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departamento de Farmacia y Ciencias de los Alimentos, de la Facultad de Farmacia, por su
asesoramiento en los aspectos nutricionales necesarios para realizar este trabajo.

A la profesora Leire Escajedo San Epifanio, investigadora principal del proyecto Universidad-
Sociedad US 14/19 ”Urban Elika - Elikagaiak denontzat”, por su invitación al Congreso Interna-
cional Multidisciplinar ”Envisioning a Future without Food Waste and Food Poverty: Societal
Challenges”, celebrado en noviembre de 2015.
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Laburpena

Bizitzako problema gehienak ziurgabetasunaren menpekoak dira. Proiektu honen lehenengo
atalean, Programazio Estokastikoaren, bestela esanda, ziurgabetasunaren menpeko Optimizazio-
aren oinarrizko kontzeptu eta propietateak landu dira. Gainera, hain konplexua da programa
estokastikoak konputatzea, hainbat modelo ezberdin ikasi ditugula, esate baterako, itxaron eta
ikusi, itxarotako balioa eta itxarotako soluzioa itxarotako balioa erabiliz. Bestetik, informazio
perfektuaren itxaropena eta soluzio estokastikoaren balioa neurriak aurkeztu ditugu, erabaki
ahal izateko merezi duen problema estokastikoa ebaztea beste modeloen aurrean. Bigarren
zatian, GAMS modelizatzaile eta CPLEX optimizatzailearen bidez produktu ez-galkorren ba-
naketa optimizatzen duen aplikazio bat diseinatu eta inplementatu da, nutrienteen beharrak
kostu minimoan bermatzen dituena. Hazia proiektuaren barnean garatu da, Sortarazi elkarteak
kudeatuta eta Bizkaiko Elikagai Bankua eta hainbat udalerri bizkaitarren Oinarrizko Zerbitzu
Sozialei lotuta.

Resumen

La incertidumbre es inherente a la mayoŕıa de los problemas de la vida real. En la primera
parte de la disertación se estudian conceptos y propiedades básicas de Programación Estocástica,
también llamada Optimización bajo Incertidumbre. Además, dado que los problemas estocásticos
son complejos de resolver, se han presentado otros modelos como espera y observa, el valor es-
perado y el resultado esperado de utilizar la solución que proporciona el valor esperado. Las
medidas del valor esperado de la información perfecta y el valor de la solución estocástica cuan-
tifican lo que aporta la programación estocástica frente a otro modelos. En la segunda parte, se
ha diseñado e implementado con el modelizador GAMS y el optimizador CPLEX una aplicación
que optimiza la distribución de productos no perecederos, que garanticen ciertos requerimientos
nutricionales al mı́nimo coste. Se ha desarrollado dentro del proyecto Hazia, gestionado por la
asociación Sortarazi y vinculado al Banco de Alimentos de Vizcaya y a los Servicios Sociales de
Base de varios municipios vizcáınos.
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Abstract

It is known that most of the problems applied in the real life present uncertainty. In the first part
of the dissertation, basic concepts and properties of the Stochastic Programming have been intro-
duced to the reader, also known as Optimization under Uncertainty. Moreover, since stochastic
programs are complex to compute, we have presented some other models such as wait-and-wee,
expected value and the expected result of using expected value. The expected value of perfect
information and the value of stochastic solution measures quantify how worthy the Stochastic
Programming is, with respect to the other models. In the second part, it has been designed and
implemented with the modeller GAMS and the optimizer CPLEX an application that optimizes
the distribution of non-perishable products, guaranteeing some nutritional requirements with
minimum cost. It has been developed within Hazia project, managed by Sortarazi association
and associated with Food Bank of Biscay and Basic Social Services of several districts of Biscay.
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Chapter 1

Introduction

1.1 Social and Mathematical Motivation

There is not a global definition of food waste and food poverty. The European Commission,
the Food & Agricultural Organization of the United Nation (FAO), USDA’s Economic Research
Service, Smil, the UK by the Waste & Resources Action Programme (WRAP), the Barilla
Center of Food and Nutrition and much more professional bodies or Community institutions
define waste of food in different ways. However, they all have in common the awareness of the
magnitude of the problem and the importance of reduction; at a time that even though it is
produced enough food to feed the whole population, 870 million people live in hunger (FAO)
and a third of all the food produced, 1.3 billion tones, 180kg per capita in only 27 european
countries are wasted every year, see Gjerris & Gaiani 2015 [13] and González Vaqué 2015 [14].
We know that the problem of hunger is, above all, a result of war and massive displacement of
refugees. However, there are more and more poor and malnourished families in rich countries
due to the lack of access to resources and the inefficiency of the food chain. Spain is the sixth
on the list of countries in the European Union that waste more food, around 7.7 million tones,
18% of what is bought by the population for own feeding (FAO). Food waste has numerous
causes at every level: overproduction, deterioration, imperfect size/shape of the product or its
packaging and problem of appearance or defective packaging and inadequate stock management
(marketing rules), among others.

Whether just one-forth of the wasted food could be saved, around 900 million hungry people
in the world would be feed. That is the reasoning behind the necessity of reaction and strategies
for solutions in order to prevent and avoid food waste:

• Redistribute unsold and discarded products to citizens below the minimum income.

• Reeducate the citizenship providing tips, recipes, messages and graphics (household food
waste makes up almost half of all food waste in UK).

• Improve the efficiency of the food supply chain by promoting direct relations between
producers and consumers.

1



1.2. Aims of the project

• Improve logistic, transport, stock management and packaging, since some food products
are produced, transformed and consumed in very different parts of the world.

That is why it should be given preference to agricultural and food products produced as near as
possible to the place of consumption. The role of Food Banks is essential in the use of discarded
food. Spain is the first european country in Food Bank activities: there are 54, delivering million
kilograms of food every year.

Clearly, in view of such a magnitude problem, the cooperation of professionals from vari-
ous disciplines is welcomed. Multidisciplinary domains can provide solutions to help improving
more disadvantage people life condition. Particularly, there are several problems to adress by
the area of Operations Research & Management Science. In this project we wanted to focus
on optimizing the problem of the distribution of aliments which satifies minimum nutritional
requirements.

Diet Problem is considered one of the first problems of linear programming, Stigler 1945 [30].
It was laid out with the intention of optimizing the cost of the soldiers diet before finishing that
year the Second World War in USA.

Later on, it was proposed as an alternative the stochastic programming, where the model
includes uncertain parameters and some of the decisions must be taken before unceertainty is
revealed. See in Vitoriano et al. 2013 [32] a recent book about decision models in disaster
management and humanitarian emergency.

1.2 Aims of the project

In this project we will consider two main goals. On one hand, the study of two-stage Stochastic
Programming basis, focusing in concepts such as Stochastic Problem (SP), Wait-and-See (WS),
Expected Value (EV), Expected result of using Expected Value (EEV) and their relations, as
well as the measures Expected Value of Perfect Information (EVPI) and Value of Stochastic
Solution (VSS).

On the other hand, the design and implementation of an application in the third sector, also
known as social economy. We are interested to supply monthly around 900 people, reaching
almost all of the nutritional requirement with only non-perishable products, with or without
exceeding a budget. Particularly, we will distinguish four models: (1) minimize cost for feeding
all these people with a healthy diet, that is, supplying all the nutritional requirement, (2) im-
prove the percentage reached nowadays by the provision of the association Sortarazi, without
exceeding the budget, (3) and (4) previous models but guaranteeing a balanced diet.

2



1.3 Scientific literature

The theory and the applications of the Stochastic Programming are progressing significantly,
which is reflected in the number of nowadays publications. Dantzig 1995 [8] and Beale 1955 [3]
are considered the origin of the Optimization under Uncertainty. Some of the fundamental books
are Kall et al. 1988 [17], Kall & Wallace 1994 [18], Prekopa 1955 [25], Wallace & Zeimba (eds.)
2005 [33], Shapiro et al. 2009 [29], Birge & Louveaux 2011 [5] and King & Wallace 2012 [21].

One of the first applications of stochastic programming was related to airline planning: a
decision on the allocation of aircraft to routes, developed in Ferguson & Dantzig 1956 [10], also
collected in King 1988 [20].

Stochastic programming has been applied to a wide variety of areas, such as Production
planning which is a major area worth mentioning. We could get good explanations for manufac-
turing production or machine capacity planning problems, production or machine scheduling and
hydrothermal power production among others, see [1], Klein Haneveld & Van der Vlerk 2001 [22].

In the financial area there are lots of models with uncertain parameters, which is a good
reason for stochastic modeling. We can see many examples such as asset liability management,
an option selection model and macroeconomic modeling and planning and network models,
among others, see Gassman & Ziemba 2012 [12].

According to expansion and planning problems we can assume some examples related
to energy planning which has been the focus of many stochastic programming studies such as
electricity generation capacity and dairy farm expansion planning (first appeared in determinis-
tic form in Swart et al. 1975 [31]; now, we can find it well explained in stochastic form in Birge
& Louveaux 2011 [5]), among others.

Stochastic programming has been applied in many other areas such as sports, design of
a multistage truss, traffic assignment, telecommunications, climate change, forestry planning
model, the hospital staffing problem, see Kao & Queyranne 1985 [19] and lake level management
among others, King 1988 [20], Gassman & Ziemba 2012 [12] and the collection Wallace & Ziemba
2005 [33]. For more information, we can visit the Web Side of the Stochastic Programming
Society (SPS) [40].

3



1.4. Organization of the project

1.4 Organization of the project

This project is organized as follows: Chapter 2 defines and compares deterministic and stochastic
programming, where some basic concepts and properties of the theory of Stochastic Optimization
are introduced, also known as Optimization under Undertainty, and ilustrated by its correspond-
ing examples.

Chapter 3 shows some alternative models, known as the wait-and-see, expected value and
expected result of using expected value. The expected value of perfect information and value
of stochastic solution measures are introduced and some basic inequalities and the relationship
between them are given.

In Chapter 4 we have developed an application for the third sector. There is explained the
context of the realistic problem, the diet stochastic model and alternative models, the datasets
are detailed and the solutions and analysis of the models are explained. Chapter 5 concludes.

In Appendix A and B are shown the GAMS codes implemented corresponding to computa-
tional experiences given along the whole project. Finally, the bibliography is presented.

4



Chapter 2

Optimization Models under
Uncertainty

In this chapter we will present and compare deterministic and stochastic programming. In
Subsections 2.2.1, 2.2.2 and 2.2.3 there are explained some basic concepts of the theory of
Stochastic Optimization, such as probability spaces and random variables, decisions and re-
courses and non-anticipativity principle. Subsections 2.2.4 and 2.2.5 are focused in two-stage
models representations. The examples code is detailed in Appendix A.

2.1 Deterministic Linear Programming

A deterministic linear problem consists of finding a solution that minimizes (or maximizes) a
linear function (the objective function), subject to a set of linear constraints, taking into account
the certainty of all the parameters. The problem reads as follows:

Z = min c1X1 + c2X2 + ...+ cnXn

subject to b1 ≤ a11X1 + a12X2 + ...+ a1nXn ≤ b1
b2 ≤ a21X1 + a22X2 + ...+ a2nXn ≤ b2

... (2.1)

bm ≤ am1X1 + am2X2 + ...+ amnXn ≤ bm
X1, X2, ..., Xn ≥ 0

5



2.1. Deterministic Linear Programming

Hence, if we use the matricial notation, we can express it in this way:

Z = min cX

s.t. b ≤ AX ≤ b (2.2)

X ≥ 0

where X is the decision vector with dimension n × 1 and c, A, b and b are known data: c is a
1× n vector of costs, A ∈Mm×n is the constraints matrix and b and b are left hand side (LHS)
and right hand side (RHS), respectively, the vectors of independent items of the constraints of
sizes m× 1.

Besides, z = cX is the objective function, while {X | b ≤ AX ≤ b,X ≥ 0} defines the set
of feasible solutions. A feasible solution X∗ is optimal if cX ≥ cX∗ for any feasible X. Linear
programs usually try to find solutions with minimum cost over linear constraints of demand or
maximum profit over a situation with limited resources. Since maximizing an objective function
z is equivalent to minimizing −z, without loss of generality, in this project we will deal with
minimization problems.

Example 2.1. Let us consider the following diet problem addapted from NEOS server [35]. The
goal of the problem is to select a set of aliments that will satisfy monthly nutritional requirements
of 20-49 years old 1000 women at minimum cost. The problem corresponds to the supply of
products in a restaurant in order to serve all those clients. We will consider that half of the
requirements (α1 = 0.5) must be satisfied with the products at the first day of the month and
the rest of them will be purchased after the first two weeks. The problem is formulated as a
linear program with the goal of minimizing the cost and the constraints are stated to satisfy the
specified nutritional requirements. For the sake of simplification, we will assume that there are
two products available (pasta and lentils) and two nutritional requirements (iron and energy)
where the cost and nutrients are defined in Table 2.1 and the requirements in Table 2.2. In
order to guarantee feasibility, we have relaxed the maximum requirement of iron and reduced
the minimum in 5% with respect to the recommendation, see Carbajal 2013 [6].

Table 2.1: Cost and nutrients per aliment

Products Cost/product (e) Iron (mg) Energy (kcal)

Pasta (1kg) 1.98 18.00 3530
Lentils (1kg) 1.58 68.74 3100

Table 2.2: Nutrient requirements per day and person

Nutrients Minimum Maximum

Iron (mg) 9.5 -
Energy (kcal) 2185.0 3000

6



Chapter 2. Optimization Models under Uncertainty

Let us define the variables of the model:

• Xi: amount of product i to be purchased at the first day of the month, i ∈ {1, 2}

• Yi: amount of pruduct i to be purchased after two weeks, i ∈ {1, 2}

The Diet Problem can be modeled as follows:

min 1.98(X1 + Y1) + 1.58(X2 + Y2)

s.t. 142.5 ≤ 18X1 + 68.737X2

32775 ≤ 3530X1 + 3100X2 ≤ 45000

285 ≤ 18(X1 + Y1) + 68.737(X2 + Y2)

65550 ≤ 3530(X1 + Y1) + 3100(X2 + Y2) ≤ 90000

Xi, Yi ≥ 0, i ∈ {1, 2}

Notice that the bounds are given for 1 month (30 days) and in thousand units (1000 clients).

Thus, the optimal solution of this problem is:

X∗ = (X1, X2, Y1, Y2) = (0, 10573, 0, 10573) and Z∗ = 33474e

This means that we should buy at first day 10573 packages of lentils and purchase two weeks
later 10573, with a total cost of 33474 e.

2.2 Stochastic Linear Programming

Most of the optimization problems applied in the real life present uncertain data: production
costs and transport depend on fuel price, future demands depend on the uncertain market
conditions or crop returns depend on the weather, among others. If we suppose that all the
parameters are known, it could be produced not satisfactory result, or even disastrous. Hence,
it seems more accurate to model the optimization problems taking into account unknown param-
eters (unknown by the decisor at the moment of making decisions and out of his/her control).
In fact, Stochastic Programming is an alternative to the deterministic problems.

Stochastic linear problems are those linear optimization problems where some of the param-
eters c, A, b and b of the model (2.2) are uncertain. So, uncertainty can be defined by random
variables in the form of probability distributions, densities or, in general, probability measures.

7



2.2. Stochastic Linear Programming

Definition 2.1. A stage of a given planning horizon is a set of consecutive time periods where
the realization of one or more stochastic (i.e., uncertain) events take place. At the end of a
stage, decisions are taken, considering the specific outcomes of the stochastic events of this and
previous stages.

Stochastic programs may be classified according to the amount of stages: two-stage problem
is composed by two stages and those which has three or more stages are called multistage prob-
lems.

2.2.1 Probability Spaces and Random Variables

Now, we will describe probabilistic concepts assummed in the progress of the project, which are
essential to understand the structure of a stochastic problem.

We will consider the technique called analysis of scenarios for modeling uncertainty. This
methodology consists of knowing a finite set of values of the stochastic parameters with their
corresponding likelihood. That is, the goal of this method is to define a future state of a system
known in the present (at least partially) and show the different processes which pass from the
present to the future. This situation happens in strategic problems, where possible results are
obtained by the opinion of experts and where there are only a discrete and finite number of
scenarios.

Definition 2.2. A scenario is a realization of the uncertain and deterministic parameters of
the model from the first stage until the last one. It can also be defined as the representation of
the possible evolution of a system through the future. The scenario will show the hypotetical
situation of each constitutive parameter of a system for each period in a particular horizon
planning.

Uncertainty is usually characterized by a probability distribution on the random parameters.
It can be represented in terms of random experiments where all possible outcomes are denoted
by ω and the set of all of them by Ω. The outcomes can be combined in subsets called events.
Each event ω ∈ Ω determines a scenario: ξω = (cω, Aω, bω, b

ω
) and Ξ is the set of all the sce-

narios. The collection of random events is denoted by F , which is a tribu or σ-algebra of the
parts of Ω. Finally, let define probability as an aplication P : F → [0, 1] so that P (Ω) = 1 and
P (∪n≥1An) =

∑
n≥1 P (An) where ∀Ai, Aj ∈ F : Ai ∩ Aj = ∅, i 6= j. The triplet (Ω,F , P ) is

called probability space.

For this project we will mainly consider discret variables, where the random variables, ξ, take
a finite number of values, ξω, ω ∈ Ω with probability P (ξ = ξω) = pω so that

∑
ω∈Ω p

ω = 1. Cu-
mulative distribution is defined as F (ξ) = P ({ω ∈ Ω|ξ ≤ ξ}) = P (ξ ≤ ξ). Besides, expectation of
a random variable can be calculated as E[ξ] =

∑
ω∈Ω p

ωξω and variance is V ar[ξ] = E[ξ−E[ξ]]2.

Here and subsequently, for simplicity of notation, we will use the symbol ω to denote a sce-
nario, instead of ξω and Ω, rather than Ξ as the set of scenarios.
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Chapter 2. Optimization Models under Uncertainty

The set of scenarios is usually represented by a tree1, so called scenario tree, whose levels
correspond to stages, that is, the different periods of the planning horizon where it is necessary
to make a decision. A scenario tree is the representation of a set of scenarios and each branch of
the tree will be a possible evolution of the system. That is, scenario trees are used to represent
history of decision making.

Although from now on we are going to deal only with two-stage programs, we will show
a multistage tree (corresponding to a multistage problem), in order to understand some basic
concepts. In Figure 2.1 is ilustrated a tree with 4 stages, T = {1, 2, 3, 4} and 8 scenarios,
Ω = {1, 2, ...8}, |Ω| = 8, with 18 nodes, G = {1, 2, ...18}.

ω = 1

ω = 2

ω = 3

ω = 4

ω = 5

ω = 6

ω = 7

ω = 8

t = 1 t = 2 t = 3 t = 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 2.1: Example of a scenario tree

1In graph theory, a graph is defined as a representation of a set of objects where some pairs of objects are
connected. These objects are called nodes, also known as vertices, and the connections, edges. There are many
types of graphs, among others, undirected graphs (whose edges have no orientation). There are some important
classes of graphs as connected graphs. This is an undirected graph in which every unordered pair of vertices in
the graph is connected. Thus, a tree is a connected graph with no cycles.
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2.2. Stochastic Linear Programming

In this tree we can see that the number of nodes in each post-node is equivalent to the
realizations of uncertain parameters and in each stage there is enough information to make a
decision. Notice that in the first stage there is only one node, called root node. A scenario is not
one of each possible last state; but, as it can be seen in Figure 2.1, for example, ω = 2 is one
of the possible evolution of the system from the first stage to the last hypothetical one. Thus,
each path from the root to a leaf is called scenario, a feasible realization of the uncertainty. In
each node there is a variable to decide, that is, a decision that has to be made.

Once that the scenario tree is generated, it is necessary to extend the problem modelling, in
such a way that it will take the information from that tree. One option consists of solving the
deterministic problems according to each scenario ω ∈ Ω:

Zω = min cωXω

s.t. bω ≤ AωXω ≤ bω (2.3)

Xω ≥ 0

Based on the the previous model (2.3), the way of choosing an optimal solution is not clear.
There can be feasible solutions in a scenario that could be non-feasible in another one.

However, the analysis of scenarios applied in a optimization problem provides feasible solu-
tions under all the scenarios and optimal expected value over all of them. This happens, as we
will see later, due to the optimization of a linear combination of objective functions according
to the set of scenarios.

2.2.2 Decisions and recourses

One of the most attractive aspects of the Stochastic Programming is the fact of including changes
in the decisions to be taken, whenever information is available throughout the planning horizon.
Furthermore, it has sense that, at the beginnig of a process with several decision stages, the first
stage decisions must be taken. However, it does not have to happen the same with the decisions
of the other stages.

Definition 2.3. A solution is anticipative if there is a unique value for each variable, imple-
mentable and independent from the random experiment. That is, decisions which must be taken
before the uncertainties are resolved. On the contrary decisions that are taken after uncertainty
in the parameters has been resolved are called adaptative variables.

10



Chapter 2. Optimization Models under Uncertainty

All stochastic programs have some anticipative variables, since they would otherwise become
deterministic. Stochastic programs that include both types of variables are generally called
recourse models and according to the decision anticipativity, there is the following classification:

• Simple recourse model is that where all the decisions to take have to be fixed from
the beginning, without any variation even though in the following periods of time more
information of each scenario can be reached. All the decisions have to be taken before
the random experiment, and they belong to anticipative variables. This makes easier the
representation and resolution of the model. However, conclusions can be far from the real
results, since new information reached in each stage is not used.

• Relatively complete recourse is the model where decisions of the first r stages are
determined in the beginning (implementable periods), and the decisions of the rest are
adjusted to the possible changes (non-implementable periods).

• Complete recourse model is that where all the decisions are adapted along the time,
every time that information of the uncertain parameters is revealed; except for the variables
of the first stage, which do not depend on the scenario that happens. That is to say that
the solution is formed by a set of only decisions for the first period and an optimal decision
for each scenario. Complete recourse is often added to a model to ensure that no outcome
can produce infeasible results. It is the most interesting and useful model because the
solution provided is a set of decisions which get adapted to the information disposed in
each stage, allowing changes and optimizing the expected value of the objective function.

All the stochastic models used in this project are complete recourse models.
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2.2. Stochastic Linear Programming

2.2.3 Non-anticipativity principle

The principle of non-anticipativity (NAC) was introduced for two-stage problems in 1974 by
Wets, see [34] and restated by Rockafellar and Wets in 1991, see [27]. It states that if two
scenarios, ω and ω′, are equal according to the available information from the first to the rth

stage, then the decisions to take from those scenarios until this last stage have to be the same.
Now, let us represent in Figure 2.8 the non-anticipativity principle according to the multistage
example corresponding to the tree in previous Figure 2.1 where decision variables in nodes inside
the same dashed ellipse must be the same. That is, there are six sets of variables that must be
the same.

ω = 1

ω = 2

ω = 3

ω = 4

ω = 5

ω = 6

ω = 7

ω = 8

t = 1 t = 2 t = 3 t = 4

Figure 2.2: Non-ancitipativity principle

All the decisions taken in the first stage must be the same under all the scenarios. At the
third stage, the decisions of first and second scenarios and seventh and eighth scenarios, must
be the same, respectively.

According to the implicit or explicit representation of the NAC constraints, the models can
be defined in compact or splitting variable representation.

2.2.4 Two-Stage Model in Compact Representation

Stochastic problems were formulated for the first time in 1955 derivated from the linear opti-
mization by Dantzig and Beale in [8] and [3], respectively. First stage is made up of a common
node with the same information, while the second one consists of one node for each scenario.
Therefore, first stage decisions will be the same and independent from the scenario, while second
decisions are non-anticipative and depend on the scenario.
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Chapter 2. Optimization Models under Uncertainty

Let us consider the next two-stage stochastic linear program, where objective function is mini-
mized:

SP = min cX + E[min q Y] (2.4)

s.t. b ≤ AX ≤ b (2.5)

hω ≤ TωX +WωY ω ≤ hω, ∀ω ∈ Ω (2.6)

X,Y ω ≥ 0, ∀ω ∈ Ω (2.7)

where the n1 × 1 random vector X represents the first-stage decision vector (decision that has
to be taken before the experiment, also called here-and-now solution) and c, b, b and A are
the first-stage known vectors and matrices corresponding to X, of sizes 1× n1, m1 × 1, m1 × 1
and m1 × n1, respectively. c is the row vector composed by the objective function coefficients,
b and b are the column vectors with independent items of the constraints, (known as left hand
side, LHS and right hand side, RHS, respectively) and A is the matrix of the constraints. On
the contrary, Y = (Y ω) is the second stage decision vector (the one that can be taken after the
experiment) and in this stage some random events ω ∈ Ω can happen. For each realization ω, hω

and h
ω

with size m2×1 both of them, are the LHS and RHS column vectors, q = (qω), qω 1×n2

vector corresponds to the objective function coefficients and the technological matrix T = (Tω),
Tω ∈ Mm2×n1 . There is also a matrix called recourse matrix, Wω ∈ Mm2×n2 associated to the
recourse Y ω variables.

Let us define (XSP , (Y
ω
SP )ω∈Ω) the optimal solution of (2.4)-(2.7) and Zω = cXSP + qωY ω

SP ,
then the objective function (2.4) corresponds to the expected value of the random variable of
costs Z = (Zω)ω∈Ω.

E[Z] =
∑
ω∈Ω

P (Z = Zω)Zω =
∑
ω∈Ω

pωZω =
∑
ω∈Ω

pω(cXSP + qωY ω
SP ) =

= cXSP

∑
ω∈Ω

pω +
∑
ω∈Ω

pωqωY ω
SP = cXSP +

∑
ω∈Ω

pωqωY ω
SP

This problem is equivalent to the Deterministic Equivalent Program (DEP):

min cX + E[Q(X,ω)]

s.t. b ≤ AX ≤ b (2.8)

X ≥ 0
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2.2. Stochastic Linear Programming

where

Q(X,ω) = min qωY

s.t. hω − TωX ≤WωY ≤ hω − TωX, ∀ω ∈ Ω (2.9)

Y ≥ 0

The two-stage stochastic linear program, defined in (2.4) - (2.7), is in Compact Representa-
tion. In this way, we will use the following variables:

• X, variable vector of first stage

• Y ω, variable vector of second stage, for each scenario ω ∈ Ω

The decisions along the scenario tree and the matrix structure are shown in Figure 2.3 and 2.4,
respectively.

ω = 1

ω = 2

ω = |Ω|

t = 1 t = 2

.

.

.

.

.

.

X

Y 1

Y 2

Y |Ω|

Figure 2.3: Scenario tree in compact representation
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.

.
.
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h1

h2

.

.

.

h|Ω|

A

T 1

T 2

T |Ω|

W 1

W 2

W |Ω|

Figure 2.4: Matrix structure in compact re-

presentation
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2.2.5 Two-Stage Model in Splitting Variable Representation

Alternatively, the Splitting Variable Representation of the two-stage stochastic linear program
in given in (2.10)-(2.14).

SP = min
∑
ω∈Ω

pω (cXω + qωY ω) (2.10)

s.t. b ≤ AXω ≤ b, ∀ω ∈ Ω (2.11)

hω ≤ TωXω +WωY ω ≤ hω, ∀ω ∈ Ω (2.12)

Xω = Xω∗ , ∀ω 6= ω∗, ω, ω∗ ∈ Ω (2.13)

Xω, Y ω ≥ 0, ∀ω ∈ Ω (2.14)

where one copy of X, first stage variable vector, is considered for each scenario ω ∈ Ω, and there-
fore, non-anticipativity constraints (2.13) are added explicitly, see Rockafellar and Wets [26].

The decisions along the scenario tree and the matrix structure are shown in Figure 2.5 and 2.6,
respectively.

ω = 1

ω = 2

ω = |Ω|

t = 1 t = 2

NAC: X1 = X2 = ... = X |Ω|

.

.

.

.

.

.

X1

X2

X |Ω|

Y 1

Y 2

Y |Ω|

Figure 2.5: Scenario tree in splitting variable representation
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X1 X2 . . . X |Ω|Y 1 Y 2 Y |Ω|

b

b

b

h
1

h
2

...

h
|Ω|

b

b

b

h1

h2

...

h|Ω|

0

0
...

0

. . .

.
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.

A

A

A

T 1

T 2

T |Ω|

W 1

W 2

W |Ω|

I −I

I
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Figure 2.6: Matrix structure in splitting variable representation

This representation is particularly interesting for decomposition algorithms, because the relax-
ation of NAC breaks the SP into |Ω| independent scenario-problems, see Figure 2.7. It could be
a large number of subproblems, but certainly computationally simpler than SP.

Xω Y ω

b

h
ω

b

hω

A

Tω Wω

Figure 2.7: Matrix structure under one scenario ω
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2.2.6 Some two-stage examples

Example 2.2. Let us remember the previous deterministic Diet Problem, in Example 2.1. We
have two stage decisions:

• First stage decisions (X): amount of products to buy today for the warehouse, decisions
that must be taken here and now.

• Second stage decisions (Y ω): amount of products needed to be purchased two weeks later,
decisions depending on the scenario ω.

We will consider three cases, depending on the uncertainty sources:

Case 1 , where prices are now unknown for the second stage and depend on the selected market.

Case 2 , where nutrients and prices can be altered depending on the own-brand taken from
each market, see Mulvey et al. 1955 [24] collected in Censor & Zenios 1997 [7].

Case 3 , where bounds on nutrient requirements depend on the characteristics of different
potential clients.

Let us detail the three models, where stochasticity appears in several ways.

Case 1. Stochasticity in objective function coefficients, ξω = (qω).

Now, prices in two weeks are unknown. We have considered three markets where we can
go shopping (ω1: Eroski, ω2: Simply and ω3: Mercadona). So, depending where we buy,
the price of each product will be different (stochasticity). In this case, uncertainty is only
considered in the cost.

Table 2.3: Price of each product depending on the market

First Stage Second Stage
c qω Eroski (ω1) Simply (ω2) Mercadona (ω3)

Pasta c1 1.98 qω1 2.00 2.25 1.25
Lentils c2 1.58 qω1 1.29 2.48 1.25

The scenario tree for modeling Case 1 is detailed in Figure 2.8.

(Y ω1
1 , Y ω1

2 )

(Y ω2
1 , Y ω2

2 )

(Y ω3
1 , Y ω3

2 )

(X1, X2) X

Y ω1

Y ω2

Y ω3

Eroski

Simply

Mercadona

Figure 2.8: Scenario tree for Case 1 and Case 2
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Let us model the problem taking into account that all values are not equally likely. In Vito-
ria city, there are 23 Eroski, 9 Simply and 4 Mercadona, i.e., (pω1 , pω2 , pω3) =

(
23
36 ,

9
36 ,

4
36

)
.

So, the model is given in (2.15):

min 1.98X1 + 1.58X2 +
∑
ω∈Ω

pω (qω1 qω2 )
(
Y ω1
Y ω2

)
subject to 142.5 ≤ 18X1 + 68.737X2

32775 ≤ 3530X1 + 3100X2 ≤ 45000 (2.15)

285 ≤ 18(X1 + Y ω
1 ) + 68.737(X2 + Y ω

2 ), ∀ω ∈ {1, 2, 3}

65550 ≤ 3530(X1 + Y ω
1 ) + 3100(X2 + Y ω

2 ) ≤ 90000, ∀ω ∈ {1, 2, 3}

Xi, Y
ω
i ≥ 0, i ∈ {1, 2} and ω ∈ {1, 2, 3}

where qωi values are given in Table 2.3.

Hence, the optimal solution of the problem (2.15) is given in Table 2.4, with a total
expected cost of ZSP = 31963e:

Table 2.4: Optimal SP solution for Case 1

First Stage Second Stage
X Y ω ω1 ω2 ω3

Pasta X1 0 Y ω
1 0 9285 0

Lentils X1 10573 Y ω
2 10573 0 9285

Case 2. Stochasticity in objective function coefficients and recourse matrix, ξω =
(qω,Wω).

Since we buy in different markets the nutrients of each product could also change. Let us
show all the nutrients expressed in Table 2.5:

Table 2.5: Nutrients of each product depending on the market

Wω Eroski (ω1) Simply (ω2) Mercadona (ω3)

Iron (mg)
wω

11 17 16 19.0
wω

12 68 69 68.6

Energy (kcal)
wω

21 3540 3440 3590
wω

22 2810 2810 2807
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Let us model the problem in this case:

min 1.98X1 + 1.58X2 +
∑
ω∈Ω

pω (qω1 qω2 )
(
Y ω1
Y ω2

)
subject to 142.5 ≤ 18X1 + 68.737X2

32775 ≤ 3530X1 + 3100X2 ≤ 45000 (2.16)

285 ≤ 18X1 + 68.737X2 + (wω11 w
ω
12)
(
Y ω1
Y ω2

)
, ∀ω ∈ {1, 2, 3}

65550 ≤ 3530X1 + 3100X2 + (wω21 w
ω
22)
(
Y ω1
Y ω2

)
≤ 90000, ∀ω ∈ {1, 2, 3}

Xi, Y
ω
i ≥ 0, i ∈ {1, 2} and ω ∈ {1, 2, 3}

where (pω1 , pω2 , pω3) =
(

23
36 ,

9
36 ,

4
36

)
, qω values are defined in the Table 2.3 and nutrients

wωij in Table 2.5. Thus, the optimal solution of the problem (2.16) is given in Table 2.6,
with a total expected cost of ZSP = 32977e:

Table 2.6: Optimal SP solution for Case 2

First Stage Second Stage
X Y ω ω1 ω2 ω3

Pasta X1 0 Y ω
1 0 9285 9130

Lentils X1 10573 Y ω
2 11664 0 0

Case 3. Stochasticity in second stage bounds, ξω = (hω, h
ω
).

Let us define three different scenarios according to the age and sex of the person: ω1:
100% women (20-49), ω2: 50% women (20-49) and 50% men (20-49), ω3: 100% men (20-
49). In this case, LHS and RHS are uncertain where here-and-now decisions must be taken.

Let us show the bounds in the Table 2.7:

Table 2.7: Bounds according to each nutrient and scenario

hω 100% W(ω1) 50% W(ω2) 0% W(ω3)
Min Iron hω1 494 387.20 285

Min Energy h
ω

2 65550 75744.45 85500
Max Energy hω2 69000 79731.00 90000
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Case 3 can be expressed in the following way by a decision tree:

(Y ω1
1 , Y ω1

2 )

(Y ω2
1 , Y ω2

2 )

(Y ω3
1 , Y ω3

2 )

(X1, X2) X

Y ω1

Y ω2

Y ω3

100%W

50%W, 50%M

100%M

Figure 2.9: Scenario tree for Case 3

Let us model the problem taking into account that all scenarios are almost equally likely
(in Alava there are 66740 men of 20-49 years old and 63823 women of 20-49 years old,
according to EUSTAT [39]), i.e., (pω1 , pω2 , pω3) = (0.33, 0.33, 0.34). Let us assume that
prices and nutrients are fixed to first stage values, detailed in Table 2.1:

min 1.98X1 + 1.58X2 + 1.98Y ω
1 + 1.58Y ω

2

subject to 142.5 ≤ 18X1 + 68.737X2

32775 ≤ 3530X1 + 3100X2 ≤ 45000 (2.17)

hω1 ≤ 18(X1 + Y ω
1 ) + 68.737(X2 + Y ω

2 ), ∀ω ∈ {1, 2, 3}

hω2 ≤ 3530(X1 + Y ω
1 ) + 3100(X2 + Y ω

2 ) ≤ hω2 , ∀ω ∈ {1, 2, 3}

Xi, Y
ω
i ≥ 0, i ∈ {1, 2} and ω ∈ {1, 2, 3}

Thus, the optimal solution of the problem (2.17) is given in Table 2.8, with a total cost of
ZSP = 38681e.:

Table 2.8: Optimal SP solution for Case 3

First Stage Second Stage
X Y ω ω1 ω2 ω3

Pasta X1 0 Y ω
1 0 0 13065

Lentils X1 14516 Y ω
2 6629 9918 0

20



Chapter 3

The Value of Perfect Information
and the Stochastic Solution

Stochastic programs as, real world problems, are often computationally difficult to solve. Before
solving the stochastic model, we could be tempted to solve simpler problems: for example, we
could simplify the real imprecise data, replacing the unknown parameters with expected values
of those random variables and solve the obtained deterministic problem or alternatively, we could
solve all related scenario submodels and compute the expectation of these different solutions.

The main issue about these alternatives is that sometimes the solution can be nearly optimal,
totally inexact or even non implementable. The way to know if the simplified model is good
enough is calculating these two measures: the expected value of perfect information (EVPI) and
the value of the stochastic solution (VSS), see Birge & Louveaux 2011 [5].

In this chapter we will explain these two concepts for two-stage models. From Section 3.1
to 3.3 there are shown essencial models, known as Wait-and-See (WS), Expected Value (EV)
and Expected result of using Expected Value (EEV). Sections 3.4 and 3.5 provide the expected
value of perfect information and the value of stochastic solution. Some basic inequalities and the
relationship between EVPI and VSS are given in Sections 3.6 and 3.7, respectively. For more
general definitions and inequalities, extended to the multistage stochastic model, see [9]. The
example code is detailed in Appendix A.
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3.1. Wait-and-See solution (WS)

3.1 Wait-and-See solution (WS)

Wait-and-See models assume that the decision maker is able to wait till the uncertainty is over,
before calculating the optimal solutions. Therefore, this aproximation is based on the perfect
information along the horizon planning. Then, the problem can be defined as follows:

WS = min
∑
ω∈Ω

pω(cXω + qωY ω)

subject to b ≤ AXω ≤ b, ∀ω ∈ Ω

hω ≤ TωXω +WωY ω ≤ hω, ∀ω ∈ Ω (3.1)

Xω, Y ω ≥ 0, ∀ω ∈ Ω

This problem can be decomposed in |Ω| problems, ZωWS , one for each scenario ω ∈ Ω:

ZωWS = min cXω + qωY ω

subject to b ≤ AXω ≤ b

hω ≤ TωXω +WωY ω ≤ hω (3.2)

Xω, Y ω ≥ 0

Consequently, Wait-and-See solution, WS, is defined as the expected value of the random
variable ZWS = (ZωWS)ω∈Ω where ZωWS are the optimal solutions of the problems (3.2) and it is
equivalent to the optimal solution of (3.1):

WS = E[ZWS ] =
∑

ω∈Ω p
ωZωWS

Example 3.1. Let us continue with the example presented in Chapter 2 and calculate the WS
in the three cases defined before.

Case 1. Stochasticity in objective function coefficients, ξω = (qω).

Let us solve these three problems for ω ∈ {ω1, ω2, ω3}:

ZωWS1
= min 1.98Xω

1 +1.58Xω
2 +(qω1 qω2 )

(
Y ω1
Y ω2

)
subject to 142.5 ≤ 18Xω

1 + 68.737Xω
2

32775 ≤ 3530Xω
1 + 3100Xω

2 ≤ 45000 (3.3)

285 ≤ 18(Xω
1 + Y ω

1 ) + 68.737(Xω
2 + Y ω

2 )

65550 ≤ 3530(Xω
1 + Y ω

1 ) + 3100(Xω
2 + Y ω

2 ) ≤ 69000

Xω
i , Y

ω
i ≥ 0, i ∈ {1, 2}

where second stage stochastic prices q are given in Table 2.3.
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Thus, the optimal solutions of the problems (3.3) according to each scenario are given in
Table 3.1:

Table 3.1: Optimal WS solutions for Case 1

ω1 ω2 ω3

X∗1 0 0 0
X∗2 10573 14513 10573
Y ∗1 0 5822 9085
Y ∗2 10573 0 0

Z∗ 30376e 36078e 28343e

It follows that the expected cost of products under the wait and see approach is

WS1 =
23

36
· 30376 +

9

36
· 36078 +

4

36
· 28343 = 31575e

Case 2. Stochasticity in objective function coefficients and recourse matrix, ξω =
(qω,Wω).

Let us solve these three problems for ω ∈ {ω1, ω2, ω3}:

ZωWS2
= min 1.98Xω

1 + 1.58Xω
2 + (qω1 qω2 )

(
Y ω1
Y ω2

)
subject to 142.5 ≤ 18Xω

1 + 68.737Xω
2

32775 ≤ 3530Xω
1 + 3100Xω

2 ≤ 45000 (3.4)

285 ≤ 18Xω
1 + 68.737Xω

2 + (wω11 w
ω
12)
(
Y ω1
Y ω2

)
65550 ≤ 3530Xω

1 + 3100Xω
2 + (wω21 w

ω
22)
(
Y ω1
Y ω2

)
≤ 69000

Xω
i , Y

ω
i ≥ 0, i ∈ {1, 2}

where q values are defined in the Table 2.3 and nutrients W in Table 2.5.
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3.1. Wait-and-See solution (WS)

Thus, the optimal solutions of problems (3.4) according to each scenario are in Table 3.2:

Table 3.2: Optimal WS solutions of Case 2

ω1 ω2 ω3

X∗
1 0 0 0

X∗
2 10573 14516 10573

Y ∗
1 0 5974 9130
Y ∗
2 11664 0 0
Z∗ 31783e 36421e 28149e

It follows that the expected cost of products under the wait and see approach is

WS2 =
23

36
· 31783 +

9

36
· 36421 +

4

36
· 28149 = 32539e

Case 3. Stochasticity in second stage bounds, ξω = (hω, h
ω
).

Let us solve these three problems for ω ∈ {ω1, ω2, ω3}:

ZωWS3
= min 1.98Xω

1 +1.58Xω
2 +1.98Y ω

1 +1.58Y ω
2

subject to 142.5 ≤ 18Xω
1 + 68.737Xω

2

32775 ≤ 3530Xω
1 + 3100Xω

2 ≤ 45000 (3.5)

hω1 ≤ 18(Xω
1 + Y ω

1 ) + 68.737(Xω
2 + Y ω

2 )

hω2 ≤ 3530(Xω
1 + Y ω

1 ) + 3100(Xω
2 + Y ω

2 ) ≤ hω2
Xω
i , Y

ω
i ≥ 0, i ∈ {1, 2}

where second stage stochastic LHS and RHS are given in Table 2.7

Thus, the optimal solutions of the problems (3.5) according to each scenario are given in
Table 3.3:

Table 3.3: Optimal WS solutions of Case 3

ω1 ω2 ω3

X∗
1 0 0 0

X∗
2 14516 14516 14516

Y ∗
1 0 0 0
Y ∗
2 6629 9918 13065
Z∗ 33474e 38680e 43662

It follows that the expected cost of products under the wait and see approach is

WS3 = 0.33 · 33474 + 0.33 · 38680 + 0.34 · 436262 = 38681e
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3.2 Expected Value problem (EV)

In practice, many people either do not know stochastic modeling or believe that finding stochastic
solution is too difficult. A usual simplification consists of replacing each random variable with
an estimation, for example, the expected value. This easier problem is called expected value
problem, also mean value problem, and its solution, Expected Value, EV. Let show it in the
deterministic problem (3.6):

EV = min cX + E[q]Y

subject to b ≤ AX ≤ b

E[h] ≤ E[T ]X + E[W ]Y ≤ E[h] (3.6)

X,Y ≥ 0

Example 3.2. Let us calculate the Expected Value solution on the previous three cases.

Case 1. Stochasticity in objective function coefficients, ξω = (qω).

First of all, we only need the expected value of the prices of the products

E[q] =

(
23

36
· (2, 1.29) +

9

36
· (2.25, 2.48) +

4

36
· (1.25, 1.25)

)
= (1.98, 1.58)

.

Now, let us solve the first EV problem:

EV1 = min 1.98X1 +1.58X2 +1.98Y1 +1.58Y2

subject to 142.5 ≤ 18X1 + 68.737X2

32775 ≤ 3530X1 + 3100X2 ≤ 45000 (3.7)

285 ≤ 18(X1 + Y1) + 68.737(X2 + Y2)

65550 ≤ 3530(X1 + Y1) + 3100(X2 + Y2) ≤ 69000

Xi, Yi ≥ 0, i ∈ {1, 2}

Thus, the optimal solution of the EV1 problem (3.7) is

(X∗EV1 , Y
∗
EV1

) = (X1, X2, Y1, Y2) = (0, 14516, 0, 6629) and Z∗EV1 = EV1 = 33474e
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3.2. Expected Value problem (EV)

Case 2. Stochasticity in objective function coefficients and recourse matrix, ξω =
(qω,Wω).

First of all, we need the expected value of the prices of the products (calculated in the
previous case) and the expected value of the nutrients, W, the recourse matrix

E[W] =
23

36

(
17 68
3540 2810

)
+

9

36

(
16 69
3440 2810

)
+

4

36

(
19 68.6
3590 2807

)
=

(
16.97 68.32
3520.56 2809.67

)

Now, let us solve the second EV problem:

EV2 = min 1.98X1 + 1.58X2 + 1.98Y1 + 1.58Y2

subject to 142.5 ≤ 18X1 + 68.737X2

32775 ≤ 3530X1 + 3100X2 ≤ 45000 (3.8)

285 ≤ 18X1 + 68.737X2 + 16.97Y1 + 68.32Y2

65550 ≤ 3530X1 + 3100X2 + 3520.56Y1 + 2809.67Y2 ≤ 69000

Xi, Yi ≥ 0, i ∈ {1, 2}

Thus, the optimal solution of the EV2 problem (3.8) is

(X∗EV2 , Y
∗
EV2

) = (X1, X2, Y1, Y2) = (0, 14516, 5837, 0) and EV2 = 34533e

Case 3. Stochasticity in second stage bounds, ξω = (hω, h
ω
).

First of all, we only need the expected value of the bounds on nutrient requirements
depending on the clients distribution:

E[h] = 0.33

(
494 ∞

65550 69000

)
+ 0.33

(
387.20 ∞

75744.45 79731

)
+ 0.34

(
285 ∞

85500 90000

)
=

(
387.70 ∞

75697.17 79681.23

)
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Chapter 3. The Value of Perfect Information and the Stochastic Solution

Now, let us solve the third EV problem:

EV3 = min 1.98(X1 + Y1) + 1.58(X2 + Y2)

subject to 18X1 + 68.737X2 ≥ 142.5

327750 ≤ 3530X1 + 3100X2 ≤ 45000 (3.9)

18(X1 + Y1) + 68.737(X2 + Y2) ≥ 387.7

75697.17 ≤ 3530(X1 + Y1) + 3100(X2 + Y2) ≤ 79681.23

Xi, Yi ≥ 0, i ∈ {1, 2}

Thus, the optimal solution of the EV3 problem (3.9):

(X∗EV3 , Y
∗
EV3

) = (X1, X2, Y1, Y2) = (0, 14516, 0, 9918) and EV3 = 38681e

3.3 Expected result of using the EV solution (EEV)

It is interesting to evaluate the optimal solution reached in the mean value problem along the
scenario tree. That is, fixing the first-stage solution of the EV problem, XEV , in the stochastic
program (2.4) - (2.7) gives the Expected result of using the EV solution. Then, the problem can
be defined as follows:

EEV = cXEV + min
∑

ω∈Ω p
ωqωY ω

s.t. hω − TωXEV ≤WωY ω ≤ hω − TωXEV , ∀ω ∈ Ω (3.10)

Y ω ≥ 0, ∀ω ∈ Ω

This problem can be decomposed in |Ω| different problems, ZωEEV depending on the scenario ω:

ZωEEV = cXEV + min qωY ω

s.t. hω − TωXEV ≤WωY ω ≤ hω − TωXEV (3.11)

Y ω ≥ 0

Therefore, the optimal solution of the problem (3.10) is equivalent to the expected value over
the random variable ZEEV = (ZωEEV )ω∈Ω, where ZωEEV are the solutions of the problems (3.11):

EEV = E[ZEEV ] =
∑

ω∈Ω p
ωZωEEV
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3.3. Expected result of using the EV solution (EEV)

Example 3.3. Let us continue with the Diet Problem. We will analyse the effect of imple-
menting the optimal solution given by EV, XEV = (X1, X2), along the corresponding scenario
tree.

Case 1. Stochasticity in objective function coefficients, ξω = (qω).

Let us define three different problems according to each scenario:

ZωEEV1 = 1.98X1 + 1.58X2 + min (qω1 qω2 )
(
Y ω1
Y ω2

)
subject to 142.5− (18X1 + 68.737X2) ≤ 18Y ω

1 + 68.737Y ω
2

65550−(3530X1+3100X2) ≤ 3530Y ω
1 +3100Y ω

2 ≤ 69000−(3530X1+3100X2)

XEV1 = (X1, X2) = (0, 14516)

Y ω
i ≥ 0, i ∈ {1, 2}

where q values are defined in Table 2.3.

Equivalently, if we fix the solution XEV = (X1, X2) = (0, 14516) from EV1 model:

ZωEEV1 = 22935.48 + min (qω1 qω2 )
(
Y ω1
Y ω2

)
subject to 0 ≤ 18Y ω

1 + 68.737Y ω
2 (3.12)

20550 ≤ 3530Y ω
1 + 3100Y ω

2 ≤ 24000

Y ω
i ≥ 0, i ∈ {1, 2}

Thus, the optimal solutions of the ZωEEV1 problems (3.12) according to each scenario ω are
given in Table 3.4.

Table 3.4: Optimal EEV solutions for Case 1

ω1 ω2 ω3

Y ∗1 0 5822 5822
Y ∗2 6629 0 0

Z∗ 31531e 36078e 30257e

It follows that the expected solution using the expected value is

EEV1 =
23

36
· 31531 +

9

36
· 36078 +

4

36
· 30257 = 32526e
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Chapter 3. The Value of Perfect Information and the Stochastic Solution

Case 2. Stochasticity in objective function coefficients and recourse matrix, ξω =
(qω,Wω).

Let us define three different problems according to each scenario:

ZωEEV2 = 1.98X1 + 1.58X2 + min (qω1 qω2 )
(
Y ω1
Y ω2

)
subject to 142.5− (18X1 + 68.737X2) ≤ (wω11 w

ω
12)
(
Y ω1
Y ω2

)
65550−(3530X1+3100X2) ≤ (wω21 w

ω
22)
(
Y ω1
Y ω2

)
≤ 69000−(3530X1+3100X2)

XEV2 = (X1, X2) = (0, 14516)

Y ω
i ≥ 0, i ∈ {1, 2}

where q values are defined in the Table 2.3 and W in the Table 2.5.

Equivalently, if we fix the solution XEV = (X1, X2) = (0, 14516) from model EV2.

ZωEEV2 = 22935.48 + min (qω1 qω2 )
(
Y ω1
Y ω2

)
subject to 0 ≤ (wω11 w

ω
12)
(
Y ω1
Y ω2

)
(3.13)

20550 ≤ (wω21 b
ω
22)
(
Y ω1
Y ω2

)
≤ 24000

Y ω
i ≥ 0, i ∈ {1, 2}

Thus, the optimal solutions of the ZωEEV2 problems (3.13) according to each scenario ω are
given in Table 3.5

Table 3.5: Optimal EEV solutions for Case 2

ω1 ω2 ω3

Y ∗1 0 5974 5724
Y ∗2 7313 0 0

Z∗ 32414e 36421e 30135e

It follows that the expected solution using the expected value is

EEV2 =
23

36
· 32414 +

9

36
· 36421 +

4

36
· 30135 = 33162e
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3.3. Expected result of using the EV solution (EEV)

Case 3. Stochasticity in second stage bounds, ξω = (hω, h
ω
).

Let us define three different problems according to each scenario:

ZωEEV3 = 1.98X1+1.58X2 + min {1.98Y ω
1 +1.58Y ω

2 }

subject to hω1 − (18X1 + 68.737X2) ≤ 18Y ω
1 + 68.737Y ω

2

hω2 − (3530X1 +3100X2) ≤ 3530Y ω
1 +3100Y ω

2 ≤ h
ω
2 − (3530X1 +3100X2)

XEV3 = (X1, X2) = (0, 14516)

Y ω
i ≥ 0, i ∈ {1, 2}

Equivalently, if we fix the solution XEV = (X1, X2) = (0, 14516) from EV3 model

ZωEEV3 = 22935.49 + min 1.98Y ω
1 + 1.58Y ω

2

s.t. 0 ≤ 18Y ω
1 + 68.737Y ω

2 (3.14)

hω2 − 45000 ≤ 3530Y ω
1 + 3100Y ω

2 ≤ hω2 − 45000

Y ω
i ≥ 0, i ∈ {1, 2}

where h and h values are defined in the Table 2.7.

Thus, the optimal solutions of the ZωEEV3 problems (3.14) according to each scenario ω
given in Table 3.6:

Table 3.6: Optimal EEV solutions for Case 3

ω1 ω2 ω3

Y ∗1 0 0 0
Y ∗2 6629 9918 13065

Z∗ 33474e 38680e 43662

It follows that the expected solution using the expected value is

EEV3 = 0.33 · 33474 + 0.33 · 38680 + 0.34 · 43662 = 38681e
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3.4 The Expected Value of Perfect Information (EVPI)

The Expected Value of Perfect Information is the measure of how much a decision maker would
be willing to pay in order to obtain perfect information about the future (complete and accurate),
see Schlaifer & Raiffa 1961 [28].

The EVPI is defined as the difference between the wait-and-see, WS, and the here-and-now
solution, SP. In minimization problems:

EV PI = SP −WS (3.15)

The bigger the difference, the more importance will have the uncertainty.

Example 3.4. Since wait-and-see and here-and-now solutions have been calculated before in
the three different cases, the expected value of perfect information is summarized in Table 3.7:

Table 3.7: EVPI solutions for Cases 1, 2 and 3

Case 1 Case 2 Case 3

EVPI 387 438 0

This means that, in Case 1 and 2, the maximum amount of money that we are willing to pay
in order to know previously the market where we have to buy is 387e and 438e, respectively.
On the contrary, in Case 3 the decision maker thinks that is not worthy to pay nothing for real
information of the future, but WS solutions are not implementable in general, since they do not
always provide unique first stage decisions.

3.5 The Value of Stochastic Solutions (VSS)

The Value of the Stochastic Solution allows us to obtain more precisely the goodness of the
expected value solution against the stochastic problem solution. VSS represents the cost of
ignoring uncertainty in the moment of making a decision, the expected loss of using the deter-
ministic solution, therefore the importance of solving the stochastic model, SP.

The VSS is defined as the difference between the Expected result of using EV problem and
the here-and-now solution, SP. In minimization problems:

V SS = EEV − SP (3.16)

In some cases the value of the stochastic solution and the expected value of the mean solu-
tion can be the same whereby VSS=0. In this occasion, calculating this measure, it would be
unecessary to solve such a hard problem as the stochastic one. Nevertheless, it is really difficult
to know if the uncertainty is important before solving the problem.
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3.6. Main Inequalities

If we remember the definition of EVPI, we can see that VSS seems similar to that. The
difference is that EVPI is the maximum price that the decision maker should pay in order to
know the uncertainty, and VSS, on the contrary, is the real cost of ignoring it.

Example 3.5. Since the expected result of using the expected value and here-and-now solu-
tions have been calculated before in the three different cases, the value of stochastic solution is
summarized in Table 3.8.

Table 3.8: VSS solutions for Cases 1, 2 and 3

Case 1 Case 2 Case 3
VSS 564 185 0

This means that Case 3 is the only one where it has not been worthy to calculate the
stochastic solution. However, we cannot predict the result before the implementation of both
models. Notice that for Case 1 and Case 2, the result is remarkable.

3.6 Main Inequalities

The relations between the solutions and measures defined in the previous sections were estab-
lished by Madansky in 1960 [23].

Proposition 3.1. For the minimization lineal models, the following inequalities are satisfied:

WS ≤ SP ≤ EEV (3.17)

Obviously, in the maximization models the inequalities are the opposite.

Proof. On one hand, since the optimal solution of the Stochastic Problem (2.4) - (2.7), also
known as Recourse Problem is feasible solution of the Wait-and-See problem (3.1), it is directly
proved the first part of the inequality: WS ≤ SP .

On the other hand, since the optimal solution of the Expected result of using EV problem
(3.6) is feasible solution of the Stochastic Problem (2.4) - (2.7), the second inequality is reached:
SP ≤ EEV

Example 3.6. We just need to compare the three values obtained before. As we can see in
Table 3.9, Proposition 3.1 is verified in strict inequality for Cases 1 and 2:

Table 3.9: Proposition 3.1 verified for Cases 1, 2 and 3

WS SP EEV
Case 1 31575 < 31963 < 32526
Case 2 32539 < 32977 < 33162
Case 3 38681 = 38681 = 38681
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Proposition 3.2. In stochastic programs of minimization with fixed objective coefficients and
fixed recourse matrix W :

EV ≤WS (3.18)

Proof. First, note that EV = min z(X,E(ξ)) and WS = Eξ[min z(X, ξ)]. This means that we
can base the proof in Jensen’s inequality, see Jensen 1906 [16]. It states that for any convex
function f(ξ) of ξ: Ef(ξ) ≥ f(E(ξ)). Since ξ = (ξω)ω∈Ω, we need to show that f(ξ) =

Z(X∗, ξ) = ZξWS is a convex function of ξ.

Let us consider two different vectors, ξ1 and ξ2, and some convex combination: ξλ = λξ1 +
(1 − λ)ξ2, λ ∈ (0, 1). Let Z∗1 = Z(X∗1 , ξ

1) and Z∗2 = Z(X∗2 , ξ
2) be some optimal solutions of

min{cX+E[min qξY ξ|hξ ≤ T ξX+W ξY ξ ≤ hξ, Y ξ ≥ 0]}, s.t. b ≤ AX ≤ b, X ≥ 0 for ξ = ξ1 and

ξ = ξ2, respectively. Then, λZ∗1 +(1−λ)Z∗2 is a feasible solution ofmin{cX+E[min qξ
λ
Y ξλ | hξλ ≤

T ξ
λ
X+W ξλY ξλ ≤ hξ

λ

, Y ξλ ≥ 0]}, s.t. b ≤ AX ≤ b, X ≥ 0. Now, let Z∗λ be an optimal solution
of the last problem. We thus have

f(λξ1 + (1− λ)ξ2) = f(ξλ) = Z∗λ = min z(X,λξ1 + (1− λ)ξ2) ≤ Z(λ(X∗1 , ξ
1) + (1− λ)(X∗2 , ξ

2))

≤ λZ(X∗1 , ξ
1) + (1− λ)Z(X∗2 , ξ

2) = λZ∗1 + (1− λ)Z∗2 = λf(ξ1) + (1− λ)f(ξ2)

.
This stablishes convexity of f(ξ), so according to Jensen’s inequality

EV = min
X

z(X,E(ξ)) = f(E(ξ))≤≤≤ Ef(ξ) = Eξ[min
X

z(X, ξ)] = WS

Notice that, the previous proposition is not true for all stochastic programs. Since we have
already seen, it can only be uncertainty in the independent terms of the constraints or in the
technological matrix T . Consequently, it is enough choosing a stochastic program being q the
only non-fixed value. In this case, z would be a concave function of ξ, so Jensen’s inequality
cannot be applied.

Example 3.7. We just need to compare the two values calculated in previous examples:

Table 3.10: Proposition 3.2 verified for Cases 1, 2 and 3

EV WS

Case 1 33474 � 31575
Case 2 34533 � 32539
Case 3 38681 = 38681

The first two cases do not fulfill the inequality of the Proposition 3.2, notice that recourse
matrix and objective coefficients are not fixed.
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3.7 The Relationship between EVPI and VSS

The values of EVPI and VSS are usually different. This section describes the relationships
between these two measures of uncertainty effects.

Proposition 3.3. For any stochastic program:

0 ≤ EV PI (3.19)

0 ≤ V SS (3.20)

Proof. It can be proved directly using Proposition 3.2.

Example 3.8. Note the satisfaction of Proposition 3.3 in Tables 3.7 and 3.8.

Proposition 3.4. For stochastic programs with fixed recourse matrix and objective coefficients,

EV PI ≤ EEV − EV (3.21)

V SS ≤ EEV − EV (3.22)

Proof. The proof is direct based on Proposition 3.3.

This means that EVPI and VSS are always nonnegative and besides, depending on the prob-
lem, these quantities are bounded above by EEV − EV , an easily computable value. Hence,
whether EV = EEV , the value of both measures, EV PI and V SS, is null. This will happen
if X(ξ), any feasible solution, is independent of ξ. This means that optimal solution will be in
the same situation and if we find optimal solution for one ξ, we will reach the same result, so it
would be unnecessary to solve a recourse problem.

Example 3.9. Using the same example and the values reached before, we can directly see that

Table 3.11: Proposition 3.4 verified for Cases 1, 2 and 3

EVPI EEV-EV VSS EEV-EV

Case 1 387 � 32526-33474=-948 564 � 32526-33474=-948
Case 2 438 � 33162-34533=-1371 185 � 33162-34533=-1371
Case 3 0 = 38681-38681=0 0 = 38681-38681=0

The first two cases do not fulfill the inequalities 3.21 and 3.22 of the Proposition 3.4, notice
again that recourse matrix and objective coefficients are not fixed.
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Let us end this section by showing some other examples, see Birge & Louveaux 2011 [5], where
one of the two previous measures vanish.

Example 3.10. EV PI = 0 and V SS 6= 0

Let us define the following problem with the continuous random variable ξ uniformly dis-
tributed over [1, 3] interval:

Z(X, ξ) = X1 + 4X2 + min{Y1 + 10Y +
2 + 10Y −2 } (3.23)

s.t. X1 +X2 = 1 (3.24)

Y1 + Y +
2 − Y

−
2 = ξ +X1 − 2X2 (3.25)

Xi ≥ 0, Y1 ≤ 2, Yi ≥ 0, i ∈ {1, 2} (3.26)

Notice that Y +
2 + Y −2 = |Y2|, Y +

2 − Y
−

2 = Y2, Y2 ∈ R. Since we want to keep Y
+/−

2 as small
as possible in order to minimize {Y1 + 10Y +

2 + 10Y −2 } = {Y1 + 10|Y2|}, let us consider three
different cases:

• If Y2 = 0, then Y +
2 − Y −2 = 0, Y1 = ξ + X1 − 2X2. In addition, since 0 ≤ Y1 ≤ 2,

0 ≤ ξ +X1 − 2X2 ≤ 2 (first region)

• If Y −2 = 0, then Y1 + Y +
2 = ξ +X1 − 2X2, since Y1 ≤ 2, ξ +X1 − 2X2 ≤ 2 + Y +

2 . As it is
a minimizing problem, Y +

2 = ξ + X1 − 2X2 − 2 and Y1 = 2. In this case, since Y +
2 ≥ 0,

Y1 + Y +
2 = 2 + Y +

2 ≥ 2, so, 2 + ξ +X1 − 2X2 − 2 = ξ +X1 − 2X2 ≥ 2 (second region)

• If Y +
2 = 0, then Y1 − Y −2 = ξ + X1 − 2X2, since Y1 ≥ 0, ξ + X1 − 2X2 ≥ 0 − Y −2 . As

it is a minimizing problem, Y −2 = 2X2 − X1 − ξ and Y1 = 0. In this case, Y1 − Y −2 =
2X2 −X1 − ξ ≥ 0, so, ξ +X1 − 2X2 ≤ 0 (third region)

That is,

Y ∗(X, ξ) = (Y1, Y
+

2 , Y −2 ) =


(ξ +X1 − 2X2, 0, 0) if 0 ≤ ξ +X1 − 2X2 ≤ 2

(2, ξ +X1 − 2X2 − 2, 0), if ξ +X1 − 2X2 ≥ 2

(0, 0, 2X2 − ξ −X1), if ξ +X1 − 2X2 ≤ 0

Therefore,

Z(X, ξ) =


2X1 + 2X2 + ξ, if 0 ≤ ξ +X1 − 2X2 ≤ 2

−18 + 11X1 − 16X2 + 10ξ, if ξ +X1 − 2X2 ≥ 2

−9X1 + 2X2 − 10ξ, if ξ +X1 − 2X2 ≤ 0

(3.27)
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Given the first-stage constraint (3.24) X1 + X2 = 1, in the first region Z(X, ξ) = 2(X1 +
X2) + ξ = 2 + ξ. Now, using the second-stage constraint (3.25), Y1 + Y +

2 − Y
−

2 = ξ +X1− 2X2,
Y1 + 10Y +

2 + 10Y −2 ≥ ξ + X1 − 2X2. So, for an optimal Y in the second and third region,
applying (3.24), Z(X, ξ) ≥ X1 + 4X2 + (ξ + X1 − 2X2) = 2(X1 + X2) + ξ = 2 + ξ. Therefore,
any X̂ ∈ {(X1, X2)|X1 + X2 = 1, X ≥ 0} is an optimal solution of the problem (3.23) - (3.26)
for −X1 + 2X2 ≤ ξ ≤ −X1 + 2X2 + 2, and applying (3.24), equivalently,
−X1 + 2(1−X1) ≤ ξ ≤ −X1 + 2(1−X1) + 2 ⇔ 2− 3X1 ≤ ξ ≤ 4− 2X1.

Since ξ follows a uniform distribution over [1,3], let us define three different cases:

• If ξ ≥ 1, 2−3X1 = 1⇔ X1 = 1
3 and X2 = 2

3 . Then, ξ ≤ 3, so, (1
3 ,

2
3) is an optimal solution

for all ξ.

• For X1 = 1, −1 ≤ ξ ≤ 1. Therefore, (1,0) is optimal in ξ ∈ {1}.

• For X1 = 0, 2 ≤ ξ ≤ 4. Thus, (0,1) is optimal in ξ ∈ [2, 3].

Taking X∗(ξ) = (1
3 ,

2
3) for all ξ, since all the solutions will be the same, we can conclude

that WS = RP = 2 + ξ = 2 + 1+3
2 = 2 + 2 = 4, so EV PI = RP − WS = 0. On the

other hand, solving Z(X,E(ξ) = 2), we can reach another solution: X∗(2) = (0, 1), then
EV = min z(X,E(ξ)) = 2 + 2 = 4.

In that case, since ξ is uniform over [1, 3], P (ξ) = 1/2, ∀ξ ∈ [1, 2] and P (ξ) = 1/2, ∀ξ ∈ [2, 3].

Whereas, since ξ is a continuous random variable, E[X] =
+∞∫
−∞

xf(x)dx where f(x) is density

function and

EEV = Eξ≤2(24− 10ξ) + Eξ≥2(2 + ξ) =

∫ 2

1
(24− 10ξ) · 1

2
dξ +

∫ 3

2
(2 + ξ) · 1

2
dξ =

1

2

[
24ξ − 10

ξ2

2

∣∣∣∣2
1

+ 2ξ +
ξ2

2

∣∣∣∣3
2

]
=

1

2

(
24− 5 · 3 + 2 +

9

2
− 2

)
=

27

4
.

Thus, V SS = EEV −RP = 27
4 − 4 = 11

4 .
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Example 3.11. EV PI 6= 0 and V SS = 0

Let us consider again the previous problem (3.23)-(3.26), where ξ is discrete random variable,
ξ ∈ {0, 3

2 , 3}, with each event occurring with same probability, 1
3 . Taking into account the

optimal solution reached in the previous example:

• If ξ = 0, 2− 3X1 ≤ 0 ≤ 4− 3X1 ⇒

{
2− 3X1 ≤ 0

4− 3X1 ≥ 0

So, X∗(0) = {X|X1 +X2 = 1, 2
3 ≤ X1 ≤ 4

3}

• If ξ = 3
2 , 2− 3X1 ≤ 3

2 ≤ 4− 3X1 ⇒

{
1− 6X1 ≤ 0

5− 6X1 ≥ 0

So, X∗(3
2) = {X|X1 +X2 = 1, 1

6 ≤ X1 ≤ 5
6}

• If ξ = 3, 2− 3X1 ≤ 3 ≤ 4− 3X1 ⇒

{
−1− 3X1 ≤ 0

1− 3X1 ≥ 0

So, X∗(3) = {X|X1 +X2 = 1, 0 ≤ X1 ≤ 1
3}

Let us takeX∗(3/2) = (2/3, 1/3) as optimal solution of EV. Then, EV = Z((2/3, 1/3), 3/2) =
2 + 3/2 = 7/2. Since for ξ ∈ {0, 3

2} we are in the first region and for ξ = 3 in the second one,

EEV = Eξ∈{0, 3
2
,3}[Z((2/3, 1/3), ξ)] = 2 + Eξ∈{0, 3

2
}[Y
∗((2/3, 1/3), ξ)] + Eξ=3[Y ∗((2/3, 1/3), ξ)]

= 2 + Eξ∈{0, 3
2
}[ξ] + Eξ=3

[
2 + 10

(
ξ +

2

3
− 2

1

3
− 2

)]
= 2 +

1

3

(
0 +

3

2

)
+

1

3
12 =

13

2
.

There is not just one optimal solution for the three cases, so RP 6= WS and therefore,
EV PI 6= 0. In Wait-and-See solution, it is possible to get a different optimal solution depending
on the case (being all of them in the first region):

• X∗(0) = (1, 0), so Z((1, 0), 0) = 2 + 0 = 2

• X∗(3/2) = (1/2, 1/2), so Z((1/2, 1/2), 3/2) = 2 + 3
2 = 7

2

• X∗(3) = (0, 1), so Z((0, 1), 3) = 2 + 3 = 5

Hence,

WS =
1

3
· 2 +

1

3
· 7

2
+

1

3
· 5 =

7

2
.

So that we can reach the recourse solution, we will solve the stochastic program minE[Z(X, ξ)],
so (2/3, 1/3) is the optimal solution of SP. Thus

EV = 7/2 = WS ≤ RP = 13/2 = EEV

and EV PI = RP −WS = 3 while V SS = EEV −RP = 0.
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3.7. The Relationship between EVPI and VSS
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Chapter 4

An Application in the Third Sector:
Hazia Project

In this chapter a third sector application is described, implemented and analysed. The third
sector, also known as social economy or community sector, is the economic sector undertaken
by non-governmental organizations and other non-profit organizations.

The computational experience has been carried out on a UPV/EHU server with the following
features: 64 bits Linux Debian 8.3. operative system, Intel E5-2670 processor and 20 cores, 40
such virtualized. It also contains two hard drives: a RAID one with 300Gb and a solid state
with 120Gb (128Gb usable RAM).

The application is detailed in Appendix B. The codes are implemented with the modeling
system for mathematical programming and optimization, GAMS 22.8.1 [41] and solved by the
optimizer solver CPLEX 11.1.1 [43]. The figures shown in this chapter have been obtained from
the software environment for statistical computing and graphics, R-project [42].

Section 4.1 explains the context, Section 4.2 details the models, Section 4.3 includes all the
datasets needed for the model, Section 4.4 shows and analyses the results and Section 4.5 con-
cludes.

4.1 Background

Sortarazi association [37], with recognition of Public Utility, was created in 1991 in the neigh-
bourhood of San Francisco (Bilbao) in order to promote and contribute in the development
of men and women in risk of social exclusion. Nowadays, it is extended to some other places
in Bizkaia, above all, in areas or neighbourhoods with socio-economical disadvantages, such as
Erandio, Getxo, Leioa, Astrabudua and Bilbao.
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Sortarazi has several social projects, but we will focus in the one called Hazia project. It
pretends to help people and families improving their personal, familiar and social situation so
that they can improve their social and labor integration possibilities. They want to treat specif-
ically: orientation and emotional support, individual and group psicological support, advance of
municipal help, material basic necessities (payment of gas, water and electricity supply, rents,
school expenses) and basic necessities of feeding (food delivery and baby set). Among all the
services that are offered, in this project we will be dealing with the last support, food delivering,
for those families that do not receive social benefits neither any other income.

In 2013 there were 545 families assisted, adding up to 1404 people. Every family unit is
summoned monthly making a week delivery in tuesday, wednesday or thursday in the afternoon,
where there can be assisted no more than 40 families per day.

The service continues thanks mainly to the Food Bank of Bizkaia, public and private sup-
port, as well as individual cooperations.

4.2 Diet stochastic models and alternative models

Let us explain the application model, based on the well known Diet Problem where the horizon
planning is a month. As we have said before, there are two main goals in this application: (1)
minimize the cost of a monthly nutrition of around 900 users, supplying the maximum of the
nutrients requirement and (2) compute the minimum cost of a monthly nutrition of around 900
users, improving the percentage of the nutrients requirement, without exceeding the budget.
The nutrients analized are those which appear in the product labels: energy, fat, saturated fat
(SF), carbohydrates (CH), fibre, proteins and salt.

Notice that we can consider three sources of uncertainty: prices and nutrients can change
according to the available brand in the market and the number of users can vary slightly from
the expected demand.

The problem is composed by the following sets, parameters and variables:

Sets:

Ω, the set of scenarios which represents uncertainty

I, the set of products supplied by Hazia Project and

J , the set of nutrients analized from each product
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Deterministic parameters:

c = (ci), the price vector of the products i needed to be purchased in the initial period
of planning horizon, i ∈ I

A = (aij), the first stage constraints matrix of the nutrient j corresponding to the product
i, i ∈ I and j ∈ J

T = (tij), the technological matrix of the nutrient j of the product i, i ∈ I and j ∈ J
b0 = (b0j ), the minimum monthly nutrients requirement for a healthy diet per person

b
0

= (b
0
j ), the maximum monthly nutrients requirement for a healthy diet per person

N0, the average amount of people demanding the service monthly

b = (bj), the minimum nutrients requirement for a healthy diet monthly for N0 people,

b = b0 ·N0

b = (bj), the maximum nutrients requirement for a healthy diet monthly for N0 people,

b = b
0 ·N0

α1, the minimum percentage of the requirement that must be satisfied in the initial period
of planning horizon

α2, the maximum percentage of the requirement that must be satisfied in the initial
period of planning horizon

β = (βj), the minimum percentages of nutrient requiment j that must be satisfied for the
planning horizon

δ = (δi), δ
′ = (δ′i), ratios for determining lower bounds for X and Y variables, respectively

Z0, the initial budget

Stochastic parameters:

p = (pω), the likelihood of each scenario ω, ω ∈ Ω

q = (qωi ), the price vector of the products i needed to be purchased in the middle of
planning horizon, i ∈ I

W = (wωij), the recourse matrix of the nutrient j of the product i, i ∈ I and j ∈ J
N = (Nω), the amount of people demanding the service in a month, ω ∈ Ω

h = (hωj ), the minimum nutrients requirement j for a healthy diet, j ∈ J and ω ∈ Ω,

h = b0 ·N
h = (h

ω
j ), the maximum nutrients requirement j for a healthy diet, j ∈ J and ω ∈ Ω,

h = b
0 ·N

Variables:

X = (Xi), the vector of the products i needed to be purchased at the initial period of
planning horizon, i ∈ I

Y = (Y ω
i ), the vector of the products i needed to be purchased in the middle of planning

horizon depending on the scenario ω, i ∈ I and ω ∈ Ω
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The two-stage diet Stochastic Problem reads as follows:

min
∑
i∈I

ciXi +
∑
ω∈Ω

pω

(∑
i∈I

qωi Y
ω
i

)
(4.1)

s.t. α1 · bj ≤
∑
i∈I

aijXi ≤ α2 · bj , ∀j ∈ J (4.2)

βj · hωj ≤
∑
i∈I

tijXi +
∑
i∈I

wωijY
ω
i ≤ h

ω
j , ∀j ∈ J, ∀ω ∈ Ω (4.3)

∑
i∈I

ciXi +
∑
ω∈Ω

pω

(∑
i∈I

qωi Y
ω
i

)
< Z0 (4.4)

Xi ≥ δi ·
∑
i∈I

Xi, ∀i ∈ I (4.5)

Y ω
i ≥ δ′i ·

∑
i∈I

Y
ω
i , ∀i ∈ I, ∀ω ∈ Ω (4.6)

Xi, Y
ω
i ≥ 0, ∀i ∈ I, ∀ω ∈ Ω (4.7)

where (4.1) represents the objective function to optimize, the minimum cost, (4.2) is the set of
constraints of the first stage, (4.3) are the global nutrient requirement, (4.4) defines the budget
limitation, (4.5) and (4.6) denote the bounds for the variables X and Y ω, where Xi and Y

ω
i are

solutions obtained from non-balanced models, respectively and (4.7) declares the non-negative
of the variables.

We will consider four models, according to different goals:

Model 1.a. The goal is to obtain the product distribution that minimizes the cost in order to
satisfy entirely the nutrition requirement. In this case, Z0 = +∞, βj = 1,∀j ∈ J and
δi = δ′i = 0, ∀i ∈ I. That is, (4.4)-(4.6) are inactive.

Model 2.a. The goal is to improve the association standard nutritional bounds, without ex-
ceeding the initial budget, Z0. δi = δ′i = 0,∀i ∈ I, that is, (4.5) and (4.6) are inactive.

Model 1.b. The goal is the same as Model 1.a., but mantaining a balanced diet. In this case,
(4.5) is applied, but Z0 =∞, that is, (4.4) is inactive.

Model 2.b. The goal is the same as Model 1.b., but mantaining a balanced diet. In this case,
(4.5) is applied. All the constraints are active.
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For comparison purposes, we will also calculate the problems WS(4.8), EV(4.9) and EEV(4.10):

• WS = Eξ[min z(X, ξ)] = Eξ[Z(X∗(ξ), ξ)],

where X∗(ξ) corresponds to the optimal solution of WS (4.8)

• EV = min z(X, ξ),

where ξ∗ = E[ξ] (4.9)

• EEV = Eξ[Z(X∗(ξ∗), ξ)],

where X∗(ξ∗) corresponds to the optimal solution of EV (4.10)

4.3 Dataset

The data for the models has been collected from the Sortarazi’s storehouse and from standard
nutritional references.

4.3.1 First stage prices and nutrients

The values of energy, macronutrients and minerals (Na) for 100g of each product, have been
taken from AESAN/BEDCA, the spanish database of food composition (2010), see [36], taking
into account the product sets, sizes and prices of the association warehouse, see Table 4.1. These
are, the values for first stage A matrix, second stage T technology matrix and c vector.

Table 4.1: Energy, macronutrients and minerals of each product by BEDCA

Reference BEDCA Size
Energy Fat SF CH Fibre Proteins Salt Price

(kcal) (g) (g) (g) (g) (g) (g) (e)
2541 Oil 1l 8870.00 999.00 106.20 0.00 0.00 0.00 0.00 2.85
1117 Pasta 500g 1765.00 7.25 0.95 354.50 25.00 62.50 0.06 1.03
1020 Chickpea 1kg 3360.00 63.00 4.28 492.50 149.70 193.10 0.75 2.89
2675 Maria Biscuits 200g 958.00 38.00 19.40 138.00 6.20 15.60 1.09 0.46
2660 Rice 1kg 3870.00 9.00 2.10 860.00 14.00 70.00 0.15 2.05
2648 Cacao 1kg 3900.00 40.00 2.50 810.20 35.00 58.80 12.60 2.09
2131 Tuna 80g 164.00 9.68 1.44 0.00 0.00 19.05 0.74 0.75
2632 Sardine 115g 272.55 18.11 3.22 0.00 0.00 27.52 1.05 1.85
2560 Fried Tomato 390g 327.60 24.96 2.42 20.28 6.24 5.85 3.32 0.66
2493 Whole milk 1l 650.00 38.00 23.00 47.00 0.00 30.60 1.20 0.95
1109 Coffee 250g 277.50 0.75 0.30 20.00 0.00 46.25 0.25 1.20
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4.3.2 Second stage prices and nutrients

Comparing products by brand, we have notified that difference in nutrients could be relevant.
In order to analyse it, we have considered two brands for each product, collecting the nutritional
information from the warehouse and corresponding prices have been collected from EROSKI
web side [38], see in Table 4.2. These are the values needed for q0 (reference second stage price)
and Wω recourse matrix (nutrients for second stage).

Notice that qω ∈ {q0 · 0.9, q0 · 1.1}, ω ∈ Ω are equally likely, since in the second stage price
there is a growth of -10% or 10%.

Table 4.2: Energy, macronutrients and minerals of each product taken from the Food Bank

Brand Size
Energy Fat SF CH Fibre Proteins Salt Price

(kcal) (g) (g) (g) (g) (g) (g) (e)

Oil
1

1l
9000.00 1000.00 130.00 0.00 0.00 0.00 0.00 1.99

2 8240.00 920.00 140.00 0.00 0.00 0.00 0.00 3.99

Pasta
1

500g
1720.00 10.00 2.50 340.00 15.00 60.00 0.15 0.87

2 1745.00 7.50 1.50 350.00 18.00 60.00 0.15 0.60

Chickpea
1

1000g
3320.00 70.00 10.00 360.00 266.00 179.00 0.00 1.49

2 3480.00 58.00 11.00 460.00 140.00 210.00 0.30 2.89

Maria Biscuits
1

200g
872.00 20.00 10.00 156.00 5.80 14.00 1.46 1.12

2 842.00 16.00 7.60 158.00 4.80 14.00 1.66 1.29

Rice
1

1000g
3540.00 5.00 1.00 795.00 28.00 65.00 0.00 1.52

2 3470.00 11.00 3.00 740.00 35.00 84.00 0.00 1.19

Cacao
1

1000g
3800.00 38.00 28.00 780.00 85.00 65.00 0.00 2.39

2 3760.00 24.00 15.00 780.00 78.00 68.00 1.40 6.25

Tuna
1

80g
158.40 8.00 1.20 0.00 0.00 21.60 0.96 0.66

2 201.60 14.40 2.32 0.48 0.00 17.60 0.50 2.04

Sardine
1

115g
241.50 13.80 2.99 1.15 0.00 28.75 1.73 0.94

2 236.90 13.23 2.99 1.04 23.00 28.29 0.46 1.32

Fried Tomato
1

390g
284.70 13.65 1.56 35.49 0.00 4.29 5.85 0.74

2 284.70 13.65 1.56 31.20 1.95 4.68 3.51 0.40

Whole milk
1

1l
630.00 36.00 24.00 46.00 0.00 31.00 1.00 0.59

2 630.00 36.00 25.00 46.00 0.00 30.00 1.30 0.79
Coffee - 250g 245.10 10.50 3.50 14.00 24.50 17.50 0.00 1.20

To determine the scenario tree for Wω, we have compared all the values of Table 4.2 in order
to choose the most different pair of products. First of all, the relative difference of each product
with regard to the real value of BEDCA have been calculated. Then, the absolute difference
of each pair of relative differences of each product have been computed. Finally, the mean (x),
standard deviation (s) and the Coefficients of Variation (CV) have been obtained, see Table 4.3.
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Table 4.3: Selection of the most different products

Product x s CV

Oil 4.09 4.54 111.16
Pasta 22.77 33.47 146.95
Chickpea 27.87 26.59 95.40
Maria Biscuits 11.77 11.96 101.58
Rice 14.86 17.24 116.02
Cacao 35.62 61.55 172.82
Tuna 32.64 54.05 165.57
Sardine 4.34 7.02 161.84
Fried Tomato 19.62 24.25 123.62
Whole milk 4.30 7.41 172.35

The criteria for selecting a pair of products to be considered in the scenario tree is as fol-
lows. The lower the CV, the bigger the convenience of introducing the product nutrients in the
scenario tree. In effect, the bigger the mean and the smaller the standard deviation, the more
relevant to take into account the differences. The five most different pairs of products, according
to the lowest CV are Chickpea, Maria Biscuits, Oil, Rice and Fried Tomato.

4.3.3 Nutricional bounds

For determing bounds on nutritional requirements, we must take into account nutritive proper-
ties. For first stage, around half of the requirements should be satisfied (determined by α1, α2

parameters near to 0.5). Moreover, for the second stage (almost) all of them, where low bound
is fixed by β parameter near to 1.

As stated in BEDCA [36], fat, like carbohydrates and proteins, is considered a major
macronutrient for the body due to the energy they provide (9Kcal/g) and the quantity of func-
tions of the organism in which participates. However, it should be only 30%-35% of the energy.
It is not only that important the quantity but the quality of the fat. So, less than 7%-8% of the
fat must be saturated.

Carbohydrates contain monosaccharides (glucose, fructose and galactose), disaccharides (sac-
arose, lactose) and polisaccharides (starch and glycogen). They provide 4Kcal/g and they should
be 50%-60% of the calories consumed per day.

Fibre is a plant material that cannot be digested but helps us to digest other food. For a
healthy diet, it must be consumed more than 14g/1000Kcal.

Protein is a building material of our skin, bones, muscles and other tissues in the body among
other things. In fact, the vast majority of the biological functions are carried out by proteins.
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Therefore, the daily intake of these nutrients is essencial for a healthy diet. It provides 4Kcal/g
and it must be 10%-15% of the daily total calories.

Sodium (Na) is the major positive ion (cation) in fluid outside of cells. When it is combined
with chloride (Cl), the resulting substance is table salt (NaCl). Excess sodium can cause cells
to malfunction, so 5g/day or less of salt is good enough for a healthy diet, where 5g of salt
corresponds to 2000mg of Na.

For computing bounds, first of all we need to estimate the kcal per person and day. Taking
into account the user age distribution (see 4.1) and according to Carbajal 2013 [6] and Spanish
Nutritional Foundation (FEN) 2013 [11], the estimated energy requirement is shown in Table
4.4.

Table 4.4: Energy estimation

Age Percentage Energy (kcal/pers)

< 3 5 % 800
3− 9 15 % 1737.5
10− 19 15 % 2560
> 19 65 % 2428.22

Total 100 % 2263

Figure 4.1: Pie chart of users for age range

5%

15%

15%

65%

< 3
3 − 9
10 − 19
> 19

Hence, bounds of 2200-2600 kcal of energy have been stated and bounds of every nutrient is

summarized in Table 4.5. These are the values needed for b0. Notice that (b, b) = (b0, b
0
) · N0

and (h, h) = (b0, b
0
) · N , where N0 = 900 users and N ∈ {800, 900, 1000} with probability

{0.15, 0.7, 0.15}, respectively.

Table 4.5: Energy, macronutrients and mineral requirement bounds

Energy(kcal) Fat(g) Sat.Fat(g) CH(g) Fibre(g) Proteins(g) Salt(g)

Minimum 2200 73.7 - 275 30.8 55 -
Maximum 2600 87.1 6.97 325 - 65 5
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4.3.4 Data preliminar analysis

As a preliminar studio, let us consider the nutritional requirement satisfaction with respect
to nowadays association products distribution. Table 4.6 and Figures 4.2 and 4.3 show the
estimated frequency and percentage of each family type and users number demanding the services
of Hazia project monthly, from set np = 1 to set np = 6, where np is the number of users per
family.

Table 4.6: Monthly users distribution

np # families % families # people % people

1 180 44% 180 20%
2 81 20% 162 18%
3 72 18% 216 24%
4 45 11% 180 20%
5 22 5% 108 12%
6 9 2% 54 6%

Total 409 100% 900 100%

44%

20%

18%

11%

5%

2%

Figure 4.2: Pie chart for families

20%

18%

24%

20%

12%

6%

Set1
Set2
Set3
Set4
Set5
Set6

Figure 4.3: Pie chart for users

In Table 4.7 are given the sets of non-perishable products that are distributed monthly
according to the number of people and their respective costs. The data can change depending
on the product availability and the demand. We have considered the families distribution shown
previously for generating the last set, this called representative set, for N0 = 900 users and
its estimation of monthly products distribution. Notice that δ0

i is the percentage of products
units, to be considered in the balanced diet models.
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Table 4.7: Monthly set of products for sets of np users

Product Size Price(e)
Set Rep. Set %

1 2 3 4 5 6 900 δ0
i

Oil 1l 2.85 1 1 2 3 3 4 641 2
Pasta 500g 1.03 2 4 5 6 7 9 1546 6
Chickpea 1000g 2.89 1 2 3 4 5 6 900 3
Maria Biscuits 200g 0.46 2 3 4 5 6 7 1309 5
Rice 1000g 2.05 2 2 3 3 3 4 974 4
Cacao 1000g 2.09 - - - - - - - -
Tuna 80g 0.75 18 36 54 72 90 108 16200 58
Sardine 115g 1.85 2 2 3 4 5 6 1080 4
Fried Tomato 400g 0.66 3 4 6 8 10 12 1980 7
Whole milk 1l 0.95 3 6 9 12 15 18 2700 10
Coffee 250g 1.20 1 1 1 1 1 1 409 1

Total 27200e 27738 100%

Consequently, the average of nutrients, per person and day, satisfied by the sets described
previously, according to BEDCA, are given in Table 4.8. In Table 4.8 and Figure 4.4 is also shown
the percentages of the minimum nutrients satisfied by the sets defined in Table 4.7 according to
the recommended healthy diet from Table 4.5. Later on, we will compare the nutrients satisfied
by the representative set of 900 people of users and the model proposed in this project.

Table 4.8: Nutrients satisfied per person and day

np
Energy Fat SF CH Fibre Proteins Salt Na

(kcal) (%) (g) (%) (g) (g) (%) (g) (%) (g) (%) (g) (mg)

1 1071 49 58 78 9 114 41 9 29 35 63 1.09 434
2 753 34 37 50 6 82 30 8 26 30 55 0.91 365
3 776 35 41 56 7 77 28 8 25 29 53 0.90 362
4 755 34 43 59 7 68 25 7 24 28 51 0.90 360
5 684 31 38 51 7 62 22 7 23 27 50 0.90 358
6 716 33 40 54 7 65 24 7 24 28 50 0.90 358

900 812 37 43 59 7 81 29 8 26 30 54 0.94 376
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Table 4.9: Satisfied energy, macronutrients and mineral

Energy(%) Fat(%) CH(%) Fibre(%) Proteins(%)

1 49 78 41 29 63
2 34 50 30 26 55
3 35 56 28 25 53
4 34 59 25 24 51
5 31 51 22 23 50
6 33 54 24 24 50

900 37 59 29 26 54

Energy Fat CH Fibre Proteins

Set1 Set2 Set3 Set4 Set5 Set6
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Figure 4.4: Energy, macronutrients and mineral % satisfaction depending on the set

We can observe that the nutritional requirements are not at all satisfied, and specially,
proteins satisfaction is poorly guaranteed.
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4.4 Analysis and Results

During this project we have analysed four different scenario trees. The scenario tree generation
considers a triplet random vector: ξω = (Wω, qω, hω), ω ∈ Ω, where |Ω| = |Ω1| · |Ω2| · |Ω3| =
2n · 2 · 3.

Ω1 represents the scenario subset for W , the nutrient matrix for second stage, where n is the
number of product pairs to consider because of its nutritional differences, according to the CV,
see Table 4.3, that is, n ∈ {2, 3, 4, 5}. Notice that they are equally likely.

Ω2 is the scenario subset for q, prices random vector, where a -10% and 10% growth rates
have been considered equally likely from a reference value. For those product pairs considered
due to its nutritional difference, see Table 4.2, and for the others, the mean values have been
considered.

Ω3 is the scenario subset for N , the random variable for the users number demanding this
service. Let us consider 800, 900 or 1000 users with probability {0.15, 0.7, 0.15}, respectively.

The, let us assume that those |Ω|3 scenarios with 900 users have probability 0.5n · 0.5 · 0.70
and the other 2

3 · |Ω| scenarios occur with probability 0.5n · 0.5 · 0.15.

Depending on n pair of products, we will consider

• |Ω| = 24, Chickpea and Maria Biscuits (n = 2)

• |Ω| = 48, Oil added (n = 3)

• |Ω| = 96, Rice added (n = 4)

• |Ω| = 192, Fried Tomato added (n = 5)

4.4.1 Solutions for Model 1.a.

Remember that the goal of Model 1.a. is to obtain the product distribution that minimizes
the cost in order to satisfy entirely the nutrition requirement and the model is (4.1)-(4.3),
(4.6). We have considered α1 = 0.5 and α2 = 0.7 for first stage nutritional bounds in all the
models. Depending on the number of scenarios, Table 4.10 shows the solutions obtained from
the Stochastic Problem (SP), Wait-and-See (WS) model (4.8), the Expected Value problem (4.9)
and Expected result of using EV solution (EEV) (4.10), and EVPI and VSS measures.

Table 4.10: Comparison of values EV, WS, SP, EEV, EVPI and VSS for Model 1.a.

EV WS SP EEV EVPI VSS
|Ω| = 24 30435 29659 31287 ∞ 1628 ∞
|Ω| = 48 30435 30934 32302 ∞ 1368 ∞
|Ω| = 96 30435 29642 31279 ∞ 1636 ∞
|Ω| = 192 30435 29642 31279 ∞ 1636 ∞
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Figure 4.5 shows ZωWS and ZωSP for Model 1.a. and |Ω| = 24.
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Figure 4.5: Optimal WS, SP and EEV solutions for |Ω| = 24 scenarios
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Notice that in all the cases it is really worthy to consider uncertainty. EEV is ∞ because
the solution provided by the Expeted Value is not implementable under all the set of scenarios.
Moreover, we can see that the case with more scenarios has higher EVPI. We can also remark
that with 96 and 192 scenarios, solutions are the same. This happens because the last product
branched, fried tomato, has no relevance.

Table 4.11 reveal the variables X + Y in the best and the worst scenarios accoding to each
model (|Ω| = 192), that is, those with minimum and maximum cost, respectively. It expresses
the amount of each product that must be purchased in the initial period of planning horizon
and in the middle of planning horizon, according to the brand. Since EEV problem is infeasible,
we have omited it from the following tables. Non-displayed products have not been selected.

Table 4.11: Total decisions for Model 1.a.
Model 1.a. XEV + YEV Xbest

WS + Y best
WS Xworst

WS + Y worst
WS XSP + Y best

SP XSP + Y worst
SP

Oil 1057 1051 1219 1018 83
Chickpea 6642 5697 5416 - 8448
Rice 3642 4471 2814 2227 2102
Cacao 3519 2137 5234 4351 -
Fried Tomato - - - - 5636

Z (e) 30435e 23003e 39985e 24653e 43999e

The selection of products according to their brands is as follows: for the best scenario in SP,
we will choose Oil ’Koipesol’, Chickpeas ’Eroski’, Rice ’La Cigala’ and Fried Tomato ’Eroski’,
for the worst, the opposite brands, for the best scenario in WS, it is chosen the same as in SP
except Oil and for the worst, the same as SP except Fried Tomato.

Figures 4.6 and 4.7 show the histograms obtained for the random variable Z (cost) where
WS and SP models are solved, respectively.

Zws

23000 28000 33000 38000 43000

WS=29642
EV=30435
SP=31279

Figure 4.6: Histogram of ZWS for Model 1.a.
Zsp

23000 28000 33000 38000 43000

WS=29642
EV=30435
SP=31279

Figure 4.7: Histogram of ZSP for Model 1.a.

Notice that means of the variable cost, Z, according to each problem WS, SP and EV, are
expressed by the vertical lines.
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In the Figure 4.7 we can observe that the inequalities of the Proposition 3.1 are strictly
achieved for minimization: WS < SP < EEV . This means that the problem WS offers
better results than SP, whereas EEV has the highest cost, in this case ∞, because it is not
implementable in the 2% of the scenarios. However, Proposition 3.2 is not satisfied, because
EV � WS, remember that objective coefficients q and recourse matrix W are not fixed. The
distance between both vertical lines, WS and SP, is the value of EVPI, the longer the distance
is, the more importance the uncertainty has.

The products distribution in the worst situation, that is, expensive prizes (+10%) and max-
imum users demand (1000 people) is expressed in Table 4.12. It guarantees to cover all the
nutrients required, with a total cost of 33148e.

Table 4.12: Monthly set of products for np people for Model 1.a.

Product Brand Unit Price(e)
Set

1 2 3 5 6 7

Oil Koipesol 1l 2.85 2 3 2 2 4 9
Chickpea Eroski 1000g 2.89 7 15 22 29 36 44
Rice La Cigala 1000g 2.05 4 7 11 14 18 21
Cacao - 1000g 2.09 4 9 13 17 22 26
Fried Tomato Eroski 400g 0.66 6 11 17 23 28 34

4.4.2 Solutions for Model 2.a.

Remember that the goal of Model 2.a. is to improve the association standard nutritional bounds,
without exceeding the initial budget and the model is (4.1)-(4.4), (4.6). We have considered Z0

equal to the budget given in Table 4.7 and β
j

at least 5% more than the highest value in Table

4.9, according to each nutrient except proteins, which will be satisfied completely. Since it is
considered the most important macronutrient in the diet. Table 4.13 shows the solutions ob-
tained from the SP, WS, EV and EEV models and EVPI and VSS measures.

Table 4.13: Comparison of values EV, WS, SP, EEV, EVPI and VSS for Model 2.a.

EV WS SP EEV EVPI VSS
|Ω| = 24 22474 22063 22439 ∞ 376 ∞
|Ω| = 48 22474 22151 22922 ∞ 771 ∞
|Ω| = 96 22474 21564 22299 ∞ 735 ∞
|Ω| = 192 22474 21564 22299 ∞ 735 ∞

As stated in previous models, Table 4.14 reveals the decision of the amount of each product
that must be purchased in the initial and middle of planning horizon. EV again is not always
implementable.
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Table 4.14: Total decisions for Model 2.a.
Model 2.a. XEV + YEV Xbest

WS + Y best
WS Xworst

WS + Y worst
WS XSP + Y best

SP XSP + Y worst
SP

Oil 1165 994 1053 1177 959
Pasta 16052 16565 12669 16160 23419
Chickpea 1849 1396 4205 1598 1909
Rice 2320 1422 3564 842 842

Z 22474 17384 27129 18322 27185

In Model 2.a. the best scenarios follow the same steps as the best scenario in SP for Model
1.a., and the worst, the same as the worst scenario in WS for Model 1.a.

The nutrients satisfaction by the representative set of 900 users of Sortarazi compared with
the one created by this Model 2.a. is shown in Figure 4.8.
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Figure 4.8: Comparison of nutrients requirement satisfaction for Model 2.a.

Since nutrients satisfaction have improved, the new recommendation of products supplyment
is shown in Table 4.15, with a total cost of 23276e, even smaller than the initial budget.

Table 4.15: Monthly set of products for np people for Model 2.a.

Product Brand Unit Price(e)
Set

1 2 3 4 5 6

Oil Koipesol 1l 2.85 1 3 4 6 7 8
Pasta - 500g 1.03 16 32 48 65 81 97
Chickpea Eroski 1000g 2.89 2 4 6 9 11 13
Rice La Cigala 1000g 2.05 3 6 9 12 15 19

54



Chapter 4. An Application in the Third Sector: Hazia Project

4.4.3 Solutions for Model 1.b.

Remember that the goal of Model 1.b. is to obtain the product distribution that minimizes
the cost and mantains a balanced diet satisfying all the nutrition requirement and the model
is (4.1)-(4.6). Although Models 1.a. and 2.a. reach our goals, we have realized that the new
product distribution would not imply a balanced diet, but the minimum cost for the nutritional
bounds fixed. So, we have decided to create another two models, with the same goals as before,
but adding two new constraints (4.5) and (4.6), where δi = 0.15 · δ0

i for X and δ′i = 0.10 · δ0
i

for Y ω. δ0
i is the percentage of each product and it is shown in Table 4.7. Notice that we have

chosen 0.15 and 0.10 in order to mantain feasibility.

For the sake of simplification, we are going to show only the analysis of all the problems for
the biggest scenario set, |Ω| = 192, in the balanced models. Table 4.16 summarizes the optimal
objective function for SP, WS, EV and EEV, and EVPI and VSS measures.

Table 4.16: Comparison of values EV, WS, SP, EEV, EVPI and VSS for Model 1.b.

EV WS SP EEV EVPI VSS
|Ω| = 192 36021 34542 36930 ∞ 2389 ∞

The total amount of products, that must be provided in the best and worst situations, is
given in Table 4.17. Since some ZEEV problems are infeasible, we have omited EEV from the
solutions.

Table 4.17: Best and worst cases depending on the problem for Model 1.b.

Model 1.b. XEV + YEV Xbest
WS + Y best

WS Xworst
WS + Y worst

WS XSP + Y best
SP XSP + Y worst

SP

Oil 949 870 1024 885 875
Pasta 332 286 281 269 322
Chickpea 5786 7133 7080 5184 6859
Maria Biscuits 112 81 78 70 105
Rice 1166 1334 1633 784 1837
Cacao 6047 4960 6376 5748 5757
Tune 1625 417 1129 1008 1523
Sardine 112 81 78 70 105
Fried Tomato 1638 142 4325 4289 16883
Whole Milk 280 203 195 174 263
Coffe 28 89 19 17 26

Z(e) 36021e 26981e 53709e 29802e 52207e

The selection of products according to their brands follows the same steps as Models 1.a.
and 2.a., except for Fried Tomato, that it is always chosen the first brand.

Finally, the new recommendation of products supplyment in the worst situation is shown in
Table 4.18, with a total cost of 41641e.
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Table 4.18: Monthly set of products for np people for Model 1.b.

Product Brand Unit Price(e)
Set

1 2 3 4 5 6

Oil Koipesol 1l 2.85 1 2 3 4 4 5
Pasta - 500g 1.03 - 1 1 1 2 2
Chickpea Eroski 1000g 2.89 7 14 21 27 34 41
Maria Biscuits Gullon 200g 0.46 - - - - 1 1
Rice La Cigala 1000g 2.05 2 4 6 7 9 11
Cacao - 1000g 2.09 6 12 17 23 29 35
Tuna - 80g 0.75 2 3 5 6 8 9
Sardine - 115g 1.85 - - - - 1 1
Fried Tomato Eroski 390g 0.66 17 34 51 68 84 101
Whole milk - 1l 0.95 - 1 1 1 1 2

4.4.4 Solutions for Model 2.b.

Once again, we will compare all the situations according to the biggest number of scenarios for
Model 2.b., considering that the budget is 27200e.

In Table 4.19 is given the optimal objective function for each problem: SP, WS, EV and
EEV and EVPI and VSS measures.

Table 4.19: Comparison of values EV, WS, SP, EEV, EVPI and VSS for Model 2.b.

EV WS SP EEV EVPI VSS
|Ω| = 192 23305 22760 22998 ∞ 239 ∞

The total amount of products, that must be provided in the best and worst situations, is
given in Table 4.20. Since some ZEEV problems are infeasible, we have omited EEV from the
solutions.

Table 4.20: Best and worst cases depending on the problem for Model 2.b.

Model 2.b. XEV + YEV Xbest
WS + Y best

WS Xworst
WS + Y worst

WS XSP + Y best
SP XSP + Y worst

SP

Oil 58 678 58 542 83
Pasta 17884 15530 16930 15506 19295
Chickpea 951 1505 1803 1356 1118
Maria Biscuits 8974 144 12468 1875 10718
Rice 115 115 331 122 167
Cacao 29 29 29 36 42
Tune 1675 1675 1675 1778 2420
Sardine 115 115 115 123 167
Fried Tomato 202 202 202 215 292
Whole Milk 289 289 289 307 417
Coffe 29 29 29 31 42

Z(e) 21555e 18353e 24952e 18542e 27076e

56



Chapter 4. An Application in the Third Sector: Hazia Project

The selection of products according to their brands follows the same steps as Model 1.b.

Finally we are going to compare the nutrients satisfied by the representative set of 900 people
of Sortarazi with the one created by this application in Figure 4.9.
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Figure 4.9: Comparison of percentages of nutrients satisfied for Model 2.b.

Since nutrients satisfaction have improved, the new recommendation of products supplyment
is shown in Table 4.21, with a total cost of 23283e.

Table 4.21: Monthly set of products for np people for Model 2.b.

Product Brand Unit Price(e)
Set

1 2 3 4 5 6

Oil Koipesol 1l 2.85 1 2 3 3 4 5
Pasta - 500g 1.03 16 31 47 62 78 93
Chickpea Eroski 1000g 2.89 3 6 8 11 14 17
Maria Biscuits Gullon 200g 0.46 2 4 6 8 9 11
Rice La Cigala 1000g 2.05 1 1 2 3 3 4
Tuna - 80g 0.75 2 4 6 8 10 11
Sardine - 115g 1.85 - - - 1 1 1
Fried Tomato Eroski 390g 0.66 - - 1 1 1 1
Whole milk - 1l 0.95 - 1 1 1 2 2
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4.5 Conclusions and suggestions

In this project we have had two main goals: (1) obtain the product distribution that minimizes
the cost in order to satisfy entirely the nutrition requirement and (2) obtain the product dis-
tribution which improves the association standard nutritional bounds, without exceeding the
initial budget. We have reached our goals with the first two models, however, owing to the
simplicity of the previous solutions, the few variety of providing products, we have decided to
design two more models.

Let us compare the four models previously analysed, checking the last product distribution
in Tables 4.12, 4.15, 4.18 and 4.21.

Model 1.a. Diet based in chickpeas and rice.

Model 2.a. Although it is provided some chickpeas and rice, this diet is basically based on
pasta.

Model 1.b. Above all it is supplied chickpeas, rice, fried tomato and cacao. However, big
families reach a bit more variety.

Model 2.b. It is given chickpeas and tune, among others, but above all it is provided pasta.

Nutritional satisfaction and the budget of each model are summarized in Table 4.22.

Table 4.22: Nutritional satisfaction and budget of generated models

Energy CH Fibre Proteins Budget
(%) (%) (%) (%) (e)

Model 1.a. 100 107 263 116 33148
Model 2.a. 89 105 102 98 23276
Model 1.b. 100 109 266 116 41641
Model 2.b. 74 83 110 95 23283

If we compare models according to non or balanced diet, that is, Model 1.a. with 1.b., and
2.a. with 2.b., we realize that the variety increases the price, but not the nutrional satisfaction
(at least of the nutrients that we have analysed). And if we compare models according to
objectives, that is, Model 1.a. with 2.a., and 1.b. with 2.b. we can consider that pasta is a
cheap and satiating product and chickpeas has a lot of fibre.

Another way to have meal variety is altering standard deviation of the products amount,
see [2]. It would be needed a new constraint that changes the problem from being linear to
non-linear optimization.

What we want to express with this is that the variety is expensive, but maybe the minimum
requirement satisfaction not that much. To sum up, we can say that a basic healthy diet is
based on chickpeas and rice or pasta, as it is well known in social dinings.
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Chapter 5

Conclusions

In this report basic concepts of the Stochastic Optimization have been studied. This discipline
belongs to the Applied Mathematical area of Operations Research and Management Science,
and deals with mathematical models under uncertainty.

First of all, we have defined and compared deterministic and stochastic programming in
order to show the relevance of the latter. It is known that most of the Optimization problems
in the real life present uncertain data and this is why Stochastic Programming is an alternative
to model them. This project is focused in two-stage Stochastic Programming, where first stage
decisions must be taken here-and-now, before uncertainty is revealed, and second stage-ones
after it, providing decisions for the set of scenarios. There are explained some basic properties
such as probability spaces and random variables, decisions and recourses and non-anticipativity
principle. Stochastic Problems, satisfy explicitly or implicitly this principle, that is, there is a
unique first-stage decision vector, X, whereas there are |Ω| second-stage decisions, Y ω, one for
each scenario. The problem is feasible for each scenario and X is optimal over all scenarios,
since all the first stage decisions are made simultaneously.

Appart from the two-stage Stochastic Problem, some other alternative models are described.
Wait-and-See model, WS, is an approximation based on the perfect information and it is equiv-
alent to the SP relaxing anticipativity principle. It is also defined the Expected Value problem,
EV, a simplification by the replace of all random variables with the expected value. If we fix
the optimal solution of the first-stage in SP, the Expected result of using Expected Value, EEV
is reached.

We have designed expressly a diet problem example in three different stochasticity cases in
order to explain all the theorical models exposed and compare them. We have realized that it is
not easy to get explanatory solutions with a simplified problem. In other words, the examples
given in the literature books can contain painstakingly selected data.

According to the introduced models, two measures have been defined: the expected value of
perfect information (EVPI) and the value of stochastic solutions (VSS). EVPI is the maximum
price that the decision maker should pay in order to know the uncertainty in advance and it is
defined as the difference between WS and SP, whereas VSS is the real cost of ignoring it and it is
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defined as the difference between EEV and SP. Based on these measures, we have concluded that
sometimes is worthwhile to calculate the stochastic solution, but we cannot know it previously.
Main inequalities of the measures have been verified. Proposition 3.1, WS ≤ SP ≤ EEV has
been checked with the three cases of the diet example, metioned before. The third case is the
only one that fulfills the inequality of the Proposition 3.2, EV ≤ WS, because recourse matrix
and objective coefficients are fixed. Therefore, we can confirm that it is absolutely inadecuate to
trust on the solution of the expected value problem, EV, since it is expected a better value than
the one under perfect information, WS. We have also studied some relations between EVPI and
VSS. As it can be seen in the definition, EVPI and VSS will never be negative, see Proposition
3.3. If we verify Proposition 3.4, EV PI ≤ EEV − EV and V SS ≤ EEV − EV , for the three
cases, as we expected, the third one is the unique that satisfies it.

After theory explanation, a real problem application has been considered. Motivated on
the malnutrition, poverty and wasted food all around the world, Spain included, we realized
that it would be interesting to apply maths in the third sector, also known as social economy.
In particular, to optimize the food distribution in a local Food Bank, managed by a nonprofit
organization. We have modeled a two-stage stochastic Diet Problem with 24, 48, 96 and 192
scenarios. A general model have been described with two different goals: (1) obtain the product
distribution that minimizes the cost in order to satisfy entirely the nutrition requirement, with
or without balanced diet and (2) improve the association standard nutritional bounds, without
exceeding the initial budget and with or without balanced diet. Once data from the food
storehouse was taken, we have decided which pair of products are nutritionally more different
in order to create the scenario tree. In all the cases solutions provided by the expected value
problem have been infeasible in some of the scenarios. Therefore they get the worst cost, that is,
provided decisions are not implementable. This means that in all the cases it is really worthy to
consider uncertainty. Since reporting 192 different decisions obtained for each model, SP, WS,
EV and EEV would be too long, the best and the worst solutions of both models have been
shown. After that, the food distributions depending on families have been summarized. The
difference of the nutritional requirement satisfied, between their product sets and our results are
remarkable. The optimal solutions provide few meal variation. After, the solutions of the four
models have been compared. As it is well known in hostels, canteens or social restaurants, rice
with legumes is a full nutritional meal. It is logical that the results depends on the goal. For a
balanced diet, also a constraint with standard deviation bounded could be added, see [2], but
the linear problem would change to a quadratic one. A varied set of products increase quite a
lot the cost.

To conclude, we would like to remark that we just have given some suggestions thanks to this
simplified application results analysis, considering some of the nutrients needed in a healthy diet.
However, from now on, this application will be given over to specialists: nutricionists, health
professional, social services and the people in charge of association, among others; obviously, in
order to help in the decision making, since they have the final say.

60



Appendix A

GAMS CODE: Examples

The GAMS codes of examples in Chapters 2 and 3, for Cases 1, 2 and 3, can be downloaded
from https://ehubox.ehu.eus/index.php/s/8LP7rmcqvb5w1T3.

The code of the program examples.gms obtains the solutions of the deterministic problem
(2.2) and SP problem (2.4)-(2.7) in Chapter 2, and WS (3.2), EV (3.6) and EEV (3.11) models
of the examples in Chapter 3. Moreover, EVPI (3.15) and VSS (3.16) measures are computed.
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Appendix B

GAMS CODE: Application in the
third sector

The GAMS codes of Model 1.a. for |Ω| = 192 in Chapter 4 can be download from the link
https://ehubox.ehu.eus/index.php/s/hvljPEjbhibANAl.

The code of the program application.gms obtains the solutions of the SP problem (4.1)-(4.6)
in Chapter 4, and WS (4.8), EV (4.9) and EEV (4.10) models of the application of Model 1.a.
for |Ω| = 192 in Chapter 4. Moreover, EVPI and VSS measures are computed.
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