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PREFACE

PREFACE
This Thesis is submitted in partial fulfilment of the requirements for the degree 

of Philosophiae Doctor (PhD) at the University of the Basque Country UPV/EHU under 
the Marine Environmental and Resources Erasmus Mundus PhD program.

The work performed in the present document was carried out at the Research 
Center for Experimental Marine Biology and Biotechnology - Plentzia Marine Station 
(PiE) of the University of the Basque Country UPV/EHU from February 2013 to 
December 2015. During that period, a research stay was carried out from April to July 
2015 at the Centre for Autonomous Marine Operations and Systems (AMOS) of the 
Norwegian University of Science and Technology (NTNU) in Trondheim, Norway.

In order to allow a better reading and understanding of the text, acronyms 
have been left to the minimum. The present document is organized into Chapters. 
Additionally and from a conceptual point of view, it can be divided into four Parts. A 
brief description of them follows:

•	 Part I provides the context to this Thesis and it is composed of the first two 
chapters. 

o Chapter 1 covers the general introduction of this work. It also gives 
a brief view of the composition of the entire document: it includes 
the Hypothesis, the Objectives and Contributions, and the Scientific 
Output derived from the work.

o Chapter 2 is devoted to the Research Methodology used. The 
research plan followed during the Thesis and the benefits derived 
from it are presented. Specific Research Methods and Limitations of 
the present study are also addressed.

•	 Part II describes the development of the Biological Warning System from its 
early stage to the inclusion in a mathematical model. It comprises the next 
five chapters.

o Chapter 3 is a brief explanation of State of the Art in Biological 
Warning Systems.

o Chapter 4 deals with the development of the monitoring tool.

o Chapter 5 quantifies the effect of the variation in the number of fish 
on the system dynamics.

o Chapter 6 presents a particular case of study of the monitor tool 
applied to a contamination exposure example.

o Chapter 7 merges the knowledge generated in the previous chapters 
and builds a mathematical model of the system.

•	 Part III presents the General discussion, Conclusions and the Thesis. It also 
establishes the future prospects. This part constitutes Chapter 8.
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ABSTRACT

ABSTRACT
The annual global increase in the production, particularly from aquaculture, 

and consumption of seafood is expected to continue in the future. One of the main 
concerns is the production of safe seafood, which is being compromised by the 
increasing number of novel and unexpected chemical substances that contaminate 
the aquatic environment and may end up contaminating also the feeds used in 
aquaculture. Many of these contaminants also affect negatively the fish welfare and 
consequently carry economic losses for the farmer.

Currently, there is a lack of cost effective, user-friendly methods to detect 
many of these contaminants and there is no method to detect unknown contaminants. 
The present Thesis aims at developing a non-invasive monitoring methodology using 
the fish themselves as the sensor unit; i.e. a Biological Warning System. This kind 
of approach would make it possible to develop an affordable, on-line identification 
of production units displaying atypical responses or behaviour due to stress factors- 
and therefore potentially contaminated - regardless of whether the contaminant is an 
identified or an unknown substance. Once developed, the Biological Warning System 
should be implemented within the Hazard Analysis and Critical Control Point and Fish 
Welfare Assurance Systems and the results accompany the traceability documentation 
of the products.

The first phase of this Thesis comprises the development of a non-invasive 
methodology for image acquisition, image processing and non-linear signal analysis 
and processing of the collective fish response to a stochastic event, using the 
collective fish response, i.e., the response of the shoal. Object detection and motion 
estimation were performed by an optical flow algorithm in order to detect moving fish 
and simultaneously eliminate background, noise and artifacts. The entropy and the 
fractal dimension of the trajectory followed by the centroids of the groups of fish were 
calculated using the Shannon and permutation entropy and the Katz, Higuchi and 
Katz-Castiglioni’s fractal dimension algorithms respectively.

 The tool developed was tested in three case studies. The first case study 
analyzed three experimental groups of European seabass (Dicentrarchus labrax), two 
of which were similar (control and tagged fish) and very different from the third [tagged 
fish submerged in methylmercury (4 µg MeHg/L) contaminated water for 9 days]. The 
results indicate that Shannon entropy and Katz-Castiglioni were the most sensitive 
non-linear signal processing algorithms, both with the potential to become useful tools 
for the non-invasive identification and quantification of differences in fish responses, 
although the Katz-Castiglioni fractal algorithm had a much higher computational load 
than the Shannon entropy algorithm.

The number of individuals in the shoal was, a priori, expected to exert an 
influence in the behaviour of the system. Accordingly, the second case study was 
designed to identify the effect of the number of fish on the “normal” behaviour of the 
system, which in turn requires the characterization of the Optimal Working Point/Range 
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of the system. Conceptually, an optimal working point/range is the set of conditions 
under which the system operates in optimal and/or almost optimal conditions, i.e., 
where the system operates under what is considered to be acceptable conditions. 
In case something drives the system out from that point/range, the monitoring tool 
should be able to detect the deviation. For that purpose two different experiments 
where performed:

i. A decreasing biomass experiment, starting with 50 fish and decreasing to 25, 
13 and finally 1 fish.

ii. An increasing biomass experiment, studying the system with initially 1 fish, 
adding 1 new fish per day during 5 days, and ending with 5 fish in the tank.

The third case study examined the response of European seabass system 
during the exposure to two different substances: sodium selenite (Na2SeO3, 10 µg/L) 
for 7 days and methylmercury (4 µg MeHg/L) for 14 days.

The results from the first case study indicate that the developed tool was 
suitable to identify variations in the response of a fish group to an event. The tool 
worked satisfactorily when applied to a complex, challenging, real-life experimental 
set up, and it rendered meaningful results that sustain the hypothesis of this Thesis.

The results of the second case study indicate that the Shannon entropy of 
the fish system was the most suitable parameter to analyse the trajectory of the 
cluster’s centroid, and that its value was highly dependent on the number of European 
seabass for a few fish (from 1 to 5) becoming more independent from the number of 
individuals as their number increased. The relationship between the Shannon entropy 
of a European seabass system and the number of fish was shown to fit an exponential 
curve. 

The results of the third case study indicated that the tool did not register 
alterations in Shannon entropy of the system upon the addition of sodium selenite in 
concentrations expected to exert a protective effect on to the European seabass health; 
but upon de addition of the neurotoxic methylmercury, in a concentration expected to 
exert a negative effect, the Shannon entropy of the system changed, producing lower 
values. Moreover, application of the tool showed that, not only the Shannon entropy 
value, but also its daily evolution need to be included as parameters in a fish welfare 
monitoring procedure for a European seabass system as shown by the case when the 
fish are recuperating from methylmercury exposure.

The last part of the Thesis deals with the development of a model, based on 
the work performed, that integrates the daily behaviour of three reference sub-models; 
namely, the basal state reference sub-model (corresponding to the resting fish), the 
response to the stochastic event reference sub-model (corresponding to the response 
of the fish system to a hit in the tank) and a sub-model based on the relationship 
between the two of them: the basal-event response reference sub-model.

Based on these results, it seems that the developed tool, after the necessary 
improvements and optimizations, has the potential to be embedded in an on-line/



9

ABSTRACT

real time architecture to monitor fish schools in a farm and in the wild, and therefore 
may find an application as a monitoring tool in Fish Welfare Assurance System and 
Hazard Analysis and Critical Control Points systems in fish farming, and to identify 
contaminated waters in environmental monitoring programs.

Accordingly, the Thesis of this study is that fish can be used as biological 
sensors because the alteration of their behaviour in response to external stimuli 
is quantifiable and can be non-invasively monitored. Further, the alteration of the 
behaviour as measured by the Shannon entropy of the system has the potential to 
serve as a tool for on-line fish welfare monitoring.
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INTRODUCTION

1.1. General Context
Gerland (2014) concluded, after analysing the world population projections 

published by the United Nations (2014), that: “...contrary to previous literature, world 
population is unlikely to stop growing this century. There is an 80% probability that 
world population, now 7.2 billion, will increase to between 9.6 and 12.3 billion in 
2100”. Thus, while predictions change depending on wars, pandemics and changes 
in demographics, it seems clear that there will be a need to increase and optimize the 
production of food for the human population. Aquaculture is considered to be one of 
the key production methods to achieve this goal (German Advisory Council on Global 
Change - WBGU, 2013) and some of the most recent international strategies consider 
the marine environment the last frontier to relaunch global economy (Kalogerakis et 
al., 2015). Seafood is the furthermost traded food worldwide and yet it is a highly 
ignored component in global food security context (Smith et al., 2010). The increasing 
relevance of seafood in the human diet is not new: according to FAO (2014), global fish 
production has been growing steadily during the last 50 years, with seafood supply 
increasing at an average annual rate of 3.2 % where most of the growth in seafood 
production in later years has been due to the dramatic increase in aquaculture 
production in China. The top in aquaculture production took place in 2012, with 90.4 
million tonnes of aquatic seafood (66.6 million tonnes of fish and 23.8 of aquatic alga) 
for an estimated total value of US$144.4 billion. The estimates for 2013 were 70.5 and 
26.1 million tonnes of fish and aquatic alga respectively. World food fish aquaculture 
production has increased at an average annual rate of 6.2% from 2000-2012, mostly 
in Africa, Latin America, the Caribbean and Asia (FAO, 2014).

On the 28th of January 2002 the European Parliament and the Council adopted 
Regulation (EC) 178/2002 laying down the General Principles and requirements of Food 
Law. The Regulation establishes the basic principle that the primary responsibility for 
ensuring compliance with food law, and in particular the safety of the food, rests with 
the food business. The same principle applies to feed production. The food business 
operators must therefore take all the necessary measures to ensure that the food they 
produce is fit for human consumption. The safety of the produced seafood remains 
therefore a highly relevant central issue, particularly in view of the increase in global 
trade, the different demands and expectations in different world regions and the 
number and variety of unexpected contaminants that have been recently discovered. 
Thus, to ensure the safe production of seafood, the implementation of the Hazard 
Analysis and Critical Control Point (HACCP) system and Risk Analysis concepts have 
become obligatory. FAO has published some very useful technical reports on the 
subject (Huss, 1994; Huss et al., 2004). Seafood can become contaminated at any 
step during its production and processing from the egg to the table (Huss et al., 2004). 
The main routes through which contaminants are introduced during fish production 
are the feed, the water and the veterinary treatments (Dahle et al., 2010). The type of 
contaminants one would expect to find vary according to factors such as whether the 
fish is farmed or wild, placed high or low in the trophic chain, its feed or prey, age and 
geographical origin, water temperature and proximity to populated areas, terrestrial 
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farms or industrial activities. Additionally, some contaminants, such as methyl-
mercury, until recently considered to be of concern only in large, long-lived marine 
organisms placed high in the trophic chain (such as whales, swordfish and tunafish), 
have been found to be ubiquitous in the aquatic environment (Chen et al., 2012) and 
present in detectable amounts in a large variety of species and seafood products of 
wild and farmed fish species from different geographic origins including the Atlantic 
(Vieira et al., 2011), the Arctic, the Antarctic, Asia and the UK (Knowles et al., 2003), 
South China, Spain, USA and Australia (Qiu et al., 2011).

Farmed fish can be contaminated with agents that may induce infections 
(bacteria, viruses, parasites) and intoxications (tetrodotoxin, histamine, algal toxins, 
environmental pollutants, drugs and medicines, heavy metals, etc.) in humans. Some 
of these compounds can be toxic to humans and innocuous to the carrier agent, i.e., 
the fish. Tetrodotoxin for example, synthesized by symbiotic bacteria in some tissues 
of fish and snails, not only does not interfere with the life or welfare of the host: 
it improves both by acting as a protection against predators (Simidu et al., 1987). 
However, many other marine toxins, such as those caused by harmful algal blooms 
(HAB) exert a negative influence on the fish welfare and health, occasionally causing 
large mortalities (Bushaw-Newton and Sellner, 1999).

1.2. Fish welfare and fish welfare monitoring
Animal welfare refers to the well being of animals. It is based on the belief 

that they are sentient beings whose well being needs to be taken into consideration, 
particularly when they are under human care, as is the case of pets and animals used 
for the production of food and for research.

The concept of the Five Freedoms in animal welfare originated with the 
“Report of the Technical Committee to Enquire into the Welfare of Animals kept under 
Intensive Livestock Husbandry Systems”; known as the Brambell Report (1965), that 
stated that farm animals should have freedom “to stand up, lie down, turn around, 
groom themselves and stretch their limbs”. This list is still nowadays referred to as 
Brambell’s Five Freedoms.

As a direct result of the Brambell Report, the Farm Animal Welfare Advisory 
Committee (FAWAC) was set up and later replaced by the Farm Animal Welfare Council 
(FAWC) established by the British Government in July 1979. One of these bodies started 
to list the provisions that should be made for farm animals in five categories, which 
also became known as the Five Freedoms. Since records from FAWAC are not readily 
available the exact origin is not clear and the earliest written reference the author can 
find is a press notice (Figure 1.1) released by FAWC in December 1979.
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Figure 1.1. 1979 press release from the Farm Animal Welfare Committee. From http://webarchive.
nationalarchives.gov.uk/20121007104210/http://www.fawc.org.uk/pdf/fivefreedoms1979.pdf
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Figure 1.2. The Five Freedoms in animal welfare. Image from: Microsoft Word 2011 for Mac.

Nowadays, the five freedoms of animal welfare are considered to be 
(Figure 1.2):

1. Freedom from hunger and thirst by ready access to fresh water and a diet to 
maintain full health and vigour.

2. Freedom from discomfort by providing an appropriate environment including 
shelter and a comfortable resting area.

3. Freedom from pain, injury or disease by prevention or rapid diagnosis and 
treatment.

4. Freedom to express normal behaviour (or as close as possible) by providing 
sufficient space, proper facilities and company of the animal’s own kind.

5. Freedom from fear and distress by ensuring conditions and treatment, which 
avoid mental suffering.

The 5 freedoms of animal welfare

1. From hunger and thirst

3. From pain, injury or disease4. To express normal behaviour

2. From discomfort5. From fear and distress
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The welfare of the animals and their health are closely interrelated: the 
presence of toxic substances and contaminants have a direct and negative impact on 
both, and factors that increase the stress of the animal - discomfort, lack of proper 
space, injury and disease and distress - will make them more susceptible to suffer 
injuries and disease (Broom, 1991). Broom (1991) proposed that the term “welfare” 
should be used by the scientific community and be included in laws. He also indicated 
the need to objectively measure welfare.

In general, welfare refers to the ability of an individual to cope, and central 
to all definitions is the association between the poor welfare of an individual and an 
overtaxing of its coping capacity. Responses to short-term stress are adaptative (to 
recuperate the temporarily lost homeostasis) and do not necessarily indicate suffering 
or diminished welfare. Concern about welfare in aquaculture is mainly associated 
with tertiary effects of stress response usually indicative of prolonged, repeated 
or unavoidable stress. Physiological indicators of poor welfare include: reduced 
life expectancy, impaired growth, impaired reproduction, body damage, disease, 
immunosuppression, adrenal activity, behaviour anomalies, and self-narcotization 
(Broom, 1991). The biology of fish welfare is indeed a complex matter that has been 
the subject of many studies, including two recent PhD Theses (Boerrigter, 2015; 
Manuel, 2015).

Factors with a negative impact on welfare also have a direct and negative 
impact on the quality and wholesomeness of the foodstuffs produced from them. 
Thus, it is very important to monitor and quantify the welfare of the animals under 
production to ensure that it is optimal. In support of this view, Dr Sunil Kadri, in 
his 2015 presentation to the European Aquaculture Society Meeting in Rotterdam, 
Amsterdam (“Fish Welfare: moving towards animal-based indicators” Kadri, S. and 
Keeling, L.) indicated that good fish welfare improves the health of the animals and 
the quality of the product. For the farmer this means a higher income and reduced 
production costs. The higher income would not only be due to a potentially higher 
willingness to pay from some customers, but also to the fact that the fish quality itself 
would be higher (Sneddon, 2007) and that fewer fish will die under production. Dr 
Kadri reported that 38% of the usually recorded 20% mortality during the on-growing 
period of salmon in Norway, could be directly attributed to poor handling and that 
improved welfare monitoring and control could reduce this figure.

The needs to define the concept of fish welfare in aquaculture and the 
development methods of objectively measure it were reviewed by Ashley (2007) who 
indicated that in addition to the already established physiological parameters that 
indicate suboptimal welfare (a classical example is the cortisol levels), also the much 
less studied effects that poor welfare may have on fish behaviour should be taken 
into account, stressing the need to obtain more knowledge about the behavioural 
responses of fish, how to measure them and how to relate them to fish welfare.

Dr. van de Vis, one of the European pioneers in the study fish welfare, and 
his co-workers proposed to follow the same principles that the Hazard Analysis and 
Critical Control Points (HACCP) establishes to safeguard food safety, but oriented 
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towards monitoring and safeguarding fish welfare at a company level (van de Vis 
et al., 2012). The system was named Fish Welfare Assurance System (FWAS) and, 
as Hazard Analysis and Critical Control Points, requires the identification of major 
hazards and of the Critical Control Points (CCPs) that need to be controlled in order to 
minimize or avoid the identified hazards. Hazards affecting fish welfare include water 
quality, feed amount and composition, husbandry practices and contaminants, among 
others. Suboptimal water quality, for example, is a stressor that can affect physiology, 
behaviour, growth rate, feed intake and conversion, and lead to pathological changes, 
damage to organs and mortality (MacIntyre et al., 2007). Environmental contaminants 
are one type of hazards affecting fish welfare, its health, chemical composition and 
quality with further implications for seafood safety and human health.

In accordance with van de Vis et al. (2012), this Thesis will follow the definitions 
of stress and stressors proposed by Wendelaar Bonga (1997), i.e. stress as a condition 
in which the dynamic equilibrium of an animal is threatened or disturbed as a result 
of the action of intrinsic and/or extrinsic stimuli, and stressors as the extrinsic stimuli.

Monitoring of Critical Control Points at a farm level is obviously essential and 
it requires the establishment of Operational Welfare Indicators that may be biotic, 
abiotic, managerial and environmental indicators. Each Operational Welfare Indicators 
(OWI) would have critical limits/target values. As in Hazard Analysis and Critical 
Control Points, critical limits are the maximum and the minimum values within which 
the corresponding indicator must be, at its corresponding critical control point, in order 
to prevent, eliminate or reduce a hazard to an acceptable level for the welfare of the 
fish (van de Vis et al., 2012). Examples of Operational Welfare Indicators (depending 
on the hazard of course) during the on-growing phase are: “Visual inspect for gill and 
skin lesions”, “Observe feed intake and behaviour” and “Inspect fish for lesions and 
deviations from behaviour”.

The Fish Welfare Assurance System and the Operational Welfare Indicators, 
proposed by van de Vis et al. (2012) provide a methodology that Webster (2001) 
claimed in his review was needed; namely, a method based on welfare-based quality 
assurance schemes with quality control ensured by independent audits. Audit 
protocols are based largely on the identification of the elements of good husbandry; 
therefore, what Webster (2001) proposed was ultimately needed was an independent 
audit to ensure that the outcome of the perceived elements of good husbandry are, in 
fact, good animal welfare.

It is the author’s hope that this PhD Thesis contribute to monitoring welfare 
by providing a tool to non-invasively monitor fish behaviour and its deviations, thus 
aiding in implementing the Fish Welfare Assurance System systems and on-line welfare 
objective monitoring.

The contaminants that affect fish welfare and seafood safety are many and 
not all of them are known. The rest of the introduction will focus on some chemical 
contaminants which have been selected for the challenges their detection presents 
(see below), and among them methylmercury. Methylmercury has been targeted for 
the apparent increase in the number of seafood species in which it is being detected 
and the concern it awakens among consumers and food safety authorities.
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1.3. Challenges in the monitoring of chemical 
contaminants
Monitoring and detection of chemical contaminants in the seafood chain 

remains most challenging for the following reasons (Eguiraun et al., 2015a):

•	 The cost of their analyses is usually high and only highly specialized 
laboratories perform them.

•	 Many of the contaminants consist not of one, but of “families” of compounds 
(i.e., a compound, its metabolites and/or its congeners) with different degrees 
of toxicity.

•	 The nature of chemical contaminants is very diverse: they may be organic or 
inorganic, natural or synthetic, the result of industrial activities (cosmetic and 
oil industries, mining activities), agricultural activities (pesticides, fertilizers), 
the aquaculture industry itself (veterinary treatments, rests of non eaten food 
pellets in decomposition) and of the habits of the human populations close to 
the production or harvesting area (use of medicines, hormones, recreational 
drugs).

•	 Only expected contaminants are tested (maliciously introduced, unexpected, 
novel and emergent contaminants commonly remain undetected until the 
wildlife, the farmed species or the consumers are severely affected).

•	 Novel contaminants are being detected in environmental, sewage and 
drinking waters at an increasing rate (Roose et al., 2011).

Different approaches can be use to monitor the presence of contaminants. 
One is the detection of a targeted contaminant (analytical methods), another is the 
detection of the effect of a targeted contaminant (bioassays and biosensors) and the 
third is the detection of the toxic effects of a sample (air, water, feed) in which one 
or many known and unknown contaminants may be present in unknown amounts 
(Figure 1.3).
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Figure 1.3. Classical and modern approaches to detect contaminants, from top to bottom: identify 
the contaminants using analytical technique; bioassays and biosensors designed to identify targeted 
contaminants based on specific biological effects and Biological Warning Systems that will detect 
the integrated effect of any and all the contaminants affecting the biological system. Images from: 
https://en.wikipedia.org

BIOLOGICAL WARNING SYSTEMS

•	 Any system of biological or technical nature 
deployed by an individual or group to inform 
of a future danger

ID SUBSTANCES

•	 Specialized high technology labs
•	 Kits and portable kits

BIOASSAY – BIOLOGICAL ASSAY

•	 Determines the strength or biological activity 
of a substance (drug, pollutant) by comparing 
its effects with those of a standard preparation 
on a test system (organism, tissue, cell)

BIOSENSOR – BIOLOGICAL SENSOR

•	 Device made up of a transducer and a biological 
element (enzyme, antibody, bacteria…) where 
the bioelement interacts with the analyte and the 
biological response is converted into a electrical 
signal by the transducer
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In real life situations, contaminations are seldom due to one single compound 
and it is becoming increasingly evident that the number of novel substances with a 
potentially negative effect that must be monitored is increasing. Therefore, there is a 
need to develop new approaches to ensure our safety. To illustrate this, some cases of 
malicious and of emergent contaminants will be mentioned.

1.4. Malicious contaminants
Perhaps the most famous case of an unexpected maliciously introduced 

chemical contaminant was the use of melamine in feeds and foods (Sharma and 
Paradakar, 2010). The products had been manufactured in China, killed thousands of 
pets and the case was best documented in the USA (Dobson et al., 2008). It caused 
the deaths of at least six babies and the illness of about 300,000 more who consumed 
adulterated infant formula milk in China. The reason why melamine was added to foods 
and feeds was to increase the profit by falsifying the protein content of products. The 
amount of protein in foods and feeds is indirectly estimated by multiplying by a factor 
of 6.25 (for meat and feeds) the total nitrogen of the sample, which in turn is estimated 
by the Kjeldahl method (Tacon, 1987). When a large amount of the nitrogen in the 
sample originates from nitrogen-rich contaminants such as urea, melamine and their 
derivatives, the protein amount is wrongly overestimated. Fraudulent actors can then 
sell their products with much lower protein content and increase their profits. It seems 
that after the addition of urea was made illegal the addition of melamine became more 
popular. It was a practice that had apparently been taking place for years, but it was 
not suspected until deaths started to take place. The main reason for the deaths was 
that ingestion of melamine and its derivatives cyanuric acid and melamine cyanurate 
form insoluble crystals that precipitate in kidney tubules physically blocking them and 
inducing renal failure and death (Brown et al., 2007).

The scandal had global proportions: it originated in China but the deaths 
of pets were first detected in the USA and then contaminated products were found 
all over the world (including Australia, Canada, India, Hong Kong, Malaysia, New 
Zealand, Japan, Switzerland, Taiwan, The Netherlands and USA) and in products 
from multinational reputed brands such as Cadbury, Heinz, Nestlé, Lipton and Tesco. 
Food products such as chocolate, cookies, coffee, eggs, pork, marketed fish fillet, 
chicken and pet food, swine, poultry and fish feeds were contaminated, suggesting 
that adulteration of feeds had been a common practice for some years prior to its 
detection (Brown et al., 2007; Dobson et al., 2008; Sharma and Paradakar, 2010). As 
a consequence of this scandal, several analytical methods have been developed and 
become obligatory to ensure that foods and feeds are free of this contaminant (Liu et 
al., 2012).

In cases such as this, where the contaminant is unexpected, introduced 
purposely and fraudulently and completely unrelated to any of the materials expected 
to come in contact with the product, its identification is extremely unlikely: in one 
of the earliest studies trying to identify pet deaths (Brown et al., 2007) most of the 
initially collected necropsy samples were not tested for melamine but, interestingly, 
the few that were tested turned out to be positive.
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1.5. Emergent chemical contaminants
Many of the organic pollutants currently being monitored in European waters 

are endocrine disruptors (Bevan et al., 2012; Roose et al., 2011), i.e., chemicals that 
exhibit hormone-like effects or that interfere with the hormonal signals of an organism. 
The structure of these compounds mimics that of oestrogens and when ingested by 
male organisms, these may develop female characters, a fact that severely hampers 
their reproductive capability and may end up in population collapse (Kidd et al., 2007). 
A possible relationship with development of diabetes type II has also been postulated 
(Magliano et al., 2014).

In addition to these, novel emergent chemical contaminants are being 
identified with increasing frequency in the environment, including recreational and 
prescription drugs, beauty care products and the metabolites of all these compounds. 
Monitoring of this kind of contaminants is a priority target of the European Water 
Framework Directive and of the EU Marine Strategy Framework Directive [see (Allan et 
al., 2006)] but in most countries analyses for their detection and monitoring are still 
not implemented and they are not included in programmes for feed and food safety.

The presence in raw sewage water of recreational drugs and their metabolites 
has reached a point where sewage epidemiology may become an effective monitoring 
tool to estimate the consumption of classical (Irvine et al., 2011; Lai et al., 2011; 
Pinkiewicz, 2012; van Nuijs et al., 2011) and novel (Reid et al., 2014) illicit drugs. It 
has been detected an annual increase in the number of new psychoactive substances 
formally notified for the first time in Europe through the EU Early Warning System from 
13 substances in 2008 up to 73 in 2012 (EUROPOL, 2012). The efficient removal of 
these substances greatly depends on the methods used to treat the wastewater prior 
to its discard or recirculation: conventional activated sludge efficiently removed (from 
about 80% to over 90%) cocaine and its metabolites, opiates and related compounds 
and ketamine, but its efficiency varied for amphetamine-like substances (>90% some, 
50% others), cannabinoids (90% some, 40% others) and practically did not remove 
nor-LSD (van Nuijs and Covaci, 2012).

Also the presence of prescription drugs in wastewater is becoming so 
common that some of them can be used to estimate the size of a given population; 
for example Lai et al. (2011) concluded that the amount of atenolol (a selective  1 
receptor antagonist used primarily for the treatment of cardiovascular diseases) in 
sewage water in Queensland, Australia seemed to be appropriate for that particular 
location because it was used on a daily bases by 1 - 3% of the population in Australia; 
it is not effectively removed in wastewater treatment plants (which makes it persistent 
and mobile in the sewers); and finally because the age group of atenolol consumers 
matched the age group of the population to be estimated. The same study also 
detected carbamazepine, gabapentin, hydrochlorothiazide and venlafaxine in the 
wastewater of Queensland, although they were not suitable to estimate the size of 
the population. Carbamazepine (an anticonvulsant and mood-stabilizer used primarily 
in the treatment of epilepsy, bipolar disorder and trigeminal neuralgia, attention-
deficit hyperactivity disorder, schizophrenia, phantom limb syndrome, complex 
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regional pain syndrome, borderline personality disorder, and post-traumatic stress 
disorder) is a stabilizer of the inactivated state of voltage-gated sodium channels. 
Gabapentin is a GABA analog developed to treat epilepsy, and currently used also to 
relieve neuropathic pain; hydrochlorothiazide is frequently used for the treatment of 
hypertension, congestive heart failure, symptomatic oedema, diabetes, renal tubular 
acidosis, and the prevention of kidney stones and reduces blood volume by acting 
on the kidneys to reduce sodium reabsorption in the distal convoluted tubule; and 
venlafaxine is an antidepressant of the serotonin-norepinephrine reuptake inhibitor 
class, used primarily for the treatment of depression, general anxiety disorder, social 
phobia, panic disorder and vasomotor symptoms.

In a USA pilot survey of the occurrence of pharmaceutical and personal care 
products in fish, Ramirez et al. (2009) reported to have identified the antidepressant 
sertraline at levels of 19 ng/g in fillet and 545 ng/g in liver of fish as well as the 
synthetic musks commonly used in cosmetic products galaxolide (2,100 ng/g fish) 
and tonalide (290 ng/g fish). Other substances whose effects on wildlife are still 
undocumented include the artificial sweetener acesulfame, which is excreted with 
practically no alteration and persistent in wastewater (Lai et al., 2011) and caffeine, 
detected in sewage water and reported to be a useful tracer for faecal contamination 
(Buerge et al., 2003; Potera, 2012).

Recently, Robles-Molina, et al. (2014) published a liquid chromatography 
high-resolution mass spectrometry method for the simultaneous determination of over 
400 multi-class priority and emerging pollutants detected in environmental waters 
which included 105 multiclass pharmaceuticals (analgesics/anti-inflammatories, 
antibiotics, lipid regulators, β-blockers, antiepileptic/psychiatrics, ulcer healings, 
diuretics, hormones and bronchodilatadors), life-style products (caffeine, nicotine), 
21 drugs of abuse and their metabolites, 279 pesticides and some of their more 
relevant metabolites, nitrosamines, flame retardants, plasticizers and perfluorinated 
compounds.

Therefore, the candidate considers, that this new situation with a large 
amount of unexpected contaminants in the environmental waters, demands a new 
approach for their detection and monitoring of their effects on fish welfare, behaviour 
and seafood safety, i.e. a paradigm shift in seafood safety assurance. Figure 1.4 shows 
a classification of pollutants attending their origin.
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Figure 1.4. A schematic representation of pollutants attending their origin.
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1.6. The need for a paradigm shift in seafood 
safety assurance
The current approach to ensure seafood safety, following the dictates of a strict 

Hazard Analysis and Critical Control Point system, includes a thorough description of 
the product and ingredients; the identification of all possible and relevant hazards and 
their routes of entrance; the establishment of critical points and critical limits for each 
hazard; monitoring and validation methods; preventive measures to avoid the entrance 
of contaminants in the production chain and corrective actions for those cases when 
deviations from the determined parameters take place. Although Hazard Analysis and 
Critical Control Point procedures should include all types of hazards, i.e., chemical, 
physical and biological or microbiological, the effectiveness of these procedures to 
control chemical hazards has been severely limited (as already mentioned above) by 
the variety of chemicals and their sources and the high cost of chemical monitoring 
(Ropkins and Beck, 2003). It is certainly not possible to define any of these parameters 
for unknown and/or unexpected substances.

In this context, we propose to introduce a shift in the manner seafood safety 
is envisioned (Eguiraun et al., 2015a). A paradigm also applicable to the production 
of any other food and feedstuff and to animal welfare monitoring that is based on the 
following facts:

•	 It is not possible nor desirable, to analyse every single potentially 
contaminating compound (for example, some compounds, or their levels, 
may not represent a risk in seafood production).

•	 It is not possible to monitor the presence or amount of unknown substances 
even if they are extremely harmful to the fish or to man.

•	 It is possible to detect a substance’s effect on a biological system, such as 
fish, by examining the distress and/or behavioural changes induced on it and 
using those signals as a warning signal indicating that something is altered or 
wrong, including the welfare of the animal [see reviews (Allan et al., 2006; Bae 
and Park, 2014; Environmental Protection Agency, 2005)].

In fact, the fish will integrate all the effects of the substances and conditions 
to which it is exposed: if the substances do not have a relevant effect, nothing will be 
noted; but if on the other hand there is something, known or unknown that influences 
the fish, its organism will register it, and, hopefully, it should be possible to develop 
a tool to detect those changes in the fish behaviour that indicate the exposition to a 
stressor and potentially harmful agent.

Although this approach is somehow similar to the use of biosensors, there is 
a crucial difference: biosensors are chosen for their suitability to respond to certain 
contaminants, but they do not respond to all relevant contaminants; on the other hand, 
the whole organism produces responses that are not necessarily contaminant-specific 
but reflect the real effect of the total mixture of substances on the animal (Roose et al., 
2011). Also, biosensors are not intended to detect the effects of interacting substances 
or of substances with a positive effect.
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1.6.1. Introduction to Biological Warning Systems (BWSs)

Implementation of the use of the entire animal as a monitoring device presents 
a clear advantage, and indeed it constitutes the principle behind the use of Biological 
Warning Systems (BWSs).

A BWS is any biological system set up to inform about the presence of a 
danger so that whoever set it up can prepare for the danger and react accordingly 
to avoid, reduce and/or control it. The use of higher organisms, fish in particular, for 
on-line toxicity detection of water quality in a Biological Warning System has been the 
subject of some reviews (Bae and Park, 2014; van der Schalie et al., 2001). Later on, 
in Chapter 3, a state of the art in the topic of Biological Warning Systems is presented.

Extending the proposal of Allan et al. (2006) to include BWSs among the 
methodologies considered suitable to implement the EU’s Water Framework Directive, 
we suggest that these methodologies may, on their own right, find an application in 
aquaculture safety monitoring programs and have the potential to become a core 
method in animal welfare and product safety and quality monitoring. BWSs will detect 
distress signals sent by the animal, distress that may be caused by contaminants, 
diseases and parasites, but also by stressors more difficult to identify and quantify 
such as suboptimal conditions including fish density, light intensity and wavelength, 
photoperiod, background colour, tank design or feed formulations, the lack of key 
nutrients, temperature variations and others. 

The complex interplay of different factors/chemical substances and the 
need to consider the fish themselves as the main system is illustrated by the case of 
methylmercury (MeHg) and selenium (Se). It has become apparent that there is no 
straightforward relationship between the amount of methylmercury in seafood ingested 
and methylmercury toxicity in humans (Ralston et al., 2008; Raymond et al., 2012; 
M. Yamashita et al., 2013). This has recently been explained because methylmercury, 
due of its high affinity for selenium, exerts its toxicity, by inactivating selenoproteins, 
which have a strong antioxidant activity (Ralston et al., 2008; Raymond et al., 2012; 
M. Yamashita et al., 2013; Y. Yamashita et al., 2013). Interestingly, marine fish and 
particularly tuna are very rich in the recently discovered selenium-containing molecule 
called selenoneine (Yamashita and Yamashita, 2010; Y. Yamashita et al., 2013) that 
has been shown to have a methylmercury detoxifying effect and it does not seem to 
be toxic in concentrations that would have caused selenosis if the source of selenium 
was a number of other selenium compounds (M. Yamashita et al., 2013). Thus, neither 
the level of methylmercury nor that of selenium individually would be indicators of 
the potential toxicity of a product, since the real effect would depend both on: the 
selenium-methylmercury ratio and on the chemical nature of the selenium compound.

On the other hand, it is possible that fish may display signs of stress making 
the Biological Warning System go off, but analyses of known potential stressors would 
not identify the cause. This would illustrate the case of a suspected novel and/or 
unexpected stressor or contaminant in the environment. At this point one would need 
to initiate a detective work until the cause is identified, analysed and its risk evaluated. 
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The affected fish should be isolated as potentially tainted and in this manner avoid the 
entrance of novel or malicious contaminants into the food chain.

Generally, a Biological Warning System will be better suited to predict and 
give a first alarm signal of the toxic substances entering the seafood production chain 
in fish farming than chemical analyses because chemical analyses of the levels of, 
for example, each metal (using again the case of MeHg and Se) would not provide a 
suitable answer, lacking the integrated response that is characteristic for a system, 
while unknown substances will not be tested for. In the same way, biosensors will also 
present the need to develop a specific biological element for each contaminant and 
organism. Moreover, and given that the contaminant may originate in the water and/
or in the feed, each test will require different extraction and testing procedures, and 
probably will never be robust enough to detect alterations that are not contemplated 
in the design phase.

Once designed, tested and validated; a Biological Warning System should be 
implemented within the Hazard Analysis and Critical Control Points and Fish Welfare 
Assurance Systems, as the monitoring procedure it is, and a series of corrective 
actions should be listed in case an alarm is initiated. To achieve this purpose, a good 
Biological Warning System must fulfil a series of requirements listed by Hasan et al. 
(2004) and summarized as:

1. Provide a fast response.

2. Screen for a number of contaminants.

3. Be automated.

4. Permit remote monitoring.

In addition, if such a system is to be implemented within a production system, it 
would need to fulfil the following requirements:

•	 Provide the warning early enough to allow to take remedial actions.

•	 Be cost effective and efficient.

•	 Not require highly specialized personnel or equipment (i.e. suitable to be 
used by personnel only after a short training).

•	 Be robust, i.e., capable of operating under a wide range of working conditions.

•	 Give minimal false positive and false negative results.

1.7. Understanding, defining and dealing with a 
system
In his 1990 work, Broom already used the concept of system when he related 

the concept welfare to the idea of “systems for coping with difficulties during life”. The 
terms “system” and “biological system” have already been used in this introduction, 
but they have not yet been defined.



28

CHAPTER 1

A system will be considered as a black box with inputs and outputs. The outputs 
will be defined in relation to the inputs and the intrinsic dynamic of what the black box 
contains. As big problems require big boxes, it is possible to divide those big boxes in 
smaller ones. If they are properly defined and interconnected, it can be assumed that 
the sum of the small boxes should be comparable to the big one, i.e., a big problem 
has been divided into smaller problems, which are intended to be easier to solve. 
This apparently straightforward methodology is the core of Systems Engineering (see 
Bhatikar et al., 2000; Cellier, 2013; Kuehn and Gross, 2013; Ljung, 2001; Ma and Zuo, 
2014; Matko et al., 1992; Ogata, 2009; Recktenwald, 2000; Schuster, 2010; Woods 
and Lawrence, 1997; Zhang et al., 2007 for further details).

The degree of abstraction determines the complexity and the accuracy of the 
approach, but, there must always be a compromise between the degree of abstraction 
and the feasibility (cost and ease of execution) of its design and implementation. There 
are three key steps in the initial part of this process: data collection, data processing 
and knowledge inference.

Not surprisingly, the quality of the data is the most critical part of the entire 
process. Depending on the complexity of the system, one may encounter the challenges 
characteristic for “big data”, namely data capture, curation, storage, search, sharing, 
transfer, analysis and visualization.

Knowledge can be inferred from the data by using either Classical or 
Intelligent Techniques. Classical Techniques make use of traditional control systems 
methodologies that merge classical modelling techniques in continuous or discrete 
time scales and events and/or stochastic modelling techniques. There are two main 
types of classical techniques: those based on Theoretical Models and those based 
on Experimental Models. Theoretical modelling techniques are fuelled with strong 
mathematical background including differential, linear and non-linear equations. 
These classical methods are the ones that have traditionally been applied and are 
suited to understand and resolve most of the real world problems.

When the relevant data required to build up models are complex and come 
from different disciplines they need to be simplified by using data pre-treatment and 
processing methods. For example, principal component analysis (PCA), that serves to 
identify which variables are relevant and which are not, which ones constitute noise, 
and/or provide redundant information. The next step is the storage into databases of 
all the relevant, pre-processed data that are going to be used to infer knowledge about 
the system.

Finally, there is a need to obtain relevant information from the database, i.e. 
the knowledge inference procedure that leads to a mathematical model suitable for 
prediction and/or control of the system. It must be noted that very complex processes 
are sometimes not successfully controlled or predicted in all of their working range 
and the designer must identify the so called Operational Working Point/Points of the 
system (i.e. the operational conditions under which the system is stable) and deal with 
it/them.
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The final step is to develop a control procedure that, using the information 
received from the monitoring process, automatically regulates the necessary 
conditions to preserve the normal or desired status of the system and deals with the 
deviations, if registered, either as programmed, or following an intelligent approach.

Additionally, when dealing with complex systems and problems, the 
remaining unexplained variability must also be accounted for, explained and 
modelled. For that, one must use the so-called Intelligent Techniques. Unlike 
classical methods, intelligent techniques are suited to work with the uncertainty, 
constrictions and restrictions characteristic of nature itself. Intelligent techniques 
can in turn be divided into two types: those based on Biological Models (BM) and 
the ones based on Knowledge Models. The most successful and popular intelligent 
systems based on Biological Models are the Artificial Neural Networks (ANN) and 
all their variants. Basically, Artificial Neural Networks are algorithms able to learn, 
generalize and abstract. Biological Models also includes Evolutive Techniques, such 
as Genetic Algorithms, Evolutive Strategies and Genetic Programming. Roughly, these 
techniques are based on a natural selection process that mimics biological evolution. 
The algorithm repeatedly modifies a population of individual solutions. At each step, 
the genetic algorithm randomly selects individuals from the current population and 
uses them as parents to produce the children for the next generation. Over successive 
generations, the population “evolves” toward an optimal solution or an accepted 
suboptimal solution. Knowledge Models (KM) comprise Expert Systems (computer 
systems that emulate the decision-making ability of a human expert) and Rule Based 
Systems (systems that store and manipulate knowledge to interpret information in a 
useful way from a starting set of data and rules).

Finally, it must be mentioned that building an online monitoring system will 
provide the supervisor with the ability to filter a large amount of information and 
return the necessary information-knowledge to take optimal decisions. It must also 
be noted that an online monitoring system does not necessarily have to be also a 
real-time monitoring system. Strictly speaking, the real-time concept involves that any 
activity of data processing and return of information must respond to the externally 
generated stimulus in a specified, finite and short time interval (Laplante et al., 2011). 
Thus, real-time systems have to be built with special software requirements, which 
make them more expensive and difficult to implement (Burns and Wellings, 2009). A 
brief summary of this methodology is depicted in Figure 1.5.
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Figure 1.5. Topology of a proposed Biological Warning System. Theoretical representation of how a 
Biological Warning System for aquaculture industry might be.
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1.8. Biological systems and fish farming
Biological systems are extraordinarily complex, they are regulated by 

interacting mechanisms that operate across multiple spatial and temporal scales 
and their understanding requires the integration of computational and experimental 
research (Kitano, 2002). Therefore, in the candidate’s opinion, it is essential to apply 
a systems approach to optimize aquaculture production, fish welfare and product 
quality, given that each farm is indeed a biological system. The output variables of 
biological systems often have complex fluctuations that may contain information about 
their intrinsic dynamics, and the time series they generate often contain deterministic 
and stochastic components that are not properly addressed by traditional approaches 
(Costa et al., 2005, 2002). In order to face these challenges creative solutions are 
needed.

For fish farming, basically it should be a system which automatically regulates 
the necessary conditions to preserve the normal or desired status of the production 
system and deals with the deviations, if registered, either as programmed, or following 
an intelligent approach. In that regard, the supervising system should be able to 
respond fairly rapidly if serious deviations start occurring suddenly: for example as 
result of an accident (a spillage) or a contaminated batch of feed. The speed of the 
response may be critical to save the affected units and preserve their welfare and 
quality. To implement such an approach, relevant scientific data from a variety of 
research fields and control analyses need to be gathered and complemented with 
empirical data about farming of the targeted species. It is important to keep in mind 
that the empirical knowledge of the farmer must never be underestimated.

In addition, fish farming will probably not demand the implementation of 
real-time architecture and, in fact, an on-line monitoring system with a web-based 
service will allow the farmer to manage all the necessary information wherever he or 
she might be.

1.9. Hypothesis
The present Thesis is based on the following Hypothesis:

A fish system will behave as a biological sensor integrating biological and 
physiological responses to external stimuli and the response to those stimuli can be 
quantified in a non-invasive manner. Furthermore, the quantified alteration in the fish 
system has the potential to serve as a tool for on-line fish welfare monitoring.

1.10. Objectives and contributions
The main objective of this Thesis was to design and develop a tool that using 

a fish system as a biological sensor, had the potential of being implemented within a 
Biological Warning System in the aquaculture industry.



32

CHAPTER 1

The fish species selected for the empiric work was European seabass 
(Dicentrarchus labrax) due to its relevance for Southern European aquaculture and the 
need to non-invasively monitor and control relevant variables during its production, in 
particular those relating to seafood safety and to the welfare of the fish.

Secondary objectives dealt with the analysis and evaluation of the proposed 
tool. Specifically, it was selected to quantify how the fish system reacted under the 
following conditions:

•	 A variable number of fish in the system.

•	 The addition of selenium to the fish system.

•	 The exposition to a neurotoxic contaminant named methylmercury to the fish 
system.

The third and last objective of this Thesis was to build up a first-version of 
a model that might be -in future works, and after further development, testing and 
validating- input into a Knowledge Database that would in turn serve as the information 
center for a Biological Warning System.

With regards to the first and secondary objectives, the main contributions of 
this Thesis are:

•	 A new working methodology based on the systems engineering philosophy 
has been developed.

•	 A inexpensive, adaptable and non-invasive tool-framework based on image 
analysis to monitor fish responses suitable to be implemented in an on-line 
early Biological Warning System has been developed.

•	 A sensor unit has been developed consisting of using of the fish group 
movement pattern as a response to a perturbation. Deviations in this 
movement pattern from a desired working point should alert about 
undesirable perturbations.

•	 Development of a series of non-linear signal analysis techniques suitable to 
analyse the trajectory signal of the fish group.

•	 Development of a mathematical model of the fish system’s response to an 
external perturbation.

•	 Testing of the developed methodology and the tool on experimental cases.

1.11. Ethical statements
All experimental protocols and procedures conducted with animals in the 

present Thesis were carried out under the approbation of The Ethical Committee of the 
University of the Basque Country UPV/EHU for Animal Welfare No. CEBA/285/2013MG.
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1.12. Scientific output
This Thesis covers the result of three years of work and the work performed 

has been published, presented and/or submitted to the following scientific journals 
and conferences.

1.12.1. JCR peer reviewed scientific journals

•	 Eguiraun, H., Izagirre U., Lopez de Ipiña, K., & Martinez, I. (2015). Evolution 
of the Shannon entropy in a fish system (European seabass, Dicentrarchus 
labrax) in response to its density. Submitted.

•	 Eguiraun, H., Izagirre, U. & Martinez, I. (2015). A paradigm shift in safe seafood 
production: from contaminant detection to fish monitoring - Application of 
Biological Warning Systems to Aquaculture. Trends in Food Science and 
Technology, 45, pp 104-115. Elsevier. DOI: 10.1016/j.tifs.2015.01.007.

•	 Eguiraun, H., Lopez-de-Ipina, K., & Martinez, I. (2014). Application of entropy 
and fractal dimension analyses to the pattern recognition of contaminated 
fish responses in aquaculture. Entropy, 16, pp 6133-6151. DOI: 10.3390/
e16116133.

•	 Kalogerakis, N., Arff, J., Banat, I.M., Broch, O.J., Daffonchio, D., Edvardsen, 
T., Eguiraun, H., Giuliano, L., Handå, A., López-de-Ipiña, K., Marigomez, I., 
Martinez, I., Øie, G., Rojo, F., Skjermo, J., Zanaroli, G., Fava, F. (2014). The 
role of environmental biotechnology in exploring, exploiting, monitoring, 
preserving, protecting and decontaminating the marine environment. New 
Biotechnology, 32, 1. pp 157-167. DOI: 10.1016/j.nbt.2014.03.007. ISSN: 
1871-6784

1.12.2. Refereed published conference proceeding

•	 Eguiraun, H., Martinez, I. (2015). Evolution of Shannon entropy in a fish system 
(European seabass, Dicentrarchus labrax) during exposure to sodium selenite 
(Na2SeO3). In Proceedings of the 2nd International Electronic Conference 
on Entropy and its Applications (ECEA), pp 1-7. 15th-30th November 2015; 
Sciforum Electronic Conference Series, Vol. 2, session Complex Systems 
(C006). DOI:10.3390/ecea-2-C006

•	 Eguiraun, H., Lopez de Ipiña, K., & Martinez, I. (2015). Evolution of Shannon 
entropy in a fish system (European seabass, Dicentrarchus labrax) during 
methylmercury post-exposure. IEEE 4rd International Conference and 
Workshop on Bioinspired Intelligence (IWOBI), pp 59-63. 10th - 12th June 
2015. Donostia, Spain. DOI: 10.1109/IWOBI.2015.7160145.
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•	 Eguiraun, H., Lopez de Ipiña, K. & Martinez, I. (2014). Non-invasive methods 
based on non-linear analyses to monitor fish behaviour and welfare. 48th 
Congress of the International Society for Applied Ethology (ISAE), p 114. July 29th 
- August 2nd 2014, Vitoria-Gazteiz, Spain. DOI: 10.3920/978-90-86-86-797-4.

•	 Eguiraun, H., Lopez-de-Ipina, K. & Martinez, I. (2014). Discrimination of 
contaminated fish responses by fractal dimension and entropy algorithms. 
In: IEEE Conference Publications-Proceedings of the 2014 International Work 
Conference on Bio-inspired Intelligence (IWOBI), pp 173-177. 16th - 18th July 
2014. Liberia, Costa Rica. DOI: 10.1109/IWOBI.2014.6913959.

1.12.3. International conferences

The main author and the presenting author appear in bold and underlined 
respectively.

•	 Eguiraun, H., Martinez, I. (2015). Evolution of Shannon entropy in a fish 
system (European seabass, Dicentrarchus labrax) during exposure to sodium 
selenite (Na2SeO3). 2nd International Electronic Conference on Entropy and 
its Applications (ECEA), Sciforum Electronic Conference Series, Vol. 2, session 
Complex Systems (C006). 15th - 30th November 2015. Online presentation.

•	 Eguiraun, H., Martinez, I. (2015). Evolution of the Shannon entropy in a fish 
system (European seabass, Dicentrarchus labrax) in response to its density. 
European Aquaculture Society, (EAS). 20th - 23th October 2015. Rotterdam, 
The Netherlands. By Invitation to Special Session PS21 Fish Welfare. Oral 
presentation.

•	 Martinez, I., Eguiraun, H. (2015). Use of fish as a Biological Warning System 
(BWS) in aquaculture to monitor fish health and welfare, product quality 
and safety. European Aquaculture Society, (EAS). 20th - 23th October 2015. 
Rotterdam, The Netherlands. By Invitation to Special Session PS21 Fish 
Welfare. Oral presentation.

•	 Eguiraun, H., Lopez-de-Ipina, K. and Martinez, I. (2015). Evolution of Shannon 
entropy in a fish system (European seabass, Dicentrarchus labrax) during the 
recuperation period after exposure to methylmercury. IEEE 4rd International 
Conference and Workshop on Bioinspired Intelligence, (IWOBI). 10th - 12th 
June 2015. Donostia, Spain. Oral presentation.

•	 Eguiraun, H., Izagirre, U., Vitalle, J., Marigomez, I., Soto, M., Lekube, X., 
Erdaide, O. and Martinez, I. (2014). Fish behaviour analysis for Environmental 
Monitoring. 3rd Annual World Congress of Aquaculture and Fisheries, (WCAF). 
16th - 18th October 2014. Dalian, China. Poster presentation.
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•	 Eguiraun, H., Lopez-de-Ipina, K. and Martinez, I. (2014). Non-linear fish 
behaviour analysis in response to contaminants: Entropy and Fractal 
approaches. 3rd Annual World Congress of Aquaculture and Fisheries, (WCAF). 
16th - 18th October 2014. Dalian, China. Oral presentation.

•	 Martinez, I., Eguiraun, H., Lekube, X., Soto, M. & Marigomez, I. (2014). Trends 
in European aquaculture research to ensure high quality and safe seafood 
products. 3rd Annual World Congress of Aquaculture and Fisheries , (WCAF). 
16th - 18th October 2014. Dalian, China. Oral presentation.

•	 Eguiraun, H., Lopez-de-Ipina, K. & Martinez, I. (2014). Discrimination of 
contaminated fish responses by fractal dimension and entropy algorithms. 
IEEE 3rd International Conference and Workshop on Bioinspired Intelligence, 
(IWOBI). 16th - 18th July 2014. Liberia, Costa Rica. Oral presentation.

•	 Eguiraun, H., Bwye, G., Erdaide O., Izaguirre U., Lekube X., Lopez de Ipiña, 
K., Martinez, I. (2013). Response to methylmercury of European seabass 
(Dicentrarchus labrax) pre-exposed to sodium selenite -Non-destructive 
methods to recognize contaminated fish and fish welfare. 10th International 
Symposium on Selenium in Biology and Medicine.14th - 18th September 2013. 
Berlin, Germany. Poster presentation.

•	 Eguiraun, H., Lopez de Ipiña, K. & Martinez, I. (2013). Designing a framework 
for the application of systems biology to the fish farming industry. 14th 
International Conference on Systems Biology. 29th August to 4th September 
2013. Copenhagen, Denmark. Poster presentation.

•	 Eguiraun, H., Bwye, G., Lopez de Ipiña, K. & Martinez, I. (2013). A systems 
approach to predicting quality and safety in the aquaculture industry. 
European Aquaculture Society, (EAS). 9th - 12th August 2013. Trondheim, 
Norway. Oral presentation.

•	 Bwye, G., Eguiraun, H., Lekube, X., Izagirre, U., & Martinez, I. (2013). Effect of 
the addition of sodium selenite and/or methyl mercury on the protein make up 
of European seabass (Dicentrarchus labrax) white skeletal muscle. European 
Aquaculture Society, (EAS). 9th - 12th August 2013. Trondheim, Norway. Oral 
presentation.
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2.1.  Introduction
The objectives of this Thesis are designed to serve a wide range of scientific 

fields and methodologies such as biology, ethology, environmental monitoring, fish 
welfare, food safety, systems engineering and non-linear signal processing.

This chapter formulates the research questions that have motivated the 
Thesis and explains the research plan and its benefits. It also describes briefly the 
research methods used as well as the limitations of the present work.

2.2. Research questions
The long-term objective of the work addressed by this Thesis is the 

development of a Biological Warning System based on the response of a fish system. 
Thus, the main research questions of the present Thesis are:

•	 Does a fish system subjected to a perturbation/stressor alters its behaviour?

•	 Are those differences measurable? And are they measurable in a non-invasive 
manner?

If the answers to these three questions are positive, it follows that the fish 
themselves may be used as a Biological Warning System. Then, assuming that the 
differences are measurable in a non-invasive manner, it may happen that exposure 
of the fish system to some perturbations (for example contaminants) could cause the 
death of some of the fish. Therefore the system itself is suffering an alteration, i.e. the 
number of fish. Consequently, a third research question should be:

•	 Does the number of fish affect the response of the system?

Finally, all this knowledge should applied to construct a mathematical model 
suitable to use in an on-line fish monitoring system based on a Biological Warning 
System. Thus the fourth and last question was:

•	 Is it possible to build a mathematical model that would react in response to 
differences between the measured and the desired behaviours of the system?
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2.3. Research plan
This Thesis follows a methodology in which the research is a sum of scientific 

and empirical approaches. The scientific approach is based on theory and observations 
and it covers the first part of the Thesis resulting in a tool that is tested in the second 
part of the Thesis. This second part comprises the empirical approach where the tool 
is applied to different case studies.

Consequently, the research is divided into four steps as formulated by Glass 
(1995): informational, propositional, analytical and evaluative. These steps are 
described next.

2.3.1. Informational phase

This phase has two aims. First, to collect information in order to have an outline 
of the current knowledge involved in the problem domain. Second, to formulate the 
research questions (listed in paragraph 2.2), and to identify the implications of this 
research for practice and/or policy. Thus, this phase comprises the search, review and 
analysis of the scientific literature and engineering solutions regarding the topics of 
the problem domain as well as the links among them: underwater video recording, 
fish tracking, image processing, fish behaviour, shoaling principles, interactions with 
pollutants, and existing Biological Warning Systems, among others (Chapters 1, 2 and 
3).

2.3.2. Propositional phase

In this phase a solution to the main research question is presented, developed 
from the information gathered in the informational phase. The result of this phase is 
the Working Hypothesis (Chapter 1).

2.3.3. Analytical phase

The main purpose of this phase is to test the validity of the Working Hypothesis 
using scientific analytical methods, some of which have already been identified in the 
Informational Phase. In the present work, it consists of developing and testing a tool 
to monitor the response of a fish system under different experimental conditions: the 
case studies (Chapters 4, 5 and 6). The three case studies examined in this work are 
independent from each other. Thus, the nomenclature used refers to a “case” or “C” 
when a comparative study is made with inclusion of contaminants (Chapters 4 and 6). 
The word “tank” or “T” is used when the study uses replicate tanks as it happens in 
Chapter 5.
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2.3.4. Evaluative phase

Based on the evidence of the knowledge acquired in the previous phases, a 
mathematical model is constructed. The building of the model was initially carried out 
using only data acquired in one of the case studies (variation in the number of fish) 
and it was tested/verified with data obtained from the second case study (exposure 
to chemical substances). The fitting of the date of the second (test) case study on the 
initial model constructed with only the data from the first case study was so good 
that all the data, from both case studies, were included in the construction of the final 
model. The evaluative phase is covered in Chapter 7 of the present Thesis.

2.4. Benefits of the research plan
The aforementioned research plan offers several benefits:

•	 From the scientific point of view, the research plan offers a starting point 
to understand the intrinsic dynamics of the system formed by the fish and 
everything else in their surrounding environment. Understanding all together, 
as a unique system, is necessary to understand the overall nature of the 
phenomena within.

•	 From the methodological point of view, this Thesis includes various relevant 
case studies. The case studies have provided real implementation and 
feedback about the proposed tool and the phenomena examined. This part 
has been essential to understand some of the limitations of the present study, 
which are explained in last part of the present Chapter.

•	 From the applied point of view, the potential implementation into real 
aquaculture setups of the tool developed in the present Thesis and the 
methodology used in the laboratory experiments was examined thanks 
to a Grant entitled “Systems Aquaculture: Implementation of biological 
systems within intelligent aquaculture structures (SYSAQUA)”, funded by 
the European Economic Area (EEA) Researcher Mobility and Co-operation 
Grant, named NILS Science and Sustainability Programme, to the author of 
this Thesis which allowed him to stay at the Centre for Autonomous Marine 
Operations and Systems (AMOS) of the Norwegian University of Science and 
Technology (NTNU) in Trondheim, Norway for three months. 

•	 From the diffusion of research point of view, the research methodology of this 
Thesis has allowed the author to gradually improve the quality, quantity and 
range of the publications derived from it. The findings have been presented 
to various international peer-reviewed conferences and published and/or 
submitted to several JCR peer-review scientific journals (Chapter 1).

•	 From the social point of view, this work has allowed the author to greatly 
expand his network of scientific contacts. This fact will hopefully allow the 
author to collaborate and participate in different national and international 
research projects and events in the future.
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2.5. Specific research methods used in this Thesis
The principles of case study methodology are followed in the experimental part 

of this Thesis. The case study method, widely used in the scientific world, was defined 
by Yin (1993) as “an empirical inquiry that investigates a contemporary phenomenon 
within its real-life context, when the boundaries between phenomenon and context 
are not clearly evident, and in which multiple sources of evidence are used”.

The case study method is often used to generate an inductive thinking. 
Its results relate directly to the common everyday experience and facilitate the 
understanding of complex real-life situations. Its main advantage is the easiness to 
apply it to real life situations.

The present Thesis follows the steps proposed and established by Stake 
(1995) and Simons (1980) in order prepare and conduct a case study successfully. 
Those steps are:

•	 Formulate	the	research	questions.

•	 Select	the	case	study.

•	 Determine	data	collection	and	analysis	techniques.

•	 Fieldwork	for	collecting	data.

•	 Analyse	and	evaluate	the	data.

•	 Prepare	the	report.

Three case studies are analysed in the present Thesis in order to clarify the 
complexity of the biological system subject of the study. These kind of systems present 
an intrinsic and fluctuating dynamic that consists of a large amount of time series 
which contain both deterministic and stochastic components (Costa et al., 2005). In the 
present work, these time series are obtained by image processing and they consist of 
signal and noise. Classical approaches are not able to quantify the complexity of these 
systems; that is why real world applications and noisy environments often require 
alternative techniques leading to improved systems. The combination of nonlinear 
and linear modelling and/or features has led to higher and more robust performance, 
something particularly promising for solving complex tasks in real environments 
(Travieso and Alonso, 2013). Thus, in order to capture all the richness of complex 
biological systems into theoretical models, applied mathematics and computing must 
be used (Kitano, 2002; Spasic et al., 2012). It follows a brief description of the most 
relevant ones used in this Thesis.

2.5.1. Image processing

Video sequences are transformed into image sequences for feature extraction. 
The video is recorded in RGB (Red Green Blue) colour model and it is converted into 
24 frames per second (fps) image sequences, which are cleaned and binarized for 
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feature extraction. Briefly explained, optical flux is generated by frame differentiation 
and the RGB images are converted into grey scale. Once the images are in black and 
white (B/W) they are cleaned through morphologic operations (closing, aperture and 
cleaning operations) for object detection. Object detection and consequent feature 
extraction was performed by detecting connected components in eight contiguous 
neighbourhoods. For further details see Chapter 4 and consult references Davies 
(2012), Hornberg (2007) and Myler (1999).

2.5.2. Cluster estimation

Once the objects within each image are located, their centres are determined. 
Then, the centroid formed by all of those centres is computed for every image and 
along the entire image sequence by using k-means clustering algorithm based on 
Euclidean distance.

The k-means clustering algorithm is a partitioning method that operates on 
actual observations and creates a single level of clusters, treating each observation in 
the data set as an object having a location in space. It finds a partition in which objects 
within each cluster are as close to each other, and as far from objects in other clusters, 
as possible. Depending on the kind of data to cluster, it is possible to use different 
methods to calculate the distances. The best results for the current problem were 
obtained using Euclidean distance, which is widely used, as in the works by Spath 
(1985) and Goncalves et al. (2007).

In each image the centroid is calculated by an iterative algorithm that 
minimizes the sum of the distances between each objects’ centre and the cluster’s 
centroid. This is done until the sum cannot be decreased further. Further details are 
explained in Chapter 4.
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2.5.3. Trajectory magnitude normalization by z-score

The trajectory signals generated by the cluster’s centroid where normalized 
by z-score. The z-score technique is very useful for standardizing data because it 
allows the comparison of measures with different scales, for example in classifications 
of Neardental bones (Gómez-Olivencia et al., 2015), human heart signals (Graff et 
al., 2011) or multivariate sequences (Richardson et al., 2010). Z-Score is a statistical 
measurement of a score’s relationship to the mean in a group of scores. A z-score of 0 
means that the score is the same as the mean. A z-score can be positive or negative, 
indicating that it is above or below the mean and by how many standard deviations. 
In terms of the standard deviation, the z-score measures the distance from a data 
point to the mean. The resulting dataset has the same skewness and kurtosis than the 
original one because the data are standarized with zero mean, thus retaining all the 
original shape properties. For sample, for data with mean µ and standard deviation σ, 
the z-score of a certain data point x is:

z = 𝓍𝓍 − µ
σ  (1)

2.5.4. Fractal dimension

Fractal analysis, applied to signal processing, has found a wide area of 
applications in a variety of scientific fields from medicine (Accardo et al., 1997; Cáceres 
et al., 2004; Spasic et al., 2011) to speech recognition (Ezeiza et al., 2013), walking 
pattern recognition (Sekine et al., 2002), stress indicators in goats (Alados et al., 
1996) and in fish motion studies (Inada and Kawachi, 2002; Tikhonov and Malchow, 
2003; Tikhonov et al., 2001). The Fractal Dimension (FD) of a system is one of the most 
significant features to describe its complexity. Fractal systems have a characteristic 
called self-similarity, i.e., a close-up examination of the system reveals that it is 
composed of smaller versions of itself (Figure 2.1). Self-similarity can be quantified 
as a relative measure of the number of basic building blocks that form a pattern, and 
this measure is defined as the fractal dimension, which is rarely an integer number. 
Usually, the more complex the signal, the higher its fractal dimension value (Kith et 
al., 2009). Fractal dimension analysis has been successfully applied by López-de-
Ipiña et al. (2013) to speech analysis and by Nimkerdphol and Nakagawa (2008) to 
show quantitative differences in the swimming behaviour of zebrafish (Danio rerio) 
provoked by the presence of hypochlorite in the water.
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Figure 2.1. Initial image of a Mandelbrot set. Often used as an example of what a fractal is, Mandelbrot’s 
set’s shape adds smaller versions of the main shape. This characteristic is called self-similarity and it is 
applied to the entire set, and not just to its parts. “Mandel zoom 00 Mandelbrot set”. Licensed under CC BY-
SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg#/
media/File:Mandel_zoom_00_mandelbrot_set.jpg

Among the various algorithms available to measure the fractal dimension, 
we selected those specially suited to time series analyses that do not need previous 
modelling of the system. Two of those algorithms are Higuchi (1988) and Katz 
(1988) named after their authors. We used the former as the main reference, and a 
modification proposed by Castiglioni (2010) on the original version developed by 
Katz (1988). Higuchi was our first choice because it has been reported to be more 
accurate (Tsonis, 2007) but in most of these studies, the algorithm compared to was 
the original one developed by Katz himself. Castiglioni’s improvement is theoretically 
sound and has not been tested in many experiments, so we considered interesting to 
test it as an alternative.

The algorithm proposed by Higuchi (1988) measures the fractal dimension 
of discrete time sequences directly from the time series {x1,x2…xn}. The algorithm 
calculates the length Lm(k) for each value of m and k, where m is the initial time 
{m=1,2…k} and k is the time interval {k=1,2…kmax }. N is the length of the sampled signal.
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L! k = x m+ i! − x m+ i− 1 k n− 1
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After that, the sum of all the lengths Lm (k) for each k is determined by:

L k = L!
!

!!!
k  (3)  

 

  

(3) 

And finally, the slope of the curve ln(L(k))/ln(1/k) is estimated using the best 
fit by linear least squares. The result is the Higuchi fractal dimension.

On the other hand, Katz (1988) proposed a normalized formula of the fractal 
dimension:

FD = log n
log n + log d L  (4)  

 

  

(4)

Where the length L and the extension d of the curve are normalized using the 
average step a=L/n using (5) and (6).

L = l!,!!!
!

!!!
 

   

(5)

 

d = max l!,!  
  

(6)
 

Nevertheless, given that the input signal is a mono-dimensional waveform, the 
length and the extension can be rewritten using Mandelbrot’s approach (Mandelbrot, 
1965). A simple and efficient way to do this is directing these two magnitudes in their 
own dimension as it was done by Castiglioni (2010). One by one, the extension on the 
Y axis is the range of yk as seen in:

d = max y! −min y!  
 

(7)
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And the length L is the sum of all the increments in modulus as in:

L = y!!! − y!
!

!!!
 

 

(8)

 

This latter calculation is the Castiglioni’s variation of Katz’s algorithm 
(Castiglioni, 2010).

Once the fractal dimension algorithms were selected, it was extremely 
important to choose the window size to be used for the calculations. The fractal window 
goes through the signal, i.e. the object to analyse. This sliding window has a fixed size 
during each analysing period. In order to calculate the fractal dimension’s features of 
the signal there are no restrictions other than the total waveform length to the window 
size to be used. Each signal was analysed using three fixed, but configurable, window 
lengths: 320 points, 640 points and 1,280 points. The third window size of 1,280 points 
was tested because previous studies that take into account the window size of similar 
dimension estimations suggest that a bigger window could be useful in some cases 
(Esteller et al., 2001; Tsonis, 2007). Since the fractal dimension is a tool intended to 
capture the dynamics of the system, with a short window the estimation would be very 
local and adapting fast to the changes in the waveform. When the window is longer, 
some details will be lost but the fractal dimension anticipates better the characteristics 
of the signal (Ezeiza et al., 2013).

2.5.5. Entropy

Conceptually, and as part of thermodynamics, the entropy describes how a 
system answers to changes in the surrounding environment and indicates the energy 
balance dispersed by the system itself: the higher the entropy, the higher the energy 
balance. Although it is not widely accepted, it can be said that entropy is a measure of 
disorder in a physical system.

Applied to biology, the entropy of a system, as a nonlinear measurement, has 
found application in complex biological systems and has occasionally been decisive 
to understand the nonlinear nature of a problem. For instance, Kulish et al. (2005) 
analysed brain activity using the spectra of the fractal dimension based on the Renyi 
entropy: combined with a visualization tool, these authors showed an intrinsic 
asymmetry of the brain activity. Permutation entropy has been used in a wide range 
of applications where measurements of complex time series were needed. As an 
example, Li eta al.(2008) measured the effects of sevofluore on the complexity of 
electroencephalographic series, Liu, Chon et al. (2011) analysed the movement of the 
fruit fly and Brandt and Pompe (2002) studied the complexity of chaotic time series.
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2.5.5.1. Shannon entropy

Theoretically, the Shannon entropy (SE), as proposed by Shannon on his 
studies on languages (Shannon, 1948), allows the estimation of the average minimum 
number of bits needed to encode a string of symbols based on the alphabet size and the 
frequency of the symbols. This shows the minimal number of bits per symbol needed to 
encode the information in binary form, in case the logarithm base is 2. Shannon used 
this entropy measurement to estimate redundancy in the English language (Shannon, 
1951). Formally, the entropy H(X) of a single discrete random variable X is a measure 
of its average uncertainty. The Shannon entropy (Shannon, 1948) is calculated by the 
equation:

H X = −  p x!
!!∈!

logp x! = − E log p x!  

 

(9)

Where X represents a random variable with a set of values Θ and a probability 
mass function p(xi )=Pr {X=xi },xi ∈ Θ, and E represents the expectation operator. Note 
that p logp=0 if p=0.

For a time series representing the output of a stochastic process, that is, an 
indexed sequence of random variables, {Xi}={X1…Xn}, with a set of values θ1,…,θn, 
respectively, and Xiϵθi, the joint entropy is defined by:

H! = H X! …Xn = − …
!!∈!

p x! … x!
!!∈!!

log p x! … x!  

 

(10)

Where p(x1...xn)=P{X1=x1…Xn=xn } is the joint probability for the n variables 
X1…Xn.

By applying the chain rule to Equation (9), the joint entropy can be written as 
a sum of conditional entropies, each of which is a non-negative quantity:

H! = H X! X!!! …X!
!

!!!
 

 

(11)

Therefore, it can be concluded that the joint entropy is an increasing function of 
n. The rate at which the joint entropy grows with , i.e., the entropy rate h, is defined as:

h = lim
!→!

H!
n  

  

(12)
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For stationary ergodic processes (random processes) the evaluation of the 
rate of entropy has proved to be a very useful parameter (Eckmann and Ruelle, 1985; 
Grassberger and Procaccia, 1983a, 1983b; Pincus, 1991; Shaw, 1981).

2.5.5.2. Permutation entropy

As Shannon entropy, permutation entropy quantifies the disorder of a system 
by measuring its energy balance. This algorithm has shown a nice ability to measure 
complexity in large time series. Basically, this method converts a time series into an 
ordinal pattern series where the order of relations between the present and a fixed 
number of equidistant past values at a give time are described (Bandt, 2005; Liu et 
al., 2011a).

Following this idea, Bandt and Pompe (2002) proposed a permutation 
entropy method based on the Shannon entropy measurement with the purpose of 
visualizing and quantifying changes in the time series. The permutation entropy is 
calculated for a given time series {x1,x2…xn } as a function of the scale factor s. In order 
to be able to compute the permutation of a new time vector Xj, St=[Xt,Xt+1…Xt+m–1] 
is generated with the embedding dimension m and then arranged in an increasing 
order: [Xt+j1–1≤Xt+j2–1≤⋯≤Xt+jn–1]. Given m different values, there will be m! possible 
patterns	π,	also	known	as	permutations.	If	f(π)	denotes	its	frequency	in	the	time	series,	
its	relative	frequency	should	be	p(π)=f(π)/(L/s–m+1). The permutation entropy is then 
defined as:

PE = − p π!
!!

!!!
ln p π!  

 

(13)

Summarising, permutation entropy refers to the local order structure of the 
time series, which can give a quantitative measure of complexity for dynamic time 
series. This calculation depends on the selection of the m parameter, which is strictly 
related with the length N of the analysed signal. For example Bandt and Pompe (2002) 
suggested the use of m=3…7 following always the rule of:

 m! < N 
 

(14)

If m is too small (smaller than 3) the algorithm will work wrongly because it 
will only have few distinct states for recording. When using long signals, a large value 
of m is preferable but it would require a larger computational time.

In our particular case and due to the computational cost derived from analysing 
signals composed from 5,000 samples, the m parameter was fixed at a steady value 
of m=4.
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2.5.6. Descriptive statistics. Mean and standard deviation

Prior to data analysis, the data were subject to a Shapiro Wilk test to study 
the type of distribution they followed. The data generated by the experimental cases 
followed a normal distribution. Thus, they were analysed using descriptive statistics 
for measuring data dispersion and location: arithmetic mean and standard deviation.

•	 Arithmetic mean refers to the central value of a discrete set of values in a 
given dataset. The arithmetic mean is calculated by:

µ = 1
N x!

!

!!!
 

 

(15)

Where µ is the mean of the data, N is number of scalar observations and x is each 
given data value. 

The standard deviation measures the dispersion of a data set. The one used 
in this work, uses the Bessel correction due to the fact that it is applied to samples 
instead of to populations. It is computed by:

σ = 1
N− 1 x! − µ !

!

!!!
  (16)

Where σ is the standar deviation, µ is the mean of the data, N is number of 
scalar observations and x is each given data value.

2.5.7. Boxplots

Boxplot is a graphical representation of the data distribution. The data is 
represented in a box where the central red line inside the box is the median of the 
data. The upper and lower lines represent the 75th and 25th percentile of the sample 
data respectively and the distance between those lines is the inter-quartile range. The 
whiskers (black lines) extend to the most extreme data points not considered outliers, 
while outliers (indicated by red plus signs) are data points whose value is outside 1.5 
times the inter-quartile range.
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2.5.8. Curve fitting and goodness of the fit

Graphical curve fitting allows the linear or non-linear regression of data in 
order to calculate a model that fits the original data. Graphical fitting offers, in addition, 
the possibility of viewing the entire dataset at once and the possibility to display a 
wide range of relationship between the newly calculated model and the original data.

The model can be obtained by different linear and non-linear approaches 
such as different grade polynomials, exponentials, Gaussians, etc. Once the model 
is calculated, a series of parameters are used [sum of squares due to error (SSE), 
R-square, adjusted R-square and root mean squared error (RMSE)] to estimate the 
goodness of the fit. A brief description of each is:

•	 Sum of squares due to error (SSE) compares the total difference between the 
original values and the response values from the fit. The closer to 0 the better 
the fit.

•	 R-square is measured between 0 and 1, where a closer value to 1 indicates 
that the model explains a greater portion of the variance. It explains the 
success of the fit in relation to the variation of the data.

•	 Adjusted R-square is based in the previous R-square measure. This 
adjustment is based on the residual degrees of freedom derived from the 
relationship between the number of response values minus the number of 
fitted coefficients estimated from the response values. Again, it is defined 
between 0 and 1 and a closer value to 1 indicates a better fit.

•	 Root mean squared error (RMSE) is the standard error of the regression and 
it estimates the standard deviation of the random component in the data. A 
closer value to 0 indicates a better fit.

In the present Thesis two types of fitting approaches are used due to the non-
linear nature of the data obtained.

•	 By using a two term grade power fitting adjusted by the Non-Linear Least 
Squares method with Trust Region algorithm, which obeys:

y = u ∙ x! +w 
 

(17)

 And where u, v, w are the fitted parameters and x is the input variable and y 
defines the output model.

•	 A first order polynomial fitting, adjusted by Linear Least Squares method, 
which obeys:

y = u ∙ x+ v  (18)

 Where u and v are the fitted parameters, x is the input variable and y defines 
the output model.
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2.5.9. Modelling

Conceptually, control engineering has to deal with three types of problem 
depending on the known data. As already mentioned in Chapter 1 a system can be 
depicted as shown in Figure 2.2, as inputs (u), outputs (y) and their relation defined 
by the system (S).

 The three types of problems are summarized in Table 2.1, and the strategy to 
face the problem depends on the variables known.

System 
(S) 

Inputs (u) Outputs (y) 

Figure 2.2. Basic system. A basic model is created from the interaction between the inputs and the outputs 
of a system.

Table 2.1. Different type of systems engineering problems. Depending on the knowns and unknowns, there 
can be defined three types of problems.

Knowns Unknowns Problem definition

u, S y Simulation

u, y S System Identification - Modelling

S, y u Control

The present Thesis deals with a Systems Identification or Modelling problem 
where only the inputs and outputs of the system are known. There are, subsequently, 
different methods to face it, depending on the prior knowledge of the system (Ljung, 
2001). The basic rule for system identification should be not to estimate information 
that is already known. This leads into three types of model depending on that previous 
knowledge:

•	 White box models. The model therein is perfectly known and it is possible to 
build it from prior knowledge. Often through physical equations.

•	 Black box models. No physical knowledge is available about the system and 
it is calculated from observed data.

•	 Grey box models. A mixture of both cases, where some prior knowledge is 
known but other parameters need to be estimated from observation.
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This Thesis uses the black box modelling technique due to the lack of previous 
knowledge about the system. Thus, the data input-output relationship is established 
and the model built based on the experimental cases performed in the present work 
and explained further on (Chapters 4-6).

Black box modelling is a widely used technique for approximating very 
complex and/or unknown systems. Its application range is very wide and goes from 
feedback controller design systems with time constrains (Golubev and Horowitz, 
1982), to cancer biomarker identification (Kalaitzakis et al., 2008) or noise source 
identification in an electric machine (Ma and Zuo, 2014).

The proposed model is built according to the block diagram principles. Block 
diagram is a way of representing a model in a graphic manner, which allows the 
understanding of the relationship between the variables and the subsystems therein. 
The block diagram representation can be defined as the graphic representation of a 
equation system (Cellier, 2013; Matko et al., 1992; Ogata, 2009; Recktenwald, 2000; 
Woods and Lawrence, 1997). Basically, the components of this graphic representation 
are transfer function blocks, arithmetic operation nodes, bifurcation nodes and 
interconnection arrows (Figure 2.3).

•	 A transfer function block characterizes the relationship between the input-
output variables linked (Figure 2.2).

•	 An arithmetic operation node is able to perform a sum or a rest between all 
the signals converging.

•	 A bifurcation node is a point where a signal is diverted to a different 
destination. It allows multiple destinations.

•	 An interconnection arrow joins the signals from the different components in 
the block diagram. The sense of the signal is the sense of the arrow.

Input 
variable 

Output 
variable 

Arrow Sub-system 

Bifurcation 

Arithmetic op. 

Figure 2.3. A block diagram representation of a system. Blocks are connected by arrows, and interconnec-
tion nodes and bifurcations establish the relationship between the blocks. Example from Ogata (2009).
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2.5.10. Programming

Data processing, equation implementation, analysis and the design of the 
model have been performed using Matlab 2014a. Scripts and programs are available 
upon request.

2.6. Limitations of the study
The limitations of the present study are defined by those characteristics of 

its design and/or methodology that have influenced the application, interpretation 
or generalization of the results. From the practical point of view, the present study 
presents the development of an engineering tool and its application. Engineering, 
as any applied science, manages the finding of the best solution to a problem at 
an assumable load and/or cost. Thus, if reaching an optimal solution is not viable, 
a suboptimal one must been found which fulfils all the requirements needed. Being 
consequent with this principle and following the philosophy of systems engineering, 
where a big problem is divided into smaller and more easily solved ones. The present 
study presents a series of small interconnected problems where the overall output can 
be improved by improving the individual components. In other words, adding marginal 
gains, a mayor gain can be achieved.

2.6.1. Limitations of the research methods used

Data acquisition has been performed using one single camera per tank inside 
seawater. Some of the limitations this fact imposes on the work are: 

•	 Fish move inside the tank in a three-dimensional environment but video 
recording is made in two dimensions. Therefore, data processing is made 
based on the two-dimension signal.

•	 The underwater working environment itself creates a number of problems 
related mostly to the image-processing step. This means that a robust 
algorithm focused on generalization was required to work satisfactorily 
in most of the circumstances, although it might lose accuracy when a very 
precise measurement is needed. Thus, an algorithm was created to deal with 
this rough, harsh and continuously changing environment, in order to make 
it stable from an operational point of view. On the other hand, any algorithm 
designed for a specific operational point may not work well under a wider 
range of conditions.

Thus, all the algorithms used and steps followed in the present Thesis 
have been selected according to their suitability, robustness and ability to lead to 
measurable and comparable results, at a reasonable computational cost. Every step 
made from optical flow generation to centroid trajectory analysis may be improved.
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2.6.2. Limitations of the case studies

Sceptics about case study methodology argue that the study of a small number 
of cases does not offer any grounds for generalization of the findings. Nevertheless, 
the case study method is widely used in science and it is still one of the most successful 
to study real-life situations if the cases therein are carefully planned and performed.

One of the key limitations in this work belongs to the use of a specific animal 
model, which has intrinsic characteristics. Analysing the entire animal response means 
that one must deal with:

•	 Species-specific attributes and behaviour.

•	 Ability to camouflage inside the tank.

•	 Circadian circles.

•	 Acclimation periods need to avoid non-desired stress factors.

•	 Individual variability may be larger than variability between different species.

•	 Others.

Another key limitation regarding the case study method belongs to the 
experimental design. In most cases, the experimental design must take into account a 
mixture of factors such as physical space, time, cost, experimental subject availability, 
etc. As already mentioned, the case studies presented in this work are subject to 
improvement; nevertheless, the results obtained have been analysed taking into 
account the experimental design and assessed within the imposed limits.

2.6.3. Limitations of the model

Two main factors affect the model proposed by this Thesis: the selected input-
output variables and the data used.

The input-output variables of the proposed model where the fish number, as 
input, and the Shannon entropies of the basal state and of the event response, as 
output. Moreover, an additional model relates the Shannon entropy of the basal state 
as input and that of the event response as output. This decision was made in order to 
avoid using the fish trajectory as a variable for the model due to the fact that it is a 
noisy, patternless and unpredictable signal.

Regarding the second point, the data used were obtained from two experimental 
cases. Most of the data come from the experimental case described in Chapter 5, although 
some data from Chapter 6 are also used. Although the experimental conditions are not 
identical in both cases, the data were used as if they belonged to the same experiment.
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The present Chapter deals with the state of the art in the use of Biological 
Warning Systems using fish as the sensor and its application to the aquaculture 
industry. The last part of this chapter includes a brief explanation about the application 
to fish monitoring of some of the specific research methods described in Chapter 2.

Probably one of the best known Biological Warning Systems is the canary bird 
used in coal mines to detect toxic gases: display of distress signs by the birds was an 
indication of the presence of any of a number of toxic fumes and the miners knew they 
had to abandon the area immediately. Nowadays there is a great interest in developing 
suitable Biological Warning Systems to monitor drinking water, in part due to fears 
of terrorist attacks (Environmental Protection Agency, 2005; Hasan et al., 2004) but 
also, as mentioned in Chapter 1, because of the large and increasing number of novel 
substances that find their way into the food and water supply.

The use of fish behaviour as an indicator of a perturbation is not completely 
new. The use of fish as Biological Warning System to monitor water quality started 
in the 1970’s and has been reviewed by van der Schalie et al. (2001) and by Bae and 
Park (2014). It often consists of observing, and optimally quantifying, the behaviour 
of model fish species placed in the water whose quality needs to be monitored. 
Changes in fish behaviour suitable to serve as indicators of developing stressful 
conditions include: alterations in motion pattern, loss of positive rheotaxis, changes 
in ventilatory responses (ventilatory rate, depth, amplitude) and coughing (van der 
Schalie et al. 2001 and references therein). Hypoxia, feeding regime and pH alter 
the behaviour of fish (Nimkerdphol and Nakagawa, 2008; Polonschii and Gheorghiu, 
2013) as does, in a quantitative manner, exposition to methylmercury (Eguiraun et al., 
2015b, 2014). Exposure of young minnows to antidepressants made them become 
anxious, anti-social and sometimes even homicidal, apparently by altering neuronal 
development (Brodin et al., 2013). High fish density is also a perturbation factor to 
take into account (Di Marco et al., 2008; Papoutsoglou et al., 1998). These studies 
showed that introduced perturbations altered fish behaviour and that the responses 
were indeed quantifiable. This fact opens the possibility of using fish behaviour 
itself as a biomarker for environmental monitoring (Kalogerakis et al., 2015) and in 
aquaculture settings (Eguiraun et al., 2015a), appearing to be better suited than, or 
at least complementary to, chemical analyses, in order to estimate the welfare of fish 
and the potential toxicity of seafood (Chapter 1). For example, in the case of selenium/
mercury mentioned in Chapters 1 and 6, the chemical analysis alone of the levels of 
each metal would not provide a suitable answer regarding the health of the system, 
lacking the integrated response that is one of the characteristic for such a system. 
Unknown substances will not be tested for.

Commercially available products and methods measuring behavioural 
changes of fish swimming in flowing water were revised by Mons et al. (2008). But 
currently, there are no suitable on-line non-invasive methods to monitor fish welfare; 
and the presence of contaminants must be detected by analysing the feed and the 
water, usually by analytical chemistry methods, which are expensive and may take 
several days from the moment the sample is taken, until the results reach the farmer. 
As this Thesis does, Hellou proposed the introduction of the concept of Biological 
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Warning System (BWS) into aquaculture by using the fish themselves as the sensor 
(Eguiraun et al., 2015a; Hellou, 2011).

The works on the implementation of Biological Warning Systems for water 
quality monitoring use a model species that is placed in a tank with the water to 
be monitored. However, in an industrial aquaculture setting and given that the 
feed is at least as likely to be the source of contaminants as the water (and/or of 
the lack of essential nutrients, which will also cause stress and poor quality), we 
believe that a Biological Warning Systems should be developed for each farmed 
species using the farmed specimens and conditions (species, genetic stock, feeds, 
veterinary treatments and materials in contact with the fish) as the warning system. 
One of key issues to decide is the method for monitoring data acquisition: images 
are very common (Bae and Park, 2014; Eguiraun et al., 2014), but also the use of 
ultrasounds (Føre et al., 2009; Polonschii and Gheorghiu, 2013; Polonschii et al., 
2013) and infrared light (Pautsina et al., 2015) have also been proposed. Invasive 
data acquisition methods such as the placing of electronic transmitters (Føre et al., 
2009), electrodes or wires on or in the fish [see review by Bae & Park (2014)] should 
not be considered because they are not compatible with the welfare of the fish.

As already mentioned in Chapter 1, another key issue in developing a 
Biological Warning System is the choice of the method to treat complex information. 
Non-linear processing, and particularly entropy and fractal dimension techniques, 
have become very promising tools for measuring the complexity of the trajectories 
of apparently random search paths in animal behavioural studies. For example, the 
characteristics of a 2-dimensional path of moving animals measured using their 
fractal dimension will give a value between 1 (for a perfect straight path) and 2 (for 
a fully jagged and wiggly path) (Bae and Park, 2014; Benhamou, 2004; Etzenhouser 
et al., 1998). Other useful algorithm is the Fourier transform, an operation that 
reversibly transforms a complex-valued function of a real variable in time or space 
into a new function of frequency. A two-dimensional Fast Fourier Transform was 
used by Park et al. (2005) to examine changes in the behaviours of medaka (Oryzias 
latipes) before and after treatment with 0.1 mg/L of diazinon, an organophosphate 
insecticide. The x and y coordinates of the medaka in the tank were continuously 
recorded in two dimensions with a digital image processing system and used to 
calculate the two-dimensional Fast Fourier Transform which was able to reveal 
differences in the movement of the medaka before and after the treatment. Other 
authors have successfully applied self-organizing maps and a hidden Markov model 
to detecting differences in the behaviour of zebrafish (Danio rerio) as a response to 
the presence of formaldehyde in the water (Liu et al., 2011b).

Other studies aim at the construction of machine-based systems for fish 
disease diagnosis. The main challenge in those works is to develop the knowledge 
database, a task which is time and resource consuming and focuses mainly on 
water quality (Ma et al., 2010) and/or on nutritional problems, parasites, viruses, 
bacteria and fungal agent diseases (Li et al., 2002). Other investigations aim at 
developing early warning systems (Li et al., 2009), including the use of sms alert 
procedures (Miaojun et al., 2013).The main challenge for these fish-health oriented 
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studies is usually the development of the decision component rather than the warning 
systems itself.

To summarize, Biological Warning Systems have found wide application 
in the monitoring of water quality although full self-controlling systems have not 
been developed yet. It is also generally agreed that this methodology must be used 
together with biosensors and with analytical chemistry for a finer identification of the 
contaminants and stressors: i.e., the current monitoring methods (analyses of feeds, 
water, materials, etc) should continue to be in place in order to prevent contaminants 
enter the food chain. The shift we propose to introduce concerns the standard 
procedure of working itself, i.e. the paradigm shift consists in the implementation of 
Biological Warning System as an on-line continuous monitoring practice to verify 1) 
the integrity of the system, 2) the absence of unknown harmful substances and 3) 
to non-invasively monitor health, quality and welfare. Thus, the Biological Warning 
System would be the - new - first signal to be received by the monitoring sub-system 
(rather than wait several hours or days to get the answers from analytical methods) 
and should be a core part of the Hazard Analysis and Critical Control Point.



62

TOWARDS INTELLIGENT AQUACULTURE



63

CHAPTER 4
APPLICATION OF ENTROPY AND 

FRACTAL DIMENSION ANALYSES 
TO THE PATTERN RECOGNITION OF 
CONTAMINATED FISH RESPONSES 

IN AQUACULTURE 



64

CHAPTER 4



65

APPLICATION OF ENTROPY AND FRACTAL DIMENSION ANALYSES TO 
THE PATTERN RECOGNITION OF CONTAMINATED FISH RESPONSES IN AQUACULTURE

4.1. Introduction
As already mentioned, biological systems, such as a group of animals, are 

regulated by interacting mechanisms that operate across multiple spatial and temporal 
scales. When studying such a biological system, we are interested, as defined by 
Kitano (2002), on how the large numbers of functionally diverse and multifunctional 
set of elements (i.e. the individual fish in the present work) interact selectively and 
nonlinearly to produce coherent rather than complex behaviours.

The objective of this chapter is to develop a tool based on image acquisition, 
which should be used to on-line monitor fish welfare. The tool presented here uses 
signal processing and nonlinear trajectory analysis of the collective fish response to a 
stochastic event as the unit to measure. Video recording was chosen for its simplicity 
and low cost and fractal dimension and entropy for their proven suitability to identify 
nonlinear features (see Chapter 1).

The aim the Thesis is not focused on fish behaviour, which is a very complex 
and species-specific attribute (Magnhagen et al., 2008). It is focused on the response 
to a stochastic event, which is simpler to measure and requires less computational 
effort. Following Kitano’s idea (Kitano, 2002), the work analyses the coherent response 
of the group rather than the individual response of each fish, which in addition to 
requiring much more computational effort it may be impractical in real-life settings 
where there may be several thousands of individuals in the same area or cage. That 
is also the reason why we believe that this methodology, focused on the group’s 
response to an event, is more suitable to be generalized and applied to other species 
and experimental settings.

The tool was tested in the experimental cases shown in Chapters 4 and 5, 
two of them with no exposure to any toxic agent, and a third one that was exposed 
to a neurotoxic agent called methylmercury. As already explained in Chapter 1, 
methylmercury was selected because of its increasing relevance as an environmentally 
ubiquitous pollutant that accumulates and biomagnifies in the trophic chain 
(FAO, 2010).
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4.2. Materials and Methods

4.2.1. Experimental cases

Three experimental cases were used to test the tool: C1 and C2, consisting 
of 81 fish each and differing only in that C2 fish were tagged with Visual Implant 
Elastomer by Northwest Marine Technology (Brennan et al., 2005) and C3 with 41 fish 
that had been treated for 9 days with 4 µg methylmercury chloride/L according to 
Branco (2012). Methylmercury chloride (CH3ClHg) had been purchased from Sigma-
Aldrich product number 33368.

During all the experimental period, the fish were subjected to a 12h /12h 
dark/light photoperiod and they were fed once a day INICIO Plus feed from BioMar 
(56% crude protein, 18% crude fat). The fish were placed in tanks (100 cm x 100 cm 
x 90 cm) filled up to 80.5 cm of height with 810 L of aerated seawater under direct 
light (2 x 58 W and 5200 lm) avoiding shadows as much as possible. To record the fish 
response one camera was placed in each tank positioned exactly in the same place.

4.2.2. Image acquisition and processing

The schematic diagram of the working procedure is described in Figure 4.1. 
The video sequences and images were acquired using a GoPro Hero3 high definition 
camera in its GoPro Underwater housing attached to the tank by GoPro Side and Flat 
mounts placed in the top right corner of the tank: 3.8 cm from the right wall, 15 cm 
from the top of the tank and 5.5 cm below the water level. The GoPro Hero3 high 
definition camera was selected for convenience: its size is small, thus minimizing the 
effect of introducing foreign objects in the tank, and it has a water-proof protective 
case very convenient because it has to be submerged in contaminated water, so that 
at the end of the experiment the camera can be reused while the case is discarded as 
contaminated material. The recordings were made in high definition RGB (Red Green 
Blue) scheme at 1440p, 24 frames per second (fps) and in 4:3 picture size. A SanDisk 
32 Gb Ultra microSDHC™ (Class 10) secure card was used for the recording and a 2 
Tb Hard Disk for storing the data. In order to minimize stressing factors, continuous 
recordings were done until the batteries of the cameras run out, which took about 1 h 
and 30 min. Within this period, a stochastic event consisting of a sudden hit in the tank 
was introduced and the 30 s pre- and 3 min post-event were processed (Figure 4.2).
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Figure 4.1. Schematic representation of the experiment’s workflow showing the steps from image acquisition 
and processing to data treatment. In short, the video frames were converted to black and white images from 
which the center of each object was first calculated and used to estimate (by k-means clustering) the center 
of all the objects, or centroid. Then, the trajectory of the centroid over all the video sequence was calculated. 
Finally, the trajectory of the centroid was treated by non-linear signal processing algorithms.

The 3 min 30 s of interest were located using the sound clip of each video 
analysed with Audacy free software to determine exactly where the event happened. 
The 3 min 30 s clip was cut from the main video and converted into a sequence of 
images. Since the video was recorded at 24 fps, it was converted also to 24 fps. The 
images were compressed from the 1440p HD format to the more convenient 640 
pixel x 480 pixel format. Frame extraction and format conversion were made with 
the commercial iMovie software. After the video was converted into a colour image 
sequence, the background and noises were eliminated and it was then converted to 
black and white.
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Stochastic Event 
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Figure 4.2. Recording procedure. The total recording time was 1h 30 min. The results presented in this 
Chapter correspond to the analysis the 30 s pre- and 3 min post-event.

4.2.3. Object detection and motion estimation

From the point of view of image segmentation and object detection, and due 
to the nature of the set up, a biological experiment in a real, small-scale environment, 
there were three main problems: noise, artefacts and occlusions.

Two main sources of noise were identified: air bubbles and shadows. The 
main noise was generated by the air bubbles moving towards the surface. This creates 
a little wave system on the water surface, which makes the light penetrate the water 
in a nonlinear manner. The second source of noise was the shadows of the fish on 
the bottom and the walls of the tank. Although the lighting was placed on the ceiling 
above the tank to avoid this issue, the generation of some shadows was unavoidable 
(see Figure 4.3).

There were three main types of artefacts (anomalies introduced in the signal 
or in the data by the equipment or the technique): the first was caused by the pellets 
used for feeding the fish. Some feed pellets were suspended in the water and when 
fish swam around them, they spread off forming black holes in the images (see Figure 
4.3). The second (very similar to the first but smaller in size) was caused by the faeces 
of the fish, and the third by the light’s reflections on the skin of the fish.
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Figure 4.3. Example of an artefact indicated by the arrow, caused by a feed pellet. Occasionally, the system 
also had difficulties to discriminate some fish from their shadows (circle).

Occlusions are a well-known issue in tracking that occur when two or more 
tracked target images become one during a time period in the sequence. Occlusions 
are more frequent when target objects are similar to each other, as it happens in 
animal groups and fish shoals (Butail et al., 2012). Occlusions in fish tracking may 
lead to two types of misidentification: loss of fish identity and swapping identity 
between individuals (Delcourt et al., 2009). Tracking problems take place both while 
the occlusion occurs and when the occlusion ends and the fish appear separately in 
the image. Different solutions have been developed to solve this problem, such as the 
use of 3D information (Isard and MacCormick, 2001; Zhao and Nevatia, 2004), using 
the animals’ characteristics, such as their shape (Branson and Belongie, 2005; Isard 
and Blake, 1996; Maccormick and Blake, 2000) or analysing the special topology of 
the shape (Khan et al., 2006; Rasmussen and Hager, 2001; Sanchez and Dibos, 2004; 
Sigal et al., 2004). Automatic scene calibrating systems are also very helpful tools and 
many approaches have been made in this field, for example an automatic calibrating 
camera system for tracking people (Perdomo et al., 2013).

Given that the robustness of the system depends on how the motion detection 
takes place and all the problems listed above severely limit the election of the motion 
estimation algorithm, we decided to use an algorithm based on optical flow in order 
to eliminate noise, artefacts and occlusions in one step. This conventional approach 
is based on the calculation of the local relative motion (Barron et al., 1992) which is 
also used for space segmentation (Ranchin and Dibos, 2004), and it has the additional 
advantage that it can work with a moving camera and/or with moving backgrounds. 
We applied this method to detect objects and estimate their motion by a simple 
process which consisted in identifying the differences between one of the images 
and the image obtained in the previous second, i.e., resting each frame from its 24th 
predecessor (since we work at 24 fps). This made it possible to delete background, 
noise and artefacts common to all images, including objects that had not changed 
position in the previous second while keeping those objects whose position changes 
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in 1 second intervals, i.e., the moving fish. Methods based on optical flow provide very 
valuable information but they are computationally intense and sometimes require 
specific hardware.

After the optical flow, or motion, was calculated, the images were binarized 
using standard morphologic operations in order to be able to detect the elements in 
the image and their centers in each frame

4.2.4. Clustering and trajectory generation

In order to work in the most reliable way possible, knowing that our system, 
experiment and conditions have limitations, and being particularly concerned about a 
potential loss of information due to the image segmentation and processing methods, 
we decided to use a clustering method to identify the fish group and calculate the 
group’s centroid.

The centroids’ positions were estimated by k-means because this algorithm 
is robust, with a good relationship between speed and stability and it works well with 
large amounts of data. Thus, once the centers of the objects were calculated, and 
knowing their coordinates in the two axes within each frame, k-means was applied to 
find the center of the entire group. In our particular case, the dataset were the objects’ 
centers in each frame, from the first frame to the last one.

Each cluster in the partition was defined by its member objects and by its 
centroid, or center: the point where the sum of distances from all the objects in the 
cluster is minimized. K-means computes the cluster’s centroids differently for each 
distance measured in order to minimize the sum with respect to the distance specified. 
This is done using an iterative algorithm that minimizes the sum of the distances 
from each object to its cluster’s centroid, over all the clusters. The algorithm moves 
objects between clusters until the sum cannot be decreased further. The result is a 
set of clusters that are as compact and separated as possible. It is possible to control 
the details of the minimization using several optional input parameters to k-means, 
including the initial values of the cluster centroids, and the maximum number of 
iterations. This algorithm, often applied for image segmentation, has successfully 
been used to detect animals (Nunes Goncalves et al., 2007). The centers of the clusters 
are calculated in a two-space dimension (2D), using both coordinates (X and Y) and the 
frame number, which goes from 1 to n in the image sequence, and then a trajectory 
table, is built (Table 4.1).
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Table 4.1. The cluster’s centroid coordinates are calculated for each frame and from them the trajectory of 
the cluster is estimated.

Frame number X coordinate Y coordinate Centroid’s coordinates

1 x1 y1 x1,y1

2 x2 y2 x2,y2

... ... ... ...

n xn yn xn,yn

A figure (Figure 4.4) was then created by plotting the values obtained from 
Table 4.1: in the vertical axis the values corresponding to the pixel number of the 
x-coordinate of the centroid (in red) and to the pixel number of the y-coordinate of 
the centroid (in blue) and in the horizontal axis the frame number to which each x 
and y values correspond. Since the images have a 640 pixel x 480 pixel format, the 
scale of the vertical axis in Figure 4.4 goes from 0 to 640 pixel number (the lowest 
and highest theoretical possible values for the x-pixel number in Table 4.1, when the 
centroid is placed either in the right or in the left border of the frame). The lowest 
and highest theoretical possible values for the y-pixel number in the Table 4.1 are 0 
and 480 respectively. The horizontal axis, representing the frame number varies in the 
three cases due to the processing of the video sequences. In all three cases there was 
a sharp change in the trajectory of the centroid in response to the stochastic event, 
which occurs around frame number 720. The panels to the right in Figure 4.4 show 
a magnification of the region of the plot corresponding to the response to the event.
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C1 

C2 

C3 

Figure 4.4. Plot of the values obtained from Table 4.1 for the three cases examined: C1 (top), C2 (middle) and 
C3 (lower panel). The horizontal axis represents the frame number (from 0 to about 6,000 frames processed) 
and the vertical axis represents the pixel number in each frame for the x (red line, from 0 to 640) and y (blue 
line, from 0 to 480) coordinates of the centroid. A stochastic event took place around frame number 720, 
indicated by a circle and amplified in the right panel, which resulted in a sharp alteration of the centroids’ 
trajectories in the three cases.
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4.3. Results and Discussion
The non-invasive tool developed targeted the responses of the fish groups 

rather than that of individual fish, both to reduce the computational effort and 
because the response of the group may be considered the result of integrating all the 
responses contributed by each individual fish, while the latter may be influenced by 
the physiological status of the individual, its size, status in the school’s hierarchy and 
other factors that are usually unknown when the monitoring is performed. Also, the 
response to a stochastic event was measured instead of other behavioural aspects 
(swimming pattern, daily activity, feeding, aggressiveness, etc.) because it permits 
to restrict the computational analysis in time to the duration of the response (three 
minutes in the present case, rather than observing the animals for longer periods of 
time when more variables may play a role) and to reproduce the event at will in other 
settings for comparison purposes. Longer periods of time were also analysed but the 
discriminatory power of the analyses did not improve (results not shown). Each of 
the three experimental cases, C1, C2 and C3, were treated by fractal dimension and 
entropy algorithms. For fractal dimension analyses, Higuchi, Katz, and the Castiglioni’s 
variation of Katz’s algorithms were used with three window lengths of 320, 640 
and 1,280 points per algorithm. While for entropy analyses, Shannon entropy and 
permutation entropy where calculated.

Generally, of the three cases examined, we expected C1 and C2 to behave 
similarly to each other and to be clearly different from C3 mainly due to the 
methylmercury contamination in C3 and partially due to the population variation. 
Nevertheless, based on previous studies (Di Marco et al., 2008; Papoutsoglou et 
al., 1998), it was not supposed to be expected a large difference attributable to the 
number of fish only, 81 fish (C1 and C2) versus 41 fish (C3).

Two of the three fractal dimension algorithms used, Higuchi and Katz’s 
variation proposed by Castiglioni were able to differentiate C1, C2 and particularly C3, 
for the three sampling window lengths in both coordinates of the clusters’ centers, X and 
Y in a two dimensional analysis, as shown in Figure 4.5. Since there was a correlation 
between the X and Y coordinates, the rest of the calculations were performed on only 
one of them, the X values. The almost constant, and close to 1, value of the fractal 
dimension obtained by using the Katz algorithm is in agreement with the results of 
Raghavendra and Narayana Dutt (2009) and confirms Castiglioni’s note (Castiglioni, 
2010). Indeed, the modification proposed by Castiglioni was more sensitive to detect 
differences between the three cases than Higuchi’s algorithm, suggesting that for our 
particular application, the former may be the most suitable one.

The median and the standard deviation of the fractal dimensions obtained 
for each case and window length for the Katz-Castiglioni algorithm on the X values are 
plotted in Figure 4.6 and shown in Table 4.2. C3 showed the highest fractal dimension 
median value for all three-window lengths with very similar values that were close to 
2.5 (Table 4.2) but it also displayed the largest dispersion of values (Figure 4.6). C1 
had the smallest dispersion of values (Figure 4.6) and they had a tendency to increase 
with increasing window length. The fractal dimension of C2 varied between 1.9 and 
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2.1. Increasing window length seemed to diminish the dispersion of the values in C1 
and C2, but did not affect the degree of dispersion in C3 (Figure 4.6). Interestingly, 
these results agree with those of Nimkerdphol and Nakagawa (2008) in spite of these 
authors using a different species (zebrafish, which is a freshwater species that prefers 
warmer water), only one individual and a different contaminant: the fractal dimension 
of the swimming trajectory of their zebrafish also trended to increase with increasing 
concentrations of sodium hypochlorite contaminating its water, obtaining fractal 
dimension values of the swimming trajectories between 2.11 and 2.14. The value of 
the fractal dimension varies depending on the algorithm used for its calculation, on 
the different units composing the time series, whether normalization has taken place 
or not as addressed by Fuss (2013), and on the window length; with lower values of 
window length producing lower fractal dimension values. Optimization of the window 
length for our particular case produced fractal dimension values higher than 2, which 
is also in accordance with the results of Nimkerdphol and Nakagawa (2008).

Figure 4.5. Comparison of the three fractal dimension algorithms (Higuchi, blue lines; Katz, green lines and 
Katz-Castiglioni, red lines) evolution for each case signal (X, broken lines; and Y, full lines) and for each 
window length (left column 320, middle column 640 and right column 1,280) for C1 (top row), C2 (middle 
row) and C3 (lower row). In each graphic the vertical 0Y axis is the fractal dimension of the cluster’s centroid 
and the horizontal 0X axis is the evolution of the fractal dimension per sliding window length. As mentioned 
in the text, the fractal dimension for the Katz algorithm gave a value of 1 regardless of the signal case or the 
window length.
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Figure 4.6. Boxplot representation of the fractal dimension data obtained by the Katz-Castiglioni algorithm, 
for each case (C1 upper, C2 middle and C3 lower row) and window length (320 left, 640 middle and 1,280 
right column).

Table 4.2. Medians of the fractal dimensions obtained for each sliding window length (320, 640 and 1,280) 
in C1, C2, and C3. Note how close are the medians for C3.

Case
Sliding window length

320 640 1,280

C1 2.1415 2.2624 2.4420

C2 2.0449 1.9188 2.1043

C3 2.4752 2.4618 2.5207
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The Shannon and permutation entropy values were calculated on the same 
data as the fractal dimensions, i.e., the trajectories displayed in Figure 4.4, and they are 
shown in Table 4.3. There was no difference between the Shannon entropy calculated 
on the X or the Y values. It was noteworthy the large difference between the entropy of 
C3 and those of C1 and C2, which only differed slightly from each other (Table 4.3). This 
seems to indicate that the Shannon entropy decreases with increasing perturbation 
of the fish: tagging having only a minimal and possibly non-significant effect, but the 
presence of the contaminant drastically decreasing the entropy of the system by an 
entire unit.

Table 4.3. Shannon and permutation entropy values calculated for the X and Y coordinates for C1, C2, and C3.

Case
Shannon Entropy values Permutation Entropy values

X Coordinate Y Coordinate X Coordinate Y Coordinate

C1 6.3016 6.3016 3.0881 3.0950

C2 6.2861 6.2861 3.1049 3.1250

C3 5.3628 5.3628 3.0413 3.0618

Finally, the permutation entropy values calculated for the three experimental 
cases are also shown in Table 4.3. The results differ very slightly for X and Y signals 
and, in contrast to the results obtained using Shannon entropy, the three analysed 
cases presented very similar permutation entropy values. In this case as well, the 
permutation entropy values for C3 were smaller than for C1 and C2.

Following the results of the tested methodologies, two of them, namely those 
based on the analysis of the Katz-Castiglioni fractal dimension and the Shannon 
entropy of the trajectories, have been shown to be potentially useful tools for non-
invasive identification and quantification of changes of fish responses due to, primarily, 
a highly relevant environmental contaminant and secondarily, and probably in a much 
lower degree, to the variation in the number of fish in the system.
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4.4. Conclusions
In conclusion, the present chapter describes a method for image acquisition, 

processing and nonlinear trajectory analysis suitable to identify variations in the 
response of a fish group to an event. The methodology here proposed shows a clear 
potential to aid implementing intelligent aquaculture systems. We believe that it 
will be possible to embed this methodology in an on-line/real time architecture to 
monitor fish schools in a farm and in the wild, and that this kind of approach will find 
an application to identify contaminated waters in environmental monitoring programs. 
In further studies the results reported here should, in author’s opinion, be tested and 
validated with more contaminants, stressors and fish species, prior to be embedded in 
on-line monitoring systems using artificial intelligence methods.

Technically, the method presented here demands a relatively large computation 
capability, particularly for the image-processing step, which is of course susceptible of 
improvement. It must also be kept in mind, on one hand, that the analysis of the fish 
clusters trajectories does not depend on an image, they can also be obtained from 
echo-sounds or infrared images and, on the other hand, that the methodology is not 
exclusive for fish and that with some modification may be applicable to other species.
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5.1. Introduction
As already addressed in Chapter 1, global fish production has been steadily 

growing during the last 50 years with most of the recent growth coming from 
aquaculture. Aquaculture production will need to continue increasing its output in 
order to contribute to the supply of high value nutrients to an exponentially increasing 
human population (Anon, 2011; FAO, 2014; Kalogerakis et al., 2015). This situation 
forces the aquaculture industry to face several challenges, including the need for an 
increased supply of feeds, access to clean water and enough energy, and competition 
from other activities (i.e. fisheries, tourism, industry) (Bostock et al., 2010; European 
Aquaculture Technology and Innovation Platform-Eatip, 2012).

 Current aquaculture systems include freshwater ponds and tanks, freshwater 
cages, coastal ponds and tanks, coastal cage farms and systems for marine molluscs 
and aquatic plants (Bostock et al., 2010). New developments and trends are also 
focusing on closed systems, for example Recirculating Aquaculture Systems (German 
Advisory Council on Global Change - WBGU, 2013; NACA/FAO, 2001). However, state 
of the art research activities indicate that large scale aquaculture production systems, 
such as offshore exploitations and/or implementation of aquaculture activities 
within offshore multipurpose structures, may be a solution to some of the challenges 
(European Aquaculture Technology and Innovation Platform-Eatip, 2012). One 
important part of these platforms is the design of intelligent structures, i.e. structures 
able to register and respond to a changing external environment (such as loads and 
shape change) as well as to a changing internal environment (such as damage or 
failure). In contrast to the increasing amount of works devoted to the study of the 
physical design and intelligent design of the aquaculture platforms themselves, there 
are few works devoted to the automatic monitoring of the organisms being farmed, 
i.e. fish, which should be a part of the total intelligent system. To monitor the fish 
is important for several reasons: one is to know how many fish there really are and 
detect - optimally avoid - escapes, another is the early detection of abnormalities in 
their behaviour that may be an indication of disease, parasites or the presence of 
contaminants and, related to it, the third reason is to monitor the welfare of the fish 
under production.

At this point one of the variables to take into account is the number of fish to 
monitor. The studies published used different number of individuals some use only 
one fish (Brodin et al., 2013; Magalhães et al., 2007), others a few [10 fish, (Ladu et al., 
2015) and 19 to 26 fish (Eguiraun et al., 2015b)] and others many (81 fish) (Eguiraun 
et al., 2014). There is usually no explanation regarding the criteria used to select the 
number of individuals, except in the cases where one wishes to study, or to avoid, the 
effect of stress by crowding. Even in the last case, the numbers are selected based 
on the empirical knowledge generated for a few species. However, collective animal 
behaviour differs from the behaviour of the individuals alone, and the behaviour 
of each individual within its group (be it a human in a crowd, a bird in a flock, an 
insect in a swarm or a fish in a shoal) is a combination of genetic and environmental 
factors [see the review by Sumpter (2006) and references therein]. Thus, analysing the 
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individual responses, one should expect a larger variation that analysing the response 
of the group, and yet, when one analyses a group composed of many individuals the 
response of the group resembles the average obtained from studies with individuals 
[see the review by Sumpter (2006) and references therein]. The key issue here is to 
identify the critical number, n, corresponding to many individuals. When using only 
one fish, it will very likely not represent the entire system and therefore one should set 
N experiments with only n=1 fish (using a different individual for each experiment) so 
that the average of all the responses from all experiments represents the response of 
the system. In this case, one must know the value of N, i.e. the number of experiments 
one must perform to obtain a value representative for the population.

In order to set up a Biological Warning System one needs to identify the 
changes, in the individual or in the group, that occur in response to the introduction of 
perturbations (i.e. contaminants or stressors) into the system, but also the number of 
individuals used in the experimental phase must be reduced to a minimum for ethical 
and economical reasons. In real-life conditions in offshore cages it is very difficult to 
use the entire production (there may be several hundred thousand fish in a cage) as 
Biological Warning System, so the farmer may need to set up a smaller unit to monitor 
and serve as the Biological Warning System. In this case it is also desirable to use 
the smaller possible number of fish. On the other hand, the entire production unit 
might be used as a Biological Warning System when dealing with closed aquaculture 
systems, such as the increasingly popular recirculating aquaculture systems, or RAS.

In previous studies (Eguiraun et al., 2014) and confirming other authors’ 
works (Bae and Park, 2014; Forlim and Pinto, 2014; Kadota et al., 2011; Liu et al., 
2011a; Quach et al., 2013; Spasic et al., 2011) the Shannon entropy of the system was 
identified as a variable that changes with the introduction of perturbations into the 
system and has therefore the potential to serve for its monitoring.

For species that shoal, such as the European seabass (Pickett and Pawson, 
1994) one could expect that, in addition to the variability in each individual’s 
responses, individual isolation itself may have an effect and therefore one individual 
may not be the optimal number to select. However, the optimal number itself remains 
unknown. Probably, there may be a critical size/number of individuals after which 
further increase in the number of individuals does not add more information on the 
system, as it has been shown in ants by Sumpter (2006) and that would represent the 
n number of many individuals mentioned above whose study might be used to obtain 
a response representative for the real life system.

Accordingly, the present case study was designed to understand how the 
fish biomass variation affects the system dynamics in order to answer the following 
questions: i) Does the Shannon entropy of a fish system vary according to the number 
of fish? ii) If it does vary, how is this relationship? and iii) Is it possible to identify the 
number of many individuals to be used in future works to simulate the behaviour of a 
population in experimental settings or in a Biological Warning System?
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Given the shoaling nature of the European seabass, it was expected to find 
a critical difference in the response of the system when using only one or very few 
fish. Thus, in order to characterize the biomass variation from 1 to 50 individuals two 
different experiments where performed: i) a decreasing biomass experiment starting 
with 50 fish and decreasing the biomass to 25, 13 and finally 1 fish and ii) an increasing 
biomass experiment, studying the system with initially 1 fish, and then adding 1 new 
fish per day during 5 days, i.e., ending with 5 fish in the tank.

5.2. Materials and methods

5.2.1. Animals and acclimation conditions

The fish were European seabass (Dicentrarchus labrax) generously provided 
by Grupo Tinamenor (Cantabria, Spain). In the Research Center for Experimental 
Marine Biology and Biotechnology - Plentzia Marine Station of University of the Basque 
Country UPV/EHU, they were acclimatized for 3 months in two flow through 1,800 L 
epoxy-coated fibreglass tanks containing aerated, naturally sand filtered seawater 
pumped from the Cantabric Sea in the North of the Iberian Peninsula (43°24’49.5”N 
2°57’06.5”W). During this period, the seawater conditions oscillated according to the 
environmental variation but they were always within the values for optimal growth for 
the species. The fish were fed INICIO Plus feed from BioMar (56% crude protein, 18% 
crude fat) following the manufacturer specifications for fish size, biomass and water 
temperature. According to its size fish were considered sexually immature (Fishbase.
org, 2015).

The length and weight of the fish for the decreasing biomass experiment are 
shown in Table 5.1 and the total biomass of the increasing biomass experiment is 
shown in Table 5.2.

Table 5.1. Experiment A: Decreasing number of individuals. Biomass in the beginning of the experiment. 
Tanks 1 and 2 were filled with 50 fish each.

n = 50 fish
TANK 1 TANK 2

Size [mm] Weight [g] Size [mm] Weight [g]

Avg 159.5 36.02 158.1 35.28

Max 200.0 60.00 197.0 64.00

Min 135.0 18.00 130.0 17.00

Median 154.5 33.50 156.0 33.00

Total biomass [gr] 1,801 1,764
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Table 5.2. Experiment B: Increasing number of individuals. Daily biomass variation in each tank.

Day 
number

TANK 1 TANK 2

Fish name Total weight [g] Fish names Total weight [g]

1 a 77 b 78

2 c 51 a,b 155

3 d 53 a,b,c 206

4 e 58 a,b,c,d 259

5 f 53 a,b,c,d,e 312

5.2.2. Experimental conditions

All the parameters were monitored daily. The salinity, measured using a 
multiparametric meter HANNA HI98192, was 33 gr/L. O2 saturation was measured 
using the JBL O2 kit and it always was >80%. Water temperature, pH and ammonium 
were monitored using a thermometer (±0.5°C), a CRISOM pH-meter Basic 20+ and 
Sera NH4-NH3 ammonium kit respectively. Water flow (fixed at 0.54 m3/h) and 
additional air supply diffused by a stone were kept constant, interrupted only during 
the time necessary for recording the fish in order to avoid artefacts in the images. 
The experiments were performed in the period November-December during which 
only small variations were detected in the seawater temperature and pH following the 
usual seasonal changes (Table 5.3).

Table 5.3. Water/environmental conditions. Minimum and maximum values in relevant seawater parameters 
during the experimental period (Nov-Dec).

Min Max

Temperature [°C] 16.9 18.5

pH 7.76 7.93

Ammonium [mg/L] 0.0 0.0

Water flow [m3/h] 0.54 0.54

Salinity [g/L] 33 33

O2 Saturation >80% >80%
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 Two identical fiberglass tanks were used (100 cm x 100 cm x 90 cm) under 
direct white artificial light (2 x 58 W and 5,200 lm), avoiding the formation of shadows 
into the tanks and using the same light conditions in both. The tanks, equipped with 
a flow through system, were filled up to 9 cm from the upper border with 810 L of 
naturally sand filtered seawater. One camera was placed in each tank and exactly in 
the same position in both tanks, obtaining in both situations the same visual angle. 
The photoperiod was fixed at 12h/12h dark/light. The seawater was naturally sand 
filtered in its way from the sea to the aquarium. Data acquisition was done by video 
camera recording using the same experimental setup described by Eguiraun et al. 
(2014).

5.2.3. Experimental setup 

Two experiments were run using the previously mentioned tanks and 
conditions. In the first experiment, Experiment A, which was run in duplicate, the 
number of fish was reduced from 50 to 1 fish in 4 steps (Figure 5.1). In the second 
experiment, Experiment B, the number of fish (but not the fish itself) was kept constant 
in tank 1, and it increased from 1 to 5 fish in 5 steps in the second tank (Figure 5.2).
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Figure 5.1. Description of Experiment A. Experimental setup of the decreasing density experiment. The 
number of fish was halved in each step except the last one, when it was reduced from 5 to one individual. 
T1 and T2 indicate tanks 1 and 2 respectively and the sub-index the number of fish. The number of days the 
activities lasted is shown under “Days” on the left.
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Figure 5.2. Description of Experiment B. Experimental setup of the increasing density experiment. The 
number of fish was kept constant, only one fish, in tank 1. Each day the fish that had been for one day in 
tank 1 was transferred to tank 2. Thus, the number of fish in tank 2 increased by one individual every day. T1 
and T2 indicate tank 1 and 2 respectively. The number of days the activity lasted is shown under “Days” on 
the left; each letter within the tanks; a, b, c, d, e and f, refers to an individual fish.

5.2.3.1. Experiment A - Decreasing the density

Each of the two replicate groups consisted of 50 fish with a biomass as similar 
to each other as possible (Table 5.1). The fish were acclimated for 12 days to the new 
conditions and they were monitored and recorded during the next 5 days following the 
procedure described below. After that, both groups where reduced to 25 fish, trying 
to maintain a similar biomass in both groups. The remaining 25 fish per group were 
acclimated for another 2.5 days and subsequently monitored and recorded for 5 days. 
Past those 5 days both groups were reduced to 13 fish per group, acclimated for 2.5 
days and recorded for 5 days. Finally, the groups were reduced to only one fish. Again, 
after 2.5 days of acclimation, they were recorded for the final 5 days of the experiment 
(Figure 5.1).

5.2.3.2. Experiment B - Increasing density

The experimental schedule is resumed in Figure 5.2. In this particular case, 
and during the five days the experiment lasted, tank 1 had only 1 fish and every day 
the fish that had been one day in tank 1 was transferred to tank 2 and a new fish was 
placed in tank 1. The new fish introduced every day in the experimental tank was taken 
from the acclimation tank not used for the experiments but maintained under the same 
conditions and in the same room. For a better understanding of the procedure, each 
fish has been named with a letter from a to f in Figure 5.2 and Table 5.2. The biomass 
variation and weight of the fish are summarized in Table 5.2. The fish were recorded 
the day after the change of tank.
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5.2.4. Data acquisition

Data acquisition was performed by video camera recording using the same 
experimental setup described in Chapter 4. In short, recording was performed using 
a GoProHero3 camera with underwater housing inside each tank. Raw data were 
recorded in 1440p high definition format, 24 frames per second (fps) and 4:3 video 
size and it was stored in SanDisk 32Gb UltraMicroSDHCTM (Class 10) secure cards.

As already mentioned, the water flow and air intake were halted during the 
recording period to avoid bubbles and disturbances in the images. The recording 
took place during 1 hour per day and approximately in the middle of that period a 
stochastic event consisting of a hit in the tank was introduced. The images to be 
processed consisted of three measures of the basal state, of 3.5 min each, and the 3.5 
min containing the hit in the tank, i.e. the stochastic event, as described in Chapter 4 
(Figure 5.3).

Stochastic Event 

3min 30s 

1h 

3min 30s 3min 30s 3min 30s 

EventBasalBasalBasal

Figure 5.3. Recording procedure. Three basal and one event response measurements were processed from 
the total recorded period of 1 hour.

5.2.5. Image processing

It was performed as described in Chapter 4. Once the wanted videoclips (3 
basal and 1 event per tank and per day) were located in the 1h recording, they were 
transformed into a 640 pixel x 480 pixel format image sequences per video clip at 
24 fps using the iMovie commercial software and MPEG Streamclip free software. 
Subsequent image and feature extraction were carried out with Matlab running on a 
MacBookPro 2,6 GHz Intel Core i7 laptop with a SSD storage disk and 16 Gb of RAM. 
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5.2.6. Trajectory Estimation

The methodology used from image acquisition to fish group centroid trajectory 
estimation depicted in Figure 5.4, was based on that described in Chapter 4 with some 
modifications. Firstly the trajectory of the cluster’s centroid was built computing the 
elements center’s in every single frame, which leads to a very noisy signal unsuitable 
for the later non-linear signal analysis. Thus, the noise of the signal was reduced 
calculating the cluster’s centroid applying the k-means algorithm to the number of 
elements in each frame using the centers of the elements in the first frame as input 
coordinates. Secondly, the trajectories in X and Y were analysed in the same format 
they were obtained although they have different scale dimensions. X trajectories 
have dimension from 0 to 640 and Y trajectories have dimension from 0 to 480 due 
to the pixel image size. The results indicated that analysing those raw trajectories 
leads to satisfactory results and differences were not found between the results 
obtained analysing the raw and the normalized trajectories. However, and with the 
purpose of building a more robust algorithm for future applications in mind, the X and 
Y trajectories presented in the current work were normalized using z-score technique.

EXPERIMENT 
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Image B/W 
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frame(i)-frame(i-23) 
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Figure 5.4. Data acquisition and processing workflow. Based on the one described in Chapter 4 and with 
the two variations described in the text.
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5.2.7. Non Linear Trajectory Analysis

As described in Chapter 4, Shannon entropy was selected as the best parameter 
to analyse the trajectories due to its low computational load and robustness.

5.3. Results

5.3.1. Experiment A

Table 5.4 shows the daily evolution in the two experimental tanks of the 
Shannon entropy corresponding to the basal trajectories (blue points in Figure 5.5) 
and to the trajectories followed in response to the stochastic event (red points in Figure 
5.5). As shown in Table 5.4, the response obtained in both tanks was very similar, and 
the Shannon entropy of the basal trajectories represented in the figures correspond 
to the average of six different measurements (three in each tank) while only one was 
obtained in response to the event. These results showed that the Shannon entropy 
of the system increased concomitantly, but not linearly, with the number of fish. In 
addition, while the Shannon entropy of the response and basal trajectories in tanks 
with 13 or more fish had similar values, the Shannon entropy of the system in response 
to the stochastic event was clearly higher than the Shannon entropy of the basal state 
with only one fish.

5.3.2. Experiment B

The average values of the Shannon entropy of the basal trajectory in the 1-fish 
system kept values close to, but slightly lower than 2, except for the last fish that 
displayed a value much lower than 1 (upper panel in Figure 5.6). It must be noted 
than in this case it was not possible to talk about trends, since each day there was 
a different fish in the tank. The Shannon entropy of both the basal and response 
trajectories increased with increasing number of fish between 1 and 4 individuals 
(lower panel in Figure 5.6). Further increase from 4 to 5 fish modified only slightly the 
values of the Shannon entropy of both trajectories.

The results obtained for the Shannon entropy as a function of the number of 
fish, for both the basal and response trajectories and from 1 to 50 fish (i.e. adding the 
results of Experiments A and B), fitted an exponential curve whose parameters are 
described in Table 5.5 and plotted in Figure 5.7 for the basal (top panel) and the event-
response (bottom panel) trajectories.
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Table 5.4. D
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Figure 5.5. Daily evolution of the Shannon entropy in Experiment A. The blue points correspond to the 
Shannon entropy values for the basal states (average of six different measurements: 2 tanks and 3 
measurements per tank) and the red to that of the response to the event. The lines are plotted to join 
the points.
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Table 5.5. Curve fitting parameters and goodness of the fit of the Shannon entropy vs. the number of fish. 
The Shannon entropy values (y) of the basal state and of the event response were fitted as a function of the 
number of fish (x). u, v, and w are the coefficients of the curve. The goodness of the fit was estimated by 
the sum of squares due to error (SSE), R-square, adjusted R-Square and root mean squared error (RMSE).

y=u∙xv+w Basal Event

Coefficients

u -4.102 -11.09

v -0.4957 -0.07018

w 5.382 13.5

Goodness of the fit

SSE 0.04477 0.2228

R-Square 0.9953 0.9619

Adjusted R-square 0.9934 0.9467

RMSE 0.09463 0.2111
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Figure 5.6. Daily evolution of the Shannon entropy in Experiment B. T1 (upper panel) contained only one 
fish, but a different fish every day, during the 5 experimental days. The number of fish in T2 increased by 
one individual daily (lower panel). The number of fish is indicated on top of the panels. The blue points 
correspond to the Shannon entropy values for the basal states and the red to the response to the event. The 
lines were plotted to join the points.
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Figure 5.7. Curve fitting of the Shannon entropy as a function of the number of fish. The basal state (top) and 
the response to the event (bottom) are shown together with the 95% confidence bounds.
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5.4. Discussion
The expected increase in aquaculture activities and production in fish farming, 

particularly in Recirculating Aquaculture Systems, will demand the development and 
application of on-line, non-invasive and cost-effective monitoring systems (Kalogerakis 
et al., 2015) for which, the present Thesis proposes the implementation of a Biological 
Warning System where the fish under production constitute the system to monitor. 
The aim of the present Chapter was to obtain an essential piece of information: to 
elucidate whether the number of fish affected the Shannon entropy of the system in a 
known shoaling fish species (European seabass), and, if so, what type of relationship 
these two variables kept. It must be noted that we did not aim at mapping behavioural 
characteristics such as time swimming or resting, aggressive behaviour or the shoaling 
itself, which would require a different methodological approach.

The present work showed that: i) the Shannon entropy of the European 
seabass system is highly dependent on the number of individuals for a few fish (from 
1 to 5) becoming more independent from the number as it increases and that ii) this 
dependence nicely fits an exponential curve.

The concepts shown here may apply not only to European seabass, but also to 
other similarly shoaling species. Although the behaviour and response of the system 
will likely be species-specific (Boerrigter, 2015), this approach might be applied with 
few modifications to monitoring salmon, charr, cod, trout and similar shoaling species, 
although probably not to species like eels or flatfish that have different swimming 
patterns and, probably, also different response dynamics. One work with sticklebacks 
by Wark et al. (2011) is particularly interesting because it showed that the application 
of Shannon entropy to signal processing analysis uncovered information that classical 
analysis tools did not and, in addition, demonstrated that the behaviour of their fish 
biological system had a clear genetic component. They calculated the entropy of the 
distribution of the individuals within the shoal while we calculated the entropy of the 
trajectory of the centroid of all the fish; which does not tell us whether the fish shoal 
or not (information that this work is not targeting). In spite of this basic difference 
it is very interesting to note that both methods measured higher entropy values 
with (i) increasingly random distribution of fish within the shoal and (ii) increasingly 
random trajectory of the centroid. Taken together Wark et al. (2011) and the present 
work, it seems that the implementation of a Biological Warning System within a 
Fish Welfare Assurance System and/or a Hazard Analysis and Critical Control Points 
plan in aquaculture production has a real potential of being successful for different 
species, and that the monitoring system must use the same species and stock than the 
individuals to be evaluated, since the environment from which the fish originated may 
dictate their behaviour not only in the wild but also in farming and laboratory settings. 

For European seabass monitoring it seems that a number between 5 and 13 
individuals may be the lowest suitable number to achieve meaningful results —for 
example to perform experiments or to set up a Biological Warning System monitoring 
unit— and correspond to the number n of many individuals mentioned in the 
introduction. However, in order to develop a model applicable to a larger population 
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(in particular if intended to be used in real-life Recirculating Aquaculture Systems 
monitoring of entire production units), there is a need to identify also the number 
corresponding to too many individuals, i.e. the number of individuals that would 
make the system collapse. For example, overcrowding may limit the space where each 
animal can move, which will in turn make the movement of the centroid of the shoal 
appear increasingly stagnatic, regardless of whether the individuals themselves move 
or not. In this latter case the Shannon entropy value of the system may revert to lower 
values, or even become zero for a completely static centroid. Thus, it is necessary to 
identify the values of both many individuals and too many individuals within which 
the results are valid. For the applications targeted by this work, i.e., implementation of 
a Biological Warning System in aquaculture and for experiments that require fish, we 
consider that 5-13 fish may be adequate using our tanks and conditions.
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APPLICATION OF THE TOOL TO AN EXPERIMENTAL CASE: VARIATION OF THE SHANNON ENTROPY IN A EUROPEAN SEABASS 
(DICENTRARCHUS LABRAX ) SYSTEM EXPOSED TO SODIUM SELENITE (Na2SeO3) AND/OR METHYLMERCURY CHLORIDE (CH3ClHg)

6.1. Introduction
As already mentioned, one of the challenges to the aquaculture industry is the 

lack of non-invasive, fast, easy, inexpensive methodologies to estimate the welfare 
of the fish and/or the detection of diseased and contaminated fish groups (Eguiraun 
et al., 2015a). The entrance points for undesirable agents which affect fish welfare 
by infecting or contaminating them are usually the prey/feed, veterinary treatments 
(for farmed fish) and the environment for both farmed and wild fish (Dahle et al., 
2010). Monitoring of the critical points both for wholesomeness in a Hazard Analysis 
and Critical Control Points plan (Huss et al., 2004) and for welfare in a Fish Welfare 
Assurance System (van de Vis et al., 2012) demands the identification of the points 
themselves, a monitoring method adjusted to the parameter one wishes to measure 
and the establishment of an Optimal Working Point (OWP), or range, i.e. the value 
or values within the critical limits that indicate that the system is operating under 
optimal conditions. When the value registered during the monitoring is outside the 
Optimal Working Point, i.e. higher or lower than the maximum and minimum critical 
limits respectively, and alarm goes off and corrective actions must be taken until the 
deviation is corrected and the Optimal Working Point values are restored.

Current practices in aquaculture do not usually include the automatic 
monitoring of the behaviour and/or responses of the fish. Previously in this Thesis, 
the application of Biological Warning Systems approach to monitor fish production in 
aquaculture has been proposed in Chapter 1 (Eguiraun et al., 2015a), a tool for this 
purpose has been developed in Chapter 4 (Eguiraun et al., 2014) and the response of 
the system as a function of the number of fish has been characterized in Chapter 5.

The purpose of this Chapter was to test the tool in an experimental setting 
where the fish had been exposed to 2 different substances: sodium selenite (Na2SeO3) 
and methylmercury chloride (CH3ClHg, abbreviated as MeHg). For that test, we used 
the experimental set up established for a study parallel to this PhD Thesis on the 
biochemical and histological effects of the pre-administration of Na2SeO3 on MeHg 
toxicity on European seabass. This offered an excellent opportunity to test the tool 
on a real-life experiment with negative and positive aspects. A negative aspect was 
that the experiment had not been designed to optimize the monitoring conditions; 
it had been designed and optimized (among other things, by mixing Na2SeO3 pre-
treated and not pre-treated fish in the same tank and by adding the contaminants to 
the water) for a biological study. However it also presented some exciting challenges 
and positive aspects as well, namely that these were conditions one could encounter 
in real life such as non-homogeneous populations of fish (some with high and other 
with low levels of contaminants) and high water turbidity.

The main reason to select these two compounds, as already indicated in Chapter 
1, was that MeHg is a known environmental contaminant of increasing concern for the 
fish industry and consumers alike and considered a risk factor in fish consumption. 
MeHg is a neurotoxic substance that reaches high levels of accumulation in the central 
neural system (Berntssen et al., 2003). Chronic exposure to it induces (among many 
others) symptoms similar to those observed in amyotrophic lateral sclerosis, such as 
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the early onset of hind limb weakness in humans (Berntssen et al., 2003; Johnson and 
Atchison, 2009). Selenium compounds on the other hand, particularly those present 
in fish, display very high affinity for MeHg, and have been proposed as capable of 
neutralizing its toxic effect in addition to showing a high antioxidant effect (Ralston 
2008; Ralston et al. 2008; Raymond et al. 2012; Yamashita and Yamashita 2010; M. 
Yamashita et al. 2013; Y. Yamashita et al. 2013).

Knowing, as described above, that MeHg affects the neural system in general, 
and the active swimming in salmon (Berntssen et al., 2003) we hypothesized that 
exposure to MeHg would affect the Entropy of the trajectory of the fish system and 
change its value, taking it outside what could be considered the optimal working range 
and that removal of the contaminant would bring it back to the optimal working range.

Since previous knowledge also indicated that selenium might counteract 
the effects of MeHg, the administration of these two substances would theoretically 
keep the fish system within its optimal working point. However, there is a very narrow 
range between the optimal daily ingestion of selenium and a toxic dose which is 
dependent on the selenium compound (Nuttall, 2006). Na2SeO3 was selected for this 
work because it is a common form of selenium used as a supplement in foods and 
feed, used in previous experimental works (Branco et al., 2012) although its use and 
optimal dose is still subject to some controversy (Nuttall, 2006).

The experiment had been designed in three phases: during Phase A some 
fish were exposed to Na2SeO3; in Phase B they were exposed to MeHg and in Phase 
C the MeHg was removed, i.e. Phase C corresponds to the recovery period from 
MeHg toxicity.

6.2. Phase A - Na2SO3 exposure

6.2.1. Biological material and water/environmental conditions

European seabass (Dicentrarchus labrax, 4±2 g, 8±1 cm) generously provided 
by Grupo Tinamenor (Cantabria, Spain) had been transported to our lab in their own 
seawater with constant aeration and had been acclimated for 1 week in 1,800 L epoxy-
coated fibreglass tanks containing aerated, circulating seawater at 13 °C. During all 
the experimental period the fish were subjected to a 12 h/12 h dark/light photoperiod 
and they were fed once a day INICIO Plus feed from BioMar (56% crude protein, 18% 
crude fat) according to the manufacturer’s specifications for fish size, biomass and 
water temperature.

The salinity was measured prior to the beginning of the experiment by a 
multiparametric meter HANNA HI98192, and it was 33 gr/L. The values of ammonia, 
nitrate, dissolved O2, temperature and pH were kept within non-stressful values and 
their variation was insignificant during the experiment. The water used was pumped 
directly from the sea and it was sand filtered and treated with ion exchange resins in 
order to eliminate any possible contaminants. Additional O2 supply (bubbled into the 
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tank) was introduced and interrupted only during the time necessary for recording the 
fish in order to avoid artefacts in the images.

6.2.2. Experimental setup and exposure to Na2SeO3

Two experimental cases were analysed of 76 fish each: C1, which was the 
control group and C2, which was the group exposed to Na2SeO3 (Sigma-Aldrich 
product number S5251-10G). Each experimental case consisted of a tank (100 cm x 
100 cm x 90 cm), filled up with 810 L of aerated seawater to a height of 80.5 cm. In both 
cases the fish were acclimatized for 1 day (day 0). The tanks were placed under direct 
artificial white light (2 x 58 W and 5200 lm) avoiding shadows as much as possible.

Fish in C2 were exposed during the next 6 days to a dose of 10 µg of Na2SeO3 
per L seawater according to Branco (Branco et al., 2012). In order to ensure that the 
concentration of Na2SeO3 remained constant during the exposure period, the water 
flux was halted in both tanks (treatment and control) and the water was renewed on 
days 3 and 4, to reduce nitrogen residuals and dirt. After each change of water, fresh 
Na2SeO3 (10 µg/L) was added to C2. The fish remained in the tanks during the changes 
of water in order to minimize their stress. Both tanks were treated equally, except for 
the addition of Na2SeO3 that took place only in C2. As mentioned, the O2 intake was 
halted during each day’s recording period, to avoid bubbles and disturbances in the 
images. No mortality was registered during this Phase A.

6.2.3. Image acquisition, processing, trajectory estimation 
and non linear trajectory analysis

Image acquisition, processing, trajectory estimation and non linear trajectory 
analysis was carried out as described in Chapter 5. The basal status and event 
responses were measured both in the control group C1 and in the treated C2 but the 
data of the basal status of C2 were unfortunately lost due a hardware failure in the 
hard disk were they had been stored.

As already discussed in the limitations of the study in Chapter 2, the turbidity 
developed in both tanks during the 48 h that the water was not being circulating was 
a challenge to the image processing platform designed. Also, as it has been previously 
mentioned, the images were processed using the same computational parameters 
regardless of the degree of turbidity in the water.

6.2.4. Results and Discussion

The day 0 of the experiment was considered an acclimation day and used as 
a control for the beginning of the experiment, thus data from this day were not used 
for the calculations. Table 6.1 shows the mean and standard deviation of the Shannon 
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entropy values for C1 and C2 from day 1 to day 6. The water of the tanks was changed 
in days 3 and 4 (denoted with *) and we expect the fish to have suffered some kind of 
stress due to this fact.

The results obtained in the control group, C1, for both the basal and event 
responses confirm the results obtained in Chapter 5. On one hand, the Shannon 
entropy of the basal state is lower than that of the event, which can be explained 
because a system in a resting state disperses less energy than when it is excited, 
i.e., when the event is introduced. On the other hand, no significant differences were 
detected between the Shannon entropy values corresponding to the events of C1 and 
C2 and those calculated from the results obtained in Chapter 5 for the number of fish 
used here, i.e. 76, as shown in Figure 6.1.

These two facts suggest that the basal state may be more difficult to 
characterize than that of the event, perhaps due to arbitrary behaviour and different 
circadian cycles of the fish. However when an event is introduced, as it is a response to 
a sudden perturbation, the system responds in a more coherent manner, making the 
value of the Shannon entropy obtained in this case more reliable.

The Shannon entropy values of C1 and C2 in response to the event show that 
both systems have a similar behaviour in terms of energy exchange, i.e., that both 
systems disperse similar amounts of energy. From these results it can be concluded that 
the exposure to Na2SeO3 does not affect the energy balance of the fish system, thus 
Na2SeO3 exposure does not affect fish in a quantifiable manner using the proposed 
methodology. These results would agree with the expected effect of Na2SeO3: it 
should protect against MeHg toxicity, but not display any additional effect. In other 
words, exposure to 10 µg of Na2SeO3 per L water in the tank does not take the system 
outside its optimal working point, as far as its Shannon entropy can measure, and the 
farmer would not need to take any corrective action.

Table 6.1. Phase A-Exposure to Na2SeO3. The table shows the Shannon entropy values per day and 
experimental case. The data correspond to three basal state measurements and the averaged measure for 
the control case, C1; and event responses for C1 (control) and C2 (exposed case). The water of the tanks was 
changed on the days labelled with an asterisk (*).

Day
C1 C2

Basal Basal Basal Average Basal Event Event

0 5.3707 5.3300 5.4184 5.3697±0.0492 5.6393 5.0132

1 4.6969 4.4265 4.6291 4.5842±0.1407 4.7242 5.1670

2 4.3904 4.0520 4.5787 4.3403±0.2669 5.0367 4.7467

3* 4.9046 4.7100 4.5365 4.7170±0.1842 6.2145 4.7868

4* 4.8874 4.8016 4.7104 4.7998±0.0885 6.0924 5.8601

5 4.6227 4.6259 4.5987 4.6158±0.0149 5.1643 5.2968

6 4.1976 4.0003 4.0387 4.0789±0.1046 4.3488 4.7703

Average 4.5227±0.0905 5.2635±0.7457 5.1046±0.4365
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Figure 6.1. Shannon entropy values for the basal state (upper panel) and event responses (lower panel) for 
cases with different number of fish extracted from Chapter 5. The inserts indicate the value of the Shannon 
entropy for the event response of the control case C1 (green) and of the Na2SeO3 treated case C2 (orange) 
from the Phase A.
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6.3. Phase B - Exposure to MeHg

6.3.1. Biological material, water/environmental conditions, 
experimental setup and exposure to MeHg

As already mentioned, this experiment was designed to study the (presumably 
protective) effect of the pre-exposure to Na2SeO3 on MeHg toxicity as measured by 
variations in some biochemical and histological parameters. At the end of Phase A, 
10 fish from each tank were sacrificed for biochemical analyses, leaving 66 European 
seabass (Dicentrarchus labrax) in each tank. These 66 fish were divided into two groups 
of 33 fish each: 33 fish remained in the tank and the other 33 were transferred to the 
other tank. Thus the two cases now were made up of 66 fish each, but they consisted 
of mixed populations of fish, were half (33 fish) had been treated with Na2SeO3 and 
the other half (33) had not. During this Phase B one of tanks was exposed during 14 
days to MeHg contamination (4 µg MeHg per L water in the tank) and the other was 
not. Both cases were subjected to the same conditions regarding frequency of water 
changes (every second day), which induced an unavoidable development of turbidity 
due to the impossibility of having the seawater circulating with a reliable constant and 
continuous MeHg concentration. MeHg was purchased from Sigma-Aldrich (product 
number 33368).

In this Phase B, C3 becomes the new control group and C4 becomes the MeHg 
treated group, and at the beginning of the MeHg treatment each group contains 33 
untreated fish and 33 that had been treated with Na2SeO3.

6.3.2. Results and discussion

During this Phase B, as it occurred in Phase A, the seawater in the tanks was 
not circulated because of the need to maintain the MeHg concentration and also to 
avoid the large volume of contaminated water that would have had to be treated prior 
to being safely discarded, which would have significantly increased the costs and risks 
of the experiment. Although the parameters used as diagnostic for acceptable seawater 
quality (ammonia, nitrate, dissolved O2, temperature and pH) were monitored daily 
and found to be within an acceptable range, turbidity developed in the 48 hours the 
water was kept still, as in Phase A, and it can be assumed that these conditions must 
have induce some degree of stress in the fish.

At the end of the first week of this phase, 10 fish per tank were killed for 
histological purposes and the same occurred at the end of the second week. In 
addition, mortality occurred several times during the 2-week exposure period in both 
experimental groups. These two factors made the biomass decrease in both tanks.

Taken into account the variation in the number of fish and the poor quality 
of the images obtained during most of the experimental period, we consider that 
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the results obtained using the methodology developed in this PhD were not reliable. 
However, the biochemical analyses indicated that MeHg-treatment had had a clear 
effect by drastically diminishing the activity of a liver enzyme called thioredoxin 
reductase and that the pre-treatment with Na2SeO3 had exerted a protective effect 
on its activity, i.e., the Na2SeO3 and MeHg treated fish had higher values of activity 
for that enzyme than the fish subjected only to MeHg contamination (Vitalle, 2014). 
Thus although the tool could not be evaluated during this phase, Phase B fulfilled its 
function by confirming that both the Na2SeO3 and MeHg had displayed the expected 
effects on the fish.

6.4. Phase C - Recovery period 

6.4.1. Biological material, water/environmental conditions, 
image acquisition, processing, trajectory estimation 
and non linear trajectory analysis

The European seabass (Dicentrarchus labrax), which had survived Phase B, 
were used for Phase C. At the end of the second week of MeHg treatment, 10 fish from 
each tank were sacrificed for histological and biochemical analyses. The remaining 
fish in each tank were left to recover for the next 11 days, during which the treatments 
were withdrawn and the water was kept under constant circulation. The two new 
experimental cases during Phase C were: C5, the control group of this phase that had 
not been treated with MeHg and consisted of 26 fish; and C6, the group that had been 
treated with MeHg and consisted of 19 fish. As in Phase A - and unlike in Phase B - no 
mortality was registered during Phase C.

During the 11 days that Phase C lasted, both tanks were monitored daily 
and the Shannon entropy of the fish centroid’s trajectory was measured during the 
event response. Image acquisition, processing, trajectory estimation and non-linear 
trajectory analysis were performed as in Phase A and in Chapter 5. The basal images 
of the current phase were also lost due to the same hardware failure that affected 
Phase A.

6.4.2. Results and discussion

During Phase C we expected the fish to recuperate from the stressful 
conditions they had suffered in both tanks: C5 from the suboptimal water quality due 
to the halting of water circulation, and in C6 from both suboptimal water quality and 
exposure to MeHg. With no measurable effect on the Shannon entropy of the system’s 
response during Phase A (exposure to Na2SeO3), it was assumed that changes on 
this parameter at the end of Phase B and beginning of Phase C would be mostly 
attributed to the effects of the water quality and of the exposure to MeHg, that the 
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effect of the latter should be much more noticeable than the former and that the initial 
exposure to Na2SeO3 would not bear on the results. The last assumption is important 
in order to compare cases C5 and C6, since both of them were made up of mixed 
populations, regarding Na2SeO3 treatment and the treatment might help the fish in 
their recuperation of homeostasis.

The working hypothesis in this recuperation Phase C was that upon both: 
improvement of the quality of the water and withdrawal of the MeHg from the water, 
the fish will initiate a period of gradual recuperation to reach homeostasis, that the 
recuperation will be faster in the group not treated with MeHg (i.e., in C5) and that 
these changes will be reflected in the Shannon entropy of the shoal’s centroid, i.e., 
that the Shannon entropy values would be outside the optimal operational point at the 
beginning of Phase C (due to the stressful conditions and MeHg poisoning) and would 
tend to the optimal operation point values identified in Chapter 5 for 26 (in C5) and 19 
(in C6) fish as the systems approach homeostasis.

It has already been shown that MeHg-treatment had a measurable effect on 
the Shannon entropy of a European seabass biological system (Eguiraun et al., 2014) 
and Chapter 4. In the current work, immediately after the MeHg exposure period, the 
Shannon entropy values of the systems were of approximately 4 and 4.2 for C5 and C6 
respectively. It is noteworthy that while in C5 a more or less consistent trend towards 
increasing its Shannon entropy was observed during the subsequent recuperation 
period, such a trend was practically absent in C6, with daily Shannon entropy values 
almost erratically oscillating between 4.8 and 4.1 as shown in Figure 6.2, i.e., the trend 
that the Shannon entropy followed during the recuperation Phase C was remarkably 
different in both cases, although their average values was not (Table 6.2), i.e. the 
trend had a discriminatory value, but the values themselves, individually or averaged, 
did not (Figure 6.2 and 6.3).

Table 6.2. Averaged Shannon entropy values in response to an event during the recuperation Phase C in 
cases C5 (control) and C6 (exposed to MeHg during the previous 15 days’period). Note also the different 

number of fish in C5 and C6.

Shannon Entropy - Event

C5 (26 fish) 4.4440±0.2964

C6 (19 fish) 4.3799±0.3104
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Figure 6.2. Evolution of the Shannon entropy of the fish system during the Phase C. C5 (Control group 
with 26 fish) presents a more or less consistent trend towards increasing its Shannon entropy during the 
subsequent recuperation period. Such a trend was practically absent in C6 (MeHg exposed group with 19 
fish during the recovery period).
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A second observation from this work is that 11 days may not be a sufficiently 
long period of time for the European seabass fish system to achieve a full recovery from 
MeHg contamination, probably reflected by the randomness of the daily oscillation 
in its Shannon entropy. Shannon entropy on the other hand did seemed to follow a 
clearly increasing trend when the system was recuperating from a more modest stress 
(see C5 in Figure 6.2), were the lack of water circulation for 2 days periods may have 
only slightly affected the fish welfare.
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Figure 6.3. Averaged Shannon entropy values of C5 (Control group of 26 fish, purple colour) and C6 (MeHg-
exposed group of 19 fish, red colour) as response to an event plotted in the curve obtained with the data 
obtained in Chapter 5.

With the current data, and taking into account that the experiment was not 
designed for this particular monitoring methods, it is remarkable that the tool designed 
rendered meaningful results that corroborate the results obtained when investigating 
the effect of the number of individuals (Chapter 5). It is tempting to speculate that the 
fish behave like a system that suffers an alteration when a perturbation is introduced 
and that, unless the perturbation has a very big impact (such as that of MeHg poisoning), 
the system gradually re-adapts itself and gets back to a steady state. However, when 
the perturbation introduced has major consequences, the system presents a much 
less clear evolution along the recovery period, as seen in C6.
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6.5. Overall conclusion
At this point, the tool designed and related techniques may have an application 

in the monitoring of fish welfare and seafood safety. Thus, fish might be considered 
not suitable for consumption if their Shannon entropy is not within the optimal 
working range and displays widely daily oscillation patterns. These results may also 
be a first step towards classifying different stressors on fish systems according to the 
responses they induce on their Shannon entropy as well as helping to verify the fish 
welfare as absence of stressors.

We can therefore conclude from this Chapter that the tool developed in Chapter 
4 worked satisfactorily when applied to a complex, challenging, real-life experimental 
set up, and that it rendered meaningful results that sustain our initial hypothesis of its 
potential to function as an adequate monitoring tool in Fish Welfare Assurance System 
and Hazard Analysis and Critical Control Points systems.

This work tentatively confirms the proposed Hypothesis but additional 
experiments are required for a firm confirmation that exposure to MeHg would 
affect the entropy of the trajectory of the fish system and change its value, taking it 
outside what could be considered the optimal working range, and that removal of the 
contaminant would bring it back to the optimal working range.
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7.1. Introduction
This last chapter of the Thesis deals with using the knowledge generated in 

the earlier activities to create a first version of a model that ultimately will permit the 
integration of the Biological Warning System into a monitoring tool applicable to fish 
farming.

Two key issues in modelling are the complexity of the system subjected to 
study and the complexity of the model one wishes to create. Depending on those two 
degrees of complexity, different modelling techniques should be applied.

The different types of modelling methods have been described in the Chapter 
2 of the present Thesis. For the challenge this Thesis faces, the most suitable approach 
is the so called “Black box” modelling, a widely used technique for approximating 
unknown systems (Golubev and Horowitz, 1982; Kalaitzakis et al., 2008; Ma and Zuo, 
2014): in the system dealt with in the present Thesis only their inputs and outputs are 
known, there is no physical knowledge about the system, and the knowledge obtained 
is calculated from data acquired by observation/experimentation of/on the system, 
i.e., there was no previous knowledge about the European seabass system and the 
data input-output relationships were established and the model built based on the 
experimental cases performed in the previous chapters (Chapters 4-6).

7.2. Parameters of the model
As already mentioned, three sub-models have been created using knowledge 

extracted from the activities described in Chapters 4 to 6. Subsequently, these sub-
models should be combined to generate the integrated, or “overall” model. Basically, 
the present model is designed to detect differences in the status of the fish and 
generate the corresponding warning signals between the real online monitoring 
inputs and those established as “normal” inputs (based on knowledge) for the desired 
optimal operation point for the fish system.

Two of the reasons that make the modelling of the present system particularly 
complex are, on one hand, that there is no previous knowledge of the physical nature 
of the fish system itself and, on the other, that it bears a series of inherent attributes 
which are fundamentally complicated to model:

•	 Non-linear: basically, a non-linear system’s outputs do not obey the 
superposition principle, thus the outputs are not a linear combination of the 
inputs. This means that, since the non-linear equations from these systems 
are very difficult to solve, these systems are usually linearized around a 
certain operation point.

•	 Dynamic and time variant: since the fish system varies and evolves with time.

•	 Stiff: related with the system dynamics, systems that merge slow and fast 
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dynamics are considered to be stiff. These two different characteristics make 
the system work in very distant working points, which makes it a difficult 
system to deal with. For example, in the present Thesis there are very different 
time scales because there can occur simultaneously events in a time scale of 
seconds (i.e., the hit in the tank) and in a scale of days or weeks (the presence 
of contaminants).

•	 With initial conditions not equal to zero: this applies to systems that present 
a previous history, which affects directly to its evolution. Sometimes, the 
previous history is unknown.

As already mentioned, a black box modelling technique grounded on the 
input-output data relationship helped to deal with these limitations, and in this case, 
the input-output parameters used were those empirically obtained in the previous 
Chapters, namely: the fish number, and the system’s Shannon entropy in a basal state, 
as a response to an event, and its daily evolution.

7.3. Construction of the model
A schematic representation of a model integrating the three sub-models 

created based on empirical data is shown in Figure 7.1. The three sub-models are:

•	 Basal reference sub-model: built using the “basal entropy”, i.e. the entropy 
generated by the fish system in its basal state.

•	 Event reference sub-model: built using the “event entropy”, i.e. the entropy 
of the trajectory generated by the fish system in response to a hit in the tank.

•	 Basal/Event relationship reference sub-model: built using the ratio between 
the “basal” and the “event” entropies.
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 The error signals created measure the difference between the desired 
behaviour of the system from an optimal point of view and the online signals measured 
by the monitoring tool. These error signals are the outputs of the proposed “overall” 
model and they should be integrated in knowledge models of higher order, i.e., as 
inputs to the “Model integration” block in Figure. 7.1.
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Figure 7.1. Schematic representation of the model defining inputs, generated outputs due to error signals, 
internal variables and sub-model interactions. The output error signals should feed the subsequent phase 
of the model where all this information is integrated represented by the Model integration box.
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7.3.1. Basal-state reference sub-models

The sub-models corresponding to the reference basal states were built using 
the data obtained in Chapters 5 and 6 corresponding to the Shannon entropy of the 
basal states and their evolution during 5 days for the different number of fish tested (1, 
2, 3, 4, 5, 13, 25 and 50 from Chapter 5 and 76 from Chapter 6). Table 7.1 summarizes 
the daily mean values (each day 3 measurements of the basal entropy were made) of 
the Shannon entropy of the basal state.

Table 7.1. Shannon entropy values of the basal states. The data in the table were obtained from the 
experiment described in Chapter 5, except those denoted with *, which came from the experiment described 
in Chapter 6.

# fish
Day

1 2 3 4 5

1 0.56±0.29 1.28±0.74 0.68±0.59 1.37± 0.37 1.44±0.70

2 2.36±0.23 2.36±0.23 2.36±0.23 2.36±0.23 2.36±0.23

3 2.96±0.26 2.96±0.26 2.96±0.26 2.96±0.26 2.96±0.26

4 3.46±0.35 3.46±0.35 3.46±0.35 3.46±0.35 3.46±0.35

5 3.55±0.35 3.55±0.35 3.55±0.35 3.55±0.35 3.55±0.35

13 4.04±0.20 4.02±0.15 4.48±0.45 4.10±0.25 4.16±0.41

25 4.73±0.04 4.63±0.23 4.58±0.15 4.49±0.21 4.58±0.27

50 4.77±0.19 4.80±0.22 4.67±0.10 4.71±0.11 4.88±0.30

76* 4.57±0.214 4.33±0.30 4.71±0.06 4.79±0.67 4.61±0.45

The data from Table 7.1 were used to construct the daily sub-models 
corresponding to the basal states for each of the 5 days by fitting a curve that followed 
the equation: y=u∙xv+w, as it was done in Chapter 5, where y is the Shannon entropy; 
x is the number of fish and u, v and w are the coefficients of the fitted curve. The 
goodness of the fit for each curve was also calculated. The data are shown in Table 7.2 
and plotted in Figure 7.2.
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Table 7.2. Parameters of the sub-models for the daily basal states estimated using the data from Table 7.1.

y=u∙xv+w 1 day 2 day 3 day 4 day 5 day

Model name basal 1 basal 2 basal 3 basal 4 basal 5

Coefficients

u -4.32 -3.694 -4.302 -3.896 -3.879

v -0.7532 -0.6116 -0.7349 -0.5099 -0.5076

w 4.887 4.917 4.957 5.229 5.248

Goodness of 
the fit

SSE 0.1509 0.2686 0.05532 0.05245 0.1316

R-Square 0.9898 0.9743 0.9962 0.995 0.9875

Adjusted

R-Square
0.9864 0.9657 0.9949 0.9934 0.9833

RMSE 0.1586 0.2116 0.09602 0.0935 0.1481

Figure 7.2. Plot of the daily basal sub-models (basal 1, 2, 3, 4 and 5 as named in Table 7.2) that correspond 
to the Shannon entropy of the basal states of days 1 to 5 respectively.
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7.3.2. Response to the stochastic event reference sub-models

The sub-models corresponding to the reference responses to the stochastic 
event were also built using the data obtained in Chapter 5 - 6 corresponding to the 
Shannon entropy of the response to the event and their evolution during 5 days for the 
different number of fish tested (1, 2, 3, 4, 5, 13, 25 and 50 from Chapter 5 and 76 from 
Chapter 6). Table 7.3 summarizes the daily values (in this case, only one measurement 
per day was made) of the Shannon entropy of the response to the event state.

Table 7.3. Shannon entropy values of the response to the event. The data in the table were obtained from 
the experiment described in Chapter 5, except those denoted with *, which came from the experiment 
described in Chapter 6.

# fish
Day

1 2 3 4 5

1 2.78 2.13 2.16 1.82 1.90

2 3.22 3.22 3.22 3.22 3.22

3 3.15 3.15 3.15 3.15 3.15

4 3.51 3.51 3.51 3.51 3.51

5 3.32 3.32 3.32 3.32 3.32

13 4.37 4.14 4.30 4.04 4.23

25 4.91 4.65 4.57 4.67 5.43

50 4.89 5.45 4.95 4.81 4.82

76* 5.16 4.74 4.78 5.86 5.29

The data from Table 7.3 were used to construct the daily sub-models 
corresponding to the response to the event states for each of the 5 days by fitting a 
curve that followed the equation: y=u∙xv+w, as it was done in Chapter 5, where y is 
the Shannon entropy; x is the number of fish and u, v and w are the coefficients of the 
fitted curve. The goodness of the fit for each curve was also calculated. The data are 
shown in Table 7.4 and plotted in Figure 7.3.
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Table 7.4. Parameters of the sub-models for the daily response to the event estimated using the data from 
Table 7.3.

y=u∙xv+w 1 day 2 day 3 day 4 day 5 day

Model name event 1 event 2 event 3 event 4 event 5

Coefficients

u -613.5 -4.899 -3.854 -14.55 -4.75

v -0.000968 -0.2056 -0.2775 -0.05944 -0.2733

w 616.2 7.133 6.095 16.72 6.756

Goodness of 
the fit

SSE 0.3123 0.6407 0.2658 0.7401 0.8592

R-Square 0.9526 0.9229 0.9613 0.9329 0.9199

Adjusted

R-Square
0.9368 0.8972 0.9483 0.9105 0.8933

RMSE 0.2281 0.3268 0.2105 0.3512 0.3784

Figure 7.3. Plot of the daily response to the event sub-models (event 1, 2, 3, 4 and 5 as named in Table 
7.4) that correspond to the Shannon entropy of the response to the event for days 1 to 5 respectively.
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7.3.3. Basal/Event response reference sub-models

A third model was constructed based on the existing relationship between the 
Shannon entropies of the basal state and that of the response to the event. This model 
uses as input the mean of the basal Shannon entropies and as output the Shannon 
entropies of the responses to the event for each of the 5 days. Table 7.5 shows these 
values, which are obtained by merging Table 7.1 and Table 7.3. Once again, all the 
data belong to Chapter 5, except by the one corresponding to 76 fish that belong to 
Chapter 6.

Table 7.5. Merging of Tables 7.1 and 7.3 showing the Shannon entropy values for the basal state and for 
the response to event for each experimental day. The data in the table were obtained from the experiment 
described in Chapter 5, except those denoted with *, which came from the experiment described in Chapter 6.

# fish
1 day 2 day 3 day 4 day 5 day

Basal Event Basal Event Basal Event Basal Event Basal Event

1 0.56 2.78 1.28 2.13 0.68 2.16 1.37 1.82 1.44 1.90

2 2.36 3.22 2.36 3.22 2.36 3.22 2.36 3.22 2.36 3.22

3 2.96 3.15 2.96 3.15 2.96 3.15 2.96 3.15 2.96 3.15

4 3.46 3.51 3.46 3.51 3.46 3.51 3.46 3.51 3.46 3.51

5 3.55 3.32 3.55 3.32 3.55 3.32 3.55 3.32 3.55 3.32

13 4.04 4.37 4.02 4.14 4.48 4.30 4.10 4.04 4.16 4.23

25 4.73 4.91 4.63 4.65 4.58 4.57 4.49 4.67 4.58 5.43

50 4.77 4.89 4.80 5.45 4.67 4.95 4.71 4.81 4.88 4.82

76* 4.57 5.16 4.33 4.74 4.71 4.78 4.79 5.86 4.61 5.29

A linear relationship was identified between the Shannon entropy value of the 
basal states and that of their corresponding responses to the stochastic event, i.e. the 
model fitted a first order polynomial described by the equation: y=u∙x+v, where y is 
the Shannon entropy of the response to the event, x is the basal Shannon entropy and 
u and v are the coefficients of the fitted curve. The goodness of the fit for each curve 
was computed and all the values are sumarized in Table 7.6 and plotted in Figure 7.4.
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Table 7.6. Parameters of the sub-models for the relationship between the daily Shannon entropies of the 
basal state and the corresponding response to the event response estimated using the data from Table 7.5.

y=u∙xv+w 1 day 2 day 3 day 4 day 5 day

Model name
basal-
event 1

basal-
event 2

basal-
event 3

basal-
event 4

basal-
event 5

Coefficients
u 0.5805 0.8403 0.6516 0.952 0.9462

v 1.924 0.8816 1.496 0.459 0.511

Goodness 
of the fit

SSE 1.595 0.9456 0.6939 1.45 1.301

R-Square 0.7578 0.8863 0.8989 0.8686 0.8788

Adjusted
R-square

0.7232 0.87 0.8844 0.8498 0.8615

RMSE 0.4774 0.3675 0.3148 0.4551 0.4311

Figure 7.4. Plot of the relationship between the basal and the response to the event entropies for each 
experimental day. The name of the sub-models: basal-event 1, 2, 3, 4 and 5 are described in Table 7.5.
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7.4. Integrated model
Merging the previously defined sub-models within the architecture shown in 

Figure 7.1, the overall model proposed is summarized in Figures 7.5, 7.6 and 7.7; and 
the elements of the model are explained in Table 7.7. The main purpose of this model is 
to serve as a reference point to detect deviations from the expected Shannon entropy 
values. For a system operating in a satisfactory manner, the outputs of each sub-model 
would be within their acceptable operational range, i.e., within the –empirically in this 
case– established critical limits. Shannon entropy values outside these limits would 
indicate that a deviation from the acceptable operational range has taken place and 
immediately a pre-established protocol must be followed until the system is shown to 
be restored to its acceptable operational range.

Fish number
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Figure 7.5. Reference sub-model based on the evolution of the basal Shannon entropy of the system during 
5 consecutive days. The measured Shannon entropy of the basal state is compared with the empirically 
estimated to be the optimal one, and the difference between the two (the error) is calculated.
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Figure 7.6. Reference sub-model based on the evolution of the Shannon entropy corresponding to the 
system’s response to the stochastic event during 5 consecutive days. The measured Shannon entropy of the 
response to the event is compared with the empirically estimated to be the optimal one and the difference 
between the two of them (the error) is calculated.
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Figure 7.7. Basal-Event Reference sub-model based on the evolution of the Shannon entropy corresponding 
to the system’s response to the stochastic event during 5 consecutive days. The calculated ratio of the 
Shannon entropies is compared with the empirically estimated to be the optimal one and the difference 
between the two of them (the error) is calculated.
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Table 7.7. Elements of the model, shown as abbreviations in Figures 7.5, 7.6 and 7.7.

Parameter Variable Type

Number of fish Number of fish introduced as a set point Input-Set value

b1…b5 Shannon entropy of the system in the basal state Input-variable

e1…e5
Shannon entropy of the system in response to the 

stochastic event
Input-variable

be1…be5
Difference between the established acceptable basal 

Shannon entropy of the system and the measured 
one

Output-variable

ee1…ee5
Difference between the established acceptable 

Shannon entropy of the system as a response to a 
stochastic event and the measured one 

Output-variable

bee1…bee5

Difference between the acceptable and the 
measured ratios between the basal Shannon 

entropy of the system and the Shannon entropy in 
response to the stochastic event 

Output-variable

basal1…basal5
Sub-model corresponding to the Shannon entropy of 

the system in the basal state
Model-internal

event1…event5
Sub-model corresponding to the Shannon entropy of 

the system in response to the stochastic event
Model-internal

basal-event1 …
basal-event5

Sub-model corresponding to the difference between 
the acceptable and the measured ratios between 
the basal Shannon entropy of the system and the 

Shannon entropy in response to the stochastic event

Model-internal

7.5. Discussion
The introduction in fish biological systems of factors that affect fish health and 

welfare (such as methylmercury, chlorine, and others) have been shown by several 
authors to induce changes in the entropy of the system (Bae and Park, 2014; Forlim 
and Pinto, 2014; Kadota et al., 2011; Liu et al., 2011a; Quach et al., 2013; Spasic 
et al., 2011). These variations in the Shannon entropy could serve the fish farmer to 
detect alterations/malfunctions, proceed immediately (following standard operation 
procedures that must be defined by each enterprise) to identify the cause of the 
deviation and to eliminate it or bring it under control. In some cases, these actions will 
prevent a contaminated batch to reach the seafood market, in others, it will aid in the 
early detection of alterations that could carry large financial losses if left unattended 
(such as diseases, presence of parasites, aggression) and, in all of them, it will help 
to keep the system’s homeostasis and avoid endangering the welfare of the animals.
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Modelling biological systems is a complex matter, not only due to their 
non-linearity, the fact that they change and evolve with time, merging slow and fast 
dynamics and with initial conditions different from zero, but also because the total 
number of variables/properties that make up the system, their combinations and 
interactions are often unknown. To establish a functional Biological Warning System 
in fish farming means that relevant information must be collected and included in 
the main model. For example, the genetic make up of the species may determine the 
dynamics of their responses, swimming and shoaling behaviour (Wark et al., 2011). 
Different contaminants may affect the behaviour in different manners (Brodin et al., 
2013; Eguiraun et al., 2014) and it is also possible that the effect changes with the 
length of the exposition time.

It must be kept in mind that in a stiff system, the fast responses may 
correspond to a normal response, for example to a stressor (a perceived attack, a hit 
in the tank). However it is the stressors that take place in a longer time scale (days, 
weeks and/or months) the ones that negatively affect the welfare of the fish increasing 
their susceptibility to diseases and therefore bear a higher relevance within the model 
due to their higher capability to seriously disrupt the homeostasis of the entire system.

 In summary, this model must be considered as a first step in achieving an 
on-line fish welfare monitoring method. Further work needs to be done in order to 
improve and optimize the proposed model and/or in order to create new ones. For 
example, there maybe factors affecting fish welfare that need a different modelling 
approach. The improvement of the model demands the collection and integration into 
it of all relevant information; testing and validating it for different settings and factors 
affecting fish welfare.
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This Chapter summarizes the contributions the present Thesis has made to the 
state of the art on the development of monitoring tools based on Biological Warning 
Systems applicable to aquaculture. The first part of this Chapter consists of a General 
Discussion, followed by the Conclusions and the Thesis of the study. The last section is 
devoted to some suggestions about future possibilities in this research area.

8.1. General discussion
The Main Objective of the Thesis was to design and develop a tool that using 

a fish system as a sensor could be implemented within a Biological Warning System 
in the aquaculture industry. European seabass (Dicentrarchus labrax) was selected 
as the model species for its relevance in Southern European aquaculture. It should 
be stressed that the aim was not to map behavioural characteristics such as time 
swimming or resting, aggressive behaviour or the shoaling itself, which would require 
a different methodological approach.

The Main Objective was targeted in Chapter 4 that describes the structure of 
the tool. The information was non-invasively acquired by video recording the trajectory 
described by the shoal of fish as a response to a stochastic event (a hit in the tank) and 
it was further processed by different non-linear signal processing algorithms, of which 
the Shannon entropy of the system was selected for being the most diagnostic one 
to discriminate between groups known to be very different. The selection of Shannon 
entropy as a suitable parameter is in accordance with the work of Wark et al. (2011) 
on stickelbacks. Interestingly, these authors showed that the Shannon entropy was 
able to extract information from the system that classical analysis tools did not and, 
in addition, demonstrated that the shoaling behaviour of the stickelbacks had a clear 
genetic component.

The non-invasive tool developed targeted the responses of the fish groups 
rather than that of individual fish, both to reduce the computational effort and because 
the response of the group may be considered the result of integrating all the responses 
contributed by each individual fish, and therefore may represent better the system than 
that of individual fish, since the latter may be influenced by the physiological status 
of the individual, its size, status in the school’s hierarchy and other factors that are 
usually unknown when the monitoring is performed. Also, the response to a stochastic 
event was measured instead of other behavioural aspects (swimming pattern, daily 
activity, feeding, aggressiveness, etc.) because it permits to restrict the computational 
analysis in time to the duration of the response (three minutes was sufficient in our 
case, rather than observing the animals for longer periods of time where more variables 
may play a role) and to reproduce the event at will in other settings for comparison 
purposes. Chapter 4, thus, answers Research Questions 1 and 2, demonstrating that 
fish subjected to a perturbation/stressor alter their behaviour and that the differences 
are measurable in a non-invasive manner.

The number of fish is a particularly interesting variable when trying to establish 
the Optimal Working Point/Range for the system because it had not been tested how 
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it could affect the system’s behaviour, particularly for shoaling species. This leads to 
the work performed in Chapter 5, that targets the First Secondary Objective, namely 
how the fish system reacts to a change in the number of individuals and also answers 
the 3rd Research Question, indicating that the number of fish is indeed a variable that 
influences the Shannon entropy of the system.

The number of fish is usually not considered a variable influencing the 
system unless the number is too high, for example during crowding, which is known 
to negatively affect the fish welfare in a species-specific manner (Boerrigter, 2015). 
Based on previous studies (Di Marco et al., 2008; Papoutsoglou et al., 1998) it was not 
expected to find large differences attributable solely to the number of fish, for example 
between the groups with 81 and 41 fish used in Chapter 4. Nevertheless, since this 
was a variable that had not been tested before, it was considered interesting to assess 
its weight in the Shannon entropy of the system.

Chapter 5 showed that the Shannon entropy of the European seabass system 
is highly dependent on the number of individuals for a few fish (from 1 to 5) becoming 
more independent from the number as it increases and that this dependence nicely 
fits an exponential curve. Nonetheless, it must be mentioned that the physiological 
meaning of this dependency remains unknown and therefore it cannot be said that 
it represents a response to a stress, for example that too few individuals may be 
considered a stressful situation for a shoaling species, although in view of the shoaling 
nature of the species this may well be the case. It was also observed that the Shannon 
entropy of the response to an event of the fish system was usually higher than that of 
its basal state.

For European seabass monitoring it seems that a number between 5 and 13 
individuals may be the lowest suitable number to achieve meaningful results —for 
example to perform experiments or to set up a Biological Warning System monitoring 
unit. However, there is a need to identify also the number corresponding to too many 
individuals, i.e. the number of individuals that would make the system collapse. For 
example, overcrowding may limit the space where each animal can move, which will 
in turn make the movement of the centroid of the shoal appear increasingly stagnatic, 
regardless of whether the individuals themselves move or not. In this latter case the 
Shannon entropy value of the system may revert to lower values, or even become 
zero for a completely static centroid. Thus, it is necessary to identify the values of 
both many individuals and too many individuals within which the results are valid, i.e., 
within the Operational Working Range of the system. For the applications targeted by 
this work, i.e., implementation of a Biological Warning System in aquaculture and for 
experiments that require fish, we consider that 5-13 fish may be adequate using the 
same species and strains of fish, tanks and conditions used in this Thesis.

The concepts shown in Chapter 4 and 5 may probably apply not only to 
European seabass, but also to other similarly shoaling species. Although the behaviour 
and response of the system will likely be species-specific (Boerrigter, 2015), the author 
considers that this approach might be applied with few modifications to monitoring 
salmon, charr, cod or trout, but it will likely need some modifications if applied to 
species with different behaviour, such as eels or flatfish.
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The application of the tool to an experimental case where European seabass 
were exposed to sodium selenite and/or methylmercury is shown in Chapter 6. This 
Chapter addresses the 2nd and 3rd Secondary Objectives, namely, the reaction of the 
fish system to a dietary supplement of selenium and to methylmercury, a neurotoxic 
contaminant and responds to Research Questions 1 and 2, showing that fish subjected 
to a chemical contaminant do alter their behaviour and that it is possible to non-
invasively quantify it. Moreover, Chapter 6 uses the knowledge generated in Chapter 
5 on the influence of the number of fish on the Shannon entropy of the system.

The study of Chapter 6 was a complicated one because the addition of 
sodium selenite and/or methylmercury to the water in the tanks involved a halting of 
the water circulation for a few days and although the water quality parameters were 
within acceptable limits, some turbidity developed that possibly affected the welfare 
of the fish and the Shannon entropy of the system’s response. However these were 
limitations imposed by the experiment that can, in fact, resemble real life conditions 
and were therefore very interesting to test. The addition of sodium selenite, a dietary 
supplement (used also for humans), for a week did not affect the Shannon entropy 
of the system. This was expected because the amount added was within the limits 
considered to have a counteracting effect on methylmercury toxicity on the fish 
system. In was noteworthy that the values of Shannon entropy for the fish system 
during the entire week agreed with those calculated according to the equation of the 
fitted curve from Chapter 5.

Unfortunately, the quality of the images obtained during the period of 
exposure to the environmental contaminant methylmercury was too poor to produce 
reliable results. However, biochemical analyses indicated that methylmercury-
treatment had had a clear negative effect, and that sodium selenite had exerted the 
expected protective effect (Vitalle, 2014).

The last phase of Chapter 6 indicates that the Shannon entropy of the fish 
system during an 11 day recovery period after the exposure to methylmercury lacked 
a clear tendency, displaying random and erratic values that changed from day to day, 
while it tended to increase in the not-exposed control group. This work presents two 
interesting implications: one is that 11 days may not a be a sufficiently long period of 
time for the European seabass fish system to achieve a full recovery from the amount 
of methylmercury used in this work, and the other is that, if one wishes to use the 
Shannon entropy as a parameter, both its value and the daily evolution of the value, 
must be taken into account for a fish welfare assessment system.

The last Chapter of this Thesis, Chapter 7, consists of developing a model 
based on the knowledge generated in Chapters 4-6, and thus fullfils the 3rd and 
last Objective of the Thesis and responds to the 4th Research Question, by building 
a mathematical model that responds to differences between the measured and the 
desired behaviours of the system.
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Modelling biological systems is a complex matter, not only due to their 
non-linearity, the fact that they change and evolve with time, merging slow and 
fast dynamics and with initial conditions different from zero, but also because the 
total number of variables/properties that make up the system, their combinations 
and interactions are often unknown. Based on the empirical results obtained it was 
considered necessary that the model should contain at least three reference sub-
models, namely a basal sub-model, a sub-model on the response to the event and the 
basal-event relation sub-model. Moreover, the model should register the response of 
the system during at least five consecutive days based on the information obtained in 
Chapter 6, namely that systems subject to some stressors (methylmercury) may need 
some days to recover and that the daily evolution of the Shannon entropy is therefore 
a meaningful parameter. To establish a functional Biological Warning System in fish 
farming means that relevant information must be collected and included in the main 
model. For example, the genetic makeup of the species may determine the dynamics 
of their responses, swimming and shoaling behaviour (Wark et al., 2011). Different 
contaminants may affect the behaviour in different manners (Brodin et al., 2013; 
Eguiraun et al., 2014) and it is also possible that the effect of the stimuli/stressor 
change with the length of the exposition time, perhaps due to adaptation of the 
system to the stimuli (for example to lack of exercise, poor diet, etc) or to the stimuli 
inducing a final collapse of the system (for example high mortality due to diseases and 
infections). Furthermore, different species will likely respond in a different manner to 
the same stressor, as shown by the physiological parameters measured in catfish and 
eel in response to the stress generated during transport (Boerrigter, 2015).

In any case, it is clear to the author that the knowledge and the tool 
generated in this work is a valid addition and complement to the wealth of knowledge 
generated from studies on biochemical, histological and physiological parameters and 
particularly on works applying -omics techniques, to obtain an integrated vision of 
what fish welfare really is, the physiological meaning of the variations in the Shannon 
entropy of the system, and ultimately to achieve an effective, affordable and reliable 
on-line tool for welfare monitoring.

8.2. Conclusions
1. A monitoring tool has been developed consisting of a methodology for image 

acquisition, processing and non-linear trajectory analysis of the fish shoal’s 
cluster centroid, suitable to identify variations in the response of a fish group 
to an event.

2. The Shannon entropy of the fish system has been shown to be the best 
parameter to analyse the trajectory of the cluster’s centroid.

3. The Shannon entropy of the European seabass system is highly dependent on 
the number of individuals for a few fish (from 1 to 5) becoming more independent 
from the number as it increases.
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4. The relationship between the Shannon entropy of a European seabass system 
and the number of fish fits an exponential curve.

5. The tool developed worked satisfactorily when applied to a complex, 
challenging, real-life experimental set up, and it rendered meaningful results 
that sustain the initial hypothesis of this Thesis.

6. The tool indicated that the addition of sodium selenite for six days to the 
European seabass system in concentrations expected to exert a protective 
effect against methylmercury toxicity did not affect the Shannon entropy of 
the system.

7. The tool indicated that the addition of methylmercury for two weeks to the 
European seabass system in concentrations expected to exert a toxic effect did 
affect the Shannon entropy of the system.

8. Application of the tool to a European seabass system indicated that not only 
the Shannon entropy value but also its daily evolution need to be included as 
parameters in a fish welfare monitoring procedure.

9. A model has been developed integrating the daily behaviour of three reference 
sub-models, namely the basal state reference sub-model, the response to the 
stochastic event reference sub-model and the basal-event response reference 
sub-model.

10. The tool, after the necessary improvements and optimizations, has the potential 
to be embedded in an on-line/real time architecture to monitor fish schools in a 
farm and in the wild, and therefore this kind of approach may find an application 
as a monitoring tool in Fish Welfare Assurance and Hazard Analysis and Critical 
Control Points systems in fish farming, and to identify contaminated waters in 
environmental monitoring programs.

8.3. Thesis
The Thesis of this study is that a fish system can be used as a biological sensor 

because the alteration of its behaviour in response to external stimuli is quantifiable 
and can be non-invasively monitored. Furthermore, the alteration of the behaviour, as 
measured by the Shannon entropy of the system, has the potential to serve as a tool 
for on-line fish welfare monitoring.

8.4. Future prospects
Given the increasing interest in setting up Recirculating Aquaculture Systems 

where monitoring the entire production unit (i.e. the tank) may become feasible, the 
methodology here proposed may have a clear potential to aid implementing intelligent 
monitoring and control aquaculture systems but it needs to be tested and validated 
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with more contaminants, stressors and fish species, prior to be embedded in real-
time automatic systems using artificial intelligence methods. Technically, the method 
presented here demands a relatively large computation capability, particularly for the 
image-processing step, which is certainly susceptible of improvement. Therefore a 
future line of research may deal with the improvement of the methodology to obtain 
information on the analysis of the fish clusters trajectories; for example technically 
improving the data acquisition tools, such as echo-sounds, infrared images and 
hyperspectral images, among others.

This approach also demands the identification of the too many fish number 
that would make the system collapse, not only because the measurements obtained 
outside that range would not be reliable, but also because it will probably indicate a 
loss of welfare due to crowding (which, as mentioned above, will also be a species-
specific parameter, since some species thrive at very high densities). Many other 
variables will likely impact the system such as the size/weight of the fish, the degree 
of sexual maturation, genetic makeup and others.

A wide field of research lays ahead when exploring the possibilities of 
applying this and related tools to different fish species, from fresh- and seawater under 
different environmental conditions. And yet this work must be done if such a tool is to 
be implemented, particularly if it is intended to become a commercial technology or a 
product.

Additional research is required to optimize this kind of methodology in order 
to embed it within an on-line/real time architecture to monitor fish schools in a farm 
and in the wild, so that this kind of approach finds an application within Fish Welfare 
Assurance and Hazard Analysis and Critical Control Points systems in fish farming, and 
to identify contaminated waters in environmental monitoring programs.

Finally, the knowledge and the tool generated in this work must be merged 
to the wealth of knowledge generated from studies on biochemical, histological and 
physiological parameters and particularly on works applying -omics techniques, to 
obtain an integrated vision of what fish welfare really is, the physiological meaning 
of the variations in the Shannon entropy of the system, and ultimately to achieve an 
effective, affordable and reliable on-line tool for welfare monitoring.
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Sarrera
Etorkizun hurbilera begira gizakion kopurua ez ezik (Gerland et al., 2014; United 

Nations, 2014), itsas elikagaien ekoizpenaren eta kontsumoaren hazkundea espero 
da. Azken honen hazkundeak, batipat, akuikulturak bideratuko du (German Advisory 
Council on Global Change - WBGU, 2013). Akuikultura, ekoizpena handiagotzeko 
helburuagaz, itsas organismoen hazkunde kontrolatua da. Bertatik lortzen diren 
produktuak era askotakoak izan daitezke: arrainak, moluskuak, krustazeoak, algak 
eta itsas landareak dira ezagunenak. Baina kokodriloak, dortokak eta beste motatako 
zenbait animalia urlehortarrak ere ekoizten dira. Era berean, akuikultura instalazioek 
kokapen desberdinak euki ditzakete: itsas kostaldean zein itsasadarretan baina lur 
barnean zein ibai edo lakuen ondoan ere aurkitu daitezke.

Beste edozein ekoizpen prozesu bezala, sortzen diren produktuen 
kalitatea erronka garrantzitsuenetariko bat da. Eta kalitatea, kontuan izanda 
sortzen diren produktuak gizakion kontsumorako direla, ekoiztutako animalien 
osasungarritasunarekin bat doa. Kezkarik garrantzitsuenetarikoa itsas elikagaien 
ekoizpenean ur ingurugiroan dauden kutsatzatzaileek ekoiztutako produktuetan 
duten efektua da. Kutsatzaileak gero eta kantitate haundiagoetan azaltzen dira eta 
gainera, gero eta kutsatzaile berri gehiago agertzen dira (Bevan et al., 2012; Roose 
et al., 2011). Kutsatzaileak ez dira bakarrik uretara izurtzen, animaliei emoten zaien 
elikagaiak ere kutsatuta egon daitezke (Dahle et al., 2010; Dobson et al., 2008; 
Sharma and Paradakar, 2010). Hoierariko kutsatzaile askok ere, animalien ongizatean 
efektu negatiboak izaten dituzte eta galera ekonomiko haundiak sortarazten dituzte. 
Gaur egun, kutsatzaileak antzemateko metodo ez-inbasiboen galera dago. Hare eta 
gehiago, kutsatzaile berriak detektatzeko metodorik ez dago, antzemate metodoak 
kutsatzaile bakoitzeko ezpezifikoki diseinatsen direlako eta gero eta kutsatzaile berri 
gehiago detektatzen direlako, adibidez gizakion kontsumorako uran (Dahle et al., 
2010; Roose et al., 2011).

Tesi honek, monitorizazio metodologia ez inbasibo bat garatzen du non 
arrainak Alerta Sistema Biologikoa (Biological Warning System - BWS) giza erabiltzen 
dira. Arrainak, euren igeriketa jokabidea aztertuz, sensore bat balira kontzideratzen 
dira. Metodologia honen abantailarik esanguratsugarrienak dira: i) teknologia 
eskuragarria bideratzea, ii) monitorizazio on-line-a uzten duela eta iii) mota 
ezberdinetako kutsatzaileekin, ezagun ala ezezagun, lan egiteko ahalmena izango 
duela.

Azkenik, proposatutako Alerta Sistema Biologikoa beste hierarkia handiagoko 
sistemekin egon beharko luke harremanetan eta sistema guzti hauen emaitzak 
ekoiztutako produktuen trazabilitate agiriekin batera joan beharko lukete azken 
produktuak merkatuara heltzerakoan. Hierarkia handiagoko sistema hauek Arrizku 
Analisis eta Punto Kritikoen Kontrol (Hazard Analysis and Critical Control Point - HACCP) 
eta Arrain Ongizate Segurtasun Sistemak (Fish Welfare Assurance System - FWAS) dira 
hain zuzen ere (van de Vis et al., 2012).
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Hipotesia
Tesi hau ondoko hipotesian oinarrituta dago:

Arrain multzo batek sentsore biologiko bat izango balitz bezala jokatuko du; 
arrainen jokabidea, arrainen erantzun biologiko eta fisiologikoak batzen dituena, kanpo 
estimuluen aurrean modu ez inbasiboan neurtu daitekelako. Honek, arrain-sistemaren 
jokabidearen aldaketa on-line monitorizaziorako tresna gisa erabiltzea bideratzen du.

Helburuak eta ekarpenak
Tesi honen helburu garrantzitsuena arrainak sentsore giza erabiliz, arrainen 

ongizatea on-line monitorizatzeko eta akuikultura industrian aplikatzeko tresna 
baten disenua eta eraikuntza da. Honetarako, jakintza alor anitzak jorratzen dira, 
hala nola biologia, etologia, ingurugiroaren ikuskaketa, arrainen ongizatea, elikagain 
kalitatearen fidagarritasuna, sistemen ingenieritza edota seinaleen prozesamendu 
ez-lineala.

Lupia (Dicentrarchus labrax) izan da Tesi hau garatzeko aukeratutako arrain 
mota bi arrazoi nagusirengatik. Batetik, mediterraneo itsasoko herrialdeetako 
akuikultura produkzioan oso hedatuta dagoelako eta, aurrekoarekin loturik, lupiaren 
produkzioan arrainen ongizatearen eta azken produktuaren kalitatea oso garrantzitsua 
delako, gehienbat gizakion kontsumora bideraturiko produktua delako hain zuzen.

Bigarren mailako helburuak, proposatutako tresnaren ebaluazioarekin lotuta 
egoteaz gain, diseinatutako sistemak aldagai ezberdinen menpean duen portaera 
aztertzen dute, hala nola:

•	 Arrain-sistemaren erantzuna arrain kopurua aldatuz.

•	 Arrain-sistemaren erantzuna arrainen dietari selenioa gehitzerakoan.

•	 Arrain-sistemaren erantzuna urari kutsatzaile neurotoxikoa den metilmekurioa 
gehitzerakoan.

Hirugarren eta azken helburua, aurreko bi helburuen bitartez garatutako 
informazioa, ezagutza-eredu batetan isladatzearekin dator bat.

Helburu hauekin loturik, Tesi honek ondoko ekarpenak ditu:

•	 Sistemen ingenieritzan oinarritutako lan metodologia berri bat garatu da.

•	 Ez-inbasiboa, moldakorra, merkea eta Alerta Sistema Biologiko sistema 
batetan egokitzeko gai den irudi analisian oinarritutako tresna bat garatu da.

•	 Perturbazio bati erantzunez arrain multzoaren mugimendu ereduan 
oinarrituriko sentsore bat garatu da.

•	 Arrainen multzoaren igeriketa ereduari aplikatu ahal zaizkion zenbait seinale 
prozesaketa metodo ez-lineala garatu dira.
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•	 Arrainen erantzuna kanpotiko perturbazio baten aurrean modelatzen duen 
eredu matematikoa garatu da.

•	 Garatutako metodologia eta monitorizazio tresna zenbait kasu 
experimentaletan aztertu da.

Ikerketa Metodologia
Ikerketa metodologiaren aldetik, Glass-ek (1995) proposatutako pausu 

berdinak jarraitu dira. Honela, Tesia lau faseetan banaturik dago: jakinarazte fasea, 
fase proposizionala, fase analitikoa eta ebaluaketa fasea. Era berean, erabilitako 
metodologia zati zientifiko eta zati enpiriko baten batura da. Ikerketa metodologia 
honek erdiesten dituen onurak ondokoak dira:

•	 Erabilitako ikerketa metodologia arrainen multzoak eta bere ingurugiroak 
osatzen duten sistemaren dinamika ulertzeko ezin bestekoa izan da.

•	 Tesian garatuta tresna zenbait kasu partikularretan aztertu da. Honela, 
tresnaren onurak ez ezik bere mugak ere aztertu ahal izan dira.

•	 Garatutako tresna benetako akuikultura instalazio batetan inplementatzeko 
bideragarritasuna aztertu da Norbegiako “Centre for Autonomous Marine 
Operations and Systems (AMOS)” Ikerketa Zentruan hiru hilabeteko ikerketa 
egonaldiari esker. Egonaldia Europa Batasuneko ikerlari mugikortasun beka 
batekin finantziatu da —European Economic Area (EEA) Researcher Mobility 
and Co-operation Grant, NILS Science and Sustainability Programme.

•	 Publikatutako lanen maila, kalitatea eta irismena handiagotu da.

•	 Etorkizunean, ikerketa proiektu eta gertaeretan parte hartzeko ahalmenaren 
handiagotzea, ikerlariaren kontaktu sarearen handiagotzearekin batera.

Azkenik, Tesiaren zati experimentalak Yin-en (1993) kasu-ikerketaren oinarriak 
jarraitzen ditu. Kasu-ikerketa metodoa ezagutza induktiboa sortzeko erabiltzen da eta 
eguneroko gertakari erreal eta komplexuei aplikatzerakoan baliagarritasun handia 
erakusten du.

Lanaren Garapena
Tesi honen lehenengo zatian, irudi analisian oinarritutako metodologia 

ez-inbasibo bat garatzen da. Metedologia hau, video grabaketa, irudi prozesaketa 
eta seinale ez-linealen analisi eta prozesaketan datza. Arrain multzoaren erantzuna 
gertaera estokastiko edo aleatorio baten aurrean aztertzen eta neurtzen da. Irudietan 
agertzen diren objetuen antzematea, fluxu optikoko algoritmo baten bitartez burutzen 
da. Honela arrainak detektatu ez ezik, irudien atzealdea eta bestelako efektu ez 
desiratuak ezabatzen dira. Azkenik, arrain multzoaren zentruak jarraitzen duen 
ibilbidea, Shannon (Shannon, 1951, 1948) eta permutazio entropia (Bandt and Pompe, 
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2002) batetik; eta Higuchi (1988), Katz (1988) eta Castiglioni-k (2010) proposatutako 
Katz algoritmoaren aldaketaren bitartezko dimentsio fraktal algoritmoez aztertzen da.

Garatutako monitorizazio tresna hiru kasu partikularretan aztertu zen. 
Lehenengoan, hiru lupia multzo aztertu ziren. Horietariko bi antzekoak ziren 
(kontrolak eta elastomero batekin markatutakoak), eta hirugarrena aldiz, 9 egunez 
metilmerkuriodun (4 µg MeHg/L) uretan murgildutako arrainez osoturik zegoen. 
Shannon-en entropia eta Katz-Castiglioni-ren algoritmoek izan ziren emaitza onenak 
erakutzi zutenak. Esan daiteke biek, arrainen erantzunak modu ez inbasibo batean 
kuantifikatzeko garaian, ahalmen nahikoa erakutsi zutela. Hala ere, Katz-Castiglioni-ren 
algoritmoak Shannon-en entropia baino askoz ere pisu konputazional handiagoa 
erakutsi zuen.

Hasiera baten, arrain multzoa osotzen zuten animalien kopurua inolako 
eraginik euki zitzakela animalia sistema osoaren jokabidean garatutako aztertze 
metodologiari dagokionez, ez zen uste. Honetan sakontzeko, bigarren kasu partikular 
bat diseinatu zen, non sistemako aldagai bakarra arrain kopurua zen. Bigarren 
kasu partikular honen helbururik garrantzitsuena sistemarentzako Lan Puntuaren 
zehazpena zen, hau da, arrainek inolako perturbazio barik daudeneko egoera 
dinamikoa. Monitorizazio tresna doitzeko eta perturbazioak egoera “normaletik” 
bereiztu ahal izateko, Lan Puntuaren zehazpena ezin bestekoa da. Honetarako bi 
experimentu disenatu ziren:

i. Arrain kopuruaren murrizketa. Arrain kopurua 50etik 1era pasatu zen 4 
asteren buruan (50, 25, 13 eta arrain 1 aste bakoitzeko).

ii. Arrain kopururaren hazkuntza. Sistema osotzen duten arrainen kopurua 
1etik 5era hazi zen egunero arrain berri bat sartuz (1, 2, 3, 4 eta 5 arrain 
egun bakoitzeko).

Hirugarren kasu partikularrean, aldiz, arrainen urari bi sustantzia ezberdin 
gehitu zitzaizkion. Batetik, sodio selenitoa (Na2SeO3, 10 µg/L) gehitu zitzaion 7 
egunen zehar eta bestetik metilmerkurioa (4 µg MeHg/L) 14 egunen zehar.

Tesiaren azken atalean, aurreko kasuetan garatutako jakituriarekin ezagutza 
eredu bat eraiki da. Eredua, 3 azpi-ereduez osatuta dago, zeintzuk sistemaren 
eguneroko erantzuna eta Shannon-en entropiaren emaitzak, egoera basalean, gertaera 
aleatorio bateri erantzunez eta azken bien arteko erlazioari begira, integratzen dituzte.
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Ondorioak
Ondoren Tesiaren ondoriorik esanguratsuenak adierazten dira:

1. Arrainen monitorizaziorako tresna garatu da. Tresnaren oinarrian irudi 
eskuraketa eta prozesaketa egoteaz gain, arrain multzoak osatzen duen 
zentruaren ibilbidearen analizi ez-lineala ere badago.

2. Arrainen sistemaren dinamika aztertzeko garaian Shannon-en entropia 
parametrorik onena izan da.

3. 1 eta 5 arrainen artean, lubia arrain sistemaren Shannon-en entropia eta 
sistema osotzen duten arrain kopuruaren erlazioa oso estua da.

4. Lubia arrain sistemaren eta Shannon-en entropiaren arteko erlazioa 
exponentziala da.

5. Garatutako tresna kasu partikularrei aplikatzerakoan era egokian lan egin du. 
Honek, ikerketa lanaren hasierako Tesia berretsi du.

6. Espero zen bezala eta garatutako tresnak konfirmatuta, urari gehitutako 
sodio selenito kontsentrazioak ez du inolako efekturik izan lubia sistemaren 
Shannon-en entropian.

7. Era berean, garatutako tresnak konfirmatu du urari gehituriko metilmerkurioak 
efektu ezezkorra izan duela lubia sistemaren Shannon-en entropian.

8. Tresnaren aplikazioak kasu partikularretan lubia sistemaren Shannon-en 
entropiaren eguneroko balioa ez ezik bere egunean-eguneko bilakaera 
kontutan hartu behar dela erakutsi du.

9. Garatutako ezagutza eredua lubia arrain sistemaren jokabide erantsunaren 
eguneroko bilakaeran oinarrituriko 3 azpi-ereduz osoturik dago: Azpi-eredu 
basala, gertaera aleatorioaren erantzuneko azpi eredua eta aurreko biak 
erlazionatzen dituen azpi-eredua.

10. Garatutako tresna, zenbait hobekuntzekin, on-line monitorizazio arkitektura 
batetan inplementatzeko gaitasuna duela esan daiteke. Eta beraz, era 
basatian nahiz akuikulturan, arrain multzoak monitorizatzeko edo/eta ur 
kutsadura antzemateko ingurumen-programetan tresna baliagarria izan 
daiteke.

Beraz, ikerketa lan honen Tesia arrainak sentsore biologiko moduan erabil 
daitezkela da; kanpo perturbazioen eraginez euren portaeran agertzen diren aldaketak 
modu ez-inbasiboan neurtu daitezkelako.
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Gerorako Lana
Gaur egun Errezirkulazio Akuikultura Sistemek (Recirculating Aquaculture 

Systems - RAS) gero eta aplikazio handiagoa dute munduan zehar. Tesi honetan 
oinarrituriko teknologia baten garapenak zekulako erabilgarritasuna eukiko luke mota 
honetako sistemetan, batez ere, produkzio unitate osoa monitorizatu daitekelako. Era 
berean, ur kutsadura antzemateko ingurumen-programetan tresna baliagarria izan 
daiteke. Azken honetarako, teknologia honetan oinarrituriko ikusketa guneak garatu 
beharko lirateke.

Urpean lan egiteak desabantail ugari ditu. Hau ekiditeko datu eskuraketa 
teknika ezberdinak aztertu beharko lirateke, hala nola izpi-infragorriak, sonar 
teknologia edota irudi hiperespektralak zenbait esatearren.

Azkenik, teknologia honetatik lortutako datuak bestelako tekniken bidez 
lorturiko datuekin bat egin beharko lirateke. Honela, arrainen datu biokimiko, 
histologiko eta fisiologikoez gain, teknika ez-inbasiboen bidez neurtutako igeriketa 
jokabideak ere kontutan hartu beharreko parametroa izan beharko luke. 
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