sham levels are represented with horizontal lines in the lower
panel as well.
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Figure 4.2: Decay probability Γ = τ−1 (in atomic units) for electronic
excitations of 1 eV in jellium clusters with density parameter rs = 4. The
probability Γ is plotted as a function of the cluster radius R (in nanometers).

veff(r) and the occupied KS electron levels, so that the upper line corresponds
to the Fermi energy of the system.

With these results we calculate the lifetime of energy excitations with
ϵi ≈ 1 eV above the Fermi level. Due to the discretization of levels in
the cluster, the initial energy of the excitation cannot be fixed exactly to
this quantity, but the variation with respect to this reference value is never
larger than 10%. The calculation of the response function χ(r, r′, ω) is made
by introducing a damping η as an external parameter. The value of η is big
enough to give appreciable transition rates but never larger than the distance
between the energy levels of different states. We have checked that the results
do not have a significant dependence on the value of the damping for values
between η = 0.001 and η = 0.008 a.u.. Hence we chose a value of η = 0.005
for all calculations presented here.

We show the results of our calculations in Figure 4.2, in which the
transition rate Γ is represented for different cluster sizes. In order to simplify
the analysis, we can define here two different regimes. For the smallest
clusters, the transition rates show large oscillations. Confinement, which
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leads to the discretization of levels, has a strong effect in this region. For
instance, an increment of six electrons in the N = 34 electron cluster makes
the transition rate a factor of 4 bigger. The rate considerably depends on
which is the initial state, its angular momentum and the features of the
energy levels below it. For clusters of R > 1.5 nm (i.e., N > 340 electrons)
variations in the absolute value of Γ are smaller, and the values of Γ are
always in the range between Γ = 0.005 a.u. and Γ = 0.007 a.u.. Still a few
small oscillations show that size effects remain. In particular, the value of Γ
for a cluster with R = 1.82 nm increases approximately 75% if the transition
is calculated with the initial state ϵi = 0.94 eV above the Fermi level, instead
of the one represented in Figure 4.2, namely ϵi = 1.08 eV. The reason for
this is twofold: confinement effects and the difference in decaying energies.
In the limit of an homogeneous electron gas, such a difference in the initial
energy of the excitation would lead to a 40% increase in the final rate.

As a reference, we mention here that a RPA calculation of electron
lifetimes in a homogeneous electron gas, with the same parameters that we fix
in our calculation (ϵi = 1 eV and rs = 4) gives a value Γ = 0.0022 a.u. [23],
still smaller than the one obtained for the biggest of our clusters. Localization
in space of the electronic excitation and screening effects are reponsible for
this difference. In a homogeneous electron gas, initial states of the excitation
are plane waves, extended all over the space. In a cluster, the initial state
of the excitation is described by a localized wave function, normalized to
unity. Furthermore, screening in the vicinity of the cluster surface is less
effective than in bulk, making the electron-electron interaction stronger in
this region. Significant overlap between the initial and final wave functions
in the surface region enhances the decay probability, reducing the lifetime of
the excitation. We also show in Figure 4.3 the partial decay probabilities γif
for an electronic excitation of εi ≈ 1 eV in a jellium cluster with rs = 4 and
N = 556 electrons. The probabilities γif are plotted for all unoccupied KS
levels εf < εi. The exact values of the KS eigenenergies εf are also plotted
in the right panel. The total transition rate Γ can be obtained as a sum over
all these γif , after accounting for angular degeneracy [Equation 4.10]. Figure
4.3 shows that the KS final levels that most contribute to the total value of
Γ are not necessarily those closest in energy to εi.

50



0 2 4 6 8 10 12 14

0

0,2

0,4

0,6

0,8

1

1,2

partial decay probability

10
-5
γ

f
(a.u.)

e
n
e
rg

y
le

v
e
ls

(e
V

)

Fermi level εF

εF + 1eV
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for an electronic excitation of 1 eV in a jellium cluster with N = 556
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4.4 Conclusions

In summary, we have calculated the lifetime of electronic excitations of
εi ≈ 1 eV energy in jellium clusters of a fixed electronic density (rs = 4).
We have shown that, for small clusters (R < 1.5 nm), several maxima and
minima appear in the dependence of the lifetime on the cluster size. This
non-monotonic behaviour is a consequence of the discrete spectrum of levels
as well as of the different filling of electronic shells in the clusters depending
on their size. The order of magnitude of the excitation lifetimes in this
region can vary between τ ≈ 4 and τ ≈ 30 femtoseconds. For bigger clusters,
effects due to the discretization of levels in the cluster are smoother, and the
excitation lifetimes reach a value around τ ≈ 5 femtoseconds. This lifetime is
smaller than that of electronic excitations with the same characteristics in a
homogeneous electron gas. A subtle interplay between screening effects and
space localization of the initial excitation is the responsible of this difference.
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5 Lifetime of electronic excitations in metal

nanoparticles

Abstract

Electronic excitations in metal particles with sizes up to few
nanometers are shown to have a one-electron character when a laser
pulse is applied off the plasmon resonance. The calculated lifetimes
of these excitations are in the femtosecond time scale but their values
are substantially different from those in bulk. This deviation can be
explained from the large weight of the excitation wave function in the
nanoparticle surface region, where dynamic screening is significantly
reduced. The well-known quadratic dependence of the lifetime with
the excitation energy in bulk breaks down in these finite-size systems.
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5.1 Introduction

While structural properties of materials depend on ground state features,
electronic and optical properties are largely determined by their electronic
excitations. A large amount of theoretical and experimental work has been
devoted to understand the dynamics and predict the lifetimes of these
excitations in metallic solids [1, 2, 3, 4, 5] and at metal surfaces [6, 7, 8,
9, 10, 11]. Much less is known about the dynamics of electronic excitations
in finite-size systems. In metal nanoparticles, electronic properties are very
often size-dependent and can be tuned purposely. The modification at wish
of the electronic properties of metal systems and the subsequent change in
the lifetime of electronic excitations has important implications for many
technological applications. In photochemistry, for instance, electronically
excited states can act as intermediate steps in various chemical processes[12].
Either enhancement or reduction of the reaction rate should be thus possible
through a proper design of the intermediate step lifetime.

The difference between the dynamics of hot electrons in nanoparticles
and in bulk has to be discussed in terms of two effects. First, the electron
lifetime can be enhanced in metal nanoparticles as compared to bulk because
of the discretization of levels that reduces the number of final states to which
the electronic excitation can decay. Second, the lifetime can be shortened
in the nanoparticle because of the reduction of dynamic screening for low
frequencies. Thus, there are no a priori reasons to predict whether the
lifetime of electronic excitations in nanoparticles is longer or shorter than
in bulk.

From the experimental point of view, laser-based pump-probe techniques
have been used to analyze the dependence on size of the electron-electron
interaction processes [13, 14, 15, 16]. Some of the conclusions extracted
from these works are puzzling. Measurements of internal thermalization
times suggest that the electron-electron scattering rate is increased in Ag
nanoparticles of size smaller than 5 nm as compared with the bulk reference
value [13]. However, electron lifetimes in supported Ag nanoparticles were
measured to be appreciably higher than those obtained for Ag thick films
[16]. These apparently contradictory conclusions show the necessity of further
research on the subject.

In this work, we combine time-dependent density functional theory
(TDDFT) and the self-energy formalism to characterize the electronic
excitations in metal nanoparticles and calculate their decay rates in typical
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pump-probe situations. We first show that, when a laser pulse is applied
off the plasmon resonance, the electronic excitation exhibits a one-electron
character. Afterwards, we calculate the lifetime of the excitation and show
that, for particle sizes up to few nanometers, the lifetime does not depend
much on size. Still, the lifetime value is surprisingly different from the bulk
limit. We explain this fact in terms of the partial localization of the electron
excitation in the vicinity of the surface.

We restrict our discussion to neutral nanoparticles in closed-shell
electronic configurations. The description of the system is simplified by
means of the jellium approximation, which allows us to cover a wide range
of particle sizes. The spherical jellium model has been widely used in
the description of metal clusters and is able to describe many of their
experimentally measured electronic properties [17]. The average one-electron
radius in the nanoparticle is defined from rs = R/N1/3, where R is the radius
of the nanoparticle and N the number of electrons.

5.2 Theory and results

5.2.1 Time evolution of electronic excitations

The first goal of our work is the analysis of the electronic excitations
produced in the nanoparticle when pumping energy with a laser source.
For this purpose, we use TDDFT to describe the dynamical evolution of
the electronic density n(r, t) =

∑
j∈occ. |φj(r, t)|2, where φj(r, t) are

Kohn-Sham (KS) wave functions (atomic units will be used unless otherwise
stated). Numerical details are similar to those of Ref. [18]. In the ground
state (t = 0), the spectrum of KS energy levels εj is discrete and each
φj(r, t = 0) is characterized by the radial quantum number k and the angular
momentum l. A gaussian laser pulse E = E0 cos(Ωt) exp{−[(t− t0)/∆]2} uz

is applied, where uz is a unitary vector along the z-axis. E0 is the field
amplitude, Ω the laser frequency, t0 the time of maximum amplitude, and ∆
controls the pulse duration. During the time evolution, the problem becomes
axially symmetric and KS wave functions preserve their quantum number m.

Figure 5.1 shows the dipole moment d induced by the laser pulse in
a nanoparticle with N = 556 and rs = 2.07 (upper panel). The laser
frequency is Ω = 4.12 eV. The change in electronic density ∆n(r, t) =
n(r, t) − n(r, t = 0) is shown at two different times (middle panels), with
the induced dipole moments pointing in opposite directions. We define the
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projection Pij(t) =
∑

mi,mj
δmimj

|< φi∈unocc.(r, t = 0)|φj∈occ.(r, t) >|2 of the
time-dependent KS wave functions over those unperturbed KS wave functions
which are unoccupied at t = 0. The sums over mi and mj run over all
possible m-values of the energy levels εi and εj. When the pulse is over,
only one projection Pij(t) takes a non-negligible value, as shown in the
lower panel. This means that the excitation can be roughly described as
a one-electron transition between an initially occupied KS level εj and an
initially unoccupied KS level εi. The excitation energy is close (although not
identical) to the energy of the pulse εi−εj ≈ Ω. This result strongly supports
the use of unoccupied KS wave functions as final one-electron states in the
excitation process.

5.2.2 Lifetime of electronic excitations

As a second step, we calculate the lifetime of the electronic excitation
created by the laser pulse. The wave function of the excited electron is
approximated by the corresponding KS one-electron wave function φi(r) with
KS eigenvalue εi. In the framework of many-body theory, the lifetime of
this quasiparticle is given by τi = Γ−1

i , where the decay rate Γi can be
obtained from the projection of the imaginary part of the electron self-energy
Σ(r, r′, εi) over the wave function of the electron. We calculate Σ(r, r′, εi) in
the GW approximation [19, 20]. If the exact Green function G is replaced
by the independent-electrons Green function G0, one can show that [21]:

Γi = − 2
∑

f∈unocc.

∫
drdr′φ∗

i (r)φ
∗
f (r

′)ImW (r, r′, ω)φi(r
′)φf (r), (5.1)

where W (r, r′, ω) is the screened interaction, ω = εi − εf and the sum
over f runs over all unoccupied KS states of energy εf below the energy
εi. The screened interaction W (r, r′, ω) is obtained in terms of the bare
Coulomb potential vC(r, r

′) and the density-density response function of
the nanoparticle χ(r, r′, ω), the latter calculated in the random phase
approximation (RPA).

The numerical procedure can be found in Ref. [21] and is only summarized
here. We build one-electron Green functions for every ω, and use them to
calculate the multipole components of χ0(r, r′, ω). The RPA-type integral
equation is solved in real space after matrix inversion for every polar
component l. An imaginary damping η is added to the value of ω in the
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Figure 5.1: Change in electronic density ∆n(r, t) induced in a metal
nanoparticle by a laser pulse (central panels). ∆n(r, t) is shown over a plane
(ρ, z) containing the direction of propagation of the field, for t = 2984 and
t = 3000. The nanoparticle is made of N = 556 electrons and rs = 2.07.
The laser pulse parameters are E0 = 2 × 10−4, t0 = 2000, ∆ = 700, and
Ω = 4.12 eV. The upper panel shows the time evolution of the dipole moment
d induced in the nanoparticle. The lower panel shows the projections Pij(t) of
an initially occupied level j over an initially unoccupied level i (blue dotted
lines). The projection with a maximum value over time is plotted with a
black solid line.
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Figure 5.2: Decay rate Γ = τ−1 for electronic excitations in nanoparticles
as a function of the excitation energy εi − εF . (Red) diamonds refer to a
nanoparticle of N = 1314 and rs = 2 (R = 1.1 nm). (Black) crosses refer to
a nanoparticle of N = 912 and rs = 4 (R = 1.9 nm). The dashed (red) line
and the solid (black) line show the values of Γ in an infinite electron gas of
rs = 2 and rs = 4 respectively.
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numerical calculation of χ0(r, r′, ω+ iη). Without a certain indeterminacy in
the energy value, Γ would be strictly zero for transitions between discrete
states. In real systems, physical effects such as temperature and finite
duration of the laser pulse account for this indeterminacy. We have checked
that the results do not vary more than 3% for values of the damping between
η = 10−3 and η = 10−2. We choose a value η = 0.005 for all calculations
presented here.

In Fig. 5.2, we show the decay rate Γ as a function of εi− εF , where εF is
the highest occupied state energy. We choose values of rs = 2 (N = 1314) and
rs = 4 (N = 912), representing Al and Na nanoparticles respectively. The
present results are compared with the decay rates of electronic excitations
in an infinite homogeneous free electron gas (FEG) calculated in the same
approximation [22]. Our results show that the values of Γ in a nanoparticle,
whereas in the femtosecond time scale, are significantly larger than the values
of Γ in a FEG.

In a FEG and for small values of εi−εF , the decay rate is known to depend
on the excitation energy εi through a quadratic function Γ ∝ (εi − εF )

2

[24]. This scaling law arises from the phase space available for the electronic
excitation to decay [23]. Fig. 5.2 shows that the quadratic dependence breaks
down in a nanoparticle. The discrete spectrum of excitation energies in a
finite system modifies the available phase space and thus the dependence
with the energy. In addition, the dependence of Γ on rs is also smoother in
a nanoparticle, as can be seen in Fig. 5.2. In other words, and according
to our calculation, lifetimes of electronic excitations in nanoparticles are less
material-dependent than those in bulk. Further experimental evidence would
be useful to gain insight into these points.

An interesting question for confined systems is always the size for which
the properties merge into those of bulk. We analyze the dependence of the
decay rate Γ = τ−1 on the particle radius R in Fig. 5.3. Values of Γ are
plotted for three different excitation energies εi in nanoparticles with rs = 4.
An exact matching in energy is not possible because of the discretization of
energy levels in finite-size systems. For the largest sizes considered in this
work (≈ 5 nm diameter), there is still a significant difference between the
lifetime of electronic excitations in nanoparticles and bulk, even if the density
of final states in the decay can be considered roughly as a continuum. The
first reason for this deviation is that the dynamic screening between electrons
in a nanoparticle of this size is still different to the one in bulk, even in the
inner regions of the nanoparticle. The second and most important reason
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Figure 5.3: Decay rate Γ = τ−1 for electronic excitations in nanoparticles of
rs = 4 as a function of their radius R. Three different excitation energies are
shown. The values for the free electron gas are also shown (bulk limit).
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for the difference is the localization in space of the electronic excitation. In
an infinite homogeneous system, the initial states of the excitation can be
considered as plane waves, extended all over the space. In a nanoparticle, we
have shown above that unoccupied KS wave functions appropriately describe
the excited state after laser excitation. Figure 5.4 shows that the unoccupied
KS wave functions have a large weight nearby the surface. Dynamic screening
in the vicinity of the surface is less effective than in bulk, making the
electron-electron interaction stronger. Significant overlap between the initial
and final wave functions in the surface region modifies the decay probability
as compared to the bulk case.

Let us now discuss our results in connection with the aforementioned
experimental evidence. The decay rates calculated above for nanoparticles
correspond to lifetimes τ between 1 and 100 femtoseconds. Experimental
results for Ag nanoparticles [16] are in between these values. Our theoretical
results also show that the decay rate is larger in nanoparticles than in bulk.
This is in agreement with the conclusions extracted from the measurements
of thermalization times in Ag nanoparticles [13], but it does not help to
understand the opposite behavior obtained in supported Ag nanoparticles
[16]. Further research is thus needed to clarify this point.

5.3 Summary

In summary, our results show that the lifetimes of electronic excitations
in nanoparticles are in the femtosecond time scale. We also show that the
well-known quadratic dependence of the lifetime with the excitation energy
in bulk τ ∝ (ε − εF )

−2 breaks down in metal nanoparticles. This peculiar
quasilinear behavior has been also predicted in other low-dimensional systems
[25], and would require experimental evidence to be confirmed. Finally,
substantial quantitative variations appear between the lifetime of electronic
excitations in metal nanoparticles and bulk. Electron excitations have a
significant weight in the nanoparticle surface region, where dynamic screening
is largely reduced, and the lifetime of these excitations is subsequently
shortened. Finite-size effects thus play a major role in the decay of electronic
excitations in metal nanoparticles.
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Figure 5.4: Left panels: Radial distributions for the wave functions in a
nanoparticle with N = 440 and rs = 4 (R = 1.6 nm). Blue dotted (black
solid) lines represent occupied (unoccupied) states. The unoccupied state
of highest energy is represented with a thick solid line. The nanoparticle
surface is indicated with a dashed line. Right panels: Energy levels as a
function of angular momenta. Blue circles (black crosses) indicate occupied
(unoccupied) states. Lines are plotted joining the energy levels for which
radial distributions are shown on the left panels.
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6 TDDFT calculation of the stopping power

for protons and antiprotons in metals

Abstract

Time-dependent density functional theory is used to calculate the
energy loss of antiprotons and protons traversing metal clusters of
variable size. We find that the effective energy loss per unit path
length inside the cluster shows no significant cluster size effects over
the wide range of projectile velocities studied. This allows us to
compare the calculated stopping power with the experimental values
for a solid metal target. Excellent agreement between the theoretical
results and recent experimental data is found for velocities below the
inner-shell excitation threshold. We thus present a non-perturbative
quantum-mechanical approach to obtain the energy loss of charges in
solids.
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6.1 Introduction

Charged particles penetrating solid media give rise to electronic
excitations in the target and thus lose kinetic energy. The slowing down
of charged particles in matter is a key phenomenon in applied materials
science, in medical physics, as well as being an important ingredient in many
experimental techniques used in fundamental research on solids, surfaces, and
nanostructures. However, and despite numerous attempts, the complexity of
the dynamic interaction between charges and solids has made it difficult to
apply theoretical schemes at the level of accuracy achieved in other condensed
matter problems. For such accuracy, a detailed description of electronic
excitations, dynamic screening, and possible charge transfer processes is
required.

So far, self-consistent calculations for the slowing down of ions in metal
targets have been reported only in the low-velocity limit. A combination of
scattering theory with the results of static density functional theory (DFT)
can successfully describe the energy loss in this case [1, 2, 3, 4, 5]. For higher
projectile velocities, only model calculations based on velocity-dependent
screening [6, 7] or perturbative expansions in terms of screened higher-order
response functions [8] are available at present. There has been no quantal
self-consistent theoretical framework able to describe the stopping power
of solids for charged projectiles over a wide range of velocities. Only
theories based on classical mechanics [9, 10] have been applied. Particularly
challenging is the case in which the projectile velocity is similar to the Fermi
velocity vF of the target electrons. In this velocity range, quasi-static or
perturbative approximations break down even for unit-charge projectiles.

The development of time-dependent methods in recent years has opened
new perspectives in the theoretical description of the slowing down of charged
projectiles in matter. In particular, time-dependent density functional
theory (TDDFT) provides a self consistent, non-perturbative, time-domain
treatment of electron dynamics in many body systems. TDDFT has been
successfully applied to the calculation of energy transfer in collisions between
charged atomic particles and small molecules and clusters in the gas phase
[11, 12, 13, 14]. Two-dimensional targets of finite size [15] and metal surfaces
[16] have been addressed as well.

In this article, we develop a quantal method based on TDDFT in order
to obtain the contribution of the valence band electrons to the slowing
down of charges in solids over a wide range of velocities. The stopping
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power of Al for antiprotons is taken as an illustration to demonstrate the
capabilities of the method. There are several reasons for this choice. First,
the valence electrons of Al are the paradigm of a free-electron-like band, so
that numerical effort can be much reduced. Second, point-like projectiles of
negative charge have often been under scrutiny since the pioneering paper of
Fermi and Teller [17]: the absence of charge exchange processes between the
projectile and the target simplifies the analysis in this case. Finally, accurate
experimental data have recently been obtained for this system [18, 19, 20].
It is worth mentioning that our method is not limited to free electron-like
targets: the methodology is general and could be in principle applied to any
weakly-correlated material.

The core of our method consists of TDDFT calculations of the energy loss
of projectiles traversing target clusters of variable sizes. We then show that
the energy loss per unit path length inside the cluster is nearly independent
of the cluster size. This allows us to link this quantity to the stopping power
of an infinite system. Our theoretical results for the stopping power of Al
for antiprotons reproduce recent experimental measurements [18, 19, 20] for
the range of projectile velocities below the inner-shell excitation threshold.
Extension of the present approach to the stopping of Al for protons agrees
quantitatively with experimental data [19, 20] as well.

6.2 Theoretical Approach

To calculate the stopping power of a cluster of Al atoms, a spherical
jellium model is used to represent the valence electrons. The contribution
of inner-shell excitations to the stopping is thus not included. The jellium
positive background density is defined by n+

0 (r) = n+
0 θ(Rcl − r). Here, Rcl is

the cluster radius and θ(x) is the Heaviside function. The electron density
of the cluster is described by the density parameter rs (4πr

3
s/3 = 1/n0). The

number of electrons in the cluster Ne is Ne = (Rcl/rs)
3.

The time evolution of the electron density in response to the field of the
moving projectile, n(r, t), is calculated within the Kohn-Sham (KS) scheme of
TDDFT (Hartree atomic units are used everywhere unless otherwise stated):

i
∂ψj(r, t)

∂t
= {T + Veff([n], r, t)}ψj(r, t) , (6.1)

where ψj(r, t) are the KS orbitals and T is the kinetic energy operator. The
effective KS potential, Veff([n], r, t) is a function of the electron density of
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the system: n(r, t) =
∑

j∈occ. |ψj(r, t)|2. Here, Veff is obtained as the sum
of the external potential Vext, the Hartree potential VH, and the exchange
correlation potential Vxc: Veff = Vext+VH+Vxc. Vext is the Coulomb potential
created by a point charge Q moving with constant velocity v along a straight
trajectory that goes through the geometrical center of the cluster. The
initial position of the projectile is such that the projectile/cluster interaction
can be neglected. Vxc(r, t) is treated in a standard adiabatic local density
approximation (ALDA) with the exchange-correlation functional of Ref. [21].

The numerical procedure used is very similar to that of Refs. [15] and
[22]. For t = 0, n(r, 0) is the electron density of the unperturbed cluster.
The KS wave functions ψj(r, 0) are expanded in a basis set of spherical
harmonics. A radial mesh of equidistant points is used, allowing the Fourier
Grid representation of the Hamiltonian matrix [23]. The static KS equations
are then solved by direct diagonalization. Afterwards, the KS orbitals are
projected onto a cylindrical grid, r = (ϱ, φ, z), with the z-axis along the
projectile trajectory. The time propagation is performed by means of the
split-operator technique [24].

6.3 Results and Discussion

Figure 6.1 shows several snapshots of the change in electron density
∆n(r, t) = n(r, t) − n(r, 0) induced by an antiproton (Q = −1) of velocity
v = 1.5 colliding with a cluster of Ne = 254, Rcl = 12.7, and rs = 2.
This value of rs is close to that describing the screening radius in bulk Al.
The density is plotted in a plane that contains the particle trajectory. A
polarization effect is clearly visible before the antiproton reaches the cluster
surface. Once inside the cluster, a depletion of charge develops in the vicinity
of the antiproton. The self-consistent dynamic rearrangement of charge in the
vicinity of the moving particle results in a wake potential similar to that in
bulk metal targets [25]. Our results show that the collision of the antiproton
with the cluster is followed by electron emission from the cluster.

Figure 6.2 shows the force acting on the antiproton during the collision
process. It is directly obtained from the time-dependent charge density,
n+
0 (r) − n(r, t). Due to the cylindrical symmetry of the problem, the only

nonzero component of the force is along the projectile trajectory (z-axis),
Fz(t). When the antiproton is located outside the cluster, it is attracted by
the induced dipole. Crossing the surface into the cluster results in a rapid
rearrangement of electron density to screen the projectile charge. Inside the
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Figure 6.1: Contour plots for the antiproton-induced change ∆n(r, t) in the
electron density of the spherical cluster. The cluster parameters are: rs = 2,
and Ne = 254. Results are shown in the (x, z) plane. The center of the
cluster is at (0, 0). The projectile trajectory is shown as a horizontal line in
each plot. The projectile velocity is v = 1.5. Plots a) to d) correspond to
antiproton positions z = -12.7, 5.8, 12.6, and 42.5. Color codes are shown at
the right side of the figure.
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Figure 6.2: Force on an antiproton moving with v = 1.5 as a function of its
position with respect to the center of the cluster. The cluster parameters
are: rs = 2, Ne = 254, and Rcl = 12.7.

cluster, Fz shows minor oscillations around a constant (mean) value.
The energy lost by the projectile during the collision is given by:

∆E = v

∫ ∞

−∞
Fz(t)dt. (6.2)

We have explicitly checked that |∆E| calculated from Eq. 6.2 corresponds
to the increase of the total energy of the cluster. However, the magnitude we
are interested in is the effective stopping power inside the cluster S. For this
purpose, we define S as the ratio of the energy loss to the trajectory length
inside the cluster, i.e., the diameter of the cluster: S = ∆E/(2Rcl).

Figure 6.3 shows S as a function of projectile speed for antiprotons
colliding with clusters of rs = 2.07 and size ranging fromNe = 18 (Rcl = 5.42)
to Ne = 556 (Rcl = 17.02). The valence electrons of bulk Al can be well
represented by this value of rs. Size effects are only significant for the two
smallest clusters considered (Ne = 18 and Ne = 58). For the largest ones, the
results merge roughly into a universal curve. We estimate that deviations
from this universal behavior for larger clusters amount to a maximum of
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Figure 6.3: Stopping power S of antiprotons moving inside clusters with
rs = 2.07 and of different sizes (see legend), as a function of velocity. Lines
are drawn to guide the eye. The inset compares the Ne = 556 results with
those of LRT and DFT.

≈ 5%. The similarity of the results for different clusters reflects important
features of the dynamics of the interaction within the studied velocity range:
(i) The contributions to ∆E from the ingoing and outgoing trajectory paths,
as well as from the surface region, are small. Most of the energy loss is suffered
while moving inside the cluster. (ii) The size independence suggests that the
dynamic screening within the cluster is essentially that for a homogeneous
system in the velocity range considered. This implies that the discreteness
of electronic states in the cluster does not play an important role in the
screening process.

The independence of the value of S on the cluster size allows us to
consider S as representative of the stopping power in an infinite free electron
gas with the same electron density parameter rs. In the inset of Fig. 6.3,
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we compare our TDDFT results with other theoretical approximations for
the infinite system, which are known to be accurate under more restricted
conditions. The LRT result provides the high velocity limit. It is obtained
using a Mermin linear response function [26] with an empirical damping
factor of γ = 1.35 eV. The DFT result [2] assumes a linear dependence
of S on v, and provides the low-velocity limit. Both the low-velocity limit
and the high-velocity limit for the infinite system are well-described by our
calculation.

In Fig. 6.4, we compare our TDDFT results for the Ne = 556 cluster
with experimental measurements recently reported for bulk Al [18, 19, 20].
The TDDFT results quantitatively agree with the experimental data, up to
velocities beyond the stopping power maximum. Deviations arise at v ≈ 1.8,
when the excitation of the Al inner-shell electrons starts to contribute to
the projectile energy loss. This channel is not included in our calculation.
For low-velocity projectiles, our results show a linear dependence of S on v,
roughly up to the maximum in S: deviations from the linear dependence are
smaller than 6% for velocities v < 1.4.

The description of the interaction between negatively charged atomic
particles and metals is simplified by the absence of charge exchange. For
positive ions, and particularly for velocities lower than vF , electron capture
and loss processes come into play. In order to test the accuracy of
the TDDFT-ALDA model for positive ions, we have performed additional
calculations for the stopping of Al for protons (Q = +1). The procedure
is identical to that used for antiproton projectiles. The results are shown
in Fig. 6.4. They are compared with recent experimental measurements
[19, 20]. Reference tabulations of stopping ranges in solids are shown as
well [27, 28, 29]. The agreement is good up to the velocity for which the
excitation of the Al inner-shells starts to contribute. According to our
TDDFT result, the difference between the stopping power for protons and
that for antiprotons due to the excitation of the Al valence band is small
(< 10%) for v ≥ 3, suggesting a small valence Barkas effect.

6.4 Summary and Conclusions

In summary, we conclude that finite sized systems can be used to study
the energy loss of charged projectiles moving inside metallic solids. The
local character of the interaction makes it possible to define an effective
stopping power that is shown to be comparable to that of an infinite target.
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Figure 6.4: TDDFT calculation of the stopping power S of Al (rs = 2.07)
for protons (black empty squares) and antiprotons (red empty circles) as a
function of projectile velocity. Experimental results for antiprotons (green
filled circles [18, 19, 20]) and protons (blue filled and empty triangles [20]),
as well as tabulated stopping powers for protons (blue crossed [27] and filled
[28, 29] squares) are also shown.
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The specific example of the free-electron metal is treated here, but the
methodology developed in the present work is general. It can be applied
to any material for which the electronic structure can be well characterized
within a DFT framework. Further studies should be made to investigate
whether our conclusions are also applicable to semiconductors and insulators,
where the adiabatic approximation for correlations may also have limitations
[30].

Furthermore, we have shown that TDDFT is a promising approach for
the calculation of the mean energy loss of point-charges in matter. It is a
quantal, non-perturbative method, which is able to describe projectile/target
energy transfer over a wide range of projectile velocities. The support for
this statement is twofold: (a) Our TDDFT calculations reproduce stopping
powers in the well-known limits of low- and high-velocity projectiles, and (b)
they quantitatively agree with recent data for the stopping power of Al for
protons and antiprotons. The agreement in the case of protons is particulary
interesting and worthy of more detailed analysis, as it suggests that charge
transfer processes are reasonably well described within the ALDA.
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7 TDDFT calculation of the energy loss

of antiprotons colliding with metallic

nanoshells

Abstract

Time-dependent density functional theory is used to study the
interaction between antiprotons and metallic nanoshells. The ground
state electronic properties of the nanoshell are obtained in the jellium
approximation. The energy lost by the antiproton during the collision
is calculated and compared to that suffered by antiprotons traveling
in metal clusters. The resulting energy loss per unit path length of
material in thin nanoshells is larger than the corresponding quantity
for clusters. It is shown that the collision process can be interpreted
as the antiproton crossing of two nearly bi-dimensional independent
metallic systems.
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7.1 Introduction

The understanding of phenomena taking place in the interaction of
charged projectiles with matter is of paramount importance for fundamental
and applied science. Experimental techniques using charges as probes of
matter are widely used in research on solids, surfaces, and nanostructures.
In general, charged particles penetrating solid media create electronic
excitations within the latter. The excitation of the target is accompanied
by a loss of projectile kinetic energy and, in some cases, by a change
in the internal state of the projectile. As an example one can consider
stopping and Auger neutralization of ions colliding with metallic targets. The
complexity of the dynamic interaction between charges and solids has made
it difficult to apply theoretical schemes at the same level of accuracy already
achieved in other condensed matter problems. Indeed, a detailed description
of electronic excitations, dynamic screening, and possible charge transfer
processes is required [1, 2, 3, 4]. This is a formidable task particularly under
non-perturbative conditions, when the modification of the electronic density
induced by the external time-dependent perturbation cannot be considered
as small.

Time-dependent density functional theory (TDDFT) has been shown
to be a successful tool to face up such strong perturbations. In the
time domain, TDDFT has been used to study the dynamic screening of
charges in finite-size systems [5, 6] and the absorption properties of complex
metallic nanostructures [7]. It has been applied to the calculation of
the energy transfer between atomic particles and small gas-phase clusters
[8, 9, 10, 11, 12, 13, 14]. Finite-sized bi-dimensional targets [15] and bulk
insulators [16] have been addressed as well . In a different context, the
contribution of electron-hole pair excitations to energy dissipation during
adsorption processes at metal surfaces is currently under strong debate
[17, 18, 19, 20] and TDDFT may offer new insights into the problem. For
instance, Lindenblatt et al. have used TDDFT to estimate the electron-hole
pair excitation during the chemisorption of hydrogen atoms on an Al(111)
surface [21, 22, 23].

In the particular case of the interaction of protons and antiprotons with
metal clusters, it was recently shown that the effective energy loss per unit
path length inside the cluster is nearly independent of the cluster size over a
wide range of projectile velocities [13]. The quantity so calculated can thus be
linked to the stopping power of an infinite system. The main reasons for the
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size independence are minimal surface effects and the local character of the
interaction. On the characteristic time scales of the collision the information
from the cluster boundaries does not reach the projectile and the cluster
essentially appears as a homogeneous system. Whether these features are
general and can be extended to other cluster geometries is the subject of this
contribution. We present a study of the antiproton interaction with spherical
hollow clusters, described within the jellium approximation. This geometry
can qualitatively represent either relatively small systems, such as fullerenes
[24], or larger ones, such as nanoshells [25, 26].

We will show in the following that the energy loss per unit path length
of antiprotons going through jellium shells of nanometer size is larger than
the corresponding quantity in jellium clusters. Confinement effects are much
more important in the former case, and this is reflected in the energy loss
suffered by the incident particle. For the nanoshell dimensions considered
in this study, the process resembles the collision of an antiproton with
two independent nearly bi-dimensional metallic systems. Details about the
calculation procedure are presented in Section 7.2, the results are shown and
discussed in Section 7.3, and we finish with a summary and some concluding
remarks in Section 8.

Atomic units will be used throughout the article unless specifically
indicated.

7.2 Theory

7.2.1 Calculation of the ground state of a metallic nanoshell

We use a jellium model to represent a spherical metallic nanoshell. In
this model, the core ions are substituted by a uniform background of positive
charge with density defined by

n+
0 (r) = n0θ(r −Rint)θ(Rext − r), (7.1)

where Rint and Rext denote the nanoshell internal and external radius
respectively, θ(x) is the Heaviside function, and n0 is given by the average
screening radius rs (1/n0 = 4πr3s/3). The system is filled with a given number
of electrons N = (R3

ext −R3
int)/r

3
s so that total neutrality is preserved.

The electronic density n(r) of the nanoshell is calculated by means of
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Figure 7.1: Ground state of a nanoshell with rs = 4, N = 200 and Rint = 20
(Rext = 27.50) a) One-electron energy levels plotted as a function of the
angular momentum b) Electronic density and effective potential.

density functional theory (DFT), solving the Kohn-Sham (KS) equations:{
−1

2
∆ + Veff([n], r)

}
ψj(r) = εjψj(r) (7.2)

Veff([n], r) = V+(r) + VH([n], r) + Vxc([n], r) (7.3)

which give the one-electron KS wave functions ψj(r) and energy levels
εj. Here, V+(r) and VH([n], r) are the electrostatic potentials created
by the positive background and the electronic density respectively (H
stands for Hartree potential). Vxc([n], r) is the exchange-correlation
potential, calculated in the local density approximation (LDA) with the
parametrization of Ref.[27]. The electronic density n(r) is given by the sum
over occupied wave functions

n(r) =
∑
j∈occ.

|ψj(r)|2. (7.4)

The electronic wave functions ψj(r) are expanded in the spherical
harmonic basis and a mesh of equidistant points is used for the radial
coordinate. For each value of the angular momentum l, the KS equations
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Figure 7.2: Schematic view of the collision process showing the coordinates
and parameters which come into play

are solved by direct diagonalization of the Fourier Grid Hamiltonian (FGH)
matrix [28]. Figure 7.1a) shows the calculated energy levels in the case of
a nanoshell with N = 200 electrons, rs = 4, Rint = 20 and Rext = 27.50.
They are labeled in terms of their angular momentum l and energy εj. Each
level fits 2(2l + 1) electrons. Observe the formation of three bands with
parabolic dispersion on l. These bands originate from three quantized states
corresponding to the electron confinement in the radial direction between
external and internal nanoshell radii. The parabolic dispersion with l reflects
the link between the angular momentum l and the free electron momentum
k for the motion inside a layer of finite thickness L = Rext−Rint (the limit of
the nanoshell for fixed L and Rint → ∞). The converged effective potential
Veff and the normalized electronic density n/n0 are plotted in Fig. 7.1b) along
the z axis in a coordinate system with the origin at the geometrical center
of the system (see Fig. 7.2).

7.2.2 TDFFT description of the collision process of antiprotons
with metallic nanoshells

The present study is restricted to collision processes where an antiproton
follows a trajectory which goes through the geometrical center of the
nanoshell. Such a geometry allows one to strongly reduce the computational
effort because of the cylindrical symmetry of the problem. As shown in
Fig. 7.2, the coordinate system is chosen such that the z axis is along the
projectile trajectory Z(t) = −Zini + vt. v is the projectile velocity. The
initial distance Zini is set large enough so that the electron density obtained
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from static DFT is unperturbed in the beginning of the collision. The
time evolution of the electron density in response to the field of the moving
projectile n(r, t) is calculated within the KS scheme of TDDFT:

i
∂ψj(r, t)

∂t
=

{
−1

2
∆ + Veff([n], r, t) + Vext(t)

}
ψj(r, t) , (7.5)

The effective KS potential Veff is treated within standard adiabatic local
density approximation (ALDA) with the exchange-correlation functional of
Ref. [27]. Veff is time-dependent through the time dependence of the electron
density n(r, t) =

∑
j∈occ. |ψj(r, t)|2. Vext is the Coulomb potential created

by the moving antiproton. The initial conditions for the KS wave functions
ψj(r, t = 0) = ψj(r) correspond to the ground state KS wave functions
obtained from Eq.(7.2).

The KS wave functions are represented on a discrete mesh in spherical
coordinates r = (r, θ, φ). Because of the symmetry, the projection m of the
angular momentum on the quantization axis is preserved in due course of
the collision. Thus, the time dependent KS wave functions are calculated
in the form ψj(r, t) → ψjm(r, θ, t). The time evolution is obtained via
short-time split-operator propagation [29], where the action of the kinetic
energy operator is calculated in two steps: (1) projection on the spherical
harmonics basis (we use Gaussian quadrature with corresponding mesh in θ
coordinate); (2) FGH method for the radial part (we use equidistant mesh
in r coordinate).

The only nonzero component of the Coulomb force acting on the
antiproton during the collision process is along the projectile trajectory:

Fz(t) = −
∫
d3r′

[
n+
0 (r

′)− n(r′, t)
]

|êzZ(t)− r′|3
[Z(t)− z′], (7.6)

where êz is the unit length vector in z-direction.
The energy lost by the projectile during the collision is given by:

Eloss = v

∫ ∞

0

Fz(t)dt. (7.7)

In TDDFT, the total energy of the nanoshell in the presence of the antiproton
E(t) can be obtained at any time. The energy change during the collision is
given by: ∆E(t) = E(t)−E(t = 0), where E(t = 0) is the total energy of the
nanoshell in its ground state. ∆E(t→ ∞) corresponds to the increase of the
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Figure 7.3: Electronic energy change in the nanoshell and force on the
projectile for several collision processes. The nanoshell parameters are rs = 4,
N = 200, Rint = 20 and Rext = 27.50.

electronic energy of the nanoshell at the end of the collision. One can show
that it exactly equals to the energy loss calculated from Eq. 7.7. We have
explicitly checked from our calculations that the two values are in agreement.

7.3 Results and Discussion

In this section, results of the calculation of the energy loss for several
collision processes are reported for two nanoshells with different electron
density parameters, rs = 2 and 4.

Figure 7.3 shows the details of the collision process of an antiproton with
a nanoshell characterized by rs = 4 (corresponding to the density parameter
of sodium), N = 200, Rint = 20 and Rext = 27.50. Data for three different
projectile velocities: v = 0.4, 1 and 4 a.u. are presented. The upper panel
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of Fig. 7.3 shows the change in the total energy of the nanoshell during the
collision process. The lower panel shows the force on the projectile along
its trajectory. Figure 7.3 illustrates that the collision process takes place in
two distinct steps. These correspond to the first and second crossing of the
nanoshell by the projectile, and are very similar one to another. The energy
rises approximately by the same amount in both steps, and the force has the
same features. Thus the curvature of the surfaces of the nanoshell and the
fact that they form a closed object is not important, at least for the sake
of the energy loss calculation. This suggests that the collision process can
be similar to that of an antiproton with two independent slabs of thickness
L = Rext −Rint.

Figure 7.3 also gives details on the screening process during the collision.
When the antiproton is approaching the nanoshell surface, the attractive
polarization lowers the total energy. The polarization force in each of the
collision steps is not symmetric for the ’in’ and ’out’ trajectory paths, due
to the electronic excitations left behind. This feature is most appreciable for
the maximum energy loss velocity (see Fig. 7.3), for which the asymmetry
on the force contributes to the total energy loss as much as the trajectory
path inside the material. The screening inside the material also depends on
the projectile velocity. For the highest velocity, the oscillations visible in the
force give account for the interference effects due to the slower (as compared
to the projectile) rearrangement of the electrons inside the material. For the
lower velocities, the screening hole has time to be created [5], [13] and the
oscillating features disappear.

Figure 7.4 shows the antiproton energy loss per unit path length within
the nanoshell Eloss/2L as a function of projectile velocity. Two systems
have been studied. Figure 7.4a) shows the results of the calculations for
the sodium nanoshell (N = 200, rs = 4, Rint = 20 and Rext = 27.50),
and Fig. 7.4b) shows the ones corresponding to the case of a denser system
(N = 180, rs = 2, Rint = 10 and Rext = 13.5). The present results are
compared to previously reported theoretical data obtained for antiprotons
colliding with spherical jellium clusters [13]. The maximum energy loss
corresponds to the same projectile speed in the two systems. However, the
energy loss per unit path length is larger for nanoshells than for clusters. For
the nanoshells considered in this study, the asymmetry of the force outside
the material provides a contribution to the total energy loss much larger
than the corresponding contribution in the cluster case. In this respect,
the energy loss process for thin nanoshells resembles more the collision of
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function of projectile speed for collision processes of an antiproton with
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guide the eye. The results of the TDDFT calculation for clusters of several
sizes and rs = 4 are also shown for comparison.
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two consecutive bi-dimensional systems [15]. In antiproton collisions with
confined 2D systems, the energy loss comes out only from the asymmetry on
the force and not from a dynamical screening process inside the material, as
in the 3D case. This makes that, when dividing the total energy loss Eloss

by the total path length inside the material of the nanoshell 2L, the result
does not give something assimilable to a stopping power as in the case of
clusters. Moreover, for a thin nanoshell the energy difference between the
quantized states corresponding to the electron motion in the radial direction
is large (See Fig.7.1a)). Then, primarily the angular motion is excited with
an electron moving parallel to the surface of the nanoshell. This feature
further supports the analogy to the bi-dimensional case.

7.4 Conclusions

In this study, TDDFT has been used to calculate the energy loss of
antiprotons colliding with thin metal jellium nanoshells of different electronic
density parameters. The results show that the calculated energy loss per unit
path length inside the material is higher than the corresponding quantity
for antiproton collisions with jellium clusters. For thin nanoshells, the
process resembles the collision of an antiproton with two independent nearly
bi-dimensional metallic systems. The contribution to the energy loss coming
from the asymmetry of the force, which is the only one appearing in 2D
systems, has an important weight to the total energy loss inside the material.
This is the main reason for the difference in the energy loss between thin
nanoshells and spherical clusters.
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8 Conclusions

Electron dynamics is a topic of interest in many different areas of physics
and chemistry, ranging from the interpretation of different characterization
techniques to the control of photoinduced chemical processes. The design
and control of nanoscale systems achieved in the last decades has triggered
the necessity to tackle the study of electron dynamics in nanoparticles.
This thesis covers two main topics in this respect, namely the study of the
decay of electronic excitations and the collision processes of charges with
nanoparticles.

Despite its simplicity, the spherical jellium model used throughout this
work has allowed to obtain meaningful results. It is worth remarking here as
well the broad spectrum of methodologies used in this work to approach the
complicated problem of many-body physics: on one hand, linear response
theory, which can also be considered as a first order approximation in
TDDFT, has been involved in the calculation of lifetimes. On the other,
fully non-perturbative time-dependend density functional theory has been
employed to follow the time-evolution of excited states. In addition to that
the GW approximation has been used for the calculation of lifetimes.

Chapter 4 presents a first study of the decay of electronic excitations
in clusters within linear response theory and the GW approximation. The
study is focused on the calculation of the lifetime of electronic excitations
of ≈ 1 eV energy above the Fermi level in jellium clusters of increasing
size. Sodium clusters (rs = 4) are used as paradigmatic systems to approach
for the first time the study of size effects in electronic properties of metal
nanoparticles. For clusters smaller than 1.5 nm, strong oscillations are found
when representing the lifetimes as a function of the system size. Lifetimes
in this size scale vary between τ ≈ 4 and τ ≈ 30 femtoseconds. This
non-monotonic behaviour is a consequence of the discrete spectrum of levels.
For clusters with radius R & 2 nm, these effects are smoother, and the
excitation lifetimes show minor oscillations around τ ≈ 5 femtoseconds.
The order of magnitude of the calculated lifetime is consistent with that
of electronic excitations in a homogeneous electron gas with the same
characteristics. However, its numerical value is significantly smaller. A subtle
interplay between screening and the space localization of the initial excitation
is foreseen to be responsible of this difference.

This question is further developed in Chapter 5. Here, the lifetimes of
electronic excitations in metal clusters of different materials are calculated
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for several excitation energies. The order of magnitude of the calculated
lifetimes is confirmed to be on the femtosecond scale. However, its numerical
value is still substantially smaller than the one corresponding to bulk metals.
With the aid of TDDFT, we show that the Kohn-Sham one-electron wave
functions are suitable to represent initial states of electronic excitations.
As predicted in Chapter 4, these wave functions have a significant weight
in the region close to the nanoparticle surface. In this region, dynamic
screening is largely reduced, and the lifetime of the electronic excitations is
subsequently shortened. Finite-size effects thus play a major role in the decay
process of excited electrons in metal nanoparticles. Additionally, we observe
a quasi-linear behaviour in the the lifetime as a function of the excitation
energy. The well-known quadratic dependence of the decay rate on the
excitation energy in a free electron gas Γ ∝ (ε − εF )

2 thus breaks down
in metal nanoparticles. This quasi-linear behaviour has been also predicted
in other low-dimensional systems , and would require experimental evidence
to be confirmed.

The second main topic addressed in this thesis is the study of the collision
processes of charged projectiles with metallic nanoparticles. Calculations
have been made both for protons and antiprotons colliding with aluminium
clusters of different size. Due to the non-perturbative character of the
external potential, a fully time dependent density functional approach is
used. As a result, we find out that the screening around the projectiles
is rapidly built, resulting in an interaction with the target electrons in the
collision process which is quite local. The local character of the interaction
makes it possible to define an effective stopping power which is shown to be
comparable to that of an infinite target. This result has the direct implication
that finite sized metallic systems can be used to study the energy loss of
charged projectiles inside bulk metals. Our results reproduce calculations
of stopping powers in bulk matter in the well-known low and high velocity
regimes.

The fully non-perturbative character of our TDDFT approach enables
us to calculate the stopping power in the intermediate velocity regime as
well. Moreover, our calculated data agree quantitatively with experimental
measurements for the stopping power of protons and antiprotons in
aluminium. The agreement in the case of protons is particularly interesting
and worthy of further analysis, as it suggests that charge transfer processes
are reasonably well described within the ALDA. The methodology developed
is general and could in principle be applied to any material well described
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within DFT framework. Further studies should be made to investigate
whether our conclusions are also applicable to semiconductors and insulators,
where the adiabatic approximation for correlations may also have limitations.

To further explore the possibilities offered by the non-perturbative
TDDFT approach, we have briefly addressed at the end of this PhD. work
the study of collision processes with thin metal nanoshells. Our results show
that, in such case, the process resembles the collision of an antiproton with
two independent nearly bi-dimensional metallic systems. In parallel with it,
the main contribution to the energy loss comes from the asymmetry of the
force on each path inside the shell.

Finally, it can be concluded from this thesis that nano-sized systems
can behave similarly to solids, or intrinsically different, depending on the
particular property under study. In the study of lifetimes, the cuasiparticle
representing the electronic excitation has a significant weight on the surface
of the cluster, yielding results that cannot be compared with bulk materials.
In the case of collision processes, the interaction with the traversing charged
particle is very local and yields results comparable to those of infinite systems.
Thus, it is not possible to determine a priori the minimum size of the systems
at which confinement effects are no longer significant. Each individual
electronic property needs to be studied separately to conclude at what size
confinement effects become relevant.
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9 Resumen

La dinámica electrónica es un tema de interés en diferentes áreas de
la f́ısica y la qúımica, tanto a nivel fundamental como aplicado: a nivel
fundamental, el estudio de las excitaciones electrónicas constituye toda una
rama de la f́ısica del estado sólido aśı como de la f́ısica atómica y molecular.
En cuanto a sus aplicaciones, éstas abarcan un amplio espectro, desde la
interpretación de diferentes técnicas de caracterización de materiales hasta
el control de procesos qúımicos fotoinducidos. Por otra parte, el diseño y
control en la fabricación de nanomateriales logrado en las últimas décadas
ha propiciado el interés por las propiedades electrónicas de estos sistemas,
que a menudo están a caballo entre las de átomos y/o moléculas, y las de
materiales macroscópicos.

Un tipo de sistemas a escala nanométrica en auge desde los comienzos
de la nanociencia y la nanotecnoloǵıa son los agregados atómicos, también
llamados clusters o nanopart́ıculas. Esta tesis aborda el estudio de los
efectos de tamaño en dos propiedades fundamentales ligadas a la dinámica
electrónica en nanopart́ıculas metálicas: por una parte, el tiempo de vida
de excitaciones electrónicas en clusters metálicos y por otra, la pérdida de
enerǵıa de proyectiles cargados en procesos de colisión con nanopart́ıculas
metálicas.

Entre los obstáculos para obtener resultados significativos en el estudio de
los efectos de tamaño está la necesidad de analizar sistemas de muy diferentes
dimensiones dentro de un mismo marco teórico. En este trabajo, se ha
utilizado como punto de partida el modelo de jellium esférico [1, 2], en el
que se sustituye el conjunto de iones positivos por un fondo de densidad
de carga positiva constante. Este modelo permite manejar incluso sistemas
constituidos por varios miles de átomos, y a pesar de su simplicidad, permite
obtener resultados significativos tanto a nivel cualitativo como cuantitativo
en propiedades ópticas, dinámica electrónica o plasmónica [3, 4, 5].

En este trabajo, se ha hecho uso de un amplio espectro de metodoloǵıas
para abordar el complejo problema de la f́ısica de muchos cuerpos: para
la caracterización del estado fundamental, se ha hecho uso de la teoŕıa del
funcional de la densidad (DFT, del inglés “density functional theory”). En
el cálculo de los tiempos de vida se ha utilizado teoŕıa de la respuesta lineal y
la aproximación GW [6] para estudiar el decaimiento de estados electrónicos
excitados. En el cálculo de la pérdida de enerǵıa, se ha hecho uso de la
teoŕıa del funcional de la densidad dependiente del tiempo (TDDFT, del
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inglés “time dependent density functional theory”). En este último caso,
cabe destacar que los cálculos se han realizado sin recurrir a la teoŕıa
de perturbaciones, a partir de la evolución en tiempo real de los estados
excitados monoelectrónicos.

Estudio de los tiempos de vida

El primer problema abordado en esta tesis es el estudio de los tiempos
de vida de excitaciones electrónicas en nanopart́ıculas metálicas. Dicho
estudio se encuentra recogido en los Caṕıtulos 4 y 5. El Caṕıtulo 4 es un
primer estudio del decaimiento de las excitaciones electrónicas en clusters
de diferentes tamaños. Dicho estudio se centra en el tiempo de vida de
excitaciones electrónicas con enerǵıa aproximada (ε−εF ) ≈ 1 eV por encima
del nivel de Fermi. Los cálculos se realizan para nanopart́ıculas de sodio
(rs = 4) de radios R entre 0.7 nm y 2.7 nm. Al representar el tiempo de vida
de en función del tamaño en clusters con radio menor que 1.5 nm, se observan
oscilaciones entre τ ≈ 4 fs y τ ≈ 30 fs. Este comportamiento se debe a la
discretización de los niveles energéticos, que impide asignar un valor idéntico
a la enerǵıa de excitación para todos los sistemas, además de modificar el
espacio de fases al que decae el electrón excitado. Para clusters de radio
R & 2 nm, estos efectos son menos acusados, y los tiempos de vida muestran
pequeñas oscilaciones en torno a un valor de τ ≈ 5 fs. El orden de magnitud
de este valor es consistente con el correspondiente a excitaciones electrónicas
en un gas de electrones libres de sodio. Sin embargo, su valor numérico es
significativamente menor. Esto sugiere una relación entre el apantallamiento
y la localización espacial de la función de onda del estado inicial [7].

La cuestión arriba expuesta se explora en detalle en el Caṕıtulo 5. En
él, se calculan los tiempos de vida de excitaciones electrónicas en clusters
metálicos de diferentes materiales y tamaños, para diferentes enerǵıas de
excitación. El orden de magnitud de los tiempos de vida calculados es
equiparable al de los correspondientes a materiales macroscópicos, pero
sus valores numéricos continúan siendo apreciablemente menores. Con
la ayuda de la teoŕıa del funcional de la densidad dependiente del
tiempo (TDDFT), se observa que las funciones de onda monoelectrónicas
de Kohn-Sham representan adecuadamente los estados iniciales de las
excitaciones electrónicas. Para ello, se introduce como perturbación externa
el potencial creado por un pulso láser de frecuencia coincidente con la de
una excitación electrónica determinada, y se observa la evolución temporal
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Figure 9.1: Inverso del tiempo de vida Γ = τ−1 para excitaciones electrónicas
(rs = 4) en nanopart́ıculas de sodio en función de la enerǵıa de excitacion
εi tomando como referencia el nivel de Fermi. Las cruces hacen referencia
a nanopart́ıculas con N = 440 electrones, los ćırculos a nanopart́ıculas con
N = 912 electrones, y los rombos a nanopart́ıculas with N = 2018 electrones.
La ĺınea sólida muestra los valores de Γ para un gas de electrones libre con
parámetro de densidad electrónica rs = 4.

de las funciones de onda monoelectrónicas, obteniendo como resultado que la
función de onda correspondiente a la excitación es la que sobrevive al pulso
láser.

El resultado es el predicho en el Caṕıtulo 5: las funciones de onda que
representan los estados iniciales de las excitaciones electrónicas tienen un
peso significativo en la región de la superficie de la nanopart́ıcula. En esta
región, el apantallamiento dinámico se reduce de manera considerable, y en
consecuencia, el tiempo de vida de las excitaciones elećtronicas disminuye
con respecto al equivalente en un gas de electrones libres. Podemos decir,
pues, que los efectos de tamaño juegan un papel importante en el proceso de
decaimiento de electrones excitados en nanopart́ıculas metálicas [4].

Otro resultado novedoso sobre la cuestión de los tiempos de vida en
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nanopart́ıculas es el siguiente: al representar el inverso del tiempo de vida
frente a la enerǵıa de excitación se observa un comportamiento cuasilineal, en
oposición a la conocida dependencia cuadrática de Quinn-Ferrel Γ ∝ (ε−εF )2
para un gas de electrones libres (ver Fig. 9.1). El comportamiento cuasilineal,
observado en nanopart́ıculas de diferentes materiales (rs = 2 y rs = 4), ha
sido predicho en otros sistemas de baja dimensión como pozos cuánticos en
superficies [8], y necesitaŕıa de evidencias experimentales para ser confirmado.

Estudio de procesos de colisión

El segundo problema abordado en esta tesis es el estudio de los procesos
de colisión de part́ıculas cargadas con nanopart́ıculas metálicas. Los cálculos
se realizan para protones y antiprotones en colisión con clusters de aluminio
de diferentes tamaños. Debido al carácter no perturbativo del potencial
externo, se hace uso del TDDFT no perturbativo para calcular la evolución
de las funciones de onda; es decir, sin hacer uso de la aproximación lineal.

Como resultado, se observa que el apantallamiento de los proyectiles
se construye rápidamente, resultando en una interacción con los electrones
de la nanopart́ıcula de un carácter marcadamente local. Este carácter
hace posible definir un poder de frenado efectivo en nanopart́ıculas
equiparable al correspondiente a materiales macroscópicos. El resultado
tiene como implicación directa la posibilidad de utilizar sistemas metálicos
de dimensiones reducidas para estudiar la pérdida de enerǵıa por unidad de
longitud de proyectiles cargados en materiales macroscópicos [5].

Los resultados obtenidos reproducen los cálculos realizados en un gas
de electrones libres con rs = 2.07 (corresponciente al aluminio) en los ya
estudiados reǵımenes de bajas y altas velocidades, mediante la utilización de
la teoŕıa del funcional de la densidad (DFT) estática y la teoŕıa de la respuesta
lineal respectivamente. Pero además, el carácter no perturbativo de nuestro
planteamiento TDDFT nos permite calcular el poder de frenado en el régimen
intermedio de velocidades. Los resultados obtenidos para aluminio están en
concordancia con medidas experimentales para protones y antiprotones (ver
Fig. 9.2). El acuerdo en el caso de protones es especialmente interesante
y merecedor de un análisis más detallado, ya que sugiere que los procesos
de transferencia de carga se pueden describir adecuadamente mediante la
aproximación local adiabática de la densidad (ALDA). La metodoloǵıa
desarrollada es general y podŕıa en principio ser aplicada a cualquier material
descrito dentro del marco de la teoŕıa del funcional de la densidad. Se
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Figure 9.2: Cálculo TDDFT del poder de frenado del aluminio (rs = 2.07)
para antiprotones (p−) y protones (p+) en función de la velocidad de
los proyectiles, comparado con resultados experimentales para antiprotones
(ćırculos, exp. p−) [9, 10, 11]) y protones (triángulos, exp. p+) [11]. Se
muestran también valores tabulados para protones (cuadrados, exp. p+)
[12, 13, 14].

requeriŕıa un estudio más a fondo para investigar si estas conclusiones se
pueden aplicar a semiconductores y aislantes, donde la aproximación ALDA
para el término de canje y correlación puede tener limitaciones [15].

Con el propósito de explorar las posibilidades ofrecidas por tratamiento
no perturbativo de la teoŕıa del funcional de la densidad dependiente del
tiempo (TDDFT), al final de este trabajo doctoral se ha abordado el estudio
de procesos de colisión de proyectiles cargados con nanoshells o nanocáscaras
delgadas. En este caso, los resultados muestran que el proceso se asimila a la
colisión de un proyectil a través de dos láminas delgadas casi bidimensionales
separadas una distancia determinada. Al igual que en el caso de dos sistemas
bidimensionales separados, la contribución principal a la pérdida de enerǵıa
en colisiones con nanocáscaras delgadas proviene de la asimetŕıa de la fuerza
en el trayecto de entrada y salida de cada “cáscara” o lámina delgada curvada
[16].
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Para finalizar, puede extraerse una conclusión general del conjunto de este
trabajo doctoral: los sistemas en la escala nanométrica pueden comportarse
de manera similar a sólidos o intŕınsecamente diferente, dependiendo de la
propiedad concreta bajo estudio. Esto se ve reflejado en las dos principales
propiedades estudiadas en esta tesis: En el caso de los tiempos de vida, por
una parte, la cuasipart́ıcula que representa la excitación electrónica tiene
un peso significativo en la superficie del cluster, dando lugar a resultados
muy distintos a los de un material a escala macroscópica. Por otra parte,
en el caso de los procesos de colisión, la interacción del proyectil con la
nanopart́ıcula tiene un carácter marcadamente local y da lugar a resultados
equiparables a los de un sistema infinito. Aśı pues, no es posible determinar
a priori las dimensiones mı́nimas de un sistema para las cuales los efectos de
tamaño dejan de ser relevantes. Cada propiedad electrónica individual debe
ser estudiada separadamente para poder llegar a conclusiones respecto a la
relevancia o no de hallarse en la nanoescala.
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