deltas
applications S polies developmentapp;ggch e

schcma delta

o Y \ ©F 4 > dissertation derlve : :
i 2 § denvmg ~finement 333 app |C atlon

delivery schemata

document s

Software
composed navigation softw

)
L
L —
question -8
(<]
3

{ program
structure 2
defi

S
O
-3
@

exchange =

. SpL
introduce

current Q)

concemn

well

setting

o
S
o

Ph.D. Thesis

XML-intensive Software Development

Felipe Ibanez Anfurrutia

2015

& SHOR)

Universidad Euskal Herriko Web Engineering Research Group
del Pais Vasco Unibertsitatea Supervisor: Prof. Dr. Oscar Diaz

(cc)2016 FELIPE IBANEZ ANFARRUTIA (cc by-sa 4.0)

il

The author enjoyed a pre-doctoral grant by the University of the Basque Country
during the years 1999-2002 and co-financed by the European Social Fund. This
research was also supported by both the Secretaria de Estado de Politica Cientifica
y Tecnoldgica of the Spanish Government under contract TIC 1999-1048-C02-02,
and the Departamento de Educacién, Universidades e Investigacion of the Basque
Government under contract UE2000-32.

to my wife, Miren,

my daughters, Izaro and Lorea,

eta gurasoei, Felipe eta Bixenta

Summary

The presence of XML is pervasive, yet its youth makes developers face a lot of
challenges when using XML in cutting-edge applications. This thesis confronts
XML in three different scenarios: document exchange, Software Product Lines
(SPLs) and Domain-Specific Languages (DSLs). Digital document interchange
is one of the prominent applications of XML. However, business documents fre-
quently hold derived data, i.e. data which is calculated from other data. Here, we
face the question of how can XML Schema be extended to account for derived
data. This dissertation proposes the XDerive namespace that permits deriving
functions to be integrated as part of XML Schema documents. Next, SPLs offer
an approach to develop a family of software products by reuse. What if these
products are realised as XML documents? The thesis addresses how Feature-
Oriented Programming (an approach to SPL development) can be extended to
account for XML specifics (e.g. tag-based description, validation awareness). Fi-
nally, XML in Web development. The increasing growth in size and complexity
of web sites calls for a systematic way to web sites development. Leaflet web-
sites are a kind of content-oriented websites. Domain Specific Languages (DSL)
are usually geared towards a specific domain or application, offering only a re-
stricted suite of notations and abstractions. Here, we address the domain of leaf-
let websites, 1.e. websites meant for static-content navigation, and introduce an
XML-based DSL: XLeaflet. A distinctive feature of XLeaflet is its architecture:
thick-browser. This can account for an important reduction in the network traffic.
These so-different fields (i.e. document exchange, SPLs and DSLs) act as “stress
tests” to assess the ductility of XML concepts and technology to cope with so

heterogeneous environments.

Resumen

La presencia de XML es un fendmeno generalizado. Sin embargo, su juventud
hace que los desarrolladores se enfrentan a muchos desafios al utilizar XML en
aplicaciones de vanguardia. Esta tesis enfrenta XML a tres escenarios diferentes:
intercambio de documentos, Lineas de Producto Software (LPS) y Lenguajes eS-
pecificos de Dominio (LSD). El intercambio digital de documentos es una de las
aplicaciones mas importantes de XML. Sin embargo, los documentos de negocios
con frecuencia tienen datos derivados, es decir, datos que se calculan a partir de
otros datos. Aqui, nos enfrentamos a la cuestion de cémo ampliar el XML Schema
para capturar datos derivados. Esta tesis propone un nuevo vocabulario: XDerive.
XDerive permite expresar funciones derivadas teniendo en cuenta las especifici-
dades de XML. Por otro lado, las LPS ofrecen un enfoque para desarrollar una
familia de productos de software mediante la reutilizacién. ;Qué pasa si estos
productos se realizan como documentos XML? La tesis aborda como ampliar la
programacion orientada a caracteristicas (un enfoque para el desarrollo de LPS).
También considera XML en el desarrollo Web. En concreto, abordamos el desa-
rrollo de aplicaciones web utilizando lenguajes especificos de dominio. En nuestro
caso, el dominio es de los sitios web orientados a la navegacion de contenidos es-
tatico. Con este fin, disefiamos el lenguaje XLeaflet. Una caracteristica distintiva
de XLeaflet es su arquitectura: “thick-browser”. Objetivo: conseguir una reduc-
cién importante en el trafico de red. Estas tres dreas (es decir, de intercambio de
documentos, LPSs y LSDs) sirven como "pruebas de resistencia" para evaluar “la
ductilidad” de los conceptos y la tecnologia XML para hacer frente a entornos tan

heterogéneos.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3

24

2.5

Overview
XML for document exchange
XML in Software Product Lines
XML in Web development
Research Methodology
Outline

XML for document exchange

Overview
Problem Explanation
Requirement Definition
2.3.1 Expressiveness
2.3.2 Understandability
2.3.3 Interoperability
234 Completeness
Artefact Design: XDerive namespace . . .
2.4.1 How to describe deriving functions?
2.4.2 How to embed XDerive expressions?
2.4.3 Examples of XDerive expressions .
Artefact implementation: XDerive
2.5.1 How to enact XDerive expressions?
2.5.2 Making validators XDerive aware .
2.5.3 An outline on the JAXP standard . .

X1

xii

CONTENTS
2.5.4 Making the parser “derivation aware” 38
2.6 Demonstrate artefact Lo 41
27 RelatedWork 41
2.8 Conclusions 43
XML in Software Product Lines 45
3.1 Overview e e e e 45
3.2 Problem Explanation 46
3.2.1 In which practice does the problem appear? 46

3.2.2 What is the problem and the negative consequences of not
addressing this problem (or its benefits)? 52
3.3 Requirement Definition 53
3.3.1 EXpressiveness e e 53
332 Suitability 56
3.4 Artefact Design: XAK namespace 57
3.4.1 The unit of composition 57
3.4.2 The ways of composition 62
3.4.3 The laws of composition 67
3.5 Artefact Design: Delta Grammars 71
3.5.1 Regular expressiontypes 72
3.5.2 The validation of XML documents 74
3.5.3 Obtaining the delta grammars: AfragmentType 75
3.6 Artefact Implementation: integrating XAK into AHEAD TS . .. 81
3.7 Artefact Evaluation o 0oL 82
3.8 Relatedwork Lo 84
39 Conclusionso 88
XML in Web development 91
4.1 OVerviewo e 91
4.2 Problem Explanation 92
4.3 Requirement Definition 93
4.3.1 EXpressivenesso e 94

432 Performance 96

CONTENTS Xiii

4.4 Artefact Design: XLeaflet 97
44.1 Thecontentmodel 97

4.42 Thenavigationmodel 100

4.4.3 The presentationmodel 108

444 The adaptationmodel 112

4.5 Artefact implementation: supporting XLeaflet 117
4.5.1 XLeaflet Architecture 119

4.6 Evaluate Artefact 122
4.6.1 Discussion 126

47 Relatedwork 127

48 Conclusions 127

S Conclusions 129
5.1 Overview e e e e e e 129

52 Results. e 130

53 FutureWork L 131

5.4 Publications e 135

5.5 AboutDesignScience. 140

A The specification of XDerive namespace 143
B XDerive tracking document 145
C The delta grammar for the form-bean module type 147

Bibliography 151

Xiv CONTENTS

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11

Framework for design science 6
An XML Schema for order documents. 12
An order document that includes derived data. 15
Feature-diagram for deriving function domain. 19
XDerive design: the annotation approach. 21
XDerive Namespace. i e e e e e e e e e 23
The specification of insuranceCost using XDerive. 27
The specification of deliveryTime using XDerive. 29
Document life-cycle: the activating, parsing and explanation stages. 32
Browsing how derived elements have been calculated. 34
Making a JAXP-compliant parser “derivation aware”. 36
A “derivation aware” XML parserat work. 40
The base feature for CuCoWA. 46
Feature model for CuCoSPL. 47
The CuCoWA product family 48
Classrefinement. 49
Directory structure of a feature implementation. 50
Composing features as directories. 51
Example of a Base web control-flow by Struts. 54
Expressiveness requirements. 55
First approach: an example of a delta document. 58

The synthesised document from the composition of dateRate ® base. 58

Schema-based modularisation. 60

XV

Xvi

3.12
3.13
3.14
3.15

3.16
3.17
3.18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14
4.15
4.16
4.17

5.1

5.2

A.l

LIST OF FIGURES

Instance-based modularisation. L. 62
Same concepts, slightly different terminology in Jak and XAK. . . 63
The customisation XAK delta document. 66
The synthesised document from the composition customisation e

base. e e e 67
The struts-config type using XDuce notation. 74
Organisation of AHEAD generators 81
XAK module composition match modules with the same identifier 82
Feature-diagram for “leaflet website” 94
The content diagram for the conference example. 98
The content document for the conference example. 99
The navigation diagram for the conference example. 101
The navigation document for the conference example. 102
Navigation Mode: an index hierarchy along accepted papers . . . 105
Navigation Mode: an index and a scroll along accepted papers . . 108
Presentation templates: the default and the overridden 109
Presentation template: the general page of the conference site. . . 110
Presentation templates: the default and the overridden 111
Adaptation browser rule: inserting a link in the navigation document116
Adaptation browser rule: providing a shortcut link to accepted

PAPETS © . v v e e e e e e e e e e e e e e e e e 117
Adaptation browser rule: changing the presentation of related papers118
The XLeaflet architecture 120
An interaction diagram for the XLeaflet initialization. 121
Evaluation: Time figures for a bandwidth of 3Kb/sec. 125
Evaluation: Time figures for a bandwidth of 10Kb/sec. 126

Top five publications as for the number of references in Google
Scholar [Accessed 8 December 2015]. 135

Cites per year obtained from Google scholar 138

The W3C XML Schema representation for XDerive namespace . 144

LIST OF FIGURES Xvii

C.1 An excerpt of the obtained delta grammar for Struts, represented
by XML-Schema, which defines the form-bean delta module type. 149
C.2 The XML Schema for XAK delta namespace 150

List of Tables

3.1 Distinct (input,output) scenarios for the function fragmentT . . . 75
3.2 Distinct (input,output) scenarios for the function A fragmentT . . 79
4.1 Evaluation data for the conference example. 124

Xix

XX

LIST OF TABLES

Chapter 1

Introduction

1.1 Overview

XML, the short for eXtensible Markup Language, started life in February 1998.
It was brought into existence partly as an answer to the growing limitations of
HTML and also to introduce an open standard of web interoperability and data
sharing. The aim: to separate the structure of data from its format. While HTML is
intended for content presentation but not the type or structure of said information,
XML is geared entirely towards the structure and not the presentation of data
[BPSMIS].

XML is a meta-markup language, i.e. it can be used, fundamentally, to create
mark-up languages. The power of this feature is phenomenal and provides almost
limitless applications of the language. Indeed, XML artefacts play a preponder-
ant role in current software practises, specially in the Web setting. XML can be
found in both code artefacts (e.g. rendering markup languages, ANT configuration
files[Thea], Struts controllers[Theb], etc), and non-code artefacts (e.g. deploy-
ment descriptors such as portlet.xml[JCP03], UML diagrams serialised through
XMI[Obj], asset documentation through RAS[Obj05]).

The presence of XML is pervasive yet its youth makes developers to face a lot

1

2 Chapter 1. Introduction

of challenges when using XML in cutting-edge applications. Many XML techno-
logies are still in the developing stage, and it will take some time until there is a
consistent, time-tested, universally accepted framework for XML-centric applica-
tion design and development. Until then, application designers and developers are
mostly on their own when it comes to choosing the most appropriate technologies
for designing and implementing XML-oriented information systems.

This dissertation promotes a document-centric approach to both development
and delivery of the application logic in a WWW setting. To this end, new Domain-
Specific Languages (DSL) are defined as well as extension mechanisms to existing
tools (e.g. parser, browsers) in order to support them to account for new scenarios.
In this sense, this dissertation can be described as “scenario driven” in the sense
that the research questions addressed rise within a certain practice. A practice is
“a set of human activities performed regularly and seen as meaningfully related to
each other by the people participating in them” [JP14]. From the use of XML in
non-conventional practices emerge limitations to the current tooling and standards
on XML. How to overcome these limitations has been the endeavour of the author
during these last years. His findings, proposals and proof-of-concept applications
are the main content of this dissertation.

The three scenarios or practices being considered are: XML for document

exchange, XML in Software Product Lines, and XML in Web development.

1.2 XML for document exchange

Document interchange is one of the prominent applications of XML. A business
document is “a unit of business information exchanged in a business transaction”
[Eur04]. Order, billing or delivery forms are all examples of business documents
that collect data which give support to a certain business function, regardless of
how this data is finally stored. Standards emerge to normalize this description:
UBL[ubl04], EDIFACT[edi04], X12[x1204], IDA[Eur04], to name a few. For
instance, IDA is a European program which aims at specifying business docu-
ments exchanged between a public sector buyer and an external supplier during
the ordering and invoicing phases [Eur04]. XML is becoming the standard for
document description in B2B settings. And XML Schema is gaining wide accept-

1.3. XML in Software Product Lines 3

ance as the schema language to define the structure of these documents. Indeed,
IDA uses XML Schema.

Business documents frequently hold derived data, i.e. data which is calculated
from other data. For example, the totalAmount of an order can be obtained from
the cost of each item included in the order minus some applicable discount. Such
deriving functions support important business policies, including terms and con-
ditions (e.g. policies for price discounting), service provisions (e.g. policies for
refunds), or surrounding services (e.g. policies for lead time to place an order).
Such business policies are the subjects of contracts among partners, and they can
normally be found in catalogs, storefronts and marketplaces, as well as in bids and

requests communicated during negotiations, procurements and auctions.

The research question is:

how can XML Schema be extended to account for derived data?

1.3 XML in Software Product Lines

So far, most Web applications are conceived in a one-to-one basis. A recent study
indicates a cloning rate (i.e. code repetition throughout the application) of 17-63%
within Web applications of the same organisation [RJ05]. This cloning evidences
the existence of a common, although implicit, theme throughout the applications,
and confirms an intuition felt in most organisations: code similarities among ap-
plications. These similarities are being handled in various ways such as IFDEFs,
configuration files, installation scripts or cloned software copies a la “copy-paste-
modify”. However, these solutions do not scale well and can hinder maintenance
as the number of variations increases.

Software Product Line (SPL) techniques strive to make this recurrent func-
tionality explicit so that reuse is facilitated without compromising maintenance.
Hence, it may be appropriate to support Web applications as outputs of an SPL.
Rather than constructing every product from scratch, a product line is first con-
structed, and then, the products are obtained after the product line. By using SPLs

to manage variations in their code, organisations are reporting order of magnitude

4 Chapter 1. Introduction

reductions in time-to-market, engineering overhead, error rates and cost!.

One technique to handle variations is step-wise refinement [BSR04]. Step-
wise refinement is a powerful paradigm for developing a complex program from a
simple program by incrementally adding details. This approach attempts to depart
from current “clone&own” practise by leveraging reuse of the common parts, and
separating variable and changing parts as program deltas. The final product is
obtained through composition: the common parts are leveraged with the program
deltas that realise the variations for the product at hand.

This work addresses the use of deltas (i.e.refinements) as a modularisation
technique for XML artefacts. It is worth noticing that the nature of refinement
depends on the artefact being refined, e.g. Java artefacts are not necessarily refined
in the same way that XHTML artefacts. When the artefact is “.java”, a class
refinement can introduce new data members, methods and constructors to a target
class, as well as extend or override existing methods and constructors of that class
[BSRO4]. But, what is meant to refine an XML artefact? Does it mean that we
can arbitrarily insert or delete a node anywhere in an XML document tree?

The research question is:

how to introduce deltas into XML artefacts?

how are XML deltas defined, composed and validated?

1.4 XML in Web development

Web application development is currently suffering from a severe bottleneck as
the gap between available implementation tools and application’s requirements is
enlarging. But these difficulties are likely to become even more stringent as web
masters have to face maintenance. This is felt specially urgent in the area of e-
commerce. In today’s e-commerce world, companies should adapt to changing
conditions and rapid evolution. However, it is a frustrating experience to see how
often the web site bottleneck slows and restricts the evolution of the organization

the site is supposedly serving.

IRefer to www.softwareproductlines.com/benefits/benefits.html for a detailed account.

1.5. Research Methodology 5

In response to the previously described need, distinct projects have been launched
which aim at providing design guidelines and supporting tools for systematic web
site construction. One of the most frequently cited guideline is to split require-
ments into content concerns, navigation concerns and presentation concerns by
using a model-based approach [PMO00].This approach aims to find declarative
models, preferably orthogonal, that allow designers to declaratively specify a spe-
cific concern of the application without being immediately immersed in details of
implementations. A design is then conformed by a set of schemata (i.e. model
instances) which describe distinct aspects of the application. Declarativeness and
orthogonality accounts for maintainability: the separation of concerns and their
declarative specification allow to easily update a schema while minimizing the im-
pact on the rest of the application. DSLs are usually geared towards a specific do-
main or application, offering only a restricted suite of notations and abstractions.
Hence, this DSL vision will not be possible in a general basis but it could happen
for specific domains. Specifically, we look at static, content-oriented websites,
hereafter referred to as “leaflet websites”. Conference websites, product cata-
logues or websites with content about a teaching course are the kind of websites
we are tackling. Here, the challenge rests more on rendering and navigation rather
than supporting transactional-like functionality (e.g. purchases, enrollments and
the like).

The research question is

could “leaflet websites” be developed with the only help of a
DSL?

1.5 Research Methodology

Design science is “the scientific study and creation of artefacts as they are de-
veloped and used by people with the goal of solving practical problems of general
interest” [JP14]. In additional quote from P. Johannesson and E. Perjons, bril-

liantly summarise the essence of this approach:

The starting point for a design researcher is that something is not

quite right with the world, and it has to be changed. A new arte-

6 Chapter 1. Introduction

Initial Explicated
problem Explicate problem

Problem

Require-
Define ments

Require-
ments

Design
andl Artefact

Develop
Antefact il
strated
Demon- artefact
strate
Artefact
Evaluated
Evaluate artefact
EEEE—

Artefact

Figure 1.1: Overview of the method framework for design science (taken from [JP14])

fact should be introduced into the world to make it different, to make
it better. Design science researchers do not only think and theorise
about the existing world. They model, make, and build in order to
create new worlds. They produce both a novel artefact and know-
ledge about it and its effects on the environment. In particular, they
need to formulate problem statements, determine stakeholder goals
and requirements, and evaluate proposed artefacts. In other words,
artefacts as well as knowledge about them are research outcomes for

design science.

Specifically, we follow the framework defined in [JP14]. For self-containtion,
next paragraphs are an excerpt of [JP14] where the different tasks of their Design

Science methodology are described (see Figure 1.1):

* Explicate Problem. The Explicate Problem activity is about investigating
and analysing a practical problem. The problem needs to be precisely for-
mulated and justified by showing that it is significant for some practice. The
problem should be of general interest, i.e. significant not only for one local
practice but also for some global practice. Furthermore, underlying causes

to the problem may be identified and analysed.

1.6. Outline 7

* Define Requirements. The Define Requirements activity outlines a solu-
tion to the explicated problem in the form of an artefact and elicits require-
ments, which can be seen as a transformation of the problem into demands

on the proposed artefact.

* Design and Develop Artefact. The Design and Develop Artefact activ-
ity creates an artefact that addresses the explicated problem and fulfils the
defined requirements. Designing an artefact includes determining its func-

tionality as well as its structure.

* Demonstrate Artefact. The Demonstrate Artefact activity uses the de-
veloped artefact in an illustrative or real-life case, sometimes called a “proof
of concept”, thereby proving the feasibility of the artefact. The demonstra-

tion will show that the artefact actually can solve an instance of the problem.

* Evaluate Artefact. The Evaluate Artefact activity determines how well the
artefact fulfils the requirements and to what extent it can solve, or alleviate,

the practical problem that motivated the research.

As indicated by P. Johannesson and E. Perjons, these tasks do not follow strictly in
sequence. Rather, research is commonly iterative, moving back and forth between
all the activities of problem explication, requirements definition, development,
and evaluation. The arrows in Figure 1.1 should not be interpreted as temporal or-
derings but as input—output relationships. In other words, the activities should not
be seen as temporally ordered but instead as logically related through input—output

relationships.

1.6 Outline

This thesis has been developed in the context of the AtariX and Kimu-Berri pro-
jects, collaborations between the University of the Basque Country, LKS S. Coop.
and Mondragon Sistemas de Informacion(MSI) companies. This pushes us to
achieve not only an academic contribution but also to look at the applicability of

these ideas in an industrial setting. This introduced an important risk through the

8 Chapter 1. Introduction

thesis, the need of implementing the ideas. In this way, this thesis follows an ex-
tensive exploration of the issue at hand (i.e. XML) rather than a deep, drill-down
approach of a specific concern. This thesis is composed of five chapters, including

this one, that each target specific research questions:

1. how can XML Schema be extended to account for derived data? Chapter 2

2. how to introduce deltas into XML artefacts? how are XML deltas defined,

composed and validated? Chapter 3.

3. could “leaflet websites” be developed with the only help of a DSL? Chapter
4

The chapters can be read independently. Specifically,

Chapter 2 discusses that the calculation of derived data in business documents
is hidden to the partner of e-commerce and proposes an approach to externalize
the semantics of deriving functions. To this end, an XML-Schema and JAXP-

compliant XML parser are extended.

Chapter 3 elaborates on the notion of XML delta in order to realize feature
variability in a SPL setting. A vocabulary is introduced for defining XML deltas
which can then be validated and composed to output enhanced XML documents.
Composition synthesises a new document from a base document and an XML
delta. AHEAD is selected to deal with such composition. A challenge is whether
a validity of an XML delta with respect to an schema S guarantees that synthesised
documents are valid with respect to S, provided the refined document is also S

compliant. Two use cases are also presented in the following sections:

Chapter 4 presents XLeaflet, a model-based tool for content-oriented websites
development that renders HTML pages from the declarative schemata specified by
the designer. Each concern (i.e. content, navigation, presentation and adaptation)
is separately described in an XML document. A distinctive feature of XLeaflet

interpreter is its architecture, i.e. thick-browser.

1.6. Outline 9

Chapter 5 concludes the dissertation. It summarizes the main contributions

and publications as well as suggests the opportunities for future research.

10

Chapter 1. Introduction

Chapter 2

XML for document exchange

2.1 Overview

Business documents such as those currently found in B2B applications, frequently
comprise derived elements, i.e. elements whose content can be calculated through
a deriving function that examines the content of other elements. Despite its wide
presence, the notion of derived elements is not yet supported in XML Schema.
This is the challenge addressed in this chapter: how to leverage XML Schema with
derived data. To this end, we introduce an artefact: the XDerive namespace that
permits deriving functions to be integrated as part of XML Schema documents.
The chapter is organized along common Design Science activities: explicate
problem, define requirements, artefact design, artefact implementation and arte-

fact demonstration. Related work and conclusions end the chapter.

2.2 Problem Explanation

In which practice does the problem appear? Business-to-Business (B2B) ap-
plications (e.g. ERP) are main Information Systems. Here, document interchange

11

12 Chapter 2. XML for document exchange

<xs:schema xmlns:xs="http://www.w3.org/2001 /XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
elementFormDefault="qualified" >
<xs:element name="order" type="orderType" />
<xs:complexType name="orderType" >
<xs:sequence>
<xs:element name="orderDate" type="xs:date" />
<xs:element name="orderNumber" type="xs:short" />
<xs:element name="customer" type="customerType" />
<xs:element name="lineltem" type="lineltemType"
maxOccurs="unbounded" />
<xs:element name="shippingData" type="shippingDataType"
minOccurs="0"/>
<xs:element name="subTotal" type="xs:decimal" minOccurs="0"/>
<xs:element name="applicableDiscount" type="xs:int" minOccurs="0"/>
<xs:element name="vat" type="xs:decimal" minOccurs="0"/>
<xs:element name="total" type="xs:decimal" minOccurs="0"/>
< [xs:sequence>
< /xs:complexType>
<xs:complexType name="shippingDataType" >
<xs:sequence>
<xs:element name="shippingAddress" type="addressType" />
<xs:element name="shippingSpeed" type="speed Type" />
<xs:element name="shippingPreference" type="preferenceType" />
<xs:element name="shipments" type="xs:int" minOccurs="0"/>
<xs:element name="insuranceCost" type="xs:float" minOccurs="0"/>
<xs:element name="shippingCost" type="xs:float" minOccurs="0"/>
<xs:element name="deliveryTime" type="xs:string" minOccurs="0"/>
< [xs:sequence>
< /xs:complexType>
<!—content omitted —>

< /xs:schema>

Figure 2.1: An XML Schema for order documents.

plays a preponderant role. For the purpose of this dissertation, the term “busi-
ness document’ denotes “a unit of business information exchanged in a business
transaction” [Eur04]. Order, billing or delivery forms are all examples of busi-
ness documents that collect data which give support to a certain business func-
tion, regardless of how this data is finally stored. Many projects or standards (e.g.
UBL[ubl04], EDIFACT[edi04], X12[x1204], IDA[Eur04]) have developed elec-
tronic order and invoice messages. For instance, IDA is an European initiative

which aims at specifying business documents exchanged between a public sector

2.2. Problem Explanation 13

buyer and an external supplier during the ordering and invoicing phases [Eur04].

Business documents frequently hold derived data, i.e. data which is calcu-
lated from other data. For example, the totalAmount of an order can be obtained
from the cost of each item included in the order minus some applicable discount.
Such deriving functions support important business policies, including terms and
conditions (e.g. policies for price discounting), service provisions (e.g. policies
for refunds), or surrounding services (e.g. policies for lead time to place an or-
der). Such business policies are the subjects of contracts among partners, and can
normally be found in catalogs, storefronts and marketplaces, as well as in bids and
requests communicated during negotiations, procurements and auctions. XML is
becoming the standard for document description and exchange in B2B settings,
and XML Schema is gaining wide acceptance as the schema language to define
both the structure and constraints of these documents. Indeed, the IDA initiative
uses XML Schema.

What is the problem and the negative consequences of not addressing it?

The research question is:
how can XML Schema be extended to account for derived data?

Despite its wide presence, XML Schema does not have yet a mechanism to de-
scribe derived elements. This leads to deriving functions being hard-coded into the
applications which process the document. For example, deriving functions can be
hidden within XSLT templates, or as scripts within the application which process
the XML document. But hard coding these functions not only hinders develop-
ment, it also jeopardizes maintenance. Hard coding, distributing and repeating
these functions along the applications that process XML documents would cer-
tainly complicate the modification of deriving functions, and thus, of the business
strategies these functions support.

In addition, leveraging XML Schema to account for deriving functions is akin
to the strategy of externalization promoted by XML Schema. That is, while XML
documents let you externalize data representations in a platform independent man-
ner, XML Schema let you externalize the types and structural constraints that
govern XML documents. Likewise, moving the deriving functions to the XML

Schema (i.e. externalizing derivation), saves the trouble of implementing (and

14 Chapter 2. XML for document exchange

maintaining) these constraints in each application.
Next section outlines a solution to the explicated problem in the form of an
artefact and elicits requirements, which can be seen as a mutation of the problem

into demands on the proposed artefact.

2.3 Requirement Definition

Our proposal to address the above mentioned problem is providing new con-
structs to leverage XML Schema with deriving function definition. The B2B
setting in which this challenge is framed, raises the following environmental re-
quirements: expressiveness, understandability, interoperability and completeness.

Next subsections describe each of these requirements.

2.3.1 Expressiveness

Expressiveness refers to the degree to which a set of constructs is capable of rep-
resenting the entities of interest in a domain. This subsection introduces the ex-
pressiveness challenges with the help of an example.

An order document is taken as an example. An order contains information
about the customer who placed the order, the order number and the individual
line items on the order including their quantities and product references. Figure
2.2 gives an example using an XML vocabulary defined by the XML Schema in
Figure 2.1.

Business documents such as the previous one, commonly comprise derived
elements (shown in bold in Figure 2.2) whose values are computed according to
business policies. Next, four examples are shown, which have been taken or in-
spired by policies stated on the Amazon’s site!. As we go on, we will raise several
issues such as the need for keeping track of the deriving elements being used, and

the need for prioritized conflict handling.

Ihttp://www.amazon.com

2.3. Requirement Definition 15

< ?xderive-derivationTrack href="order.derivationTrack.xml" type="text/xml"7?>
<order xmlns:xsi="http://www.w3.0rg/2001 /XMLSchema-instance"
xsi:noNamespaceSchemal ocation="order.xsd" >
<date>2002-02-22< /date>
<orderNumber>22222< /orderNumber>
<customer>
<id>123</id>
<customerData>
<name>Tom Hanks</name>
<billingAddress>
<address>Oxford Street, 100< /address>
<city>London< /city>
<zip>5555</zip>
< /billingAddress>
< /customerData>
< /customer>
<lineltem>
<ref>TV-1</ref>
<quantity>1</quantity>
<partialCost>1000.00< /partialCost >
</lineltem>
<lineltem>
<ref>Hi-Fi-1< /ref>
<quantity>1</quantity>
<partialCost>600.00< /partialCost >
</lineltem>
<lineltem>
<ref>PC-1</ref>
<quantity>1</quantity>
<partialCost>1200.00< /partialCost >
</lineltem>
<shippingData>
<shippingAddress>
<address>Eliseus Camps, 50</address>
<city>Paris< /city>
<zip>22222< [zip>
< /shippingAddress>
<shippingSpeed>One Day Shipping< /shippingSpeed>
<shippingPreference>few shipments as possible< /shippingPreference>
<shipments>2< /shipments>
<insuranceCost>7.99< /insuranceCost >
<shippingCost>23.97< /shippingCost>
<deliveryTime>Your order will arrive on 2002-2-26< /deliveryTime>
< /shippingData>
<subTotal>2800.00< /subTotal >
<applicableDiscount>20< /applicableDiscount>
<vat>448.00< /vat>
<total>2711.97< /total>

< /order>

Figure 2.2: An order document that includes derived elements (in bold).

16 Chapter 2. XML for document exchange
Example 1. Derived element: <subTotal>
* (Rule) The subTotal is found adding all the partialCosts of the ordered items

This is an example where the deriving elements (i.e. <partialCost>) are local
to the document, and only one rule is needed to work out the derived value (i.e.
<subTotal>). Notice also that derived elements can be based on other derived

elements (e.g. <partialCost> is in turn a derived element).

Example 2. Derived element: <partialCost>

* (Rule) The partialCost of each item is calculated by multiplying each ordered

quantity by the corresponding unitPrice

Strictly speaking, a derived element should not provide any new information ex-
cept that derived from other elements in the document. However, such an ap-
proach is too restrictive to reflect most of the policies that regulate current business
transactions. Most policies consult a business state that is not always reflected in
the document itself but in other data resources (e.g. databases, other XML docu-
ments such as catalogs, etc). Hence, we extend the potential deriving elements to
any data resource available to the document. In this example, the unitPrice is not
defined in the document itself but retrieved from the company’s database.

This externality prevents the document receiver from having a complete pic-
ture of how the derived elements have been calculated, and hence, makes the veri-
fication of the fulfilment of the agreement (reflected through the deriving function)
difficult. Besides, such external elements evolve independently of the document
itself so as to impede the re-creation of the business state at the time the document
was generated (e.g. at the time the order took place).

This situation is tackled through the derivationTrack document. Such a docu-
ment records a snapshot of the external deriving elements at the time the derived
elements were calculated. For the <partialCost> example, this implies that the
unitPrice of the items is recorded in the documentTrack. The receiver of the order
can then consult this attachment to verify the correct application of the business

policies. Section 2.5.1.1 addresses this issue.

2.3. Requirement Definition 17
Example 3. Derived element: <deliveryTime>

* (Rule A) If the shipping speed is “Standard Shipping” then, the delivery
time will be between 4 and 8 days

* (Rule B) If the shipping speed is “Two days Shipping”, and at least three

items are available within 24 hours, then the delivery time will be 3 days

* (Rule C) If the shipping speed is “One day Shipping” and at least three

items are available within 24 hours, then the delivery time will be 2 days

* (Rule D) If the shipping speed is either “One day Shipping” or “Two days
Shipping”, then the delivery time will be 4 days

* (Priority Rule) If both Rules B and D apply, then rule B will “win”, i.e. the
delivery time will be 3 days

* (Priority Rule) If both Rules C and D apply, then rule C will “win”, i.e. the
delivery time will be 2 days

Here, the delivery policy is realized as a set of rules. We say a rule is “applicable
to fire” when the rule’s condition (i.e. the antecedent) is satisfied. When more
than one rule can be applicable to fire, a set of (conflicting) values are gener-
ated. This implies that the system must resolve the inconsistency and decide on a
unique value that is assigned to an element or attribute. For this task, a prioritiza-
tion schema must be provided. In this case, the literature favours two approaches,
namely, value-based and rule-based [1S92, Hea99]. The former provides a com-
bining function to “merge” all or “select” one of the returned values by each ap-
plicable rule. This means that all applicable rules are executed. By contrast, a
rule-based prioritization schema selects only one rule to execute (e.g. realized
by assigning a priority to each rule, and then, the rule with the highest priority
“wins”). However, this schema requires a global prioritization schema that is dif-
ficult to maintain for large or evolvable rule sets. Therefore, in a B2B setting we
favour a partial prioritization schema where conflicts are resolved among smaller

sets. This is the role played by the Priority Rule in this example.

18 Chapter 2. XML for document exchange

Example 4. Derived element: <:insuranceCost>

(Rule A) If any item exists whose category is “cd”, then the insurance cost
will be 1.99 euros

(Rule B) If any item exists whose category is “book”, then the insurance

cost will be 2.99 euros

(Rule C) If any item exists whose category is “electronic”, then the insur-

ance cost will be 5.99 euros

(Rule D) If any item exists whose category is “electronic” and needs special

hanging, then the insurance cost will be 6.99 euros

* (Priority Rule) If more than one rule apply, the final insurance cost will be

the maximum of the returned values

These rules realize the insurance policy. An order can contain distinct categories
of items. Each category has a distinct insurance cost. Hence, several rules can
apply simultaneously (e.g. if the order contains “cd” and “book”, then “Rule A”
and “Rule B” will be applied). Unlike the previous example, now a value-based
prioritization schema is followed. That is, the final insurance cost is not calculated
as the result of a single rule but as the combination of the returned values by all
applicable rules as stated by the Priority Rule.

Summing it up, deriving data can be local or remote to the document itself,
while the prioritization schema can be value-based or rule-based. The latter is
expressed in the form of meta rules. Such meta-rules also convey important busi-
ness policies. From an engineering viewpoint, a prioritized schema enables signi-
ficantly easier modification and more modular revision, both key features to face
in the evolvable nature of the B2B setting. Indeed, it has been reported that busi-
ness policies are among the most evolvable software artifacts found in current
information systems. New rules (i.e. policies) can be added, or meta-rules (i.e.
strategies) can be updated with no impact to the rest of the rules. Such aspects
enhance modularity and facilitate “locality in revision” [GLC99].

Figure 2.3 summarizes the above expressiveness requirements using a feature

diagram notation [Kea90]. The feature diagram describes the domain concepts

2.3. Requirement Definition 19

| DerivingFunction l

./l\

Execution Business Rule Priority Rule Written
Strategy Setting Strategy Documentation

Consequence

Antecedent

OnLoad

Value Rule
Based Based

OnRequest

Deriving Fact

Setting 1 I
8 ' ® Mandatory feature |
1
i © Optional feature '
1
1 . 1
Alternative feature
Local Remote : /0\ :

Figure 2.3: Feature-diagram for deriving function domain.

and their interdependencies. In a Domain Specific Language (DSL) context, a
feature diagram serves to state the commonalities and variabilities of the domain at
hand, so that commonalities are built-in into the DSL engine whereas variabilities
are supported as parameters to be set by the DSL user [MHSO05]. For our case,

main features are:

» Execution Strategy. This feature deals with the problem of determining
when to calculate the derived data: onlLoad, when an XML document is
parsed and loaded in memory; or onRequest, i.e. at the moment that it is

used and requested to the parser.

* Business Rule Setting. A rule includes an antecedent or condition describing
the situation where the rule applies, and a consequence, which indicates how
to calculate the value of the derived element if the antecedent is met. A rule
can be referenced both local or remote deriving facts. In case of remote
deriving facts, the source (e.g. DDBB query) of these deriving facts must
be provided.

* Priority Rule Strategy. When more than one rule can be applicable, two

options would be available: “value-based” and “rule-based”.

20 Chapter 2. XML for document exchange

* Written documentation. This feature consider the need of describing the

deriving function in a human-readable way.

2.3.2 Understandability

We are in a B2B setting: document interchange between different partners. En-
hancing partner trustworthiness and hindering repudiation calls making explicit
important business rules that govern the interaction between business partners.
The so-called contract vocabularies focus on capturing the discovery-negotiation-
execution life-cycle that models a business transaction [GLC99]. These agree-
ments are frequently reflected in terms of business policies, of which deriving
functions are a special realization. Therefore, deriving functions as containers of

business policies need to be declaratively described to easy understanding.

2.3.3 Interoperability

This is a requirement coming also from the B2B setting. The solution should not
hinder the exchange of document in terms of the infrastructure needed to process
those documents. Specifically, document validation should not be compromise by
the fact of a document containing deriving functions. This is a kind of backward
compatibility in the sense that partners that are not concerned with deriving func-
tions can still interact with other partners that use that functions. This rules out
solutions based on <zs:redefine> like the one presented in [MCV04]. Extending
XML Schema through <zs:redefine> accounts for a cleaner solution but, unfor-
tunately, can refrain the schema from being shared with other partners unless their
parsers have been similarly upgraded to account for the same redefine statements.
This forces partners to keep their XML installation in sync. Therefore, supporting
deriving functions should be achieved in a way that is backward compatible, i.e.

not forcing all partners to “upgrade” to deriving functions.

2.3.4 Completeness

This requirement is set by IDA itself in the following terms: “for clarity purposes,

all business documents should as far as possible contain all information (reitera-

2.4. Artefact Design: XDerive namespace 21

XDerive <<instance-of>> (r;(ﬁ:/ltf)
namespace oL
P
A -
N

N < :
- <<instance-of>>

N
LN

<<instance-of>>

XDerive
expression

XML
Schema

<<instance-of>>:
XML
document
Figure 2.4: XDerive design: the annotation approach.

tion of items ordered, parties involved, etc). We thereby ensure that each business
document is self-sufficient in interpreting it” ([Eur04], page 15th). Deriving func-
tions consult deriving data. Deriving data is not limited to facts explicitly stated
on the document, but also include external data to the document itself. For in-
stance, applicableDiscount can be obtained from distinct business policies, such
as “5 percent discount if buyer has a history of loyal spending at the store” or “20
percent discount if the product is on offer”. In this example, applicableDiscount
has two deriving facts (i.e. the consumer’s loyalty history, and the product state),
that are kept outside the order document. This makes business partners other than
the issuer, have a partial picture of how the applicableDiscount has been obtained,
since the information about the state of the product (i.e. whether it is on offer or
not) is not recorded in the order. Such a situation might hamper trust construction
between partners. Besides, in case of conflicts, it will be difficult to resolve about
which discount was applied, as the business document misses important facts.
Next section addresses the design of XDerive, an artefact that addresses the

explicated problem and fulfils the previously defined requirements.

2.4 Artefact Design: XDerive namespace

This section introduces XDerive, an XML Schema namespace for derived element
description, and how the XDerive expressions should be used. This section tackles

the expressiveness requirements set in subsection 2.3.1.

22 Chapter 2. XML for document exchange

Using XML for schemas and instances instead of using other data formats
is beneficial with respect to interoperability, openness, and integration. This
means that schemas and instances described with XML syntax are accessible un-
der various platforms and environments, they can be extended by employing XML
namespaces, and they can be integrated with other XML standards such as XLink,
XSLT, and RDF.

The semantic expressiveness of XML Schema, the schema language recom-
mended by the W3C, however, is not sufficient to define the semantics of derived
data. Figure 2.4 shows how we have extended XML Schema in order to enrich
XML with derived data. In one hand, the XDerive namespace is described as a
(meta)schema (i.e. concepts and constraints) for deriving functions by means of
an XML Schema. In the other hand, the XDerive expressions are embedded in an
XML Schema, where the business vocabulary (i.e. data type) is described. Thus,
an XML Schema can be validated using a conventional XML Schema validator,
assuring interoperability with a partner’s legacy applications. Moreover, the same

XDerive expressions are used for all document instances of the schema.

2.4.1 How to describe deriving functions?

A namespace, XDerive, is defined to specify all the aspects addressed in Figure
2.3. Figure 2.5 shows the XML elements and the types that define the XDerive
namespace. The full XML schema definition can be found in appendix A. Thus,
it is possible to reuse in any other XML Schema. Next paragraph delves into the

details of the main XML elements:

* derivingFunction. This element describes the deriving function. Its con-
tent includes a description of its purpose (i.e. documentation), a set of
rules (1..n) that realize it, and the prioritizationSchema, in case that
more than one rule is defined. Moreover, the actuate attribute holds the

execution strategy options: onLoad (by default) or onRequest.

* rule. Arule specification includes a description of its purpose (i.e. documen
tation), the rule’s antecedent (i.e. the test attribute) and the rule’s con-

sequence (i.e. action element). The test attribute holds an XPath expres-

2.4. Artefact Design: XDerive namespace 23

derivingFunction =]

|
| H
I : i_RuIeT-,'pe _|

Bl attributes

ValueBasedType |
B atiributes |
combiningFunction |

Figure 2.5: XDerive namespace: a derivingFunction element provides a content model as

documentation, rules and prioritizationSchema.

sion, i.e. a predicate on the content of the instance document. The action
element comprises a set of standard XSLT instructions (e.g. <zsl:value-of
select=*...”>). This element has a constraint that the latest instruction
must be <zsl:value-of ...> for simple type values and <zsl:copy-of
...> for complex type values. In case that remote deriving facts are used in
the rule description, more than one source element should be defined, one

for each distinct remote fact.

prioritizationSchema. This element holds one of the alternatives of a
conflict resolution strategy: valueBased or ruleBased . The former defines

a function (i.e. combiningFunction attribute) that combines all the result

24 Chapter 2. XML for document exchange

of activated and executed rules. The latter is implemented as a meta-rule by

defining a set of rules in order to select one of the activated rules.

2.4.2 How to embed XDerive expressions?

When describing derived elements, the first issue is the cardinality of derived ele-
ments. XML Schema provides the minOccurs and mazOccurs attributes to indicate
the allowable occurrence interval of a given element. However, it is not clear what
this interval should be for derived elements. Consider the <insuranceCost> ele-
ment, if minOccurs is set to 1 the user is forced to introduce the <insuranceCost >.
But this is not the expected behaviour. On the other hand, if minOccurs is set to 0
the <insuranceCost> becomes optional, which is also not the right interpretation,
particularly for the processing application.

As a result, the schema validator of a “derivation aware” parser should re-
interpret the meaning of minOccurs when a deriving function has been defined
inside the element’s definition. In our implementation, minOccurs of derived ele-
ments are set to 0. This means that an XML text editor would allow the user to
introduce a value for a derived element. At parsing time however, this value is
overridden by the output of the deriving function?.

Previous attempts to extend XML Schema rest on the redefine construct [MCV04].
This means to extend the semantics of schema language construct with new be-
haviour. This accounts for a cleaner solution (i.e. more expressive) but, at the
expenses of hindering schema sharing since partners are required to have their
parsers similarly upgraded to account for the same redefine statements. Express-
iveness of new concepts in XML Schemas and interoperability (i.e. the use of
standards XML software) are two contrary requirements as it is reflected in the
study of different approaches by Bernauer et al [BKKO03].

By contrast, we resort to the <zs:annotation> element. Main benefit: al-
lows designers to provide further information about elements without touching the
schema language semantics. Schematron [JAO1] illustrates this approach. Annota-
tions may contain <zs:documentation> Or <zs:appinfo> elements. The former

is for human consumption whereas the latter provides instructions targeted at the

2 Another alternative would have been to raise an error that indicates this situation.

2.4. Artefact Design: XDerive namespace 25

processing application. Figure 2.1 shows an <zs:documentation> element which
holds the author and the purpose of this schema. This information is intended
for humans, hence an <zs:documentation> element is used. By contrast, derived
element semantics are targeted at the XML parser, so they will be enclosed within
<zs:appinfo> elements. The bottom line is that this solution permits to share the
schema with other partners. Even if their parsers are not derivation-aware, they
can still parse the standard part of the schema. This somehow preserves a kind of

backward compatibility.

2.4.3 Examples of XDerive expressions

XDerive namespace is presented here through examples. All XDerive expressions,
identified by xd namespace-prefix, are kept as content of the <zs:appinfo> ele-
ment of the corresponding derived element declaration (i.e. <zs:element>) in the
XML Schema.

Example 1. Deriving with local data: the <subTotal> element. The value of
<subTotal> is calculated from the item’s costs found in the order. Its specifica-

tion using an XDerive expression is as follows:

<xs:element name="subTotal" type="xs:decimal" minOccurs="0">
<xs:annotation>
<xs:appinfo>
<xd:derivingFunction>
<xd:rule id="rule-1" test="//partialCost" >
<xd:documentation>
The subTotal is found adding all the partialCost of
the ordered items.
< /xd:documentation>
<xd:action>
<xsl:value-of select="sum(//partialCost)" />
< /xd:action>
< /xd:rule>
< /xd:derivingFunction>
< [xs:appinfo>
< /xs:annotation>
< [xs:element>

A deriving function is described through its namesake element (i.e. <zd:

26 Chapter 2. XML for document exchange

derivingFunction>>). Its content includes a set of rules that realize the func-
tion. A rule specification (i.e. <zd:rule> element) includes a description of its
purpose (i.e. the <zd:documentation> element), the rule’s antecedent (i.e. the
test attribute) and the rule’s consequence (i.e. the <zd:action> element). The
test attribute holds an XPath expression, i.e. a predicate on the content of the
instance document. In this case, the test checks that <partialCost> elements ex-
ist. The <zd:action> element comprises a set of standard XSLT instructions. The
example uses <zsl:value-of select=*...’"> to obtain the value of the derived
element using the sum() XPath function with the list of <partialCost> elements
as parameter. The latest instruction must be <zsl:value-of ...> for simple type
values and <zsi:copy-of ...> for complex type values. Notice that no prioritiz-

ation schema has been included as only one rule is provided.

Example 2. Deriving with remote data and a value-based prioritization schema:
the <insuranceCost> element. The value of <insuranceCost> is the maximum
of the costs associated with the category of the distinct items included in the or-
der. Its specification using an XDerive expression is shown in Figure 2.6.

This derivation policy implies more than one rule. If the order comprises items
of distinct categories, more than one rule can be applied. The <zd:prioritization
Schema> element indicates how to resolve this ambiguity. In this case, the designer
chooses to combine the values returned by distinct applicable rules (held by the
special <actionResult> element of the rule), and takes the highest one. This is
supported by the math:maz () function which is specified at the combiningFunction
attribute. This attribute is held by the <zd:valueBased> element.

This example also illustrates the use of remote data. Here, the rule’s ante-
cedent checks the item’s category. As this data is not available in the base docu-
ment, the track document is consulted (referred to through the variable $derivation
Track). The structure and generation of this document is postponed till section
2.5.1.1. Notice however, that the source of the external data should be indicated.
The <zd:source> element serves this purpose. This element holds the name of
the external deriving data (derivingFact attribute), the connection configuration
(e.g. the database’s URL, the driver and the like) to be used to retrieve this data

3The prefix xd: indicates the namespace where this element’s tag is defined.

2.4. Artefact Design: XDerive namespace 27

<xs:element name="insuranceCost" type="xs:float" minOccurs="0">

<xs:annotation>

<xs:appinfo>
<xd:derivingFunction actuate="onlLoad">
<xd:documentation>The insurance cost will be the maximum among the

cost associated to each category of the ordered items.
< /xd:documentation>

<!-rule-7 and rule-8 are omitted for the explanation —>
<xd:rule id="rule-9" test="$derivationTrack//category[.= electronic’]" >

<xd:documentation>If exist any item whose category is
‘electronic’ then the insurance cost will be 5.99 euros.
< /xd:documentation>
<xd:action>
<xsl:value-of select="number(5.99)" />

< /xd:action>
<xd:source derivingFact="category" connection="itemInfo" >

<xsql:query> SELECT category, ref FROM items
WHERE ref IN S$order/lineltem/ref< /xsql:query>
< /xd:source>

< /xd:rule>
<xd:rule id="rule-10" test="S$derivationTrack//category[.='computers’]" >

<xd:documentation> If exist any item whose category is
‘computers’ then the insurance cost will be 7.99 euros.
< /xd:documentation>

<xd:action>
<xsl:value-of select="number(7.99)" />

< /xd:action>
<xd:source derivingFact="category" connection="itemInfo" >
<xsql:query> SELECT category, ref FROM items
WHERE ref IN $Sorder/lineltem/ref< /xsql:query>
< [xd:source>

< [xd:rule>
<xd:prioritizationSchema>
<xd:valueBased combiningFunction="math:max($rule-7 /actionResult,

$rule-8/actionResult, $rule-9/actionResult,
$rule-10/actionResult)" />
< /xd:prioritizationSchema>
< /xd:derivingFunction>
< /xs:appinfo>
< /xs:annotation>

< [xs:element>

Figure 2.6: The specification of insuranceCost using XDerive.

28 Chapter 2. XML for document exchange

(connection attribute), and the SQL query that retrieves the value (<zsql: query>
element).

Although our approach includes this connecting information as part of the
schema of the base document, it is debatable whether this information should have
been better recorded in the track document itself. The rationale for our decision
is that the track document is a generated document, not a specification document.
So all information should be included in the schema of the base document. A
second aspect is modularity and locality. By associating the source of the deriving
data together with the rule that uses such data, the removal/addition of rules is
greatly facilitated. Even if this leads to repeating the source several times (if the
same external data is used in distinct rules), the benefits outweigh this drawback.

Moreover, the data is retrieve once from the database.

Example 3. Deriving with remote data and a rule-based prioritization schema:
the <deliveryTime> element. The value of <deliveryTime> depends on the
shippingSpeed and the availability of the items in stock. Its specification us-
ing an XDerive expression is shown in Figure 2.7.

This derivation policy also comprises several rules. However, unlike the pre-
vious example, only one rule is applied, even if the antecedent of several rules is
met. That is, the prioritization schema is now rule-based. This implies that the
system checks the rule’s antecedents, keeps this result in a special element tagged
<antecedentResult>, and finally, applies the priority rules. The latter resolves
the conflict about which base rule to apply.

To this end, the <zd:prioritizationSchema> element now contains an <zd:rule
Based> element, which in turn contains the priority rules. Since a priority rule is
a rule, its specification is similar to a base rule. But now the subject matter are the
base rules. That is, a priority rule’s test checks whether base rules can be applied
or not, while its consequence indicates the base rule to be applied. Figure 2.7
gives an example.

The first priority rule in Figure 2.7 checks whether rule-17 and rule-18 are
both met by the current order. If so, the priority rule resolves the conflict by

applying rule-17*. Priority rules are evaluated sequentially till one is met. It is

“In the current version, the rule engine assumes a disjunctive test for the priority rules.

2.4. Artefact Design: XDerive namespace 29

<xs:element name="deliveryTime" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:appinfo>
<xd:derivingFunction actuate="onlLoad">
<xd:rule id="rule-16" test="shippingSpeed = 'Standard Shipping’ ">
<xd:documentation>If the shipping speed is 'Standard Shipping’
then the delivery-time will be between 4 and 8 days.
< /xd:documentation>
<xd:action>
<xsl:value-of select=" "You order will arrive between ' +
date:sum($order/date,4)+’ and ’+date:sum(Sorder/date, 8) "/>
< /xd:action>
< /xd:rule>
<xd:rule id="rule-17" test="count($derivationTrack//availability|
.="24 hours'])>3 and shippingSpeed="'0One Day Shipping’ ">
<xd:documentation>If the shipping speed is 'One Day Shipping’
and there are available in 24-hours more than three items
then the delivery-time will be 2 days.</xd:documentation>
<xd:action>
<xsl:value-of select=" 'You order will arrive on ’ +
date:sum($order/date,2)" />

< /xd:action>
<xd:source derivingFact="availability" connection="itemInfo">
<xsql:query> SELECT availability, ref FROM items
WHERE ref IN $order/lineltem/ref< /xsql:query>
< /xd:source>
< /xd:rule>
<xd:rule id="rule-18" test="shippingSpeed = 'Two Days Shipping' or
shippingSpeed = 'One Day Shipping’ ">
<xd:documentation>If the shipping speed is 'One Day Shipping’ or
"Two Days Shipping’ then the delivery-time will be 4 days.
< /xd:documentation>
<xd:action>
<xsl:value-of select=" "You order will arrive on ’ +
date:sum($order/date, 4)" />
< /xd:action>
< /xd:rule>
<xd:prioritizationSchema>
<xd:ruleBased>
<xd:rule test="38rule-17 /antecedentResult and
$rule-18 /antecedentResult" >
<xd:action><xd:apply-rule select="rule-17"/>< /xd:action>
< /xd:rule>
<xd:rule test="$rule-18/antecedentResult" >
<xd:action><xd:apply-rule select="rule-18" /> < /xd:action>
< /xd:rule>
<xd:rule test="true()" >
<xd:action><xd:apply-rule select="rule-16" /> < /xd:action>
< /xd:rule>
< /xd:ruleBased>
< /xd:prioritizationSchema>
< /xd:derivingFunction>
< [xs:appinfo>
< [xs:annotation>
< [xs:element>

Figure 2.7: The specification of deliveryTime using XDerive.

30 Chapter 2. XML for document exchange

up to the rule designer to provide a coherent set of priority rules, i.e. rules whose
antecedents are disjoint. To ensure completeness, a last rule is added in Figure 2.7
whose antecedent is always true. This accounts for the situation where none of

the previous priority rules apply.

2.5 Artefact implementation: XDerive

XDerive is a notation for derived facts. That is XDerive is a knowledge model.
This section addresses the execution model, i.e. the enactment of deriving func-
tion and its inclusion in current XML parsers. This section tackles the environ-

mental requirements set in section 2.3.

2.5.1 How to enact XDerive expressions?

So far, we have addressed the knowledge model of deriving functions. Now, we
need also to address how XDerive expressions are going to be enacted. In a data-
base scenario, two answers are possible, namely, derived attributes are stored in
the database or calculated on demand. The designer should balance: i) the addi-
tional cost of storing the derived data and keeping it consistent with the base data,
with ii) the cost of calculating the derived data each time it is required [CB98].
Unlike derived data (as found in the database area), a business document
should not be kept continuously consistent with the deriving data. Therefore,
the “calculated-on-demand” option has not been contemplated. The content of
derived elements are obtained as an aside process at parsing time. This process
takes the “base document” as an input, and generates the “derived document” plus
the “track document” (see section 2.5.1.1), where external deriving data is kept°.
The next subsection introduces the “track document”, called the derivationTrack

document.

Due to the static nature of business documents, this work does not contemplate the possibility
of updating the derived element directly nor the updating propagation issue. The latter involves
how modifications on the derived data are propagated to the deriving data. The challenge lies in
the ambiguity of this transformation as the propagation is not always unique [CM89].

2.5. Artefact implementation: XDerive 31
2.5.1.1 The derivationTrack document

A business document reflects an agreement between the distinct partners involved
in the transaction. Paper-based documents usually have an attachment (e.g. con-
ditions on sale) that describes the context in which this agreement is set. Such
an attachment plays an important legal role in case of any demand or complaint

about the transaction.

Likewise, “virtual documents” also need a similar attachment. This is par-
ticularly so in the presence of derived elements. Here, deriving data can be up-
dated once the transaction occurs (e.g. the item price can be modified) so as
to prevent the customer from recreating the context in which his order was pro-
cessed. The solution envisaged here is to generate an attachment at the time the
transaction (i.e. the order) occurs. Such an attachment holds a snapshot of the
external deriving data which has been used to obtain the derived values. Such
snapshots of the “business context” allow business partners other than the issuer,
to be aware of the state of the business at the time the transaction took place so
as to validate the appropriate application of the business policies. Such an at-
tachment is generated as a by-product of the derivation process, and attached to
the business document through an XML processing instruction. This is achieved
by means of the derivationTrack document (see appendix B), a document which
tracks the derivation process so that this derivation can be replicated at any mo-
ment by any of the partners involved. This document is automatically generated
during the derivation process, and associated to the business document by means
of the <?zderive-derivationTrack ... ?> processing instruction (see Figure
2.2, line 1).

Although such an approach can sound bizarre at first glance, it is similar to
current practices to indicate the presentation of an XML document. In this case,
how a document is rendered is separately described in an XSLT document. When
the document is processed according to its “presentation document”, the rendering

18 obtained.

Likewise, how a document has been derived can also be separately indicated
in a distinct XML document: the derivationTrack document. When this document

is processed according to its “track document”, both the distinct business policies

32 Chapter 2. XML for document exchange

XML

“base “derived ~
~ HTML
O document” - document” =~ -
XML Parser XML

“derivation Document ———

/ aware” Explanator /
XML 2

“track -
— — 3 Input or Qutput document”

——p Controk-flow

XML

Y

Process I:l Diaesuirresnt Ij

Figure 2.8: Document life-cycle: the activating, parsing and explanation stages.

and the consulted deriving values are made explicit.
The envisioned situation is depicted in Figure 2.8 where the following stages

are contemplated:

1. activating stage. The activator (e.g. either a customer or an application that
sends the order automatically if the stock goes below a certain threshold)

kicks off the whole process by submitting the “base document”,

2. parsing stage. At the issuer place, the derivation-aware parser takes the
base document as an input and generates both the “derived document” and

the “track document”.

3. explanation stage. Finally, either the activator, the issuer or the trusted
third party, can process the “derived document” in explanation mode so as

to ascertain both the policies and deriving facts that has been applied.

Therefore, the derivationTrack document records the values of the external deriv-
ing data (the <zdt:derivingElements> element), and the rules which have been
applied during the derivation process (the <zdt:derivedElements> element). Ap-
pendix B gives an example.

The derivationTrack document keeps each external deriving data as an ele-
ment. It is worth emphasizing that the parser only records the deriving data that
is used in the derivation process. The first deriving element of the sample in ap-

pendix B follows:

<category ref="TV-1"> electronic </category>

2.5. Artefact implementation: XDerive 33

An attribute, named ref, is added to relate the element on the derivationTrack
document with the associated element in the base document. Here, the attribute
ref indicates that this is the category of the item “7V-1” to be found in the or-
der document. Therefore, this work is based on the understanding that the base
document should provide the means to univocally identify the entities participat-
ing in the transaction. In our running example, the base document should clearly
indicate the customer and the ordered items. This is normally achieved through
a reference or code. In our example, the customer is identified through the <id>

element while an item holds a <ref> element.

Besides deriving elements, the track document keeps information about the
derivation process through the <zdt:derivedElement> element. An example fol-

lows:

<xdt:derivedElement select="/order/shippingData/insuranceCost" >
<xdt:activated rules="rule-9 rule-10"/>
<xdt:decision type="combining function" />
<xdt:executed rule="rule-9">
<xdt:actionResult>>5.99< /xdt:actionResult>
< [xdt:executed>
<xdt:executed rule="rule-10">
<xdt:actionResult>7.99< /xdt:actionResult>
< /xdt:executed >

< /xdt:derivedElement>

The data recorded includes: i) an Xpath to reference the derived element or
attribute (select attribute); ii) which rules were activated (<zdt:activated> ele-
ment); iii) which decision was taken, whether more than one rule were applic-
able (the <zdt:decision> element); and iv) which rules were finally executed
(<zdt:ezecuted> element). The above example states that insuranceCost was
calculated after applying a combining function to the results of the rules rule-9
and rule-10.

The rationale for having a derivationTrack document is to allow business part-
ners to validate the conformance of the business transaction. As an example, con-
sider an application that renders pending orders (e.g. similar to the one offered
by Amazon). Partnership trustworthiness can be enhanced by allowing the cus-
tomer not only to check the status and data about the order, but also ease the way

for the customer to understand how the delivery time or insurance cost has been

34 Chapter 2. XML for document exchange

/3 Derived Elements Explanation in order documents - Microsoft Internet Explorer

J Archiva Edicidn Yer Favortos Heramientas Ayuda |
5 = »,

S A 729 G ot B &
Abrds Adelarte Detener Actualizar Inicio Bisqueda Favoritos Historial Carren Tamahio Imprinmir

JQirEcciﬂ'nl hittpe A, ataris, org/leafletforderE splanation. Ift j el

Find how your order has been worked out

Order number: 22222
Customer: Tom Hanks

sazas [Doriedolomers |
|Deriver] Element: ‘p’orderﬂshlppngata/msuranceCost
[Derived Value: [7.99
|Why:

| applicable rules: ‘* rule-9 and rule-10

decision method: * type combining finction
* combining function: The insurance cost will be the
o S T e D E e e T mazimum depending on the category of the ordered items.
rule-9's * If exist any item whose category is 'electronic’ then the
executionresult: insurance cost will be 599 eures.
* action result: 5,59
rule-10's * I exist any ttem whose category 1s 'computers' then the o
execution result: insurance cost will be 7.99 euros.
* action result: 7.59
=l
2] [[Swirc Y

Figure 2.9: Browsing how derived elements have been calculated.

calculated. Currently, this involves the user reading through, potentially, several
pages at the retailer’s site. This is lengthy and cumbersome, and can put the user
off. The rationale here is similar to the one found for the explanation mechanisms
provided by some Expert Systems: improving the confidence of the user on the
transparency and accuracy of the system. This is also so in a B2B setting.

Enhancing customer trustworthiness can be as easy as rendering the track doc-
ument for the customer to replicate the derivation process. Figure 2.9 depicts a
straightforward rendering of the track document shown in appendix B. An index
of order numbers is shown on the left. Once an order has been selected, its track
document is rendered. In this case, the system presents another index of the dis-
tinct derived elements found in the selected order. The user can then select one of
these elements, and both the business policy and derived elements are shown on
the right hand side.

More elaborate displays can be provided that allow partners to track, for in-
stance, the number of orders that benefit from a certain offer, and in general, the
number of cases where a certain business policy (realized as a deriving function)
has been applied. In this way, partners can not only check the fulfilment of the

agreements, but also whether these business policies have been beneficial.

2.5. Artefact implementation: XDerive 35
2.5.2 Making validators XDerive aware

Document validation is a cornerstone of the XML world. On reception, partners
check the validity of the receiving document against its schema (commonly de-
scribed through XML Schema). This work proposes to extent XML Schema with
deriving functions. Hence, the question arises about how validators are going to

cope with this new kind of elements.

The <zs:appinfo> element allows the provision of additional information in
the document schema. The questions are now who will and how to interpret this
information. A possibility is to use a two-step approach whereby the semantics
of the new constructs are first compiled into a run-time validator, -normally us-
ing XSLT. Next, this validator is used to check the compliance of the instance

document against the new constructs.

This work proposes an alternative way. Rather than building a new validator
that complements the XML Schema parser, the XML parser itself is extended to
become “derivation aware”. Applications can use the extended parser to parse
the instance document as they did before except that now, the new constructs (i.e.

XDerive) are also interpreted.

The main benefit is “parser transparency”, that is, parser enhancements do
not imply changes to the applications using the parser: the application ignores
whether the processed documents contains the new constructs (in this case, de-
rived elements) or not. Of course, this option is feasible only for open and modu-
lar parsers. However, such parsers have seemed to increase in popularity since the
publication of JAXP (Java API for XML Parsing) [Sun]. The XML Parser of the
Apache Project, Xerces2 [The01], and Oracle’s XML Parser V2 for Java [Ora02],

are examples of JAXP-based parsers. The latter has been used for this work.

JAXP advocates for configurable XML parsers. In its most basic form, an
XML parser just generates a DOM tree for the input document. Further enhance-
ments should be reflected through configuration parameters. Specifically, JAXP
provides two initial configuration parameters, namely, namespaceAware and val-
idating (see Figure 2.10). The former allows a parser to tackle documents where
distinct namespaces are used, whereas validating indicates whether the parser

should also check the conformance of the document against a DTD or XML

36 Chapter 2. XML for document exchange
JAXP Standard)

D DocumentBuilderFactory <<Interface>>
+isNamespaceAware() +getAttribute() Document
+is\alidating() +newDocumentBuilder) +Hrite N ade()
+newDocument() +newlInstance()
+parse() +setAttribue() {5

gy +sethamespaceAware()
+setvalidating() 1
A i
[i
e I
M JXDocum entBuilder JXDocum entBuilderFactory NodeFactory [XMLDocument
+isNamespaceAware() -NODE_FACTORY +createAttribute() e
+isvalidatingl) L ___ | g etAtriout) +createElement])
+newDocument{) +newDocumentBuilder)) +createDocument)
+parse() +setAftribute() +createProcessinginstruction()
+getDocument]) iy / ~
F 3)
.
DOMParser 4
+getDocument) 7
parse() [T TTTo[TTTToTTooo
+getDocument)
XDerive]
XDADerivationEngine XDA DocumentBuilder XDA DocumentBuilderFactory XDA NodeFactory +ISDXEI:T:‘:I;OET:I:|:£E)
+denveAlElements() | {+isDerivationAware() < |+newDocumentBuilder() +createDocument() | - - >4, setTrackDacument()
+Hoad() +newDocument() +setDerivationAware() it ode)
+newlnstance() +parse()

Figure 2.10: Extensions that make a JAXP-compliant parser “derivation aware”.

Schema. Hereafter, companies can enhance their own XML parsers by provid-
ing additional features.

Aligned with this approach, this work is about enhancing an XML parser with
derived elements. Thus, the parser has been extended with an additional config-
uration parameter, derivationAware, that allows parsers to face derived elements.

The next subsections examine how this has been achieved.

2.5.3 An outline on the JAXP standard

The JAXP architecture follows the factory method pattern for the creation of both
document builders and nodes®. These patterns are used when “a class can’t an-
ticipate the class of objects it must create” or “a class wants its subclasses to
specify the objects it creates” [GHIV95]. The former situation is found for in-
stantiating document builders whereas the latter arises for node creation. Figure
2.10 shows this situation.

The creation of document builders is handled through both the Document-
BuilderFactory and the DocumentBuilder classes. Both classes are abstract. Doc-

umentBuilderFactory defines an abstract method, newDocumentBuilder(), that

%A document is realized as a set of nodes arranged in an arborescent way: the DOM tree.

2.5. Artefact implementation: XDerive 37

knows when a new DocumentBuilder should be created, but it ignores what kind
of DocumentBuilder should be created. This aspect is delegated to its subclasses
(e.g. the JXDocumentBuilderFactory class) that redefines that abstract method
to indicate the appropriate DocumentBuilder to be used (e.g. the JXDocument-
Builder class). The newDocumentBuilder() method is called a factory method
because it is responsible for “manufacturing” an object.

As for nodes, the NodeFactory class plays the factory role. Unlike the previ-
ous example, NodeFactory is a concrete class, that is, this class already provides
a default implementation. This implementation is realized through the methods
createAttribute(), createElement(), etc., one for each kind of node that can be
found in an XML document. These methods can then be specialized to account
for special requirements.

This architecture can now be completed by parser vendors. Figure 2.10 shows
this extension for Oracle’s XML Parser V2 for java. Specifically, the parser com-

prises the following classes:

» JXDocumentBuilder class. It is in charge of: 1) instantiating the XML
DOM parser (implemented by the DOMParser class); 2) starting the pars-
ing process; and 3) instantiating a DOM Document object to build a DOM
tree (through the newDocument method). This class realizes the Document-
Builder abstract class of JAXP.

» JXDocumentBuilderFactory class. It instantiates a JXDocumentBuilder ob-
ject. Once the JXDocumentBuilder instance creates the XML DOM parser,
the factory configures the just created parser according to a previously es-
tablished configuration. As an example, consider the way to set a parser to
be “validation aware”. To this end, the factory has a setValidating() function
to set this feature. If this property is set to “true”, the parsers generated from
then on will be “validation aware”. This class realizes the DocumentBuild-

erFactory abstract class of JAXP.

* DOMParser class. An object of this class is the XML parser as such. It
takes an XML document as an input, and generates a DOM tree in memory,
by means of the NodeFactory class. This process is lead by the parse()
method. The DOM tree is an instance of the XMLDocument class.

38 Chapter 2. XML for document exchange

* NodeFactory class. This class is responsible for creating different DOM
objects during the parsing process. Hence, distinct methods are available
to tackle each of the node types available in XML: createAttribute(), cre-
ateElement(), createDocument() and the like. This allows one to attach

application-specific semantics by instantiating application-specific classes.

These classes support an XML DOM parser. Our aim is to make this parser

“derivation-aware”.

2.5.4 Making the parser “derivation aware”

A JAXP parser is “derivation aware” if it /) interprets deriving functions (spe-
cified through XDerive) and 2) generates the track document as a by-product of
the parsing. To this end, the previous classes have been extended as follows. First,
the XDADocumentBuilder class extends JXDocumentBuilder class in order to spe-
cialize an XMLparser in derived data. Besides parsing the “base document”, this
subclass also give support to interpret the deriving functions, and generate both
the “derived document” and the “track document”.

Second, a new configuration parameter (i.e. derivationAware) and its setting
method (i.e. setDerivationAware()) are added by the XDADocumentBuilderFact-
ory class, which extends the JXDocumentBuilderFactory class’ functionality. If
this parameter is set, the factory will create an instance of XDADocumentBuilder
rather than a JXDocumentBuilder object.

Finally, the NodeFactory class is extended by the XDANodeFactory. Besides
parsing the document, an XDADocumentBuilder invokes the XDADerivationEn-
gine when a derived element is found. This class supports the interpreter of XDe-
rive elements. Moreover, the XDADerivationEngine simultaneously records the
rules being applied, building up the track document. This means that now the
parser has to cope with two documents: the derived document and the track
document. XDANodeFactory specializes the createDocument() method so as to
handle the two documents simultaneously. The rest of the behaviour (i.e. the
creation of the distinct node types available in XML) is left untouched. The spe-
cialized createDocument() constructs a DOM tree which can hold another DOM

tree. The first is for the derived document, and the other is for the track docu-

2.5. Artefact implementation: XDerive 39

ment. The track document is attached by the setDerivationTrack() method. And
finally, when the document is saved, both documents are linked by adding the
<?zderive-derivationTrack ...?> processing instruction to the derived docu-
ment. This is achieved by the writeNode() method (in the XDADocument class).
Figure 2.11 depicts an interaction diagram that reflects the “derivation aware”

parser at work:

* Firstly, the Client application configures the DocumentBuilderFactory to
create a “derivation aware” XML DOM. To this end, the application creates
a new instance of XDADocumentBuilderFactory and sets the corresponding
configuration parameter, namely, sets XDANodeFactory as the value of the
parameter NODE_FACTORY (using the setAttribute() method) and assigns
“true” to the DerivationAware parameter (using the setDerivationAware()
method). After this, an instance of XDADocumentBuilder is created which

in turn, creates a new instance of a DOMParser.

* Secondly, once the parser is in place, the parse() method of XDADocument-
Builder is invoked to initialize the parsing process of the given document.
This requirement is passed over to the DOMParser. The DOMParser cre-
ates both the document and the elements, which are appended to the docu-

ment.

e Next, the XDADocumentBuilder retrieves the created document. If this doc-
ument has an attached schema then, a new instance of XDADerivationEn-
gine is created. The derivation engine loads the schema and compiles the

deriving functions into an XSLT document (using the load() method).

o If there exists derivation rules and this document has not been parsed yet
(i.e. no track document is attached) then, the deriveAllElements() method
is invoked. This method both calculates and appends all derived elements.
Then, the XDADerivationEngine passes the track document to the XDADoc-

ument instance.

* Finally, the application saves the parsed document by invoking the write
Node(aURL) method. This method attaches the derivationTrack document

Chapter 2. XML for document exchange

40

Client - XDADocument BuilderFactary | | - XDADocumentBuilder | | : XDADocumert | | : XDADerivationE ngine - XDANodeFactary - DOMParser | | : JXDocumentBuilder
I I I I I
i 1 newlNstance() | _ _ _
H | | |
2: setAttribUte(NODE [FACTORY, arg xderive XDANdder actary) ! !
_ [[
3: setDerivationAwarg(true) ! ! ! ! ! _
F— _ _ _ _ _ _
4: newDocumentBuilder() | _ _ _ _ _
|v_j _ 5 new() vm
L | = T
6 parse
_ B U > 7. parse()

19: writeNodetaURL)

10: appendChild()

reateD ocument(

9: createE lement()

11: getDocument()

12 getSchemalURL

13: newlnstance()

14 load(schemaURL)

T
15: deriveAllElements()
|

Am__mmﬁan_@_unc_ﬁm:.ﬁo

16; appendChild()

17 newDocument()

|
20: createP rocessinglfstruction()

I
[
g munmzao:_ac
|
|

Figure 2.11: A “derivation aware” XML parser at work.

2.6. Demonstrate artefact 41

to the derived document by appending the processing instruction <?zderive-
derivationTrack ...2?>. This instruction holds the URL where the track
document is stored (see Figure 2.2). Finally, writeNode saves both docu-

ments in the given URL.

2.6 Demonstrate artefact

This section aims to demonstrate the feasibility of using annotations for XML
Schema extensions for the special case of deriving functions. To this end, a XDe-
rive construct is designed together with an execution model, and the corresponding
engines that serve as a proof of concept. Besides the accommodation of deriving
functions into XML Schema, another question is whether XDerive is expressive
enough or not. Unfortunately, we were not able to check it out with a real life
case, and hence resorted to the case study presented in subsection 2.5. Though
this hinders external validity, it serves to demonstrate a richer set of cases that

would have been possible if sticked to a real situation.

2.7 Related Work

Active documents. Derived documents are closely related to active documents
[SB02, ABM ™04, BCPO1, NJB03]. An active document is a document that has
a related behaviour that reacts to events occurred around the document. Active
documents systems functionality is similar to active database systems [PD99].
The main similarities and differences of our work with others are:

(i) the purpose, our approach derives a document including some data that is
derived from other data: local or remote (similar to [ABM ™04, NJB03], whereas
[SBO2, BCPO1] change a document data in case that some other data (in other
document or database) has changed.

(ii) active events, our approach reacts to the use of a document (i.e. load or
query data events), whereas [SB02, BCPO1] reacts to modifications (i.e. insert,
delete or update events) in other documents. However, [ABM"04] introduces

explicit web-service calls in the instance document.

42 Chapter 2. XML for document exchange

(iii) expressiveness and interoperability. Our work agree with most of them
(except [BCPOI1] that uses directly XSLT templates) that active behaviour de-
scription needs a specific vocabulary in order to be more expressive. Moreover,
our work promotes XML Schema extension as Active XML Schemas in order to
reuse and gain interoperability.

There are active document system in the area of expert systems, which are
more versatile and it performs analysis that are presently outside this work. For
example, ADF[Zhu03] focus on services like complex question answering, that
requires search, retrieval, reasoning and browse engines.

Rule Markup languages. The Rule Markup Initiative is striving to define
“an open, vendor neutral XML-based rule language standard ... permitting both
forward (bottom-up) and backward (top-down) rules in XML for deduction, re-
writing, and further inferential-transformational tasks”. The current version of
RuleML’ 0.86 (in June 2004) only covers a very limited form of derivation rules,
similar to Horn clauses [HBD"04]. This however, would be expressive enough
to support derivation rules (except meta-rules for conflict-resolution) as the ones
used in this work. In what follows, we highlight the main differences between
using RuleML and the approach described here.

A RuleML rule contains facts, implications and queries. It is then a complete
description of a production system as found in the Expert System realm. The
query states a hypothesis to be proved by applying the implications which finally
rest on the facts. In our approach, facts and implications are decoupled: facts are
found in the business document whereas implications are described in its schema.
Hence, our approach is better aligned with the database way. That is, databases
make a clear distinction between the intension (i.e. the schema) and the extension
(e.g. the tuples) where each aspect greatly differs in size and volatility.

Another important difference stems from the facts being XML business doc-
uments. Rather than using a Prolog-like approach, our rule’s antecedent is an
XPath expression that checks the existence of some data in the XML document.
This leads to more legible expressions but also makes these expressions depend-

ent on the document structure.

Thttp://www.ruleml.org

2.8. Conclusions 43

Derived data in database systems. For example, STRIP is a main memory res-
ident soft realtime database system implemented at Stanford. On top, the STRIP
rule system provides a unique transaction facility which accounts for very efficient
incremental maintenance of derived data. The two benefits provided by unique
transactions are: “(i) they allow rule actions to act on database changes batched
across transaction boundaries not just within one transaction; and (ii) they allow
the batches to be partitioned in any way that reduces the cost of the derived data
computation” [AGMWOI7].

2.8 Conclusions

This chapter provides some insights on how XML Schema can be extended with
derived elements. XDerive is proposed. Understandability, interoperability, com-
pleteness and expressiveness have been the guiding principles throughout. Under-
standability have been improved since XDerive expressions are more declarative
that its code counterparts. Interoperability is protected by resorting to the annotate
construct. Completeness is addressed through the track document which records
the state and business policies used at the time the transaction occurs. Finally,
expressiveness is checked out through a far from trivial case study.

Parts of the work described in this chapter have been previously presented:

* O. Diaz and F. I. Anfurrutia. Improving self-interpretation of XML-based
business documents by introducing derived elements. Electronic Commerce
Research and Applications (ECRA), 4:264-282, 2005.

 F. Ibéfez, O. Diaz, and J. J. Rodriguez. Extending XML Schema with De-
rived Elements. In Proceedings of the IFIP WGS8.1 Working Conference on
Engineering Information Systems in the Internet Context, volume 231 of

IFIP Conference Proceedings, pages 53— 67. Kluwer Academic Publishers,
2002

44

Chapter 2. XML for document exchange

Chapter 3

XML in Software Product Lines

3.1 Overview

Software Product Lines (SPLs) is a popular approach among Software Factories.
The challenge: managing a large but similar set of products (a.k.a. a product
family). Feature-Oriented Programming (FOP) is a paradigm to support SPLs
whereby core artefacts are gradually enriched with features till the desired product
is obtained. Implementation wise, enrichment is achieved through composition,
1.e. core assets are said to be composed with the code of the feature (a.k.a. delta).
This chapter elaborates on the notion of XML composition by rising three issues:
the unit of composition, the ways of composition, and the laws of composition
when code artefacts are realized as XML documents. A vocabulary is introduced
for defining XML deltas. So-defined artefacts can next be validated and composed
to output enhanced XML documents.

The chapter is organized along common Design Science activities: explicate
problem, define requirements, artefact design, artefact implementation and arte-

fact demonstration. Related work and conclusions end the chapter.

45

46 Chapter 3. XML in Software Product Lines

3 ONEKIN Currency Converier - Mozilla Firefox g@@
Eitxategia Editatu Ikusi Historia Laster-markak Tresnak Laguntza delicio

FXConverter - 164 Currency Converter

Help

Corwert amount 1

Euro -~ Euro -
Germmamy Mark Germmany hark,
Bahraini Dinar To Bahraini Dinar
S Dolar JS Dolar
Argentine Paso Argantine Paso
Japanese Yen v Japanese Yen w
Convert Now!
Eginda L+ i

Figure 3.1: The base feature for CuCoWA.
3.2 Problem Explanation

3.2.1 In which practice does the problem appear?

Software Product Lines (SPLs) offer a paradigm to develop a family of software
products. The focus shifts from the development of an individual application to
the development of core assets that are used to develop a family of applications
[CNO1, PBvdLO06]. Core assets are artefacts to be used in the production of more
than one product. Products (i.e. software applications) within a family differ in
the features they support. And feature realisation frequently crosscuts distinct core
assets. Hence, SPLs should consider how core assets are engineered for facing the
variability that goes with the presence or absence of the distinct features the SPL.
supports. Therefore, the management of variability is a cornerstone in SPLs.

An approach to variability management is step-wise development (SWD). This
paradigm develops complex program out of simple programs by incrementally
adding details [Wir71]. One realisation of SWD is Feature-Oriented Program-
ming (FOP) which aims at large-scale compositional programming and feature
modularity in SPLs [BSR04]. FOP departs from current “clone&own’ practises
by leveraging reuse of the common parts, and separating variable and changing

3.2. Problem Explanation 47

CurrencyConverter ‘

i
® Mandatory feature}

1
O Optional feature !

Alternative featurei

Or feature (+1) |}

dateRate| |bankRate

Figure 3.2: Feature model for CuCoSPL.

parts as program deltas. The final product is obtained through composition: the
common parts (i.e. core assets) are leveraged with the program deltas that real-
ise the variations for the product at hand. As an example, consider a Currency
Converter Web Application (CuCoWA). This application facilitates information

about converting distinct currencies’

. Figure 3.1 provides a screenshot of such
application. Basically, the user sets a source and a target currency and the applic-
ation provides the conversion for a given quantity. The issue arises when this base
functionality varies. Figure 3.2 depicts a feature model that portrays different vari-
ations on how CuCoWA products might look like. Unlike a CuCoWA product, the
CurrencyConverter SPL supports a product family, i.e. a set of CuCoWA products
whose variations are expressed by the SPL’s feature model. This diagram outlines

how the base core can be enhanced by adding:

* currency services, which admits the following variants: cheatsheet, obtains
the conversion of the most used amounts of money; history, obtains the his-
torical exchange rate for any currency pair; crossrate, generates a currency
cross-rate table; daily, allows to obtain a multi-currency table of currency

exchange rates,

* dateRate, which allows to introduce a date to make the currency conversion

with the rates at the given date,

'For a working example see www.oanda.com/convert/classic.

48 Chapter 3. XML in Software Product Lines

Software product Documentation product

3 ONEKIN Currency Converter - Mozilla Firefox (=]) Currency Converter Documentation - Mozilla Firefox CEX
Eiteategia Edibtatu Ihusi Historia Laster-markak Iresnak Lagunbza dell

tzategia Editatu Deusi Historia Laster-markak Tresnak Laguntea delicio.us

FXConverter - 164 Currency Converter * FXConverter - Currency Converter fer 164 Currencies
2 @ Introduction
Hil o Functionality
@ Contact for FXConverter users

Comvert amount]]

Eginda =0

EGer) ONEKIN Currency Converter - Mozilla Firefox [Converter, Documentation - Mozilla Firefox

| dateRate » bagse F=E= T =

| g { Btotesa Edtatu Dusi Hstoria Lastermarkak Tresnak Laguntza - st _latu Thosi Historia Laster-marl Tresnak Laguntza delicio.us
| Arg

* FXConverter - Currency Converter for 164 Currencies
¢ Introduction

o Functionalit
at is the date rate?
= How to change the date rate and the date format
e exchange rate

|sap] FXConverter - 164 Currency Converter

Convert amount 1

Eainda]
—] = = o Contart information for EXConverer ueers
ST %3 ONEKIN Currenc: illa Fi T T 5 i illa Fi [=1[ES]
y Converter - Mozilla Firefox A e s gl s = o =
Bahrei]
Uiz D] Botena Edtety Lusi Hstois Lastermarkak T bankRate e dateRate base | botora Lastermarkak Tresnak Loquniza celico us
Argenti =
sapand FXConverter - 164 Currency Converter & F%'—XC";;’;“Z‘ 'n_c““““ orvBitetforklb it Gurrencics
£ © Tntroduction
o Functionality
Hel
S5 = Whatis the date rate?
Convert mounﬁ']—' soltirateias of‘—’_d_d/m/yy_v" » How to change the date rate and the date format
Eginda L - 2 = For fhe axchangs ate
Linterbank rate m 5
— B How to cha e ba o
[Eura o

Z r=ves il o Contactin erfer use
%SELT;% customization = bankRate » dateRate « base ik CO&

Tresnak Laguntea del.icio.us

| US Doler
| Argentine
| i 2 4 ; i G
|Jspanese] FXConverter - 164 Currency Converter 5 Fg%xi";:": h.c‘mm Gemrester 2or 164 Cumrenses
a oduction
i o Functionality
F=2 w What is the date rate?
Colt T 1 o R | How to change the date rate and the date format
e S 2 < o === for the exchange rate
T B = What s the bank rate?
L =l = How to change the bank rate
[Euro &l |7Eum &l o Contactinformatiosnd QUYErEr USers
| Germany Mark =] | Germany Mark = g
| Bahraini Dinar | Te Bahraini Dinar il o to customize the converds
|US Dolar ‘ US Dolar e
| Argentine Peso Argentine Pesa r— SR
| Japanese ven L) | Jopanese ven |

Gethy CheatSheet

Eginda %20

Figure 3.3: The CuCoWA product family

* bankRate, which permits to include banking fees,

* customisation, which allows users to personalise the application by provid-
ing default values for the sourceCurrency, the targetCurrency and the pre-
ferred currencyList properties. Moreover, these options can be extended
with the defaultDateFormat and/or defaultBankRate properties depending

on whether the dateRate and/or bankRate features are selected, respectively.

* audience, which captures documentation variability based on the targeted

reader.

FOP promotes a way to SPL development whereby a complex application is de-

veloped from a simple application by adding features incrementally using function

3.2. Problem Explanation 49

feature BasePlatform; | feature Featurel; class Foo {
class Foo { refines class Foo { int counter;

int counter ; void reset () { int getCounter () {

int getCounter () { counter=0;} return counter;}

return counter;} |} void reset() {
} counter=0;}
}
(a) (b) (c)

Figure 3.4: Refinement of a class: a) base feature; b) Featurel; c) Featurel ebase com-
position.

composition: For instance, the expression:
dateRate o base

denotes a product that is synthesized by composing the base with dateRate where
both base and dateRate denote the set of artefacts that realized the namesake func-

tionality. A more complex example would be:
cheatsheet o crossrate o daily e customisation e dateRate ® base

This expression (a.k.a. configuration equation) accounts for a more complex SPL
product. However, the modus operandi is just the same: composing deltas which
gradually enrich a base core with a pre-set list of features. Figure 3.3 shows a set
of CuCoWA products and how they have been gradually enriched.

Feature models serve to communicate the SPL variability. But how are feature
realized? How are features mapped into code? Ideally, this mapping should be
1-to-1, i.e. one feature is realized through a code artefact. This is the vision of the
Feature-Oriented Paradigm [ABKS13]. Features are realized using a mixin-like
mechanism (a.k.a. refinements). Figure 3.4a shows a base artefact Foo defining
variable members (x and y), and methods (gerX and getY). This base artefact can
now be incrementally extended by adding a new method reset() that extends the
functionality of the base with a new feature Featurel. Figure 3.4b shows such
extension using the Jak language [BSR04]. The expression Featurel*Base returns
a Java artefact which holds feature Featurel (see Figure 3.4c). Likewise, Feature?2
eFeaturel*Base stands for the base being enhanced with features Featurel and
Feature2, where the order of feature composition (i.e. from right to left) can

matter.

50 Chapter 3. XML in Software Product Lines

/jd\ateRate_base /\
~~ SPublic [Documen (
Code]J _Etnﬁ/@‘ — }j ‘; K [)

% ‘% System User
X.java Y.jsp

g

S.ditamap S.xml U.ditamap U.xml

Figure 3.5: JDeveloper directory structure: base and dateRate feature implementation.

At first sight, this resembles regular inheritance. Notice however, that Fea-
turel is not realised through a subclass of Foo. Rather, the very same class Foo
is being extended. There are not two classes but a single class that is being incre-
mentally extended to hold a new feature. Furthermore, the class being extended is
not fixed at compile time (like in regular inheritance) but decided at composition
time. In this way, a feature function behaves like a mixin inheritance, i.e. a class
whose super class is parametrised. Since the super class is not fixed until com-
position, distinct feature functions on different (and unpredictable) order may be
composed to yield a class.

However, a software product is more than a set of classes. A product is multi-
faceted, i.e. it admits multiple representations (e.g., Java classes, testing cases,
SQL scripts, HTML pages, configuration files, etc.). And a feature can need to
leverage one or several of those representations to inlay the desired functionality
into the base program. Therefore, a feature realization is a composite, i.e. a unit
of enhancement (i.e. a functional increment) that can potentially affect distinct
representations. Some features can affect the rendering side of the product (e.g.
realised as HTML artefacts), others the configuration side (e.g. realised as an
XML document), and yet others can affect all of them. Thus, a feature function f
encapsulates a set of artefacts af , bf, and df, we write f= {af, bf, df }. Similarly,
i = {ai, bi, ci} says that feature i encapsulates artefacts ai, bi and ci. As artefacts
themselves may be sets, a feature is a nested set of artefacts. Directories can be
used to represent nested sets. This vectorial representation of features leads to
“deep composition” whereby composition is nestedly and gradually applied to the
affected artefacts (see Figure 3.5 as an example). Hence, adding a feature to a

program refines each of the program’s representations, e.g.

3.2. Problem Explanation 51

\ B,

Foo.jak D.xml

TS v

Foo.jak = °

Figure 3.6: Composing features as directories.

i*f={ai bi, ci} * { af, bf, df} = { aieaf, bi*bf, ci, df }

where artefacts with the same name (ignoring subscripts) are composed pairwise

and the new ones are simply added.

Figure 3.6 provides an alternative representation of the composition of fea-
tures Base and Featurel where directories are folded together by composing cor-
responding artefacts in each directory. The result is feature Result, where arte-
fact Foo.jak of Result is synthesised by composing Foo.jak (from Featurel) with
Foo.jak (from Base).

The polymorphism of the ¢ operator is central to feature composition. Arte-
facts of a given type (.jak, .b, etc.) and their refinements are defined in a type-
specific language. That is, the definition and the refinements of .jak files are ex-
pressed in the Jak(arta) language, a superset of Java [BSR04]. The definition and
refinement of .b files are expressed as Bali grammars, which are annotated BNF
files. And so on. One or more tools implement the ¢ operator for each artefact
type. AHEAD Tool Suite (AHEAD TS) encompasses a set of tools that analyse
and compose artefacts using refinements. AHEAD TS holds the distinct artefacts
of the SPL, and produces a SPL product out of a feature equation (e.g. Fea-
ture2*Featurel*Base). So far, AHEAD composition is limited to Java and BNF
artefacts.

Therefore, we address the following problem:

the lack of refinement and composition mechanisms for XML artefacts

when in a feature-oriented programming setting

52 Chapter 3. XML in Software Product Lines

3.2.2 What is the problem and the negative consequences of

not addressing this problem (or its benefits)?

The rationales for bringing FOP to the XML realm include:

* increasing presence of XML artefacts. XML artefacts play a preponderant
role in current software practises, specially in the Web setting. XML can
be found in both code artefacts (e.g. rendering markup languages such as
XHTML[AMEOQO], control-flow configuration files described through Struts
[Theb], build process configuration files such as Ant [Thea], etc), and non-
code artefacts (e.g. deployment descriptors such as portlet.xmi[JCPO3],
UML diagrams serialised through XMI[Obj], asset documentation through
RAS[Obj05], etc.).

* limited reused practices for XML artefacts. Studies revealed that the cloning
rate of web-specific artefacts (e.g. mainly XML files) was considerably
higher than general artefacts (e.g. Java, C++, etc) within web applications

of the same organization [RJO5].

In an attempt to tackle reuse in the Web, approaches have been made to bring
object-orientation (OO) and componentisation to the HTML realm [GWGY7],
[SWGZ00], [KNCO1]. However, OO does not provide the right level of granu-
larity. Java is a case in point. Mechanisms have been devised for driving Java
towards FOP by introducing the notion of delta as a coarse-grained semantically
meaningful construct on top of Java classes (Batory’s Jak language [BSR04]).
Likewise, XML will need similar amendments for the FOP benefits to reach the
XML realm.

The vision is for XML artefact to be conceived incrementally: core assets are
gradually enhanced with deltas (i.e. features) till the desired product is synthes-
ised. This brings FOP benefits, i.e.

1. enhanced reusability of XML artefacts since commonalities and variabilities

can be defined separately,

2. flexibility in the selection of variable content and their composition,

3.3. Requirement Definition 53

3. decoupling validation of XML core artefacts from XML deltas.

It is most important to note that the nature of the refinement depends on the arte-
fact being refined, e.g. Java artefacts are not necessarily refined in the same way
that XHTML artefacts. When the artefact is “.java”, a class refinement can in-
troduce new data members, methods and constructors to a target class, as well as
extending or overriding existing methods and constructors of that class [BSR04].

But, what is meant to refine an XML artefact? The answer can not just mimic
solutions for other programming paradigms but should be tuned to the XML way
of programming. In the light of this observation, we pose the following research

question:
* how to introduce deltas into XML artefacts?
* how are XML products synthesized out of deltas?

* how are XML deltas defined, composed and validated?

3.3 Requirement Definition

Our proposal to address the aforementioned issues is providing an XML vocabu-

lary for delta definition. Main requirements include: expressiveness and suitabil-

ity.

3.3.1 Expressiveness

Expressiveness refers to the degree to which a set of constructs is capable of rep-
resenting the entities of interest in a domain. This subsection introduces the ex-
pressiveness requirements with the help of an example.

Let’s go back to the CuCo SPL. CuCo’s products are J2EE application [SSJ02],
implemented using Apache Struts [Theb]. Struts follows the MVC pattern [KP88]
where the Controller isolates the control-flow between the Model and the View.
Let us focus on the Controller. Figure 3.7 (a) depicts the design of the base

control-flow. The Converter page contains an instance of the form class named

54 Chapter 3. XML in Software Product Lines

<struts-config>
<form-beans>
<form-bean name="ConverterForm"

S Foribeas type="org.apache.struts.action. DynaActionForm">
ConverterForm <form-property name="amount" type="java.math.BigDecimal"
-amount : BigDeciimal = 1 initial="1"/>
'?0“"C£C”!Tem\(- String <form-property name="sourceCurrency" type="java.lang.String"/>
i getouency s Sling <form-property name="targetCurrency" type="java.lang.String"/>

</form-bean>
</fform-beans>
<action-mappings>
<|--Page States-->
<action path="/Page.Converter.display" forward="/Converter jsp"/>
<action path="/Page.ConvertNow.display" forward="/ConvertNow.jsp"/>

<action path="/Page.Error.display" forward="/Error.jsp"/>
:ConverterForm <l--Page Events-->

<action path="/Page.Converter.events" name="ConverterForm"
type="org.oneking.util.struts.action. DispatcherAction">
<forward name="convertNow" path="/Action.ConvertNow.do"/>
[hasFailed] </action>
<l--Action Activities-->
<action path="/Action.ConvertNow" name="ConverterForm"
type="org.onekin.xak example.struts. actions.ConvertNowAction">
<forward name="hasSucceeded" path="/Page. ConvertNow.display.do"/>
<forward name="hasFailed" path="/Page.Error.display.do"/>
</action>
</action-mappings>
</struts-config>
(a) (b)

<<Page>>
Converter

convertNow

<<Action>>
ConvertNow

[hasSucceded]

<<Page>>
ConvertNow

<<Page>>
Error

Figure 3.7: Base control-flow: an UML diagram (a) and its code counterpart as the struts-
config.xml configuration file (b).

ConverterForm. This form instance passes to the server the amount to be conver-
ted from the sourceCurrency to the targetCurrency for making a simple conver-
sion, which is fulfilled by the ConvertNow action. Depending on the outcome of
this action, distinct pages can be returned back: ConvertNow? (the ConvertNow
action is executed successfully) or Error (if the previous action has failed).

This flow is embodied through the struts-config.xml along the following dir-

ectives:

 Each activity action with stereotype <<4Action>> in the UML diagram (see
figure 3.7(a)) becomes an <action> element in the XML document (see
figure 3.7(b)). The <action> basically maps the logical name of the action
(the path attribute) to its physical realisation as a Java class method (the
type attribute). The action’s outcome determines the next step in the flow.
A <forward> element is defined for each outcome (the name attribute) and

its corresponding follow-on (the path attribute).

Note that the ConvertNow id has been used to identify both an action and a page, which are
differentiated by a stereotype.

3.3. Requirement Definition 55

XML delta FreTTmmm e T

i
| ® Mandatory feature!
1 1
I O Optional feature !
Modularity Composition Validation i /0\ Alternative feature|
Support Strategy Support L 1

I

Document
Level

Incremental Replace Delta

Figure 3.8: Expressiveness requirements.

Instance
Level

» Each activity state with stereotype <<Page>> results into two kind of <action>
element in Struts (see figure 3.7(b)): one for the display setting (e.g. Page.
Converter.display), and the other for determining the next step depend-
ing on the event happened in the page (e.g. Page.Converter.events). The
former maps the logical name of the page (the path attribute) to its coun-
terpart physical page (the forward attribute). The forward attribute holds
an HTML or JSP page which is next rendered to the user. The latter action
describes a dispatcher action based on the output transitions from a page to
any other page or action. Each transition is described using a <forward>
element, as described before. Besides actions, the controller can also hold

<form-bean> elements to indicate form properties>.

Now the real meat of the FOP approach. This base artefact can now be enriched
with features. Features are implemented in a similar way to the base. For our
sample case, features might refine either the model, the view or the controller.

That is a feature realization might be a compound of three files:
* struts-config.xml, if the controller is refined,
» dateRateConverterForm.java, if the model is refined,
* dateRateForm.jsp, if the view is refined.

The challenge is to incorporate these features incrementally. That is, starting with

a base and next, apply deltas to progressively add refinements to this base. The

3Since forms are declaratively described and automatically generated, the developer does not
need to implement an ActionForm class with getter and setter methods. Rather, the framework is
responsible to convey form values from the request to the action.

56 Chapter 3. XML in Software Product Lines

question is how to define these refinements. Figure 3.8 shows the main require-
ments: modularity support, composition strategy and validation support. Next, we
provide an overview of the rationales. How these requirements are finally met is
addressed in Section 3.4.

Modularity support. We aim at constructing XML documents incrementally
through composition. This begs the question of what is the appropriate granularity
for this composition. The unit of refinement (i.e. a module) can be i) the document
itself (i.e. document-level), ii) nodes inside a document (i.e. instance-level), and
ii1) nodes that belong to certain node types within the document (i.e. schema-
level).

Composition Strategy. A refinement can introduce new data members, meth-
ods and constructors to a target class, as well as extend or override existing meth-
ods and constructors of that class [BSR04]. Likewise, XML delta can add, extend
or override existing module elements. This requires: (i) a namespace to indic-
ate which elements play the role of modules and their delta, and (ii) to realise
the operational semantics of composition for XML modules by overloading the
composition operator e.

Validation Support. SPLs last longer and involve larger teams than those of
single products. Specifically, deltas might well be defined separately for different
engineers at different times along distinct release agendas. Therefore, the inform-
ation available at delta-definition time basically includes the Feature Model and
the base. Domain engineers should not make any assumption about how other
deltas are realised, except those explicitly capture in the Feature Model. Never-
theless, deltas should smoothly fit together when synthesising the SPL products.
In other words, mismatches at product-synthesize time should be minimised.

3.3.2 Suitability

Suitability has been defined as “the degree to which an artefact is tailored to a
specific practice, focusing only on its essential aspects (also called inherence or
precision)”. By “practice” we understand the setting in which the outcome is
going to be used. In this case, this setting is the XML realm. This in turn begs the

question of what is the essence (as opposed to the accident) of XML programming.

3.4. Artefact Design: XAK namespace 57

This is our perspective:

* XML introduces a self-describing approach to data representation where
the data is accompanied by a label (a.k.a tag) that describes the data. Data
is structured in a tree-like way along two main constructs: elements and
attributes (hereafter, commonly referred to as “nodes”). Therefore, XML

deltas should be defined in terms of inserting or replacing nodes.

* XML documents should frequently conform to a schema. The process of
checking this out is known as validation. Validation plays a core role in

XML programming. Therefore, validation should be applied to deltas.

3.4 Artefact Design: XAK namespace

Previous section sets the requirements for a potential solution to the problem of ex-
tending FOP to XML artifacts This section introduces XAK (pronounced “sack”),
an XML Schema namespace (a.k.a. vocabulary) for delta description. Based on
the aforementioned requirements, XAK should be designed in a way that facilit-
ates validation and composition of XAK-aware documents. This introduces three
issues: the unit of composition, the ways of composition and the laws of compos-

ition.

3.4.1 The unit of composition

We aim at constructing XML documents incrementally through composition. This
begs the question of what is the appropriate granularity for this composition. This

subsection delves into this issue.

3.4.1.1 The first approach: node-based modularization

A first approach could be to consider any XML node as the unit of composition.
Under this assumption, any element or attribute of the struts-config vocabulary
can be refined, whatever this means. For understanding sake, let us introduce an

XML Refinement language using the XR namespace.

58 Chapter 3. XML in Software Product Lines

<xr:refines xmins:xr="http://www.onekin.org/XRefine"
artefact="struts-config.xml" feature="dateRate" >
<xr:at select="//form-bean[1]/form-property[@name="amount’]/@initial" >
<xr:override>100< /xr:override>
< [xr:at>
<xr:at select="/struts-config/form-beans/form-bean[1]" >
<xr:append>
<form-property name="date" type="java.lang.String" />
<form-property name="dateFormat" type="java.lang.String" />
</xr:append>
< [xr:at>
< /xr:refines>

Figure 3.9: First approach: A delta document that overrides an initial value of a
form-property and adds new form-properties to a form-bean.

<struts-config xmlns:xr="http://www.onekin.org/XRefine"
xr:artefact="struts-config.xml" xr:feature="dateRate base">
<form-beans>
<form-bean name="ConverterForm"
type="org.apache.struts.action.DynaActionForm" >
<form-property name="amount" type="java.math.BigDecimal"
initial="100"/>
<form-property name="sourceCurrency" type="java.lang.String" />
<form-property name="targetCurrency" type="java.lang.String" />
<form-property name="date" type="java.lang.String" />
<form-property name="dateFormat" type="java.lang.String" />
< /form-bean>
< [form-beans>
<l-content omitted —>

< /struts-config>

Figure 3.10: The synthesised document from the composition of dateRate e base.

Let’s consider that composition implies adding (i.e. appending (<zr:append>),
prepending (<zr:prepend>) or overriding (<zr:override>)) the content of a node
selected by an XPath expression, which is defined through the <zr:at> element”.
In this way, dateRate can be supported as shown in Figure 3.9: the first form-bean[1]
element is extended with the date and dateFormat properties whereas the value of
the initial attribute is overridden from 1 to 100. Taken the artefact at figure

3.7(b) as a base document, a document exhibiting feature dateRate can be syn-

4The xr namespace prefix is used in this first approach.

3.4. Artefact Design: XAK namespace 59

thesised by composing dateRateebase (see figure 3.10°).

However, this implies handling XML documents as mere data structures where
any element node can be subject to composition. In the same way that the initzal
attribute of a <form-property> element were changed, so it could have been the
type attribute. However, this would have produced a runtime error due to it is not
the expected type by the action. This is too fine-grained granularity that defeats the
principle of modularity whereby high level abstractions (i.e. the modules) encap-
sulate their low level realisation (i.e. the instructions). Indeed, the Open-Closed
Principle (OCP) [Mey97] states that modules “should be open for extension but
closed for modifications” so that modules’ behaviour can be extended without
modifying their source code. This is especially valuable in a production environ-
ment, where changes to source code may necessitate code reviews, unit tests, and
other such procedures to qualify it for use in a product: code obeying the principle

doesn’t change when it is extended, and therefore needs no such effort.

3.4.1.2 The second approach: schema-based modularization

This second attempt draws a distinction between elements playing the role of
modules (and hence, being subject to composition) and elements that describe
the realization of these modules (and hence, protected against external updates).
Thus, an XML module is defined as an element of a document that carries out a
specific function and it is liable to be re-used by/combined with other modules.
Elements of a document are set by its schema. Schemas state the element, attrib-
ute and atomic type names, in addition to structural constraints that instances of
this schema must obey. XML Schema is a W3C standard for vocabulary definition
[TBMMO1].

For our purposes, a way to indicate which elements play the role of XML
modules is needed. For our sample case, we want to state that only element
types <struts-config>, <form-beans>, <form-bean>, <action-mappings> and
<action> can be modules (liable to be refined). The rest of the element types can

not be refined (e.g. <controller> served only for implementation). To this end,

SThe “<!--content omitted-->" comment is used to omit the content that is not relevant
for the example.

60 Chapter 3. XML in Software Product Lines

<xs:schema xmlns:xs="http://www.w3.org/2001 /XMLSchema"
xmlns:xak="http://www.onekin.org/xak" >
<xs:element name="struts-config" xak:modularizable="yes"
type="struts-configType" />
<xs:element name="form-beans" xak:modularizable="yes"
type="form-beansType" />
<xs:element name="form-bean" xak:modularizable="yes"
type="form-beanType" />
<xs:complexType name="form-beanType" >
<xs:sequence>
<xs:element ref="description" minOccurs="0"/>
<xs:element ref="form-property" minOccurs="0"
maxOccurs="unbounded" />
< [xs:sequence>
<l—content omitted —>
< /xs:complexType>
<xs:element name="form-property" type="form-propertyType" />
<xs:element name="action-mappings" xak:modularizable="yes"
type="action-mappings Type" />
<xs:element name="action" xak:modularizable="yes"
type="actionType" />
<xs:element name="controller" type="controllerType" />
<l—content omitted —>

< /xs:schema>

Figure 3.11: Schema-based modularisation.

the zak:modularizable attribute® is introduced. Figure 3.11 shows an excerpt of
the XML Schema for the Struts’ schema, now annotated with this attribute. The
zak:modularizable attribute indicates whether an element type is eligible to be a
module or not. For our example, the schema indicates that for instance, <action>
and <form-bean> are modules, i.e. they can be refined, whereas <controller> is
not amenable to refinement. Notice that for a given document instance, this does
not force every occurrence of a modularizable element type (e.g. <action>) to be
refined, but prevents non-modularizable element types (e.g. <controller>) from
being refined.

Stating modularity at the schema level let the schema designer decide what
elements play the role of a module. However, the schema just defines the ex-

pressiveness of the language (e.g. Struts) but not the semantics of the application

®The zak prefix denotes that this attribute belongs to the XAK namespace, i.e.
http://www.onekin.org/xak.

3.4. Artefact Design: XAK namespace 61

being implemented. This is achieved by programmers. Programmers know the
semantics of the application being defined, and hence, mechanisms should be
available for them to indicate what elements make sense to be turned into mod-
ules. This is similar to the “final” attribute for Java classes. Java’s classes is the
counterpart of modules. Classes can be refined. However, the language permits
programmes to limit this option by using the “final” attribute. A similar mechan-
ism is needed for XAK. Hence, schema-based modularisation is complemented

with instance-based modularisation

3.4.1.3 The third approach: instance-based modularization

Schema-based modularization imposses necessary but not sufficient conditions.
That is, the schema sets which element types are eligible for a module, but not all
elements of this type need to be a visible module for composition in a document
instance of this schema. The visible modules of a document will define the XAK
document interface for composition.

Means are needed for defining which elements play the role of a module
in instance documents. This is the role of the zak:module attribute. Back to
the running example, consider that only “/Page.Converter.events” is a refinable
<action>; whereas “/Action.ConvertNow” and those related to displays (e.g. “/Page.
Converter.display) can not be refined. This is stated as shown in figure 3.12. This
moves the decision of what can be refined to the instance level.

Besides realizing abstractions, modules should be univocally identified. Xpath
[CD99] could be used for this purpose by identifying the module through its
location within the document. Unfortunately, Xpath expression are position de-
pendent. If the position of the element changes, so does the Xpath expression.
Therefore, location-based Xpath expressions can not be used for element iden-
tification when the position of this element is amenable to be changed, as it is
the case for deltas. In the lack of dependencies that dictates something else,
delta composition should be ideally commutative: FeatureleFeature2eBase =
Feature2eFeatureleBase. This implies that the very same element can be loc-
ated at different places. Hence, Xpath can not be used for module identification,

and an ID is introduced for module addressing.

62 Chapter 3. XML in Software Product Lines

<struts-config xmIns:xak="http://www.onekin.org/xak"
xak:artefact="struts-config.xml" xak:feature="base">
<form-beans xak:module="mForms" >
<form-bean name="ConverterForm" xak:module="mConverterForm" >
<l-content omitted —>
< /form-bean>
< [form-beans>
<action-mappings xak:module="mActions" >
<action path="/Page.Converter.display" .../>
<l—content omitted —>
<action path="/Page.Converter.events" xak:module="mEvents" ...>
<l—content omitted —>
< [action>
<action path="/Action.ConvertNow" ...>
<!-content omitted —>
< /action>
< /action-mappings>
< [struts-config>

Figure 3.12: Instance-based modularisation.

Schema-based and instance-based approaches to module definition offers a
good balance between the controlled approach that offers the schema, and the
freedom that programmers’ activity requires. This is akin to the openness and
subsidiary way of working that characterises the XML world (e.g. schema man-
agement in XML Schema), and that also exhibits SPLs [CNO1]. SPLs introduce
a main distinction between domain engineers, responsible for managing the core
assets (i.e. the platform and the features), and application engineers, in charge
of developing the product from the core assets. In this setting, the platform de-
signers can use a schema-based approach to define the “refinable” element types,
the feature designers can work at the instance level by indicating the concrete
“refinable” elements, and finally, the application designers compose the features
to synthesise the final application, refining some element contents, should it be

required.

3.4.2 The ways of composition

A class refinement can introduce new data members, methods and constructors to

a target class, as well as extend or override existing methods and constructors of

3.4. Artefact Design: XAK namespace 63

Jak XAK
class document
method module

class refinement | delta document
method refinement | delta module

Figure 3.13: Same concepts, slightly different terminology in Jak and XAK.

that class [BSR04]. Likewise, XML deltas can add, extend or override existing
module elements. Table3.13 shows the mapping between Jak terminology and
XAK terminology. This requires: (i) a namespace to indicate which elements play
the role of modules and their delta, and (ii) to realise the operational semantics of

composition for XML modules by overloading the composition operator e [Bat].

3.4.2.1 The XAK namespace

Product synthesis starts with a base product and apply deltas to progressively in-
corporate new features to this product. Thus, there exists two kinds of XAK arte-

facts: base documents and delta documents.

Base document. Traditional XML documents can play the role of base XAK
document. The difference stems from distinguishing between XML elements li-
able to be refined (i.e. modules), and those that can not be refined (i.e. the imple-
mentation). To this end, the XAK namespace provides three attributes (see figure

3.12), namely:

* @zak:artefact’, which specifies the name of the document that is being

incrementally defined;

* Ozak:feature, which indicates the name of the feature being supported®;

and

* Ozak:module, which identifies those elements that play the role of modules.

7@ means attribute in XPath notation.
8For base documents, this attribute keeps the value “base”.

64 Chapter 3. XML in Software Product Lines

The latter keeps the module identifier whereas the element’s content corresponds
to the module implementation. Notice that the condition whereby module ele-
ments pertain to a modularizable type, is a necessary one, but it is not sufficient:

the designer is not forced to turn into modules all elements of a modularizable

type.

Delta documents. A delta is an increment in program’s functionality. In ad-
dition to the previous zak:module attribute for delta module definition, a delta

document is specified through two elements:

* <zak:refines> , which is the root element of the delta document

* <zak:keep-content/>, which dictates to inherit the content of the module
being refined. It is similar to the “super” construct in some OO program-

ming languages.

As an example of the former, consider the following snippet:

<xak:refines xmlIns:xak="http://www.onekin.org/xak"
xak:artefact="struts-config.xml|" xak:feature="customisation">...
< /xak:refines>

This introduces a delta document that supports the “customisation” feature. Its
content describes a set of module refinements (delta modules, i.e. elements an-
notated with the zak:module attribute) over a given base document (i.e. the
zak:artefact attribute). Moreover, the @zak: feature attribute specifies to which
feature this delta belongs to so that all deltas pertaining to the same feature are
unitedly applied.

An example for <zak:keep-content/> follows:

<action xak:module="mEvents" xak:keep-attributes="yes" >
<xak:keep-content/>
<forward name="customise" path="/Page.Customise.display.do" />
< /action>

3.4. Artefact Design: XAK namespace 65

This snippet refines the mEvents module by adding a <forward> element to its
previous content. The composer will replace the <zak:keep-content /> element
(previous to composition) by the content of the module. Conceptually, this is a
kind of cross-reference. But instead of pointing to its content, it transcludes it°.
There is however an important difference in how transclusion is used in other
context (e.g. entities in DTD [GP98] or XInclude [W3C02]). The semantic of the
<zak:keep-content />’s transclusion is restricted to the content of the module.
This means that IDs and other attribute elements are outside of reusing. Hence,
in the same way that the refinement of a class does not involve re-naming this
class, the refinement of an element keeps unchanged the element’s attributes. The
element’s attributes are viewed as the signature (i.e. metadata) of the module,
whereas the element’s content realises the implementation.

Unfortunately, the distinction between attributes and elements is not clear in
the XML world [Ogb04], [OAS04]. Besides some syntactic differences, data can
be supported as part of the element content (thus, being refinable) or as an attribute
(thus, being no refinable). As schema designers are not aware of our convention,
the @zak:keep-attributes attribute acts as a trapdoor for developers. It can hold
two values: (i) ”yes”, permits to maintain all the attributes of the original module
and only the redefined ones are override; (ii) “no”, none of the attributes is main-
tained from the original module except the ID attribute. In this case, the developer
is in charge of defining all the required attribute except the ID.

Back to the running example, let us consider the customisation feature. This
feature provides the functionality for users to be able to set default values for the
sourceCurrency, the targetCurrency and the currencyList properties. This feature
impacts all, the model, the view and the controller. Hence, this feature is realized
through three deltas whose jointly usage is ensured by all referring to the the same
feature in their headings: @zak: feature = “customisation’. Specifically:

* model enhancement is achieved through customiseAction.java. This refine-

ment adds a class for implementing the new action,

 view enhancement is accomplished through customise.jsp. This refinement

adds a web page for implementing the interface of the new action

Transclusion is the inclusion of part of a document into another document by reference
[http://en.wikipedia.org/wiki/Transclusion].

66 Chapter 3. XML in Software Product Lines

<xak:refines xmlns:xak="http://www.onekin.org/xak"
xak:artefact="struts-config.xml" xak:feature="customisation">
<form-beans xak:module="mForms" >
<xak:keep-content/>
<form-bean name="CustomiseForm" xak:module="mCustomiseForm"
type="org.struts.actions.DynaActionForm" >
<form-property name="defaultSourceCurrency" type="java.lang.String" />
<form-property name="defaultTargetCurrency" type="java.lang.String" />
<form-property name="currencyList" type="java.lang.String[|"/>
<form-property name="menuRows" initial="7" type="java.lang.Integer" />
< [form-bean>
< /form-beans>
<action xak:module="mEvents" xak:keep-attributes="yes" >
<xak:keep-content/>
<forward name="customise" path="/Page.Customise.display.do" />
< /action>
<action-mappings xak:module="mActions" >
<xak:keep-content/>
<action path="/Page.Customise.display" forward="/customise.jsp" />
<action path="/Action.Customise" name="CustomiseForm" scope="session"
type="org.onekin.xak.example.struts.actions. CustomiseAction" >
<forward name="hasSuccedded" path="/Page.Converter.display.do" />
<forward name="hasFailed" path="/Page.Error.display.do" />
< /action>
< /action-mappings>
< /xak:refines>

Figure 3.14: The customisation XAK delta document.

* controller enhancement is accomplished through struts-config.xml (see Fig-
ure 3.14). This refinement (i) adds the CustomiseForm form-bean definition
into the existing mForms module; (ii) extends the mEvents dispatcher action
to show the Customise page of the feature, and (i) defines the control-flow

related to the new action.

Consider

* the base XAK document in Figure 3.12, where mForms, mActions and

mkEvents are set as modules,
* the customisation XAK delta that is shown in Figure 3.14.

Then, customisation e base will deliver the enhanced strust-config.xml document
shown in figure 3.15. Notice that the composition ripples through all artefacts

whose headings include @zak: feature = “customisation’.

3.4. Artefact Design: XAK namespace 67

<struts-config xmlns:xak="http://www.onekin.org/xak"
xak:artefact="struts-config.xm|" xak:feature="customisation base">
<form-beans xak:module="mForms">
<form-bean name="ConverterForm" xak:module="mConverterForm" ...>
<l—content omitted —>
< /form-bean>
<form-bean name="CustomiseForm" xak:module="mCustomiseForm"
type="org.struts.actions.DynaActionForm" >
<!-content omitted —>
< /form-bean>
< [form-beans>
<action-mappings xak:module="mActions" >
<action path="/Page.Converter.events" name="ConverterForm"
xak:module="mEvents"
type="org.onekin.xak.example.struts.actions.ConvertNowAction" >
<forward name="convertNow" path="/Action.ConvertNow.do" />
<forward name="cheatsheet" path="/Action.Cheatsheet.do" />
<forward name="customise" path="/Page.Customise.display.do" />
< /action>
<action path="/Action.ConvertNow" ...>
<l—content omitted —>
< /action>
<l—content omitted —>
<action path="/Page.Customise.display" forward="/customise.jsp" />
<action path="/Action.Customise" name="CustomiseForm" scope="session"
type="org.onekin.xak.example.struts.actions.CustomiseAction" >
<forward name="hasSuccedded" path="/Page.Converter.display.do" />
<forward name="hasFailed" path="/Page.Error.display.do" />
< /action>
< /action-mappings>
< /struts-config>

Figure 3.15: The synthesised document from the composition customisation e base.

3.4.3 The laws of composition

SPLs last longer and involve larger teams than those of single products. Spe-
cifically, refinements (i.e. feature realisations) might well be defined separately
for different engineers at different times along distinct release agendas. There-
fore, the information available at refinement-definition time basically includes the
Feature Model and the base. Domain engineers should make minimal assump-
tion about how other features are realised, except those explicitly capture in the
Feature Model through feature dependencies. Nevertheless, refinements should
smoothly fit together when synthesising to derive SPL products. While it is pos-
sible to check individual products by building and then compiling them, this is

68 Chapter 3. XML in Software Product Lines

impractical. In a SPL, there can be thousands of products; it is more desirable
to ensure that all legal realizations are synthesize-safe without enumerating the
entire product line and compiling each product. In other words, mismatches at
product-synthesize time should be minimised. In this setting, we rise the follow-

ing question:

which sort of verification can be conducted at refinement-definition
time to reduce the number of potential mismatches at product-

synthetized time?
Three kinds of errors can occur in a feature implementation [KAT09]:

* syntactic errors. Syntax errors occur when a delta is ill-formed regarding
the language’s syntax, for example when an opened XML tag is not closed.

These kind of errors are the easiest and are detected by an XML parser.

* type errors. Type errors occur when the delta is ill-formed regarding the
language’s type system, e.g., a non-declared XML element in XML-Schema
is used to define a delta. These kind of errors are detected by validating a

document against to XML-Schema.

* semantic errors. Semantic errors occur when the delta behaves incorrectly
according to some (formal or informal) specification. They are the most
difficult to detect.

This section focuses on type errors. Main errors at refinement-definition time

include:

* the root element of the document does not identify the name of the feature
or the document that implements (i.e. it does not contain @zak: feature or

@zak:artefact),

* a Ozak:module attribute is used in an element that is not modularizable
according to the XML-Schema,

* the content of a base module is not a valid fragment (see later),

* the content of a delta module is not a valid delta fragment (see later).

3.4. Artefact Design: XAK namespace 69

Let S be a schema. A fragment is the content of a XAK module that is amen-
able to be turned into a valid module w.r.t S through composition. That is, F1 is a
fragment if there exists another document D so that “F/ e D” yields a valid doc-
ument. Notice that S-compliant modules (or documents) trivially satisfied this
condition, being D the empty module (or document). The challenge is when F1
is not S-compliant. In this case, F/ can still be a fragment if it itself does not
compromise the rules set by S. For example, suppose that a module type defines
the <a/><c/> sequence as its content model. Then, the valid fragment set
include: <a/> ; ; <c/> ; <a/> ; <c/> ; <a/><c/>. No-
tice that <a/><c/> is not a fragment since it is impossible to generate a valid
module (or document) no matter who it is composited with.

Let S be a schema. A delta fragment is the content of a delta module. A delta
fragment is defined by combining the <zak:keep-content/> element with valid

fragments. Some examples follow:

* <zak:keep-content/><a/><c/> is not a valid delta fragment because <a/><c/>

is not a fragment,

* <zak:keep-content/><a/> is not a valid delta, too. Here, <a/> is a frag-
ment but <zak:keep-content/> can not hold any content that makes the
composition valid w.r.t. <a/><c/>

* <zak:keep-content/><c/> is avalid delta, where <zak:keep-content/>

can be substituted by <a/> to yield a valid document

* <zak:keep-content/><c/> is not avalid delta, since <zak:keep-content/>
can not be substituted by any fragment that makes the result valid, i.e. S-

compliant

* <a/><zak:keep-content/><c/> is adelta where <zak:keep-content/> can

be substituted by to yield a valid document

* <a/><zak:keep-content/> is a delta where <zak:keep-content/> can be

substituted by or <c/> to yield a valid document.

70 Chapter 3. XML in Software Product Lines

Summarizing, a delta fragment type should define the following rules:
* at least a S-compliant fragment is defined,

* in case that <xak:keep-content/> is used:

— it can be used only once for maintaining the previous content, (i.e. a

S-compliant fragment)

— the added S-compliant fragments are restricted to be placed at the

edges of the module’s content (i.e. at the beginning or at the end).

— the previous two rules should be combined without violating the pre-
ceding order of sequential elements in a S-compliant fragment type.
Thus, the composer will yield a valid S-compliant fragment after com-

position;

Feature realisations are deltas. We want deltas to be validated at the time they
are defined without waiting for the product to be derived. In the XML world,

validation is achieved through schemas. The question arises about:

how to obtain delta schemas (e.g./\S) from document schemas (e.g.

S)?

Definition of AS has a main stumbling block. Deltas are compound documents.
Compound Document is the W3C term for a document that combines vocabular-
ies. Deltas are Compound Documents in so far as they intermingle elements from
two namespaces: the XAK and the S namespaces. The challenge is to come up
with a (compound) schema so that standard XML validators can be used for delta
validation.

This issue also arises in other settings, for instance, the combined use of
XHTML and XForms in the same document. XForms can use XHTML elements
(e.g. <zhtml:div>), and XHTML can use XForms elements (e.g. <zforms:repeat>).
This permits the existence of an <zhtml :div> element which contains an <zforms:
repeat> which, in turns, keeps an <zhtml:div>, and so on. Current validators
overlook this situation and validate as correct multiple nesting of any XForms

and XHTML tag (e.g. if <zsd:any> is used in the schema definition of each

3.5. Artefact Design: Delta Grammars 71

namespace). However, an editor that supports multi-namespace documents or a
schema validator that strives to produce accurate error messages, must have spe-
cific information about how tags from two distinct namespaces can be correctly

intermingled.

Combining schemas can be problematic: elements from schema A can not al-
ways be freely intertwined with elements from schema B, i.e. the content model
of A’s elements can be violated when embedding elements of schema B (e.g.
<zform: form> of XForms do not allow <zhtml:table> from XHTML [SKO5a,
SKO5b]). These restrictions of incompatibilities among the content models of
elements coming from different schemas are reflected through the so-called com-
pound document profiles [W3C04].

Profiles define how elements from different namespaces can be intermingled.
Profiles exist for XHTML+XForms, XHTML/X+V (a subset of VoiceXML), and
a specific compound XML document editor exists for Eclipse [KKWO05]. Realised
through an schema, a profile introduces additional restrictions on how elements
from different namespaces can be combined. Usually, these elements represent
reusable components outside of its namespace. A profile redefines content mod-
els of elements in order to define the new constraints. A profile is then a grammar,
too. Hence, the term compound grammars is also used as a synonyms for profiles
The big deal is that profiles permit to validate compound documents using stand-
ard validators while increasing the detection and accuracy of errors at validation

(rather than processing) time. This is our approach: delta grammars (AS).

3.5 Artefact Design: Delta Grammars

Previous section has intuitively introduced the notion of delta grammars. This
section provides a systematic description of how delta grammars can be obtained.
First, a background of regular expressions is introduced for representing formally
XML types defined in an XML Schema. Second, the validation problem is presen-
ted as a type-checking problem. Finally, we explain the algorithms to obtain the

delta grammars.

72 Chapter 3. XML in Software Product Lines

3.5.1 Regular expression types

We want to statically validate that deltas are valid. This requires of regular ex-
pression types to describe XML types of the XML Schema at hand. To this end,
we resort to the regular expression notation introduced in XDuce [HVPO5]. We
need to define types, which in turn, requires of labels and values for validation

purposes.

Labels. Assume that the names of elements, types and attributes defined in a

given schema are described by a (infinite) set of labels, range over by /.

L:= I label
any wildcardlabel
LIL union
L\L difference

Values. For brevity, we omit base values such as strings. (The changes required
to add them are straightforward.) We assume a countably infinite set of labels,

ranged over by /. Values are defined as follows:

We write () for the empty sequence and v, w for the concatenation of sequences v

and w.

Types. Syntax. We assume given a countably infinite set of type names, ranged

over by X. Type expressions are now defined as follows:

3.5. Artefact Design: Delta Grammars 73

T:= () empty sequence
X typevariable
I[T] label
T|T union
T,T concatenation
T+ repetition
0 empty set

The regular expression operators *, and ? are obtained as syntactic sugar:
T?'=T|()

T«x=T+|()
The interpretation of type names are given by a single, global set E of type

definitions of the following form:

typeX =T

The body of each definition may mention any of the defined variables (in par-
ticular, definitions may be recursive). Consider E : X — T as a mapping function
from type names to their bodies and write E(X) for the right-hand side of the
definition of X in E.

To ensure that types correspond to regular tree automata (rather than context-
free grammars), we impose a syntactic restriction that disallows recursion “at the
top level” of definitions. For a given type T, we define the set S(T) of type names

reachable from T at the top level as the smallest set satisfying the following:

SEX)U{X} ifT=X

S(T) = S(Th) ifT =T+
S(Tl)US<T2) ifT:Tl,Tzol’T:T1|T2
0 otherwise

We then require that the set E of type definitions satisfies:

X ¢ S(E(X)) forall X € dom(E).

74 Chapter 3. XML in Software Product Lines

type Tstruts-config = struts-config|[Tform-beans, Taction-mappings]
type Tform-beans = form-beans|[Tform-bean*]

type Tform-bean = form-bean|description|] ?, form-property[] *]
type Taction-mappings = action-mappings|[Taction*]

type Taction = action[forward|[|*]

Figure 3.16: An excerpt of the struts-config type using XDuce notation.

The semantic of types is given by the relation v € T , read “value v has type

T”. This mean that v has no type errors.

3.5.2 The validation of XML documents

An XML document is essentially an ordered labeled tree. For the purpose of type
checking, we ignore data values and only consider their atomic types. Thus, we fix
an alphabet L of tag names, attribute names (those with the @ prefix), and atomic
type names. For a simple illustration, the alphabet of the document in figure 3.7

1S:

L = {struts— config, form — beans, form — bean, @name, @type,
form — property, @initial ,action — mappings,action, xs : string, ...}
Let 71 denote a regular tree language over alphabet L, i.e. the set of ordered
trees where each node is labeled with an element from L. An XML Schema S is a
subset of .71, and defines an XML type 7. This type 7 is in turn defined by a set of

type identifiers, X, and associates to each identifier a regular expression over LxT.

Definition. Given a document d € 9 and a type T C J_ (defined
over an XML Schema S), validation refers to the process of deciding

whether d € T, in which case d is said to be valid with respect to S or
d is S-compliant[Suc02].

Figure 3.16 shows an excerpt of an XML type, which describes the Struts-config
schema (i.e. the struts-config type) using XDuce notation [HVP0S5]. The type
Tstruts-config stands for a regular expression where the element struts-config ex-

hibits a sequential structure whose nodes go along the Tform-beans and Taction-

3.5. Artefact Design: Delta Grammars 75

Table 3.1: Distinct (input,output) scenarios for the function fragmentT : T — T

Input (a type) Output (a fragment type) informative
(deterministic grammar) (non-deterministic grammar)

() 0

a[Th] a[Th]

a[Ti] | (T3] a[Ti] | (T3]

a[Tl],b[Tz] a[Tl],Xb? |Xb = = a[Tl] |b[T2] |a[T1],b[T2]
{FtypeX, = b|T>]}

a[Tl],b[Tz]* a[Tl],Xb?|Xb = Ea[Tl] |b[T2]-|' |
{+typeX, = b[T]+} a[Ti],b[T>]+

a[Tl]*,b[Tz],C[T3]+ a[T1]+,Xb?|Xb:> Ea[Tl]—{- |b[T2]|C[T3]+|
{FtypeX, = b[2],X:?| Xc; | (a[Th]+,D[13))|

typeX. = c[T3]+} (b[D2], c[T5]+) |
a[Ti],b[D2), c[T3]+

mappings types. This basically defines the content model'? of the struts-config
element. In this work, the type of a sequence of attributes is not declared in order
to simplify the example. For example,figure 3.7b) shows a valid document with

respect to the Tstruts-config type (defined over the Struts-config schema).

3.5.3 Obtaining the delta grammars: A\fragmentType

This subsection introduces an algorithm to obtain delta module and fragment
grammars. The algorithm takes as input an schema S (e.g. Struts), and returns
another schema AS for validating deltas (i.e. Struts-compliant). This algorithm
rests on the existence of the following functions: fragmentT, firstKc,insertKc,
A fragmentT, AmoduleT and generate — delta — grammar. Next paragraphs de-
scribe these functions in reverse order of usage. The XML schema describes a set
of XML types. In this work, XML types are represented by regular expressions
using XDuce syntax.

o fragmentT : T — T . This function takes a type T, and delivers a fragment
type that defines all the possible fragments of T. A fragment type does not include
the empty sequence. Moreover, a set of types related to the built type expression

are added to the system for optimizing it.

10For simplification sake, attribute types are removed from the example.

76 Chapter 3. XML in Software Product Lines

fragmemtT(0) = 0 (3.1)
fragmemtT(()) = 0 (3.2)
fragmemtT (X) = fragmentT (E(X)) (3.3)
fragmemtT(1[T]) = I[T] (3.4)
fragmemtT (Ty |T2) = fragmentT(Ty)| fragmentT (T») (3.5)
fragmemtT(I[T|+) = I[T]+ (3.6)
fragmemtT(0,T) = 0 (3.7)
fragmemtT((),T) = fragmemtT(T) (3.8)
fragmemtT (X, T) = fragmenmtT (E(X)) (3.9)
fragmemtT(1[T1],T) = I[T1],X1,?|Xr,) = (3.10)
{FtypeXr, = fragmenT (T»)} (3.11)

fragmentT(I[Th|+,T») = I[T]+,X3,?| Xp,) = (3.12)
{FtypeXr, = fragmenT (T»)} (3.13)

fragmemtT ((T1|T»),T3) = fragmemtT (T1,T3)| fragmentT (T>,T3)(3.14)
fragmemT ((T1,T»),T3) = fragmentT(T,(T»,T3)) (3.15)

These rules generalize the example we have used in subsection 3.4.3. This
function at work is shown in table 3.1. For example, if the given type expression
is a[T1],b[T»]* , then the a[T1], X, ?| X, type expression is obtained. First, the given
type expression is expanded replacing the * operator, a[T1], (b[T] + |()). After
that, the 3.10 rule is applied, and then follows by 3.5 and 3.6. Also, the empty ()
sequence is removed by 3.2, since it is not permitted to use as a fragment. During
this process, the {\- rype X;, = b[T>]+} has been added to the list of defined types
in order to optimize the derived regular expression. The purpose of third column
of table 3.1 is informative for watching all the alternatives and notice the expasion

that produce the fragment type definition.

o firstKc : T — T. This function takes as input type T, and delivers a new
type that permits to use <zak:keep-content/> as first element. This element
follows with a fragment type of the given type. Moreover, a set of types related to

the built type expression are added to the system for optimizing it.

3.5. Artefact Design: Delta Grammars 77

firstKC(T) = xak:keep — content|[|, Xr =
{FtypeXr = fragmenT (T»)}

einsertKc : T — T This function takes as input a type T, and delivers a
new type that keeps the compliant fragments of the given type and also combines
the <zak:keep-content/> element with possible fragments of the given type T.
The possible fragments before the <zak:keep-content/> element are generated
step-by-step for deriving a deterministic grammar, whereas the possible fragments
after the <xak:keep-content/> element are generated using the above fragmentT.
Moreover, a set of types related to the built type expression are added to the system

for optimizing it.

insertKC(0) = 0
insertKC(()) = 0
insertKC(I[T]) = [[T]
insertKC(X) = insertKC(E(X))
insertKC(Ty |T,) = insertKC(Ty) |insertKC(T)
insertKC(I[T|+) = I[Ti]+, (xak : keep — content[],X;?)?

{FrypeX; =I1[T1]+}
0

insertKC(0,T) =

T) = insertKC(T)
)
)

insertKC((),
insertKC(X,T
insertKC(I[Th], T»

= insertKC(E(X),T)
= [T1], (xak : keep — content[],X1,? | X1, —kc)? | X1y —ke =
{FtypeXr, = fragmenT (T»);
typeXr,_k. = insertKC(T») }
insertKC(I[T1]+,T>) = I[Ti|+, (xak : keep — content[],X;? | X7,—kc)? | X1, —kec =
{FtypeX; = fragmenT (I[T1|+,T»);
typeXr,_kc = insertKC(T») }
insertKC((T1 | T2),T3) = insertKC(T\,T3)|insertKC(T, T3)
insertKC((T1,T»),T3) = insertKC(Ty,(T»,T3))

78 Chapter 3. XML in Software Product Lines

o A fragmenmtT : T — T. This function takes the content model of a module-
Type, and delivers a T-compliant AfragmentType. It includes the fragmentTypes
of the given type and how they can be combined with the <zak:keep-content/>
element. Moreover, a set of types related to the built type expression are added to
the system for optimizing it.

AfragmentT(0) = 0
AfragmentT(()) = 0
AfragmentT(X) = AfragmentT(E(X))
AfragmenmtT(1[T]) = I[T] (3.16)

AfragmentT(Ty | o) = AfragmentT(Ty)| A fragmentT (T,)
AfragmentT(I[T]+) = insertKC(I[T1]+)| firstKC(I[T1]+) (3.17)
AfragmentT(0,T) = 0
AfragmentT((),T) = AfragmentT(T)
AfragmentT (X, T) = AfragmemtT(E(X),T)
AfragmentT (I[T1],To) = insertKC(I[T1],T>) | firstKC(T) (3.18)
AfragmentT (I[Ty]|+,T2) = insertKC(I[T1]+,T3) | firstKC((I[T1]+,T2))
AfragmentT ((Ty|T2),T3) = AfragmentT (T, T3) | fragmentT (T, T3)
) (

AfragmentT((Ty,T»),T3) = AfragmentT(Ty,(T>,T3))

These rules generalize the example we have used in subsection 3.4.3. The
algorithm derives a delta fragment type that defines two kind of sequences: 1)
fragments compliant to the given type and 2) fragments that refine an existing
fragment. The latter uses the <zak:keep-content/> element and requires to add
a fragment either before or after the existing one.

Mainly, this inclusion alters both the sequencing and cardinality of the sequen-
tial elements of the given type (i.e. the content model of a module type declared
in S). Grammar complexity mainly stems from the different placements of the
<zak:keep-content/> within the original content of the module. This placement
depends on the cardinalities of the sequential elements in the given type.

Some (input, output) scenarios for this function are given in table 3.2. The
introduction of <zak:keep-content/> considerably enlarges the content alternat-

ives:

* no extension permitted (first three rows). It stands for the overriding case.

3.5. Artefact Design: Delta Grammars 79

Table 3.2: Distinct (input,output) scenarios for the function A fragmentT : T — T

’ Input (a type T) ‘ Output (a delta fragment type AfT)
() 0
a[Tl] a[Tl]
a[Th]|b[T5] a[Th]|b[T5]
a[T1],b|T7] a[Ty|,xak : keep — content[]?| Xp_ic |
xak : keep — content|[], X =
{-type Xy = b[T2]; type Xp, = b[Tr]}
a[T\],b|T»]* a[T1], (xak : keep — content[], Xp? | Xp_ic)? | Xp—ke |
xak : keep — content|], X =
{FtypeX, = b[T]+;
typeXp_re = b[Tr]+,xak : keep — content[|?,X;?}
a[hi)+ a[Ti]+, (xak : keep — content|[],X,?|

xak : keep — content|[], X, =
{-typeXa = a[Ti]+}

a[Tl]*,b[Tz],C[T3]—|—

a|Ti]+, (xak : keep — content[], X,? | Xp—xe)? | Xp—ke |

xak : keep — content|[],X,) =

{FtypeX, = a[T1]+,Xp?| Xp;

typeXp = b[Tr),X:?| Xc s

typeX. = c[T3]+;

typeXp_ e = b[T2], (xak : keep — content[], X:?| X —xc)?]
Xe—ke

typeX._ic = c[T3)+,xak : keep — content|[|?,X.?}

The delta module should already contain a valid fragment of the given type.

* no extension permitted for some fragments after <zak:keep-content/>

(four and five row). If a fragment starts with an element such that (1) it

appears in the first position, and (2) its maxOccurs cardinality is 1 (e.g.

a[T1)), then it is not permitted to use it after <zak:keep-content/>. This is

due to <zak:keep-content/> can not be substituted by fragments that make

the result valid, i.e. S-compliant. These combinations are restricted by 3.16

and 3.18 rules.

* no extension permitted for some fragments before <zak:keep-content/>

(four row). If a fragment ends with an element such that (1) it appears in

the last position, and (2) its maxOccurs cardinality is 1 (e.g. b[T3]), then it

is not permitted to use it before <zak:keep-content/>.

80 Chapter 3. XML in Software Product Lines

* total freedom (last two row). Those elements whose maxOccurs cardinality
is >1 (i.e. + or *) permit to combine with <xak:keep-content/> element in
any position: before, after or both. For example, if the given type is a[T}]+,
then the obtained AfragmentType (from 3.17) defines the following delta

fragments as valid:

— <a/><a/><zak:keep-content/>, before
— <zak:keep-content/><a/><a/>, after

— <a/><a/><zak:keep-content/><a/><a/><a/>, both

e AmoduleT : T — T. This function takes the moduleType definition and trans-
forms into T-compliant AmoduleType by adding the @xak:module attribute and
modifying its content model with the A fT type obtained from the AfragmentT
function.

AmoduleT (1[T]) = I[(@xak: modulelxs : string], AfT)] =
{Ftype AfT = A fragmentT(T)}

e generate — delta — grammar : T — T. This function takes a schema S and de-
rives a delta grammar /\S. Broadly, this function transforms all moduleTypes in
S into AmoduleTypes using AmoduleT, top — level and isModuleType functions.

for all 7; in top-level(S) i€l.n
if isModuleType(T;) then
type/AmT; = AmoduleT (E(T;))
else
T;

The top — level function returns the set of types and element types that are
defined at top-level in the XML-Schema. The isModuleType function checks
if the given type is a module type definition, returning 7True if an element type
definition is annotated as @zak:modularizable=""yes”’, and False, otherwise. Ap-
pendix C describes how the obtained delta grammar is represented through an

XML-Schema using as an example an excerpt of the Struts XML-Schema.

3.6. Artefact Implementation: integrating XAK into AHEAD TS 81

h,eg,ef,
—90% L Code generatot‘ﬁl—» code
| (- of
&ﬂmle generator:]—» rule

Engineer composer

tool M—ﬁxm generato:r]—»- xm

Figure 3.17: Organisation of AHEAD generators

3.6 Artefact Implementation: integrating XAK into
AHEAD TS

This section describes the XAK composer and how they are integrated into AHEAD
Tool Suite..

Instead of building one huge generator that deals with all possible program
representations (which itself is impractical), AHEAD builds an elementary tool
(i.e. composer) that expands a high-level equation into its constituent artefact
equations (see Figure 3.17). Thus, a simple composer tool does the work of or-
chestrating other relatively simple artefact-type-specific tools to produce the com-
plex set of artefacts that comprise a synthesised system[BSR04]. In this way,
we define the XAK composer (i.e. XML generator), which is an artefact-type-
specific composition operator for XML documents. Moreover, an Ant build task
and script[Thea] are defined for integrating XAK into AHEAD.

From a composition perspective, base documents behave as values whereas
delta documents behave as functions. The composer synthesises a new document
by applying deltas on a base artefact (i.e. -c option). For instance, the enactment
of “customisation e base” triggers the execution of the next command, which

outputs the document shown in figure 3.15 (i.e. -0 option):

> composer -c base/struts-config.xml customisation/struts-config.xml

-0 progl/struts-config.xml

The bottom line is that XAK modules can be refined in a similar way to methods
through class inheritance, i.e. by overriding the original module. If the purpose is

to extend rather than substitute the original content, then the <zak:keep-content/>

82 Chapter 3. XML in Software Product Lines

F, ® D F,*D
Enhanced
XML document tree O XML element

. XAK module
A XAK module content
A <xak:keep-content/>

Delta document tree XML document tree

<xak:refines> m,

m;

= m,

\ﬁ
> m,

= => Match reference

- _> trasclusion

delta
composer

e
\\~ -
[P

\
\
1
/

<xak:keep-content/;

Figure 3.18: XAK module composition match modules with the same identifier

element indicates the point where to place the extended content, i.e. before or after
this element. Therefore, XAK composer implements this XML generic compos-
ition over DOM tree representations. Figure 3.18 shows this situation. Let D, F}
and m; be a base document, a delta and a XAK module. When realizing F; e D
equation, the delta composer matches the namesake module and overrides the
module in D with the new content in F;. Previously, <xak:keep-content/> has
been replaced by the content of the module inD. Thus, the delta composer yields

a new enhanced document.

3.7 Artefact Evaluation

Both XAK namespace and composer has been used in seven scenarios:

1. documenting SPL using DITA[DAKO09]. This paper presents a case study
in a feature-oriented approach to SPL documentation where features are
the guiding principle to conceive, organise and write documentation. To
this end, we integrate IBM’s DITA documentation architecture into SPL
practices, realised by the AHEAD Tool Suite.

2. a database reporting SPL [ADTO05]. This paper looks at database reports
as a family of products within a SPL (i.e. reports are synthsized from a
product-line) based on the predictability, similarity and variability among
reports. Our test case is used to illustrate a product-line approach in XML-

centric applications. A challenge is that data warehouse technology is not

3.7. Artefact Evaluation 83

available.
3. asimple WebCalc web application, and

4. a production process for WebCalc both presented at [DTAO5]. This work
describes how to apply variability to the synthesis process (described by
Apache Ant scripts, i.e. build.xml). To attain this, it separates features that
impact on the program and features that impact on how the program is built

(i.e., the synthesis itself has features that change how it is done).

5. a FlightReservation Portlet [TBD0O7]. This work presents a case study on
a product line of portlets, which are components of web portals. It shows
how products in a software product line can be synthesized in an Model
Driven Development (MDD) way by composing features to create models,
and then transforming these models into executables. A model is defined by

a specific DSL, which is represented by several XML documents.

6. an SVG map of US statistics. This web application is built folllowing a
feature oriented paradigm, where the main core assets are SVG XML doc-

uments and Javascript files.

7. the largest is the refactoring of ATS [TBDO06]. Trujillo et al. present a case
study in feature refactoring a multi-representation program into a product
line. The refactored program is the AHEAD Tool Suite (ATS), which is a
collection of tools that were developed for feature-based program synthesis
[BatO4]. ATS has been refactored into a core (the kernel of ATS) and op-
tional features, one per tool (e.g., aj, cpp, drc, jedi, etc.). In addition to code,
there are makefiles, regression tests, documentation, and program specifica-
tions, all of which are intimately intertwined into an integrated whole. After

that, an essential tool in synthesizing variants of ATS is XAK.

Summarizing, the range of the generated products varies from a few LOCs (in the
first) to 200 KLOC:s (in the last). The percentage of XML files over total is around
10% (for ATS refactoring) while in web/Portlet applications are over 60 %.

XAK has been used to refine a variety of XML vocabularies such as: Apache

Ant scripts, Struts configurations, XHTML pages, JSP pages, Portlet deployment

84 Chapter 3. XML in Software Product Lines

descriptor, Web deployment descriptor, XCube data [HBHO3], SVG graphics,
XSL templates, SCXML statecharts [BeaO6a], and xADL (Architecture Descrip-
tion Languages) [DVDHTOS5].

3.8 Related work

SPL programming. Among different programming paradigms to realize product
families three can be highlighted in SPL: Frame Technology (FT) [Bas97], Feature-
Oriented Programming (FOP) [Pre97]and Aspect-Oriented Programming(AOP)
[ea97]. XML-based Variant Configuration Language (XVCL) [SZJ02], Variab-
ility Specification Language (VSL) [Bec02], AHEAD [BSR04], FeatureHouse
[AKLO9] are tools that follows the above paradigms in order to realize the vari-
ability in source code. XVCL and VSL are two approaches that are based on
FT and use XML only for managing the variability issues (i.e. variation points
and their variants). They can apply to XML documents, however they can have
problems since they don’t neither use namespace to separate distinct vocabularies
nor an XML Schema in order to validate the variants. AspectXML and Hyper-
Adapt [NKAMO9] are two approaches that formalise the cross-cutting concerns
of AOP for XML instances and schema. On one hand, AspectXML provides a
clearer and hopefully easier means of specifying AOP without requiring that the
developer understand the more complex superset of XSLT. The AspectXML En-
gine is implemented using plain XSLT and Xpath. As Xpath is fundamental to
the pointcut definition in AspectXML, so is it the module identity in XAK. On the
other hand, HyperAdapt defines which are the possible pointcut XML elements
in the XML Schema and proposes the idea of static analysis based on type in-
formation derived from XML schema. These ideas are similar to our approach of
schema-based modularisation and type-safe composition. Finally, The XML FST-
Composer [D6r09] tool of FeatureHouse TS proposes a two-level modularisation
(i.e. schema- and instance-based) by annotations, similar to our approach. He also
presents the difficulties that has the XML technology for both modularisation and
composition of documents, and implements a tool that extends the FSTComposer
in order to integrate XML composition in FeatureHouse. FeatureHouse models

software components by feature structure trees (FSTs) and FSTComposer com-

3.8. Related work 85

poses software components represented by FSTs applying tree superimposition.

XML programming languages. Two main techniques to modify or create
documents can be identified in XML: update operations and transformation lan-
guages. Examples of the former include XUpdate [LMOO]and XMLTask [OOP].
Those approaches (used in different contexts) describe operations (represented in
a declarative way) that can be performed over a tree representation of an XML
document (i.e. DOM [Wea98]). They use an XPath expression to locate nodes in
a given XML document, usually a single unique node is located (e.g. an element,
attribute or text). Once the node which pinpoints the target for the modifications
has been found, modifications like additions, insertions, removals or substitutions
of elements and attributes can be done. They offer a total freedom of updating.
However, the use of the XPath and the set of those low-level operations violate the
rules of the unit of composition (i.e., identification and encapsulation) discussed
in 3.4.1. Moreover, they haven’t got any mechanism for statically type-checking
the new XML fragment before updating.

In a similar way, XML transformation languages aim at facilitating the de-
velopment of XML processing applications. Examples include XML-based and
declarative languages, such as XSLT [Cla99] and XQuery [Bea06b], XML-centric
languages, such as XDuce [HP03] and CDuce [BCF03], and the approaches that
integrates native XML support in existing general programming languages (e.g.
Java, C#), such as XJ [HRS05], XOBE [KL02], XTATIC [GP03], Cw [BMS05]
and XACT [KMO6]. In general, XML transformations languages are usually used
to transform an XML document into another, changing the vocabulary and reusing
some content (i.e. data and XML fragments) from the original document. It is also
possible to use for extending, filtering or modifying an XML document, maintain-
ing the same vocabulary in the output. Moreover, they also come with support to
statically type-checking. This versatility, however, comes at a cost: (i) it requires
developers to be familiar with another language; (ii) they offer more programming
options than an FOP programmer needs; and (iii) some languages define their own
internal type system for XML data, which requires to define the mapping between
XML-Schema and language types. However, the XAK approach facilities to the
FOP domain and application engineers the definition of deltas and the validation

86 Chapter 3. XML in Software Product Lines

of them by annotating the XML elements that can be modules at instance- and
schema-level. The XAK composer is based on existing XML parser and the XAK
validator gives precise localization of error messages, based on the XDuce type

system and subtyping relationship.

XML Differences. XML deltas are closely related to the idea of XML differ-
ences. The main difference stems from their purpose, the former implement a fea-
ture in an SPL and are normally built separately while the latter are calculated as
the difference between two XML documents. Among different approaches in the
literature, XML Patch [Urp06], XMLDiff [alp0Ol, Cor02] and DeltaXML [LFO0I]
represents the differences by XML documents, whereas X-Diff, diff-X, represents
the differences as an script that includes update operations.

Updates and Incremental XML Validation The composition of XAK and the
validation of the XAK type-system are closely related to update operations and
incremental validation of XML documents [KSR02, BHFA04, BML 104, PV03,
SYK™"10]. When a valid XML document will be updated in an XML DB, it has
to be verified that the updated document still conforms to the imposed schema.
To accept an update, the validity of the result is checked first (without any change
on the original document). Validation tests are performed incrementally, i.e., only
the validity of the part of the document directly affected by the update is checked.
Changes to the original document are effectively performed only when the update
is accepted.

The main difference of XAK with all of them is that 1) not all the element or
attribute nodes can be updated. We select in two-levels: first, we define which type
of elements can be updated in the schema and second, elements are identified by
an ID instead of selecting by an XPath; 2) we derive an XML-Schema instead of
creating a specific tool (e.g. an automata) for delta validation; and 3) we derive a
set of constraints for each delta document, which requires them to the input docu-
ment. All the above approaches embed these constraints in the derived algorithm
or tool (e.g. an automata). For example, the SAXE system[KSRO02] rewrite an
Update-XQuery statement into a safe Update-XQuery statement by embedding
constraint check sub queries into the update statement. However, the XAK type

3.8. Related work 87

system define them separately from the tool in order to reuse in different contexts:
(i) validating a single input document before composing or (ii) validating an entire
SPL.

Object-oriented modularisation in HTML documents The need for system-
atic development techniques that scale with the increasing complexity of Web
applications bring object-orientation, prototype-based, and componentware to the
Web realm focusing on reuse in HTML document generation. Examples include
WebComposition Component Model (WCCM)[GWG97], Web Object Composi-
tion Model (WOCM)[KNCO1] and JESSICA project approaches[SWGZ00]. For
example, JESSICA provides Object-oriented concepts such as abstraction, encap-
sulation, aggregation and inheritance through templates and page (i.e. object) cre-
ation by template instantiation in a Web setting. However, OO does not provide
the right level of granularity for FOP requirements. Another drawback is that they
provide a weak type system for content validation, which does not fully guarantee
that the generated HTML document is a valid instance document, hence, errors
are detected at execution time or ignore by the browser parser.

By contrast, this work strives to highlight the main differences between com-
position and traditional inheritance as a reuse technique, and addresses the pe-
culiarities posed by markup languages as opposed to object-oriented ones, such
as the importance of being a valid document. The rest of the paragraphs out-
lines these three approaches.templates can be derived by inheriting from other

templates. Those templates are represented using an XML vocabulary.

Safe Composition in SPL. Our work on type checking feature-oriented product
lines was motivated by the work of Thaker et al. [TBKCO07]. They suggested the
development of a type system for feature oriented product lines that does not check
all individual programs but the individual feature implementations. Influenced by
this work, Delaware et al. [DCB09] and Apel et al. [AKGL10] define a constraint-
based type system for Java-like feature-oriented languages: Lightweight Feature
Java (LFJ)) and Feature Featherweight Java (FFJ), respectively. Both type sys-
tems check whether a given product specification falls into the subset of type-safe

specifications described by the feature model. In other words, checking safe com-

88 Chapter 3. XML in Software Product Lines

position of a product line amounts to showing that the programs allowed by the
feature model are contained within the set of type-safe products. Therefore, the
goal of our tool is to complement the LFJ and FFJ type systems in order to type-
checking Software Product Lines that contains XML documents. The XAK type
system is also a constraint-based type systems in order to check whether the com-
posed XML document will be contained within the set of valid documents with

respect to the given XML-Schema.

3.9 Conclusions

This chapter addresses how feature-oriented programming can be extended to
XML artefacts. The insights are realized through XAK, a language for XML
delta composition. XAK offers an alternative way to modularise and refine code
for languages where no other modularisation technique is available. Moreover,
considerable effort has been devoted to obtain delta grammars so that deltas can
be check out at the time they are defined. The importance of these insights rest on
the importance of markup languages in the world of Web application development
[RJOS].

Expressiveness and suitability have been the guiding principles throughout.
Expressiveness is checked out through six case studies. Suitability is faced by
delving into the complexities of delta validation and delta composition so that
deltas are made suitable to the XML way of programming. However, other issues
such as low coupling (i.e. deltas are not overly related with each other) or high co-
hesion (i.e. deltas are highly related internally) has not been addressed. Deltas are
not totally independent entities. Dependencies might exist. These dependencies
might force deltas to be composed in a certain order. Even more, delta behaviour
might be affected by which other deltas they are composed with. This is an in-
triguing but very real problem. Assuming that applications can be gradually and
monotonically created, starting with a prototype that is incrementally enriched
with new features is not always possible. Even proponents of the Agile devel-
opment recognize that enriching a prototype with a new functionality might lead
to re-code functionality previously incorporated in the prototype in some ulterior

development iterations (i.e. “scrums”) [Mey14]. This important issue is left for

3.9. Conclusions 89

future work.

Parts of the work described in this chapter have been previously presented:

* O. Diaz, F. I. Anfurrutia, and J. Kortabitarte. Using DITA for documenting
Software Product Lines. In Proceedings of the 9th ACM symposium on
Document engineering (DocEng’09), 231-240, 2009.

* F L. Anfurrutia, O. Diaz, and S. Trujillo. On refining XML artifacts. In Pro-
ceedings of the 7th International Conference on Web Engineering (ICWE’07),
volume 4607 of LNCS, pages 473—478. Springer, 2007.

* O. Diaz, S. Trujillo, and F. I. Anfurrutia. Supporting production strategies
as refinements of the production process. In Proceedings of the 9th Interna-
tional Software Product Line Conference (SPLC’05), volume 3714 of Lec-
ture Notes in Computer Science, pages 210-221, Rennes, France, Septem-

ber 2005. Springer-Verlag.

90

Chapter 3. XML in Software Product Lines

Chapter 4

XML in Web development

4.1 Overview

The increasing growth in size and complexity of Web sites calls for a systematic
way to web sites development that allows to face the stringent demands imposed
on both the development and maintenance of these systems. Model-based ap-
proaches have been proposed to mitigate this situation. These approaches aim to
find models, preferably orthogonal, that allow designers to declaratively specify a
specific concern of the application without being immediately immersed in details
of implementations. This chapter presents XLeaflet, a domain-specific language
for web sites development. Each concern is separately described in an XML docu-
ment. Moreover, a distinctive feature of XLeaflet is its architecture: thick-browser.

This can account for an important reduction in the network traffic.

The chapter is organized along common Design Science activities: explicate
problem, define requirements, artefact design, artefact implementation and arte-

fact demonstration. Related work and conclusions end the chapter.

91

92 Chapter 4. XML in Web development

4.2 Problem Explanation

In which practice does the problem appear? There is tremendous pressure
on Web developers to “code-and-publish”. And the background of developers
can be quite diverse with typically no experience in Software Engineering. They
are guided by the features in the tools and language constructs. This free-form
style of development can lead “to use ad-hoc, hacker-type approaches, which
lack rigour, systematic techniques, sound methodologies, and quality assurance”
[GMO1]. And these practices can be disastrous as Web masters have to face main-
tenance, being a frustrating experience to see how often the website bottleneck
slows and restricts the evolution of the organization the website is supposedly

serving. Summing it up, website development is complex.

In Software Engineering, two principles to fight back complexity are abstrac-
tion and separation of concerns. Website development is not foreign to these prac-
tices. Indeed, traditionally HTML artefacts tend to mix together both content,
rendering and layout within a single artefact: the HTML page. Now, good prac-
tices advice to decouple content (e.g. in a separated XML data document), and
use transformation languages (e.g. XSLT) to indicate how this content is to be
presented along HTML. In this setting, HTML does not hold content but its role
is limited to dictate rendering directives. From this viewpoint, HTML is a Domain
Specific Language (DSL) for content rendering. In this way, content is separated
from rendering directives which are described through an HTML expression.

So far separation of concerns is limited to content and presentation. Other con-
cerns of website construction are scattered around a diverse range of technologies
and artefacts. This hinders maintainability and development since these concerns
are expressed in terms of general programming language (e.g. JavaScript) difficult
to debug and maintain.

This work pushes the “XSLT approach” to analyze the extent to which a whole
website can be obtained. The vision is a Domain Specific Language (DSL) that
declaratively permits no techies to create a website. DSLs are usually geared to-
wards a specific domain or application, offering only a restricted suite of notations
and abstractions. Hence, this DSL vision will not be possible in a general basis

but it could happen for specific domains. Specifically, we look at static, content-

4.3. Requirement Definition 93

oriented websites, hereafter referred to as “leaflet websites”’. Conference web-
sites, product catalogues or websites with content about a teaching course are the
kind of websites we are tackling. Here, the challenge rests more on rendering and
navigation rather than supporting transactional-like functionality (e.g. purchases,
enrolments and the like).

What is the problem and the negative consequences of not addressing it?

The research question is

could “leaflet websites” be developed with the only help of a
DSL?

Conceiving website development as a DSL expression construction brings several

benefits that could not be obtained otherwise:

* DSLs allow solutions to be expressed in the idiom and at the level of ab-
straction of the problem domain. Consequently, domain experts themselves

can understand, validate, modify, and often even develop DSL programs,

* DSL programs are concise, self-documenting to a large extent, and can be

reused for different purposes,

* DSLs enhance productivity, reliability, maintainability, and portability. Ad-
ditionally, confidence in the correctness of the specifications is greatly im-
proved when all the extra syntactic noise is eliminated from the specifica-

tions,

* DSLs embody domain knowledge, and thus enable the conservation and

reuse of this knowledge.

Next section outlines a solution to the explicated problem in the form of an artefact
and elicits requirements, which can be seen as a mutation of the problem into

demands on the proposed artefact.

4.3 Requirement Definition

Our research question (i.e. could “leaflet websites” be developed with the only
help of a DSL?) already conveys the kind of artefact to be developed: a DSL.

94 Chapter 4. XML in Web development

Leaflet website

o)
go “m:: Navigation Presentation Adaptation
uppol Support Support Support
Proprietary External
Data Data Content Navigation Event
Presentation Presentation Source
Layout

Q

Operation Subject

[Anchoring | ‘ NavigationMode | TraversalMode

’ CouplingMode ‘ | BindingTime |

OnLoad e

i
® Mandatory feature}
OnRequest

]
O Optional feature !
Alternative featurei

]

Or feature i

Figure 4.1: Feature-diagram. Different concerns are identified as impacting “leaflet web-
site” development

For the purpose of this work, we focus on two requirements: expressiveness and

performance.

4.3.1 Expressiveness

Expressiveness refers to the degree to which a set of constructs is capable of rep-
resenting the entities of interest in a domain. Hence, the very first task is to char-
acterize the target domain, i.e. leaflet websites. We characterize leaflet websites in
terms of features. Figure 4.1 depicts the feature-diagram for leaflet websites. This
diagram states that a “leaflet website” is developed by different concerns, such as
content, navigation, presentation and adaptation. Next paragraphs introduce each

feature:

» Content Support. Usually, a website unifies and presents content from het-
erogeneous data sources. Some data belongs to the website itself (i.e. pro-
prietary data), whereas some other data is shared with other websites or

applications (i.e. external data). Normally, the latter is held in a database,

4.3. Requirement Definition 95

whereas the former is embedded in a (leaflet) document. This implies that a
document (in the sense of an XML document) becomes the unit of delivery.
The HTML page keeps on being the unit of presentation but the document
becomes the unit of delivery. Instead of looking at a website as a set of
pages, this view conceives a website as an inter-related set of documents. A
document is brought to the browser, and once there, HTML pages are dy-
namically generated. A document is a self-contained chunk of information

that 1s accessed/browsed as a unit,

Navigation Support. This strives the fact that the average user session in-
volves intensive browsing on a (leaflet) document. Browsing content of
documents needs mechanisms for anchoring content in order to identify the
origin and destination of a l/ink navigation. Moreover, in case that the des-
tination content is a large set of data distinct navigation modes and traversal
modes can be needed. For navigation modes, mechanisms such as index or
filter are considered in order to reduce the set of data. A scroll have also
been identified as effective mechanism in order to guide the browsing of the
content. Finally, the content provides the set as is.

In relation to a link traversal mode, it poses two questions: How are coup-
ling the origin and target content of a link? When is traversed the link to
show the target? At this respect, figure 4.1 depicts two features: coupling-
Mode and bindingTime, respectively. Website wise, the target content can
be coupling (showed) in the same page where the origin content resided (i.e.
embed), replace the origin content or attached in a new window (i.e. new).
The bindingTime can be executed automatically (i.e. onLoad), that is, the
target is shown at the same moment that the origin, or it is postponed until

a user event (i.e. OnRequest),

Presentation Support. This describes the look and feel of both the content

and the navigation elements, as well as the layout concerns,

Adaptation Support. As web sites grow in size and complexity, mechan-
isms to both lightening cognitive overload and providing user guidance are

in great demand. Both mechanisms can be realized by making websites ad-

96 Chapter 4. XML in Web development

aptable. Adapting a web application requires to take decisions of i) when
should be realized (i.e. Event Source and Granularity); ii) what operations
are allowed (i.e. Operation); and iii) which concerns are changeable (i.e.
Subject).

Therefore, constructs are needed to describe content, navigation, presentation and

adaptation needs of the target application.

4.3.2 Performance

DSLs rise abstraction but might risk performance. That is, there exists a potential
loss of efficiency when compared with hand-coded software. Speeding up devel-
opment and maintenance (envisaged benefits of using a DSL) might not be at the
cost of users suffering latency gaps. Hence, the artefact implementation should be
performed. To this end, we impose the artefact architecture to be thick browser.
Next we explain the rationales.

Most web applications commonly follow a thin-browser approach. Here, all
of the application control resides on the server, and the browser is just used for
rendering purposes. There is little control of the client’s configuration. Most e-
commerce applications use this architecture as it does not make good business
sense to eliminate any sector of customers just because they do not have sufficient
client capabilities [Con00]. Data-intensive applications are also good candidates
for exhibiting this architecture. In these applications, data is not brought to the cli-
ent but processed at the server, near where the data lies, and just the final outcome,
the HTML page, is sent to the browser. On the other hand, a browser request will
be required every time a new page is displayed. This could lead to an increase in
network traffic, low site promptness and site bottlenecks.

By contrast, a thick-browser architecture attempts to mitigate this problem at
the price of increasing the demands on the browser configuration. This feature
allows a whole bulk of pages to be generated from one document with a single
connection to the server. This can account for a sensible reduction on the network
traffic as connections to the server are limited to requests for another document, in-
voking services or connecting to DBMS for extracting data. Navigation-intensive

applications could be better served by this approach where the same content can

4.4. Artefact Design: XLeaflet 97

be displayed several time without incurring in any communication cost.

The main concern of this work is to gain some insight into a thick-browser
architecture for Web applications. Specifically, in this approach the additional
processes performed by the browser are page generation, navigation and adapt-
ation logic. The potential advantages are threefold: i) reduction in the network
traffic, ii) enhancement of the site promptness, and iii) reduction in the server
load. At the same time, the zero-deployment advantage is retained, i.e. code is
centralized at the served and instantaneously deployed on the browser.

Next section addresses the design of XLeaflet, a DSL that addresses the ex-

plicated problem and strives to fulfil the previously defined requirements.

4.4 Artefact Design: XLeaflet

This section introduces XLeaflet, a DSL for leaftlet website development. This
section tackles the expressiveness requirements set in subsection 4.3.1, i.e. means
to describe the content, navigation, presentation and adaptation needs of the do-
main at hand. Next subsections address each of these concerns through four mod-
els: the content model, the navigation model, the presentation model and the ad-
aptation model. A sublanguage is defined for each model. The DSL is illustrated

with the help of a running example.

4.4.1 The content model

Concerning content and its structure, three issues are addressed: its nature, its
source and its obsolescence. Content nature refers to whether you are handling
data or documents [Bou03]. Data structure is characterized by being regular, fine-
grained and where the order is often not significant. In a conference web-site,
attendee data follows this pattern: the same data must be collected for each at-
tendee, the granularity of this data is often atomic, and the order in which this
data is arranged does not convey any meaning. By contrast, document structure
commonly follows a irregular structure, larger-grained data and the order is sig-
nificant. As an example, the introductory information about a conference, i.e.

outline, topics of interest, distinct deadlines to authors or instructions to authors,

98 Chapter 4. XML in Web development

ORGANIZING COWMLITTEE . ! MELEBEE !
i =name 1

SET OF TOFICS 1 ~header ! =address :

=header w 1 e-mail
e PROGRAN COCHAIRS ‘— «positicn

1 N

[ttt skl
PROGEAM COMMTIEE ‘—"" name :

sheader

= ooty
CONFERENCE # ACCEPTED _PAPER.
sheader + =author +
-tifle =title
- marea
-Sag::nzer 1 CALI_FOR_PAPERS ‘_* EVENT selectronic edition
wdate header «aspect =presentation_ddte
- i =time_slot
outlinne - date ey
= author[nstructi cn ‘
*
1 \ p———
ACCOMMODATION HOTEL = author +
sheader H = code =title
=gatlyDate — =goal +
»eatlyDisceouet . CSE%‘“’Y :gizemaum date
=address X —
*tal sphons :hme_slnt
=web URL room

‘ i 1 External document l:l Propietary document

Figure 4.2: The content diagram for the conference example.

have an irregular structure. In order to accommodate the idiosyncrasies of each
conference, these aspects do not follow a common, regular structure. For instance,
a specific conference can have a boat trip or provide strict guidelines for author’s
manuscripts, whereas other conferences do not include any of these aspects. Even
for the very same notion (e.g. the banquet) different conferences impose distinct
structures (is there a reception previous to the banquet? should a map be included?
is dress-up required?).

The XML specification holds the potential in devising effective integration of
both data and document-centric sources and is being widely adopted as a stand-
ard for information representation and exchange. Hence, XLeaflet uses an XML
document to support the content of a web site.

A UML class-diagram for the conference example is shown in Figure 4.2. A
conference content includes data about the aims of the conference, the organizing

and program committee, the call-for-papers, the list of accepted papers and so on.!

! Although the UML notation is used, it is worth noticing that the rectangles do not stand
for classes nor entities. They refer to sub-documents, better said, XML elements (i.e.: tags) of
the content document. How these elements have been ascertained from use-cases or why these

4.4. Artefact Design: XLeaflet 99

<?xml version="1.0"7>
< 7?xleaflet:navigation document href="ifipNavigation.xml" type="text/xml"?>
< ?xleaflet:adaptation _document href="ifipAdaptation.xml" type="text/xml"?>
< ?xleaflet:presentation _document href="ifipPresentation.xm|" type="text/xml"?>
< ?xleaflet:connection _document href="ifipDBConnection.xml" type="text/xml"?>
<CONFERENCE xmins:xleaflet="x-schema:../schemas/xleafletSchema.xm|" >
<HEADER>International Federation for Information Processing </HEADER>
<HEADER>IFIP 2.6 WORKING CONFERENCE ON DATABASE SEMANTICS (DS-9)</HEADER>
<TITLE>SEMANTIC ISSUES IN e-COMMERCE SYSTEMS</TITLE>
<ORGANIZER>by the IFIP Working Group 2.6 (Database)</ORGANIZER>

<OUTLINE>E-commerce systems have been capturing the popular imagination ... </OUTLINE>
<SET_OF TOPICS>

<HEADER>TOPICS OF INTEREST</HEADER>

<TOPIC>Data modeling and query languages for databases for e-commerce</TOPIC>

</SET_OF TOPICS>
<CALL_FOR_PAPERS>
<HEADER>Call For Papers</HEADER>
<EVENT>
<NAME>Deadline for submissions of abstract</NAME>
<DATE>November 30, 2000</DATE>
<NEW image="hongkong-imagenes/newinfo.gif" />
</EVENT>

</CALL_FOR_PAPERS>
<AUTHOR _INSTRUCTIONS>Authors are invited to submit contrib...</AUTHOR INSTRUCTIONS>
<ORGANIZING COMMITTEE>

<HEADER>CONFERENCE ORGANIZATION</HEADER>

(a) | <xleaflet:QUERY rowName="MEMBER" connection="xmldemo" obsolescence="0">
<xleaflet:SELECT> NAME, ADDRESS, EMAIL, POSITION< /xleaflet:SELECT>
<xleaflet: FROM>ORGANIZATION MEMBERS< /xleaflet:FROM>
<xleaflet: WHERE>POSITION='Organization committee'< /xleaflet: WHERE>

< [xleaflet:QUERY >
<MEMBER>
<NAME/>
<ADDRESS/>
<EMAIL/>
<POSITION/>
</MEMBER>
</ORGANIZING _COMMITTEE>
<PROGRAM_CO_CHAIR>
<HEADER>PROGRAM CO-CHAIR</HEADER>
<xleaflet:QUERY ... </xleaflet: QUERY>
<MEMBER>...</MEMBER>
</PROGRAM _CO_CHAIR>
<PROGRAM_COMMITTEE>
<HEADER>PROGRAM-COMMITTEE</HEADER>
<xleaflet:QUERY ... </xleaflet: QUERY>
<TECHNICAL MEMBER>...</TECHNICAL MEMBER>
</PROGRAM_COMMITTEE>
<ACCEPTANCE RATE>80%</ACCEPTANCE RATE>
<ACCEPTED _PAPER>
<AUTHOR>Kenneth R. Jacobs</AUTHOR>
<TITLE> Innovation in Database Management: Computer Science vs Engineering.</TITLE>
<AREA>Data Management</AREA>
<ELECTRONIC _EDITION>innovation.pdf</ELECTRONIC EDITION>
<DATE>April 25, 2000</DATE>
<ROOM>1</ROOM>
<TIME_SLOT> 9:00 - 10:00 </TIME_SLOT>
</ACCEPTED _PAPER>

</6ONFERENCE>

Figure 4.3: The content document for the conference example.

100 Chapter 4. XML in Web development

The resulting content document is shown in Figure 4.3.

Content source. Web-site development strives to unify distinct and poten-
tially heterogeneous data sources. According to this aspect, content can be char-
acterized as proprietary or external. Proprietary content belongs to the web-site
and it is provided within the content document itself. For instance, content about
the aims of the conference, author instructions and the like are examples of pro-
prietary content; it is not share with other sites. By contrast, external content
is normally held in a database. A dotted line is used in Figure 4.2 to indicate
this situation. As an example, ORGANIZING_COMMITTE members data is re-
trieved from a database. As shown in Figure 4.3a, an XLeaflet element, tagged
<zleaflet:QUERY> is used for this purpose where the connection attribute holds
a configuration XML file for connection purposes. At run-time, the processing
of the <zleaflet:QUERY> element causes the attached query to be executed. This
query returns an XML document having MEMBER as its root element (the row-
Name attribute) , and NAME, ADDRESS and EMAIL as its sub-elements. It is
worth noticing that this element is interpreted only when the user navigates to the
MEMBER element.

Content obsolescence. External data is brought to the browser. The “obsoles-
cence” attribute of the <zleaflet:QUERY> element indicates the elapsed time that
makes this content obsoleted. The values “inf” and “0” indicate whether refresh-
ment should never occur or should take place every time this content is visited,
respectively. Otherwise, this attribute holds the elapsed time that make this ex-
ternal data outdated. For our example, obsolescence is set to “0”, indicating that
data about the program committee should be loaded just once regardless on the
times this data is visited. Recency requirements as well as the impact of retrieving

outdated content should be considered to set the value of this attribute.

4.4.2 The navigation model

As shown in the previous section, XLeaflet supports “the content space” by means

of an XML document. The navigation model addresses how this document can

elements have been chosen to be explicitly represented in the UML diagram among the potentially
large set of elements of the content document is out of the scope of this work.

4.4. Artefact Design: XLeaflet 101

E embedOnR equest embedOnl cad

embedOnl oad ‘;
| CALL_FOR_PAPERS | ‘ EVENT |
replacedl] .
OnRequest CONFERENCE I powOReques [FUTHOR
ED| owane
OnRequest
replacedl] ki
OnRequest SET OF TOPICS embedReplacing
OnRequest § ¥
replacedll

() OnReguest r---"""------="-=---------g ACCEFTED_PAPER
'ORGANIZING_COMMITTEE | embedReplacing | embedReplacing
fomm e e ! OnRequest OnRegquest

replacedl]

B

EA

OnRequest, ©
() DnReuesty |
| PROGRAM COMMITIEE | PRESENTATION DATE|
TIME_SLOT embedRsglacing
OrRequest p—
]
Initial enter point [=| Anindex ondestinstion element 0 A scroll-bar on destination element
[
@ Mo Contex ual links A filter on destination element — - Show all destination element

Figure 4.4: The navigation diagram for the conference example.

be traversed through links. Figure 4.4 shows part of the navigation diagram for
the conference example where the different arrows represent the possible links
along “the content space”. A link has an origin and a destination anchor together
with a navigation and a coupling mode. This diagram is realized in the naviga-
tion document (see Figure 4.5). Each arrow of the navigation diagram maps to a
<zlefatlet:LINK> element in the navigation document.

In order to associate a navigation document with its content document, we fol-
low a similar approach as the one used in XML. The processing instruction ele-
ment “<?zml:stylesheet ...?>" attached to an XML document, indicates the
XSLT document to be used for rendering the XML document. Likewise, XLeaflet
provides three processing instruction elements, <?zleaflet:navigation_document

..?>,<?zleaflet:presentation_document ...?>and <?zleaflet:adaptation_
document ...?>, to indicate the navigation, presentation and adaptation docu-
ment associated with the content document, respectively (see the top of Figure
4.3).

In XLeaflet, link specification has to do with three issues: the anchor identific-

ation, the navigation mode and the coupling mode.

102 Chapter 4. XML in Web development

< ?xleaflet:adaptation _document href="adaptConferencia.xm|" type="text/xml"?>
<xleaflet:LINKS xmlns="x-schema:../schemas/xleafletSchema.xml" >
<!—home link—>
<xleaflet:LINK title="Conference" from="home" to="/CONFERENCE">
<xleaflet: CONTENT order="1" couplingMode="embedOnLoad" />
< /xleaflet:LINK>
<l—contextual links—>
<xleaflet:LINK title="Call For Papers" from="/CONFERENCE" to="CALL FOR_PAPERS">
<xleaflet: CONTENT order="1" couplingMode="embedOnRequest" />
< /xleaflet:LINK>
<xleaflet:LINK title="Event" from="/CONFERENCE/CALL FOR_PAPERS" to="EVENT">
<xleaflet: CONTENT order="1" couplingMode="embedOnLoad" />
< /xleaflet:LINK>
<xleaflet:LINK title="Accepted papers" from="/CONFERENCE" to="/CONFERENCE">
<xleaflet:CONTENT order="1" couplingMode="replaceAllOnRequest" />
< /xleaflet:LINK>

(a) | <xleaflet:LINK title="Paper by Area" from="/CONFERENCE" to="ACCEPTED PAPER">
<xleaflet:INDEX order="1" title="Index of papers by area"
couplingMode="embedReplacingOnRequest" >

<xleaflet:INDEX PROPERTY propertyName="AREA" />

< /xleaflet:INDEX>

<xleaflet:CONTENT order="2" couplingMode="embedReplacingOnRequest" >
<xleaflet:SCROLL first="yes" previous="yes" next="yes" last="yes" />

< /xleaflet: CONTENT >

< /xleaflet:LINK>
<xleaflet:LINK title="Paper by date, time-slot and room" from="/CONFERENCE"
to="ACCEPTED _PAPER">
<xleaflet:INDEX order="1" title="Index by date and time slot:"
couplingMode="embedReplacingOnRequest" >
<xleaflet:INDEX PROPERTY propertyName="DATE" />
<xleaflet:INDEX PROPERTY propertyName="TIME _SLOT"/>
< /xleaflet:INDEX>
<xleaflet:INDEX order="2" title="Index by room" couplingMode=
<xleaflet:INDEX PROPERTY propertyName="ROOM" />
< /xleaflet:INDEX>
<xleaflet:CONTENT order="3" couplingMode="embedReplacingOnRequest" />
< /xleaflet:LINK>

embedReplacingOnRequest ">

(b) <xleaflet:LINK title="Other papers of these authors" from="/CONFERENCE/ACCEPTED PAPER"

to="/CONFERENCE/ACCEPTED PAPER[AUTHOR=$FROM/AUTHOR]
[TITLE |=$FROM/TITLE]" >
<xleaflet: CONTENT order="1" couplingMode="newOnRequest" />

< /xleaflet:LINK>
<!- No contextual links —>
<xleaflet:LINK title="Conference" from="*" to="/CONFERENCE" >
<xleaflet:CONTENT order="1" couplingMode="replaceAllOnRequest" />
< /xleaflet:LINK>
<xleaflet:LINK title="Topics of interest" from="*" to="/CONFERENCE/SET OF TOPICS">
<xleaflet: CONTENT order="1" couplingMode="replaceAllOnRequest" />
< /xleaflet:LINK>
<xleaflet:LINK title="Conference Organization" from="*"

to="/CONFERENCE/ORGANIZING COMMITTEE">

<xleaflet: CONTENT order="1" couplingMode="replaceAllOnRequest" />
< /xleaflet:LINK>
<!-other links, similar to previous are omitted for spacing —>

(c) | <xleaflet:LINK title="Paper by Author" from="/CONFERENCE" to="ACCEPTED PAPER">

<xleaflet:FILTER order="1" title="Search papers by author" couplingMode="newOnRequest">
<xleaflet:SEARCH PROPERTY title="Author" propertyName="AUTHOR" predicate="belongsTo"/>

< /xleaflet:FILTER>
<xleaflet: CONTENT order="2" couplingMode="embedReplacingOnRequest" />

< /xleaflet:LINK>
< /xleaflet:LINKS>

Figure 4.5: The navigation document for the conference example.

4.4. Artefact Design: XLeaflet 103

Anchor identification. The distinct element tags of the XML content doc-
ument are conceived as potential anchors from which to define origins and des-
tinations. Elements within the XML content document are addressed using the
W3C standard XPath notation[CD99]. XPath conceives an XML document as
a tree of nodes, and follows a notation similar to the UNIX directory paths to
address each node within the document (a location path using XML parlance).
We have extended this notation in distinct ways to accommodate some navigation
requirements. We regard four kinds of location paths: relative location paths, ab-
solute location paths, the non-contextual location path, and the ‘home’ location
path. The former two are found in XPath and the main difference stems from
what is the origin of the path: the context node (i.e. the current node being vis-
ited) in the case of relative location paths, or the root of the document (denoted
by “/””) for absolute location paths. This notation allows to locate the descendants
of a given node (either the current node or the root node), and in so doing, sup-
ports forward navigation. However, backward navigation is also useful, i.e. the
location of the predecessors of the context node. We have then introduced the
“.”” syntax. As an example, consider we are currently processing an ORGANIZ-
ING_COMMITTE node. If from this node we want to reach a sibling node(e.g.:
a PROGRAM_COMMITTEE node), the link destination path would be “../PRO-
GRAM_COMMITTEE”. The non-contextual location path stands for any path,
and supports non-contextual links, i.e. links that are accessible regardless of the
current context node. This path is denoted by “*”” and can appear only as value of
a link origin. Finally, the home location path is used to denote the origin of those
links which constitute the entry points of the navigation. This path is denote by

“home”.

Figure 4.4 shows a possible navigation diagram for the conference example.
As indicated by the home location path, the CONFERENCE outline is readily
presented once connected to the site. Several no-contextual links are always avail-
able to display the ORGANIZING_COMMITTEE, the PROGRAM_COMMITTE
or the SET_OF_TOPICS within the conference scope. By contrast, the CALL_FOR
_PAPERS can only be accessed while being on the conference outline, which in
turn leads the way to the EVENTS.

Each link in this diagram is mapped to a <zleaflet:LINK> element in the

104 Chapter 4. XML in Web development

navigation document (see Figure 4.5). As an example, consider the link that goes
from a CONFERENCE node to its related CALL_FOR _PAPER nodes. This is

expressed in XLeaflet as follows:

<xleaflet:LINK title="Call for Papers"
from="/CONFERENCE"
to="CALL FOR PAPERS"> ...

< /xleaflet:LINK>

<zleaflet:LINK> is an XML element of the XLeaflet vocabulary. This ele-
ment has a set of attributes which describe (1) the label of the link when rendered
on the screen (the title attribute); the origin of the link (the from attribute) that
indicates when the link is available (in this case the link is available when the
CONFERENCE element is rendered); and the destination of the link (the to at-
tribute) which states the element to be rendered when this path is followed. Notice
that the from attribute holds an absolute path whereas the to attribute is a relative
path, i.e. it refers to the accepted papers which hang on a concrete CONFERENCE

node.

It is worth noticing how recursive links can be defined. For instance, the link
that goes from an ACCEPTED_PAPER to other accepted papers by the same au-

thors is specified as follows:

<xleaflet:LINK title="Other papers of these authors"
from="/CONFERENCE/ACCEPTED PAPER"
to="/CONFERENCE/ACCEPTED PAPER
[AUTHOR=$FROM /AUTHOR]| [TITLE!=$FROM//TITLE]">...

< [xleaflet:LINK>

Both, the from and to attributes hold an absolute path. However, the to
path just addresses those ACCEPTED_PAPER elements which have the same AU-
THOR as (and distinct TITLE from) the accepted paper being visited. At run time,
the variable $FROM keeps the last ACCEPTED_PAPER node which is being vis-
ited.

Navigation mode. Navigation proceeds from a node of the XML document to

the destination nodes of the chosen link. If a single destination node is available,

4.4. Artefact Design: XLeaflet 105

A D AMikel\ALasin, v1. 2inicioCaniesencia bm - Microsolt Intesnet Explores

|| Be Eo Wow Fovortes Todk Hep [+]
i - 2 : ¥ = 5
e I s [= T~ I e R)
| Back | oo Swp Rebesh Hore | Semch Fevoles Hioy Mal Pt
| Addiess [£] pwibanaraic . ZinicicCarterengahin =] @60 | [Vincuks
ATARTH

s7Paper by Avea is¥Paper by date, timne-slot and room

| AcCEPTED PATERS A
r oS o .
Accepted Rate: 80% last traversed link
Tadax by dare and fne slar: o ey
o7 April 25, 2000 10:30- 11:00] | o] e0ther papers of these authors

- o April 25,2000 11:00 - 11:30; | o2 anguage for Mampulating Arrays ¢
,'F @TApril 25, 2000 11:30 - 12:00 oed ¢ AUTHORS:
@7 April 25, 2000 9:00 - 10:00 " Qf:mj;:] fmmmw
o7 April 26, 2000 10:30 - 11:00 R
Hang Kong Web Society @7 April 26, 2000 11:00 - 11:30 | ARFA: Novel Data Types ez

e7April 26, 2000 11:30 - 12:00 : ggﬁ[—-\lﬂﬂ 15, 2000 :

@Corterence a7April 26, 2000 9:00 - 10:00 | IIME_SLOT 10.30-1%00 i

@Topics of werest o7 April 27, 2000 9:00 - 10:00

@Conference Organizaion
ragram Co-Chairs
regram Commimes

index index content

Hasted by

b =

[pcture fil 440 /Hi v v al. [[[My Compuler

Figure 4.6: Navigation from Conference to acceptedPaper: an index hierarchy along
accepted papers.

navigation is straightforward. However, one-to-many navigation is found if an
XML element encompasses a set of elements of the same type. The navigation

mode indicates how to proceed in this case.

As an example, a CONFERENCE element can include a set of ACCEPTED_
PAPER sub-elements. When traversing a link from conference to its accepted
papers, should all of then be processed at once? or is it preferably to browse then
one by one? In this case, the designer is confronted with the decision of how
the set of papers are traversed. This navigation mode is described by means of

sub-elements of the <zleaflet:LINK> element.

Based on the WebML modeling language [CFBO0O0], XLeaflet supports indexes,
filters, and scrolls. A link can sequence some of these constructors to build up an

aggregate navigation mode.

An index provides a shortcut to reach the desired destination nodes. This is
supported through the <zleaflet:INDEX> element. For instance, to reach AC-
CEPTED PAPER nodes from a CONFERENCE node, the next link is defined:

106 Chapter 4. XML in Web development

<xleaflet:LINK title="Paper by date, time-slot and room" from="/CONFERENCE"
to="ACCEPTED _PAPER">
<xleaflet:INDEX order="1" title="Index by date and time slot"
couplingMode="embedReplacingOnRequest" >
<xleaflet:INDEX PROPERTY propertyName="DATE" />
<xleaflet:INDEX PROPERTY propertyName="TIME SLOT"/>
< /xleaflet:INDEX>
<xleaflet:INDEX order="2" title="Index by room"
couplingMode="embedReplacingOnRequest" >
<xleaflet:INDEX PROPERTY propertyName="ROOM" />
< /xleaflet:INDEX>
<xleaflet:CONTENT order="3" couplingMode="embedReplacingOnRequest" />

< [xleaflet:LINK>

The <zleaflet:INDEX_PROPERTY> sub-element indicates which property of
the destination element (i.e. ACCEPTED_PAPER) serves as an index. By prop-
erty is meant either an attribute or a sub-element. In the previous example, the
system offers an index by the aggregation of DATE and TIME_SLOT (both sub-
elements of ACCEPTED_PAPER) on its way to ACCEPTED_PAPER:s. If the set
of paper within a date+timeSlot is still large, you can index the resulting subsets
by another concept. For instance, the previous example offers an index hierarchy
where the second index arranges papers by “presentationRoom”. A possible lay-
out of the previous navigation is shown in Figure 4.6.

If the set of destination nodes is large, a filter could be more suitable. This
construct provides a query capability to restrict the set of destination nodes: edit
fields are provided for inputting values used for searching along the set of destin-
ation nodes. The <zleaflet:SEARCH_PROPERTY> sub-element indicates a field for
inputting a value. This sub-element has three attributes which describes: (1) the
label of the field when rendered on the screen (the t7tle attribute); the property of
the destination element to search for (the propertyVame attribute); and the predic-
ate to be satisfied by the destination nodes in order to be rendered (the predicate
attribute). Predicate can hold three values: “belongsTo”, in which case the intro-
duced value must be one of the values of the propertyName element; “between”
in which case the user provides the two ends of an interval within which the value
of searched property must be; and “like” in which case the user provides a pattern

(i.e. a regular expression) to compare with the value of the searched property. An

4.4. Artefact Design: XLeaflet 107

example for this navigation mode is given in Figure 4.5¢).

If the set of destination nodes is low, the designer can choose to traverse the
whole set right away. The <zleaflet:CONTENT> element indicates this alternative.
Notice, that any traversal should end in a content mode since this is the only way
to reach the nodes’ content. An alternative is to show the destination nodes one
by one rather than the whole set together. In this case, the <zleaflet:CONTENT>
element has a <zleaflet:SCROLL> sub-element. An example is given in Figure
4.5a):

<xleaflet:LINK title="Paper by Area" from="/CONFERENCE"
to="ACCEPTED _PAPER">
<xleaflet:INDEX order="1" title="Index of papers by area"
couplingMode="embedReplacingOnRequest" >
<xleaflet:INDEX PROPERTY propertyName="AREA" />
< /xleaflet:INDEX>
<xleaflet: CONTENT order="2" couplingMode="embedReplacingOnRequest" >
<xleaflet:SCROLL first="yes" previous="yes" next="yes" last="yes" />
< /xleaflet: CONTENT >

< /xleaflet:LINK>

An index by AREA is first provided. Once an area is selected, a scroll allows
to browse along the papers on this area. Figure 4.7 shows a possible rendering for
this navigation mode.

Coupling mode. The coupling mode addresses how indexes, filters and scrolls
should be arranged during link traversal. Should the destination node be displayed
together with the origin node (embed), substitute the origin node (replace) or be
displayed in a separate window (new)? Moreover, should this navigation occurs
on request or take place automatically on load? These concerns appear also in the
W3C XML Linking Language (XLink) proposal [DMOTO1]. As these aspects
are not completely orthogonal, we decide to mix both and provide the following
coupling mode values: newOnLoad, newOnRequest, embedOnLoad, embedOn-
Request®, embedReplacingOnRequest®, embedReplacingOnLoad, replaceOneOnRe-

quest and replaceAllOnRequest*. If the navigation mode is aggregated, each nav-

>The embed refers to show the target node in the same page as the origin node

3The embedReplacing is similar to the one as before, but previous target nodes are replaced
with the last one

4With the replace options, the designer can choose whether the substitution affects to all the

108 Chapter 4. XML in Web development

2 - \Mikel\Atarix. v1. AinicioConferencia, btm - Microselt Intemet Exploer

|| e Ect Vow Foveries Took Hep |-
- [t = : = =
S > I s I S I IS P
| Back foved Swop Felrsh Homs | Geach Favoites Histy Mal Pt
| [Adress [£7 pMibatsaiic ot ZiricioCariemnciabin =] @G | |vincuos
R e

} giPaper by date, time-slot and roomn
> ACCEPTED PAPERS last ¢ d link
4 . ast traversed lin

Accepred Rarte: 30%

{Tudex of papers by aea ' 3
! aData Minine i #Other papers of these authors

-y : eData Warehousing ! U Inovation in Database Management: Computer Srience vs Enginvering. §
I ¢ aDatabase Desian i P AUTHORS: :
I i : . = | i Kenneth R Tacobs
L alultid sional Databases: &
i Multidimensional Databasesi { g (0 i b diion: webSieContezensinzuml
: @Novel Data Types AREA: Data Warehousing :
i @1Web Databages ! I DATE: Apul 25, 2000 : e
"""""""""""""""""""""" PROOM: 1 i

Hang Hong Weh Society

@ Conference
opics of interest
@Conference Organizanon
rogram Co-Chalrs
Togram Cotmminee

index content

[=

&1 D piciue ik 42/0- A4 o] o e [55 Wy Computes

Figure 4.7: An alternative way to support the navigation from Conference to
acceptedPaper: an index on area and then, scroll along the papers of a selected area.

igation primitive specifies the coupling mode with respect to the previous stage.
For instance, the screen dump shown in Figure 4.6 delivers the origin element
(i.e. a CONFERENCE element) in the same page from both the indexes and the
destination elements (i.e. an ACCEPTED_PAPER element). Another alternative
would be to present both conference data and the indexes separately, in a differ-
ent screen, from the selected ACCEPTED_PAPERSs. The navigation mode is the
same; the coupling modes are different. In this way, the designer is free to decide

how tightly she wants to distribute the content.

4.4.3 The presentation model

Both content and link definitions have a presentation counterpart which addresses
the look and feel of the final layout. This includes selecting the delivering mech-
anism (i.e fonts, background, icons and the like) for both content and links, as

well as the distribution of these items along the presentation space (e.g. a page).

origin nodes (option all) or it is restricted to the last origin node being visited (option one).

4.4. Artefact Design: XLeaflet 109

<xleaflet:template matchType="LINK TO CONTENT">

<xleaflet:NAVIGATOR>

<xleaflet:value of select="@title" />

< /xleaflet:NAVIGATOR>
< [xleaflet:template>
<xleaflet:template matchType="LINK _TO CONTENT"
matchlinstance="/CONFERENCE/CALL FOR_PAPERS">
<xleaflet:NAVIGATOR>
<INPUT type="button">
<xsl:attribute name="value" >
<xleaflet:value of select="0title" />
< /xsl:attribute>
</INPUT>
< /xleaflet:NAVIGATOR>

< /xleaflet:template>

Figure 4.8: The default template for single links and how this template is overridden for
links which stay in the context of “Call for Papers” content.

Delivering mechanism. One of the most often cited advantages of XML is
the separation between content and presentation achievable through XSLT style
sheets[Cla99]. An XSLT style sheet includes one or more femplates, each of
which contains the information for displaying a particular branch of the element
hierarchy in the XML document. The match attribute identifies the specific branch
by using an XPath expression. XLeaflet uses XSLT. However, the XSLT match at-
tribute locates the specific branch based on the tags of the elements (i.e. the XPath
expression) while XLeaflet also needs to locate elements by type. A type indic-
ates the role played by this element during rendering, that is, whether the element
supports content, single links, indexes, filters or scrolls. Hence, an <zleaflet:
template> construct is introduced. XLeaflet templates follow the same pattern
than XSLT templates, but now elements can be located by both its tag name as
XSLT does, or its type.

The motivation for such distinction is that it allows the designer to specify a
generic presentation for XLeaflet types (e.g. link_to_content, index, scroll) that
can be later overridden for specific elements playing this roles. For instance,
Figure 4.8 shows the default template for single links (matchType="LINK_TO_

110 Chapter 4. XML in Web development

<xleaflet:template matchType="PAGE CONTAINER">
<html|>
<head>
<style type="text/css" >
.index { color: red; font-size:16pt; font-weight: bold; cursor: hand; }
.home { color:white; font-size:16pt; text-decoration: none; }
.contextual {color:#3399cc; font-size:16pt; text-decoration: none; }
.noContextual { color:#3399cc; font-size:12pt; text-decoration: none; }
A:visited { color:#CCCCCC; text-decoration:none; }
A:hover { text-decoration:underline; }
BODY{background:#ecfbff;]
< [style>
</head>
<body>
<table width="100%" height="100%">
<tr height="100%">
<td vAlign="top" width="170">
<center>
XLEAFLET < /a>

</center>

<xleaflet:apply _templates select="NO_CONTEXTUAL _
NAVIGATION SET"/>

</td>
<td width="4"/>
<td valign="top" width="100%">
<xleaflet:for _each select="INDEX | FILTER |
CONTENT _CONTAINER">
<xleaflet:apply _templates select="."/>
< /xleaflet:for each>
</td>
</tr>
</table>
</body>
</html>
< [xleaflet:template>

Figure 4.9: The general page of the conference site.

4.4. Artefact Design: XLeaflet 111

<xleaflet:template matchType="CONTENT" matchlnstance="/CONFERENCE">
<l—content omitted —>
<h2 style="color:blue" >Outline</h2>
<xleaflet:value of select="$matchlnstance/OUTLINE" />
<h2 style="color:blue">Author instructions</h2>
<xleaflet:value of select="%matchlnstance/AUTHOR INSTRUCTIONS" />
< [xleaflet:template>
<xleaflet:template matchType="CONTENT" matchlnstance="/CONFERENCE"
matchContext="xleaflet: LINK[@title="Accepted papers’]" >
<h2 style="color:blue">ACCEPTED PAPERS</h2>
Accepted Rate:
<xleaflet:value of select="$matchlnstance/ACCEPTANCE RATE"/>

< /xleaflet:template>

Figure 4.10: The default template for the content type and how this template is overridden
when a link is traversed.

CONTENT”). This rendering can be overridden for specific links at one’s discre-

tion. Overridden takes places in two ways:

1. indicating the element’s relationship with an instance of the content docu-
ment (the matchInstance attribute). For example, figure 4.8 illustrates how
the single link presentation is overridden for those links ending at “/CON-
FERENCE/CALL_FOR_PAPERS”.

2. indicating the link which has brought about the navigation to this element
(the matchContezt attribute). For example, figure 4.10 shows how the con-
ference presentation is overridden when the linked titled “Accepted papers”

18 traversed.

Distribution concerns. It refers to how items are arranged in a page. A stepwise
process is used similar to JSP [Gea0O]. We begin by designing a general page
layout to be followed by any page of the site. This layout provides a first skeleton
where some general canvas are drawn (e.g. the header, the body and the footer).
The content of these canvas is decided separately in another style sheet which in
turn, can left some “smaller” canvas for further refinement. Unlike the style sheets
used for presentation purposes, these sheets are only concerned with distribution.
Hence, they are referred to as style-free style sheets|VdV00]. The general page
layout style sheet for the conference site is shown in Figure 4.9.

112 Chapter 4. XML in Web development

Besides this general layout, separate layouts are provided for each kind of
item to be displayed, namely, content, single links, indexes, filters and scrolls.
The user can override these default layouts and provide their own. Overriding is
provided at the instance level, that is you can override how a given index or paper
is distributed on the canvas, and left the rest of the instances follow the default

layout.

4.4.4 The adaptation model

Previous models provide a “frozen” view of a site, that is the range of data, links
and layouts that build up the site are fixed. However, this view could need to be
adapted dynamically based on the current click-stream behaviour.

As web sites grow in size and complexity, mechanisms to both lightening cog-
nitive overload and providing user guidance are in great demand. Both mechan-
isms can be realized through adaptation. The former by defining some preced-
ence order among content/links so that some content/link can not be presented till
some other content/link has already been visited. As an example, consider the
conference site. It could be the case that accommodation information should be
displayed if the conference outline has already been consulted. Otherwise, there
is no point in cluttering the page with accommodation information till there is not
signs the user is interested in attending it. Such interest can be measured by the
type of content visited or the time spent on the site. On the other hand, user guid-
ance could lead to adapt both the navigation space and the presentation based on
previous interactions. For instance, consider that a large number of papers have
been accepted. The list of papers is presented in a standard way. If the user shows
interest in any of then (by clicking on it), the system can improve user guidance
by changing the presentation of the related papers (i.e. those having similar key
words) on the fly. A more flashy presentation will guide the user to those poten-
tially interesting papers. This kind of mechanism offers potential for cross-selling
where one purchase can cause either to highlight or to provide links to related
products.

An adaptation model should indicate, first, criteria in which the adaptation is

based and second, the subject of the adaptation, i.e. what can be adapted. In our

4.4. Artefact Design: XLeaflet 113

model, the content, the navigation or the presentation documents are the subjects

to be adapted based on the date and click behaviour obtained at run time.

Adaptation is defined in terms of the well-known event-condition-action rule
paradigm. The rule is triggered by a given event; once triggered, the condition is
considered, and if the condition is true then the action is executed. Browser rules
are described using an XML syntax, where the <zleaflet:0N>, <zleaflet:IF>
and <zleaflet:D0> elements are introduced to describe the event, the condition

and the action part of the rule, respectively.

An event occurrence is produced by the traversal of a link, either after or before
the traversal takes place. The link is defined in terms of the link properties, using

a XPath-like syntax. For instance, the event definition

<xleaflet:ON when="after"
source="xleaflet:LINK[@to='/CONFERENCE/CALL FOR_ PAPERS’|"/>

rises an event occurrence after traversing any link which ends at a '"CONFER-
ENCE/CALL_FOR_PAPERS’ node. Another example would be:

<xleaflet:ON when="before" source="xleaflet:LINK[@from="home']" />

rises an event occurrence before loading the very first page.

An event occurrence has three parameters: $FROM, which holds an XPath ex-
pression pointing to the origin node; $70, which holds the arrival node; and $D4ATE
from where the date can be retrieved. The $T0 parameter is empty for before

events.

Conditions evaluate predicates on event parameters or document content. The
boolean expression can be cumbersome to specify as an XML syntax is used.
Additional functionality can also be used by using $FUNCTION: key before refer-
encing it. This functionality must be provided as a Javascript library and it will be

invoked by the XLeaflet interpreter. As an example, the next condition:

114 Chapter 4. XML in Web development

<xleaflet:IF>
<xleaflet: COMPARATION operator="smaller">
<xleaflet: OPERAND>
<xleaflet: CONSTANT type="int" value="$FUNCTION:dateDiference('$DATE",
'SFUNCTION:getNodeValue("/CONFERENCE/CALL FOR PAPERS/
EVENT[NAME='Deadline for submission of the paper']/
DATE")')"/> ¢
< /xleaflet:OPERAND >
<xleaflet: OPERAND>
<xleaflet: CONSTANT type="int" value="0"/>
< [xleaflet:OPERAND>
< [xleaflet: COMPARATION>

< /xleaflet:1IF>

“' and " are reusable entities. They are used in XPath expressions when the '
or " characters causes a problem, respectively.

evaluates whether the deadline for paper submission is over by the time the

event happens.

Finally, the action part indicates how the content, navigation or presentation
documents are adapted. That is, the additions or removals of content, links or

templates. As an example, the next action:

<xleaflet:DO>
<xleaflet:INSERT _LINK parents="/xleaflet:LINKS" >
<xleaflet:LINK title="$FUNCTION:getNodeValue("$TO/TITLE")'
from="*" to="$TO">
<xleaflet: CONTENT order="1" couplingMode="replaceAllOnRequest" />
< /xleaflet:LINK>
</xleaflet:INSERT _LINK>

< /xleaflet:DO>

adds a link to the navigation space. The <zleaflet:INSERT_LINK> element
introduces a new <zleaflet:LINK> element. It indicates the parent node from
which this new link should hang through the “parents” attribute (e.g. “/xleaf-
let:LINKS”). Notice how the event parameter $70 is used to collect some inform-

ation (from the last traversed /ink) for the construction of this new link.

4.4. Artefact Design: XLeaflet 115

Besides the <zleaflet:0N>, <zleaflet:IF> and <zleaflet:D0> elements, a
rule has also two attributes: granularity and enabled. The former indicates
whether a rule should be fired every time the associated event is risen (“for_each_
event”) or just once during the current session (“for_each_session”). 1t is worth
noticing that whereas database triggers’ effects are persistent since they act on the
database, the subject matter of browser rules is the session itself. Therefore, their
effects vanish once the session is over. Hence this mechanism offers a session-
based adaptability and it is complementary with server rules whose effects have a
longer lifespan.

On the other hand, the enabled property indicates whether the rule is enabled
or not. This attribute supports temporal deactivation of rules.

Next subsections present how browser rules can be used for both lightening

cognitive overload and user guidance.

4.4.4.1 Lightening cognitive overload

Lightening cognitive overload can be achieved by “funing the navigation space”.
Although the available links are described during navigation modeling, this nav-
igation space could need to be adapted at run-time. The designer should not be
forced to define all links as readily available. This could lead to cluttered pages.
Instead, the designer should distinguish between immediate links and deferred
links. Both are defined in the very same way, but whereas the former are readily
available in the navigation document, deferred links are subject to the happen-
ing of an event. In this way, the navigation space can be expanded (more links
are added) or shrunk (some links are removed), and in so doing, the scope of the
navigation is kept within cognitive thresholds.

As an example, consider the conference site. It could be the case that accom-
modation information should be displayed after the conference outline has already
been consulted. Otherwise, there is no point in cluttering the page with accom-
modation information till there is not signs the user is interested in attending it.
Such interest can be measured by the type of content visited or the time spent on
the site. Let’s consider that visiting the conference topics is regarded as a sign of

interest in the conference. The rule in Figure 4.11 achieves this effect.

116 Chapter 4. XML in Web development

<xleaflet:RULE granularity="for each _session" enabled="yes" >
<xleaflet:ON when="after"
source="xleaflet:LINK[@to="/CONFERENCE/SET OF TOPICS‘]"/>
<xleaflet:IF>
<xleaflet: TRUE/>
< [xleaflet:IF>
<xleaflet:DO>
<xleaflet:INSERT _LINK parents="/xleaflet:LINKS" >
<xleaflet:LINK title="Accomodation"
from="*" to="/CONFERENCE/ACCOMMODATION" >
<xleaflet: CONTENT order="1" couplingMode="replaceAllOnRequest" />
< /xleaflet:LINK>
< [xleaflet:INSERT _LINK>
< /xleaflet:DO>

< [xleaflet:RULE>

Figure 4.11: Adaptation browser rule: inserting a link in the navigation document

The rule’s event is associated to the traversal of any link leading to “/CON-
FERENCE/SET _OF _TOPICS”. If this event is risen, the rule’s action extends the
navigation space with a link to the conference’s hotels which will be visible when
the user returns to the home page. It is worth noticing that this rule should be fired
Just once, regardless of the times topics information is visited. Since, the rule’s

granularity is set to ‘for_each_session’.

4.4.4.2 Guiding the user

Guidance tactics include ascertaining potential useful shortcuts for the user or
highlighting some content. As an example of providing useful shortcuts, consider
that a non-contextual link is added on the fly for each paper that has been vis-
ited. The user can spend some time on locating a paper, browsing through distinct
indexes. Once the paper is located, we would like to speed up future references
through a non-contextual link that readily leads to the visited paper without cum-
bersome browsing. The rule in Figure 4.12 provides the required behaviour.

As an example of highlighting, consider that a large number of papers have
been accepted. The list of papers is presented in a standard way. If the user shows
interest in any of then (by clicking on it), the system can improve user guidance

by changing the presentation of the related papers (i.e. those having the same

4.5. Artefact implementation: supporting XLeaflet 117

<xleaflet:RULE granularity="for _each _event" enabled="yes">
<xleaflet:ON when="after"
source="xleaflet:LINK[@to="/CONFERENCE/ACCEPTED _PAPER']"/>
<xleaflet:IF>
<xleaflet: TRUE/>
< [xleaflet:IF>
<xleaflet:DO>
<xleaflet:INSERT _LINK parents="/xleaflet:LINKS" >
<xleaflet:LINK title="$FUNCTION:getNodeValue("$TO/TITLE")'
from="*" to="$TO">
<xleaflet:CONTENT order="1" couplingMode="replaceAllOnRequest" />
< [xleaflet:LINK>
< [xleaflet:INSERT _LINK>
< [xleaflet:DO>

< [xleaflet: RULE>

Figure 4.12: Adaptation browser rule: providing a shortcut link to accepted papers

key words) on the fly. A more flashy presentation will guide the user to those

potentially interesting papers. The rule in Figure 4.13 achieves this effect.

4.5 Artefact implementation: supporting XLeaflet

XLeaflet is a DSL for leaflet-website development. Broadly, a XLeaflet expression
stands for a whole website. So far, we have addressed the DSL syntax but not
its operational semantics, i.e. how DSL constructs are going to be interpreted or
compiled. This operational semantics conveys “the meaning” of the DSL con-
structs in terms of its effects. In addition, the implementation also embodies the
strategies to address main non-functional requirements. Performance is a case in
point.

The XLeaflet interpreter accounts for a thick-browser architecture to outper-
form traditional thin-browser solutions based on general programming languages.
Here, all of the application control resides on the server, the browser is just used
for rendering purposes, and a browser request is required every time a new page is
displayed. This could lead to an increase in network traffic and low site prompt-
ness. By contrast, a thick-browser architecture moves to the client-side some

application control that is currently conducted at the server-side. In this case,

118 Chapter 4. XML in Web development

<xleaflet:RULE granularity="for _each event" enabled="yes">
<xleaflet:ON when="after"
source="xleaflet:LINK[@to="/CONFERENCE/ACCEPTED _PAPER']"/>
<xleaflet:IF>
<xleaflet: TRUE/>
< [xleaflet:IF>
<xleaflet:DO>
<xleaflet:INSERT _TEMPLATE parents="/xleaflet:stylesheet" >
<xleaflet:template matchType="CONTENT"
matchlnstance="/CONFERENCE/ACCEPTED PAPER
[AREA="$FUNCTION:getNodeValue("$TO/AREA& quot;)']" >
<DIV style="background:blue; color:white" >
<xleaflet:value of select="$matchInstance/TITLE"/>

AUTHORS:

<xleaflet:for _each select="$matchInstance/AUTHOR" >
<xleaflet:value of select="."/>

< [xleaflet:for each>
Electronic Edition:

<xsl:attribute name="href">
<xleaflet:value of select="$matchlnstance/ELECTRONIC EDITION" />
< /xsl:attribute>
<xleaflet:value of select="$matchlnstance/ELECTRONIC EDITION"/>

AREA: <xleaflet:value of select="$matchlInstance/AREA" />

DATE: <xleaflet:value of select="$matchlnstance/DATE"/>

ROOM: <xleaflet:value of select="9$matchInstance/ROOM" />< /b>

 TIME_SLOT:
<xleaflet:value of select="$matchlnstance/TIME SLOT"/>
</DIV>
< /xleaflet:template>
< [xleaflet:INSERT _TEMPLATE>
< /xleaflet:DO>

< /xleaflet:RULE>

Figure 4.13: Adaptation browser rule: changing the presentation of related papers

the browser brought a chunk of data from where a whole bulk of pages could be
locally generated with a single connection to the server. Navigation-intensive ap-
plications could be better served by this approach where the same content can be

displayed several time without incurring in any communication cost.

This architecture implies that the Xleaflet is the unit of delivery. A Xleaflet

4.5. Artefact implementation: supporting XLeaflet 119

expression is brought to the browser where a whole bulk of pages are generated
locally. In this way, requests to the server are reduced to (i) retrieving the next
Xleaflet, (ii) retrieving some resources (e.g. an imeage) or (iii) invoking a Web
service which is attached to a derived element (see Chapter 2).

The Achilles’ heel of this architecture is a more demanding browser configur-

ation. So far, the leaflet run-time requires:

1. JavaScript libraries(or a plug-in) to interpret a leaflet document for naviga-

tion control and page generation.

2. A parser that processes the DOM API[Wea98], XSLT 1.0[Cla99] and XML
Schema[TBMMO1°.

Next, we delve into the implementation details.

4.5.1 XLeaflet Architecture

The client-side XLeaflet architecture is shown in Figure 4.14%. An XLeaflet ap-
plication is divided in two frames: namely, LeafletVisualization frame which sup-
ports the content display area, and LeafletInterpreter frame, which is hidden and
where all run-time elements of XLeaflet are placed. More specifically, the XLeaf-
let run-time includes: (1) the NavigationController which maintains the current
context and drives the navigation, (2) the DocumentManager module which is
responsible for loading and updating all the XLeaflet documents, (3) the Present-
ationController which generates the HTML pages using the XSLT processor, (4)
the DeriveElementResolver which invokes a web service in order to retrieve the
external data, and (5) the AdaptationController which is in charge of adapting
both navigation and presentation in accordance with the browser rules.

The initialization of an XLeaflet application is shown in Figure 4.15 using
an interaction diagram. The browser requires an HTML initialization page to

the WebServer which contains the four modules of the XLeaflet run-time. Then,

>This work uses Microsoft XML parser 4.0. So far, Internet Explorer 6.0 is the only browser
that provides this DOM API and both XSLT and XML Schema processors. However, Netscape
will also provide XML support in the next release.

The diagram follows the UML notation proposed in [Con99]. This notation allows to model
the implementation elements that compose a Web application by using UML stereotypes.

120 Chapter 4. XML in Web development

«FrameSet» «ClientPage»
LeafletApplication - LeafletVisualization
«ClientPage» «build» Web Services
Leafletinterpreter
«link»
*onLoad() «JavaScript» +{id}
PresentationController HTTP
\‘\
+createPage() '
«link»
+{context}
«JavaScript» «JavaScript»
NavigationController DerivedElementResolver
-<j‘o.n‘te>.(t +invokeService()
+initialize()
+createContext()
+navigationRequest()
«JavaScript» «XML Document» AN
DocumentManager /// Content:
-DOMContent s N
-DOMNavigation P _ | «XML Document»
-DOMPresentation k=—-~""" Navigation: W
«JavaScript» -DOMAdaptation \:\\
AdaptationController +loadDocuments() N Thel XML Documeht» -
+getDocument() N Presentation:
+processEvent() +modifyDocs() \\\ \
N

N «XML Document»
Adaptation: W

Figure 4.14: The XLeaflet architecture

the initialize method of the NavigationController is invoked, which renders the
“home” page. To this end, the NavigationController requests the DocumentMan-
ager to load all the documents that constitute the leaflet (i.e. content, presenta-
tion, navigation and adaptation) and extracts from the navigation document the
first links to traverse (i.e those having “home” as their from attribute, see section
4.4.2). At this time, the AdaptationController takes control over to fulfil the proc-
cesEvent request. The AdaptationController checks whether there is any “before”
rule attached to the traversal of these home links; if so, the rule is triggered. If any
of these rules is satisfied, as a result of rule’s action the content, presentation or
navigation documents could be modified (by using the API provided by the Docu-

mentManager). Next, the NavigationController undertakes link traversal, updates

4.5. Artefact implementation: supporting XLeaflet 121

«JavaScript» «JavaScript» «JavaScript» «JavaScript»
WebServer NavigationController DocumentManager AdaptationController PresentationController
]

User's Browser

getLeafletApp() i E E i i
i i i i

leafletApp

I initia]ize()

loadDocuments() E

!
1]

|| getDocument("navigation") !

processEvent("before")
|
T
|
i

| modifyDocs() ‘J |

—createContext() i i i
|

F-I[

i i i
| createPage(context) !

i ! getDocument("presentation”)

getDocuménl("conlent")
i

i
i
i i
i H HTML page | i
] : i |
oo ;r ________________ 1T processEvent(after”) ’; _____________________
i
i
|

! processEvent("after")

' modifyDocs() J

| |
1 1
| 1 1 1 1
I 1 m 1 1

|

Figure 4.15: An interaction diagram for the XLeaflet initialization.

the current execution context, and requests to the PresentationController the ren-
dering of the new page. To accomplish these tasks, the PresentationController
requests the content and presentation documents to the DocumentManager. As
a result, an HTML page is generated and rendered. Next, control returns to the
AdaptationController to check for any “after” rule attached to those links just
traversed. Once “after” rules have been processed, control goes back to the Nav-
igationController. In case that the destination of a link traversal is an external data,
then the NavigationController delegates to the DeriveElementResolver in order to

retrieve it.

XLeaflet follows a light thick-web client architecture. The term “light” means
that the configuration required for the client is kept to a minimum. So far, XLeaf-
let run-time 1s implemented using JavaScript libraries that interpret the differ-
ent XML documents using the DOM API [Wea98], XSLT 1.0[Cla99] and XML
Schema[TBMMO1]. The widespread adoption of XML makes us feel confident

122 Chapter 4. XML in Web development

about the support of this technology in most of the commercial browsers’.

4.6 Evaluate Artefact

This section attempts to answer to what extent XLeaflet fulfils the requirements set
in section 4.3: expressiveness and performance. The former has been accounted

for several case studies:

* 6 websites in academic world: conference, 3D protein information, auction

catalog, courses information, department information, and software catalog;

* 3 websites in business world: product catalog, questionaries-exams and
factory-production information. The former requires updates to database on
the server-side. This requirement was not initially consider on the design
of the leaflet websites. However, this was solved defining a task (e.g. add,
modify, remove) as another navigation mode in the navigation model. The
task model and its implementation were maintained orthogonal and integ-
rated with a transaction-oriented web-application [RDO1], realized by J.J.

Rodriguez in Onekin team.

The example use in this chapter (i.e. conference website) shows how common
aspects that arise during leaflet-website development can be expressed through
XLeaflet constructs. Other benefits brought by DSLs such as understandability
or maintainability has not been addressed, though the higher abstraction terms in
which the application is expressed is certainly a main rationale for achieving those
goals.

As for performance, we next provide some figures about the cost of running a
XLeaflet expression. On one hand, let’s calculate the cost of rendering a traditional

page. Three factors are involved:
* (i) arequest for the page,

* (ii) the generation of the page at the server (if dynamically obtained),

"This work uses Microsoft XML parser 4.0. So far, Internet Explorer 6.0 is the only browser
that provides this DOM API and both XSLT and XML Schema processors.

4.6. Evaluate Artefact 123

* (iii) the delivery of the page.

The former only accounts for less than one kilobyte and thus, it can be ignored.
The other aspects are influenced by the bandwidth of the network, the size of the
page and the amount of traffic both at the web server and the data server. An
estimation for the required loading time can be obtained by using the following
expression:

(size(Page) /bandwidth) + (size(Page) /Cs)

where Cs is a constant which reflects the server throughput (KB per second). We
estimate that it takes 0.06 seconds for a web server to generate one kilobyte of
HTML (of course, this is highly variable as it depends for instance on the load
currently placed on the servers and the complexity of the SQL query). This gives
a value for Cs of 15KB/sec.

On the other hand, rendering a Xleaflet involves: (i) a request for the Xleaflet;
(ii) the delivery of the Xleaflet run-time; (iii) the delivery of the Xleaflet itself; and
(iv) the processing of the Xleaflet at the browser.

If we ignore the first parameter, a possible formula reflecting these aspects is

(size(runtime) /bandwidth) +
(size(Xleaflet)/bandwidth) +
(size(Xleaflet)/CD)

where Cb is a constant which reflects the Xleaflet run-time throughput (KB per
second). We estimate that it takes 0.11 seconds for the run-time to generate one
kilobyte of HTML. This gives a value for Cb of 9KB/sec.

However, this formula calculates the cost of processing a whole document
from which several pages are generated. For the comparison to be done in equal

terms, the previous formula should be expressed in terms of pages:

(size(runtime)/bandwidth) +
(size(Xleaflet)/bandwidth) +
Z(size(GeneratedPage,-) /Cb)

124 Chapter 4. XML in Web development

Table 4.1: Captured data for evaluation: size and processing cost for each generated page
for the conference example.

page size (KB) | processing cost(sec.)
10,38 0,59
5,66 0,81
7,25 0,67
8,78 0,96
8,77 1,14
8,80 0,96
8,73 0,95
8,76 0,95
7,44 0,70
8,02 0,76
8,91 1,17
8,92 1,18
8,91 1,08
9,20 1,26
10,15 1,42
10,73 1,59

Notice that the cost between generating one or several pages only differs on the
third term of the formula. In other words, for the Xleaflet to be worth processing
at the browser, several pages should be rendered. Otherwise, the cost of bringing
both the run-time and the Xleaflet to the browser does not pay off. This is the
reason why a thick-browser architecture only makes sense for navigation-intensive
applications where a whole bulk of content need to be traversed in distinct ways.
Furthermore, the data-intensive is at the very heart of the Xleaflet notion: a data

assembly that makes sense to be browsed as a unit.

The question is what is the minimum number of pages to be rendered for the
thick-browser architecture to payoff. In other words what is the value of ‘numPag’

in:

4.6. Evaluate Artefact 125

B2C (3 KB/s)

140
120 wpn "

100 e

@ oo
o o

time(sec.)

N

S ©

I

I

l

II

I

i
{
|
i
I
I
|
I|
|
I

o

—— thick-browser(without Plugin) —— thin-browser
— — thick-browser(with Plugin)

Figure 4.16: Evaluation: Time figures for a bandwidth of 3Kb/sec.

/bandwidth) +
/bandwidth) +

(size(runtime)
(size(Xleaflet)
numPag * (avg(size(Page;))/Cb) =
numPag x [(avg(size(Page)) /bandwidth) +

)
(avg(size(Page))/Cs)]

For example, the conference X/eaflet has a size of 60K. This includes the con-
tent document, the navigation document and the presentation document. Consider
the conference Xleaflet generates 32 pages; the sizes and the processing costs for
the first sixteen pages are shown in table 4.1. As for the run-time, its current size
is 220K.

Consider now three possible scenarios:

1. a thin-browser architecture where the Xleaflet is processed at the server,

2. athick-browser architecture with the run-time is already installed as a plug-

in, and the Xleaflet is processed at the browser

3. a thick-browser architecture where both the run-time and the Xleaflet are

126 Chapter 4. XML in Web development

B2B (10 KB/s)

-
o

(51 e)]
o O

5]
£ 30 = T
~ 20 —
10 f o=
0 T
- M 0 M~ & = M 0 M~ O — O W M~ 4 = 0
rrrrr (o] o (o] o o
—— thick-browser(without Plugin) —— thin-brow ser

— — thick-browser(with Plugin)

Figure 4.17: Evaluation: Time figures for a bandwidth of 10Kb/sec.

brought to the browser

Figure 4.16 and 4.17 compares this three options with a bandwidth of 3Kb/sec
and 10Kb/sec, respectively.

4.6.1 Discussion

Although the XLeaflet run-time has not yet been tuned for efficiency optimization,
we can already provide some insights from the previous figures:

First. The size of the run-time can make the thick-browser architecture in-
viable unless the run-time can be installed as a plug-in. This download penalty
is payed just once as the plug-in caches the run-time the first time it is down-
loaded. Hence, this architecture does not fit B2C applications where users can
be quite sporadic and could be discouraged by the perspective of having to install
a plug-in. However, B2B applications offer a more promising setting. Firstly,
the users are more computing-aware, and installing a plug-in will not put them
off. Secondly, B2B relationships tend to be more stable that B2C relationships
and thus, a business partner would be more willing to install the plug-in if better
efficiency can be obtained while accessing one of its partner sites in the future.

Another option is to provide a kind of run-time-lite which reduces the size of the

4.7. Related work 127

system at the expense of reducing its functionality.

Second. The thick-browser architecture only pays off for navigation-intensive
applications. As shown in Figure 4.16, this architecture begins to be faster than
the traditional thin-browser architecture if 10 or more pages are rendered. For less
than 10 pages, the download cost of the whole document does not pay off.

Third. The worse the network, the more interesting is the thick-browser ar-
chitecture. When comparing Figures 4.16 and 4.17, it can be concluded that the
minimum number of pages have to be rendered for the thick-browser architecture

to pay off decreases as the bandwidth deteriorates.

4.7 Related work

Separation of concerns. A leaflet website development is similar to hypermedia
and Web applications development. Most of the existing hypermedia methods,
such as HDM[GPS93], RMMI[ISB95], OOHDM [SR98], WSDM [TL98], Web-
Composition [GWG97], WCML[GSGO00], WebML[CFB00], AutoWeb[FP0O0],

UWE[Koc01], OO-H [GCO03], deal with the conceptual design of different con-
cerns, such as content, navigation, presentation and user interaction. The main dif-
ference of them with this work is the architecture implementation. All of them are
server-side approaches (i.e. thin-browser), whereas this work promotes a client-

side approach (i.e. thick-browser).

4.8 Conclusions

This chapter focuses on so-called leaflet websites, addressing its development
through a DSL. The outcome is XLeaflet, a DSL that strives to account for the
expressiveness needs of these developments. In addition, XLeaflet also attempt to
gain some insights into how to balance the application load between the browser
and the server. So far, XLeaflet follows a thick-browser architecture where the
navigation, presentation and adaptation controllers have been moved to the client-
side. This is aligned with current XML technology where some browsers have

been already enhanced to process XML documents. Moreover, this approach ac-

128 Chapter 4. XML in Web development

counts for a reduction in the network traffic, an enhancement on the site’s prompt-
ness, and a reduction of the server load. However, a downside of this approach is
an increase of the demands on the browser configuration. This situation probably
prevents the Xleaflet notion from being used for e-commerce applications targeted
at final customers. However, B2B or e-procurement projects where more control
over the client configuration is possible, could benefit from a thick-browser archi-
tecture.

Parts of the work described in this chapter have been previously presented:

* F. Ibéfez, O. Diaz, and J. J. Rodriguez. Coarse-grained delivery units: from
HTML pages to XML Leaflets. In Proceedings of the Software Engineer-
ing, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), pages 311-318, Madrid, 2002.

* O.Diaz, F. Ibafiez, and J. Iturrioz. A model-based approach to web-application
development. In Semantic Issues in e-commerce systems (IFIP TC2/ WG2.6
Ninth Working Conference on Database Semantics), volume 111 of IFIP,
pages 295-309, Hong Kong, April 25-28 2001. Kluwer Academic Publish-

€rS.

* O. Diaz, J. Iturrioz, and F. Ibanez. Integracion, navegacion, presentacion:
experiencias utilizando XML. Novatica, (146):12— 19, 2000.

Chapter 5

Conclusions

5.1 Opverview

The Extensible Markup Language (XML) provides a foundation for creating doc-
uments and document systems. XML is an opportunity to remake the software de-
velopment landscape as well as the world of documents. XML has proven to be an
adequate choice, as the file format, for both document and data exchange as well
as Web development, and presents a new world of opportunities and challenges to
programmers. However, from the use of XML in non-conventional applications
emerge limitations to the current tooling and standards on XML. This dissertation
proposes different solutions in order to overcome these limitations considering
different scenarios. Mainly, a document-centric approach is promoted for both

the development and the delivery of the application logic using XML.

This chapter reviews the main results of our work, evaluates the limitations

and suggests work for future research.

129

130 Chapter 5. Conclusions
5.2 Results

This dissertation develops the research content into three main chapters: Chapter
2 presented a model for extending an XML Schema in order to support the “miss-
ing data” (i.e. derived data) in an XML document; Chapter 3 faced how to define,
compose and validate XML deltas in order to use XML documents in a Software
Product Line Engineering setting that follows Feature Oriented Software Devel-
opment (FOSD) paradigm; and Chapter 4 proposed thick-browser approach for
web delivery content and separation of concerns for the development of a web

application. Specifically,

* Chapter 2 presented a model for extending an XML Schema with derived
elements, which will hold derived data (i.e. data which is calculated from
other data) in an XML document. To this end, two issues had been dis-
cussed: deriving function specification and the externality of deriving data.
The former had been addressed by introducing the XDerive vocabulary, a
rule-based approach to the definition of the deriving function. It promotes
code reuse, and saves the trouble of implementing these constraints in each
application. As for the problems posed by the externality of deriving data,
this chapter proposed the existence of a track document which records the
state and business policies used at the time the transaction occurs. The result
is a twofold XDerive Tool Suite: (i) a “derivation aware” XML parser and
(ii) a derived data Explanator. The former extends an existing XML parser
with a JAXP architecture. In this way, the schema is not only responsible
for validating the instance document, but it is also in charge of generating
the derived values by applying the corresponding business policies. The
latter is a tool that explains the derivation process, revealing the deriving
facts and the applied business policies, in order to enhance customer trust-
worthiness. In so doing, this approach eases the realisation of the distinct
contract vocabularies currently emerging [GLC99], that focus on capturing
the discovery-negotiation-execution life-cycle that models a business trans-

action.

* Chapter 3 introduced the notion of XML delta as a means of feature vari-

5.3. Future Work 131

ability realisation in FOSD. The result is XAK, a standalone as well as an
integrated tool in AHEAD Tool Suite. XAK allows to address the unit of
composition in both an XML vocabulary and instance document, as well as
define XML deltas which can be composed with a based document to output
enhanced XML documents. Several different use cases were used to eval-
uate the approach. Moreover, XAK provides a validation of an XML delta
with respect to an XML schema S in order to early detect inconsistencies
that will synthesise an invalid documents with respect to S, provided the
base document is also valid in S. Thus, a FOSD programmer can validate

XML deltas before composition, at delta-definition time in an isolate way.

» Chapter 4 explored a new way of web content delivery in the era of XML.
The result is XLeaflet, a model-based tool for web application development
that renders HTML pages from the declarative schemata specified by the
designer. Each concern (i.e. content, navigation, presentation and adapta-
tion) is separately described in an XML document. A distinctive feature of
XLeaflet interpreter is its architecture, i.e. client-intensive, the browser is in
charge of xleaflet processing which involves managing both navigation con-
trol and page rendering. Thus, the advantages are twofold: enhancement of

the web promptness and reduction in the server load.

5.3 Future Work

The three basic ideas explained so far has been implemented and proved as feas-
ible using some sample cases. During the development of the solution some lim-

itations were detected. Such limitations mark the direction of future work.

Enhancing business documents with derived data

* Derived data maintenance. Derived data maintenance is a fundamental
problem in computer science. One of the issues of the derivation process is
when deriving functions are executed. The XDerive parser follows a “snap-

shot approach”, both the deriving facts and the derived data are obtained

132 Chapter 5. Conclusions

and calculated at parsing time of a business document. However, the ex-
ternal data used by deriving functions can be changed in the database and
make invalid the derived data. This poses the challenge of analysing more
business cases in order to balance between the importance of data freshness
and transaction response time. The last include the study of an implement-
ation of a distributed trigger system, that integrates an XML parser and a

database system.

On refining XML artefacts

* Domain-specific delta composition. Currently, our definition of XML deltas
only permits additions and updates of existing module elements. The XAK
composer implements a generic XML composition and a delta XML Schema
is derived from the domain XML Schema based on the generic composi-
tion. However, generic composition is not sufficient in certain cases and a
domain-specific composition need to be defined [Ses11]. Studying in which
cases specific composition is required, what are its drawbacks and the feas-

ibility to use our XDerive approach is an area for future work.

* Safe Composition of Documents. When developing a family of documents
incrementally, we want to guarantee that all legal feature compositions (i.e.,
all feature compositions that correspond to a product) yield documents that
satisfy all constraints of the XML Schema, but without generating and val-
idating one by one. Our work paves the way to this goal by allowing to
check delta constraints. Nevertheless, the question of how to check the
compatible input documents for each delta document to guarantee that every
product conforms to its XML Schema still remains open. Existing work us-
ing propositional formulas and SAT-solvers suggests a direction in which to
proceed [DCB09, AKGLI10].

» Semantic constraint validation. Generally, XML validation can be clas-
sified into two orientations: structural constraint validation and semantic
constraint validation (e.g keys/ID, functional dependencies) [WP11]. The
validation of a delta document before composition is a main property for

5.3. Future Work 133

safe document composition in FOSD. Our work validates a delta document
structurally, but not semantically. It can be verified after composition. How-
ever, there are few work in this area and a complete check can be too costly.
Hence, a more efficient solution for the verification of semantic constraints
requires to derive also specialised constraints in order to detect illegal delta
documents before composition. Hence, the validation will be complete.
This type of validation will be important in the area of FOSD that includes

models (e.g. XMI), XML process definitions or business documents.

* Variability of XML Schema definition. An XML schema is a description
of a type of XML document, typically expressed in terms of constraints
on the structure and content of documents of that type. In our work, the
schemata is fixed and the variability part implemented by features is in the
content described by documents, but more complex applications may de-
mand to extend the vocabulary described by a schema, e.g. extension of
content models with new elements or attributes, alternatives of content mod-
els. For example, services in a Service-Oriented Architecture are described
by WSDL, which describes operations and includes XML schemas for ex-
changing the structure of XML documents among different components of
a system. Thus, a feature that adds more operations in a service may re-
quire to define new types or elements, or extend existing ones in the XML
Schema definition part. In this context, more work is needed to evaluate the
suitability of the XAK approach.

The XLeaflet approach

* Hybrid architecture. XLeaflet proposes a thick-browser (i.e. client-side) ar-
chitecture instead of a thin one (i.e. server-side). However, it is conceivable
to apply these two different patterns (i.e. the thick and the thin pattern) to
a single hybrid architecture, where both the thick- and the thin-architecture
approaches can coexist in the very same application. The degree of control
of the client’s configuration and the data-load of each use-case supported
by the application can dictate whether a think or a thin pattern is more con-

venient. The application could be split into a set of leaflets. Where the

134

Chapter 5. Conclusions

leaflet will be processed (i.e. the server or the browser) depending on the
expected navigation pattern and how much data will be derived from ex-
ternal sources. “Navigation-intensive” leaflets will be moved to the browser

while “data-intensive” leaflets are preferably kept at the server.

Operations related to content. Web applications are not only to show con-
tent but also to execute operations. These operations can be related to the
shown content. Hence, there is another concern related to the content model.
Previous attempt describes the operations as part of the navigation model as
the operation is another form to traverse the content document. However,
more work is needed to determine what are the primitive operations offer
by the framework and whether the operations will be model independently

or as part of the navigation model.

Reactive rules related to visited content. Reactive rules are used for pro-
gramming rule-based, reactive systems, which have the ability to detect
events and respond to them automatically in a timely manner. Such sys-
tems are needed on the Web for bridging the gap between the existing,
passive Web, where data sources can only be accessed to obtain inform-
ation, and the dynamicWeb, where data sources are enriched with react-
ive behaviour. Differences between (generally centralised) active databases
and the Web, where a central clock, a central management are missing and
new data formats (such as XML) are used, give reasons for developing
new approaches based on different kinds of reactive rules, namely Event-

Condition-Action rules and production rules.

MDD approach. Model Driven Development and Generative Program-
ming. Model-driven engineering coupled with code generation can provide
enormous benefits in terms of developers’ productivity, reduced develop-
ment and maintenance costs, shorter time-to-market, and improved product
quality. Using XML technologies for modeling, validations, transforma-
tions, and code generation proves to be a pretty low-cost and yet extremely

powerful approach to model driven development.

5.4. Publications 135

Software Engineering, Software Product Line, XML
Verified email at ehu.eus

Felipe |. Anfurrutia
0 Lecturer of Computer Science at University of the Basgque Country(UPV/EHU)

Title 1-19 Cited by Year

On refining XML artifacts
FI Anfurrutia, O Diaz, S Trujillo a5 2007
Web Engineering, 473-478

Supporting production strategies as refinements of the production process
O Diaz, S Trujillo, FI Anfurrutia 25 2005
Software Product Lines, 210-221

On the Refinement of XML
FI Anfurrutia, O Diaz, S Trujillo 10 2007
Proc. Intemnational Conference Web Engineering (ICWE}), Como, Italy

Integracién, navegacion y presentacion: experiencias utilizando XML
0 Diaz, J lturroz, F Ibafiez 6 2000
Novdtica 146 (4), 12-9

Moving web services dependencies at the front-end
JJ Rodriguez, O Diaz, F |bafiez 5 2002
Engineering Information Systems in the Internet Context, 221-237

Figure 5.1: Top five publications as for the number of references in Google Scholar
[Accessed 8 December 2015].

5.4 Publications

Parts of the work explained in this thesis have been presented and discussed in
distinct peer-reviewed forums. Figure 5.1 depicts the top five publications as for

the number of references in Google Scholar. A more detailed account follows.

Selected Publications

* On Refining XML Artifacts. F. 1. Anfurrutia, O. Diaz and S. Trujillo. In Pro-
ceedings of the 7th International Conference on Web Engineering (ICWE’07),
Como (Italy), July 2007 [ADTO7]. Rank B in the ERA Conference Rank-
ing. Acceptance Rate: 23% (26+13/172)

* Supporting Production Strategies as Refinements of the Production Process.

0. Diaz, S. Trujillo, F. I. Anfurrutia. In Proceedings of the Software Product

136 Chapter 5. Conclusions

Line Conference (SPLC’05), Rennes (France), September 2005 [DTAOS].
Acceptance Rate: 23% (17+3/71).

 Integracion, navegacion, presentacion: experiencias utilizando XML. O.
Diaz, J. Iturrioz and F. Ibafiez. Novatica, no. 146, pp. 12-19, 2000[DIIO0].

» Using DITA for documenting Software Product Lines. O. Diaz, F. 1. An-
furrutia and J. Kortabitarte. Proceedings of the 9th ACM symposium on
Document engineering (DocEng’09), 231-240. September 2009 [DAKO09].
Rank A in the ERA Conference Ranking. Acceptance rate: 31%.

» Improving self-interpretation of XML-based business documents by introdu-
cing derived elements. O. Diaz and F. 1. Anfurrutia. Electronic Commerce
Research and Applications (ECRA), vol. 4, pp. 264-282, May 2005[DAO5].
JCR, SJR Impact factor: 0.657, Q2

International Conferences

* Coarse-grained delivery units: from HTML pages to XML Leaflets. F.
Ibédnez, O. Diaz and J. J. Rodriguez. In Proceedings of the Software Engin-
eering, Artificial Intelligence, Networking and Parallel/Distributed Com-
puting (SNPD’02), pp. 311-318, 2002[IDR02a]. Rank C in the ERA Con-
ference Ranking.

» Extending XML Schema with Derived Elements. F. Ibafiez, O. Diaz and J.
J. Rodriguez. In Proceedings of the IFIP TC8 / WG8.1 Working Confer-
ence on Engineering Information Systems in the Internet Context , Kluwer
Academic Publishers, vol. 231, pp. 53-67, 2002[IDRO2b].

* A tool for assessing the consistency of Websites. S. Steinau, O. Diaz, J. J.
Rodriguez, and F. Ibafez. In Proceedings of the 4th International Confer-
ence on Enterprise Information Systems, vol. 2, pp. 691-698, 2002[SDRI02a].
Rank B in the ERA Conference Ranking. Acceptance rate: 40% (89/220).
This paper was among best conference papers (it was later published in a
book version [SDRIO2b]). Acceptance rate: 13% (30/220)

5.4. Publications 137

* Wrapping HTML pages as Interactive Web Services. O. Diaz, Juan J. Rodriguez,
I. Paz and F. Ibafiez. In Proceedings of the Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD’02),
pp- 301-309, 2002[DRPIO2]. Rank C in the ERA Conference Ranking.

* Moving Web Services Dependencies at the front-end. J. J. Rodriguez, O.
Diaz and F. Ibdfiez. In Proceedings of the IFIP TC8 / WGS8.1 Working
Conference on Engineering Information Systems in the Internet Context,
Kluwer Academic Publishers, vol. 231, pp. 221-237, 2002[RDAO02].

* An Overview on XML initiatives to Bring Modularization to Web Applic-
ation Development. O. Diaz, A. Irastorza, J. J. Rodriguez and F. I. An-
furrutia. In Proceedings of the WWW/Internet 2002 (IADIS International
Conference), pp. 435-443, 2002[DIRAO2]. Rank C in the ERA Conference
Ranking.

* A model-based approach to web-application development. O. Diaz, F. Ibafiez
and J. Iturrioz. In Semantic Issues in e-commerce systems (IFIP TC2 /
WG2.6 Ninth Working Conference on Database Semantics), volume 111
of IFIP, pages 295-309, Hong Kong, April 25-28 2001. Kluwer Academic
Publishers [DIIO1b].

National Journal/Conferences/Workshops

* A client intensive, a model-based approach to web application development:
The AtariX system. O. Diaz, F. Ibdfiez and J. Iturrioz. In Workshop on In-
genieria del Software orientada a la Web (co-located with JISBD’01), Al-
magro, Ciudad Real (Spain), 2001[DII01a].

* XDerive: a namespace for defining derived elements in XML Schema. O.
Diaz and F. I. Anfurrutia. In Workshop on Métodos y Herramientas para el
comercio electrénico (ZOCO’02, co-located with JISBD’02), El Escorial,
Madrid (Spain), 2002[DAO2].

* A Product-Line Approach to Database Reporting. F. 1. Anfurrutia, O. Diaz

and S. Trujillo. In Proceedings of the X Jornadas sobre Ingenieria del Soft-

138 Chapter 5. Conclusions

Citas por afio
16

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 o

Figure 5.2 Cites per year obtained from ht-
tps://scholar.google.es/citations 7user=Ic_158gAAAAJ&hl=es

ware y Bases de Datos (JISBD’05), 2005, Granada (Spain) [ADTOS5]. Ac-
ceptance Rate: 31 % (29+10/92). This paper was among best 10 conference
papers (it was later published in a journal version [ADT06]).

* Una Aproximacion de Linea de Producto para la Generacion de Informes
de Bases de Datos (Spanish version of [ADTO05]). F. I. Anfurrutia, O. Diaz
and S. Trujillo. IEEE América Latina Journal (IEEE-AL), vol. 4, no. 2,
April 2006 [ADTO06]. Impact factor: 0.218 (IEEE Xplore)

Figure 5.2 summarises cites per year as an indicator of the impact that our
work has in the community. The total number of citation is 93. Next, the “cited
by” list of publications is presented (obtained from Scopus and Google Scholar),

where self citations are removed.

“cited by”

* [ADTO7] is cited by 13 articles:

— Feature-oriented software development a short tutorial on feature-oriented
programming, virtual separation of concerns, and variability-aware
analysis. Kistner, C., Apel, S. LNCS. 2013

— Frame refinement: combining frame-based software development with
stepwise refinement Authors of Document. Zhou, J., Zhao, D., Xu, L.,

Liu, J. Computer Research and Development. 2013

5.4. Publications 139

A design feature-based approach to deriving program code from fea-
tures: A step towards feature-oriented software development. Lee, H.,

Kang, K.C. ACM International Conference Proceeding Series. 2013

Do we need another textual language for feature modeling? A prelim-
inary evaluation on the XML based approach. Zhou, J., Zhao, D., Xu,
L., Liu, J. Studies in Computational Intelligence. 2012

An algebraic foundation for automatic feature-based program syn-
thesis. Apel, S., Lengauer, C., Mdller, B., Késtner, C. Y. Science of
Computer Programming. 2010

Type safety for feature-oriented product lines. Apel, S., Késtner, C.,
GroBlinger, A., Lengauer, C. Automated Software Engineering. 2010

A calculus for uniform feature composition. Apel, S., Hutchins, D.

ACM Transactions on Programming Languages and Systems. 2010

FeatureHouse: Language-independent, automated software composi-
tion. Apel, S., Kistner, C., Lengauer, C. Proceedings - International

Conference on Software Engineering. 2009

Feature-oriented refinement of models, metamodels and model trans-
formations. Trujillo, S., Zubizarreta, A., Mendialdua, X., De Sosa, J.

ACM International Conference Proceeding. 2009

An orthogonal access modifier model for feature-oriented program-
ming. Apel, S., Liebig, J., Késtner, C., Kuhlemann, M., Leich, T.
ACM International Conference Proceeding Series. 2009

An overview of feature-oriented software development. Apel, S., Kést-
ner, C. Journal of Object Technology. 2009

Research challenges in the tension between features and services. Apel,
S., Kistner, C., Lengauer, C. Proceedings - International Conference
on Software Engineering. 2008

Feature featherweight java: A calculus for feature-oriented program-
ming and stepwise refinement. Apel, S., Kistner, C., Lengauer, C.

GPCE’08: Proceedings of the ACM SIGPLAN 7th International Con-
ference on Generative Programming and Component Engineering. 2008

140 Chapter 5. Conclusions
* [ADTO6] is cited by 2:

— CoDe modeling of graph composition for data warehouse report visu-
alization. Risi, M., Sessa, M.1., Tucci, M., Tortora, G. IEEE Transac-

tions on Knowledge and Data Engineering. 2014

— Visualizing information in data warehouses reports. Risi, M., Sessa,
M.IL., Tortora, G., Tucci, M. SEBD 2011, Proceedings of the 19th

Italian Symposium on Advanced Database Systems. 2011
* [DAKO09] is cited by 4:

— Flexible support for managing evolving software product lines. Thao,
C., Munson, E.V. Proceedings - International Conference on Software

Engineering. 2011

— Challenges to Establish Internal Quality Assurance with An Inform-
ation System to Create Self-assurance Report. M Mori, E Takata, T

Oishi, T Tanaka. New Perspectives in Science Education. 2014

— Documentation Agile: Pratiques Actuelles et Défis. A Hachemi, M
Ahmed-Nacer - CIIA. 2011

— A Document Authoring System for Credible Enterprise Reporting with
Data Analysis from Data Warehouse. M Mori, T Tanaka, S Hirokawa.
SEMAPRO 2010, The Fourth International Conference on Advances

in Semantic Processing. 2010

5.5 About Design Science

Back in the introduction, Design Science was defined as “the scientific study and
creation of artefacts as they are developed and used by people with the goal of
solving practical problems of general interest”. We would like to highlight two
aspects from this definition: the pivotal role played by artefacts, and the solution
of practical problems as the driving force that move forward artefact development.
This definition seems to imply that without artefacts or problems, no Design Sci-

ence exist.

5.5. About Design Science 141

In Design Science, artefacts are not just a second thought but the cornerstone
around which the research resolves. Moving the artefact at the forefront, it is cer-
tainly not a surprise for engineers but its importance has sometimes being over-
looked in academia which tends to look at them as mere programming exercises.
As a counterbalance, artefacts do not exist in isolation. Artefacts’ raision d’etre
come from problems. Artefacts exist as long as problems exist. The value of an
artefact comes from the problem it solves. An artefact without a problem is just a
programming caper.

These thoughts might look obvious... now. But they were not at the time
this thesis started. Though this dissertation strives to follow Design Science prin-
ciples, this was not the case at its inception. Ten years back, we were not so
familiarized with Design Science. The result is that this work is biased towards
the artefact while not given enough attention to the problem. Enormous amount
of times was dedicated to make things work while not equal treatment was given
to conduct cause root analysis or evaluation. Albert Einstein once said, “If I had
a hour to solve a problem, I'd spend 55 minutes thinking about the problem and
5 minutes thinking about solutions”. I have to admit I was not Albert Einstein!
Sharing these thoughts with my supervisor, Oscar, he also admits that there ex-
ists a natural tendency for Software Engineering students to quickly delve into
the code without carefully thinking about the requirements that should drive this
development. Students tend to favour “building the software right” rather than
“building the right software”. Programming is fun, analysis is bouring. Research
wise, this bias is unfortunate. I keep reading MSc dissertations or even conference
papers where the rationales are unclear, or even worse, can be easily denied since
a proper root cause analysis was not conducted. This bias might be traced back to
Soft Eng. syllabuses that, overwhelmed by technological advances, provide lim-
ited contents about domain analysis and software evaluation. The outcome is that
students enter industry striving to “building the sofware right”, what is good, but
get frustrated when customers keep saying that they want “the right software”!

Should I had (even) more time, what would I do? Without any doubt, I would
focus on improving evaluation of the different artefacts developed throughout.
This is the weakest part of this dissertation. It somehow reflects the stage-of-the-

affairs at the time this thesis was initiated. Of course, the larger weight given

142 Chapter 5. Conclusions

to evaluation should not be at the expenses of development and technical com-
petence. This would be an error. For PhD students, technical competence is in
most cases the entry door to industry. Industry looks for people building the sys-
tem right. Even if you are great at requirement elicitation and domain analysis,
chances are that what industry will look for in your CV are your programming
language mastering. And this is the dilemma. While Design Science favours
a holistic view that encompasses from analysis to evaluation, the competences
required throughout are difficult to achieve in the shrinking lifespan of a PhD
(three years). This in itself is a problem worth addressing using Design Science
itself!! Talking with my supervisor, he envisions two ways out. First, doctoral
programs need to give more focus to the methodology of research rather than to
technical/scientific contents. Second, team work. PhDs should no longer be a se-
cluded activity but inlayed within a group. Unfortunately, Design Science courses,
courses about artefact evaluation or teamwork seem all to be the exception rather
than the norm. If this continues, we will keep seeing poor PhDs that expand over
three years.What a pity!

Appendix A

The specification of XDerive

namespace

<xs:schema xmlns="http://www.onekin.org/xderive"
targetNamespace="http://www.onekin.org/xderive"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
elementFormDefault="qualified">
<xs:annotation>
<xs:documentation>This schema is used as a part of another
schema, which defines an XML vocabulary that contains
derived data.</xs:documentation>
</xs:annotation>
<xs:import namespace="http://www.w3.org/1999/XSL/Transform"
schemalocation="xslt.xsd"/>
<xs:element name="derivingFunction" type="DerivingFunctionType">
<xs:annotation>
<xs:documentation>Purpose: This element defines the rules for
calculating the value of derived data.
Context: It is used as a child of <xs:appinfo> element
within a derived element or attribute declaration
Constraint: minOccurs of derived element or attribute should be 0
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="DerivingFunctionType">
<xs:sequence>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>
<xs:element name="rule" type="RuleType" maxOccurs="unbounded"/>
<xs:element name="prioritizationSchema" type="PrioritizationSchemaType"
minOccurs="0"/>

</xs:sequence>
<xs:attribute name="actuate" use="optional" default="onLoad">

<xs:simpleType> <xs:restriction base="xs:string">
<xs:enumeration value="onLoad"/>
<xs:enumeration value="onRequest"/>
</xs:restriction> </xs:simpleType>
</xs:attribute>

</xs:complexType>

143

144 Appendix A. The specification of XDerive namespace

<xs:complexType name="RuleType">
<xs:sequence>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>
<xs:element name="action" type="ActionType"/>
<xs:element name="source" type="SourceType" minOccurs="0"
max0Occurs="unbounded" />
</xs:sequence>
<xs:attribute name="id" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="test" type="xs:string" use="required"/>
</xs:complexType>
<xs:complexType name="ActionType">
<xs:choice>
<xs:sequence>
<xs:element ref="xsl:instruction" maxOccurs="unbounded"/>
</xs:sequence>
<xs:element name="apply-rule" type="ApplyRuleType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="ApplyRuleType">
<xs:attribute name="select" type="xs:string"/>
</xs:complexType>
<xs:complexType name="SourceType">
<xs:sequence>
<xs:any namespace="http://www.oracle.com/xsql"/>
</xs:sequence>
<xs:attribute name="derivingFact" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="connection" type="xs:NMTOKEN" use="required"/>
</xs:complexType>
<xs:complexType name="PrioritizationSchemaType">
<xs:choice>
<xs:element name="valueBased" type="ValueBasedType"/>
<xs:element name="ruleBased" type="RuleBasedType"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="ValueBasedType">
<xs:attribute name="combiningFunction" type="xs:string"

use="required"/>

</xs:complexType>
<xs:complexType name="RuleBasedType">
<xs:sequence>
<xs:element name="documentation" type="xs:string" minOccurs="0"/>

<xs:element name="rule" type="RuleReducedType"
max0Occurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="RuleReducedType">
<xs:complexContent>
<xs:restriction base="RuleType">
<xs:sequence>

<xs:element name="documentation" type="xs:string"
minOccurs="0"/>

<xs:element name="action" type="ActionType"/>
</xs:sequence>
</xs:restriction>
</xs:complexContent>
</xs:complexType>

</xs:schema>

Figure A.1: The W3C XML Schema representation for XDerive namespace

Appendix B

XDerive tracking document

<?xderive-source href="order.xml" type="text/xml"?>
<xdt:derivationTrack xmlns:xdt="http://www.onekin.org/xderive/derivationTrack"

<xdt:derivingElements>

<category ref="TV-1">electronic</category>

<category ref="Hi-Fi-1">electronic</category>

<category ref="PC-1">computers</category>

<availability ref="TV-1">24 hours</availability>

<availability ref="Hi-Fi-1">24 hours</availability>

<availability ref="PC-1">24 hours</availability>

<specialHanging ref="TV-1">false</specialHanging>

<specialHanging ref="Hi-Fi-1">false</specialHanging>

<specialHanging ref="PC-1">true</specialHanging>

<freeShipping ref="TV-1">true</freeShipping>

<freeShipping ref="Hi-Fi-1">true</freeShipping>

<freeShipping ref="PC-1">true</freeShipping>

<unitPrice ref="TV-1">1000.00</unitPrice>

<unitPrice ref="Hi-Fi-1">600.00</unitPrice>

<unitPrice ref="PC-1">1200.00</unitPrice>

</xdt:derivingElements>
<xdt:derivedElements>

<xdt:derivedElement select="/order/lineltem[1]/partialCost">
<xdt:activated rules="rule-20"/>
<xdt:decision type="priority rule" choice="no"/>
<xdt:executed rule="rule-20"/>

</xdt:derivedElement>

<xdt:derivedElement select="/order/lineltem[2]/partialCost">
<xdt:activated rules="rule-20"/>
<xdt:decision type="priority rule" choice="no"/>
<xdt:executed rule="rule-20"/>

</xdt:derivedElement>

<xdt:derivedElement select="/order/lineItem[3]/partialCost">
<xdt:activated rules="rule-20"/>
<xdt:decision type="priority rule" choice="no"/>
<xdt:executed rule="rule-20"/>

</xdt:derivedElement>

<xdt:derivedElement select="/order/shippingData/shipments">
<xdt:activated rules="rule-5 rule-6"/>
<xdt:decision type="priority rule" choice="1"/>
<xdt:executed rule="rule-6"/>

</xdt:derivedElement>

145

146 Appendix B. XDerive tracking document

<xdt:derivedElement select="/order/shippingData/insuranceCost">
<xdt:activated rules="rule-9 rule-10"/>
<xdt:decision type="combining function"/>
<xdt:executed rule="rule-9">
<xdt:actionResult>5.99</xdt:actionResult>
</xdt:executed>
<xdt:executed rule="rule-10">
<xdt:actionResult>7.99</xdt:actionResult>
</xdt:executed>
</xdt:derivedElement>
<xdt:derivedElement select="/order/shippingData/shippingCost">
<xdt:activated rules="rule-14"/>
<xdt:decision type="priority rule" choice="4"/>
<xdt:executed rule="rule-14"/>
</xdt:derivedElement>
<xdt:derivedElement select="/order/shippingData/deliveryTime">
<xdt:activated rules="rule-18"/>
<xdt:decision type="priority rule" choice="3"/>
<xdt:executed rule="rule-18"/>
</xdt:derivedElement>
<xdt:derivedElement select="/order/customer/customerData">
<xdt:activated rules="rule-19"/>
<xdt:decision type="priority rule" choice="no"/>
<xdt:executed rule="rule-19"/>
<xdt:faults>
<xdt:fault name="cis:nonExistFault"/>
</xdt:faults>
</xdt:derivedElement>
<xdt:derivedElement select="/order/applicableDiscount">
<xdt:activated rules="rule-21 rule-22 rule-23"/>
<xdt:decision type="combining function"/>

<xdt:executed rule="rule-21">
<xdt:actionResult>10</xdt:actionResult>

</xdt:executed>
<xdt:executed rule="rule-22">
<xdt:actionResult>20</xdt:actionResult>
</xdt:executed>
<xdt:executed rule="rule-23">
<xdt:actionResult>5</xdt:actionResult>
</xdt:executed>
</xdt:derivedElement>
<xdt:derivedElement select="/order/subTotal">
<xdt:activated rules="rule-1"/>
<xdt:decision type="priority rule" choice="no"/>
<xdt:executed rule="rule-1"/>
</xdt:derivedElement>
<xdt:derivedElement select="/order/vat">
<xdt:activated rules="rule-3"/>
<xdt:decision type="priority rule" choice="no"/>
<xdt:executed rule="rule-3"/>
</xdt:derivedElement>

<xdt:derivedElement select="/order/total">
<xdt:activated rules="rule-4"/>
<xdt:decision type="priority rule" choice="no"/>
<xdt:executed rule="rule-4"/>
</xdt:derivedElement>
</xdt:derivedElements>

</xdt:derivationTrack>

Appendix C

The delta grammar for the

form-bean module type

Let’s consider the Struts XML Schema and the form-bean element type that is

annotated as a module type (i.e. xak:modularizable="yes”):

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" >
<l—content omitted —>
<xs:element name="form-bean" xak:modularizable="yes">
<xs:complexType>
<xs:complexContent>
<xs:sequence>
<xs:element name="description" type="xs:string” minOccurs="0"/>
<xs:element name="form-property" minOccurs="0" maxOccurs="unbounded">
<l-content omitted—>
< /xs:element>
< [xs:sequence>
< /xs:complexContent>
< [xs:complexType>
<xs:element/>

<xs:schema/>

The previous module type can be represented by the following regular expres-
sion in XDuce syntax [HVPO5]:

type Torm—bean = form —bean(description[xs : string|?, form — propertyl[]+]

147

148 Appendix C. The delta grammar for the form-bean module type

We can obtained AT —pean delta module type after applying the AmoduleT
function (see 3.5.3) to the previous Trorm—pean type. The type and its related types

are as follows:

type ATfopm—pean = form —bean|description|xs : string],
(xak : keep — content[], X form—property? |

X form— pr()perty—kc) ? ’X form—property—kc ’
xak : keep — content[), X form— property] =
{+ typeXform—property = Jform— property[|+;
typeX form—property—ke = form— property||+,xak : keep — content||?,

Xf{)rm—pr()perty ?}

Finally, Figure C.1 shows the obtained delta module type ATypm—pean, NOW
represented by an XML Schema. All its related type names, ranged over by X
and used in the previous definition, are transformed into a <zs:group> construct
in order to reuse definitions. Notice that the form-bean element is included in
the substitutionGroup of the abstract <zak:deltaModule> element and its type
extends the zak:DeltaModuleType. The former is for permitting its use as a delta
module inside the <zak:refines> element, i.e. the root of the delta document.
Whereas the latter is for inheriting the zak:module and zak:keep-attribute at-

tributes. Figure C.2 shows all these XAK elements and attributes definitions.

149

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xak="http://www.onekin.org/xak" >
<xs:import namespace="http://www.onekin.org/xak" schemalocation="xak.xsd" />
<xs:element name="form-bean" type="form-beanType"
substitutionGroup="xak:deltaModule" />
<xs:complexType name="form-beanType" >
<xs:complexContent>
<xs:extension base="xak:DeltaModuleType" >
<xs:choice minOccurs="0">
<xs:group ref="X description"/>
<xs:group ref="X_form-property-kc" />
<xs:sequence>
<xs:element ref="xak:keep-content" />
<xs:group ref="X _form-property" />
< [xs:sequence>
< /xs:choice>
<l—content omitted—>
< /xs:extension>
< /xs:complexContent>
< /xs:complexType>
<xs:group name="X description" >
<Xxs:sequence>
<xs:element name="description" type="xs:string"/>
<xs:choice minOccurs="0">
<Xxs:sequence>
<xs:element ref="xak:keep-content" />
<xs:element ref="X_form-property" minOccurs="0" />
< /xs:sequence>
<xs:group ref="X _form-property-kc" />
< /xs:choice>
< [xs:sequence>
< /xs:group>
<xs:group name="X form-property-kc">
<Xxs:sequence>
<xs:element name="form-property" maxOccurs="unbounded">
<l—content omitted—>
<xs:element/>
<xs:sequence minOccurs="0">
<xs:element ref="xak:keep-content" />
<xs:group ref="X _form-property" minOccurs="0" />
< [xs:sequence>
< /xs:sequence>
< [xs:group>
<xs:group name="X form-property" >
<Xxs:sequence>
<xs:element name="form-property" maxOccurs="unbounded">
<l—content omitted—>
<xs:element/>
< /xs:sequence>
< /xs:group>
<l-content omitted—>
< [xs:schema>

Figure C.1: An excerpt of the obtained delta grammar for Struts, represented by XML-
Schema, which defines the form-bean delta module type.

150 Appendix C. The delta grammar for the form-bean module type

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:xak="http://www.onekin.org/xak"
targetNamespace="http://www.onekin.org/xak"
elementFormDefault="qualified" attributeFormDefault="qualified" >
<xs:element name="refines" type="xak:DeltaType" />
<xs:complexType name="DeltaType" >
<xs:attribute name="artefact" type="xs:string" use="required" />
<xs:attribute name="feature" type="xs:string" use="required" />
< /xs:complexType>
<xs:element name="deltaModule" type="xak:DeltaModuleType" abstract="true" />
<xs:complexType name="DeltaModuleType" >
<xs:attribute ref="xak:module" use="required" />
<xs:attribute name="keep-attributes" type="xs:string" use="optional"/>
< /xs:complexType>
<xs:attribute name="module" type="xs:ID" />
<xs:element name="keep-content" />

< /xs:schema>

Figure C.2: The XML Schema for XAK delta namespace

Bibliography

[ABKS13]

[ABM*04]

[ADTOS5]

[ADTO6]

[ADTO7]

S. Apel, D. Batory, C. Kistner, and G. Saake. Feature-Oriented

Software Product Lines - Concepts and Implementation. Springer,
2013.

S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and R. Weber.
Active XML: A Data-Centric Perspective on Web Services. In Web
Dynamics, pages 275 — 299. Springer Berlin Heidelberg, 2004.

F. I. Anfurrutia, O. Diaz, and S. Trujillo. A product-line approach to
database reporting. In Proceedings of the X Jornadas sobre Ingen-
ieria del Software y Bases de Datos (JISBD’05), pages 163-170,
Granada, Spain, 2005. Thompson.

F. 1. Anfurrutia, O. Diaz, and S. Trujillo. Una Aproximacién
de Linea de Producto para la Generacién de Informes de Bases
de Datos (A product-line approach to database reporting). [EEE
América Latina, 4, April 2006. ISSN: 1548-0992. Available on-
line at http://www.ewh.ieee.org/reg/9/etrans/vol4issue2 April2006/
Vol4issue2 April2006TLA.htm.

F. I. Anfurrutia, O. Diaz, and S. Trujillo. On refining XML artifacts.
In Luciano Baresi, Piero Fraternali, and Geert-Jan Houben, editors,
Proceedings of the 7th International Conference on Web Engineer-
ing (ICWE’07), volume 4607 of LNCS, pages 473-478. Springer,
2007.

151

152

BIBLIOGRAPHY

[AGMW97] B. Adelberg, H. Garcia-Molina, and J. Widom. The STRIP rule

[AKGL10]

[AKLO09]

[alpO1]

[AMEOO]

[Bas97]

[Bat]

[Bat04]

[BCFO3]

[BCPO1]

system for efficiently maintaining derived data. SIGMOD Rec.,
26(2):147-158, 1997.

S. Apel, C. Kistner, A. GroBlinger, and C. Lengauer. Type Safety
for Feature-oriented Product Lines. Automated Software Engineer-
ing, 17(3):251-300, September 2010.

S. Apel, C. Kastner, and C. Lengauer. = FEATUREHOUSE:
Language-independent, automated software composition. In Pro-
ceedings of the 31st International Conference on Software Engin-
eering, 2009. ICSE 2009. IEEE, pages 221-231, May 2009.

IBM alphaWorks. XML Diff and Merge Tool, 2001. Available

online at http://www.alphaworks.ibm.com/tech/xmldiffmerge,.

M. Altheim and S. McCarron (EDS). XHTML 1.0: The Extens-
ible HyperText Markup Language. W3C Recommendation, 2000.
Available online at http://www.w3.org/TR/xhtml]1.

P. G. Bassett. Framing software reuse: lessons from the real world.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

D. Batory. AHEAD Tool Suite. web page. Available online at

http://www.cs.utexas.edu/users/schwartz/ATS.html.

D. Batory. Feature-Oriented Programming and the AHEAD Tool
Suite. In Proceedings of the 26th International Conference on Soft-
ware Engineering, pages 702—703, May 2004.

V Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric
general-purpose language. In In Proceedings of the 8th ACM SIG-
PLAN international conference on Functional programming, ICFP
'03, pages 51-63. ACM, 2003.

A. Bonifati, S. Ceri, and S. Paraboschi. Active Rules for XML:
A New Paradigm for E-services. The VLDB Journal, 10(1):39-47,
August 2001.

BIBLIOGRAPHY 153

[BeaO6a]

[BeaO6b]

[Bec02]

[BHFA04]

[BKKO03]

[BML*04]

[BMSO05]

[BouO3]

J. Barnett et al. State Chart XML (SCXML): State Machine Nota-
tion for Control Abstraction. W3C Working Draft, 2006. Available
online at http://www.w3.org/TR/scxml/.

S. Boag et al. XQuery 1.0: An XML Query Language. W3C
Candidate Recommendation, June 2006. Available online at

http://www.w3.org/TR/xquery/.

M. Becker. XML-Enhanced Product Family Engineering. In Pro-
ceedings of the 6th World Conference on Integrated Design and
Process Technology (IDPT’02), 2002.

B. Bouchou and M. Halfeld Ferrari Alves. Updates and Incremental
Validation of XML Documents. In Georg Lausen and Dan Suciu,
editors, Database Programming Languages, volume 2921 of Lec-
ture Notes in Computer Science, pages 216-232. Springer Berlin
Heidelberg, 2004.

M. Bernauer, G. Kappel, and G. Kramler. Approaches to Imple-
menting Active Semantics with XML Schema. 23rd International
Workshop on Database and Expert Systems Applications, 0:559,
2003.

D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet, and M. Arenas.
Efficient incremental validation of XML documents. In Proceed-

ings of the 20th International Conference on Data Engineering
(ICDE’04). IEEE, 2004.

G. Bierman, E. Meijer, and W. Schulte. The essence of data ac-
cess in Cw. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP’05), volume 3586 of Lec-
ture Notes in Computer Science. Springer-Verlag, July 2005.

R. Bourret. XML and Databases, 2003. Available online at
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

154

[BPSM98]

[BSRO4]

[CBY8]

[CD99]

[CFBO0]

[Cla99]

[CMRBI]

[CNO1]

[Con99]

[Con00]

[Cor02]

BIBLIOGRAPHY

T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. W3C Recommendation, February 1998.
Available online at http://www.w3.org/XML/.

D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise re-
finement. IEEE Transactions on Software Engineering, 30(6):355—
371, June 2004.

T. Connolly and C. Begg. Database Systems. Addison Wesley,
1998.

J. Clark and S. DeRose. XML Path Language (Xpath) Ver-
sion 1.0. W3C Recommendation, 1999. Available online at

http://www.w3.org/TR/xpath.

S. Ceri, Piero Fraternali, and A. Bongio. Web Modeling Language
(WebML): a modeling language for designing Web sites. Computer
Networks, 33(1-6):137-157, 2000.

J. Clark. XSL Transformations (XSLT) Version 1.0. W3C Recom-
mendation, 1999. Available online at http://www.w3.org/TR/xslt.

I. Amy Chen and D. McLeod. Derived Data Update in Semantic
Databases. In Proceedings of the 15th International Conference on
Very Large Data Bases (VLDB’89), pages 225-235, Amsterdam,
The Netherlands, August 1989.

P. Clements and L.M. Northrop. Software Product Lines - Practices
and Patterns. Addison-Wesley, 2001.

J. Conallen. Modeling Web Application Architectures with UML.
Communications of the ACM, 42(10):63-70, 1999.

J. Conallen. Building Web Applications with UML. Addison-
Wesley, 2000.

Microsoft Corporation. XML Diff and Patch, 2002. Available on-
line at http://www.gotdotnet.com/xmltools/xmldiff/.

BIBLIOGRAPHY 155

[DAO2]

[DAOS]

[DAKO09]

[DCBO9]

[DIIOO]

[DII01a]

[DIIO1b]

O. Diaz and F. I. Anfurrutia. XDerive: a namespace for defining de-
rived elements in XML Schema. In Proceedings of the Workshop on
Métodos y Herramientas para el comercio electronico (ZOCO’02
co-located with JISBD’02), El Escorial, Madrid, Spain, 2002.

O. Diaz and F. I. Anfurrutia. Improving self-interpretation of XML-
based business documents by introducing derived elements. Elec-
tronic Commerce Research and Applications (ECRA), 4:264-282,
2005.

O. Diaz, F. I. Anfurrutia, and J. Kortabitarte. Using DITA for doc-
umenting Software Product Lines. In Proceedings of the 9th ACM
symposium on Document engineering (DocEng’09), 231-240, 2009.

B. Delaware, W. R. Cook, and D. Batory. Fitting the Pieces To-
gether: A Machine-checked Model of Safe Composition. In Pro-
ceedings of the the 7th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE °09, pages 243—
252, New York, NY, USA, 2009. ACM.

O. Diaz, J. Iturrioz, and F. Ibafiez. Integracién, navegacion,
presentacion: experiencias utilizando XML. Novatica, (146):12—
19, 2000.

O. Diaz, F. Ibafiez, and J. Iturrioz. A client intensive, a model-based
approach to web application development: The AtariX system. In
Proceedings of the Workshop on Ingenieria del Software orientada
a la Web (co-located with JISBD’01), Almagro, Ciudad Real, Spain,
2001.

O. Diaz, F. Ibafiez, and J. Iturrioz. A model-based approach to
web-application development. In Robert Meersman, Karl Aberer,
and Tharam Dillon, editors, Semantic Issues in e-commerce sys-
tems IFIP TC2 / WG2.6 Ninth Working Conference on Database

Semantics, volume 111 of IFIP - The International Federation for

156

[DIRAO2]

[DMOTO1]

[DRPI02]

[DTAOS]

[DVDHTO5]

[D6r09]

[ea97]

[edi04]

BIBLIOGRAPHY

Information Processing, pages 295-309, Hong Kong, April 25-28
2001. Kluwer Academic Publishers.

O. Diaz, A. Irastorza, J. J. Rodriguez, and F. I. Anfurrutia. An
Overview on XML initiatives to Bring Modularization to Web Ap-
plication Development. In Proceedings of the WWW/Internet 2002
(IADIS International Conference), pages 435-443, 2002.

S. DeRose, E. Maler, D. Orchard, and B. Trafford. XML Link-
ing Language (XLinking) Version 1.0, 2001. Available online at
http://www.w3.org/TR/xlink/.

0. Diaz, J. J. Rodriguez, 1. Paz, and F. Ibafiez. Wrapping HTML
pages as Interactive Web Services. In Proceedings of the Soft-

ware Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD’02), pages 301-309, 2002.

O. Diaz, S. Trujillo, and F. I. Anfurrutia. Supporting production
strategies as refinements of the production process. In Proceed-
ings of the 9th International Software Product Line Conference
(SPLC’05), volume 3714 of Lecture Notes in Computer Science,
pages 210-221, Rennes, France, September 2005. Springer-Verlag.

E. M. Dashofy, A. E. Van Der Hoek, and R. N. Taylor. A com-
prehensive approach for the development of modular software ar-
chitecture description languages. ACM Transactions on Software
Engineering and Methodology, 14(2):199-245, April 2005.

J. Dorre. Feature-Oriented Composition of XML Artifacts. Master’s
thesis, University of Passau, 2009.

G. Kiczales et al. Aspect-Oriented Programming. In Proceedings
of ECOOP, 1997.

EDIFACT: Home Page, 2004. Available online at
http://www.unece.org/cefact/edifact/welcome.html.

BIBLIOGRAPHY 157

[Eur04]

[FPOO]

[GCO3]

[Gea00]

[GHIV95]

[GLC99]

[GMO1]

[GP98]

[GPO3]

European Comission. IDA e-procurement protocol
XML schemas initiative, 2004. Available online at
http://europa.eu.int/ISPO/ida/export/files/en/1996.pdf.

P. Fraternali and P. Paolini. Model-driven Development of Web
Applications: The AutoWeb System. ACM Trans. Inf. Syst.,
18(4):323-382, October 2000.

J. Gémez and C. Cachero. OO-H Method: Extending UML to
Model Web Interfaces. In Patrick van Bommel, editor, Inform-
ation Modeling for Internet Applications, chapter OO-H Method:
Extending UML to Model Web Interfaces, pages 144—173. IGI Pub-
lishing, Hershey, PA, USA, 2003.

D. Geary. JSP Templates, 2000. Available online at
http://www.javaworld.com/javaworld/jw-09-2000/jw-0915-
jspweb.html.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995.

B. N. Grosof, Y. Labrou, and H. Y. Chan. A Declarative Approach
to Business Rules in Contracts: Courteous Logic Programs in XML.

In Proceedings of the 1st ACM Conference on Electronic Commerce
(EC’99), pages 68-77, 1999.

A. Ginige and S. Murugesan. Web Engineering: An Introduction.
IEEE MultiMedia, pages 1518, January - March 2001.

C.F. Goldfarb and P. Prescod. The XML Handbook. Prentice Hall,
Inc., 1998.

V. Gapeyev and B. C. Pierce. Regular Object Types. In Proceedings
of the 17th European Conference on Object-Oriented Programming
(ECOOP’03), pages 151-175, 2003.

158

[GPS93]

[GSGOO0]

[GWGI7]

[HBD*04]

[HBHO3]

[Hea99]

[HPO3]

[HRST05]

BIBLIOGRAPHY

F. Garozotto, P. Paolini, and D. Schwabe. HDM - A Model-Based
Approach to Hypertext Application Design. ACM Transactions on
Information Systems, 11(1):1-26, 1993.

M. Gaedke, C. Segor, and H. W. Gallerse. WCML: Paving the Way
for Reuse in Object-Oriented Web Engineering. In Proceedings of
the ACM Symposium on Applied Computing (SAC’00), Villa Olmo,
Como, Italy, March 19-21 2000.

H.-W. Gellersen, R. Wicke, and M. Gaedke. WebComposition:
an object-oriented support system for the Web engineering life-
cycle. Computer Networks and ISDN Systems, 29(8-13):1429—
1437, September 1997.

D. Hirtle, H. Boley, C. Damassio, B. Grosof, S. Tabet, and G. Wag-
ner. Specification of RuleML 0.86, 2004. Available online at
http://www.ruleml.org/0.86/.

W. Hiimmer, A. Bauer, and G. Harde. XCube: XML for data ware-
houses. In Proceedings of the 6th International Workshop on Data
Warehousing and OLAP(DOLAP’03), pages 33—40, New Orleans,
Louisiana, USA, November 2003. ACM.

R. Hull et al. Declarative Workflows that Support Easy Modification
and Dynamic Browsing. In Proceedings of the ACM International

Joint Conference on Work Activities Coordination and Collabora-
tion (WACC’99), pages 69-78, 1999.

H. Hosoya and B. C. Pierce. XDuce: A statically typed XML pro-
cessing language. ACM Trans. Inter. Tech., 3(2):117-148, 2003.

M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke, R. Bor-
dawekar, 1. Pechtchanski, and V. Sarkar. X1J: facilitating XML pro-
cessing in Java. In Proceedings of the 14th international conference
on World Wide Web (WWW’05), pages 278-287, New York, NY,
USA, 2005. ACM Press.

BIBLIOGRAPHY 159

[HVPOS]

[IDRO2a]

[IDRO2b]

[IS92]

[ISB95]

[JAO1]

[JCP03]

[JP14]

[KAT09]

H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types
for XML. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 27(1):46-90, January 2005.

F. Ibafiez, O. Diaz, and J. J. Rodriguez. Coarse-grained delivery
units: from HTML pages to XML Leaflets. In Proceedings of
the Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), pages 311-318, Madrid,
2002.

F. Ibdiez, O. Diaz, and J. J. Rodriguez. Extending XML Schema
with Derived Elements. In Proceedings of the IFIP WGS8.1 Work-
ing Conference on Engineering Information Systems in the Internet
Context, volume 231 of IFIP Conference Proceedings, pages 53—
67. Kluwer Academic Publishers, 2002.

Y. E. Ioannidis and T. K. Sellis. Supporting Incosistent Rules
in Database Systems. Journal of Intelligent Information Systems,
(1):243-270, 1992.

T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM: A Meth-
odology for Structured Hypermedia Design. Communications of the
ACM, 38(8):34-43, 1995.

R. Jelliffe and Academia Sinica Computing Centre. The
Schematron: An XML Structure Validation Language using
Patterns in Trees. = Web page, 2001. Available online at

http://www.ascc.net/xml/resource/schematron/schematron.html.

JCP. JSR 168 Portlet Specification Version 1.0, September 2003.
Available online at http://www.jcp.org/en/jsr/detail 7id=168.

Paul Johannesson and Erik Perjons. An introduction to design sci-

ence. Springer, 2014.

C. Kistner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory.
Guaranteeing Syntactic Correctness for All Product Line Variants:

160

[Kea90]

[KKWO5]

[KLO2]

[KMO6]

[KNCO1]

[KocO1]

[KP88]

[KSRO2]

BIBLIOGRAPHY

A Language-Independent Approach. In Manuel Oriol and Ber-
trand Meyer, editors, Objects, Components, Models and Patterns,
volume 33 of Lecture Notes in Business Information Processing,
pages 175-194. Springer Berlin Heidelberg, 2009.

K. Kang et al. Feature Oriented Domain Analysis (FODA) Feas-
ability Study. Technical Report CMU/SEI-90-TR-21, Software En-

gineering Institute, November 1990.

K. Kelly, J. J. Kratky, and K. Wells. Model Driven Compound Doc-
ument Development. In Proceedings of the XTech 2005: XML, the
Web and beyond, 2005.

M. Kempa and V. Linnemann. On XML Objects. In Informal Pro-
ceedings of the Workshop on Programming Language Technologies
Jor XML (PLAN-X"02), pages 44-54, Pittsburgh, USA, 2002.

C. Kirkegaard and A. Moller. Type checking with XML Schema
in XACT. In BRICS, editor, Informal Proceedings of the PLAN-X
2006, number NS-05-6, Charleston, South Carolina, January 2006.

R. Klapsing, G. Neumann, and W. Conen. Semantics in Web En-
gineering: Applying the Resource Description Framework. [EEE
Multimedia, 8(2):62—68, April-June 2001.

N. Koch. Software Engineering for Adaptive Hypermedia Systems:
Reference Model, Modeling Techniques and Development Process.
PhD thesis, Ludwig-Maximilians-Universitidt Miinchen, 2001.

G.E. Krasner and S.T. Pope. A Cookbook for Using the Model-
View-Controller Paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, pages 20-30, August-September 1988.

B. Kane, H. Su, and E. A. Rundensteiner. Consistently Updat-
ing XML Documents using Incremental Constraint Check Queries.
McLean, Virginia, USA, November 2002. ACM.

BIBLIOGRAPHY 161

[LFO1]

[LMOO0]

[MCV04]

[Mey97]

[Mey14]

[MHSO05]

[NJBO3]

[NKAMO9]

[OAS04]

[Obj]

R. La Fontaine. A Delta Format for XML: Identifying changes in
XML and representing the changes in XML. In XML Europe, 2001.

A. Laux and L. Martin. XML Update Language. XML:DB
Working Draft, September 2000. Available online at http://xmldb-

org.sourceforge.net/xupdate/xupdate-wd.html.

P. Marinelli, C.S. Coen, and F. Vitali. SchemaPath, a Minimal Ex-
tension to XML Schema for Conditional Constraints. In Proceed-
ings of the 13th International World Wide Web Conference, pages
164-174, New York, USA, 2004.

B. Meyer. Object-Oriented Software Construction. Prentice Hall
PTR, second edition, March 1997.

B. Meyer. Agile! - The Good, the Hype and the Ugly. Springer,
2014.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and
How to Develop Domain-Specific Languages. ACM Comput. Surv.,
37(4):316-344, 2005.

C-K. Nam, G-S. Jang, and J-H. J. Bae. An XML-based active doc-
ument for intelligent web applications. Expert Systems with Applic-
ations, 25(2):165 — 176, 2003.

M. Niederhausen, S. Karol, U. ABmann, and K. Meiflner. HyperAd-
apt: Enabling Aspects for XML. In Martin Gaedke, Michael Gross-
niklaus, and Oscar Diaz, editors, Web Engineering, volume 5648 of

Lecture Notes in Computer Science, pages 461-464. Springer Ber-
lin Heidelberg, 2009.

OASIS. SGML/XML: Using Elements and Attrib-
utes. OASIS Cover Pages, 2004. Available online at
http://xml.coverpages.org/elementsAndAttrs.html.

Object Management Group. XML Meta Data Interchange (XMI)
2.0. Available online at http://www.omg.org.

162

[Obj05]

[Ogb04]

[OOP]

[Ora02]

[PBvdL06]

[PD99]

[PMOO]

[Pre97]

[PVO3]

BIBLIOGRAPHY

Object Management Group. Reusable Asset Specification, Novem-
ber 2005. Available online at http://www.omg.org/docs/formal/05-
11-02.pdf.

U. Ogbuji. Principles of XML design: When to use elements
versus attributes. Exploring the Oldest Question in XML Design.
IBM developerWorks, 2004. Available online at http://www-
128.ibm.com/developerworks/xml/library/x-eleatt.html.

OOPs Consultancy. XmlTask. Available online at

http://www.oopsconsultancy.com/software/xmltask/index.html.

Oracle Corporation. The Oracle’s XML
Parser for Java, 2002. Available online at

http://otn.oracle.com/tech/xml/xdk_java/content.html.

K. Pohl, G. Bockle, and F. van der Linden. Software Product Line
Engineering - Foundations, Principles and Techniques. Springer,
2006.

N. W. Paton and O. Diaz. Active Database Systems. ACM Comput.
Surv., 31(1):63-103, March 1999.

F. Paterno and C. Mancini. Model-Based Design of Interactive Ap-
plications. ACM Intelligence, pages 27-37, Winter 2000.

C. Prehofer. Feature-Oriented Programming: A Fresh Look At
Objects. In Proc. European Conf. Object-Oriented Programming,
pages 419-443. Springer, 1997.

Y. Papakonstantinou and V. Vianu. Incremental Validation of XML
Documents. In Diego Calvanese, Maurizio Lenzerini, and Rajeev
Motwani, editors, Database Theory — ICDT 2003, volume 2572 of
Lecture Notes in Computer Science, pages 47-63. Springer Berlin
Heidelberg, 2003.

BIBLIOGRAPHY 163

[RDO1]

[RDA02]

[RJO5]

[SBO2]

[SDRI02a]

[SDRI02b]

[Ses11]

J.J. Rodriguez and O. Diaz. Seamless Integration of Inquiry and
Transaction Tasks in Web Applications. In Robert Meersman, Karl
Aberer, and Tharam Dillon, editors, Semantic Issues in e-commerce
Systems, IFIP Conference Proceedings. Kluwer Academic Publish-
ers, 2001.

J.J. Rodriguez, O. Diaz, and F. I. Anfurrutia. Moving Web Services
Dependencies at the front-end. In Proceedings of the IFIP WGS8. 1
Working Conference on Engineering Information Systems in the In-
ternet Context, volume 231 of IFIP Conference Proceedings, pages
221-237. Kluwer Academic Publishers, 2002.

D. C. Rajapakse and S. Jarzabek. An investigation of cloning in web
applications. In Proceedings of the 5th International conference on
Web Engineering (ICWE’05), Lecture Notes in Computer Science,
pages 252 — 262, Sydney, Australia, 2005. Springer.

M. Schrefl and M. Bernauer. Active XML Schemas. In Hiroshi Ar-
isawa, Yahiko Kambayashi, Vijay Kumar, HeinrichC. Mayr, and In-
grid Hunt, editors, Conceptual Modeling for New Information Sys-
tems Technologies, volume 2465 of Lecture Notes in Computer Sci-

ence, pages 363-376. Springer Berlin Heidelberg, 2002.

S. Steinau, O. Diaz, J. J. Rodriguez, and F. Ibifiez. A tool for asses-
ing the consistency of Websites. In Proceedings of the 4th Interna-
tional Conference on Enterprise Information Systems (ICEIS’02),
volume 2, pages 691-698, 2002.

S. Steinau, O. Diaz, J. J. Rodriguez, and F. Ibafiez. Enterprise In-
formation Systems IV, chapter A tool for assesing the consistency
of Websites, pages 227-234. Kluwer Academic Publishers, 2002.

Maider Azanza Sesé. Model Driven Product Line Engineering:

Core Asset and Process Implications. PhD thesis, University of
the Basque Country (UPV/EHU), 2011.

164

[SKO5a]

[SKO5b]

[SR98]

[SSJO2]

[Suc02]

[Sun]

[SWGZ00]

[SYK'10]

[SZJ02]

BIBLIOGRAPHY

S. Speicher and K. E Kelly. Compound XML document pro-
files for rich content, Part 1: Exploring extensibility alternat-
ives using XML Schema, 2005. Available online at http://www-
128.ibm.com/developerworks/xml/library/x-cxdp1/.

S. Speicher and K. E Kelly. Compound XML document pro-
files for rich content, Part 2: A pattern for developing compound
XML document schemas, 2005. Available online at http://www-
128.ibm.com/developerworks/xml/library/x-cxdp2/.

D. Schwabe and G. Rossi. An object oriented approach to Web-
based applications design. Theory and Practice of Object Systems,
4(4):207-225, 1998. John Wiley & Sons, Inc.

I. Singh, B. Stearns, and M. Johnson. Designing Enterprise Applic-
ations with the J2EE Platform. Addison-Wesley, 2002.

D. Suciu. The XML typechecking problem. SIGMOD Rec.,
31(1):89-96, March 2002.

Sun Microsystems Inc. Java API for XML Processing (JAXP).
Available online at http://java.sun.com/xml/jaxp/.

M. W. Schranz, J. Weidl, K. M. Goschka, and S. Zechgmeister. En-
gineering complex World Wide Web services with JESSICA and
UML. In Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences (HICSS’00), Maui, HI, USA, 2000.

Boshi Sun, Xiaojie Yuan, Hong Kang, Xiaocheng Huang, and Ying
Guan. Incremental Validation of XML Document Based on Sim-
plified XML Element Sequence Pattern. In Web Information Sys-
tems and Applications Conference (WISA), 2010 7th, pages 110-
114, Aug 2010.

S. M. Swe, H. Zhang, and S. Jarzabek. XVCL: a tutorial. In
Proceedings of the 14th International Conference on Software En-

BIBLIOGRAPHY 165

[TBDO6]

[TBDO7]

[TBKCO7]

[TBMMO1]

[Thea]

[Theb]

[TheO1]

[TL98]

gineering and Knowledge Engineering (SEKE’02), pages 341-349,
New York, NY, USA, 2002. ACM Press.

S. Trujillo, D. Batory, and O. Diaz. Feature Refactoring a Mullti-
Representation Program into a Product Line. In Proceedings of
the 5th International Conference on Generative Programming and
Component Engineering (GPCE’06), Lecture Notes in Computer
Science, 2006.

S. Trujillo, D. Batory, and O. Diaz. Feature Oriented Model Driven
Development: A Case Study for Portlets. In Proceedings of the 29th
International Conference on Software Engineering (ICSE 2007),
Minneapolis, Minnesota, USA, May 20-26, 2007.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of
Product Lines. In Proceedings of the 6th International Conference

on Generative Programming and Component Engineering, GPCE
’07, pages 95-104, New York, NY, USA, 2007. ACM.

H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures. W3C Recommendation, 2001. Available

online at http://www.w3.org/TR/xmlschema-1/.

The Apache Software Foundation. Apache Ant. Available online at
http://ant.apache.org.

The Apache Software Foundation. Apache Struts. Available online
at http://struts.apache.org/.

The Apache Software Foundation. Xerces2 Java Parser, 2001.

Available online at http://xml.apache.org/xerces2-j/index.html.

O.M.E. De Troyer and C.J. Leune. WSDM: a user centered design
method for Web sites. Computer Networks and {ISDN} Systems,
30(1):85 — 94, 1998. Proceedings of the Seventh International
World Wide Web Conference.

166

[ublO4]

[Urp06]

[VdVO00]

[W3C02]

[W3C04]

[Wea98]

[Wir71]

[WP11]

[x1204]

[Zhu03]

BIBLIOGRAPHY

Online community for the Universal Business Language (UBL).
OASIS Standard, 2004. Available online at http://ubl.xml.org.

J. Urpalainen. An Extensible Markup Language (XML) Patch Op-
erations Framework Utilizing XML Path Language (XPath) Select-
ors. IETF SIMPLE WG,Internet-Draft ’draft-urpalainen-simple-
xml-patch-ops-02°, 2006.

E. Van der Vlist. Style-free XSLT Style Sheets, 2000. Available
online at http://www.xml.com/pub/a/2000/07/26/xslt/xsltstyle.html.

W3C. XML Inclusions (XInclude) Version 1.0. W3C Recommend-
ation, 2002. Available online at http://www.w3.org/TR/xinclude/.

W3C. Compound Document Formats. W3C Recommendation,
2004. Available online at http://www.w3.0rg/2004/CDF/.

L. Wood and et al. Document Object Model (DOM) Level 1
Specification. W3C Recommendation, 1998. Available online at
http://www.w3.org/TR/REC-DOM-Level-1.

N. Wirth. Program Development by Stepwise Refinements. Com-
munications of the ACM, 14(4):221-227, April 1971.

N. Wahid and E. Pardede. XML semantic constraint validation for
XML updates: a survey. In Proceedings of International Confer-

ence on Semantic Technology and Information Retrieval (STAIR),
pages 57-63. IEEE, 2011.

ASC X12 The Accredited Standards Committee Home Page, 2004.

Available online at http://www.x12.org.

H. Zhuge. Active e-document framework ADF: model and tool.
Information & Management, 41(1):87 — 97, 2003.

Acknowledgements

I would like to thank many people who has made possible, directly or indirectly,
the materialization of this thesis.

First and foremost, I would like to thank my advisors Prof. Oscar Diaz for his
kind support and much-needed guidance. It was him who sparked my interest in
research and helped me appreciate the value of looking beyond the horizon of the
immediately practical. I am quite fortunate to have had him as an advisor, and I
am very grateful for all of his help and patience.

During this study, I enjoyed working together with the members of the ONEKIN
research group, which Oscar leads. I am indebted to all of my workmates, specifi-
cally Jon Iturrioz, Juanjo Rodriguez, Ifaki Paz and Mikel Larrafaga taking part in
the development of XLeaflet and Salvador Trujillo with respect to the XAK project,
part of this work would not be possible without their invaluable discussions, ef-
forts and advices. Thanks to Sergio F. Anzuola for both his kindness and cheering
up the atmosphere of the isolated Arbide Towers (the working place). I am also
grateful with the former and actual remaining members of ONEKIN: Luis M.
Alonso, Maider Azanza, Iker Azpeitia, Oscar Barrera, Cristobal Carellano, Jose
Ramén Diaz, Arantza Irastorza, Arturo Jaime, Jon Kortabitarte, Felipe Martin,
Sandy Perez, Gorka Puente, Itziar Otaduy, Leticia Montalvillo, Ifiigo Aldalur, and
the newbie Jeremias Perez, who are inclined to help when you need it.

I would like to express my gratitude to the University of the Basque Country, to
the Department of Computer Languages and Systems and specifically, to my col-
leagues at EUI in Vitoria-Gasteiz: Ainhoa Alvarez, Ismael Etxeberria, Borja Fer-
nandez, Pablo Gonzalez, Mikel Larrafiaga, Pablo Navarro, Mari Carmen Otero,
Patxi Ramirez and Iiigo Quintana, for allowing my liberation of teaching work in

order to finish the thesis writing.

168 BIBLIOGRAPHY

Other old friends of 1lab 315 who have stayed in touch have often helped to
provide many invaluable and enlightening conversations and essential diversions:
Amaia, Ainhoa, Patricia, Yolanda, Jimena, David, Mili, Gus, Alberto and Licri.
Although the thesis work requires a full time of dedication, from time to time there
is a need to take the air for an inspiration and accept an invitation of closed friends
in order to distract from the thesis matter. Thanks to all of them, my cuadrilla.

Thanks to whole my family for understanding me, giving their support and
being always there when was necessary. But especially thanks to my parents and
parents-in-law, who takes care of our little girls. Eskerrik asko bihotz-bihotzez.

Last but not least, I am especially grateful to my wife Miren for her constant
support and encouragement, patience and love. She has endured many years of
partial attention and cancelled holidays in order that I might reach this point. [am
lucky to have such an understanding wife. Eta nola ez, nere bi printzesei, [zaro

eta Loreari, zuen alaitasun eta bizi-pozarengatik.

Summary

The presence of XML is pervasive, yet its youth makes developers face a lot of chal-
lenges when using XML in cutting-edge applications. This thesis confronts XML in
three different scenarios: document exchange, Software Product Lines (SPLs) and
Domain-Specific Languages (DSLs). Digital document interchange is one of the prom-
inent applications of XML. However, business documents frequently hold derived
data, i.e. data which is calculated from other data. Here, we face the question of how
can XML Schema be extended to account for derived data. This dissertation proposes
the XDerive namespace that permits deriving functions to be integrated as part of
XML Schema documents.

Next, SPLs offer an approach to develop a family of software products by reuse. What
if these products are realised as XML documents? The thesis addresses how Fea-
ture-Oriented Programming (an approach to SPL development) can be extended to
account for XML specifics (e.g. tag-based description, validation awareness).

Finally, XML in Web development. The increasing growth in size and complexity of
web sites calls for a systematic way to web sites development. Leaflet websites are a
kind of content-oriented websites. Domain Specific Languages (DSL) are usually
geared towards a specific domain or application, offering only a restricted suite of no-
tations and abstractions. Here, we address the domain of leaflet websites, i.e. web-
sites meant for static-content navigation, and introduce an XML-based DSL: XLeaflet.
A distinctive feature of XLeaflet is its architecture: thick-browser. This can account for
an important reduction in the network traffic. These so-different fields (i.e. document
exchange, SPLs and DSLs) act as “stress tests” to assess the ductility of XML con-
cepts and technology to cope with so heterogeneous environments.

