

Unibertsitate Masterra

Konputazio Ingeniaritza eta Sistema Adimentsuak

Konputazio Zientziak eta Adimen Artifiziala Saila –

Departamento de Ciencias de la Computación e Inteligencia Artificial

Master Thesis

An investigation of imputation methods for
discrete databases and multi-variate

time series

Unai Garciarena Hualde

Advisor:

Roberto Santana Hermida

Department of Computer Science and Artificial Intelligence
Faculty of Informatics

September, 2016

KZAA
/CCIA

K
I
S
A

I
C
S
I

Master Degree Thesis:

An investigation of imputation methods for discrete
databases and multi-variate time series

Unai Garciarena Hualde

Advisor: Roberto Santana
Intelligent Systems Group,

Department of Computer Science and Artificial Intelligence,
University of the Basque Country UPV/EHU,

Paseo Manuel de Lardizabal, 1
Donostia, 20018 Gipuzkoa, Spain
ugarciarena001@ikasle.ehu.es

Abstract. When it comes to information sets in real life, often pieces of the whole set

may not be available. This problem can find its origin in various reasons, describing

therefore different patterns. In the literature, this problem is known as Missing Data.

This issue can be fixed in various ways, from not taking into consideration incomplete

observations, to guessing what those values originally were, or just ignoring the fact

that some values are missing. The methods used to estimate missing data are called

Imputation Methods.

The work presented in this thesis has two main goals.

The first one is to determine whether any kind of interactions exists between Missing

Data, Imputation Methods and Supervised Classification algorithms, when they are

applied together. For this first problem we consider a scenario in which the databases

used are discrete, understanding discrete as that it is assumed that there is no relation

between observations. These datasets underwent processes involving different combina-

tions of the three components mentioned. The outcome showed that the missing data

pattern strongly influences the outcome produced by a classifier. Also, in some of the

cases, the complex imputation techniques investigated in the thesis were able to obtain

better results than simple ones.

The second goal of this work is to propose a new imputation strategy, but this time we

constrain the specifications of the previous problem to a special kind of datasets, the

multivariate Time Series. We designed new imputation techniques for this particular

domain, and combined them with some of the contrasted strategies tested in the pre-

vious chapter of this thesis. The time series also were subjected to processes involving

missing data and imputation to finally propose an overall better imputation method.

In the final chapter of this work, a real-world example is presented, describing a wa-

ter quality prediction problem. The databases that characterized this problem had

their own original latent values, which provides a real-world benchmark to test the

algorithms developed in this thesis.

Glossary. Missing Data (MD), Imputation Method (IM), Missing Data Type
(MDT), Time Series (TS), Supervised Classification (SC), Missing Completely
At Random (MCAR), Missing At Random (MAR), Missingness that depends on
unObserved Values (MUOV), Missingness that depends on Its own Value (MIV),
Expectation-Maximization (EM), Multiple Imputation by Chained Equations
(MICE), Hot Deck (HD), Database (DB), Last Value Carried Forward (LVCF),

Keywords: Missing Data, Imputation, Supervised Classification, Time Series

Acknowledgments

These paragraphs do not pretend to be a standard acknowledgments section.
There has been a massive amount of people who has made an indispensable
contribution towards me throughout my life, to get me who and where I am
right now. For this reason, i cannot start mentioning names, first because it
would cost me hours remembering each and every person, and second because
I would forget to mention some names for sure, and that simply would not be
fair.

For this reason, I have decided that these acknowledgments will be a self-service-
like acknowledgments. However, I feel the need to thank some people particularly.

First of all I would like to thank my advisor in this thesis, Roberto in represen-
tation of all the people who has believed in me. Particularly, Roberto has helped
me to take this thesis to an end, something that I could not have been able to
do on my own, or without the help of such a great director. Also, he has made
me much more confident on my capabilities, more than I had ever been.

On second place, but not least important, I would like to thank my mom, Irene,
in representation of all the people who has supported me. That person who
never, ever lets me down, and has done everything on her power to help me.

These groups are not exclusive, as there are lots of people that belong in both
of them.

As I said, anyone who believes that they have a place in any of the groups may
have my gratitude.

I would like also to thank the SIRENE R© project, developed by the Rivages Pro
Tech company, for providing a real-world example to enrich this work.

2

Table of Contents

Master Degree Thesis: . 1
1 Unai Garciarena Hualde

CHAPTER 1

Introduction

1.1 Objectives . 12
1.2 Basic Concepts . 12

1.2.1 DataBase . 12
1.2.2 Time Series . 13
1.2.3 Missing Data . 13
1.2.4 Mutual Information . 16

1.3 Classification . 17
1.4 Supervised Classification in Time Series 17
1.5 Imputation Methods . 18
1.6 Research motivation . 21

CHAPTER 2

An investigation of the relationship between
Missing Data Types, Imputation Methods and

Supervised Classification in Discrete Data

2.1 Objectives . 23
2.2 Related work . 23
2.3 Experimental setup . 26

2.3.1 Description of the databases investigated 26
2.3.2 Strategies for generating Missing Data 27

3

2.3.2.1 Missing completely At Random 28
2.3.2.2 Missing At Random 28
2.3.2.3 Missingness that depends on its own Value . . . 29
2.3.2.4 Missingness that depends on Unobserved Values 29

2.3.3 Imputation Methods . 30
2.3.4 Supervised Classification methods 32

2.4 Experiments . 34
2.4.1 Introduction . 34
2.4.2 Goal . 34
2.4.3 Design . 35
2.4.4 Analysis . 35

2.4.4.1 Overall Missing Data Types behavior 35
2.4.4.2 Overall Imputation Methods behavior 37
2.4.4.3 Imputation Method behavior for each Missing

Data Type . 39
2.4.5 Interactions between Missing Data Types, Imputation

Methods, and Classifiers 41
2.5 Conclusions . 44

CHAPTER 3

New Imputation Methods for Time Series Based
on Regression and Temporality

3.1 Objectives . 45
3.2 Related Work . 46

3.2.1 Social Science . 48
3.2.2 DNA microarray gene expression data analysis 48
3.2.3 Sensor Data analysis . 50

3.3 Study of different Imputation Methods for Time Series with
Missing Data . 51
3.3.1 Baseline Imputation Methods 52

3.3.1.1 Interpolation . 52
3.3.1.2 Seasonally Splitted Imputation Method 53
3.3.1.3 Standard Imputation Method 54
3.3.1.4 Regression . 54
3.3.1.5 Polished Regression 54

3.3.2 Advanced Imputation Methods 56
3.3.2.1 Interpolation edge smoothed polished regression 56
3.3.2.2 Interpolation intermittently smoothed polished

regression . 59
3.3.2.3 Random based Polished Regression 61

4

3.3.2.4 Random based Interpolation intermittently smoothed
polished regression 61

3.3.2.5 Seasonally Splited-Kalman model-based Regres-
sion . 62

3.3.2.6 Seasonally Splited-Kalman model-based Pol-
ished Regression 62

3.4 Experiments . 62

3.4.1 Experimental Settings . 64

3.4.2 Data Base benchmark . 64

3.4.3 Algorithm to add missing data to the time series 65

3.4.4 Metrics . 68

3.4.5 Experimental Results . 69

3.4.5.1 Short Missing Segments 70

3.4.5.2 Long Missing Segments 72

3.4.5.3 Short Time Series Distance 74

3.4.5.4 ARIMA-LCP distance 74

3.4.5.5 Integrated Periodogram based distance 74

3.4.5.6 Full Table . 78

3.4.6 Computational time . 78

3.4.7 Global analysis of the IMs 78

3.4.8 Analysis of the results . 79

3.5 Conclusions . 81

CHAPTER 4

Advanced Imputation Methods for a real-world
time series prediction problem

4.1 Objectives . 83

4.2 SIRENE R© Project . 83

4.2.1 Event detection and Missing Data problem in SIRENE R©

database . 84

4.2.2 Database Description . 85

4.2.3 Missing Data Description 85

4.3 Imputation Method selection . 93

4.4 Imputation . 93

4.4.1 Goal and methodology . 93

4.4.2 Experimental Framework 94

4.4.3 Results . 94

4.5 Conclusions . 95

5

CHAPTER 5

Conclusions

5.6 Summary . 97
5.7 Conclusions . 98
5.8 Future Work . 98

6

List of Figures

1.1 Multiple imputation diagram. 21

2.1 The process DBs undergo. 36
2.2 Frequency of the IMs in the configuration with highest (High)

and lowest (Low) classification accuracy. 42
2.3 Amount of IM-Classifier pairs present in the High accuracy section. 43

3.1 Three TSs with MD. 46
3.2 Two stage Regression Imputation example. In the first step

MICE is applied. For the second step, each TS is reimputed.
To reimpute the values highlighted in green, the values high-
lighted in red are considered as observed. 55

3.3 Polished Regression Imputation visual representation. This di-
agram shows graphically the information shown in Algorithm
3.2. The Regression hexagon performs Regression for each TS
with MD. 57

3.4 Interpolation intermittently smoothed polished regression step
by step example. 63

3.5 Synthetic Multivariate TS (5 TSs). 66
3.6 First Multivariate TS in TSdist package (6 TSs). 66
3.7 Second Multivariate TS in TSdist package (100 TSs). 66
3.8 Third Multivariate TS in TSdist package (50 TSs). 66
3.9 Four examples of MD introduction in TSs. 68
3.10 Scores obtained by IMs on both long and short MDTs introduced. 78
3.11 Heatmap origined from Table 3.15. A dark color represents a

high number in the table. An IM with a dark row and a light
column would have produced good results. 79

3.12 Time consumed by different components involved in top scoring
IMs. 80

4.1 Example 1 MD distribution. 86
4.2 Example 1 MD distribution (condensed). 86
4.3 Example 2 MD distribution. 87
4.4 Example 2 MD distribution (condensed). 87
4.5 Example 3 MD distribution. 87
4.6 Example 3 MD distribution (condensed). 87

7

4.7 MD segment length distribution in all the three examples ex-
posed in this work, grouped. 88

4.8 MD segment length distribution in all the three example ex-
posed in this work, individually. 88

4.9 Time series of all variables in Example 1. Missing data is shown
with red lines. 90

4.10 Time series of all variables in Example 2. Missing data is shown
with red lines. 91

4.11 Time series of all variables in Example 3. Missing data is shown
with red lines. 92

8

List of Tables

1.1 Table-structured Medical DB. 12

1.2 DB containing Missingness Completely At Random. 15

1.3 DB containing Missing At Random MDT. In this case, the
causative variable would be Sex, and the key value, M. 15

1.4 DB containing Missingness depending on unobserved Variables. . 16

1.5 DB containing Missingness depending on Its Value itself. 16

2.1 Description of the original datasets used to generate the bench-
mark. 27

2.2 Logistic Regression classifiers with norms L1 and L2. 33

2.3 Parameters for the SVM based classifiers. 33

2.4 Parameters for the Gradient Boosting Strategy classifier. 33

2.5 Parameters for the Random Forest and Decision Tree classifier. . 34

2.6 Average accuracies for each MDT. 36

2.7 Statistical differences between MDTs for each DB. “3” repre-
sent that significant differences were found, while “7” represents
the opposite. 37

2.8 Results of the statistical tests on the difference between the
performance of the IMs. 38

2.9 Table 2.8 results filtered by MAR MDT. 39

2.10 Table 2.8 results filtered by MIV MDT. 39

2.11 Table 2.8 results filtered by MuOV MDT. 39

2.12 Table 2.8 results filtered by MCAR MDT. 40

3.1 Table sumarizing related work on different methods of deal-
ing with MD in TSs (majorly IMs). The table represents the
authors, references where the work was published, application
domain, characteristics of the TSs included in the DBs, and the
characteristics of the MD. 47

3.2 Complementary table to the information shown in Table 3.1.The
table relates references where the work was published, IMs used,
and findings. 47

3.3 DBs used to investigate the behavior of the different IMs pro-
posed in this chapter. 65

9

3.4 Results of the statistical tests on the difference between the
performance of the IMs in the TS with short missing segments
using STS distance. 71

3.5 Results of the statistical tests on the difference between the
performance of the IMs in the TS with short missing segments
using the ARIMA-LCP process distances. 71

3.6 Results of the statistical tests on the difference between the
performance of the IMs in the TS with short missing segments
using Integrated Periodogram based distance. 72

3.7 Results of the statistical tests on the difference between the
performance of the IMs in the TS with short missing segments
considering all three dissimilarity measures. 73

3.8 Results of the statistical tests on the difference between the
performance of the IMs in the TS with long missing segments
using STS distance. 73

3.9 Results of the statistical tests on the difference between the
performance of the IMs in the TS with long missing segments
using the ARIMA-LCP process distances. 74

3.10 Results of the statistical tests on the difference between the
performance of the IMs in the TS with long missing segments
using Integrated Periodogram based distance. 75

3.11 Results of the statistical tests on the difference between the
performance of the IMs in the TS with long missing segments
considering all three dissimilarity measures. 75

3.12 Results of the statistical tests on the difference between the
performance of the IMs in the TS with long and short missing
segments using STS Distance. 76

3.13 Results of the statistical tests on the difference between the
performance of the IMs in the TS with long and short missing
segments using ARIMA-LCP Distance. 76

3.14 Results of the statistical tests on the difference between the
performance of the IMs in the TS with long and short missing
segments using Integrated Periodogram based distance. 77

3.15 Results of the statistical tests for all TS distances and MD lengths. 77

4.1 All the parameters that SIRENE R© stations can record along
with their maximum and minimum feasible values. 84

4.2 Characteristics of the databases available and used for our analysis. 85
4.3 Results obtained by both Random and MICE Regression Im-

putation in the two Example DBs. 94

10

Chapter 1

Introduction

Missing Data (MD), one of the most relevant problems in data quality nowadays,
is a term used to refer to those attributes in an observation for which we have
no value recorded. This could happen for various reasons, such as; a sensor not
working properly, a worker not typing results in a program, or simply a person’s
refusal to answer a question. This issue finds a trivial solution in case deletion,
which simply omits observations with missing values. However, when data is
meant to be used in a machine learning task, this loss of information may not
be acceptable.

This scenario raises a situation in which information wastage is not an option
and more advanced strategies are required. One of the most common solutions
for this problem are Imputation Methods(IM) [44]. These algorithms attempt to
compute an accurate estimation of the unrecorded values, using the rest of the
information in the database (DB).

As it will be discussed, an enormous variety of IMs have been developed. Roughly,
IMs can be classified according to their computational complexity, since they may
simply derive the value from a missing record using statistics from known values
(e.g. the mean of a feature), or follow more complex strategies, i.e. Multiple
Imputation [59].

A particular instance of the imputation problem needs to be addressed when
the DB possesses certain characteristics, i.e. Time Series (TS) DBs. The main
characteristic of these information sets is that the relation between observations
differ depending on the distance separating them. This singularity invites IMs
to contemplate the information available in near time-stamps in higher consid-
eration rather than the one found in far ones, in temporal terms.

This thesis first investigates the effect of IMs over machine learning tasks, such
as supervised classification over discrete DBs (databases in which it is assumed
that there is no relation between observations), depending on the distribution
of the missing data. Then, the domain of TS DBs is addressed, benefiting from
the experience obtained in the discrete DB part. Finally, a single IM is proposed
and used in a real world problem.

11

1.1 Objectives

This chapter will cover the task of placing the reader in a situation from which
the rest of the thesis is understandable. First, the basic concepts are introduced.
Then, machine learning concepts are illustrated. Finally, we can find the MD
problem characterization.

1.2 Basic Concepts

1.2.1 DataBase

A DB is a collection of related data, considering data as known facts that can
be recorded and have implicit meaning [14]. These recordings should attend to
the following two restrictions:

1. A DB should be related to a certain field and all the data it contains should
provide us with information (only) about it.

2. A DB must be structured and have a coherent order, which will help us
gather its information.

A DB can be any size and as complex as imaginable. Also, it can be structured
in many different ways.

We generated a fictional medical DB example in order to ease the understanding
of this basic concept. For this instance, we will use a table-like DB (Table 1.1).
This fictional dataset has been created simulating a telephonic poll, in which the
participants were asked about the results they obtained from their last blood
test.

Table 1.1: Table-structured Medical DB.
Age

(years)

Weight

(kg)

Sex

(M, F)

Hemoglobin

(g/dL)

Leukocytes

(u/mcL)

Platelets

(u/mcL)

Glucose

(mg/dL)

Cholesterol T.

(mg/dL)

Calcium

(mg/dL)

Sodium

(mEq/L)

23 74 M 15.3 8.700 136.000 80 174 9.9 145

25 92 F 13.4 11.300 146.000 113 247 8.3 150

49 81 F 16.5 6.600 147.000 92 145 8.7 136

46 104 M 13.1 12.100 148.000 116 264 8.1 143

15 60 F 14.4 4.500 145.000 80 185 9 143

53 83 M 14.2 7.300 145.000 93 194 9.8 147

27 94 F 13.1 5.400 85.000 123 238 8.7 151

52 100 M 17.9 11.900 144.000 126 8.7 8.3 154

12

The rows of Table 1.1 represent the observations of the structured DB since each
one represents an observation of a different individual. Columns will be men-
tioned as features of those observations, which will be divided into two classes,
namely, variables and attributes. We will use variables when we focus on features
containing numeric values, commonly real ones. And attributes in case a column
encloses discrete values.

Looking for correspondence between this example and the rules we mentioned
before, the particular field would be blood test results, it is structured as a table,
and it respects the same feature order for all the different observations.

1.2.2 Time Series

TS are successions of observed values for a certain variable referred to different
moments [15]. The main difference between a TS and a traditional, discrete DB
is that in a TS, observations follow a chronological order, which strengthens the
relationship among close observations, unlike discrete ones, in which observation
closeness mean nothing.

A TS can be defined as a sequence of variable values, ordered by the time they
were measured:

TS = (ti, xi), i = 1, 2, ..., N

where we assume that each measurement (xi) corresponds to a timestamp (ti),
which may take positive and ascending real values [50]. Even if time is a continu-
ous variable, while working with this problem, it will be discretized, and referred
as timestamp.

The TS analysis problem can be approached in two different ways:

1. Univariate approach: This uses a feature’s historic values in order to make a
model that describes its past behaviour. It may be used to make predictions,
using its projection.

2. Multivariate approach: In this case, relations between two or more features
will be exploited. With more than a single piece of information for each
timestamp, regression models can be calculated, which will presumably give
a more accurate prediction.

As it will be explained later in this work (Chapters 3 and 4), this work will treat
DBs with multiple variables, which leads us to the possibility of approaching the
problem from a multivariate approximation.

1.2.3 Missing Data

Missing Data (MD) can be caused by many reasons, and may follow different
patterns. Recognizing these distribution types will probably be very important

13

for a later treatment. Here, we present the different types of MD, according to
previous related work [5] [22] [24] [8] [44]. After its formal introduction, examples
will be presented using the same synthetic medical DB described in Table 1.1.

– Missingness Completely at Random (MCAR): When a DB’s lost values fol-
low no pattern, in other words, measurements fail randomly. This type of
MD presumably affects all the features equally, which uniformly distributes
the information loss between them. If the amount of MD does not reach
high percentages, case deletion could be a reasonable option to clear a DB
from missing values. However, following this strategy may not be a ideal
when machine learning techniques are set to be applied. IM could have a
determinant effect in this task.

– Missingness At Random (MAR): MD is cataloged as MAR when a pattern
can be identified, i.e., we can find a common factor in all the observations
with missing values. For example, when a certain variable (with no MD) takes
extreme values for an observation, two other variables tend to be missing for
that same observation. A visual example can be found in Table 1.3 where
we can come up with an explanatory rule, as all the cases with missing
values are from males under 25 years old. Since all the missing records are
concentrated in certain features, this Missing Data Type (MDT) may harm
our data depending on the amount of information they hold.

– Missingness not at Random (MNAR): A dataset named to have MNAR
values contains some lost observations that follow a pattern, but it results
to be unidentifiable. This last kind of MD can be divided into two types:

• Missingness that depends on unobserved variables (MUOV): It is very
similar to MAR, but in this case the explanatory attributes mentioned
above have not been collected. For example, in Table 1.4 we could have
asked some extra questions, such as “Are you concerned about your
health?” or “When was the last time you suffered a disease that required
a blood test?”. Possibly the most common reasons for which a person
would get a test of this kind. Regarding classification and IMs, similar
results to MAR are expected in both areas.

• Missingness that depends on its value itself (MIV): This type of MD
refers to the case where the loss of an attribute observation depends on
its own value. MIV could have many causes, from a machine being un-
able to represent a value to a worker not knowing how to introduce it.
A simple example can be found in Table 1.5, in which we can deduce
that the missing values will probably be high in all cases. High values
in Cholesterol, Glucose and Sodium are common in people with high
weight/age. These individuals will possibly not be at ease with them-
selves, and just refuse to give that information away. MIV may be the

14

most harmful MDT, since basically all the information provided by a
variable could be lost. IMs will probably offer poor results in case of
a high percentage of MD, since missing values are usually focused in a
small amount of features. However, if the variable does not contain im-
portant information about the class in a Supervised Classification (SC)
problem, it probably won’t harm its results.

Table 1.2: DB containing Missingness Completely At Random.
Age

(years)

Weight

(kg)

Sex

(M, F)

Hemoglobin

(g/dL)

Leukocytes

(u/mcL)

Platelets

(u/mcL)

Glucose

(mg/dL)

Cholesterol T.

(mg/dL)

Calcium

(mg/dL)

Sodium

(mEq/L)

23 74 M 15.3 8.700 136.000 ? 174 9.9 145

25 ? ? 13.4 11.300 ? 113 247 ? 150

? 81 F 16.5 6.600 147.000 92 145 8.7 136

46 ? M ? 12.100 148.000 ? 264 8.1 ?

15 60 F 14.4 4.500 145.000 80 ? 9 143

53 83 M 14.2 7.300 ? 93 194 9.8 147

27 94 ? 13.1 5.400 85.000 123 ? 8.7 151

? 100 M 17.9 ? 144.000 126 8.7 8.3 154

Table 1.3: DB containing Missing At Random MDT. In this case, the causative
variable would be Sex, and the key value, M.

Age

(years)

Weight

(kg)

Sex

(M, F)

Hemoglobin

(g/dL)

Leukocytes

(u/mcL)

Platelets

(u/mcL)

Glucose

(mg/dL)

Cholesterol T.

(mg/dL)

Calcium

(mg/dL)

Sodium

(mEq/L)

23 ? M ? ? ? ? ? ? ?

25 92 F 13.1 11.300 85.000 113 247 8.7 150

35 81 F 16.5 6.600 147.000 92 145 8.7 136

17 57 M ? ? ? ? ? ? ?

46 100 M 17.9 12.100 148.000 126 264 8.1 154

15 60 F 14.4 4.500 145.000 80 120 9 143

53 83 M 14.2 7.300 133.000 93 194 9.8 147

24 79 M ? ? ? ? ? ? ?

15

Table 1.4: DB containing Missingness depending on unobserved Variables.
Age

(years)

Weight

(kg)

Sex

(M, F)

Hemoglobin

(g/dL)

Leukocytes

(u/mcL)

Platelets

(u/mcL)

Glucose

(mg/dL)

Cholesterol T.

(mg/dL)

Calcium

(mg/dL)

Sodium

(mEq/L)

23 74 M 15.3 8.700 136.000 83 174 9.9 145

25 92 F 13.1 11.300 85.000 113 247 8.7 150

35 81 F 16.5 6.600 147.000 92 145 8.7 136

46 ? M ? ? ? ? ? ? ?

15 ? F ? ? ? ? ? ? ?

53 83 M 14.2 7.300 133.000 93 194 9.8 147

Table 1.5: DB containing Missingness depending on Its Value itself.
Age

(years)

Weight

(kg)

Sex

(M, F)

Hemoglobin

(g/dL)

Leucocites

(u/mcL)

Platelets

(u/mcL)

Glucose

(mg/dL)

Cholestherol T.

(mg/dL)

Calcium

(mg/dL)

Sodium

(mEq/L)

23 74 M 15.3 8.700 136.000 83 174 9.9 145

25 ? F 13.1 11.300 85.000 113 247 8.7 150

35 81 F 16.5 6.600 147.000 92 145 8.7 136

? ? M 17.9 12.100 148.000 ? ? 8.1 154

15 60 F 14.4 4.500 145.000 80 120 9 143

? 83 M 14.2 7.300 133.000 93 194 9.8 147

1.2.4 Mutual Information

The amount of MI between two random variables (X and Y) measures the un-
certainty reduction in X when Y’s value is known:

I(X,Y) = H(X)−H(X|Y)

Being H the Shannon’s entropy of a variable:

H(X) = E(I(X)) = −
n∑
i=1

p(xi)log2p(xi)

This measure is used later, in Chapter 3, when it enables us to reduce the amount
of information used by a proposed IM, thus, improving its performance in time
consumption matter.

16

1.3 Classification

The world we currently inhabit generates and consumes an enormous amount of
information. This volume can be measured in various zettabytes [25] (1021 bytes,
while a gigabyte represents 109 and a terabyte 1012, to put it into perspective).

Data Mining consists of extracting knowledge from all this information. Several
procedures have been created with that target in mind. Machine Learning (ML)
[6] holds some of them, processes that generalize patterns from a big volume of
given observations. These operations are able to both predict and describe data.
ML can be divided into three major branches, from which two are Supervised
and Unsupervised Classification [60].

Both SC and UC attempt to categorize observations with an important differ-
ence, in SC these categories or classes are known beforehand, while in UC, they
are not. SC algorithms need tagged observations (named training set), which
means that we need to know what class each observation belongs to. This way,
each class will have its own patterns, and we will be able to categorize new,
untagged observations. Also, when the prediction aims for a continuous value
rather than a discrete class, the process is not named SC, but Regression. UC
simply groups measurements by the resemblance they have with each other.
Since the main motivation of this work is to tag untagged observations, extract-
ing information from tagged ones, we will use SC techniques [25,64].

Within SC techniques three different groups can be distinguished; [44]

1. Rule Induction Learning: Algorithms that infer rules from the training set.
These algorithms seek for regularities shared by observations belonging to
the same class, and infer rules. Data with missing values is susceptible of
being used by these classifiers, since it can be interpreted as a characteristic
itself. Decision trees would be classified here.

2. Approximate Models: Algorithms that use the training set to build models.
Since these algorithms build functions that (usually) depend on all features,
missing values are not an option for these algorithms. Neural Networks,
Regression and Support Vector Machines would be included here.

3. Lazy Learning: Algorithms that use the training set directly for classification
purposes. This process implies the presence of measures of similarity of some
kind, and uses them to classify. K nearest neighbors (K-NN) would be a
perfect example of this type of methods.

1.4 Supervised Classification in Time Series

SCTS is a specific kind of SC applied to TS data. This problem consists on
extracting information from a raw dataset. Raw datasets are formed by long
regular time intervals that probably will contain some sub-intervals that break

17

monotony. The primary task is to recognize these anomalies, so that we can dif-
ference the time sequences when nothing is happening, from the time sequences
in which something happened.

Imagine that we have sensors in different parts of a truck engine. These sen-
sors control various measurements, i.e. the amount of fuel introduced in the
cylinders, the temperature variance or smoke volume they produce when it is
burnt, the revolutions per minute of the pistons, etc. We know what the range of
these parameters should be when the entire engine works properly, but detecting
anomalies and interpreting what they mean (for example, knowing what part is
going to break down) could be performed by SCTS.

For our SCTS task, several classification techniques can be found, but they may
be divided into three categories [69]:

FBC Feature based classification: These methods consist on vectorizing the TS,
and applying a conventional classification method, as in a common SC prob-
lem.

DBC Distance based classification: In this case, functions that measure the dis-
tance between two series are used.

MBC Model based classification: These methods consist on building statistical
models, such as Hidden Markov Model. These methods assume that the
sequences in a class are generated by an underlying model.

1.5 Imputation Methods

Once the MDT has been identified, a reasonable solution is needed. A solu-
tion will or will not be suitable depending on the MD problem type. The most
straightforward solution is to simply ignore cases with missing values and replace
them by other complete observations, or omit unstable attributes (features with
many missing entries). Those methods that discard incomplete observations are
not very efficient when there is a high probability of having lost values, since we
would discard big amounts of relevant information. Another possible approach
is trying to predict the lost values. This method is called imputation. Several
strategies have been proposed in the literature. In the following, we discuss some
of the most commonly used: [22]:

I1. Mean-Mode, Median and Most Frequent Value imputation. These methods
are self-explained by their names, as they calculate the statistics and simply
ascribe them to gaps.

These methods can be very harmful to data, since they have a high proba-
bility of changing the distribution of the variables.

18

I2. Simple Random Imputation: This method takes a random value from the
attribute containing an unrecorded value and duplicates it. This method
excels in computational cost, but will likely bias the data distribution.

I3. Last Value Carried Forward (LVCF): This method consists of taking the last
recorded value for that attribute and simply copying it.

This method could bias the inference process. It is mainly applied to TSs,
therefore its application to other type of DB will possibly produce wrong
values. Also, it is not valid for TSs in some cases. For example, when a
value should experiment a considerably high increase or decrease between
two timestamps, like in the probability of a newborn suffering sudden death
as it grows, or when adjacent observations are unrelated.

I4. Interpolation: The working system of this method can also be easily deduced
from its name. The interpolation method computes a function that fits both
the previous and later values of a missing value stretch and fills it using the
function.

As I3, this method can be very effective when observations are measurements
of the same attribute on different timestamps, but it will provide unstable
values when not.

I5. Hot Deck(HD): When this method is applied over a missing value, a known
value for the same feature in a different observation is assigned. This partic-
ular data entry is the nearest neighbor, although other similar approaches
(such as clustering imputation) can be classified under this tag as well.

This IM may have a high computational cost, since it depends on the number
of observations and variables the DB manages

I6. Imputation based on logical rules: Sometimes we can make use of our com-
mon sense to impute values when the MD volume is reasonably reduced and
some expert knowledge may infer values manually.

For example, if a woman is polled and refuses to give information about her
salary, we could infer it from other answers, like what her job is, and how
many hours she spends at her workplace. Even if this method is not very
accurate, it may work in some cases.

This imputation approach requires individual treatment for each DB, along
with expert knowledge.

I7. SC algorithms as IM: This strategy uses a SC method to compute missing
values. First, it sets a discrete feature containing missing values as the target
class. Then, the observations with recorded values for that feature are se-
lected as training set, and the classifier is learned. Finally, observations with
unrecorded values are processed by the classification algorithm, and results
are assigned to the missing spots.

19

Analogously, when the feature is continuous, regression may be applied. Also,
UC could be exploited in a similar manner, lightly linking this method to
I5.

I8 Iterative Imputation: Basically these methods impute the same missing val-
ues multiple times for a number of iterations. The common operation of these
methods is to make initial guesses for missing values (e.g. mean imputation)
and reimputes the same missing values using other (more complex, usually)
methods. Once all variables have been reimputed, the cycle is repeated. An
iteration limit or a tolerance value could be set as halting condition. These
are its phases:

1 Initial values are imputed with a starting method, I1 for example.

2 A model is created.

3 Original missing values are recalculated by new values estimated from
the model.

4 New values are imputed in the dataset.

Steps 2-4 are repeated [42].

I9 Multiple Imputation: These IMs also belong to the spectrum of computation-
ally complex methods. This strategy replicates the DB m times and imputes
them separately. Submethods used to perform imputation on these replicas
may or not be different strategies (in case they are not, the submethod should
be stochastic). Then one of two strategies can be followed;

The first one applies the analysis algorithm (Supervised Classification in
our case) and then combine their results. The second strategy performs first
the combination step, forming one single DB again and then the analysis is
applied. The recommended m value used for these procedures has increased
along with computation capacity, being the classical advice 3 ≤ m ≤ 5 and
having reached 20 ≤ m ≤ 100 by some authors [67].

In Figure 1.1 an example diagram of these methods can be found. In this
example we are searching for parameters α, β, γ and ω. With this objective,
the dataset is cloned four times, being each copy processed with different
imputation methods. As a final step, parameters are calculated, and com-
bined.

There are many techniques for improving the performance of an imputation
method, such as creating an auxiliary binary variable that takes ’0’ value when
an attribute has its value missing, and ’1’ when it is known, or weighting cor-
related variables in the model, which requires little effort, and could be very
useful in some cases. Also, some classification algorithms have their own internal
imputation methods. For example, Autoclass [37] [38], calculates the probability
of an instance belonging to each possible class, and infers missing data using
those values.

20

The first 3 imputation methods (I1-I3) are quite simple and have no significant
requirements in either implementation or execution. However, these methods will
not calculate new values standing out of the data distribution, which will bias
the variance of the imputed results towards 0. Since the amount of information
provided by a variable is usually proportional to its variance, this is not a very
good sign.

However, the last 6 methods, (I4-I9), are more complex in terms of implemen-
tation and computational time. While the previous methods (I1-I3) focus on
choosing one value from the range of known values in a simple approach, meth-
ods I4 to I9 exploit all data available to compute those guesses. They tend to
obtain better results than simple imputation, and may be required in some sce-
narios, but the computational cost must be considered when these strategies are
chosen.

α1
β1

γ1ω1

α2
β2

γ2ω2

α3
β3

γ3ω3

α4
β4

γ4ω4

α
β

γω

Fig. 1.1: Multiple imputation diagram.

1.6 Research motivation

The research presented in this thesis is focused on two related problems. First
(Chapter 2), analyzes the relationship between the three principal components
mentioned in this chapter: IMs, SC algorithms, and MDTs.

This is a problem that can be found in the real world with assiduity. Any aspect
of work or life of society members can be recorded and potentially monetized,
and when the amount of information is large enough that it becomes impossible
to be processed by a human being, SC techniques are applied. Also, no machine
is perfect, and can miss capturing, recording or sending data, which produces

21

MD. The IMs can help to automatically improve the quality of this data, for
which they should be in a high consideration.

In this particular approach, we consider four different MDTs, while the rest of
the literature fails to detect more than three patterns. Also, three types of IMs
are considered. Simple, bad and good methods. The simple ones impute just
performing a single computing operation. The bad methods are designed for a
concrete type of DBs, the TSs. For this reason, the results they would produce
will probably harm the data. Finally, the good ones will potentially produce good
results. This way, we can use the inadequate methods to put into perspective
the simple and the elaborated ones, to make a valid final conclusion.

For the second stage, we add some restrictions to the problem being treated,
as it only contemplates TSs instead of discrete DBs (Chapter 3). This type of
DB is also very common, as in some cases we need to monitor the evolution of
an agent over the time. Analogously to the previous problem specification, this
problem can also suffer from the MD issue, and IMs are again a good strategy
to improve the data quality.

The experimental part considered the two most common types of MD in TSs
and presented various simple IMs. Also, some combinations of these methods
were developed in order to improve the performance offered by the simple ones,
regarding both result accuracy and time consumption. The outcome of this prob-
lem is a IM ranking for TSs.

Finally (Chapter 4), the results obtained in the previous part are applied in a
real world problem, with original MD on it. This problem describes the water
quality regarding various aspects. The IM that got the best performance in terms
of result accuracy was applied to the data, among other simple IM, to be able
to put the results into perspective.

22

Chapter 2

An investigation of the relationship between Missing Data
Types, Imputation Methods and Supervised Classification

in Discrete Data

2.1 Objectives

The main goal of this chapter is to determine whether interactions between
MDTs, IMs and SC algorithms exist or not. To fulfill this goal, some intermediate
objectives are set. First, an in-depth analysis of the existing work is produced,
to find out to what extent the hypothesis that supports the existence of the
mentioned interactions can be valid. This analysis will enable us to start working
on the border of the knowledge available in this research field. This exploration of
related work will also provide ideas about the methodology that the subsequent
experiments should be based on.

The next objective is to design experiments according to the knowledge ob-
tained in the previous study of the literature. These experiments need to be
proposed considering all the plausible variations in the three components being
investigated in this chapter (MDT, IM and SC). Finally, the experiments will be
executed, and the results that the experimentation provides will be analyzed to
reach a final conclusion that validates or refuses the relation existence hypothesis
proposed at the beginning.

2.2 Related work

Not many recent studies have researched the interaction between missing data
configurations, MD handling methods, and supervised classification algorithms
in such depth as ours, i.e., considering a large amount of MD, IM and SC types. In
the following paragraphs, a number papers that have investigated this question
are reviewed.

The most exhaustive investigation on the joint behavior of IMs and classification
algorithms is the paper by Luengo, Garćıa, and Herrera [44]. They performed
an analysis with 23 classification algorithms (grouped in three classes) combined

23

with 14 ways of dealing with MD. They selected 21 DBs, all of them contain-
ing natural missing values, ranging from 0.06 to 21.82 percent from the total
values in the tables. Since they had no knowledge about the MD distribution,
they assumed it to follow a MAR pattern. However, the experiments conducted
by Luengo, Garćıa, and Herrera proved the positive effect of imputing data,
and found evidence of the relation between the classifier type and the IM. The
same authors developed the work presented in [43], which focuses on the Radial
Basis Function Network (RBFN) classifier, pointing out the improvement of the
classifier results when combined with a specific IM, an Event-Covering approach.

Batista and Monard [5] studied the effects of imputation over the C4.5 and
CN2 classifiers. They chose four DBs from which three had no MD, and in-
serted varying percentages of missing values (10, 20, 30, 40, 50 and 60%) and
then proceeded to classify them. The DB containing natural MD had its ob-
servations with MD removed, to have complete control over the missing values.
Once the artificial MD was introduced, the DBs were put through a classifica-
tion process with no imputation (note that C4.5 and CN2 have their own way of
working with MD), mean/mode imputation, and K-nearest neighbors imputa-
tion (KNNI) (with k = 10). 10-NNI showed better performance than the other
simpler treatments, but the experiments found limitations in the way MD was
inserted, since only some of all the attributes chosen were affected. Also, only
two basic IMs were considered.

Acuña and Rodŕıguez [1] evaluated the effect of three methods for dealing with
MD on the misclassification error rate. They used the mean, median and KNNI
IMs, and also considered case deletion. Then they evaluated the results these
algorithms produced with two classifiers, Linear Discriminant Analysis (LDA)
and K-nearest neighbors (KNN). This work adopted 12 datasets, 4 of which
contained natural MD. These four DBs were pretreated in order to make their
starting points similar by applying the IM. The results achieved by Acuña and
Rodŕıguez showed that the IM effect on accuracy has a higher dependence on
the problem rather than on the classification algorithm.

Farhangfar, Kurgan and Dy [16] examined the impact of performing MD imputa-
tion as a preprocessing step for posterior classification. They combined different
versions of four imputation methods (HD, Näıve Bayes Polynomial multiple Re-
gression and Mean) with six classifiers (Ripper 2, C4.5, RBFN, Support Vector
Machine (SVM), KNN and näıve Bayes). They selected 15 DBs and considered
5, 10, 20, 30, 40 and 50% of MCAR-type MD in their experiments. They con-
cluded that the improvement in the accuracies obtained from the dataset with
MD and the imputed one had no relation with the percentage of MD. Also, dif-
ferences in the improvement were shown for different IM-classification algorithm
combinations, which led them to conclude that no universally best IM exists.
The paper finally states that imputation is beneficial for machine learning tasks,
overall.

24

Hruschka et al. [29] introduced two IMs based on Bayesian Networks and con-
trasted them with four other classic methods, namely, Expectation-Maximization
(EM), Data Augmentation, Decision Trees, and Mean/Mode. Four datasets were
used as a benchmark, which combined natural and artificial missing values in-
troduced in the experiments. Four classifiers were considered in the experiments.
This work concluded that IM obtaining closer values to original data (comparing
imputations in artificially generated MD to values originally in those cells) did
not necessarily produce better results when classifying.

Song et al. [63] performed an analysis similar to the one presented in [5], in which
the effect of KNN-imputation over C4.5 classification was investigated. However,
in their paper they considered three MDTs (MCAR, MAR and NMAR). Their
conclusions regarding IM-C4.5 coincide with those found by Batista and Monard
[5], and also state that the MD mechanism influences the classification task.
Nevertheless, an in-depth investigation of this question was not addressed in [63].

Twala et al [66] also studied the three MDTs, along with 21 DBs, 7 IMs (con-
taining both types, single and multiple IMs). However, their work focused on
decision tree learners. The paper concluded that Multiple Imputation offers bet-
ter results when the MD proportion is high, and also mentioned the importance
of addressing MD patterns at the time of using the IM.

Garćıa-Laencina et al. [21] evaluated four different IMs (KNN, Self-Organizing
Map, Multi-Layer Perceptron and EM) on three datasets (with varying amounts
of artificially introduced MD) for posterior classification via Artificial Neural
Network with six hidden neurons. They conclude their work stating that the
data imputation paradigm generally required detailed study, probably due to
the problem dependency factor mentioned in other works in the same area.

Ding and Simonoff [13] studied three types of MD (MCAR, MAR and NMAR),
and introduced them into a set of 36 DBs considering eight patterns. These
patterns vary in whether or not the missing value is related to other missing
values, observed predictors, and the class variable. They used the combination
of six IMs and two decision tree classifiers concluding that they are not highly
affected by MD.

Gheyas and Smith [23] developed two new IMs: Generalized regression neural
network Ensemble for Multiple Imputation (GEMI) and its single imputation
version (GESI). They compared these two methods with other 25 IMs in 98
real-world datasets. They concluded that even though GEMI’s computational
cost is relatively high, both GEMI and GESI outperformed other multiple and
single IMs, respectively.

Nogueira et al. [52] selected a real imbalanced DB with a high percentage of MD
(over 23% and incomplete observations). Their DB preprocessing step consisted
on removing attributes and observations with several missing observations and
then imputing the gaps left. They concluded that Artificial Neural Network are

25

the right choice to solve this problem, but an expert understanding of the DB
and the problem is set as necessary.

Saar-Tsechansky and Provost [61] compared three different methods to predict
missing values (predictive value imputation, the distribution based imputation
used by C4.5, and using reduced models) and followed the same approach of
Luengo et al. [44] when it comes to imputing once the test and training set are
separated. Their results showed that the reduced models strategy outperforms
the other two classic IMs.

Matsubara et al. [45] present Corai, a semi supervised learning algorithm based
IM, and compare it to KNNI and Mode imputation over three datasets with
artificial MD introduced in varying percentages. They conclude that Corai’s
performance over other IMs improves as the MD percentage rises.

2.3 Experimental setup

The presented question that investigates the possible existence of interactions
between MDT, IM and SC is explored by designing procedures that generate
DBs with different types of MD, and using them as a benchmark, evaluate the
effect of the MDT and the IMs on the accuracy of the classifier. Complete real-
world DBs have been chosen to fulfill this experiment, introducing artificial MD
in them. Following this strategy, the characteristics of the MD can be controlled.
Then, the incomplete DBs are set to undergo an imputation process, prior to
being tested via SC algorithms. The dependencies of the involved factors are
determined once the whole procedure is measured when accuracies are computed
for each combination.

2.3.1 Description of the databases investigated

A set of 10 datasets from the UCI Machine Learning Repository [41] have been
chosen, all of them built in completely different contexts in order to achieve
results as generic as possible, avoiding biasing the IMs and classifiers with a spe-
cific behavior from the data. DBs that describe diverse natural aspects (Forest,
Biodeg, Climate, Leaf), containing measurements taken from a medical domain
(Diabetic, BUPA, Thoracic), credit denial/approval (German), vehicle dimen-
sion analysis (Vehicle) and image pixel interpretation (Segmentation) have been
used.

Table 2.1 contains a structural description of the DBs. The first three columns
(Categorical, Integer and Real) provide information about the type of the ele-
ments contained in the DB. The following two columns, (N. Variables, N. Cases)
refer to the number of measurements for each observation (including the class
tag) and the amount of observations that the DB contains.

26

DB Categorical Integer Real N. Variables N. Cases DB Index
Leaf 7 7 3 16 340 1

Vehicle 7 3 7 18 946 2
German 3 3 7 20 1000 3
BUPA 3 3 3 7 345 4
Biodeg 7 3 3 41 1055 5
Forest 3 3 3 27 326 6

Diabetic 7 3 3 20 1151 7
Climate 7 7 3 18 540 8

Segmentation 7 7 3 19 2310 9
Thoracic 3 3 7 17 470 10

Table 2.1: Description of the original datasets used to generate the benchmark.

2.3.2 Strategies for generating Missing Data

As previously mentioned, MD can find its cause in different origins, which may
result in various MDTs. The DBs used in this work do not contain MD, so that
the patterns the missing values follow could be totally under control. In this
section the strategies proposed to infuse MD into the DBs and the rationale
behind each of these strategies are introduced.

One method has been implemented for each one of the four different MDTs
described in this work. Note that all four algorithms introduce an amount of
missing values equal to the 7% of all the values stored in the DB.

In order to produce results as close as possible to reality, these introduced meth-
ods generate MD in a stochastic way. The positions of the DB that are going
to be modified are randomly selected according to the criterion defined for each
type of MD. This way, it is possible to produce different results (instances of the
DB with MD) each time the algorithm is executed, making our inference much
richer.

Before presenting the strategies, a number of functions that serve as building
blocks of the algorithms are presented:

– random(I,nsamples): Takes one or two input parameters, depending on how
many random numbers will be generated. I is the interval from which the
random number will be produced. nsamples is the number of samples (num-
bers) that will be returned. For example, random([0,10]) will generate a sin-
gle arbitrary integer between 0 and 10, and random([1,20], 3) will create
three distinct integer numbers between 1 and 20.

– minIdex(A): Returns the index of the minimum value in the array A. It is
used to obtain extreme values.

– numObservations: Represents the amount of observations in a DB (com-
monly corresponding to the number of rows in the DB).

– numVariables: Represents the number of variables in a DB, (analogously,
usually corresponds to the number of columns in the DB).

27

– length(A): Returns the length of A.

Variable nV, used in MAR (Section 2.3.2.2) and MuOV (Section 2.3.2.4), rep-
resents the amount of variables susceptible of losing their values. As explained
previously about these MD patterns (Sections 2.3.2.2 and 2.3.2.4), the fact that
their missing values are found in the same variables is their main characteris-
tic. Therefore, when random([0,y], nV) is called, it is used to determine which
variables will have their values go missing.

2.3.2.1 Missing completely At Random For this instance a simple al-
gorithm is followed, in which two random numbers are generated and used as
indexes in the DB. The element they point at has its value changed to “NaN”.
This process is repeated until the predefined percentage is reached. The pseu-
docode is shown in Algorithm 2.1.

Algorithm 2.1: MCAR generating algorithm.

1 Input: DB
2 mdp: MD percentage
3 Output: DB with mdp% generated MD
4 begin
5 x = numObservations(data)
6 y = numVariables(data)
7 for i ∈ [0, x · y · mdp//100] do
8 data[random([0,x]), random([0,y])] = “NaN”

9 return (data)

This algorithm simply generates two coordinates of the data matrix and sets the
corresponding entry in the DB to “NaN”.

2.3.2.2 Missing At Random This method is less straightforward than the
previous one, since first it is needed to determine which variable is the causative
of the MD. This implementation assumes a single variable as causative but
causative variables of MAR could be multiple. The next step is to choose the
variables that will have some of their values as missing, named dependent fea-
tures. Since MAR causative variables tend to cause MD when they take extreme
values, the observations with minimum values for those variables were chosen
to get “NaN”s introduced in their dependent variables. Here, maxInt means the
maximum interpretable integer for a programming language, and it is used in
order to make that index ineligible. The pseudocode describing this method is
shown in Algorithm 2.2.

This algorithm first chooses the causative variable and copies its values to an-
other vector (aux), so that the original data is not modified apart from the

28

Algorithm 2.2: MAR generating algorithm.

1 Input:data: DB
2 mdp: MD percentage
3 nV: number of variables losing their values (3 in this paper)
4 Output: DB with mdp% generated MD
5 begin
6 x = numObservations(data)
7 y = numVariables(data)
8 causative = random([0,y])
9 aux = data[:,causative]

10 MDVariables = random([0,y]-{causative}, nV)
/* Find observations with minimum value in causative */

11 for i ∈ [0, x · y · mdp/100//nV] do
12 observations[i] = minIndex(aux)
13 aux[observation[i]]=maxInt

14 for i ∈ [0,length(observations)] do
15 for j ∈ [0, length(MDVariables)] do
16 data[observations[i], MDVariables[j]] = “NaN”

17 return (data)

introduction of the “NaN” values. Then the variables that will lose their values
(MDVariables) are chosen. The first loop determines which observations will be
the ones losing values for the MDVariables. It selects the minimum values for the
causative variable (aux), and then makes them ineligible by assigning them a
huge number. Finally, the two nested loops use all the information to introduce
the MD.

2.3.2.3 Missingness that depends on its own Value This algorithm is
very similar to the one used to create the MAR pattern of MD, but instead
of generating variables that will lose their values depending on the values of a
causative variable, the missing values will be introduced in the causative itself.
The pseudocode is shown in Algorithm 2.3

2.3.2.4 Missingness that depends on Unobserved Values This algo-
rithm is also quite similar to the one proposed for generating MAR MDT, but in
this case the causative variable is unobserved. Therefore, the observations that
will have missing values will be chosen randomly. The pseudocode is shown in
Algorithm 2.4.

29

Algorithm 2.3: MIV generating algorithm.

1 Input:data: DB to MD be introduced
2 mdp: MD percentage
3 nV: number of variables losing their values (4 for our instance)
4 Output:DB with mdp% generated MD
5 begin
6 x = numObservations(data)
7 y = numVariables(data)
8 causatives = random([0,y], nV)
9 for i ∈ [0,length(causatives)] do

10 aux = data[:,causatives[i]]
11 for j ∈ [0, x · y · mdp/100//nV] do
12 observations[j] = minIndex(aux)
13 aux[observation[j]]=maxInt

14 for i ∈ [0,length(observations)] do
15 data[observations[i], causative] = “NaN”

16 return (data)

2.3.3 Imputation Methods

IMs differ in the class of DBs they can be applied to, their computational com-
plexity, and the sophistication of the methods used to replace the MD. There
are straightforward techniques to replace missing observations [5, 22, 38], that
simply copy values from other observations (using similarity as a criterion, for
example). Other more elaborated imputation algorithms use Parameter Estima-
tion [27,71] to replace the missing values from the available data. The first class
of methods require less computational time and their results could be sufficiently
good for some DBs. When these simpler strategies do not produce results that fit
the expectations, parameter estimation can presumably provide more accurate
results.

For this research, 8 IMs have been selected, including some of the most frequently
used and more sophisticated approaches:

The initial three methods considered are Mean-Mode, Median and Most Frequent
Value imputation. These methods have self-explanatory names, as they calculate
the statistics and simply ascribe them to gaps.

Last Value Carried Forward imputation is also self-explanatory. This function
searches the variable for the last available value, and uses it as its guess for the
missing value.

Interpolation’s working system can also be easily deduced from its name. The
interpolation method computes a function that fits both the previous and later
values of a missing value stretch and fills it using the function.

30

Algorithm 2.4: MuOV generating algorithm.

1 Input:data: DB
2 mdp: MD percentage
3 mde: Natural MD percentage in the DB
4 nV: number of variables losing their values (3 in this paper) Output:DB with mdp%

generated MD begin
5 x = numObservations(data)
6 y = numVariables(data)
7 MDVariables = random([0,y], nV)
8 for i ∈ [0, x · y · mdp/100)//nV] do
9 observations[i] = random([0,x])

10 for i ∈ [0,length(observations)] do
11 for j ∈ [0, length(MDVariables)] do
12 data[observations[i], MDVariables[j] = “NaN”

13 return (data)

HD imputation can also have a high computational cost, since it depends on the
number of observations and variables the DB has. This method computes the
distance (e.g., euclidean distance) between an observation with one (or more)
missing value(s) and replicates the value for that certain variable in the nearest
observation.

Iterative Imputation basically imputes the same missing values multiple times.
The common operation of these methods is to make initial simple guesses for
missing values (e.g. mean imputation) and reimputates the same missing values
using other (more complex, usually) methods. Once all the variables have been
reimputed, the cycle is repeated. An iteration limit or a tolerance threshold could
be set as a halting condition.

Multiple Imputation also belongs to the computationally complex method spec-
trum. This strategy duplicates the DB m times and imputes them separately.
Submethods used to perform imputation on these replicas may or may not be
different strategies. Next, one of two strategies can be followed. The first one
applies the analysis algorithm (Supervised Classification in our case) and then
combines their results. The second option first performs the combination step,
forming one single DB again, being able this way to know the variance of the
imputed values. Then the analysis is applied. The recommended m value used
for this procedure has (and still is) increased as computation capacity has risen,
being the classical advice 3 ≤ m ≤ 5, having reached to 20 ≤ m ≤ 100 by some
authors [67].

All the IMs used in this work have been applied using third party implementa-
tions, as follows:

31

– For Mean, Mode and Most Frequent IMs, Sci-Kit Learn’s implementation
was used [36].

– For Interpolation and LVCF, were applied using Pandas Python library’s
implementations [46].

– HD implementation in this work is the one implemented in the R package
HotDeckImputation [3].

– For EM IM, the implementation in R package Amelia II was used [28].

– For Multiple Imputation using Chained Equations(MICE) as a submethod,
this work used a Bootstrap approach algorithm implemented in the R pack-
age mice [10].

Note that some of the IMs considered here are more appropriate for a particular
type of data (e.g. the interpolation method is conceived for data with real do-
main representation). If a given IM is not appropriate for one DB, this fact will
probably be translated in the accuracy of the classifier for that particular DB.

2.3.4 Supervised Classification methods

In this section the classification methods evaluated in this work are presented. All
the classifiers were implemented using the scikit-learn software [58] programmed
in Python language. Also, when no details about the parameters used by the
classifiers are provided it is assumed that they were applied with their defaults
parameters in scikit-learn1.

1. Regularized logistic regression with norm l1 [70]

2. Regularized logistic regression with norm l2 [70]

3. Linear discriminant analysis (LDA) [17]

4. Quadratic discriminant analysis (QDA) [18]

5. Support Vector Machine [30]

6. Radial Basis Function [56]

7. Gaussian Näıve Bayes classifier (GNB) [72]

8. Gradient boosting (GB) [19]

9. Random forests (RF) [9]

10. Decision tree (DT) [54]

11. k-nearest neighbor classifier (1NN) algorithm [2]

12. k-nearest neighbor classifier (3NN) algorithm [2]

1 See http://scikit-learn.org/stable/index.html for more details on the code.

32

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Imputer.html
http://pandas.pydata.org/pandas-docs/stable/missing_data.html
https://cran.r-project.org/package=HotDeckImputation
https://cran.r-project.org/web/packages/Amelia/vignettes/amelia.pdf
https://cran.r-project.org/web/packages/mice/mice.pdf
http://scikit-learn.org/stable/index.html

The following Tables 2.2 to 2.5 and paragraphs describe the main parameters
chosen for each classifier:

Parameters/Classifier Logistic Regression L1 Logistic Regression L2

Sklearn Function Logistic Regression Logistic Regression
Penalty L1 L2

Dual Formulation - False
C (Regularization strength inverse) 1.0 1.0

Class Weights Default (1 each) Default (1 each)
Iteration Limit 100 100

Solver Liblinear Liblinear
Tolerance 0.0001 0.0001
Multiclass One Versus Rest One Versus Rest

Table 2.2: Logistic Regression classifiers with norms L1 and L2.

For the Linear Discriminant Analysis classification, a Least Squares approach
was considered. Whereas for Quadratic Discriminant Analysis standard param-
eters were used.

Parameters/Classifier SVM RBF

Sklearn Function SVC SVC
Kernel Linear RBF

C 1.0 1.0
Gamma (Kernel Coefficient) - 0.1 + 10e-17

Tolerance 0.001 0.001
Iteration Limit 5.000.000 5.000.000

Table 2.3: Parameters for the SVM based classifiers.

Parameters/Classifier Gradient Boosting

SKlearn Function GradientBoostingClassifier
Optimized Function Deviance

Learning Rate 0.1
Amount of Estimators 100

Max. Depth of the Estimators 11

Table 2.4: Parameters for the Gradient Boosting Strategy classifier.

The last two algorithms are euclidean based K-NN classifiers. The first one
considers one single neighbor, while the second uses three of them.

33

Classifier RF DT

SKlearn Function RandomForestClassifier DecissionTreeClassifier
Amount of Estimators 10 -

Criterion to measure quality of split Gini Impurity Gini Impurity
Splitting strategy - Best split

Max. Depth Unlimited Unlimited
Amount of features considered in splits sqrt(n features) n features

Table 2.5: Parameters for the Random Forest and Decision Tree classifier.

Some of these classifiers consider interactions between the features, some oth-
ers incorporate regularization techniques, or take into account similarity metrics
between the data. According to [44], the KNN classifiers would be lazy classi-
fiers, while 9 and 10 would be tagged in the decision tree class. The rest of the
classifiers, 1-8, are model constructing classifiers.

2.4 Experiments

2.4.1 Introduction

This section contains the description of the experiments carried out, i.e., which
their goal was, the hypothesis they attempt to prove, its practical design and
its execution. Finally, the outcome produced is evaluated, with the purpose of
deducing whether the hypothesis is valid or not, and in case it is, to what extent.

2.4.2 Goal

The goal of this experimental setup is to prove right or wrong the hypothesis
this work is based on; the one that suggests that the three different components
(MDT, IM and SC) involved in the problem are interrelated and will offer better
or worse results when combined with different partners. More specifically, the
following questions are investigated:

– Which is the overall behavior of the imputation methods when all datasets,
MDTs, and classification methods are considered?

– Which is the overall behavior of the classification algorithms when all datasets,
MDTs, and imputation methods are considered?

– Have the different types of MD a different effect in global classification ac-
curacies achieved by the classifiers?

– Is it possible to identify any type the relationship between MDTs, IM and
classifiers?

34

In order to set a base knowledge that allows valid conclusion extraction, the three
components are evaluated separately. This will provide a standard behavior for
different configurations of each component that will be used as an indicative of a
possible increase or decrease of accuracy of a determined factor when used along
others.

2.4.3 Design

First, ten non-temporal DBs from the UCI Machine Learning Repository [41]
were chosen, aiming for the ones containing no natural missing values. Then,
these DBs were treated to have MD artificially inserted. Next step consisted in
imputing/estimating the missing values using eight different IMs. Finally, the
data was used in a SC process, and validated using 5-fold cross validation.

This paragraph explains the process used to study the MD-IM-SC relation,
roughly. First of all, all 4 types of MD were introduced into each and every
one of the 10 selected datasets, generating 4 different DBs with the same origin,
but different missing values patterns. This process was executed 30 times, to
obtain a sample of 30 different DBs with the same combination. This part of
the process produces 10 DBs × 4 MDtypes × 30 instances = 1,200 DBs with
missing values. All DBs will be different, even if their origin is the same data,
the inserted missing values will make them unique. Then, eight different impu-
tation methods (Section 2.3.3) were applied to each of the generated DBs, to
obtain a total 1,200 DB × 8 IM = 9,600 different, complete DBs. Finally, all
these DBs were subjected to 12 distinct SC algorithms (Section 2.3.4), obtaining
a final output of 9,600 × 12 = 115,200 distinct accuracies. Figure 2.1 captures
the complete process for one single DB.

2.4.4 Analysis

Once the experiments were finished, the next task is to analyze the data pro-
duced. As an initial step of the analysis, the independent effect of two of the
three factors considered in this work are investigated, focusing in the accuracies
obtained by the classifiers for each of the MDTs.

2.4.4.1 Overall Missing Data Types behavior Table 2.6 shows the mean
accuracy obtained by all classifiers for each MDT. To compute the accuracy
shown in each row of Table 2.6, the mean is computed using 10 DB × 30 Inst.
× 8IM × 12 SC = 2880 executions of the classifiers, using in every case those
DBs in the benchmark with same MDT.

As it can be observed in Table 2.6, the mean accuracies of the classifiers for
MAR, MIV and MuOV are very similar, showing an insignificant gap of 0.0016

35

Fig. 2.1: The process DBs undergo.

MD Type Mean Accuracy
MAR 0.5627
MCAR 0.5514
MuOV 0.5611
MIV 0.5624

Table 2.6: Average accuracies for each MDT.

36

among them. However, the mean accuracy generated for MCAR shows an aver-
age difference with respect to the other three MDTs of around 0.01.

For further understanding of the effect produced by the MD pattern over the
accuracy of the SCs, statistical differences were searched for in the accuracies
generated by the classifiers. First, all accuracies were grouped by the original DB
they were obtained from, and then separated into 4 subgroups considering the
MDT as a criterion. Next, the Kruskal-Wallis H-test 2 was applied to determine
whether the 4 groups originated from the same distribution. If the null hypothesis
was rejected, (p − value < 0.05), a post-hoc test was applied to all pairs of
MDTs looking for differences between them. The Dunn’s test3 with Bonferroni
correction was the one chosen for pairwise comparisons. Table 2.7 shows the
results of the tests for the 10 original DBs introduced in Table 2.1.

DB 1 DB 2 DB 3 DB 4 DB 5 DB 6 DB 7 DB 8 DB 9 DB 10

MAR vs MCAR 3 − 3 3 3 3 3 3 7 3

MAR vs MuOV 7 − 7 7 7 7 3 3 7 7

MAR vs MIV 7 − 3 7 7 7 3 3 3 3

MCAR vs MuOV 3 − 7 3 3 3 3 3 7 3

MCAR vs MIV 3 − 3 3 3 3 7 3 3 7

MuOV vs MIV 7 − 3 3 7 3 7 3 3 3

Table 2.7: Statistical differences between MDTs for each DB. “3” represent that
significant differences were found, while “7” represents the opposite.

The analysis of Table 2.7 reveals that only one DB, DB2, offered no initial
difference between the four MDTs when Kruskal-Wallis was applied. For all
other DBs the Dunn’s test showed statistical evidence of differences between at
least three pairs of MDTs. From the 35 cases where statistical differences were
found in pair-wise comparison, MCAR was involved in 22, which makes around
63% of the total, while it appeared in only half of the comparisons. Together
with an average classifier accuracy lower than the other three MDTs (as shown
in Table 2.6), this fact indicates that MCAR has a different effect in terms of
the challenge it imposes to the classification task.

2.4.4.2 Overall Imputation Methods behavior To search for statistical
differences between the IMs, another similar independent experiment was de-
signed. In this case, the problem to be solved was determining the existence
of differences for a particular combination of the 10 original DBs, the 4 MDTs
and 12 classifiers. For each of these possible combinations, 30 instances and the
correspondent accuracy results for the 8 IMs are available. This means that IMs

2 http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.mstats.kruskalwallis.html
3 https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf

37

for 10 × 4 × 12 = 480 different combinations will be compared. Note that in
each combination all the accuracies would have been calculated from the same
original DB, having the same MDT inserted, and having been applied the same
classification algorithm. For each of the 480 combinations, the accuracy results
of the IMs can be sorted, in order to be compared in a table of 30 rows (one for
each unique DB instance) and 8 columns (one for each IM).

In each of these 480 tables the Kruskal-Wallis H-test was applied to determine
whether significant differences exist between the IMs. If such differences exist, a
Dunn test is used as a post-hoc analysis to determine which pair(s) of IMs had
significant differences between them, resulting a similar procedure as the one
used before.

In Table 2.8 the results of the comparison between each pair of IMs for all
MDTs are summarized. Cell (r, c) of Table 2.8 indicates the number of times
IM c was significantly better than the other imputation method r in all possible
combinations of DBs, MDT, and classifiers. The last row shows the number of
times each algorithm was outperformed by the others (o−). The last column
shows the number of times each algorithm outperforms the rest (o+).

IMs Mean Median Most Frequent LVCF Interpolation HD MICE EM Total
Mean 0 7 27 59 92 22 18 20 245
Median 3 0 19 55 95 18 15 22 227

Most Frequent 8 7 0 51 89 10 15 31 211
LVCF 27 29 41 0 11 14 18 20 160

Interpolation 24 29 35 7 0 18 17 17 147
HD 39 33 52 65 83 0 3 54 329

MICE 41 34 49 65 74 15 0 47 325
EM 19 22 37 35 58 15 9 0 195
Total 161 161 260 337 502 112 95 211 1, 839

Table 2.8: Results of the statistical tests on the difference between the perfor-
mance of the IMs.

The number of pair-wise comparisons for each group was 8×(8+1)
2 = 36. As it can

be observed from Table 2.8, the number of significant differences was 1839 out
of the 36 comp. × 12 class. × 10 MD × 4 MDT = 17,208 total number of pair-
wise comparisons done. Therefore, 10.64% of the comparisons were cataloged as
significantly different.

The analysis of Table 2.8 reveals a number of facts about the behavior of the
IMs:

– HD and MICE are the best IMs outperforming the other IMs more frequently.

– LVCF and Interpolation exhibit the poorest performance being outperformed
more often by the other IMs.

– Despite their simplicity, the Mean, Median, and Most Frequent IMs show an
acceptable performance.

38

2.4.4.3 Imputation Method behavior for each Missing Data Type
Since significant differences were found among MDT and IM separately, this
section analyzes potential relations between the two components.

In Tables 2.9, 2.10, 2.11 and 2.12 the results shown in Table 2.8 are classified by
MDT. From these tables, the influence of MDT on the IM can be analyzed.

IMs Mean Median Most Frequent LVCF Interpolation HD MICE EM Total
Mean 0 0 0 5 20 2 3 6 36
Median 0 0 0 5 18 2 3 6 34

Most Frequent 0 0 0 7 18 1 2 7 35
LVCF 2 3 2 0 1 3 2 1 14

Interpolation 5 6 5 1 0 4 2 1 24
HD 1 2 3 8 13 0 0 6 33

MICE 4 4 4 9 11 1 0 3 36
EM 3 3 3 2 8 2 0 0 21
Total 15 18 17 37 89 15 12 30 233

Table 2.9: Table 2.8 results filtered by MAR MDT.

IMs Mean Median Most Frequent LVCF Interpolation HD MICE EM Total
Mean 0 3 11 20 30 8 7 10 89
Median 1 0 9 18 36 6 8 12 90

Most Frequent 5 6 0 25 38 5 10 19 108
LVCF 4 6 15 0 8 3 4 3 43

Interpolation 4 7 12 5 0 6 6 3 43
HD 1 1 9 18 26 0 0 9 64

MICE 1 0 7 19 24 0 0 11 62
EM 2 6 12 7 19 5 2 0 53
Total 18 29 75 112 181 33 37 67 552

Table 2.10: Table 2.8 results filtered by MIV MDT.

IMs Mean Median Most Frequent LVCF Interpolation HD MICE EM Total
Mean 0 0 0 3 8 2 1 1 15
Median 0 0 0 5 7 2 1 1 16

Most Frequent 0 0 0 3 9 1 0 1 14
LVCF 5 4 5 0 0 3 4 3 24

Interpolation 3 3 3 0 0 4 3 2 18
HD 3 0 3 8 10 0 1 9 34

MICE 1 1 1 5 6 1 0 1 16
EM 0 1 2 0 3 2 1 0 9
Total 12 9 14 24 43 15 11 18 146

Table 2.11: Table 2.8 results filtered by MuOV MDT.

39

IMs Mean Median Most Frequent LVCF Interpolation HD MICE EM Total
Mean 0 4 16 31 34 10 7 3 105
Median 2 0 10 27 34 8 3 3 87

Most Frequent 3 1 0 16 24 3 3 4 54
LVCF 16 16 19 0 2 5 8 13 79

Interpolation 12 13 15 1 0 4 6 11 62
HD 34 30 37 31 34 0 2 30 198

MICE 35 29 37 32 33 13 0 32 211
EM 14 12 20 26 28 6 6 0 112
Total 116 105 154 164 189 49 35 96 908

Table 2.12: Table 2.8 results filtered by MCAR MDT.

Analysis of Tables 2.9 - 2.12 shows how the performance of the IMs is in relation
to the MDTs.

– Influence differences have been detected depending on the MDT applied to
the DB. This is clearly illustrated by comparing the case of the MuOV and
MCAR MDTs. In the first case there are relatively few statistical differences
between the IMs (146), while in the second case these differences are much
higher (908).

– The highest scores performed by MICE and HD were achieved in MCAR
suggesting that simple IMs can offer good enough results in MIV, MAR and
MuOV, but overall, and specifically in MCAR, computationally complex
methods are the most reliable ones.

The pair-wise comparison between IMs reveals only a partial picture of the
overall behavior of the IMs. To further understanding of the relation between
IM and MDT, another experiment was designed to evaluate the rank of the IMs.
First, all the accuracy results were divided in 40 groups. Each group contains
all classification results for the combinations of the 10 original DBs and the
4 MDTs. Each group comprises 8IM × 12SC × 30Inst. = 2880 classification
accuracies. In each group, the accuracies were sorted from the highest to the
lowest, and split into 3 equally sized groups: High: the experiments with the
highest accuracy; Low : experiments with the lowest accuracy; and Medium: the
rest of the experiments. By inspecting each group it can be determined, for each
original DB and MD method, which combination of IMs and classifiers were the
most frequent in each of the groups, allowing us to detect high performing IMs,
SCs, and combinations of the two.

Then, all groups representing the same level (High, Medium or Low) from all
DBs, MDTs, IMs and SC algorithms were merged, resulting three supergroups
that divided the overall performance of all combinations in three. Figure 2.2
shows the polar charts describing the frequency of the IMs in the supergroups
High and Low according to the MDT. Considering this, an IM being present with
larger frequency in its high section rather than in the corresponding low section
suggests that for a concrete MDT the IM had a relatively good performance.
However, a section representing low surpassing high, denotes a bad performance

40

by the IM, which potentially means that the imputation hurt the data. Finally,
both sections being even shall be prove of an imputation procedure having little
effect on posterior classification.

Similar conclusions to ones extracted from the Tables 2.8-2.12 are deductible
from Figure 2.2. First, a regularity may be found in all four figures in the Inter-
polation and in LVCF (to a lesser extent) sections. This uniformity consists on
their low section defeating their high equivalent, which means that the IM possi-
bly hurt the data. Also, another, more subtle, consistency can be noticed between
the three simple IMs (Mean, Most Frequent and Median). Their appearance fre-
quency in high sections is greater (or similar) than in their corresponding lows
in MAR, MuOV and MIV (Figures 2.2b-2.2d). Furthermore, these three charts
have a quite regular shape in the complex IMs (HD, MICE and EM).

Finally, Figure 2.2a seems to have little in common with its peers. However, it
does sustain the inefficacy of LVCF and Interpolation. Nevertheless, in regard
to the simple IMs, this MDT was the only one not letting them have a good
performance, as their presence frequency was higher in the low section (in varying
degrees). On top of this, this MDT finally concedes an overwhelming victory to
the complex IMs, as HD and MICE high representation clearly outscores their
low correspondents. Also EM high section slightly beats its low representation.

2.4.5 Interactions between Missing Data Types, Imputation
Methods, and Classifiers

To investigate this question the same supergroups of High and Low configura-
tions were used, but in this case the frequencies of all 8× 12 = 96 pairs of IMs
and SCs were computed. This information is shown in Figure 2.3, in which values
are ranked by classification performance (x axis).

From Figure 2.3 it seems reasonable to assert that a significant interaction be-
tween IM and SC does not exist when it comes to high performance. The top
three classifiers (Two Regressions and one SVM) remain consistent in any com-
bination with IM, i.e., the best result obtained by any IM-classifier cooperation
from the low section of classifiers does not match the worst result from the top
three.

However, in the lower section, LDA shows some good partnerships with MICE
and HotDeck, precisely the two IMs that generated the best results. Also, the
largest difference obtained by this pair of methods, was shown in MCAR, the
MDT that seemed to be the one offering the most significant contrasts.

Overall, it may be concluded that all three factors interact in some aspects. In
terms of classifier-IM performance similar results are obtained for MAR, MIV
and MuOV. Nevertheless, both the IM and the classifier achieve different results
for MCAR, as the classifier rank changes (x-axis in figure 2.3). DBs with MCAR
MDT seem to be a particularly good domain of application for MICE and HD

41

(a) MCAR. (b) MAR.

(c) MIV. (d) MuOV.

Fig. 2.2: Frequency of the IMs in the configuration with highest (High) and lowest
(Low) classification accuracy.

42

(a) MAR. (b) MIV.

(c) MuOV. (d) MCAR.

Fig. 2.3: Amount of IM-Classifier pairs present in the High accuracy section.

43

(y-axis in figure 2.3), especially in the top performances, but noticeable in almost
all of them.

2.5 Conclusions

The main objective of this chapter is to determine whether relations between
MDT, IM and SC exist or not.

Considering the results discriminated by the MDT, a significative difference has
been found, as MCAR obtained different results compared to the other MDTs.
The classification accuracies were generally worse, and on top of that a statistical
test reaffirmed this fact. Randomness affects all the variables equally, and this
could make that the IM could gain importance, thus making the difference. The
rest of MDTs affect only some concrete variables, and the SC algorithm could
learn to ignore these variables, making the IM algorithm useless.

Regarding the IMs, overall the more complex methods obtained lightly better
results, specially HD and MICE. However, the simple methods obtained good
accuracies after applying the classifiers, Median imputation could be an example
of this.

With respect to the pairwise combinations, MuOV and MAR showed no perfor-
mance improvement in combination with any IM in particular. However MIV
had a relatively good relation with simple IMs. Finally, MCAR, the MDT that
gave the most importance to the IMs, have a clear positive interaction with the
complex IMs.

Finally, some light interactions between the three components have also been
found. Random Forest Classifier performed considerably better for MCAR (and
thus, with complex IMs) than the other three MDTs, and LDA showed good
performance when combined with complex IMs (also, particularly in MCAR).

The fact that the MDT is the most influential component determines that impu-
tation procedures performance is strongly problem dependent. So, as an overall
conclusion, an in-depth problem analysis is suggested before imputing data. This
study should enclose expert knowledge on why records go missing. Depending
on this first question, the MD pattern should be identified, and finally, an im-
putation procedure should be applied.

44

Chapter 3

New Imputation Methods for Time Series Based on
Regression and Temporality

3.1 Objectives

The previous chapter has treated the MD problem in its full generic version
in terms of DB types. This is, considering no restrictions over the databases
used. In this chapter, we will go from the broadness to the specificity, as only
multivariate TSs will be contemplated where discrete DBs (DBs with uncertified
relations among observations) were allowed in the problem addressed in the
previous chapter.

Since this is a concrete instance of the MD problem, all the information ob-
tained in the previous experimentation part (Section 2.4) is applicable to this
specification, and therefore will be exploited in this chapter.

The major focus of this chapter is the investigation of IMs specifically conceived
to treat multivariate TSs. In Figure 3.1 an example of a TS with MD can be
found. These charts show three univariate TSs which known segments are rep-
resented by a blue line, and the unknown ones are filled with red blocks. In the
example shown in Figure 3.1, two types of MD can be identified, the MDT that
defines the thin blocks, and the type producing large blocks. These MD classes
are characterized by the length of the missing segments, which can be short or
long. It is noteworthy that the distance between observations represents the time
elapse between them.

Note that the imputation problem addressed in this chapter is slightly different,
as now it is assumed that the relation among observations that belong to the
same TS is inversely proportional to the time distance existing between them
in the TS. These relations provide us with more information to impute missing
values, as each piece of data is related to its previous and posterior values. Also,
as in any other type of DB, we may find relations between the different TSs (e.g.
correlations between TSs).

With the target of developing a new IM specific for TSs in mind, this chapter
first explores a considerable amount of the work done in the field of MD analysis
(specifically problems that address MD in TSs), using a similar work flow that

45

Fig. 3.1: Three TSs with MD.

the one described in the previous chapter. Next, we introduce a number of algo-
rithms for treating MD in TSs. These algorithms have been conceived to address
the lacks detected on the existing literature examination and on the findings de-
scribed in the previous chapter. The suitability of the introduced algorithms for
TSs is also considered, i.e. whether they can incorporate and exploit temporal
information. Then, we empirically investigate the behavior of the IMs using TSs
with different patterns of MD, to measure the performance of different IMs over
TSs with MD.

In order to make a detailed analysis of the IMs, the chapter also addresses the
question of how to introduce MD in the TSs, since different algorithms operate
differently in distinct scenarios. Finally, a variety of distances between TSs are
selected so that the performance of the imputation can be measured. Using
more than one dissimilarity metric allows to observe the result from various
perspectives, eliminating this way a possible bias of conclusions depending on
the metric used.

3.2 Related Work

Three major types of approaches can be considered when facing a MD problem in
a multivariate TS, when the main goal is SC. The option of deleting observations
is still available, but the information loss produced as a result is disadvantageous.
Some other preprocessing methods are modified to allow MD in the inputs. For
instance, by applying a machine learning technique on a reformulation of the
problem [62].

46

Authors Reference Domain DBs MD

Schoellhamer [62] Geophysics TS 1 Synth. Univariate convinient values
Kim et al. [33] Microarray Two multivariate Random 5-25%

Honaker and King [27] Social Science 6 multivariate Original
King et al. [35] Social Science 2 multivariate original

Honaker, king et al. [26, 28] - - -
Troyanskaya et al. [65] Microarray 3 (2 multivariate) random

Kim et al. [34] Microarray 5 Multivariate 1,5,10,15,20%
Oba et al. [53] Microarray 2, multivariate 1,2,5,10,20%
Gan et al. [20] Microarray 7 1,5,10 and 15%

Ouyang et al. [55] Microarray 2, multivariate 0.3, 0.5, 0.7, 0.9%
Jörnsten et al [31] Microarray 2, multivariate 1,4,7 %

Chiu et al. [12] Microarray 10 MVTS + 3 DB 1,5,10,15,20%
Bar Joseph et al. [4] Microarray 1, mvts natural

Li and Parker [40] Sensor 1 MVTS 10-20–80-90%
Li and Parker [39] Sensor 1 multivariate 40%

Table 3.1: Table sumarizing related work on different methods of dealing with
MD in TSs (majorly IMs). The table represents the authors, references where
the work was published, application domain, characteristics of the TSs included
in the DBs, and the characteristics of the MD.

Reference IMs Findings
[62] Unimputed treatment Unimputed treatment
[33] - Unimputed Treatment
[27] Multiple and EM EM>Multiple
[35] Multiple Imputation Implemented software

[26,28] Multiple Imputation Amelia Software
[65] SVD, KNN, mean KNN>SVD>Mean
[34] Local Least Squares, KNN LLS>KNN
[53] BPCA, KNN, SVD BPCA>KNN & BPCA>SVD
[20] POCS, Mean, KNN LS POCS>>KNN, Mean & POCS>LS

[55]
Gaussian Mixture Cluster EM,

KNN, SVD
GMEM>> KNN, SVD

[31]
Mean, KNN, SVD, BPCA, GMB
LinCmb (combination of the rest)

, LinCmb ≥ the rest

[12] KNN, LS, BPCA, SVD BPCA, SVD, KNN>LS, 3 measurements

[4]
B-Spline, KNN,

linear Interp., simple splines
B-Spline beats the rest

[40] NN, LVCF, Random, Mean, EM NN(correlated)>> the rest (cost-result)
[39] NN, LVCF, Random, Mean, EM NN(correlated)>> the rest (cost-result)

Table 3.2: Complementary table to the information shown in Table 3.1.The table
relates references where the work was published, IMs used, and findings.

47

Schoellhamer [62] performs a particular instance of the Singular Spectrum Anal-
ysis (SSA). SSA is basically the Principal Component Analysis equivalent for
TSs. One of the requirements of this technique is a complete TS. The author
proposes a SSA modification which is able to deal with MD, to prove that it can
be a possible solution when the goal is exploiting an incomplete TS.

Besides, a clustering algorithm that estimates the latent values while the cluster-
ing is performed is presented by Kim et al. in [33]. This alternative reduces the
impact (possible bias) of an IM towards 0. Its working methodology is similar
to an iterative imputation method. Each time an observation is assigned to a
cluster, imputed values are recalculated.

However, the most common solution to the MD problem is, once again, impu-
tation. Two research fields monopolize the research performed in this area. The
two authors who have developed a considerable part of the literature on this MD
in TSs area, work in the Social Science field. But the research field in which the
major part of literature has been built is DNA microarray gene expression data
analysis. Also, some works considering data collected by sensors over time have
treated this MD in TSs issue. In the following, some of the most relevant papers
involving the TS imputation problem are discussed.

3.2.1 Social Science

Honaker and King, are the main authors of possibly the most relevant literature
about the application of IMs to TS databases in the field of Social Science.
They have studied multiple political situations in many different countries. This
type of studies is usually based on incomplente and heterogenous information.
Although their main goal is not the imputation performance, but the inferences
they obtain from imputed data, they have used a considerable amount of IMs.
In [27], they propose a multiple imputation model that allows time trends in the
TS, thus making the imputation much more accurate in each of them. Still, they
propose another variant, an EM algorithm, which they claim it to produce more
accurate imputations, increased efficiency, and reduced bias. Also, they conclude
that the effect of the algorithm will depend on the characteristics of the data.

In [35], in collaboration with other authors, they propose another alternative to
the classical multiple imputation algorithm, the EM with importance resampling.
They emphasize that their method uses up to 50% more information than the MI,
and is considerably faster. Also, it clearly outperforms a simple EM algorithm.

Also, Honeker and King, together with other authors, participated in the con-
ception of Amelia [23], and its second version Amelia II [25]. This is software for
EM imputation that is freely available and has been used in various fields, such
as TSs in eHealth research [7]

48

3.2.2 DNA microarray gene expression data analysis

The DNA microarray gene expression data analysis allows monitoring the expres-
sions levels of thousands of genes under a variety of conditions. The microarrays
have been used to study gene expression in human tumors, among other appli-
cations. Due to insufficient resolution, dust or scratches on the slides, they may
contain MD [65].

Troyanskaya et al. [65] consider three imputation methods in three DBs (of which
two are multivariate TSs): Singular Value Decomposition (SVD) based method,
weighted K-NN, and row average. The authors conclude that K-NN imputation
provides the best results, followed by SVD, relegating mean imputation to the
last place.

Kim et al developed another imputation approach in [34], in which they propose
two similar methods based on Local Least Squares. They considered 5 multivari-
ate TSs that originally contained no missing values. Next, MD was introduced in
varying percentages (1, 5, 10, 15 and 20). Then, they compared the performance
of the method proposed in the paper to K-NN imputation. Apart from the MD
percentage variation, the authors also experimented with different DB sizes.
Results showed constant improvement over the Root Mean Square Deviation
between original and imputed values considering variations in both mentioned
aspects.

Oba et al. [53] develop a model based IM. They use a probabilistic version of
the principal component analysis algorithm. This strategy follows a Bayesian
approach, and first computes the posterior distribution of the parameter set.
Then, the method imputes the missing values using the model. This whole pro-
cess is run iteratively, resulting in an algorithm that would be cataloged as EM.
The authors carry out several experiments with different types and amounts of
missing data, over data obtained from two different sources. Their results show
that the proposed Bayesian Principal Component Analysis (BPCA) obtained a
better outcome than Single Value Decomposition and KNN IMs.

Gan et al. [20] produce an ad-hoc iterative procedure named Projection Onto
Convex Sets (POCS). Roughly, this strategy forms convex sets with every piece
of information available, and searches for a solution, i.e., an intersection of the
sets. The authors test the proposed POCS against other three IMs; Mean K-NN
and Least Squares imputation. They selected seven existing and available TSs,
and introduced different amounts of MD on them (1, 5, 10 and 15%). Their
algorithm consistently obtains better results than KNN and Mean imputation,
and slightly beats Least Squares Imputations in most of the DBs.

In [55], Ouyang et al. use a Gaussian Mixture Based (GMB) clustering algorithm
as an IM. In this algorithm each component is modeled as a multivariate model
to later produce a mixture. Then it is used combined with an EM strategy, to
estimate the missing parameters. They compared it to other two IMs, i.e. KNN
and SVD, using two different DBs with no natural MD. Their results showed a

49

big improvement, as the introduced algorithm produced much more consistent
outcome, along with a better error towards the original values in the DB.

Jörnsten et. al [31] develop and test a new method, LinCmb, a combination of
different IMs, whose weight will vary depending on the MD characteristics. This
strategy involves mean, KNN imputation, Single Value Decomposition, BPCA
(cited above [53]) and GMB (also already cited [55]). Depending on the amount of
MD, the algorithm would apply more weight to global methods (last two) rather
than local ones (first two). Two liver statistic DBs were selected as benchmark,
and MD was introduced in 1, 4 and 7 %. Then imputed values were compared
to original ones, with a regularized t-test to find significant differences. The
authors show that the proposed method performs at least as good as the best of
the submethods it is composed of. This work is one of few articles that combine
different methods for a kind-of multiple imputation scheme.

Chiu et al. [12] made a recollection of four existing IMs (making slight variations
on 2 of them, which results in total 9 IMs). They studied KNN (and its itera-
tive and sequential versions), Least Squares (its Adaptive, Local, Iterative and
Sequential versions), and previously introduced BPCA and SVD. They used 13
DBs, from which 10 contained a temporal component. In order to have a total
control over the MD in the DB, the observations (genes) with missing entries
were deleted. Then, missing values were introduced, in varying percentages (1,
5, 10, 15 and 20 %). BPCA, SVD and (simple) KNN obtained the best re-
sults, respectively, monopolizing the top three spots in all experiments involving
a temporal component. Three measure types were considered to compute this
ranking: normalized root mean squared error, a clustering quality index and the
Biomarker list concordance index, an index that determines how accurate values
are in gene data.

Bar-Joseph et al. [4] use an interpolation approach to solve the problem as
they produce a B-spline algorithm to impute latent values. They tested their
proposal in a DB with non-uniformly sampled data, with a posterior model based
clustering to measure the results. This method was tested against other 3 IMs
(KNN, linear interpolation and simple splines), and outperformed all of them in
almost all of the scenarios (KNN was able to beat the proposed algorithm once).

3.2.3 Sensor Data analysis

Information gathered by sensors over time can also contain missing values due to
a communication malfunction or unreliable sensors. When it comes to a machine
learning process application, MD can be a problem that needs to be solved.

In [40], Li and Parker propose a Nearest-Neighbor imputation method in a sensor
data context. This method considers extractable informations from both sources,
spatial (multivariate TS) and temporal. They first check for correlated sensor
values that will posteriorly be used to deduce which the Nearest Neighbor is.

50

They use wide DBs, as they contain 6500 TS and 1500 observations. The ex-
perimentation consists on comparing the proposed method to other four (LVCF,
constant imputing, mean imputing and EM), contrasting imputed to real val-
ues. The final conclusion states that Nearest Neighbor computed by correlated
values lightly beats EM in imputation accuracy, and by a considerable difference
in computational cost.

Also authored by the same researchers, and in the same action field, the work
in [39] reports similar strategies but with a different target in mind; SC. In the
paper, a particular class of Neural Networks based on Adaptive Resonance The-
ory is used for classification. This time LVCF almost matched the performance
of the EM algorithm, but once again, the Nearest Neighbor strategy stood tall.
Li and Parker are among the few researchers that directly use information from
both sources (spatial and temporal) to perform imputation, without creating a
model.

3.3 Study of different Imputation Methods for Time
Series with Missing Data

The previous section has covered recent literature on IMs for TSs and emphasized
the limitations of this previous work. In this section we attempt to explore over
these limitations.

As it has been stated, MD is a critical problem for TSs, specially, when the
goal is the classification of the data. For this reason, the necessity of an IM
with a contrasted good performance is needed. To fulfill this goal, an in-deph
investigation of several IMs is carried out in this section. Different algorithms
are tested against each other considering different types of MD and evaluation
criteria, so that all the variants are covered.

We start with the application of four simple IMs. Then other more elaborated
strategies based on the simpler ones are proposed to result in a total of 11 IMs.
These methods are then tested against each other in order to know what kind
of methodology suits best the problematic of TS imputation. In the following,
the developed methods (and the rationale behind them) are presented.

In the analysis of the related work we identified only one paper describing a
combination of two methods that exploit both dimensions of the information di-
rectly, [39]. This methodology seems a quite promising strategy, since it possibly
will reduce the time consumption compared to other algorithms. This approach
also will allow the user to replace the strategies that form the combination de-
pending on the characteristics of the MD. For example, if the TS has a regular
shape and its missing values are isolated, Interpolation could be chosen as the
component that uses the temporal factor. If the characteristics of either the TS
or the MD are different, another more complex method could be used to ex-

51

ploit the temporal component. For these reasons, the methods proposed in this
chapter follow a similar direction to the one described in [39].

With the goal of selecting IMs that offer good results to be considered as base
methods in mind, the findings obtained in Chapter 2 have been used. In terms
of performance, the complex IMs produced the best results, and for this reason,
they will also be considered for the imputation of TSs with MD.

Several types of methods to estimate missing values are discussed in the following
sections to obtain the best possible performance in terms of the quality/time
consumption ratio of the IMs.

3.3.1 Baseline Imputation Methods

The following four IMs are considered simple methods in this section and will
be used later to integrate more elaborated algorithms for imputation. The first
two strategies exploit the temporal component that characterizes the TSs, while
the other two strategies are selected because of the good performance that they
showed in the experimental part of Chapter 2.

3.3.1.1 Interpolation This interpolation method has been implemented us-
ing a Multiple Imputation approach. First, all the missing segments of each TS
are detected. Then, a certain set of points is selected, in order to control which
points are used to interpolate, as it is explained later. Next, three interpolations
are performed over the missing values in each TS; Spline based, cubic, and 4
grade polynomial interpolation. Finally, the values estimated by the three inter-
polation methods are combined to obtain the final result, computing the average
values generated by the three interpolations.

With respect to the selection of the timestamps the interpolation of the MD will
based upon, we opted for the points immediately previous and posterior to the
MD segment. The length of the selected previous and posterior segments is equal
to the length of the missing sequence. For example, if we have a missing segment
of three adjacent latent values, the points used for the interpolation would be
the previous and subsequent three points.

In case a TS begins or ends with a missing value, then LVCF (or its reversed
version) is applied. Also, when two segments are too near, they are combined
and regarded as a single missing segment. Two segments are considered to be
too close to each other when there are less observed points between the two
missing segments than half the length of the longest missing segment surrounding
the known points. For example, if there are three observed points between two
missing segments of length four and seven, the segment would be merged in one,
since 7 > 4 and 7/2 > 3. But if the length of the segments would be four and
five, 5 > 4 but 5/2 ≯ 3, and therefore the sequences would be considered as two
distinct segments.

52

As previously (Section 2.3.3), the Pandas implementation was used for Interpola-
tion. The method argument receives in this case three different values:“quadratic”,
“cubic” and “spline”.

Algorithm 3.1 shows the pseudocode of the Interpolation method. It uses the
following functions and notation:

– detectSeq(TS): Given a TS, this function returns the starting and ending
indexes of all the missing sequences.

– joinSeq(seq): Given the missing sequences of a TS in the format produced
by detectSeq(TS), this function joins sequences when the criteria described
before in this section are met.

– pointSel(seq): Given one single sequence, this function returns the points
that shall be used to perform interpolation. The points are selected using
the method explained before in this section.

– interpolate(DB, s, pt): Given the complete DB with MD, the sequence be-
ing treated, and the points selected for interpolation, this function performs
the Multiple Imputation process, combining the three Interpolations men-
tioned previously in this section. Then, the function returns the DB with
the specified sequence imputed.

– DB[:,i]: This notation returns the full ‘i’-est column of the DB.

Algorithm 3.1: Interpolation algorithm.

1 Input: DB with MD
2 Output: Imputed DB
3 begin
4 for i ∈ range(0, nCol(DB)) do
5 seq = detectSeq(DB[:,i])
6 seq = joinSeq(seq)
7 for s ∈ seq do
8 pt = pointSel(s)
9 DB = interpolate(DB, s, pt)

10 return (DB)

3.3.1.2 Seasonally Splitted Imputation Method This IM is based on
the concepts Seasonality, Kalman Smoothing and State Space Models. In a TS,
seasonality refers to a specific pattern being repeated cyclically over the TS [50].
The Kalman filter is an iterative algorithm that uses a multivariate TS to build
a model that allows discovering unknown variables. It is composed by a set
of mathematical equations that implement a predictor-corrector type estimator
that is optimal in the sense that it minimizes the estimated error covariance.
State Space Models are a notational convenience for estimation and control

53

problems, developed to make tractable what would otherwise be a notationally-
intractable analysis. In this case, it represents an ARIMA model of the multivari-
ate TS [68]. This strategy consists on first splitting seasonally each univariate
TS, then building the mentioned models and imputing the TSs using the models.

This strategy has been implemented using the R package imputeTS 4.

3.3.1.3 Standard Imputation Method Due to the good results obtained
by MICE in Chapter 2, this method was selected to be part of the imputation
approach for TSs. The specifications are the same as the ones described in Section
2.3.3. It was applied in the same manner.

3.3.1.4 Regression This method considers the TS with MD as the variable
to be regressed and use the rest of the TSs as information to perform a regression
on them. This method needs a fully complete DB, except for the target variable,
for which the complete DB was obtained using the standard IM method. MICE
and Regression combine together for a two-stage algorithm.

The implementation of this method is imported from sklearn, via the Ridge()5

function, a linear least squares with l2 regularization.

Figure 3.2 contains a visual representation of the process. The first stage shows
the MICE regression. For the final stage, in order to reimpute the variables, the
information generated by MICE in the first stage is used. In this example, to
obtain the values of the fourth and sixth observation of the variable X1 in the
final stage, the values of variables X2 and X3, that had been imputed in the
first stage are used. Then, the process is repeated for each variable.

3.3.1.5 Polished Regression This method consists on constructing small
regression models, in order to minimize the computing complexity. This is man-
aged by selecting those observations that are the most similar to the ones to
be imputed. To achieve this goal, first the pairs of variables with the highest
correlation are identified. Then, based on a previous low-medium-high value dis-
cretization for each TS, the most similar observations are chosen to build the
model that will produce new imputable values.

Finally this method performs regression as the strategy described in Section
3.3.1.4.

To compute the related variables, the mutual information was used, via
normalized mutual info score()6 function, by sklearn.

4 https://cran.r-project.org/web/packages/imputeTS/imputeTS.pdf
5 http://scikit-learn.org/stable/modules/generated/sklearn.linear model.Ridge.html
6 http://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized mutual info score.html

54

Fig. 3.2: Two stage Regression Imputation example. In the first step MICE is
applied. For the second step, each TS is reimputed. To reimpute the values
highlighted in green, the values highlighted in red are considered as observed.

All the steps of the process are described Algorithm 3.2. This strategy uses a
number of subfunctions as building blocks. Their description follow:

– baseImp(DB): Given a DB with MD this function returns the DB imputed
by a base method. In this case MICE is used.

– discretize(DB): This function takes a full DB as an argument, and it returns
its discretized version. For this task, each TS gets its values divided in three
sets, lowest, highest and medium values, ignoring the timestamp they were
recorded in. Then the values are replaced by 1 (low values), 2 (medium
values) and 3 (high values). Also, 0 is used for MD.

– mutualInf(DB): This function takes a DB in matrix form, and returns an-
other matrix, with as much columns and rows as columns the original DB
has. The returned data is an upper diagonal matrix containing the mutual
information for each pair of variables.

– observations(Ddb, DB, MI): This function takes the original DB (with MD)
and the discretized versions of the same database along with the mutual
information matrix associated to the imputed DB, and returns a matrix
with two columns. For each missing entry in the original DB, this function
adds a new row to the matrix that it returns, containing the index of the
latent value in one column, and the observations that most likely will create
an appropriate regression model to impute it. To achieve this, the function
treats each TS individually. For each missing value in each TS, the function
looks at the discrete values that the two most correlated variables to the one
being treated take, and find similar ones, in which the value for the variable
being treated is known.

55

– groupRows(obs): taking a matrix produced by observations(), this function
groups observations that for the same TS will use the same observations to
build a model, in order to minimize the amount of models created.

– range(x,y): this function produces a list of the integers between x (included)
and y (not included).

– numRows(x): being x a matrix, this function returns the amount of rows of
x.

– regression(obs, DB): Given one (or more) missing value index and the obser-
vations that need to be used to build the model (in the format produced by
observations()) and the original DB with latent values, this function com-
putes the regression and imputes the value.

Algorithm 3.2: Polished Regression algorithm.

1 Input: DB with MD
2 Output: Imputed DB
3 begin
4 Idb = baseImp(DB)
5 Ddb = discretize(DB)
6 MI = mutualInf(DB)
7 obs = observations(Ddb, DB, MI)
8 obs = groupRows(obs)
9 for i ∈ range(0, numRows(obs)) do

10 regression(DB, obs[i])

11 return (DB)

Figure 3.3 provides a graphical representation of the algorithm.

3.3.2 Advanced Imputation Methods

The methods presented in this section are more complex, since they have been
designed performing different combinations of the simple methods described in
Section 3.3.1.

3.3.2.1 Interpolation edge smoothed polished regression This method
combines the Interpolation and Polished Regression IMs (3.3.1.1 and 3.3.1.5), so
that the transition from observed TS values to the imputed ones is as smooth
as possible. Regression as an IM lacks of a temporal component that can be
exploited in TSs. For this reason, in this case it is combined with interpolation.
Interpolation usually produces good results near the observed TS segments, due
to the temporal component, and tends to struggle more in the central parts of
the missing sections (specially when the missing segment is long). This is why

56

Fig. 3.3: Polished Regression Imputation visual representation. This diagram
shows graphically the information shown in Algorithm 3.2. The Regression
hexagon performs Regression for each TS with MD.

57

this method proposes a combination in which Interpolation is weighted higher in
the edges of the missing segments, and Regression gains consideration in central
parts.

As said before, this method uses the implementations developed in 3.3.1.1 and
3.3.1.4. The formula for the combination of two methods is given by Equation
1:

x · InterpolationV alue+ (1− x) ·RegressionV alue (1)

x is calculated for each missing position (k) as in Equation 2, in which start
and end represent the indexes of the starting and ending points of the missing
segment, and l is the total length of the segment.

max((end− k)/l, (k − start)/l)) (2)

The procedure is formally explained in Algorithm 3.3, which uses the following
functions and notation:

– Interpolation(DB): Performs Multiple Interpolation, as explained in Section
3.3.1.1 to fill in missing values.

– polishReg(DB): Performs Polished Regression as explained in Section 3.3.1.5
to return a DB with no MD.

– detectMissSeq(TS): Given a TS, this function returns a two-column matrix.
Each row of the matrix represents a long missing sequence, and the two
values on it are the starting and ending points of the sequence.

– ncol(DB): Given a DB, this function returns the amount of columns of the
matrix.

– range(x,y): Returns the list of ordered integers in the [x,y) interval.

– max(x,y): Returns the number with the higher value between x and y.

– DB[:,i]: This notation returns the full ’i’-est column of the DB.

58

Algorithm 3.3: Interpolation Edge Smoothed Polished Regression algorithm.

1 Input: DB with MD
2 Output: Imputed DB
3 begin
4 IntDB = Interpolation(DB)
5 PolDB = polishReg(DB)
6 for i ∈ ncol(DB) do
7 seq = detectMissSeq(DB[:, i])
8 for j ∈ range(0, numRows(seq)) do
9 length = seq[j,1] - seq[j,0]

10 start = seq[j,0]
11 end = seq[j,1]
12 for k ∈ range(start, end) do
13 x = max((end-k)/l, (k-start)/l))
14 DB[k,i] = x · InterpolationV alue+ (1− x) ·RegressionV alue

15 return (DB)

3.3.2.2 Interpolation intermittently smoothed polished regression This
method also combines Interpolation and Polished Regression (Sections (3.3.1.1
and 3.3.1.5)). First of all, the data is imputed as described in the Polished Re-
gression method. Then it is combined with Interpolation. In this case, for each
missing segment of length l, the section is divided in subsegments of length ln(l).
Next, half of the segments (interleaved) are reimputed via Interpolation, consid-
ering the other half of the imputed values as observed. Then, the process is run
again, but this time the roles of the subsegments are changed. The subsegments
that were reimputed are now considered observed (their Polished Regression
values), and the subsegments considered observed, are reimputed. Finally, the
values obtained via Regression and via Interpolation are combined by computing
their mean.

To implement the Interpolation intermittently smoothed polished regression al-
gorithm, the Interpolation and Polished Regression processes described before
were used as building blocks.

Figure 3.4 shows a fictional example of how this IM works, in a step-by-step
explanation. The figures include the process from the complete, original TS to
the imputed TS, passing through the MD introduction, and the imputation
combination.

The first step described in Figure 3.4a contains the original TS, and in the second
(Figure 3.4b) the MD introduction is performed. For this example, a long missing
segment was introduced, to ease the understanding of the methodology. Step
three (Figure 3.4c) runs the Regression imputation (green part). Steps 4.1 and
4.2 (Figures 3.4d and 3.4e, respectively) divide the now imputed sections in two

59

(Note the interleaved shorter missing sections). Steps 5.1 and 5.2 (Figures 3.4f
and 3.4g, respectively) perform Interpolation over the missing values produced
in steps 4.1 and 4.2 respectively (yellow segments). Finally, step 6 (Figure 3.4h)
computes the averages between the Polished Regression and Interpolation values
(green and yellow ones) to produce the final result.

The process is also described in Algorithm 3.4, which uses the following functions
and notation:

– polishReg(DB): Takes a DB with MD as an argument, and returns the DB
imputed using MICE Polished Regression (Section 3.3.1.5).

– detectMissSeq(TS): Given a TS, returns a two-column matrix. Each row of
the matrix represents a long missing sequence, and the two values on it are
the starting and ending points of the sequence.

– numRows(x): Being x a matrix, this function returns the amount of rows of
x.

– int(x): Returns the integer part of (presumably float) x.

– ln(x): Returns the napierian logarithm of x.

– Interpolation(DB): Performs Multiple Interpolation, as explained in Section
3.3.1.1 to fill in missing values.

– mean(DB1, DB2): Returns the mean of two matrices, performed element
wise.

– db[x:y,z]: This notation selects all the cells between indexes db[x,z] and
db[y,z].

60

Algorithm 3.4: Interpolation intermittently smoothed polished regression al-
gorithm.

1 Input: DB with MD
2 Output: Imputed DB
3 begin
4 PolDB = polishReg(DB)
5 PolDB1 = PolDB
6 for i ∈ ncol(DB) do
7 seq = detectMissSeq(DB[:, i])
8 for j ∈ range(0, numRows(seq)) do
9 l1 = int(ln(l))

10 k = 0
11 start = seq[j,0]
12 end = seq[j,1]
13 while k · l1 < l do
14 startIndex = start + k · l1
15 medIndex = min(start + (k + 1) · l1, end)
16 endIndex = min(start + (k + 2) · l1, end)
17 PolDB[startIndex:medIndex, i] = ”NaN”
18 PolDB1[medIndex:endIndex, i] = ”NaN”
19 k = k + 2

20 PolDB = Interpolation(PolDB)
21 PolBD1 = Interpolation(PolDB1)
22 return (mean(PolDB, PolDB1))

3.3.2.3 Random based Polished Regression This method also follows the
same strategy described in Algorithm 3.2 with the same function specification
except in baseImp(DB). In this case, instead of using MICE as the step to obtain
the necessary full DB in the first stage, random imputation is used. Random
imputation takes a random value between the maximum and minimum values
in the TS, and uses it for imputation. More formally:

– baseImp(DB): Given a DB with missing values, this function returns the im-
puted DB. For each TS, the function computes the maximum and minimum
values, and imputes a random value between them in each latent value.

The rationale behind defining the Random Imputation is that using it we can
contrast whether there is a need of a good imputation (in this case, MICE) as a
base for subsequent Regression application.

3.3.2.4 Random based Interpolation intermittently smoothed pol-
ished regression This method uses the same strategy followed in Interpolation

61

intermittently smoothed polished regression (Section 3.3.2.2) in Figure 3.4, and
Algorithm 3.4. The only difference is that, in this case, instead of basing the
Regression on MICE, it is based on Random Imputation;

– polishReg(DB): Takes a DB with MD as an argument, and returns the DB
imputed using Random based Polished Regression.

3.3.2.5 Seasonally Splited-Kalman model-based Regression This method
is also similar to the strategy explained in Section 3.3.1.4, but instead of using
MICE as a base method, Kalman model (Section 3.3.1.2) is used. Following the
example in Figure 3.2, the change will only affect the process before Stage 1, in
which MICE would be replaced by Kalman.

3.3.2.6 Seasonally Splited-Kalman model-based Polished Regression
This strategy is also implemented as in Algorithm 3.2, but baseImp(DB) pro-
duces a different result compared to previous descriptions. In this case:

– baseImp(DB): Takes a DB with missing values on it, and returns its imputed
version, via Seasonally Splitted IM (Section 3.3.1.2).

3.4 Experiments

In order to build our own experience apart from the knowledge obtained from
the work developed by other authors, some experiments have been designed. The
goal of the analysis presented in this section is to find out what is the performance
of some of the usually applied TMs for multi-variate TSs and compare them to
the newly proposed methods. As a result of the analysis, we will we expect to
rank the IMs according to their behavior for TMs. In addition, we expect to
identify those IMs that are ineffective in terms of their performance.

More specifically, this section has three main objectives:

1. Introducing the algorithms that will serve us to insert MD into the complete
TSs.

2. Compare four basic IMs: Interpolation, Kalman-based, MICE and Regression

3. Evaluate the new proposed algorithms using themselves as a benchmark,
along the basic methods.

With this goal in mind, a set of experiments similar to those developed developed
in Chapter 2 were designed and executed.

62

(a) Step 1; full univariate TS. (b) Step 2; TS gets MD inserted
(in this case, a long segment).

(c) Step 3; TS is imputed using
Regression.

(d) Step 4.1; Regression results
are divided (first half).

(e) Step 4.2; Regression results
are divided (second half).

(f) Step 5.1; First half gets
imputed using Interpolation.

(g) Step 5.2; Second half gets
imputed using Interpolation.

(h) Final step 6; Both results
in steps 5.1 and 5.2 are combined.

Fig. 3.4: Interpolation intermittently smoothed polished regression step by step
example.

63

3.4.1 Experimental Settings

The general experiment consisted on the selection (and creation) of multivari-
ate TSs, which will lose some of their values for a posterior imputation. Then,
the distance between the imputed and the original TSs is computed, and used
as a metric to determine the quality of the IM. In this section the complete
experimental process is detailed.

3.4.2 Data Base benchmark

First, we need to decide on a set of multivariate TSs to test the IMs. To achieve
this first goal, two strategies were developed to generate the artificial bench-
marks. The first one consisted on creating a synthetic DB containing 5 TSs. All
of them were composed by 100 timestamps (indexed with integers from 0 to 99).

y = x (3.1)

y = 2x (3.2)

y = sin(x) (3.3)

y = cos(x) (3.4)

y = ln(x) (3.5)

The functions used to compute the values of the five TSs are shown in Equations
3.1 to 3.5 The first TS corresponds to the timestamp index. The second variable
is also a linear function. The third and fourth TSs contain sinusoidal functions,
while the last TS is a logarithmic function. This set of 5 TSs provides a DB
from which missing values are easy to predict, since an polynomial Interpolation
with a not necessarily high order or a linear Regression could predict them quite
accurately. This way, the DB contains two linearly ascending functions, other
two TSs with periodic behaviors, and finally, slowly increasing TS.

Other more realistic multivariate TSs were obtained from the R package TS-
Dist7. This package offers multiple methods to measure the distance between two
TSs, methods that also consider their temporal aspect. It also provides three ex-
ample Multivariate TSs, with varying dimensions. These DBs are more irregular
and realistic than the artificial DBs generated by Equations 3.1 to 3.5, thus it
will be a good benchmark to test the developed IMs.

The first of these three multivariate TS consists of a numerical matrix conformed
by six ARMA series of coefficients (ARMA(3, 2)). ARMA is a model that can
be computed from a TS, and is usually used to describe a TS or predict future
values. It is composed by two polynomial models that serve the same purpose;

7 https://cran.r-project.org/web/packages/TSdist/TSdist.pdf

64

Autoregressive and Moving Average. Their parameters AR = (1,−0.24, 0.1) and
MA = (1, 1.2) and length 100. The second DB is formed by 100 series of length
100 obtained from 6 different classes. The final example is a DB conformed by
50 series of length 100 obtained from 5 different classes. Each class is obtained
from a different initializations of an ARMA(3, 2) process of coefficients AR =
(1,−0.24, 0.1) and MA = (1, 1.2) [49].

Table 3.3 shows a summary description of the TS characteristics as well as the
references to four graphical representations of the TSs. These figures contain all
the information in the complete TSs, therefore, the relative development of the
individual TSs can be observed. Examining these images, it is clear that the
TSdist multivariate TSs are drawn from the same origin.

Index DB Obs. TSs Description Fig.
1 Synthetically created 100 5 x, 2x, sin(x), cos(x), ln(x) 3.5a, 3.5b
2 1 TSdist 100 6 ARMA(3, 2) (AR = (1,−0.24, 0.1) & MA = (1, 1.2)) 3.6
3 2 TSdist 100 100 6 classes 3.7
4 3 TSdist 100 50 ARMA(3, 2) (AR = (1,−0.24, 0.1) & MA = (1, 1.2)) 3.8

Table 3.3: DBs used to investigate the behavior of the different IMs proposed in
this chapter.

3.4.3 Algorithm to add missing data to the time series

The knowledge gained on the previous chapter stated that MCAR was the MD
type that offered the most significant differences in regards of IMs performance.
Also, MCAR is a realistic MDT for a TS, since a machine could miss recording
a value one specific time, or a doctor could forget to ask certain information to a
patient to write it down, only once. As a result, from the four MDTs considered
in the previous chapter, only MCAR is contemplated in this second problem.

The problem specification has changed from Chapter 2 to this section, and so
has some of the terminology. The MDT detectable in a TS database differs from
the types found in discrete DBs. For this reason, the MDT concept changes from
now on. In the previous discrete problem, MDT referred to four different types
(MAR, MCAR, MIV and MuOV), but from now on it will make reference to
two types of MD exclusive of TSs. The first one, long missing segments. For
example, a malfunctioning sensor could produce various adjacent missing values
in the same variable.

Summarizing, we have two new types of MDT, long and short segments.

For introducing MCAR, the structure of the algorithm is the same as the one
described in Algorithm 2.1.

65

(a) First two TSs. (b) Last three TSs.

Fig. 3.5: Synthetic Multivariate TS (5 TSs).

Fig. 3.6: First Multivariate TS in TSdist package (6 TSs).

Fig. 3.7: Second Multivariate TS in TSdist package (100 TSs).

Fig. 3.8: Third Multivariate TS in TSdist package (50 TSs).

66

As for the long missing sequence introducing algorithm, it is defined as in Algo-
rithm 3.5.

Note that this algorithm uses the functions random(x,y), which produces a ran-
dom integer between x and y, and numTS(db), which returns the amount of TSs
in a DB. Also, it uses the notation db[x:y,z], that selects all the cells with index
between (x,z) and (y,z). Finally, the parameter lengths, is a list in which the
dimensions of the missing chunks will be introduced. For example, if we want to
erase one segment of 10 timestamps, lengths = [10], or if the aim is to introduce
5 chunks of MD of 5 positions each, then lengths = [5, 5, 5, 5, 5].

In the experiments described in this section, this variable was set as lengths =
[13, 14, 15, 16, 17, 18, 19]. With these values, the missing entries will be signifi-
cantly different from MCAR. Also, the introduction of this amount of MD will
produce a large percentage of unobserved entries in the smallest DBs, about 20%,
the MD percentage commonly introduced in the papers commented in Related
Work (Sections 2.2 and 3.2).

Algorithm 3.5: Long sequence MD generating algorithm.

1 Input: DB
2 Output: DB with MD
3 begin
4 y = numTS(data)
5 x = numObs(data)
6 for i ∈ lengths do
7 obs = random(0,y-i)
8 ts = random(0,y)
9 data[obs:obs+i, ts] = “NaN”

10 return (data)

This parameter (lengths) had the same value for all four DBs. In this way,
different MD percentages were used, since the dimensions of the TSs were all
different. For the synthetic DB, this process supposed introducing 22.4% of MD,
while for the TSs obtained from the TSdist package, these values were 18.667%,
1.12% and 2.24%.

These long strings of missing values generated by Algorithm 3.5 will be consid-
ered as such if the missing gap occupies three cells or more, as recommended by
Bar-Joseph et al. in [4]

Figures in 3.9 show different examples of how MD is is introduced in some
of the univariate TSs. Each figure shows the original TS (black, with square
markers) with the introduced MD (cyan, with X markers). Figure 3.9a presents
examples where long MD segments have been introduced, while Figure 3.9b
shows examples of the introduction of short MD segments.

67

(a) Two examples of long missing segment introduction.

(b) Two examples of isolated MD introduction.

Fig. 3.9: Four examples of MD introduction in TSs.

3.4.4 Metrics

Considering the question of MD types and IMs for the particular case of multi-
variate TSs, other performance measurements of the IMs can be introduced. In
the previous chapter, the accuracy value obtained via 5-fold cross-validation was
used as a way to evaluate the performance of the IM. This method misses the
temporal component of the TS, as a general SC algorithm classifies regarding
simply the information available in a single observation. For this reason, a new
methodology is proposed. In this case, distances between TSs will be used to
contrast the effectiveness of the IMs. We will compute the distance between the
original TS and that same TS after MD has been introduced and imputed. The
distance will be used as a criterion to determine the imputation quality. Three
distance computing methods have been selected;

– STSDistance: The Short Time Series Distance [47], computed as:

STS =

√
length(TS)∑

k=0

(yk+1−yk
txk+1−txk

− xk+1+xk

tyk+1−tyk)2

Where txk and tyk represent the k-th timestamp, and xk and yk stand for
the respective values of the two TSs in that same k-th timestamp [49].

– ARLPCCepsDistance [32]: Computes the dissimilarity between two numeric
time series in terms of their Linear Predictive Coding (LPC) ARIMA pro-

68

cesses [48]. ARIMA is a similar, generalized model to the one explained in
previous Section 3.4.2, ARMA [51].

– IntPerDistance [11]: Calculates the dissimilarity between two numerical se-
ries of the same length based on the distance between their integrated peri-
odograms. It is computed as:

d(x, y) =
+π∫
−π
|Fx(λ)− Fy(λ)|dλ

where Fx(λ) = C−1
x

j∑
i=1

Ix(λi) and Fy(λj) = C−1
y

j∑
i=1

Iy(λi) with

Cx =
∑
i

Ix(λi) and Cy =
∑
i

Iy(λi) in the normalized version. Cx = 1 and

CY = 1 in the non-normalized version. Ix(λk) and Ix(λk) denote the peri-
odograms of x and y, respectively [48].

These three functions were selected because the totally different methods they
utilize to compute distances, which will produce three perspectives of the influ-
ence of the IM in the imputed TS.

All three distances were computed using the same R package as for the genera-
tion of multivariate TSs as described in Section 3.4.2, TSDist.

3.4.5 Experimental Results

In order to measure the effectiveness of the methods presented in Section 3.3,
an experiment involving IMs and the components mentioned previously (MD
introduction strategies 3.4.3 and metrics 3.4.4) was designed. The steps of the
experiment follow:

1. Introduce MD in the original database, DBOrig with a selected MD intro-
duction strategy, to create DBMD

2. Apply an IM to the DBMD to create an imputed database, DBIM .

3. Compute the distance between the DBOrig and DBIM using a determined
distance, for each TS pair in the DBs.

This process is executed for each possible combination of MD introduction strat-
egy, IM, and distance. Then, all the results are subjected to a statistical test that
consists on the Kruskal-Wallis/Dunn statistical test combination. Using this test,
all the different components are examined to detect which factor produces the
major impact in imputation quality. Each time the test found that a combi-
nation of components obtained significantly better results than other one, the
first one was awarded one point and another point was subtracted from the one
with worse result. The points won and lost are shown in tables in the following
sections.

69

The last row of each table shows the number of times each algorithm was outper-
formed by the others (o−). The last column shows the number of times each algo-
rithm outperforms the rest (o+). The final score of the algorithms was obtained
by subtracting the points lost to the points won compared to other strategies.

To improve the readability of the tables, the names of the IMs are substituted
by their index:

IM1 Interpolation.

IM2 Seasonally Splitted Imputation Method (Kalman).

IM3 Standard IM (MICE).

IM4 Regression (based on MICE).

IM5 Polished Regression.

IM6 Interpolation edge smoothed polished regression.

IM7 Interpolation intermittently smoothed polished regression.

IM8 Random based Polished Regression.

IM9 Random based Interpolation intermittently smoothed polished regression.

IM10 Seasonally Splited-Kallman model-based Regression.

IM11 Seasonally Splited-Kallman model-based Polished Regression.

3.4.5.1 Short Missing Segments First, we present the results obtained
from the DBs that had MCAR MDT introduced on them. The following Tables
3.4, 3.5 and 3.6 show the statistical differences between the dissimilarities com-
puted by each one of the three distances used for these experiments, while the
last Table 3.7 shows the combined result.

Table 3.4 refers to the results of the comparisons between the IMs using STS
distance. This table ranks MICE based Regression (IM4) in first place, with an
overall score of 29. Only Kalman based Polished Regression (IM11) can barely
keep up to it, scoring 21. The rest of methods obtained 12 or less. It seems like
Regression makes the difference, as both (Polished and Regular) outscore clearly
their base methods (MICE (IM3) and Kalman (IM2)). Also, interpolation does
not provide acceptable results, being, by far, the worst method. The Random
based Regressions also fail by a large margin.

Table 3.5 refers to the results using ARIMA-LCP distance. This dissimilarity
measure shows less differences than the previous metric. Again, the same two IMs
top the overall ranking (recording scores of 17 and 14) over the rest (8 or lower).
However, this time, the top two have their roles changed, as Polished Kalman
Regression beats Mice Regular Regression. The Interpolation score worsens with
respect to the previous result. Once again, the Random based Regressions do
not offer good results either.

70

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 1 1 1 1 1 1 1 1 1 9
IM 2 3 0 1 1 1 2 1 4 4 1 1 19
IM 3 3 3 0 0 0 2 0 3 3 0 0 14
IM 4 3 3 4 0 3 2 3 4 4 3 3 32
IM 5 3 3 2 0 0 2 1 4 4 0 0 19
IM 6 3 1 1 0 0 0 0 3 4 0 0 12
IM 7 3 3 2 0 0 3 0 4 4 0 0 19
IM 8 3 0 0 0 0 1 0 0 0 0 0 4
IM 9 3 0 1 0 0 0 0 3 0 0 0 7
IM 10 3 3 2 0 0 2 1 4 4 0 0 19
IM 11 3 2 2 1 2 4 2 4 4 2 0 26

Total 30 18 16 3 7 19 9 34 32 7 5 180

Table 3.4: Results of the statistical tests on the difference between the perfor-
mance of the IMs in the TS with short missing segments using STS distance.

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 0 0 0 0 1 0 0 0 0 1
IM 2 3 0 1 0 1 0 1 2 2 1 0 11
IM 3 4 1 0 0 0 1 0 3 3 0 0 12
IM 4 4 2 1 0 0 2 1 3 3 0 0 16
IM 5 4 1 0 0 0 0 0 3 3 0 0 11
IM 6 4 1 0 0 0 0 0 2 1 0 0 8
IM 7 3 1 0 0 0 0 0 3 3 0 0 10
IM 8 1 0 0 1 1 2 1 0 0 1 1 8
IM 9 2 0 0 0 0 2 0 0 0 0 1 5
IM 10 4 1 0 0 0 0 0 3 3 0 0 11
IM 11 3 2 2 1 1 2 1 3 3 1 0 19

Total 32 9 4 2 3 9 5 22 21 3 2 112

Table 3.5: Results of the statistical tests on the difference between the perfor-
mance of the IMs in the TS with short missing segments using the ARIMA-LCP
process distances.

71

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 1 1 1 1 1 2 2 1 1 11
IM 2 3 0 1 1 1 1 1 3 3 1 1 16
IM 3 3 2 0 0 0 1 0 4 3 0 1 14
IM 4 3 2 2 0 1 1 1 4 4 1 2 21
IM 5 3 2 1 0 0 1 0 4 4 0 1 16
IM 6 3 2 1 1 1 0 1 4 4 1 1 19
IM 7 3 2 1 0 0 1 0 4 4 0 1 16
IM 8 1 1 0 0 0 0 0 0 0 0 1 3
IM 9 1 0 0 0 0 0 0 2 0 0 1 4
IM 10 3 2 1 0 0 1 0 4 4 0 1 16
IM 11 3 1 1 1 1 1 1 3 3 1 0 16

Total 26 14 9 4 5 8 5 34 31 5 11 152

Table 3.6: Results of the statistical tests on the difference between the per-
formance of the IMs in the TS with short missing segments using Integrated
Periodogram based distance.

This last individual Table 3.6 shows the results using the Integrated Periodogram
based distance. This measurement puts MICE based Regular Regression in the
top of the rank by a clear difference over the rest (17 overall, against 11 or lower
obtained by the others). In this case, Kalman Polished Regression is unable
to score better than its Regular version, (11 and 5 overall). Interpolation and
Random based Regressions still fail to perform well.

Finally, the combined Table 3.7 shows the addition of all three previous tables
(different metrics for the same MDT) and summarizes the observations made up
to now. MICE Regular Regression tops the ranking, as it obtains a 60 overall
score. Considerably far away stands Kalman Polished Regression, with 43. The
other IMs are unable to do better than 31. The bad performance shown by
Interpolation and Random Regressions is noteworthy.

3.4.5.2 Long Missing Segments The same experimental structure was used
for the long missing segment imputation performance measure. Three tables of
results obtained using the three different distance methods are shown first, and
a final one that considers all the distances at the same time concludes.

Table 3.8 is based on the STS distance and shows nothing but equality in the top
of the ranking. As in the short segment experimentation, the Kalman Polished
Regression and the MICE Regular Regression continue to outperform the other
IMs. This time it is the Kalman based IM that just beats the MICE based one
(25 to 24 overall). The other methods fail to obtain more than 15.

Table 3.9 presents the results of the comparison among the IMs using ARIMA-
LCP distance for long missing segments. The scores based on this measurement
again differ from the others, as there are four methods with ratings of 15 and 14.

72

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 2 2 2 2 3 3 3 2 2 21
IM 2 9 0 3 2 3 3 3 9 9 3 2 46
IM 3 10 6 0 0 0 4 0 10 9 0 1 40
IM 4 10 7 7 0 4 5 5 11 11 4 5 69
IM 5 10 6 3 0 0 3 1 11 11 0 1 46
IM 6 10 4 2 1 1 0 1 9 9 1 1 39
IM 7 9 6 3 0 0 4 0 11 11 0 1 45
IM 8 5 1 0 1 1 3 1 0 0 1 2 15
IM 9 6 0 1 0 0 2 0 5 0 0 2 16
IM 10 10 6 3 0 0 3 1 11 11 0 1 46
IM 11 9 5 5 3 4 7 4 10 10 4 0 61

Total 88 41 29 9 15 36 19 90 84 15 18 444

Table 3.7: Results of the statistical tests on the difference between the perfor-
mance of the IMs in the TS with short missing segments considering all three
dissimilarity measures.

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 1 1 1 1 1 1 1 1 0 8
IM 2 3 0 1 1 1 3 4 4 4 1 0 22
IM 3 3 1 0 0 0 3 3 3 3 0 0 16
IM 4 3 3 3 0 2 3 3 4 3 2 1 27
IM 5 3 2 2 0 0 3 3 4 3 0 0 20
IM 6 3 0 1 0 0 0 0 2 2 0 0 8
IM 7 3 0 1 0 0 0 0 0 2 0 0 6
IM 8 3 0 1 0 0 0 1 0 2 0 0 7
IM 9 3 0 1 0 0 0 1 0 0 0 0 5
IM 10 3 2 2 0 0 3 3 4 3 0 0 20
IM 11 3 2 2 1 1 4 4 4 4 1 0 26

Total 30 10 15 3 5 20 23 26 27 5 1 165

Table 3.8: Results of the statistical tests on the difference between the perfor-
mance of the IMs in the TS with long missing segments using STS distance.

73

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 0 1 0 0 0 0 0 0 0 1
IM 2 3 0 0 0 0 1 2 1 1 0 0 8
IM 3 4 1 0 0 1 1 2 2 3 1 1 16
IM 4 3 2 1 0 0 2 2 2 3 0 1 16
IM 5 4 1 0 0 0 2 2 2 3 0 1 15
IM 6 4 1 0 0 0 0 0 0 0 0 1 6
IM 7 4 2 0 0 0 2 0 1 2 0 1 12
IM 8 3 0 0 0 0 1 1 0 1 0 0 6
IM 9 3 0 0 0 0 0 0 0 0 0 0 3
IM 10 4 1 0 0 0 2 2 2 3 0 1 15
IM 11 3 1 0 0 0 2 2 2 2 0 0 12

Total 35 9 1 1 1 13 13 12 18 1 6 110

Table 3.9: Results of the statistical tests on the difference between the perfor-
mance of the IMs in the TS with long missing segments using the ARIMA-LCP
process distances.

These are MICE, MICE Regular and Polished Regression, and Kalman Polished
Regression. The other IMs do not perform better than 6.

Table 3.10 shows the outcome produced by Integrated Periodogram Based dis-
tance, over long missing segments. This time MICE Regular Regression once
again stands tall in first position with a score of 29, as Kalman Regular Regres-
sion reaches second with 23.

This last Table 3.11 considers all the dissimilarity measures. As expected, MICE
Regular Regression holds to the first place (68), followed by Kalman Regular
Regression and MICE Polished Regression (52).

3.4.5.3 Short Time Series Distance Table 3.12 contains the results of the
statistical tests for both lengths of missing segments and the STS distance. It
shows a slight advantage of MICE Regular Regression (55) over Kalman Polished
Regression (46), and once again, the other methods stay far from these results.

3.4.5.4 ARIMA-LCP distance Table 3.13, shows results for ARIMA-LCP
distance and reaffirms the dominance of the MICE Regular Regression (29) over
the other IMs; MICE and Kalman Regular Regression (23).

3.4.5.5 Integrated Periodogram based distance Table 3.14 shows re-
sults for Integrated Periodogram based distance. This table also confirms the
supremacy that MICE Regular Regression has over the other IMs, as it scores
46, edging the second best, Kalman Regular Regular Regression, by 12 points.

74

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 0 0 0 0 0 0 0 0 0 0
IM 2 3 0 0 0 0 3 3 2 3 0 0 14
IM 3 3 3 0 0 0 3 3 3 3 0 2 20
IM 4 4 4 2 0 1 3 3 4 4 1 3 29
IM 5 4 4 2 0 0 3 3 3 3 0 2 24
IM 6 4 1 1 0 0 0 0 0 0 0 0 6
IM 7 4 1 1 0 0 3 0 1 3 0 0 13
IM 8 4 1 1 0 0 2 2 0 2 0 0 12
IM 9 4 1 0 0 0 0 0 0 0 0 0 5
IM 10 4 4 2 0 0 3 3 3 3 0 2 24
IM 11 4 3 1 0 0 3 3 3 3 0 0 20

Total 38 22 10 0 1 23 20 19 24 1 9 167

Table 3.10: Results of the statistical tests on the difference between the per-
formance of the IMs in the TS with long missing segments using Integrated
Periodogram based distance.

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 1 2 1 1 1 1 1 1 0 9
IM 2 9 0 1 1 1 7 9 7 8 1 0 44
IM 3 10 5 0 0 1 7 8 8 9 1 3 52
IM 4 10 9 6 0 3 8 8 10 10 3 5 72
IM 5 11 7 4 0 0 8 8 9 9 0 3 59
IM 6 11 2 2 0 0 0 0 2 2 0 1 20
IM 7 11 3 2 0 0 5 0 2 7 0 1 31
IM 8 10 1 2 0 0 3 4 0 5 0 0 25
IM 9 10 1 1 0 0 0 1 0 0 0 0 13
IM 10 11 7 4 0 0 8 8 9 9 0 3 59
IM 11 10 6 3 1 1 9 9 9 9 1 0 58

Total 103 41 26 4 7 56 56 57 69 7 16 442

Table 3.11: Results of the statistical tests on the difference between the perfor-
mance of the IMs in the TS with long missing segments considering all three
dissimilarity measures.

75

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 2 2 2 2 2 2 2 2 1 17
IM 2 6 0 2 2 2 5 5 8 8 2 1 41
IM 3 6 4 0 0 0 5 3 6 6 0 0 30
IM 4 6 6 7 0 5 5 6 8 7 5 4 59
IM 5 6 5 4 0 0 5 4 8 7 0 0 39
IM 6 6 1 2 0 0 0 0 5 6 0 0 20
IM 7 6 3 3 0 0 3 0 4 6 0 0 25
IM 8 6 0 1 0 0 1 1 0 2 0 0 11
IM 9 6 0 2 0 0 0 1 3 0 0 0 12
IM 10 6 5 4 0 0 5 4 8 7 0 0 39
IM 11 6 4 4 2 3 8 6 8 8 3 0 52

Total 60 28 31 6 12 39 32 60 59 12 6 345

Table 3.12: Results of the statistical tests on the difference between the perfor-
mance of the IMs in the TS with long and short missing segments using STS
Distance.

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 0 1 0 0 1 0 0 0 0 2
IM 2 6 0 1 0 1 1 3 3 3 1 0 19
IM 3 8 2 0 0 1 2 2 5 6 1 1 28
IM 4 7 4 2 0 0 4 3 5 6 0 1 32
IM 5 8 2 0 0 0 2 2 5 6 0 1 26
IM 6 8 2 0 0 0 0 0 2 1 0 1 14
IM 7 7 3 0 0 0 2 0 4 5 0 1 22
IM 8 4 0 0 1 1 3 2 0 1 1 1 14
IM 9 5 0 0 0 0 2 0 0 0 0 1 8
IM 10 8 2 0 0 0 2 2 5 6 0 1 26
IM 11 6 3 2 1 1 4 3 5 5 1 0 31

Total 67 18 5 3 4 22 18 34 39 4 8 222

Table 3.13: Results of the statistical tests on the difference between the per-
formance of the IMs in the TS with long and short missing segments using
ARIMA-LCP Distance.

76

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 0 1 2 3 4 5 6 7 8 9 10 11 12
IM 1 0 0 1 1 1 1 1 2 2 1 1 11
IM 2 6 0 1 1 1 4 4 5 6 1 1 30
IM 3 6 5 0 0 0 4 3 7 6 0 3 34
IM 4 7 6 4 0 2 4 4 8 8 2 5 50
IM 5 7 6 3 0 0 4 3 7 7 0 3 40
IM 6 7 3 2 1 1 0 1 4 4 1 1 25
IM 7 7 3 2 0 0 4 0 5 7 0 1 29
IM 8 5 2 1 0 0 2 2 0 2 0 1 15
IM 9 5 1 0 0 0 0 0 2 0 0 1 9
IM 10 7 6 3 0 0 4 3 7 7 0 3 40
IM 11 7 4 2 1 1 4 4 6 6 1 0 36

Total 64 36 19 4 6 31 25 53 55 6 20 319

Table 3.14: Results of the statistical tests on the difference between the per-
formance of the IMs in the TS with long and short missing segments using
Integrated Periodogram based distance.

Method IM 1 IM 2 IM 3 IM 4 IM 5 IM 6 IM 7 IM 8 IM 9 IM 10 IM 11 Total

IM 1 0 0 3 4 3 3 4 4 4 3 2 30
IM 2 18 0 4 3 4 10 12 16 17 4 2 90
IM 3 20 11 0 0 1 11 8 18 18 1 4 92
IM 4 20 16 13 0 7 13 13 21 21 7 10 141
IM 5 21 13 7 0 0 11 9 20 20 0 4 105
IM 6 21 6 4 1 1 0 1 11 11 1 2 59
IM 7 20 9 5 0 0 9 0 13 18 0 2 76
IM 8 15 2 2 1 1 6 5 0 5 1 2 40
IM 9 16 1 2 0 0 2 1 5 0 0 2 29
IM 10 21 13 7 0 0 11 9 20 20 0 4 105
IM 11 19 11 8 4 5 16 13 19 19 5 0 119

Total 191 82 55 13 22 92 75 147 153 22 34 886

Table 3.15: Results of the statistical tests for all TS distances and MD lengths.

77

3.4.5.6 Full Table Table 3.15 contains the summation of all distances and
lengths. As it could have been expected, MICE Regular Regression obtains the
best score of all methods (128) over Kalman Polished Regression (85), MICE
Polished Regression, and Kalman Regular Regression (both 83).

3.4.6 Computational time

Figure 3.10 shows the total results obtained by each IM, differentiated by the
MDT they were covering. Note that all the results in the right part of the vertical
blue line correspond to Regressions based on the methods written below the
chart.

Fig. 3.10: Scores obtained by IMs on both long and short MDTs introduced.

Figure 3.11 represents the Table 3.15 in a heat map. Note that the column and
row representing the Total show the mean of all the results, in order to make
it possible to distinguish all the color differences. Also as in the previous Figure
3.10, all the results in the right part of the vertical blue line, and in this case,
below the horizontal green line refer to results obtained by Regressions based on
the methods represented in the margins of the chart.

3.4.7 Global analysis of the IMs

Figure 3.12 shows the computational complexity of the different IMs in terms of
processing time. The largest multivariate TS was considered for this experiment
(the one containing 100 univariate TSs in 100 different timestamps). It had it
length multiplied by 2,3,4 and 5 in order to roughly approximate a scenario

78

Fig. 3.11: Heatmap origined from Table 3.15. A dark color represents a high
number in the table. An IM with a dark row and a light column would have
produced good results.

in which fast imputation is needed. This resulted in other four DBs all of them
with 100 univariate TSs, but with 200, 400, 800 and 1600 timestamps. These DBs
underwent the same procedure to introduce MD, scaled to the corresponding DB
dimension, and were finally imputed. In this case, the time consumed by each
process was measured. Figure 3.12 is divided into two charts to differentiate
the time consumption of the processes run in different environments, R (Figure
3.12b) and Python (Figure 3.12a).

This whole process was executed 30 times, and the means obtained by all the
values are shown in the chart.

3.4.8 Analysis of the results

Starting with the tables, it seems like the different metrics used in the experi-
ments produced the results desired, as they offered different outcomes. Particu-
larly, ARIMA-LCP is the only dissimilarity that put Kalman Polished Regression
over MICE Regular Regression. Also, this metric showed less differences among
the IMs than the other two. Despite this fact, the rest of the tables converge to
the same argument, manifesting the superiority of the performance offered by
MICE Regular Regression over the other IMs.

This time, the different procedures to introduce MD did not produce a very
diverse outcome, as it could have been expected. The long missing segments
accentuated the dominance of MICE Regular Regression over the other IMs
more than MCAR, but the ranking of top IMs did not change.

79

(a) Time elapsed during the Python processes.

(b) Time elapsed during the R processes.

Fig. 3.12: Time consumed by different components involved in top scoring IMs.

80

It is noteworthy the bad performance offered by Interpolation, and all the meth-
ods that involve this technique, as only Kalman Polished Regression was some-
times present in the higher positions, while other times it was surpassed by
simpler methods like MICE. The Edge Smoothing procedure did not make it to
the top of the ranking in any consideration.

Also, the poor behavior showed by the Random Regular Regression demonstrates
the fact that the usage of a good IM as a background for Regression is absolutely
necessary.

Regarding the time consumption, Figure 3.12 shows that the task that holds the
best performing position, also requires a long processing time, in this case, the
base method MICE is the bottleneck. It is worthy remembering that both base
imputations (MICE and Kalman) have been implemented using R, and that
the time appearing in the chart includes input and output costs, which possibly
represent a large part of the total. However, this cost should be the same for
both applications, and their increasing rates are different. Even though both are
linear-like, MICE grows (considerably) faster than Kalman. Also Figure 3.12
shows the insignificant amount of elapsed time while running the Python parts
, for which they shall not be considered in this instance.

3.5 Conclusions

The main objective of this chapter was to introduce and compare new complex
IMs, specific for the MD in TS problem. With this target in mind, some artificial
DBs had some values erased following two MD patterns, and were imputed by
several simple and newly proposed IMs. Finally, their performance was measured
using different metrics.

Starting with the simple methods, Interpolation provided incredibly bad re-
sults, being by far the worst IM among the considered ones. It was MICE the
method that obtained the best result among the three most basic methods, leav-
ing Kalman in second place with an acceptable performance.

About the utility of Polished Regression, it did not produce a sufficiently good re-
sult results to be paired with the Full Regression when MICE was used as a base
method. However, when Kalman Imputation was performed before reimputing
with a regression, the results were similar considering overall performance.

It is demonstrated that the application of a good imputation before performing
regression is absolutely necessary. The random based regressions produced very
poor results, while the regressions performed on DBs that had been imputed by
good IMs were the best strategies in terms of data quality.

The two combination attempts of Interpolation and Regression (Intermittently
and Edge Smoothed) were also clearly outperformed by the rest of the regres-
sions. This was unmistakably due to the bad results provided by Interpolation.

81

Regarding differences between the performances discriminating results by the
MD introducing strategies, the top method, MICE based Regression did not have
a considerable variation on its results. Neither did Kalman-based Regression, the
second one on the imputation quality ranking. However, the MICE and Kalman
based Polished Regressions did, performing considerably better in when the MD
was introduced in long segments, rather than short ones.

Interpolation also experienced a considerable difference between its performances
in different MDTs. As it could have been expected, it offered much better results
for short segments of missing values. Nevertheless, the outcome is bad in both
contexts.

In terms of time consumption, the biggest difference was found between Kalman-
model Imputation and MICE. MICE almost doubled the time growth rate of
Kalman.

Overall, it was determined that MICE based Regression is the best IM of all those
considered. If there is no urge of fast imputation, its usage is absolutely recom-
mended. However, in cases that need a considerably fast imputation, Kalman
based Regression could be the correct choice. Also, it was able to be the top IM
in some occasions.

82

Chapter 4

Advanced Imputation Methods for a real-world time series
prediction problem

4.1 Objectives

In previous Chapters 2 and 3 we have investigated the application of IMs on DBs
from the literature. In this section we investigate the MD issue in a real-world
problem of event-detection in multivariate TSs.

These TSs in question find their origin in an analysis of the quality of fluvial
environments. The TSs contain different parameters related to the water condi-
tion. The sensors could fail at the time of recording or sending the information
in question, and this behavior leads to the introduction of MD in the TSs.

The main objective of this chapter is to evaluate the effect of imputation in this
real-world problem. We will exploit the knowledge gathered and generated in
the previous two chapters of this work.

4.2 SIRENE R© Project

The SIRENE R©8 project continuously measures a number of parameters from
water resources. The analysis of these indicators can be used to conserve, or
detect the necessity to improve, the quality of the water bodies [57]. The stations
that the SIRENE R© project deploys perform a real time recording of diverse high
frequency parameters from surface waters. These stations are divided into two
types. Autonomous stations, which may be found in buoys and are battery-
powered, and stationary ones, which work in riverbanks and need continuous
power supply.

These machines record data every 10 minutes. This information is sent to a plat-
form, with the main objective of determining water’s quality in various aspects
and automatic detection of condition degrading pollution events. The sensors
can record up to 13 different parameters. In Table 4.1, these measurements can
be found, as well as their minimum and maximum feasible values.

8 The SIRENER© project is developed by the Rivages Pro Tech company.

83

Indicator Min. feasible value Max. feasible value Used in this Work

Water level (m) 0 3

Temperature (C) 0 40 3

Conductivity (µ/cm) 100 5000 3

Turbidity (NTU) 0 2000 3

pH 0 14 3

Dissolved oxygen (mg/L or %) 0 20 or 200 3

Ammonia (mg/L) 0 100 3

Orthophosphates (mg/L) 0 10 7

Hydrocarbon 7

Nitrates (mg/L) 0 100 7

Redox potential (mV) -1000 1000 3

Chlorophyll a (µg/L) 0 100 7

Phycocyanin (µg /L) 0 100 7

Table 4.1: All the parameters that SIRENE R© stations can record along with
their maximum and minimum feasible values.

4.2.1 Event detection and Missing Data problem in SIRENE R©

database

As it was previously mentioned, this enormous data quantity is recorded, among
other things, in order to be able to detect anomalies in water. With this objective,
an expert tagged some records of the data in two classes. It determined whether
an event happened (or was happening) or not. An event is recognized by the
change in the parameters of the water with respect to normal values. It can be
due to a natural phenomenon (e.g. rain) or be the result of external intervention
(e.g. water pollution due to waste from an industry). The task here is to use these
annotated DBs to try to perform automatic detection of events in unannotated
multivariate TSs.

This dataset can also suffer from the MD problem. The most common missing
values are caused by two reasons:

– The first pattern to be observed is that values for the same variable are
missing for contiguous measurements, which is probably caused by a sensor
not working properly.

– The second main pattern is a full timestamp being lost, which probably
is caused by a connection error between the platform and the SIRENE R©

deployments.

Nevertheless, these are not the only MD patterns in the data, as isolated missing
values are also present. Not responding to a definable pattern.

84

4.2.2 Database Description

DBs generated by the deployed stations can contain up to 13 TSs (recording
the 13 parameters enumerated in Table 4.1). However, this is not necessarily the
case for all the DBs as some can contain a subset of the whole group.

In this case, three examples provided by SIRENE R© have been used, named
Example 1, Example 2 and Example 3. Each one is defined by a measurement
of certain subset of parameters over a defined period of time. Table 4.2 shows
the characteristics of each one.

DB TSs Timestamps Annotated

Example 1 8 8,782 3

Example 2 7 29,142 3

Example 3 7 32563 7

Table 4.2: Characteristics of the databases available and used for our analysis.

The TSs databases considered for our analysis contain 8 or 7 TSs, which allows
us to perform an analysis from a multivariate approach (Section 1.2.2).

4.2.3 Missing Data Description

Here we illustrate the characteristics of MD in the SIRENE R© DB examples. This
analysis is supported by graphical visualization (Figures 4.1-4.6) of the three dif-
ferent multivariate TS examples generated by SIRENE R©. This step is required
to identify which, among the types of MD discussed before (Section 3.4.3), is
present in the data.

The first consignment of plots includes Figures 4.1 to 4.6. The axes of these
graphics represent the number of variables contained in a particular dataset
(horizontal axis), and all the possible MD combinations (vertical axis). The color
represents the amount of times that the combination was found; the warmer the
color, the more times the combination was present. To obtain these combina-
tions, DBs are converted into a binary table, which contain “0” when a value
is missing and “1” when it’s not. This binary matrix could be interpreted as
a decimal list, representing each decimal (binary row) a different missing value
combination. For example, if in a DB with eight variables, there is a timestamp
containing a missing value in the second column, then it will be transformed to
(1,0,1,1,1,1,1,1), and interpreted as 253. Some examples can be found in Figures
4.1, 4.3, 4.5. Also, as it is very difficult to identify a clear pattern from them,

85

summarized graphics containing only combinations suffering from missing values
are shown in Figures 4.2, 4.4, 4.6.

Figures 4.7 and 4.8 summarize the lengths of the missing segments in the three
examples considered. These figures contain the histograms describing the lengths
of the missing contiguous pieces of information, i.e. missing segments for all the
examples combined and separately, respectively. Note that this histogram only
considers segments up to 50 unities long, despite the fact that in the data there
may be found sequences as long as 1479. To compress this information, the fre-
quencies of all sequences longer than 50 were considered together with those
equal to 50.

As it can be seen in the chart, the majority of the missing segments can be
considered as long sequences since their length is greater than two [4]. Also,
there are some enormous missing gaps, that can reach to 1479 consecutive latent
entries, omitted in the figure for the sake of simplicity. This probably would
have a considerable effect in the performance of some IMs, according to the in-
formation obtained in Section 3.4.5. For example, observing the results offered
by Interpolation and any other strategy involving it, it would be highly inad-
visable for this type of MD. However, the DBs contain a small portion of short
missing entries.

Fig. 4.1: Example 1 MD distribu-
tion.

Fig. 4.2: Example 1 MD distribution
(condensed).

Figures 4.1 - 4.6 illustrate the existence of three main types of MD. The most
obvious MDT is the one that causes a full observation to go missing. This type
can be found in Example 2 and 3. Example 2 shows over 2400 observations fully

86

Fig. 4.3: Example 2 MD distribu-
tion.

Fig. 4.4: Example 2 MD distribution
(condensed).

Fig. 4.5: Example 3 MD distribu-
tion.

Fig. 4.6: Example 3 MD distribution
(condensed).

87

Fig. 4.7: MD segment length distribution in all the three examples exposed in
this work, grouped.

(a) MD segment length distribution in Ex-
ample 1.

(b) MD segment length distribution in Ex-
ample 2.

(c) MD segment length distribution in Ex-
ample 3.

Fig. 4.8: MD segment length distribution in all the three example exposed in this
work, individually.

88

lost, while in Example 3, there are over 2000 observations with MD, and in all
cases the full timestamp was lost.

The second most common type of MD is the adjacent missing values, which is
similar to the missing blocks explained above, but for a single TS instead of the
full observation. This can be seen in Examples 1 and 2, as there are considerable
amount of observations with the same pattern. Example 1 reflects this situation
in the (1, 0, 1, 1, 1, 1, 1) and (1, 1, 1, 1, 0, 1, 1, 1) combination, which represent
almost all of the MD in the DB. Example 2 finds this same scenario with the
(0, 1, 1, 1, 1, 1, 1) combination. These timestamps with MD will presumably be
adjacent.

Finally, there are some other observations that lose values randomly, producing
MCAR-like type of MD. Examples 1 and 2 show this type of problem in their
data.

Figure 4.7 confirms that MCAR-like MDT exists, as we can find short lengths
of missing adjacent values (one or two). However, it seems like the predominant
type is the long missing segment form. Figure 4.8 contains the same information,
but separated by DB, i.e., each multivariate TS has its own chart. The first
Figure 4.8a represents the MD segment length distribution for the Example 1
DB, and it shows that the predominant MDT is MCAR, as most of the segments
are relatively short. Figure 4.8b corresponds to Example 2, and it shows more
distributed segment lengths. The most common lengths are positioned around
10 and 40, which makes this DB a long MD segment container. Finally, Figure
4.8c shows the same information for Example 3, and we can see that it contains
little amount of MCAR combined with more frequent long missing segments.

These figures demonstrate the variability that the MD problem can experience,
even in the same research area. Furthermore, Example 2 and Example 3 have
been recorded in the same place, in different periods of time, and the MD dis-
tribution varies enormously.

Figures 4.9, 4.10 and 4.11 show the behavior of all TSs in each of the DBs,
representing MD with red blocks. The x axis represents the index of the record
entry and the y axis the measurement for the variable.

As a general conclusion of this study, we have been able to determine that three
types of MD are present in these DBs. The first one would correspond to the
fully missing, contiguous observations (Example 2, Figures 4.5 and 4.6). This
MDT could be cataloged as a data transmission failure. The second would be
the long lost segments, majority in the data, as shown in Figure 4.7. Finally, the
last (and least common) MDT in these DBs would be the MCAR. The TSs do
contain this pattern of MD, but as it can be seen in Figure 4.7, it represents a
small portion of the total missing values.

Example 1 contains 9.625% of MD. Example 2, 10.253%. But the last 85 obser-
vations of this second DB are completely missing. These timestamps are abso-
lutely useless, as the only extractable information would be the time they were

89

(a) Water level TS in Example 1. (b) Ammonium TS in Example 1.

(c) Temperature TS in Example 1. (d) pH TS in Example 1.

(e) Conductivity TS in Example 1. (f) Redox TS in Example 1.

(g) Turbidity TS in Example 1. (h) Oxigen TS in Example 1.

Fig. 4.9: Time series of all variables in Example 1. Missing data is shown with
red lines.

90

(a) Water level TS in Example 2.

(b) Temperature TS in Example 2. (c) Ammonium TS in Example 2.

(d) Oxigen TS in Example 2. (e) Conductivity TS in Example 2.

(f) Redox TS in Example 2. (g) pH TS in Example 2.

Fig. 4.10: Time series of all variables in Example 2. Missing data is shown with
red lines.

91

(a) Water level TS in Example 3.

(b) Temperature TS in Example 3. (c) Ammonium TS in Example 3.

(d) Oxigen TS in Example 3. (e) Conductivity TS in Example 3.

(f) Redox TS in Example 3. (g) pH TS in Example 3.

Fig. 4.11: Time series of all variables in Example 3. Missing data is shown with
red lines.

92

obtained in. For this reason, with these observations ignored, the MD percentage
decreases to 9.962%. Finally the last DB has 6.52% of missing values.

4.3 Imputation Method selection

Once the MD distribution is known, the next step to solve the problem would
be choosing a suitable IM. The results obtained in Chapter 3 should be the
starting point. The best two methods in terms of imputation accuracy were:
1)Mice Regular Regression and 2) Kalman Polished Regression. In the experi-
ments that obtained the ranking of IMs, the TSs were generated from the same
ARIMA model, which possibly causes that the variables are strongly related
to each other. This would mean that the Polished versions of the Regressions
could have been virtually improved. Considering the SIRENE R© DBs, with much
more independent TSs, these strategies will likely offer poorer results. This is
the reason why we do not recommend the usage of methods involving Polished
Regression.

Regarding the behavior of the two complete regression methods investigated in
the previous chapter, the final conclusion stated that using MICE as a basis
for subsequently performing regression produced better results than Kalman,
in terms of imputation value accuracy. However, Kalman offered much better
results when computational time consumption is the main concern.

The task of imputing the SIRENE R© DBs involves real time series, but since there
is a considerable amount of time between timestamp recording, this problem
does not require fast imputation algorithms. In consequence, the MICE based
regression is the most advisable IM for this problem.

4.4 Imputation

Once a good IM candidate has been selected for this problem, it is time to
proceed to fill the missing gaps.

4.4.1 Goal and methodology

As stated before, the objective of the SIRENE R© project is to detect events that
lead to quality changes in the water, as expressed in the measurements for the
different descriptors. The target of this concrete task is to do so automatically,
thus, a SC problem. For this reason, two of the examples provided will be used
as a benchmark for this imputation problem. These two DBs are appropriate
because they have been manually tagged (event occurring or not) by expert
knowledge.

93

This task is treated as a binary SC problem. Whether an event has occurred
(represented by 1) or not (represented by 0). Therefore, after imputing an anno-
tated, incomplete DB, the data is put through a 5-fold cross-validation process
to determine the effectiveness of the imputation. The result of the process at the
end is leveled to other standard IM to get to know whether the complex imputa-
tion really pays off. Then, the same procedure is applied to the other annotated
DB.

4.4.2 Experimental Framework

This is the methodology followed to determine the effectiveness of IMs; First,
a multivariate TS is imputed by two methods. One of the methods was the
strategy chosen in previous Section 4.4.1, the MICE Regular Regression. The
other approach, a Random Imputation. This second method produces a value
between the maximum an minimum value of a TS to impute values of that same
TS. Therefore, a simple IM is available in order to compare the performance
of the chosen method. The behavior of the IMs is tested through a 5-fold cross
validation using a Logistic Regression classifier with l1 penalization (for more
details, see Section 2.3.4).

Since both MICE and random imputation are stochastic methods, 30 executions
of the same program are run, then compared to each other using the same
statistical test used in previous experiments in this work, the Kruskal-Wallis
test. Also, the average accuracy of all the experiments are computed.

4.4.3 Results

The means of the 30 executions for the 2 TSs, for the two methods are shown
in Table 4.3:

Example 2 Example 3

Random Imputation MICE Regression Random Imputation MICE Regression

0.651 0.696 0.808 0.812

Table 4.3: Results obtained by both Random and MICE Regression Imputation
in the two Example DBs.

As it can be seen, only one of the problems experienced a classification accuracy
improvement when imputed by a complex method. This result is supported by
the mentioned statistical test, as it showed significant differences between the 30
results obtained in the Example 2 DB (p-value ≈ 0).

94

On the other hand, Example 3 showed almost no difference on classification
accuracies when imputed by different methods, but the statistical test once again
indicated considerable differences (p-value ≈ 0).

4.5 Conclusions

This chapter has focused on treating a real-world DB with its original MD prob-
lem. These DB contained records of the same variables over time, which catalogs
them as multivariate TSs. We found three types of MD, each one potentially pro-
duced by different causes. These DBs are useful to address an event detection
problem, in which the variable values determine whether a particular event has
been produced. To treat this problem, the knowledge built in the previous chap-
ters has been used, in order to identify, from a characterization of the MDT,
which are the most suitable IMs.

The results obtained in this chapter back up the findings deduced in previous
chapters. We have corroborated that the effectiveness of the imputation proce-
dure strongly depends on the problem.

Both problems in this real-world DB with MD scenario contained around 10%
of missing values (9.625% and 9.962%), for a disparate amount of timestamps
(8.782 and 29.142).

Even though the MD percentage and the information (variables) gathered are
almost equal, the results the IMs produced were considerably different. One DB
experienced a large increase in the classification accuracy (from 65% to almost
70%), while the accuracy of the other DB remained almost the same (improved
from 80% to 81%). Part of the large improvement found in the first DB can be
caused by the fact that the better the existing information is for SC purposes,
the harder is improving via imputation.

In general, it seems clear that the dependence of the performance of an IM on
the problem is a strong factor in this task, and this dependence may come in
different ways, i.e., MD percentage, MDT, observation and variable amounts,
etc. But as an overall conclusion, it seems safe to affirm that imputation does
not harm the data, but does not necessarily improve it.

95

96

Chapter 5

Conclusions

5.6 Summary

In this thesis we have treated the missing data problem and one general strategy
to minimize the effect this issue has over the data quality, the use of imputation
methods. To achieve this goal, the interactions between these two factors among
other secondary components, have been investigated.

First a review of the basic concepts, related to the topics treated in the thesis,
was set as an introduction.

Following the related work research, a concrete problem was chosen, imputation
in discrete DBs (DBs in which independence between observations is assumed).
To start with this concrete problem specification involving discrete DBs, the
literature on this topic was revised in order to understand where the limits of
the investigation in this area laid. Then, a series of experiments were set to make
a first exploration of the mechanics behind the treatment of MD in this domain.
As a result of this research, we searched, found, and described some patterns of
interactions between MDTs, IMs and SC algorithms.

After investigating discrete DBs, the problem specification was narrowed to an-
other type of DB, the multivariate TSs. Again, a review of the most important
literature in this area was performed.Based on the findings of the review, we pro-
pose a number of IMs based on the combination of regression and temporality.
In a new set of experiments, we compared different variants of IMs with intro-
duced new strategies, and studied their shortcomings. The background obtained
in the discrete part was applied to this experimental section. In this chapter, the
performances of various simple and complex IMs were tested, so as to have an
idea of what IMs can provide promising results.

Finally, a problem of water quality control DBs with MD was treated. This is a
real-world problem, with real-world DB, and MD. While addressing this prob-
lem the information gathered in the previous parts was employed once again,
concluding in a final experiment. We tested the IMs with contrasted good per-
formance in the previous two chapters.

97

5.7 Conclusions

Two main ideas can be concluded generally from the whole work described in
this thesis.

The first one is that the results of missing values imputation is strongly prob-
lem dependent. In all three chapters the results obtained offered more contrasts
between different problem specifications than distinct IMs or metrics.

However, some other factors have stood out. The quality of the IMs has also
proven to be determinant in some cases. This can be considered as the second
main component in this problem, as in some problems the complex methods
could not perform better than other simpler strategies. But in other cases, they
do make a difference. In a similar manner, some SC algorithms can also be
determinant in the final outcome of the process.

The other main conclusion extractable from this work is that good imputation
does not harm the data. In both experimental parts in this thesis bad imputa-
tion was deliberately performed so that other IMs could have their performance
measured. In all the cases, the strategies that were expected to improve the out-
come of any of the metrics used along this work, they delivered. The good IMs
outscored the bad ones.

In the discrete domain, some interactions between the MDTs, IMs and SCs were
detected. However, these were not found in the combinations that had the best
accuracy at the end of the process. The largest relation in this subject was
detected between MDT and IM.

In the TSs field, the imputation methods that involved the temporal component
in their estimations failed to outperform those which ignore it. This fact suggests
that the two problem specifications are not very different, despite the fact that
the TSs could contain more information to be exploited when imputing. After
all, the TS problem is a concrete instance of the general discrete problem. Nev-
ertheless, the temporal component has proven to benefit the time consumption
of the imputation methods that exploit this aspect, possibly due to seasonality.

Finally, the SIRENE R© DB proved the effectiveness of the complex method in
a real-world problem, but above all, confirmed the complete procedure strongly
depends on the problem, and its characteristics.

5.8 Future Work

This work has considered all the factors involved in a classical MDT-IM-SC
problem. In the MDT section, this thesis regarded four different types, while the
majority of the literature does not differentiate more than three. The SC part
was also widely covered, as the three common types of classification algorithms
(tree, model building and lazy) were represented with, at least, two methods.

98

However, some imputation techniques were not taken into account in this work.
The IMs used in this work cover a wide range of approaches (i.e. simple, complex,
iterative, based on classification algorithms, specific for TS, different combina-
tions of IMs...) but this research could be complemented in this aspect.

First of all, all the IMs used were third party implementations, had different
origins and were developed in distinct environments. This complicates the un-
derstanding of the mechanics underlaying the application in terms of optimal-
ity regarding results and time consumption, among other issues. This could be
solved by implementing the needed software on our own, which, on the other
side, would result in an incredible expense of time.

Also, the analysis could be extended in the multivariate TS part, as not many
DBs were considered. In addition, the data could not be an accurate represen-
tation of the real-world. In this aspect, the usage of more real-world databases
is recommended

Finally, a more in depth analysis of new IMs specific for TSs should be addressed.
The strategies utilized in this work did not take advantage of the temporal
component, as they offered poorer results than traditional IMs. With this aim,
the recommendation is to look for or conceive new methods for this specific type
of DB.

99

References

1. E. Acuña and C. Rodŕıguez. The treatment of missing values and its effect on
classifier accuracy. In Classification, clustering, and data mining applications, pages
639–647. Springer, 2004.

2. D. Aha, D. Kibler, and M. Albert. Instance-based learning algorithms. Machine
learning, 6(1):37–66, 1991.

3. R. R. Andridge and R. J. Little. A review of hot deck imputation for survey
non-response. International statistical review, 78(1):40–64, 2010.

4. Z. Bar-Joseph, G. K. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Simon. Continu-
ous representations of time-series gene expression data. Journal of Computational
Biology, 10(3-4):341–356, 2003.

5. G. E. Batista and M. C. Monard. An analysis of four missing data treatment
methods for supervised learning. Applied Artificial Intelligence, 17(5-6):519–533,
2003.

6. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

7. M. Blankers, M. W. Koeter, and G. M. Schippers. Missing data approaches in
ehealth research: simulation study and a tutorial for nonmathematically inclined
researchers. Journal of medical Internet research, 12(5):e54, 2010.

8. L. C. Blomberg and D. D. A. Ruiz. Evaluating the influence of missing data
on classification algorithms in data mining applications. SBSI 2013: Simpósio
Brasileiro de Sistemas de Informação, pages 734–743, 2013.

9. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

10. S. Buuren and K. Groothuis-Oudshoorn. MICE: Multivariate imputation by
chained equations in R. Journal of statistical software, 45(3), 2011.

11. D. Casado de Lucas. Classification techniques for time series and functional data.
2010.

12. C.-C. Chiu, S.-Y. Chan, C.-C. Wang, and W.-S. Wu. Missing value imputation for
microarray data: a comprehensive comparison study and a web tool. BMC systems
biology, 7(Suppl 6):S12, 2013.

13. Y. Ding and J. S. Simonoff. An investigation of missing data methods for classi-
fication trees applied to binary response data. The Journal of Machine Learning
Research, 11:131–170, 2010.

14. R. Elmasri. Fundamentals of database systems. Pearson Education India, 2008.

15. P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys
(CSUR), 45(1):12, 2012.

16. A. Farhangfar, L. Kurgan, and J. Dy. Impact of imputation of missing values on
classification error for discrete data. Pattern Recognition, 41(12):3692–3705, 2008.

100

17. R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of eugenics, 7(2):179–188, 1936.

18. J. H. Friedman. Regularized discriminant analysis. Journal of the American sta-
tistical association, 84(405):165–175, 1989.

19. J. H. Friedman. Greedy function approximation: a gradient boosting machine.
Annals of Statistics, 29(5):1189–1232, 2001.

20. X. Gan, A. W.-C. Liew, and H. Yan. Microarray missing data imputation based
on a set theoretic framework and biological knowledge. Nucleic Acids Research,
34(5):1608–1619, 2006.

21. P. J. Garćıa-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal. Pattern
classification with missing data: a review. Neural Computing and Applications,
19(2):263–282, 2010.

22. A. Gelman and J. Hill. Data analysis using regression and multilevel/hierarchical
models. Cambridge University Press, 2006.

23. I. A. Gheyas and L. S. Smith. A neural network-based framework for the recon-
struction of incomplete data sets. Neurocomputing, 73(16):3039–3065, 2010.

24. E. M. Hernández-Pereira, D. Álvarez-Estévez, and V. Moret-Bonillo. Automatic
classification of respiratory patterns involving missing data imputation techniques.
Biosystems Engineering, 138:65–76, 2015.

25. M. Hilbert and P. López. The worlds technological capacity to store, communicate,
and compute information. science, 332(6025):60–65, 2011.

26. J. Honaker, A. Joseph, G. King, K. Scheve, and N. Singh. Amelia: A program for
missing data (windows version) Cambridge, MA: Harvard university, 2001.

27. J. Honaker and G. King. What to do about missing values in time-series cross-
section data. American Journal of Political Science, 54(2):561–581, 2010.

28. J. Honaker, G. King, M. Blackwell, et al. Amelia II: A program for missing data.
Journal of statistical software, 45(7):1–47, 2011.

29. E. R. Hruschka Jr, E. R. Hruschka, and N. F. Ebecken. Bayesian networks for
imputation in classification problems. Journal of Intelligent Information Systems,
29(3):231–252, 2007.

30. T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. Springer, 1998.

31. R. Jörnsten, H.-Y. Wang, W. J. Welsh, and M. Ouyang. DNA microarray data
imputation and significance analysis of differential expression. Bioinformatics,
21(22):4155–4161, 2005.

32. K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective cluster-
ing of ARIMA time-series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE
International Conference on, pages 273–280. IEEE, 2001.

33. D.-W. Kim, K.-Y. Lee, K. H. Lee, and D. Lee. Towards clustering of incomplete
microarray data without the use of imputation. Bioinformatics, 23(1):107–113,
2007.

101

34. H. Kim, G. H. Golub, and H. Park. Missing value estimation for DNA microarray
gene expression data: local least squares imputation. Bioinformatics, 21(2):187–
198, 2005.

35. G. King, J. Honaker, A. Joseph, and K. Scheve. Analyzing incomplete political sci-
ence data: An alternative algorithm for multiple imputation. In American Political
Science Association, volume 95, pages 49–69. Cambridge Univ Press, 2001.

36. O. Kramer. Scikit-learn. In Machine Learning for Evolution Strategies, pages
45–53. Springer, 2016.

37. K. Lakshminarayan, S. A. Harp, R. P. Goldman, T. Samad, et al. Imputation of
missing data using machine learning techniques. In KDD, pages 140–145, 1996.

38. K. Lakshminarayan, S. A. Harp, and T. Samad. Imputation of missing data in
industrial databases. Applied Intelligence, 11(3):259–275, 1999.

39. Y. Li and L. E. Parker. A spatial-temporal imputation technique for classification
with missing data in a wireless sensor network. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3272–3279. IEEE, 2008.

40. Y. Li and L. E. Parker. Nearest neighbor imputation using spatial–temporal cor-
relations in wireless sensor networks. Information Fusion, 15:64–79, 2014.

41. M. Lichman. UCI machine learning repository, 2013.

42. Y. Liu and S. D. Brown. Comparison of five iterative imputation methods for mul-
tivariate classification. Chemometrics and Intelligent Laboratory Systems, 120:106–
115, 2013.

43. J. Luengo, S. Garćıa, and F. Herrera. A study on the use of imputation methods
for experimentation with radial basis function network classifiers handling missing
attribute values: the good synergy between RBFNs and EventCovering method.
Neural Networks, 23(3):406–418, 2010.

44. J. Luengo, S. Garćıa, and F. Herrera. On the choice of the best imputation methods
for missing values considering three groups of classification methods. Knowledge
and information systems, 32(1):77–108, 2012.

45. E. T. Matsubara, R. C. Prati, G. E. Batista, and M. C. Monard. Missing value
imputation using a semi-supervised rank aggregation approach. In Advances in
Artificial Intelligence-SBIA 2008, pages 217–226. Springer, 2008.

46. W. McKinney et al. Data structures for statistical computing in Python. In
Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56,
2010.

47. C. S. Möller-Levet, F. Klawonn, K.-H. Cho, and O. Wolkenhauer. Fuzzy clustering
of short time-series and unevenly distributed sampling points. In International
Symposium on Intelligent Data Analysis, pages 330–340. Springer, 2003.

48. P. Montero and J. A. Vilar. TSclust: An R package for time series clustering.
Journal of Statistical Software, 62(1):1–43, 2014.

49. U. Mori, A. Mendiburu, and J. Lozano. TSdist: Distance Measures for Time Series
Data, 2016. R package version 3.3.

102

50. U. Mori Carrascal. Contributions to time series data mining departing from the
problem of road travel time modeling. PhD thesis, UPV/EHU, 7 2015.

51. R. Nau. Introduction to ARIMA: nonseasonal models. http://people.duke.edu/

~rnau/411arim.htm. Accessed: 2016-09-09.

52. B. M. Nogueira, T. R. Santos, and L. E. Zárate. Comparison of classifiers efficiency
on missing values recovering: application in a marketing database with massive
missing data. In Computational Intelligence and Data Mining, 2007. CIDM 2007.
IEEE Symposium on, pages 66–72. IEEE, 2007.

53. S. Oba, M.-a. Sato, I. Takemasa, M. Monden, K.-i. Matsubara, and S. Ishii. A
bayesian missing value estimation method for gene expression profile data. Bioin-
formatics, 19(16):2088–2096, 2003.

54. L. Olshen, C. J. Stone, et al. Classification and regression trees. Wadsworth
International Group, 93(99):101, 1984.

55. M. Ouyang, W. J. Welsh, and P. Georgopoulos. Gaussian mixture clustering and
imputation of microarray data. Bioinformatics, 20(6):917–923, 2004.

56. J. Park and I. W. Sandberg. Universal approximation using radial-basis-function
networks. Neural computation, 3(2):246–257, 1991.

57. C. Paroissin, L. Penalva, A. Pétrau, and G. Verdier. New control chart for moni-
toring and classification of environmental data. Environmetrics, 2016.

58. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Research, 12:2825–2830,
2011.

59. D. B. Rubin. Multiple imputation for nonresponse in surveys, volume 81. John
Wiley & Sons, 2004.

60. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 2 edition, 2003.

61. M. Saar-Tsechansky and F. Provost. Handling missing values when applying clas-
sification models. The Journal of Machine Learning Research, 8:1623–1657, 2007.

62. D. H. Schoellhamer. Singular spectrum analysis for time series with missing data.
Geophysical Research Letters, 28(16):3187–3190, 2001.

63. Q. Song, M. Shepperd, X. Chen, and J. Liu. Can k-NN imputation improve the per-
formance of c4. 5 with small software project data sets? a comparative evaluation.
Journal of Systems and software, 81(12):2361–2370, 2008.

64. P.-N. Tan, M. Steinbach, V. Kumar, et al. Introduction to data mining, volume 1.
Pearson Addison Wesley Boston, 2006.

65. O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani,
D. Botstein, and R. B. Altman. Missing value estimation methods for dna mi-
croarrays. Bioinformatics, 17(6):520–525, 2001.

66. B. Twala. An empirical comparison of techniques for handling incomplete data
using decision trees. Applied Artificial Intelligence, 23(5):373–405, 2009.

103

http://people.duke.edu/~rnau/411arim.htm
http://people.duke.edu/~rnau/411arim.htm

67. S. Van Buuren. Flexible imputation of missing data. CRC press, 2012.

68. G. Welch and G. Bishop. An introduction to the Kalman filter. department of
computer science, university of north carolina, 2006.

69. Z. Xing, J. Pei, and E. Keogh. A brief survey on sequence classification. ACM
SIGKDD Explorations Newsletter, 12(1):40–48, 2010.

70. H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate descent methods for logistic
regression and maximum entropy models. Machine Learning, 85(1-2):41–75, 2011.

71. Y. C. Yuan. Multiple imputation for missing data: Concepts and new development
(version 9.0). SAS Institute Inc, Rockville, MD, 49, 2010.

72. H. Zhang. The optimality of naive Bayes. A A, 1(2):3, 2004.

104

	Master Degree Thesis:
	Introduction
	Objectives
	Basic Concepts
	DataBase
	Time Series
	Missing Data
	Mutual Information

	Classification
	Supervised Classification in Time Series
	Imputation Methods
	Research motivation

	An investigation of the relationship between Missing Data Types, Imputation Methods and Supervised Classification in Discrete Data
	Objectives
	Related work
	Experimental setup
	Description of the databases investigated
	Strategies for generating Missing Data
	Missing completely At Random
	Missing At Random
	Missingness that depends on its own Value
	Missingness that depends on Unobserved Values

	Imputation Methods
	Supervised Classification methods

	Experiments
	Introduction
	Goal
	Design
	Analysis
	Overall Missing Data Types behavior
	Overall Imputation Methods behavior
	Imputation Method behavior for each Missing Data Type

	Interactions between Missing Data Types, Imputation Methods, and Classifiers

	Conclusions

	New Imputation Methods for Time Series Based on Regression and Temporality
	Objectives
	Related Work
	Social Science
	DNA microarray gene expression data analysis
	Sensor Data analysis

	Study of different Imputation Methods for Time Series with Missing Data
	Baseline Imputation Methods
	Interpolation
	Seasonally Splitted Imputation Method
	Standard Imputation Method
	Regression
	Polished Regression

	Advanced Imputation Methods
	Interpolation edge smoothed polished regression
	Interpolation intermittently smoothed polished regression
	Random based Polished Regression
	Random based Interpolation intermittently smoothed polished regression
	Seasonally Splited-Kalman model-based Regression
	Seasonally Splited-Kalman model-based Polished Regression

	Experiments
	Experimental Settings
	Data Base benchmark
	Algorithm to add missing data to the time series
	Metrics
	Experimental Results
	Short Missing Segments
	Long Missing Segments
	Short Time Series Distance
	ARIMA-LCP distance
	Integrated Periodogram based distance
	Full Table

	Computational time
	Global analysis of the IMs
	Analysis of the results

	Conclusions

	Advanced Imputation Methods for a real-world time series prediction problem
	Objectives
	SIRENE® Project
	Event detection and Missing Data problem in SIRENE® database
	Database Description
	Missing Data Description

	Imputation Method selection
	Imputation
	Goal and methodology
	Experimental Framework
	Results

	Conclusions

	Conclusions
	Summary
	Conclusions
	Future Work

