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Resumen

En esta tesis introducimos el concepto de “Biomimética Cuédntica”, con el
objetivo de disenar protocolos de informacién cuantica que imiten rasgos
significativos de propiedades exclusivas de los seres vivos mediante su codi-
ficacién en registros cuanticos. Nuestro estudio indaga en las diferencias de
cada protocolo con respecto a su equivalente clasico asi como en la posible
explotacion de las mismas para la mejora de algoritmos cuanticos.

La idea subyacente en la biomimética es la robustez y eficiencia de las
creaciones bioldgicas, impulsadas por el mecanismo de seleccién natural, en
comparacion a los ingenios humanos. Mas alld de la elegancia de la idea,
obtener inspiracion de situaciones similares dadas en la naturaleza ha permi-
tido el desarrollo de multiples aplicaciones en diferentes ramas cientificas y
tecnolégicas, por no hablar del instinto que ha llevado al ser humano a mejo-
rar sus creaciones mediante analogias establecidas con su entorno. En otras
palabras, la metodologia biomimética lleva siendo aplicada mucho antes de
que el término que la describe fuese acunado. Asi mismo, la imitacion a la
naturaleza incorpora una herramienta adicional al conjunto de técnicas para
la optimizacion de problemas, y supone por tanto, un avance sustancial.

Existe una aparente contradiccién en el planteamiento del estudio, por el
hecho de buscar la reproduccién de propiedades que emergen de la interaccion
entre sistemas macroscopicos complejos en un sistema fisico microscépico de
menos grados de libertad. Sin embargo, proveemos un argumento que per-
mite eludir esta contradiccion. En primer lugar, cabe destacar que nuestros
algoritmos no buscan una copia exacta de las propiedades a imitar, més bien,
su codificaciéon en un sistema simplificado cuya dinamica efectiva permita la
analogia. Noétese que este planteamiento es diferente al de buscar un sistema
fisico regido por un modelo matematico similar al original. Precisamente esta
distincion es la que se hace entre simulacién y emulacion de un sistema, la
primera aspira a imitar los engranajes del sistema mientras que la otra solo
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los resultados de su dinamica. Por tanto, al restringirse a la emulacion de
ciertas caracteristicas del sistema no se requiere un sistema del mismo grado
de complejidad que el original. Concretamente, la seleccién de un formalismo
matematico que codifique el sistema depende tanto del grado de exactitud
que se quiera obtener en la emulacion como de la diferencia entre la dinamica
que describe al sistema original y la del sistema fisico que sirve como soporte.

La tesis consta de introduccién y tres partes, una por cada concepto
clasico que inspira los protocolos cuanticos: seleccion natural, memoria e
inteligencia. Cabe destacar que mientras la seleccién natural y la inteligen-
cia se dan uUnicamente en organismos de cierta complejidad, la memoria,
definida como dependencia explicita de la evolucion temporal de un sistema
de tiempos previos, abarca también el reino inanimado. Por tanto, el lugar
que ocupa parece inapropiado porque no sigue el espiritu biomimético tal y
como lo hemos definido previamente. Atun asi, se le ha otorgado una parte
independiente porque las técnicas explicadas sirven como herramienta para
el posterior desarrollo de protocolos cuanticos “vivos” e “inteligentes”.

En la introduccién se describe la motivacion de la tesis y se mencionan tra-
bajos relacionados con la misma. También se incluye una breve descripcion
del campo de informacién cudntica asi como un resumen con la estructura
del documento.

La primera parte consta de protocolos cuanticos que imitan rasgos basicos
del modelo de seleccién natural darwiniano. En primer lugar, concretamente
en el Capitulo 2, se explica un protocolo de clonacién cuantica parcial. La
clonacién cuantica es una operacién para obtener un estado idéntico a un es-
tado arbitrario y desconocido mediante la accién de medidas y de operaciones
unitarias. El estado original debe preservarse, y la copia ha de obtenerse en
un registro fisico diferente. Si bien la mecanica cuantica prohibe la clonacion
perfecta, admite soluciones para la clonacién parcial. En esta no se copia
el estado completo sino el valor esperado de un conjunto de observables que
conmutan. La contribucion original de esta tesis, en el campo de la clonacién
cuantica, es la generalizacién de un resultado previo de clonacion cuantica
parcial para dimensiones arbitrarias. Ademds, los autores se posicionan en
el debate acerca del caracter clasico o cuantico del formalismo de clonacion
cuantica parcial.

En el Capitulo 3, se introduce un algoritmo para recrear un entorno de
seleccion natural en una plataforma experimental cuantica. El ingrediente
fundamental son los denominados individuos, que representan las entidades
minimas y autoconsistentes capaces de evolucionar segtin los procesos funda-



mentales del modelo: replicacion, tiempo de vida finito, mutaciéon e interac-
ciones. Cada individuo consta de dos partes, genotipo y fenotipo, codificadas
en un qubit cada una de ellas. El qubit genotipo es el registro fisico de la
informacion exclusiva de cada individuo, mientras que el fenotipo es el reg-
istro de la expresién del genotipo en el entorno. A posteriori, se explica la
traduccién de cada proceso fundamental del modelo de seleccién natural en
su correspondiente operacion cuantica. La replicacién se realiza mediante
clonacion cuantica parcial, el tiempo de vida finito se simula con el tiempo
transcurrido en la evolucién del fenotipo hasta las cercanias de un estado
asintético en una dinamica disipativa, las mutaciones son rotaciones aleato-
rias en el qubit genotipo y las interacciones son operaciones controladas a
cuatro qubits. Los datos en las simulaciones numéricas se extraen mediante
los histogramas de posicion, genotipo y fenotipo. Estos corroboran la cor-
respondencia entre los procesos fundamentales y las operaciones cuanticas.
Por tltimo, se analiza la posible implementacion experimental del protocolo
en diferentes plataformas.

En la segunda parte de la tesis se incluyen algoritmos para simular evolucion
cuantica con memoria, entendida como dependencia no trivial en tiempos
pasados de la variaciéon del estado. Por tanto, esta parte guarda cierta
relacién con las lineas de retroalimentacion cuantica y evolucion cuantica no-
Markoviana. El primer resultado en esta area, una simulaciéon algoritmica
de efectos de memoria, se expone en el Capitulo 4. El protocolo permite
simular ecuaciones integro-diferenciales en las que la accion de un Lind-
bladiano es pesada con un kernel de memoria. Estas ecuaciones modelan
fenomenolégicamente un amplio conjunto de dinamicas con memoria con un
potencial interés para el estudio de sistemas complejos. Definimos el con-
cepto de simulacion algoritmica como un protocolo mixto que requiere la im-
plementacion de evolucion temporal junto con un procesamiento matematico
paralelo, que va mas alla del andlisis de la medida, para obtener el resultado
final. En este caso, el caracter mixto lo aporta la combinacién de simulacién
eficiente de procesos markovianos con la integracion numérica del kernel de
memoria. El mecanismo consiste en codificar la ecuacion a simular en una
ecuacion semi-Markoviana, cuyas propiedades permiten escribir la dinamica
como una accion secuencial de un superoperador sobre el estado inicial, a
través de dos estados auxiliares intermedios. El algoritmo se cierra con un
calculo de errores que permite evaluar la realizacion del protocolo en funciéon
de los parametros que establecen la dinamica. El resultado es un compor-
tamiento favorable en términos de recursos, que nos permite concluir el tra-
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bajo afianzando la posible realizacién de aplicaciones cuanticas en las que los
efectos de memoria sean cruciales.

En el Capitulo 5 se introduce un protocolo para simular ecuaciones difer-
enciales atrasadas y adelantadas empleando la evolucién controlada de fo-
tones en guias de ondas. En esta plataforma fisica cada guia de onda tiene
un término de acoplo evanescente con sus vecinas, por tanto, al conectar los
puertos de entrada y salida del chip con fibras épticas se obtiene un acoplo en-
tre el estado en una posicion dada y el mismo estado en posiciones anteriores
y posteriores. Existe ademés una analogia entre la propagaciéon espacial de
los fotones y la evolucién temporal de un estado cuantico bajo influencia de
la ecuacién de Schrodinger. Es decir, la posicion en las guias de onda se cor-
responde al tiempo en la evolucién simulada. Modificando la naturaleza de
las conexiones se alcanzan diversas familias de ecuaciones, sean ecuaciones
de una sola variable, sistemas e incluso ecuaciones con multiples términos
atrasados y adelantados. Por tltimo, se obtiene una estimacion del error
tedrico mediante calculo numérico y se mencionan las posibles causas de error
experimental. De cara al diseno de aplicaciones cabe destacar que el proto-
colo permite resolver cuestiones de indole puramente matematica asi como
implementar dindmica cuantica con retroalimentacién y posalimentacion, lo
que supone un hito en el desarrollo de la informacién cuantica.

En la tercera parte se incluyen algoritmos cuénticos relacionados con pro-
cesos de aprendizaje, se analizan tanto contribuciones de algoritmos clasicos
para mejorar protocolos cuanticos, como algoritmos de aprendizaje exclusi-
vamente cuanticos. En estos trabajos se entiende el concepto de aprendizaje
como una optimizacioén de una tarea bien definida. En el Capitulo 6 se explica
una propuesta para el uso de algoritmos genéticos que aumenta la fidelidad
de circuitos cuanticos. Se afrontan dos problemas diferentes, la correccién
de una puerta légica a partir de una arquitectura de puertas con error y el
disenio de un circuito que reduzca el error de simulaciones digitales. En am-
bos casos coincide el procedimiento para plantear el problema, que consiste
en escribir el circuito cuantico como una secuencia de instrucciones mediante
una matriz. Esta tiene tantas columnas como nimero de puertas légicas y
cada fila especifica el tipo de puerta y los qubits sobre los que actia. La
informacion en la matriz hace las veces de cédigo genético en el algoritmo
genético, de forma que cada individuo tiene asociado un circuito cuantico.
El funcionamiento del algoritmo genético es tal que a partir de individuos
iniciales aleatorios encuentra soluciones éptimas mediante mutaciones y re-
combinaciones de individuos. Al final de cada ciclo del algoritmo se compara
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la nueva generacién de individuos con los integrantes de la generacién previa
mediante una funciéon de evaluacion, y se escogen los individuos mejor adap-
tados. La funciéon empleada coincide con la fidelidad del circuito cuantico
codificado en el individuo con respecto al circuito ideal.

En el Capitulo 7 se muestra un protocolo de aprendizaje cuantico capaz
de encontrar el estado control adecuado de una operacién unitaria controlada
de estructura desconocida para la consecucién de una puerta logica. El pro-
tocolo incorpora un mecanismo de retroalimentacién que sirve como motor
del aprendizaje, ya que a partir de un control aleatorio inicial se incrementa
la poblacién en los subespacios que realizan la puerta deseada. Este efecto
se consigue mediante un término en la ecuacién de evolucién proporcional
a la diferencia entre los estados a dos tiempos diferentes, acompanado por
un hamiltoniano que da lugar a la operacion unitaria original. Ademas, no
se requiere conocimiento alguno de la base natural de la operacion unitaria,
por lo que el protocolo adquiere un valor anadido al compararse con algorit-
mos clésicos destinados para la misma tarea. En el caso de existir multiples
soluciones, una dindamica disipativa disenada segun el criterio de eficiencia
elegido permite hallar la soluciéon éptima. La actuacion conjunta de ambas
fases, busqueda de soluciones y busqueda de la soluciéon éptima, se analiza
segun las condiciones establecidas por el campo de aprendizaje en maquinas
o Machine Learning para evaluar el resultado en un marco teérico apropiado.

En el Capitulo 8 se introduce el concepto de sumador cuantico, inspirado
por la funcién de red en redes neuronales clasicas. FEl sumador se define
como una operacion cuantica que actua sobre dos estados iniciales descono-
cidos para obtener un estado final con la suma normalizada de los mismos.
Los autores prueban la inexistencia de dicha operacién invocando un ar-
gumento de invariancia bajo la accion de una fase global entre los estados
iniciales y finales del sumador. Aportan ademds un argumento que clarifica
una regién de interseccion entre el teorema de no clonaciéon con el de no
suma. Se muestran también propuestas de sumadores aproximados una vez
eludida la prohibicién mediante la restriccion de los estados iniciales a de-
terminados subconjuntos de estados, con la pérdida de generalidad que ello
conlleva. Entre los sumadores aproximados destaca el sumador de base, que
suma perfectamente elementos de la base y con una fidelidad elevada estados
en superposiciéon. Ademas, independientemente de la dimensién del estado a
sumar basta con un solo qubit auxiliar para su realizacion. En paralelo, se es-
tudian diferentes propuestas de implementacion experimental de sumadores,
optimizadas mediante la aplicacién de algoritmos genéticos.
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Abstract

Quantum Biomimetics is proposed as a research line devoted to the design of
quantum information protocols inspired by properties exclusive of living sys-
tems. The goal behind this procedure of imitation is the search of quantum
algorithms that encode significative features of macroscopic phenomena in a
microscopic quantum registers for their use in reproducing biological com-
plexity in the quantum realm. Our approach raises no contradiction since
the quantum biomimetic protocols do not intend to capture every feature of
the models describing living systems, but a simplified representation that can
be accommodated in the space offered by controllable quantum platforms.
In this sense, the algorithms we propose may be classified as emulators that
aim at reproducing the input-output behavior of the targeted model. These
emulators are different from simulators, which are machines that intend to
imitate models as close as possible to the original system.

Depending on the behavior to mimic, the quantum protocols we present
can be grouped in three main sets: natural selection, memory and intel-
ligence. In each of them, we analyze the performance of our algorithms as
compared to their closer classical counterparts. In parallel, we adapt our pro-
tocols to the limits imposed by the constant progress of current controllable
quantum platforms. A common feature of our proposals is the consideration
of both theoretical and experimental aspects for the development of realistic
algorithms.

In conclusion, we think that the work presented here contributes to the
improvement of the state of the art in quantum information via the intro-
duction of new phenomena and regimes which resemble the ones of living
systems.
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3.6 Numerical simulation of interacting and non-interacting

3.7

4.1

individuals. We have limited the simulation of our model to
4 initial individuals until a maximum time of v¢ = 10. No self-
replicating events are allowed, and therefore, the diversity in
the phenotype is due to interaction events. (a) The interaction
rate is increased because of the short distances among the liv-
ing units. (b) The interaction rate is small because of the long
distances among the living units. Therefore, the secondary
peaks in the phenotype histogram (a) are associated with in-
teraction events which exchange the phenotype of individuals.

Numerical simulation with quantum coherences. Data
compilation for 100 simulations of the time evolution of two
initial individuals allowed to self-replicate. (a) The position
histogram shows two peaks of the initial spatial distribution
and the spread of the individuals as time increases. The ef-
fects of the copying process are illustrated in the genotype
histogram with the presence of secondary peaks behind the
principal one that corresponds to the original individual. The
small peaks in the phenotype histogram represent the newborn
individuals. In (b), we have depicted the expectation value of
o, in all subspaces, (c2?"), where n is the number of individu-
als. These quantum coherences give us information about the
history of the individual. Therefore, we can infer the mutation
and interaction events as well as the dissipative dynamics.

Scheme of the algorithmic quantum simulator. We ap-
proximate the equation underlining the memory effects with
a semi-Markovian equation. We then split the solution of the
semi-Markovian process into two CPT parts, implementing
each part separately. This process is accompanied by the inte-
gration of products of the memory kernel in a number which
increases linearly with the simulated time. . . . . . .. .. ..
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5.1

5.2

2.3

5.4

2.9

Photonics chip representation. Illustration of the chip for
implementing the photonic simulator in Eq. (5.2), where the
arrows represent the input and output ports, while the lines
inside and outside the chip represent the waveguides and fiber
connections, respectively. . . . . . . ... ..o,

Proof of principle. a) Intensity evolution for an array having
N = 6 waveguides and constant lattice parameters § = 1,
k =+/B+N and 7 = 1. b) Intensity of all the waveguides
concatenated in a single curve, which represents the absolute
square of the solution of Eq. (5.2).. . . . ... ... ... ...

Theoretical Error. We depict the decimal logarithm of the
error as a function of time for three runs of the simulation
with different distances with respect to the stationary state.
The fact that the effective interaction between photons is zero
makes possible the analogy between the stationary state solu-
tion and the accumulation of solutions for an initial excitation
combined until the initial population has escaped from the
output port. Therefore, the distance is calculated as the norm
of the population that remains in the chip. The dynamical
constants of the system are equivalent to the ones in Fig. 5.2.

Dynamical Parameters. Numerical Simulation of Eq. (5.1)
with N =6, 8=1,e=1, k =7, w =2. (a) Intensity in the
stationary state in the waveguides array. (b) Modulus square
of the solution as a function of time. (c¢) Decimal Logarithm
of the error of the simulation with respect to the solution of
the A-R equation. . . . . . . . ... ... ...

Chip connections. Front side view of the chip showing the
input-output connections and the parameters of the simula-
tion. Here [ is the propagation constant, ¢ is the vertical
coupling constant, x is the horizontal coupling constant and d
the diagonal coupling constant. a) The scheme in which each
plane is associated with a component of the qubit simulates
Eq. (5.3). b) The crossed links allow for a stronger tempo-
ral mixing of the qubit components in the derivative. This
situation corresponds to the second example of Eq. (5.3). . . .
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2.6

5.7

6.1

6.2

Systems of Equations. Numerical simulation of Eq. (5.3)
with N =5, 8, =1, 8, =2, k, =3, ky =1, g=1,d =1,
7 = 1 for the initial state |¢/(0)) = |0). (a) Waveguide intensity
in the x plane corresponding to the first component of the
qubit. (b) Waveguide intensity in the y plane corresponding
to the second component of the qubit. (¢) Modulus square of
the quantum state as a function of time. . . . . . . . ... ..

Multiple delays. Numerical simulation of Eq. (5.6) with
N =5 =1,k =>5and 7 = 1. (a) Intensity in the sta-
tionary state in the waveguide array. (b) Modulus square of
the solution as a function of time. (c¢) Decimal logarithm of
the simulation error with respect to the solution of the A-R
equation. . . . . . ...

Scheme of the GA-based protocol for digital quantum
simulations. Firstly, the simulated Hamiltonian is decom-
posed in local interaction blocks, separately implemented in
different unitary evolutions U; which act on a subset of k par-
ticles of the system. Secondly, the set of gates is selected
according to the constraints of the simulating quantum tech-
nology: total number of gates to avoid experimental gate error,
interactions restricted to adjacent physical qubits, and imple-
mentable phases of the Hamiltonian, among others. Once the
set of gates is determined, GAs provide a constraint-fulfilling
sequence of gates, which effectively perform the resulting dy-
namics Ugy similarto Up. . . . . . . . . . . ...

Logarithmic plot of the error. We depict the error, £ =
1—|(®|UTU|D)|?, in the evolution of (a) Ising and (b) Heisen-
berg spin models for N = 5 qubits, J = 2, B = 1, and
|U) = |0)®5. Here, Uy is the ideal unitary evolution, while
U refers to the unitary evolution using either a digital expan-
sion in 1 (blue line) and 2 (red line) Trotter steps, or GA
(dashed green). The GA protocol requires fewer gates than
the digital method for a single Trotter step achieving similar
fidelities to two Trotter steps. . . . . . . . ... .. ... ...
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6.3

6.4

7.1

7.2

7.3

7.4

Error resilience for architectures with n = 3,5,7 im-
perfect CNOT gates using 1000 runs. Pie charts show
the percentage of cases in which the fidelity of the effective
CNOT overmatches the best CNOT employed in the architec-
ture. Bar charts show the distribution of cases according to
the relative improvement in the error, again when compared
with the best CNOT. . . . . . . ... . ... ... ... ....
Quantum circuit. Scheme of the optimal architecture for
constructing a CNOT gate with 5 imperfect gates, by using
two ancillary qubits initialized in state |0). Here, C' is the
control, T is the target, and A; and A, are the ancillary qubits.

Node line networks. We show the graphical representation
of the two, a), and three, b), node line networks. The circle
around the node represent that the control is in the open state.
The effective operation that the control performs on the target
subspace is the s;; swap gate between nodes 7 and j. . . . ..
Learning curves for single solutions. a) We plot the fi-
delity of the learning process as a function of the number of
episodes for the first examples of n node line networks. We
have selected the open state, |o) = |1) of the {|0),|1)} ba-
sis. b) We plot the fidelity for a different selection of |o)
in the n = 3 case. Here the solution, |ooo), is given by
Z0) + [1)] ® [1) ® [cos (7/3) |0) +sin (7/3) [1)]. .. ... ..
Networks with two solutions. We show the graphical of
the triangle, bell and radiation networks in a), b) and c) re-
spectively. In each of them we write the solution control state,
that corresponds to the control performing the si4 gate in the
target subspace. . . . .. ... Lo
Learning curves for two solution and qutrit problems.
a) We depict the learning curve for the triangle, bell and ra-
diation networks as a function of the number of episodes. No-
tice that the curves for the bell and radiation networks are
identical. b) We depict the learning curve for the multitask
controlled unitary acting on two qutrits as a function of the
number of episodes. Here |in) = |0), |out) = |2) and the so-
lution is given by |cg) = |1), where the control states coincide
with the basis of the qutrit space. . . . . . . .. .. ... ...
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8.1

8.2

8.3

8.4

8.5

Scheme of the conjectured quantum adder. The inputs
are two unknown quantum states, |¥;) and |W¥s), while the
outputs are proportional to the sum, |¥;) + |¥U,) with an an-
cillary state |x). . . . . . . ..
Basis Adder. Fidelity of the proposed approximate quantum
adder as a function of the parameters of the input states |¥;) =
cos 6;]0) + sin ;e |1), where j = 1,2. Here, a) ¢ = ¢ = 0,
b) ¢1 = Qﬁg = 7T/4, C) (bl = ¢2 = 7T/2, and d) 91 = 92 = 7T/4
Note that the diagonal line of each plot corresponds to the
approximate quantum cloner that is related to our restricted
quantum adder. In this case, the fidelities are the lowest. . . .
QCD of the basis adder. Here, X, S and R, (0) correspond
respectively to the Pauli X gate, the phase gate, and rotations
of # in the v Pauli matrix. Furthermore, the Toffoli gate can
be decomposed into Hadamard, phase, CNOT, and 7/8 gates
[10]. . o o
Generalization of the basis adder. (a) For even dimen-
sion d, tuples of B;; states are obtained by grouping the vector
connecting vertices ¢ and ¢ 4+ 1 with all the parallel vectors in
the same direction. (b) The remaining d tuples are obtained
by grouping the monogon of each vertex with all the vectors
perpendicular to the line that connects the vertex with its
opposite one, in a given direction. (c¢) For odd dimension d,
tuples of B;; states are obtained by grouping the vector con-
necting vertices ¢ and ¢ + 1 with the monogon of the oppo-
site vertex and all the diagonals parallel to the vector in the
same direction. (d) The remaining d tuples are obtained with
the same procedure for the opposite direction but excluding
the monogons of the vertices, because they have been already
grouped. . . . ... L

Fidelities of the most promising quantum adders. (a) The

basis adder, with an average value of 94.9%, and a minimum
value of 85.4%. (b) The complexity-reduced adder with an
average fidelity of 90.0%, and minimum fidelity of 79.2%. (c)
The trivial adder given by the |+) state, with an average the-
oretical fidelity of 90.2% and a minimum fidelity of 50%. (d)
The 31-gate approximate adder with an average theoretical
fidelity of 95.4%, and minimum fidelity of 81.2%. . . . . . ..
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Chapter 1

Introduction

Though human ingenuity may
make various inventions which,
by the help of various machines
answering the same end, it will
never devise any inventions
more beautiful, nor more simple,
nor more to the purpose than
Nature does; because in her
inventions nothing is wanting,
and nothing is superfluous, and
she needs no counterpoise when
she makes limbs proper for
motion in the bodies of animals.
But she puts into them the soul
of the body, which forms them
that is the soul of the mother
which first constructs in the
womb the form of the man and
in due time awakens the soul
that is to inhabit it.

Leonardo da Vinci
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Quantum Technologies

Quantum theory, developed in the beginning of the twentieth century, al-
lows for an accurate description of nature phenomena at the microscopic
scale. The drawback is that analytical solutions to equations modeling real-
istic physical systems are elusive in general due to the involved mathematical
complexity. Moreover, the exponential dependence of the Hilbert space di-
mension in the number of particles implies a poor scalability when treating
these problems with classical computers. Therefore, although quantum me-
chanics provides powerful tools for describing physical phenomena, its use is
restricted by our knowledge of analytical and numerical techniques. This sit-
uation motivates a quest towards efficient methods for working with quantum
mechanics.

The contribution by Richard Feynman is considered nowadays as the pre-
cursor of the field of quantum simulations [1]. He proposed to use control-
lable quantum mechanical systems as registers for encoding the evolution of
other systems. Later on, David Deutsch established the quantum computing
framework by extending the Church-Turing thesis with the tools provided by
quantum mechanics [2]. Each of these ideas represent the compass towards
the consecution of the quantum simulator and the quantum computer, re-
spectively.

Quantum Simulators Inspired by the original scope of Feynman a quan-
tum simulator is a device allowing for the representation of a mathematical
model describing the system of interest in a controllable quantum platform
[3]. There are already several quantum simulators which enable the time
evolution prediction in physical systems with increasing complexity [4, 5, 6].
Moreover, this scenario can also be exploited to study abstract models not
being necessarily related with existing phenomena [7, 8]. Therefore, quan-
tum simulators could be used for reproducing new regimes of consolidated
physical models.

Inside quantum simulators, one often distinguishes between analog and
digital methods. In analog simulators, the reproduced model is typically
encoded in physical processes of a similar time scale. This is achieved by
engineering Hamiltonians and measurements which effectively resemble the
dynamics of the system to imitate. Sadly, there is not any known protocol
for obtaining an analog simulation of an arbitrary process.

On the contrary, digital quantum simulations are based in the Suzuki-



Trotter formula which approximates the evolution of a combination of Hamil-
tonians in the product of the individual evolutions [9]. In practice, this means
that a complex dynamics can be achieved by repeatedly implementing a se-
quence of simpler building blocks of an smaller time scale with a controllable
error.

The difference between analog and digital simulations is similar to the
one existing between conventional artistic paintings and digitally assembled
images in CCD cameras. Although analog simulations usually require a more
elegant design and can be more efficient in particular situations, at this mo-
ment digital techniques are more versatile. This is a convenient property
because it guarantees that the same physical platform can be used for simu-
lating radically different dynamics.

Quantum Computers An alternative approach arises, following the vi-
sion of Deutsch, towards the design of a universal quantum computer. Quan-
tum computation is a research field oriented to the theoretical study and
experimental modelling for the implementation of information processing
encoded in quantum mechanical variables [10]. The ultimate goal is the
realization of a scalable and universal quantum Turing machine, i.e., a de-
vice capable of efficiently carrying out any algorithm in the framework of
quantum physics.

The quantum bit or qubit, encoded in a superposition of two quantum
states, constitutes the minimal representative of information. While qubits
serve as information registers, the information processing is realized with uni-
tary operations. These are naturally provided as the time evolution operator
solving Schrodinger equations. Additionally, the existence of a universal set
of gates ensures that any unitary operation can be obtained as a product of
the elements of the set, more precisely, single and two qubit gates. Therefore,
in theory, any quantum platform supporting initialization and readout, an
entangling gate and single qubit rotations is a valid candidate for the quan-
tum computer. Nevertheless, when these ideas are experimentally expressed,
the overall performance of the quantum computer is limited by scalability
and errors in the computation.

Open Quantum Systems The errors are due to the fact that the model
supporting the quantum computing framework is only achieved as an approx-
imation. The complete system contains more degrees of freedom that affect
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the physical registers and operations, producing imperfections in the qubits
and quantum gates, respectively. These errors are studied within the theory
of open quantum systems [11]. Its goal is to obtain an effective evolution for
a subsystem of interest belonging to a higher dimensional system once the
environment is traced out. Here, the environment groups every region of the
Hilbert space that is not the subsystem of interest.

Although the evolution operator for the complete system is unitary, the
effective one in the reduced subspace is not. Even so, the positivity and nor-
malization and, thus, the notion of quantum state are preserved. Therefore,
notice that unitary dynamics does not cover the complete spectra of possible
processes. Instead, completely positive and trace preserving (CPTP) maps
represent a more general class of dynamics. The main consequence is that
this opens a new research line for directly implementing CPTP dynamics
[12, 13, 14, 15]. In order to make it efficient, the goal is to avoid the cost
in resources of increasing the Hilbert space until the reduced CPTP map is
obtained with a unitary evolution on a larger space.

Present situation Currently, there are examples of advanced quantum
algorithms in both simulation and computation categories for the leading
quantum platforms. These are superconducting circuits [16, 17], trapped
ions [18, 19, 20] and, integrated and bulk, quantum optics [21, 22, 23, 24].
An obvious aspect to mention is that each experimental platform has its own
properties, traduced into advantages and disadvantages for accommodating
specific quantum protocols.

The most successful applications in quantum computing are Shor’s [25]
and Grover’s [26] algorithms, capable of outperforming classical computers,
which have already been experimentally tested in Refs. [27, 28, 29, 30, 31],
among others. In quantum simulations, one of the most active and promis-
ing research lines is the study of embedding quantum simulators, consisting
on an enhanced encoding of the model to analyze in order to improve its
efficiency [32]. Another raising trend is the design of quantum protocols
combining the aforementioned digital and analog approaches, with the scope
of exploiting the universality of digital and the efficiency of analog simula-
tors [33, 34]. The expectation about these theoretical results is justified in
the light of recent experiments reaching the order of 10® quantum gates [6],
therefore achieving a first milestone in the route towards scalability.

In parallel, different approaches as the quantum annealer [35, 36] and
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boson sampler [37, 38, 39, 40] are also capable of solving particular prob-
lems faster than ordinary computers. Thus, they offer an alternative for the
encoding of other type of quantum algorithms.

Quantum Biomimetics

We have coined the concept of Quantum Biomimetics for denoting the re-
search field oriented to the design of quantum protocols which mimic features
that appear only in living systems. In order to clarify the idea, it is important
to mention two important facts. The first one is that the properties of living
systems constitute only the surface of complex phenomena that emerges from
the interaction of multiple particles. The second one is that this complexity
is in general unreachable with current theoretical or experimental knowledge
from first principles in quantum mechanics. Therefore, instead of using the
existing biological models, we create simpler ones in which the features we
want to reproduce are directly introduced.

Beyond the intellectual exercise, our purpose is to improve the versatility
of quantum protocols in the direction of complex biological phenomena and
to study the possibility of employing these protocols for producing useful
quantum algorithms.

The origin of Biomimetics lies at the beginning of human history. When
our ancestors used animal skin to cover themselves, or understood the process
of cultivating a tree from a seed they were being inspired by particular phe-
nomena in nature around them. The modern idea is that natural creations
are more efficient and flexible than human creations because they have been
optimized generation after generation under the laws of natural selection.

Nowadays, biomimetic techniques are specially famous for their imple-
mentation in the design of new materials. Nevertheless, their influence covers
a larger set of applications [41, 42]. In particular, when restricting our view
to the field of classical computation we find examples of studies that could
be classified under the label of classical biomimetics [43]. In other words,
these well stablished research lines in classical computation have been used
as source of inspiration for producing our quantum biomimetics protocols.

Consider the case of computational artificial life in which software en-
coded mechanisms undergo processes that try to reproduce the natural se-
lection scenario [44, 45]. In a similar manner, the field of genetic algorithms
aims at solving problems by encoding them in the genetic code of compet-
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ing individuals [46]. With a similar spirit but different techniques, the area
of Artificial Intelligence is oriented to the creation of algorithms that allow
machines to show intelligent behavior, defining types of intelligence as the
capacity to solve a particular problem or perform a given task [47].

In the quantum realm, there are already works that consider similar ques-
tions as the ones we ask in our quantum biomimetics approach [48]. More
precisely, the field of quantum cellular automata and the field of quantum
machine learning among others are good examples of it.

This Thesis

Following its definition, quantum biomimetics has the potential of accounting
for a diverse set of quantum protocols, which for the same reason, makes the
process of designing a common mathematical framework hard. Therefore, we
have analyzed a selection of the most paradigmatic biological properties and
reproduced some of their aspects independently in each of our works. The
content of the thesis is divided in three main parts, each of them associated
with a particular biological feature used as an inspiration: natural selection,
memory and intelligence.

Before looking at them with more detail, it is convenient to clarify that the
feature of memory, defined as the property of a system whose time evolution
depends explicitly on previos times, is not exclusive of living systems. Even
if this feature does not fit properly in the definition of quantum biomimet-
ics, we have upgraded its status because quantum memory protocols can be
employed as building blocks for simulating purely biomimetic dynamics, as
we show in the thesis.

The first part, Quantum Artificial Life, contains two quantum protocols
that offer a possibility for simulating individuals encoded in quantum states,
whose dynamics is driven by natural selection processes implemented with
quantum operations. In Chapter 2, we explain a mechanism for obtaining
a partial quantum cloner for states of arbitrary dimension. In the partial
quantum cloner, a unitary transformation acting on a given quantum state
and a blank state achieves an output in which the expectation value of a cho-
sen observable in the initial state is copied in every subsystem. At the same
time, the expectation value of a different and non-commuting observable in
the initial state is transported to a non-local observable. In Chapter 3, we
show an algorithm for simulating individuals evolving according to the laws



dictated by their surrounding natural selection scenario. These individuals
are encoded in two qubits, each representing the genotype and phenotype.
The self-replication process is implemented via the partial quantum cloning
protocol. The remaining aging, mutation, and inter-individual interaction
processes that complete the natural selection model are developed in the
language of unitary transformations and dissipative evolution. In both chap-
ters, we give a basic experimental analysis showing the feasibility of our
ideas.

The second part, Mnemonic Quantum Systems, is composed of two quan-
tum algorithms that enable the simulation of quantum dynamics with mem-
ory. In Chapter 4, we present a method for retrieving the information of
the evolution under an integro-differential equation modeling the memory
effects. The protocol requires a combination of numerical and experimental
solving techniques. These allow for calculations in which the dynamics are
not CPTP maps. Our work is particularly interesting for the study and im-
plementation of quantum non-Markovian processes. In Chapter 5, we show
a quantum algorithm for realizing advanced-retarded differential equations
in integrated photonics circuits. Beyond their mathematical interest, these
equations enable the implementation of quantum feedback and feedforward
driven dynamics. The proposed experimental setup exploits the analogy
existing between spatial propagation and time evolution as well as the con-
nectivity offered by optical waveguides and fibers in the context of integrated
quantum photonics.

In the third and last part, Intelligent Quantum Systems, we study the
possibility of merging quantum evolution with optimization techniques in
three different projects. In Chapter 6 we analyze the possibility of employ-
ing Genetic Algorithms for improving quantum information protocols. The
idea is to obtain high fidelity and efficient gate decomposition of a quantum
protocol by using the genetic codes of competing individuals as a register
for the sequence of gates. The algorithm makes that the survival probability
of the individuals depends on the fidelity of the process they encode. We
have used genetic algorithms in two situations, the optimization of a digital
protocol and the annihilation of gate errors when concatenating imperfect
operations. In Chapter 7 we present an algorithm for learning how to per-
form a given task in a controlled unitary operation of multiple possibilities.
The protocol finds the optimal control state capable of driving input output
connection into the target subspace. Instead of training the system several
times, the goal is achieved by initializing the control state in a superposition
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state and launching it in a time delayed equation. We analyze the perfor-
mance of our algorithm in the context of machine learning and compare it
with the process of directly measuring the action of the unitary controlled
operation. Chapter 8 is about our work in the Quantum Adder. This is
a hypothetical device creating the superposition of two unknown quantum
states in a single output register. Even though we prove that it is forbidden
by fundamental reasons in its most general form, we provide approximate
quantum adders obtained when relaxing the conditions. The relation with
the field of artificial intelligence is that quantum adders could be the basic
building blocks behind quantum neural networks.



Part 1

Quantum Artificial Life






Chapter 2

Biomimetic Cloning of
Quantum Observables

Life isn’t about finding yourself.
Life is about creating yourself.

George Bernard Shaw

In this chapter, we propose a bio-inspired sequential quantum protocol
for the cloning and preservation of the statistics associated to quantum ob-
servables of a given system. It combines the cloning of a set of commuting
observables, permitted by the no-cloning and no-broadcasting theorems, with
a controllable propagation of the initial state coherences to the subsequent
generations. The protocol mimics the scenario in which an individual in an
unknown quantum state copies and propagates its quantum information into
an environment of blank qubits. Finally, we propose a realistic experimental
implementation of this protocol in trapped ions.

2.1 Introduction

Quantum information is a research field that studies how to perform com-
putational tasks with physical platforms in the quantum regime. Coping
with complex quantum systems could give rise to an exponential gain in
computational power and a new branch of possibilities as compared with
classical computing [1, 3]. One of the turning points of quantum information
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is the no-cloning theorem [49], which expresses the impossibility of copy-
ing an unknown state. Therefore, the notion of perfect universal quantum
cloning was abandoned, and replaced by the cloning of restricted families
of states or cloning with imperfect fidelities. A paradigmatic instance is
the Buzek and Hillery universal quantum cloning machine [50], among other
cases [b1, 52, 53, 54, 55]. Another approach is partial quantum cloning, con-
sisting in the copy of partial quantum information of a quantum state. In this
sense, an interesting example is the cloning of the statistics associated with
an observable [56]. However, these methods are limited due to the classical
character of the information one replicates, since it is impossible to clone two
non-conmuting observables with the same unitary [57, 58].

For a long time, human beings mimicked nature to create or optimize
devices and machines, as well as industrial processes and strategies. In par-
ticular, biomimetics is the branch of science which designs materials and
machines inspired in the structure and function of biological systems [41, 48,
59, 60, 61, 62]. Analogously, novel quantum protocols may be envisioned by
mimicking macroscopic biological behaviors at the microscopic level, in what
we call quantum biomimetics.

Living entities are characterized by features such as reproduction, muta-
tions, interactions or aging. Among them, the ability to self-replicate is the
most basic one. In fact, even though they are allowed to perfectly replicate
classical information, biological systems only reproduce part of this informa-
tion in the following generations. A paradigmatic example is DNA replication
inside the nucleus of the cell, since only sequences of bases are copied, but
not all of the information about the physical state of the molecule.

In this chapter, we propose a formalism for cloning partial quantum in-
formation beyond the restrictions imposed by the aforementioned no-go the-
orems. We use a family of increasingly growing entangled states [63, 64] in
order to preserve and propagate the information of an initial state. In par-
ticular, we are able to transmit more than just classical information to the
forthcoming generation, i.e., both the diagonal elements and coherences of
the associated density matrix. Finally, we analyze the feasibility of a possible
experimental implementation with trapped ions.
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2.2 Biomimetic Cloning method

To introduce our protocol, let p € B(C,n) and p. € B(C,n) be an arbitrary
state and a blank state, respectively, and let # be a Hermitian operator. We
define the cloning operation U (0, p.) as

(0), = Tr(pd) = (0 @ V)iypeput = (1 @ N u(pep)ut- (2.1)

We denote each subspace as an individual, see Fig. 2.1. The expectation
value of # in the initial state is cloned into both subspaces of the final state.
This is the cloning machine for observables introduced in Ref. [56]. Here, we
extend their results to an arbitrary dimension and show the existence of an
additional operator 7, which does not commute with 6, and whose statistics
is encoded in the global state of the system

(7)o = Tr(pT) = (7 @ T)v(psp)t- (2.2)

Figure 2.1: Cloning and transmission of quantum information. In
this scheme of our protocol, the individuals are plotted with circles. The
red diamond (centered inside each circle) represents the information that is
cloned in every individual of the forthcoming generation, shown in Eq. (2.1).
The other diamonds represent the information that is transmitted onto the
global state of each generation relative to Eq. (2.2).

At this stage, it is convenient to point out the differences between both
processes. On the one hand, Eq. (2.1) can be regarded as a replication
of a characteristic from an individual into its progeny. In this sense, the
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global state is traced out and the only important feature is the information
of the individual. On the other hand, Eq. (2.2) can be considered as a
spread of the quantum coherences of the initial individuals to the forthcoming
generations as a whole. Our formalism combines the notions of cloning and
preserving quantum information without contradicting the no-cloning and
no-broadcasting theorems [65]. This allows the propagation of the statistics
of two non-commuting observables in a controllable way.

The explanation of the cloning method requires a selection of the basis,
provided here by an external environment. The dark state of an unknown
environment dynamics is the blank qubit for the copying process, i.e., the
state that we define as the |0). This point will be relevant later in the
discussion about the quantumness of the process.

Let us work without loss of generality in a basis in which 6 is diagonal.
Then, we define the cloning operation U, (8, p.) in terms of the generator of n-
dimensional representation of the translation group {x,;} and the projectors
into each subspace {s,;}. We clarify that U,, after all, does not explicitly
depend on 6.

| B |k +i—1) if k<n-—i+1,
Tnilk) = {|1{;+¢_1—n> if k>n—1i+1, (23)
S = [iMil, 24

For example, for n = 2, Uy = Ucnor, and for n = 3, Us is given by

100 00 1 010
Us=| 010 |al100]al001 (2.6)
00 1 010 100

[\]

We will demonstrate below that Eq. (2.5) fullfils Eq. (
coming theorems are proved in Appendix A.

.1). The forth-

Theorem 1. Let H € C" be a Hilbert space of dimension n, U € H® H the
unitary operation defined in Eq. (2.5), p. = [0)(0], and p,0 € B(H) bounded
Hermitian operators. Then, the unitary U satisfies Eq. (2.1).

We analyze now if the cloning unitary U transmits information from the
initial individual to the progeny as a whole, apart from cloning its expectation
value independently.
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2.2. Biomimetic Cloning method

Theorem 2. Let U € H ® H be the unitary transformation defined in
Eq. (2.5). Then, there exists a bounded antidiagonal operator T, whose matriz
elements are 0 or 1, fulfilling Eq. (2.2).

Notice that, in previous theorems, we have worked in a basis in which @ is
diagonal. However, the cloning operation can be rewritten in any basis just
by rotating the matrix with the proper unitary, # = R'0R, transforming 7
into 7/ = R'7R and U into U’ = (R"® RNU(R® 1).

When the cloning operation is sequentially reapplied, it propagates the
information of the initial state, i.e., it transmits the full statistics of the
density matrix, Tr[po;], i = 1,2,3. We show here how two-qubit operations
are extended into m-qubit states,

i1 . i1 QI_1 RT3
Uiitz =27 @51 @ 4P T @5 Qx 2 Qe 2,

where the subscripts of U refer to the pair of qubits that is acted upon. The
cloning for the subsequent generations, see Fig. 2.2;71 is constructed through
the product of pairwise cloning operations, U = [[2, Uii+m. For instance,
the density matrices of the first and second generations reads

po= (Ui)(po @ pe)(Ur2), (2.7)
pr = (Ui3Us4)(p1 ® pe ® pe)(Urz Usa)'. (2.8)

Therefore, the mechanism is straightforwardly generalizable for obtaining
sequential generations with the same information in each individual, in the
spirit of a quantum genetic code. Moreover, although Eq. (2.7) holds only for
qubits, it is noteworthy to mention that an extension to higher dimensions
is possible. This can be achieved using as building block the unitary gate U,
defined in Eq. (2.5).

We will present now a counter-example showing that the cloning operation
is not unique. When n is not a prime number, n = kl, there are other cloning
unitaries apart from Uy. For instance, an additional U}, is constructed via
the solutions in each subspace, U, and U, respectively,

kool
Up = Z Z Ski & 81 & Ty @ Ty (2.9)

i=1 j=1

This result shows that it is possible to mix information among subspaces of
different dimensions. An example for n = 6 is depicted in Fig. 2.3.
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Chapter 2. Biomimetic Cloning of Quantum Observables

o
S

Figure 2.2: Iteration of the cloning process. Scheme of the sequential
cloning of the information encoded in an initial state into individuals of
subsequent generations.

Maximally Entangled States

We would like to point out that one of the possible applications of the cloning
unitary is the generation of maximally entangled states. These, are defined as
lm) = f > |iY]) for an arbitrary dimension n. The maximally entangled
state is obtained when applying the cloning unitary to the tensor product of
a uniformly superposed state, |u) = f > i, ]9), and a blank qudit.

U = <= 3D ooy © i) = =33 sl = <= 3 )
i:l

i=1 j=1 z—l Jj=1
(2.10)

2.3 Quantumness and Classicality

In this section, we analyze the quantumness of the proposed biomimetic
cloning protocol. In Ref. [66], Meznaric et al. recently introduced a criterion
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2.3. Quantumness and Classicality

Figure 2.3: Cloning unitary operations for n = 6. In these graphics,
each color represents a matrix of the translation group. Therefore, each of
the three two-dimensional arrays groups the six matrices of the translation
group for n = 6. The first array combines the z,; operations of Eq. (2.5),
while the second and third show zy; ® x;; of Eq. (2.9) with k,l = 2,3 and
k,l = 3,2, respectively.

to determine the nonclassicality of an operation 2. This method is based
on the distance between the outcome of the operation and the pointer ba-
sis einselected by the environment. The quantum operation €2 is composed
with the completely dephasing channel I', provided by the environment. The
measurement of nonclassicality is obtained by maximizing over all states the
relative entropy of both operations acting on an arbitrary quantum state.
The completely dephasing channel plays the role of an external environment
that einselects the pointer basis, in which €2 is represented. Effectively, as
deduced from Ref. [66], any operation is quantum whenever its column vec-
tors are superpositions of the elements of the basis. On the contrary, the
operation is classical if they are just permutations of the basis.

It is natural to identify the basis of the ancillary qudits, p., with the
pointer states, since we assume that the system naturally provides blank
qudits. By applying the classification formalism for qubits, the process of
copying o, in the individual state and o, in the global state is classical,
because the Ucnor is written in terms of permutations of the pointer states.
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Chapter 2. Biomimetic Cloning of Quantum Observables

Nevertheless, the complementary operation

1 1 0 0
1L fo 0 1 -1

Um_ﬁ 00 1 1 | (211)
1 -10 0

which clones o, in the individual state and o, in the global state, is quantum.

Another possibility is to consider that the classical pointer basis is defined
by the  operator itself. This means that we can construct the quantum chan-
nel £(p) which maps the initial state to any of the outcomes, considering the
blank qudit and the other outcome as the environment. By construction,
the unitary given by Eq. (2.5) leads to an injective channel, since the num-
ber of Kraus operators is the same as the square of the matrix dimension.
Therefore, the only fixed point is the identity and the cloning operations are
classical when written in the einselected basis [67].

According to these results, the cloning formalism copies classical informa-
tion but preserves quantum correlations, which makes the global operation
quantum. The interpretation of this property is that the quantum part of
the information is encoded in the global state. By analogy with biological
systems, the environment plays a fundamental role in the kind of information
that, similar to quantum darwinism [68], is preserved and cloned through a
pure quantum mechanism. In our work, the quantumness is only revealed
when considering collectively all outcomes of the copying process.

2.4 Experimental Implementation

We consider that an experimental realization of our protocol in a quantum
platform sets a significant step towards quantum artificial life. We propose
an experimental setup of our formalism in trapped ions, arguably one of the
most advanced quantum technologies in terms of coherence times and gate
fidelities [18]. Current experimental resources would allow copying processes
for qubits and qutrits of three and two generations, respectively. The num-
ber of logical gates and trapped ions required to perform the experiment is
presented in Table 2.1. We point out that the only limitations for performing
trapped-ion experiments with higher dimensions and larger number of gener-
ations are decoherence times and gate errors. None of these are fundamental
and near future improvements may allow to reach the implementation of
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2.4.  Experimental Implementation

higher dimensional individuals and many more generations with near perfect
fidelities.

Qubit
Sequential generation step 0 1 2 3
Total gates (2 qubit gates) 0 19(2) 57(6) 133(14)
Ions 1 2 4 8
Qutrit
Sequential generation step 0 1 2 -
Total gates (2 qubit gates) 0 38(4) 114(12) -
Ions 2 4 8 -

Table 2.1: Technological and computational resources. We show the
number of quantum gates and trapped ions needed to perform the cloning
experiment with qubits and qutrits, respectively. In the case of qutrits, this
table shows de number of gates for producing the submatrices, and not the
complete gate.

We encode the initial state in one of the ions, while the rest are initial-
ized in the |0) state. The cloning operation for two qubits is the CNOT gate,
which can be reproduced performing the Mglmer-Sgrensen gate [69] and a se-
quence of single qubit gates [70], Ucnor = —(0,®0.) PPy ' HyRP,H, P, RP;.
Here, P is the phase gate, H is the Hadamard gate, R is the Mglmer-Sgrensen
gate, and the subindex denotes the ion number. We express the gates as
products of carrier transitions R¢ and a phase factor,

P = e B4R (1, 0) R (m, 7 /4), (2.12)
H = e ™2R(n,0)R%(n /2, 7/2), (2.13)
0. = e 2R(m,0)R(m, 7/2). (2.14)

The first and second generations of cloned qubits are obtained as indicated
in Eq. (2.8). The next step in the copying process, i.e., the third generation,
is given by p3 = (U1,5 Uz Usz U4,8)(,02 ® P;®4)(U1,5 Uz Usz U4,8)T-

We consider now the implementation of the qutrit case in trapped ions.
As there is no direct access to qutrit gates, we have to engineer a protocol
with one and two-qubit gates. We suggest to add three ancillary levels that
split the unitary operation into three subspaces of 4 x 4 matrices. To achieve
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Chapter 2. Biomimetic Cloning of Quantum Observables

this, for the Us given in Eq.(2.6), the modified U} is

Uy=1,@ (2.15)

o O O
O = O O
_ o O O
O O = O
o O O+
_ o O O
S O = O
O = O O

The first submatrix does not require any quantum gate. The second and
third submatrices are the products of two CNOT gates, for which the role
of control and target ions is interchanged. Hence, the implementation is
reduced from qutrit to qubit operations.

2.5 Conclusions

In summary, inspired by replication in biological systems, we have brought
concepts and applications into quantum information theory. For instance,
our partial quantum cloning method makes use of global and local measure-
ments in order to encode information of nonconmuting observables beyond
the classical realm. Moreover, we prove that the information transmission is
purely quantum for a certain kind of operators. In parallel, we show that
it is possible to implement our ideas in an ion-trap platform with current
technology.

Replication is the most fundamental property that one may require from a
biological system. We leave to the following chapter the introduction of addi-
tional biological behaviors such as mutations, evolution and natural selection,
englobed by the frame of quantum artificial life. This proposal should be con-
sidered as the first step towards mimicking biological behaviours in control-
lable quantum systems, a concept that we have called quantum biomimetics.
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Chapter 3

Artificial Life in Quantum
Technologies

A human being is a part of the
whole called by us universe, a
part limited in time and space.
He experiences himself, his
thoughts and feeling as
something separated from the
rest, a kind of optical delusion
of his consciousness. This
delusion is a kind of prison for
us, restricting us to our personal
desires and to affection for a few
persons nearest to us. Our task
must be to free ourselves from
this prison by widening our
circle of compassion to embrace
all living creatures and the
whole of nature in its beauty.

Albert Einstein

In this chapter, we develop a quantum information protocol that mod-
els the biological behaviours of individuals living in a natural selection sce-
nario. The artificially engineered evolution of the quantum living units shows
the fundamental features of life in a common environment, such as self-
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Chapter 3. Artificial Life in Quantum Technologies

replication, mutation, interaction of individuals, and death. We propose how
to mimic these bio-inspired features in a quantum-mechanical formalism,
which allows for an experimental implementation achievable with current
quantum platforms. This study paves the way for the realization of artificial
life and embodied evolution with quantum technologies.

3.1 Introduction

In the last decades, the novel field of artificial life has enabled researchers to
recreate biological behaviours with controllable inanimate platforms in the
laboratory [45]. Its goals are diverse, ranging from the comprehension of the
emergence of life to the explanation of the appearance of dynamical hierar-
chies that give rise to complexity. Examples of the latter are consciousness at
the single agent level or social organization at the group level. Self-replication
and self-organization have already been achieved in this context based on
fundamental interactions between the artificial living entities called individ-
uals [71]. Moreover, techniques developed in artificial life have been applied
into different research lines, e.g., by modeling the formation of biological tis-
sues [72], and explaining the dynamical structure of fluids [73]. In particular,
software-based artificial life consists of computational algorithms of evolving
individuals. This area has produced some prominent models like the Game
of Life [74] or Tierra [75], that in most cases were developed using classical
techniques, with few examples in the quantum domain [48, 76, 77].

It is known that certain quantum information protocols [25, 26] can be
performed efficiently in terms of speed or number of resources. Therefore, it
seems natural to look for the consequences of introducing quantum mechanics
in artificial life models, and establish analogies and connections between these
two seemingly unrelated fields. There are already some preliminary results
in the realm of quantum evolution [78] and quantum learning agents [79].
Here, we would like to focus on the concept of quantum biomimetics, namely,
mimicking macroscopic biological behaviours at the quantum microscopic
level, for the sake of quantum information fundamentals and applications.

In this chapter, in the context of quantum biomimetics, we propose a
quantum model of artificial life that aims at reproducing fundamental bio-
logical behaviours with controllable quantum platforms. Along these lines,
we define quantum individuals that can be born, evolve, interact, mutate, and
die, while they propagate and decohere in a common environment. These
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3.2. Quantum Artificial Life Protocol

concepts are designed to be implementable with current quantum technolo-
gies. Hence, we discuss an experimental realization in trapped ions, super-
conducting circuits, and integrated quantum photonics. Related ideas have
already been echoed by the scientific community [80].

It is noteworthy to mention that the proposed quantum biomimetic ideas
should be considered as a free creation of a possible quantum evolution model
at the microscopic quantum level. In this sense, while related to standard
fields as artificial intelligence, machine learning, cellular automata, artificial
living systems, and the like, these ideas cannot be framed uniquely in any of
them.

3.2 Quantum Artificial Life Protocol

The individuals, which are our quantum artificial living units, are described
by two-qubit states. Inspired in the biological mechanism of self-replication
and evolution, one of the qubits in a quantum living unit represents its geno-
type and the other qubit corresponds to its phenotype. In our model, the infor-
mation with the characteristics of the living unit is codified in the genotype,
and is transmitted through generations. Additionally, the genotype encodes
the lifetime of the individual and its role in the trophic chain. On the other
hand, the phenotype is the expression of the genotype under the influence
of an environment. Specifically, the phenotype carries information about the
age of the individual, which is encoded in the time elapsed in the evolution
of the qubit from its initial state to the dark state of the environment. The
information exchange between the genotype and the phenotype is produced
at the creation of a newborn individual during the self-replication process.
Moreover, the analogy with biological mutation is provided by adding the
possibility of modifying the genetic qubit or introducing errors in the repli-
cation stage. Finally, the individuals live in a discrete spatial grid in which
they move by virtue of a random process, see Fig 3.1. When they share the
same location, they interact with each other, in an operation that modifies
the phenotype but preserves the genotype. In the following, we explain in
detail the physical operations underlying the different aspects of our model.
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Chapter 3. Artificial Life in Quantum Technologies
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Figure 3.1: Spatial Dynamics. Coloured circles represent individuals that
move in discrete time-steps along a periodic spatial grid. This schematically
illustrates how two individuals can share the same location and interact.

Self-replication

The mechanism of self-replication is based on the cloning of partial quan-
tum information explained on the previous chapter, Chapter 2. The qubit
in which the information is encoded is coupled with an ancillary state that
belongs to the environment. The information transmission consists in an en-
tangling operation that distributes the information throughout the two-qubit
quantum state. After the partial quantum cloning process, the information
can be retrieved from both subspaces independently. Specifically, the expec-
tation value of a desired operator # in any quantum state py can be propa-
gated into the following generations p; with the use of an ancillary state pa
and a unitary operation U,

O =001, = (1@6),,  p=Ul@p)U'.  (31)

In particular, we are using the expectation value of o, as the genotype of the
individuals and the Ucnor gate as the cloning operation. Different combi-
nations of observables and cloning operations would also satisfy the partial
quantum cloning criteria, but we have selected o, because it is diagonal in
the basis given by the steady state of the environment. By construction, un-
limited copies of the ancillary quantum state p4 are available in our model
everywhere in the spatial grid, and they belong to the dark state of the dy-
namics that governs the interaction between individuals and environment.
A new individual is produced in two steps. In the first one, the genotype
belonging to the procreator individual is copied onto an ancillary state in
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3.2. Quantum Artificial Life Protocol

order to produce a new genotype. In the second step, the genotype of the
new generation is copied onto another ancillary state in order to produce
the phenotype. There is a fixed probability of self-replication that is equal
for all individuals, since it does not depend on the genotype. The only re-
quirement for the generation of a newborn individual via the self-replication
process is that the procreator individual is alive. This property is encoded
in the phenotype and depends on the interaction of the individual with the
environment, as we describe below.

Environment

When the new individual is created, its genotype and phenotype exactly con-
tain the same information. However, they progressively differentiate as the
system evolves due to the coupling of the phenotype with the environment.
This mechanism mimics a crucial feature in natural selection, namely, the
preservation of the genetic information throughout successive generations.
At the same time, the phenotype is degraded due to the interaction with the
environment, which concludes with the death of the quantum living unit.

The dissipation is modeled with a Lindblad master equation, whose steady
state corresponds to the ancillary state of the copying process, ps. We define
the Lindblad operators as acting in the natural basis of the environment,
given by the o, basis of the self-replication process, i.e.,

. 1 1
p="Lp=r(opo’ —Zolop—pote), o =[0)(1,  pa=[0)(0]. (3:2)

By evolving the system under this Lindbladian £, all individuals end up in
the state p4. Therefore, we use this physical register to simulate the death
of the quantum living unit. The cycle closes since the dead individuals serve
as ancillary states for the new generations.

We can illustrate the processes of self-replication and aging with a generic
example in which an individual and its progeny are created out of a precursor
genotype. Let us suppose that, initially, there is a single genetic qubit p,
copied into a phenotype qubit in order to create an individual py,

a b—1ic
= = = T

25



Chapter 3. Artificial Life in Quantum Technologies

The individual evolves under the dissipative dynamics with o =1 ® |0)(1],

a 0 0 (b — ic)e 27
0 0 0 0
polt) = 0 0 (1—a)(l—e) 0 (3.4)
(b+ic)e 2 0 0 (1—a)e

The expectation value of o, remains constant in the genotype subspace, but
exponentially decays in the phenotype subspace,

(0.)y =2a—1, (0.)p=1=2e"(1—a). (3.5)

The expectation value (o),(t) measuring the age of the individual depends
on a single genetic parameter a, and on the elapsed time in the evolution
from the birth of the quantum living unit until its death. The death age t4
of the individual is achieved when (0.),(ts) = 1 — €, for fixed e.

The individual continues its evolution until the self-replication protocol
begins, as described in Fig. 3.2. This protocol consists in coupling an ancillary
state p4 with the individual py and performing the U operation between the
genotypes of the two individuals. The next step is to use another ancillary
state from the environment and perform the U gate between the genotype
and phenotype of the new individual. We denote the self-replication time
by t;, after which the whole system is coupled with the environment via the
Lindblad master equation for a time t5. The expectation values of o, for the
genotype and phenotype of the two individuals are given by

(02)g1 =2a —1, (0.)p = 1 —2e7WH2)(1 —g),
(02)g2 = 2a — 1, (0)pe=1—2e"2(1 —a). (3.6)

Mutations

The mutation process enhances diversity in biological systems, which is a
fundamental property of Darwinian evolution. The system adaptability to
a changing environment is closely related to its mutation capacity. In our
model, the mutation is a physical operation upon the individuals, which
changes their genotype. We distinguish between two types of mutations, im-
plemented with a small probability. On the one hand, there are spontaneous
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Figure 3.2: Self-replicating Individuals. We schematize a timeline in the
evolution of individuals. Firstly, an individual is created out of a primordial
genotype by combining it with an ancillary system. Then, the individual
interacts with the environment which produces a gradual loss in the infor-
mation of the phenotype, until the death of the individual. In the mean
time, the living unit generates a new individual via the self-replication pro-
cess. Additionally, the remaining phenotype can be used as a new ancillary
state for the creation of another individual.

mutations upon the genotype subspace of an individual, given by the unitary

matrix M,
cosf sinf
M = ( sinf —cos@ > ' (3.7)

The mutation parameter § is random and different for every mutation event in
order to maximize the Hilbert space region spanned by the quantum states,
and therefore maximize the biological diversity. On the other hand, there
are mutations associated with errors in the copying process, modeled by
imperfect cloning unitary operations Uy,

1700 -1 1 .
UM(Q):14+§(O 1)@( 1 _1>(c089+zsm9+1). (3.8)
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The difference between these mutation operations relies on the fact that M
does not affect the phenotype of the mutated individual, while Uj,; changes
both the genetic information and the lifetime.

Interactions

In the formalism explained so far, the natural selection mechanism is com-
pletely biased towards the long-living individuals, corresponding to a ~ 0
and (0,) ~ —1. As the self-replicating probability is equal for all of them,
the long-living individuals dominate the system due to the generation of
a larger offspring. On the contrary, the possibility of interactions between
pairs of individuals favors the short living individuals, and restores the equi-
librium between long and short life genotypes. The idea behind the process
is that individuals conditionally interchange their phenotype when meeting
each other. The conditionality depends on the genotype, namely, the inter-
action is minimal for equal genotypes a; = as and maximal for opposite ones,
a1 = 1, ag = 0 and viceversa. The physical operation U; that performs the
interaction between two individuals is

U=k @10k @1 +ki @k @k + kP + ks @by @ ks + ks @ ky @ o)+

Es®(AQki®@1+EP + ks @k Qks+k @k Qks+ ks @k ® ko),
(3.9)

with k1 = [0)(0], ke = [0)(1], k3 =
graphical representation.

Here, U; is a logical gate acting on two control qubits and two target
qubits, which is defined in the computational basis as follows. When the con-
trol qubits are equal, the target qubits remain unchanged. On the contrary,
when the control qubits are different, the target qubits are exchanged. In par-
ticular, we have selected the first and the third subspaces as control qubits.
A direct implication of the interaction process is that, when a short-living
individual encounters a long-living one, the lifetime of the former increases,
while the lifetime of the latter decreases. Therefore, to have a genotype pa-
rameter a ~ 1 is more advantageous in this case, because it corresponds to
the role of a predator in our model. According to this, every individual is a
combination of predator and prey depending on its instantaneous phenotype
and the local environment. Notice that the role of predator and prey can
be completely interchanged in consecutive events for individuals that have

1)(0], ks = |1)(1]. See Fig. 3.3 for a
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Figure 3.3: Interaction unitary. U; matrix is represented in this figure,
where the color of the squares denotes the value of the corresponding matrix
component, white for 0 and black for 1.

previously interacted. The probability of this second-order event is low, and
it depends on the interaction rate, which at the same time depends on the
spatial distribution of the individuals and the grid geometry. Therefore, for
each initial state of a particular individual, there are a grid geometry and
distribution of the other quantum living units, which respectively optimize
the survival probability and the interaction rate for the system of individuals.

Spatial Dynamics

In our model, the individuals live in a two-dimensional grid divided into
cells, as seen in Fig. 3.1. The spatial distribution of the individuals deter-
mines the interaction rate, because they only interact when occupying the
same cell. The displacement along the grid is a random process, and the
proposed model allows for two or more individuals occupying the same cell.
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Furthermore, the grid can be split into distinct spatial regions with different
properties: mutation rate, self-replication probability, and coupling constant
with the environment. These are basic properties of the model associated
with physical processes encoded in the genotype and phenotype, as we show
in Fig. 3.4.

1 T T T T
a(0)=0.9
0.5 _ -
a(0)=0.7
™ ol a(0)=0.8 ]
s a(0)=0.2
-0.5 \‘\J\\ €=0.95 -
_1 ;_ q — \
0 1 2 3 4 5

Time in ~ units

Figure 3.4: Processes in the artificial life model. We plot a combina-
tion of the genotype and phenotype of the individuals that depends on the
genotype parameter a and the time ¢ in which the individual has been in
contact with the environment. The life quantifier is (o,),, whose asymptotic
value represents the death of the individual in the bottom of the figure. Each
colour is associated with a basic process in the model: the blue line (a = 0.9)
shows the dissipation of the phenotype due to the environment, the orange
line (a = 0.7) depicts a mutation process event, and the yellow and purple
lines, a; = 0.8 and ay = 0.2 respectively, illustrate an interaction process.

3.3 Numerical Simulations

In this section, we explain the dynamical numerical simulations based on
our model. Classical artificial life models may address relevant questions
about the properties of the self-replicating units: Which kind of individuals
have maximized their survival probability by adapting to the environmental
characteristics and the presence of other individuals? Is this an asymptotic
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behaviour or on the contrary is a part of a cycle in populations? In the case
in which more than one species dominates how distinct are their genotypes,
and has any complex spatial organization emerged? In our case, the time evo-
lution is computationally hard due to the exponential growth of the Hilbert
space dimension with the number of individuals. Therefore, answering these
questions in our context may motivate the realization of our proposal in an
experiment on a controllable quantum platform, as discussed below. In our
current analysis, we numerically examine other interesting properties, such
as the information spreading and the genotype and phenotype diversities.

In order to study the information spreading and the mean path of the
individuals, we generate a position histogram of the quantum living units for
a large number of realizations, with fixed initial conditions. Moreover, the
density in each cell is related to the probability of finding a single individual
in that particular position. Therefore, we can estimate the interaction and
self-replication rates by comparing position histograms corresponding to dif-
ferent parameters in the model, as shown in Fig. 3.5. Larger values of the
position histogram peaks indicate the presence of additional individuals, and
therefore, a larger amount of self-replicating events.

Additionally, we have produced genotype and phenotype histograms that
show the expectation value of o, in each subspace of every individual, provid-
ing a snapshot of the final state of the simulation. These histograms evidence
the preservation of the initial genotypes, the decay of the phenotypes, as well
as the mutations and interactions which give origin to diversity, see Fig. 3.6.
The deviation of the initial information in the genotype is related to muta-
tion events. In contrast, the deviation from the initial peak in the phenotype
histogram is related to interaction events, when simultaneously produced in
two individuals. Otherwise, the change in the phenotype is due to a mutation
followed by a self-replication event.

Quantumness

The entanglement among different individuals allows us to clone the classical
information and propagate the quantum coherences of the initial quantum
living units to the successive generations. Nevertheless, the fact that our
model requires the solution of a Lindblad master equation for a large num-
ber of entangled qubits, restricts the solution of the model to a small number
of individuals and short times. Some of the features of our model are purely
quantum, for instance, the entanglement among individuals with the same
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Figure 3.5: Numerical simulation of replicating and non-replicating
individuals. These plots are obtained evolving an individual with a random
genotype at a given initial position during a time v¢ = 10. The position his-
togram shows the accumulation of the paths covered by the living unit for all
runs of the simulation. The genotype histogram shows the expectation value
of o, in the genotype subspace after each simulation. The initial individual
does not self-replicate in (a), while it does self-replicate in (b), therefore the
secondary peaks in the genotype and phenotype histograms appear in (b) as
a consequence of the newborn individuals.

origin permits to measure collective correlations of the whole family. In this
way, we can both distinguish between individuals with the same or different
genotype, and individuals with the same or different origin. The physical
mechanism in which we are basing our claim is the propagation of the collec-
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Figure 3.6: Numerical simulation of interacting and non-interacting
individuals. We have limited the simulation of our model to 4 initial in-
dividuals until a maximum time of y¢ = 10. No self-replicating events are
allowed, and therefore, the diversity in the phenotype is due to interaction
events. (a) The interaction rate is increased because of the short distances
among the living units. (b) The interaction rate is small because of the long
distances among the living units. Therefore, the secondary peaks in the phe-
notype histogram (a) are associated with interaction events which exchange
the phenotype of individuals.

tive expectation value () in the previous chapter, see Fig. 3.7. Additionally,
the individuals are in a superposition of a prey and predator, which allows us
to simulate a trophic chain behaviour encoded in the two qubits that conform
each individual.
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Figure 3.7: Numerical simulation with quantum coherences. Data
compilation for 100 simulations of the time evolution of two initial individ-
uals allowed to self-replicate. (a) The position histogram shows two peaks
of the initial spatial distribution and the spread of the individuals as time
increases. The effects of the copying process are illustrated in the genotype
histogram with the presence of secondary peaks behind the principal one
that corresponds to the original individual. The small peaks in the pheno-
type histogram represent the newborn individuals. In (b), we have depicted
the expectation value of o, in all subspaces, (6©%") where n is the number
of individuals. These quantum coherences give us information about the his-
tory of the individual. Therefore, we can infer the mutation and interaction
events as well as the dissipative dynamics.
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Connections with other fields

In the same way that classical artificial life models can be applied in other ar-
eas of science, we think that our protocol is closely related with some aspects
of quantum information theory. One can understand the model as a nat-
urally emergent maximization problem of survival under the rules imposed
by the environment, mutation rate, grid geometry and self-replication rate.
The rules are external and tunable, which means that we could encode opti-
mization problems and solve them by using an artificially-engineered natural-
selection quantum mechanism. Furthermore, our model of natural selection
can be related to quantum game theory and quantum learning, if we consider
that each of the genotypes encodes a strategy, and the environment together
with the aforementioned elements establish the rules of the game. Typically,
the players with winning strategies survive, a fact that makes the reward-
ing mechanism an intrinsic part of the game. Under these analogies, it may
also be possible to analyze the robustness of the optimization process or the
strategy by changing the parameters describing the proposed model.

From all existing quantum protocols those in the line of quantum cellular
automaton are the ones that lie closer to the ideas presented here. Never-
theless, we point out that our quantum biomimetic model is not a particular
case of a quantum cellular automaton (QCA). In a QCA, the information is
encoded in the spatial grid, while in our model the information is stored in
individuals that displace along the spatial grid. Therefore, the time evolution
in the QCA system is by construction different to the time evolution in our
model. In a QCA, the spatial lattice state at time ¢ is obtained by updating
the one at (¢ — 1) according to the automaton transition function [48].

3.4 Quantum Artificial Life in Different Ex-
perimental Platforms

Our model may be implemented on a variety of quantum platforms, which
would be justified due to the theoretical interest and the computational dif-
ficulty of classical simulations to answer several relevant questions. Here,
we provide an encoding of the information in the respective qubits and
the sequences of gates implementing our dynamics for superconducting cir-
cuits [16, 17], trapped ions [18, 19, 20] and quantum photonics [21, 22, 23].

The Ucnor implements the self-replication process as explained in Eq.
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(3.1), the aging of the individual is simulated with the dissipation given by
the Lindblad dynamics in Eq. (3.2), and the mutations may be modelled
with single qubit rotations as in Eq. (3.7). Finally, the interaction among
individuals given in Eq. (3.9) involves a four-qubit operation, which can be
decomposed in terms of the Toffoli gate, Uccnor, by relabeling the levels
encoding the quantum state. We point our that this relabeling is also a
non-trivial quantum gate,

{14),11)} = {I7),18)}, {[10),[13)} = {[15),]16)} = Ur =1 Ucc(%ole)

Trapped lIons

In trapped ion devices, chains of ions are spatially confined by using time
dependent electromagnetic fields. The physical system is described with a
model that results in a set of internal (electronic) and collective (motional)
quantized energy levels. Laser fields tuned in the frequencies of the desired
transitions provide a good control of the system allowing for the implemen-
tation of several physical operations that can be translated into logical ones.
In particular, we show the trapped-ion control Hamiltonian for a single spin
and a single mode,

H = Qo [1+in (ae™™" + ale™")] e'®=% 4 H.c. (3.11)

Therefore, trapped ions can be used as quantum information processing ex-
perimental platforms. Here, Q is the Rabi frequency, o the spin raising
operator, 1 the Lamb-Dicke parameter, a and a' the motional annihilation
and creation operators, v the trap frequency, ¢ the initial phase of the laser
field and ¢ the detuning between the laser and qubit frequencies.

In our proposal, each quantum living unit, composed of two qubits, can
be encoded either in four metastable levels of a single ion or two levels of a
pair of ions, and ancillary levels enable the readout of the state [18]. The
Ucnot can be implemented with the Mglmer-Sgrensen gate and a sequence
of single-qubit gates [81]. We rely on previous proposals [82] for simulating
the dissipative dynamics. Mutations as single qubit rotations could be done
with controlled Rabi oscillations between the levels that encode the genotype.
The interaction among individuals can be realized with the Toffoli gate, that
has already been implemented in a trapped-ion setup [83].
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Superconducting Circuits

The superconducting circuits are designed with inductors, capacitors and
Josephson junctions as building elements. The main properties of the circuits
are the superconductivity that allows the flow of electrical current without en-
ergy dissipation, and the nonlinear separation of the quantized energy levels
introduced by the Josephson junctions. The effective equation that describes
the time evolution of the charge and phase, the degrees of freedom in the
superconducting circuit, can be manipulated by rearranging the disposition
of the circuit elements. The system can be controlled by coupling it with
resonant photons, which allows for the implementation of several physical
models, including the Jaynes-Cummings model,

H =w,a'a+eocto™ +glact +alo™). (3.12)

Here, w, is the photon frequency, g is the coupling constant, and € is the
qubit frequency, which is encoded in the quantum excitations of the circuit.

For the particular aspects of our proposal, the transmon is the most ap-
propriate superconducting qubit, because of its long coherence time. The
single and two qubit gates used for implementing self-replication and mu-
tations can be realized with high fidelities [84]. The controlled dissipation
necessary for encoding the evolution of the phenotype can be realized with
current technology [85]. The Toffoli gate performing the interaction processes
among individuals is feasible in superconducting circuits [86].

Quantum Photonics

In quantum photonics devices, quantum information processing tasks are im-
plemented with linear optical elements: beam splitters, phase shifters, single
photon sources and photodetectors. The qubit is encoded in the coherent
superposition of two modes in a photon. The variation in the refractive
index, and the interaction between the modes are the physical mechanism
introduced by the phase shifters and beam splitters respectively. These op-
erations allow for the realization of deterministic single qubit gates, and are
modeled with the following Hamiltonians

H, = gbajnam, Hy, = Qei‘z’aj-nbm + 96_i¢ambjn. (3.13)

Here, a and b are the modes in which the qubit is encoded, ¢ is the relative
phase and # the phase associated with the transmission amplitude. Moreover,
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two qubit gates are performed probabilistically, employing the Hong-Ou-
Mandel effect as a computational resource.

These techniques provide a complete set of single and two qubit gates,
that can be extended for particular logical operations, like the Toffoli gate [87].
Therefore, the self-replication, mutations and interactions in our model can
be realized in an experimental protocol with photons. Finally, a technique
for the implementation of stochastic quantum walks [23] could be used to
simulate the evolution of the phenotype.

3.4.1 Proof of Principle

More precisely we would like to discuss the implementation of an experi-
mental proof of principle about the Quantum Artificial Life model in an
integrated photonics architecture. The goal is to reproduce the first steps in
the timeline of a given individual. These involve a self-replication event and
the environment induced aging for both living units. In physical terms, the
realization of three consecutive Ucnor gates is required together with the
engineering of dissipation in the phenotype-encoding qubits. Inspired by the
result in bulk optics, [88], the Usnor gate can be implemented in path en-
coded qubits, supported in pairs of waveguides [24]. The Ucnor is achieved
with three generations of directional couplers, aided by two auxiliary waveg-
uides, after post selecting in the coincidence basis.

The proposed theoretical idea is experimentally challenging for three main
reasons. Firstly, the number of gates is bounded by the physical limitation
of the length of the chip allowing for a fixed number of directional couplers
generations. Secondly, the total number of qubits requires the simultaneous
generation of four photons, which is technologically demanding. Thirdly,
the concatenation of post selected operations, like the Usnor gate, makes
the rate of successful events decrease, and therefore requires an increasing
number of resources.

Nevertheless, there is an ongoing collaboration for the design and realiza-
tion of the Quantum Artificial Life experiment in which the author of this
thesis is involved.

38



3.5. Conclusions

3.5 Conclusions

We have developed a quantum information model for mimicking the be-
haviour of biological systems inspired by the laws of natural selection. Our
protocol is hardly tractable with classical simulations, leaving many relevant
questions coming from the classical models without answer in our quantum
analogue. Simultaneously, we have analyzed several figures of merit, which
provide partial information about the quantum features of the model for
small systems. Finally, we have studied the feasibility of the protocol in
different physical systems, which enables the realization of artificial life in
quantum technologies.

39



Chapter 3. Artificial Life in Quantum Technologies

40



Part 11

Mnemonic Quantum Systems

41






Chapter 4

Algorithmic Quantum
Simulation of Memory Effects

Life can only be understood
backwards; but it must be lived
forwards.

Soren Kierkegaard

In this chapter, we propose a method for the algorithmic quantum simula-
tion of memory effects described by integro-differential evolution equations.
It consists in the systematic use of perturbation theory techniques and a
Markovian quantum simulator. Our method aims to efficiently simulate both
completely positive and non-positive dynamics without the requirement of
engineering non-Markovian environments. Finally, we find that small error
bounds can be reached with polynomially scaling resources, evaluated as the
time required for the simulation.

4.1 Introduction

Fundamental interactions in nature are described by mathematical models
that frequently overcome our analytical and numerical capacities. This prob-
lem is especially challenging in the quantum realm, due to the exponential
growth of the Hilbert space with the number of particles involved. Richard
Feynman proposed that the desired calculations may be experimentally re-
alised by codifying the model of interest into the degrees of freedom of another
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more controllable quantum system [1]. Along these lines, in the last decade,
this approach has been employed to simulate the dynamics of many-body
quantum systems. A machine performing this task is called quantum sim-
ulator, and it has been studied with increasing interest, theoretically and
experimentally, in controlled quantum systems [5, 89]. Tt is expected that
quantum simulators will solve relevant problems unreachable for classical
computers. Among them, we could mention complex spin, bosonic, and
fermionic many-body systems [4, 5], entanglement dynamics [32, 90], and
fluid dynamics [91], among others.

In quantum mechanics, realistic situations in which the quantum system
is coupled to an environment are modeled in the framework of open quantum
systems. In this description, an effective evolution equation for the system of
interest is obtained by disregarding the environmental degrees of freedom [11].
The resulting dynamics can be classified as Markovian or non-Markovian
(92, 93, 94, 95, 96, 97]. In the former, the time evolution depends solely on
the current state of the system, and there are several results concerning its
quantum simulation [12, 13, 14, 15]. On the contrary, the non-Markovian
evolution depends on the history of the system, and it is more challenging
to treat both analytically and numerically [13]. In this sense, despite some
recent results [98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109], includ-
ing a work on the sufficient conditions for a CPTP non-Markovian dynamics
[100], a general non-Markovian quantum simulator has not been fully devel-
oped yet. A paradigmatic feature of non-Markovian dynamics is the existence
of quantum memory effects as an extension of the classical history-dependent
dynamics to the quantum domain. Moreover, a number of key applications
in the quantum domain can be envisioned, such as quantum machine learn-
ing [110, 111], neuromorphic quantum computing [112, 113] and quantum
artificial life in Chapters 2 and 3. These can be implemented by mirror-
ing the already existing results in memcomputing devices [114], intelligent
materials [115] and population dynamics [116]. Therefore, the simulation of
quantum memory effects would be a significant step forward to understand
open quantum systems and, consequently, to employ them in the develop-
ment of the aforementioned research fields.

In this chapter, we provide an efficient and general framework for an algo-
rithmic quantum simulation of memory effects modeled by integro-differential
evolution equations '. The protocol algorithmically combines a Markovian

1Our concept of algorithmic quantum simulation is not equivalent to the one presented
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quantum simulator with perturbation theory techniques in order to retrieve
the time evolution of an arbitrary initial state. Our method does not require
the engineering of any additional environment, avoiding the challenging task
of developing first-principle non-Markovian quantum simulators. Moreover,
the protocol works even when the evolution does not correspond to a com-
pletely positive and trace preserving (CPTP) map, which is the case of most
of time-delayed Lindblad master equations. Indeed, although the CPTP
character is not guaranteed, our approach circumvents this issue by splitting
the simulation in two CPTP parts. Finally, we prove polynomial scaling error
bounds for the proposed method.

4.2 Description of the Quantum Algorithm

The model describing the memory effects we aim to simulate is based on the
integro-differential equation

8tp(t):/0 ds K(t,s)L p(s). (4.1)

Here, K (t, s) is a memory Kernel modeling how the evolution of the state at
a certain time is affected by its history, and £ is a general time-independent
Lindblad operator. Notice that K (t,s) = 20(t — s) corresponds to the stan-
dard Markovian master equation written in the Lindblad form. As noticed
for instance in Refs. [13] and [101], it is not conceivable to simulate a general
non-Markovian dynamics efficiently. The reason is that one could then imag-
ine simulating a highly inefficient calculation in the environment, retrieving
afterwards this information into the system due to the non-Markovian infor-
mation backflow, in an efficient manner. However, Equation (4.1) includes in
the Kernel K(t,s) the non-Markovian aspects of the evolution, which gives
only an effective description of the environment contribution.

In order to simulate Eq. (4.1), we use as a tool the quantum simulation
of the equation

up(t) = /O s H(L,3) [€ — 7] pls). (4.2)

by D. Wang [117], even if both approaches involve a combination of classical processing
and quantum simulation. While in the protocol of D. Wang, the classical part is used for
optimizing the design of quantum circuits, in our protocol the classical processing involves
the numerical integration of certain functions depending on the measurement outcomes
and memory kernels.
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where H(t,s) is a memory Kernel, £ is a general CPT map and Z is the
identity map. Equation (4.2) describes the dynamics of a semi-Markovian
process [118]. It is noteworthy to mention that while Eqs. (4.1) and (4.2)
preserve the trace of the density matrix, they do not generally preserve pos-
itivity. However, sufficient conditions for Eq. (4.2) to determine a CPT map
have been studied when H(t,s) = H(t—s). Indeed, if the Laplace transform
g 111“1’58) for some
waiting distribution w(t), then Eq. (4.2) corresponds to a CPT process [119].
Moreover, if this condition is fulfilled, then the solution of Eq. (4.2) can be
written as p(t) = > 2, pi(t)€p(0), where 0 < p;(¢t) < 1 [119]. In this case,
by truncating the series, we can simulate Eq. (4.2) assuming that an efficient
quantum simulator of £ and its powers is available. In the following, we will
consider processes £ corresponding to Markovian evolutions, whose efficient
quantum simulator has been already designed, e.g. k-local Lindblad equa-
tions [13]. We will show how to simulate a general kernel H(, s), including
the case in which Eq. (4.2) does not correspond to a CPT process. Finally,
we illustrate how to employ this result to simulate Eq. (4.1).

of the memory kernel H(7) satisfies the relation H(u) =

4.2.1 Simulation of Semi-Markovian Dynamics

Let us consider the Volterra version of Eq. (4.2),

plt) = p0)+ [ dsh(t.s) € =) ). (43)

where h(t,s) = fst dr H(1,s). We assume that H(t,s) > 0 and h(t,s) <
¢, for a given constant ¢, for all t > s > 0. Moreover, we quantify the
results in terms of the trace norm for matrices, defined as the sum of their
singular values ||o||; = ), 0;, and the respective induced superoperator norm

| Al = max, Hﬁi‘ml. Then, Eq. (4.3) can be iteratively solved, via the series
(1) = 5% p0). where
t
m=p0), poi= [ dshits)E-Tpals). (1)
0

This expansion can be truncated at order n, p,(t) = "1, pi(t), with a small
truncation error given by the following estimation.

Proposition 1 (Truncation error). ||p(t) — pa(t)||1 < € provided that M >
at +logl/e — 1, with a = (e + 1)c||€ — I
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Proof. First, we notice that p,(t) respects the relation

=0+ [ dsh)E =T (s ja=0. (45)

From Egs. (4.3)-(4.5) we directly see that, for n > 1, |[p(t) — pu(t)]1 <
ye [y ds ||p(s) — pu-1(s)|l1, where we have denoted y = ||€ —Z|, and we
have used that h(t,s) < c¢. For n = 0 we have that ||p(t) — po(t)]|1 <
y Jo dsh(t,s)evdo 7o) < eevt — 1 where we have used that h(s, ) < h(t, T)
for s < t, and Gronwall’s inequality in order to bound ||p(s)||; < e¥/Jo 47h(s:7),
see Appendix B. One can prove by induction that

o0

lo(t) =A@l < Y (eyt)'/il, (4.6)

i=M+1

which is bounded by e®!(cyt)™*! /(M +1)! The last expression is bounded by
e provided that M > (e+1)cyt+log(1/e)—1, which concludes the proof. [J

This truncation allows us to write the approximated solution of Eq. (4.2)
by a finite sum, with a number of terms growing linearly with the simulated
time. Indeed, we have that

pu(t) = _di(t) [€ ~ )" p(0), (4.7)
i=0
with the corresponding parameter values dy(t) = 1 and

So=t Si—1
dizl(t) = / s / d81 tee dSi h(t, 81) ce h(SZ‘_l, Si)' (48)
0 0

This truncated sum can be rewritten as p,(t) = > ¢;(¢)Ep(0), with ¢;(t) =
o (?)(—1)k‘idk(t). Proposition 1 tells us that we can directly simulate
a semi-Markovian dynamics by just implementing powers of the process &,
and numerically integrating the memory kernel. As we need a number of
terms which increases linearly with the simulated time, we have that this
step is efficient if the implementation of the £ is efficient. Notice that, by
construction, p, has trace one, but it is not necessarily a density matrix,

since it can have negative eigenvalues. However, we can write p,(t) as a
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weighted sum of two density matrices and introduce the quantities ¢; () =
max{¢;(t),0} and ¢; (t) = min{¢;(t),0}. In consequence, we have that

pn(t) = C (), (1) + C, (1)py, (1), (4.9)

where the parameter values C:¥(¢) = 1", ¢ (t) and

n

P = s D EW(0), (410

) £

while C; (t) = 1 — CF(t) holds due to trace preservation. Notice that p=(t)
are two density matrices, as their trace is one and they are, by construction,
positive. Indeed, we have approximated the dynamics A(t) corresponding to
Eq. (4.2) as a weighted sum of two CPT maps: A(t) ~ A,(t) = CF(H)AS(t)+

Co(H)A; (t), with AX(t) = WZ’ o CE(t)E". The form of the resulting CPT

maps allows us to simulate Eq. (4.2) by making use of a Markovian quantum
simulator and numerical techniques. In fact, all ¢;(t), and thus also ¢ (t),
can be classically computed, and the states p(t) can be prepared assuming
that the Markovian operations £ (0 < i < n) are available.

Proposition 2 (Simulation of semi-Markovian processes). Let us consider
the simulatmg dynamics Agin () = CH ()AL () +Cy () Ay, (1), where AT, (t) =
T ZZ Ne ( )EZ E denotes an efficient quantum simulation of £, and M >

at—l—log 1/&. If |EF = £ < 6 requires a simulation time t = O (poly(i, 1/5)),
then we can simulate the semi-Markovian process in Eq. (4.2) within an error
IA(t) = Asin (8) |1 < € by using a simulation time t = O (poly(t, C{;(t)/€)).

Proof. We have that [[A() — Ay ()] < [A(E) = Ans(8)| + [ A () — A (D).
The first term is bounded by /2, as M > at + log 1 /~ €. The second term can
be bounded by || Ay (£) = Asim (t )H < CrrO1 A3 (1) ~ Ay (I = Oy (D] Ay (6)
Ay ()]]. We have that ||AZ,(£) — AL, ()| < £/4|CE(t)|, assuming ||E7 — £ <
8/4|Ci< )|. This requires a simulation time ¢ = O(poly (¢, Cy;(t)/¢), where
we have used that C},(t) =1 — C},(1). O

Proposition 2 allows us to compute approximately the evolution of expec-
tation values of observables under the dynamics of Eq. (4.2). It is noteworthy
to mention that our method does not require the engineering of any bath
corresponding to a semi-Markovian dynamics. Instead, we have written the
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formal solution of Eq. (4.2), and exploit the availability of a Markovian quan-
tum simulator generating £ and its powers. This is possible due to the fast
convergence of the exponential series, which limits the number of terms to
be classically computed. Moreover, the truncation provided in Proposition 1
implies also that an efficient Markovian simulation is sufficient to generate
approximatively the solution of Eq. (4.2).

Notice that while in the CPT semi-Markovian case we can directly sam-
ple from the probability distribution of a given observables, since we are
implementing directly the solution, for more general non-Markovian equa-
tions we have only access to expectation values, as this time the process is
split into two parts. A consequent question is whether we can compute in-
teresting quantities beyond mere observables with our algorithmic quantum
simulator. In the following, we study the example of the two-time corre-
lation function of unitary operators, i.e. Dﬁ(Ut) = Tr[U)U(0)p]. In the
last expression, U(t) = A*(t)U, where A*(t) is the dual of A(t), defined as
Tr[A(A(t) - 0)] = Tr[(A*(t) - A)o] for arbitrary A and o. First, let us notice
that D;\’(Ut) ~ CF (t)D;\ftU(t) +C, (t)D;\ff](t) for a sufficiently large n. Each re-
sulting term can be computed with an extension to unitary dynamics of the
protocol for the two-time correlation function proposed in Ref. [120]. Indeed,
we add a two-dimensional ancilla and initialize the joint system in the state
p = 2(]0) + [1))({0] + (1]) ® p. First, we implement a controlled operation
U.=10)(0]@U + |1)(1| ® 1, then the evolution A (t) on the original system,

and finally U, again. In the end, Dﬁ}(t) is retrieved by measuring the opera-
tor o, +10, in the ancilla. Notice that this protocol shows the same efficiency
as the one in Proposition 2. Moreover, the method can be straightforwardly
extended to multi-time correlation functions of unitary operators by iterat-
ing the aforementioned steps. Lastly, the multi-time correlation functions of
observables O can be computed by decomposing it into O = U, + yU,, with
v € R and U, unitary matrices [91].

4.2.2 Simulation of Quantum Memory Effects

Now, we are ready to show how to use the quantum simulation of Eq. (4.2) to
simulate Eq. (4.1). Let us consider £ = e**, where A € R* is a control param-
eter and £ an arbitrary Lindblad operator, as in Eq. (4.1). In the following,
we prove that the solution of Eq. (4.2), describing a semi-Markovian process,
approximates the solution of the memory process in Eq. (4.1) provided that
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A is small.

Memory effects
equation

P — / dsK(t,s)Lo(s) R plE) = / dsH(t, 5)[E — T)o(s)

}

Sampling on the quantum states

Approximated equation

)] =

cr L 0RO

v

Reconstruction of the
complete dynamics

pu(t) = Cf ()oy (t) + C (E)pn ()

Figure 4.1:  Scheme of the algorithmic quantum simulator. We
approximate the equation underlining the memory effects with a semi-
Markovian equation. We then split the solution of the semi-Markovian pro-
cess into two CPT parts, implementing each part separately. This process
is accompanied by the integration of products of the memory kernel in a
number which increases linearly with the simulated time.

Proposition 3 (Simulation of Memory Effects). Let pi(t) and ps(t) be the
solutions of Eq. (4.1) and Eq. (4.2) respectively, with € = €, = e () €
R*), H(t,s) = K(t,s)/\ with [ dr K(7,s) < ¢, and p1(0) = ps(0). Then,

lon(t) = pa(t)lls < & holds if A < “=Zmm=te, when ¢ Ll|t > 1/e, and if

A <log (C”Z”J Tz when cllL||t < 1/e, provided that e < 1/2.
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4.2. Description of the Quantum Algorithm

Proof. Using the Volterra version of Eqs. (4.1) and (4.2), together with the
Taylor expansion of the exponential function, we see that

lp1(t) = p2(B)]l1 < HEH/O ds k(t, 5)|lpr(s) — pa(s)]ls

2| C[2elel
+%/ dsh(t,s)|p2(s)llr,  (4.11)

0

where we have introduced k(t, s) f dr K(7,s). To derive Eq. (4.11), we
have used the triangle 1nequa11ty and the Lagrange bound for the Taylor se-

)\'L L 2 AQ L 2
ries truncation Y .o, ”Z, I < ”2 IZ AL

inequality in order to find the general bound |[py(s)||; < elo 477
and the fact that h(s,7) < h(t,7) for s < t. This allows us to bound the

second term in Eq. (4.11) by %ﬁ‘:f“ (efot ds h(ts)IEx=TIl _ 1). By applying

Gronwall’s inequality to Eq. (4.11) and setting h(t,s) = k(t,s)/A, we con-
clude that [|py(t) — p2(t)]]1 < % (ectlEx=ZI/A — 1) el £l where we have
used that k(t,s) < c¢. Now, if ¢||L||t > 1/e, the last expression is bounded

ei(iﬁ;i;!ﬁ”tg provided that ¢ < 1/2. Otherwise, if

c|[L]t < 1/e, the same bound holds if we choose A < log< T ) T See
Appendix B. ]

. Now, we can use the Gronwall’s
IEA—IH’

by e if we choose \ <

The result of Proposition 3 provides the error bound for a general sim-
ulation of a complex environment described by Eq. (4.1), and it is rather
general as it holds for any £. The algorithm consists in implementing the
states defining the solution of the approximated semi-Markovian process, to-
gether with the numerical integration of the memory kernel, as schematically
depicted in Fig. 4.1. The method can be generalized to even more compli-
cated dynamical equations. For instance, the case of higher-order derivatives,
as

Oip(t) // dsg dsy K(s1,52)L p(sa). (4.12)

The solution of Eq. (4.12) can be approximated analogously to Eq. (4.1), and
Proposition 3 extended in order to find similar bounds. A further general-
ization consists in introducing additional terms, increasing the versatility of
the proposed algorithmic quantum simulator. For instance, let us consider
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Chapter 4. Algorithmic Quantum Simulation of Memory Effects

the equation
t
Op(t) =0 +/ ds K(t,s)L p(s), (4.13)
0

where o can be an arbitrary matrix. Then, Eq. (4.13) can be simulated by ap-
proximating it with the equation Oup(t) = o + fg ds K(t,s) [e* —I] /Ap(s),
which can be rewritten and simulated similarly to Eq. (4.2).

Regarding the possible implications of this algorithms beyond the direct
application in simulating quantum memory effects we would like to mention
that the results in this chapter can be exploited for the classical simulation
of memory effect equations. In fact, if the Markovian process used as tool is
decomposed efficiently by gates with positive Wigner function, then expected
values of observables can be estimated by using Montecarlo techniques [121,
122].

Lastly, we are aware of other works with a similar spirit of our algorithmic
quantum simulator. In this sense, a similar approach oriented mainly to
quantum machine learning has been realized in Ref. [123]. The authors use a
D-Wave quantum annealer as analog simulator on top of a classical algorithm,
which proves the power of these algorithmic quantum simulators.

4.3 Conclusions

In conclusion, we have developed a flexible and efficient quantum algorithm
for the solution of integro-differential evolution equations describing quantum
memory effects, including the case of non-Markovian dynamics. The pro-
posed algorithmic quantum simulation is useful for mimicking the effective
action of complex environments. Alternative situations that our approach
may cover include quantum feedback [124, 125, 126], quantum machine learn-
ing and neuromorphic quantum computation.
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Chapter 5

Advanced-Retarded differential
equations in quantum photonics

They who dream by day are
cognizant of many things which
escape those who dream only by
night.

Edgar Allan Poe

In this chapter, we propose the realization of photonic circuits whose
dynamics is governed by advanced-retarded differential equations. Beyond
their mathematical interest, these photonic configurations enable the im-
plementation of quantum feedback and feedforward without requiring any
intermediate measurement. We show how this protocol can be applied to
implement positive and negative delay effects in the classical and quantum
realms. Our results elucidate the potential of the protocol as a promising
route towards integrated quantum control systems on a chip.

5.1 Introduction
In advanced-retarded (A-R) differential equations, also known as mixed func-
tional differential equations, the derivative of the associated function explic-

itly depends on itself evaluated at different advanced-retarded values of the
time variable [127, 128, 129, 130, 131]. In order to solve such A-R equations
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Chapter 5. Advanced-Retarded differential equations in quantum photonics

either analytically or numerically, we require the knowledge of the solution
history out of the domain of the equation. In many scientific disciplines A-R
differential equations are used to describe phenomena containing feedback
and feedforward interactions in their evolution [132, 133, 134]. In physics,
for instance, A-R equations can be used to model systems exhibiting tempo-
ral symmetries in the dynamics. As a prominent example one may mention
the application of A-R equations [135] in Wheeler-Feynman absorber the-
ory [136, 137].

In the context of quantum mechanics, the implementation of feedback
is more intricate than in the classical case due to the sensitivity of quan-
tum systems to measurements. In this regard, a set of techniques has been
developed for the realization of feedback-dependent systems, each of them
employing different resources such as dynamical delays [138, 139], machine
learning optimization [140], weak measurements [141, 142], including quan-
tum memristors [112, 113], and projective measurements for digital feedback
[143] among others. Certainly, the inclusion of feedback or memory effects in
quantum dynamical systems has extended the scope of quantum protocols,
and it has allowed for the study and reproduction of more complex phenom-
ena. Therefore, devising schemes for engineering Hamiltonians that display
advanced-retarded dynamics is of great relevance. Along these lines, the field
of non-Markovian quantum dynamics focuses on the study of effective equa-
tions that govern the evolution of systems interacting with state-dependent
environments [92, 93, 96, 97]. As a result, the estimation of non-Markovianity
sheds light on the memory content of the systems under study.

In this chapter, we show that photonic lattices can be used to effectively
tailor the dynamics of classical and quantum light fields in an advanced-
retarded fashion. Our strategy is to exploit the duality between light prop-
agation in space and time. More specifically, we use the existing mapping
between time and the propagation coordinate [144]. Our A-R photonic ap-
proach utilises the isomorphism existing between the steady state of judi-
ciously designed photonic waveguide circuits and solutions of A-R differential
equations. We foresee that the inherent versatility of the proposed system
will make the implementation of feedback and feedforward noticeably simple,
in both classical and quantum frameworks, and thus may open the door to
many interesting applications in integrated quantum technologies.
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5.2. Description of the Advanced-Retarded Protocol

Figure 5.1: Photonics chip representation. Illustration of the chip for
implementing the photonic simulator in Eq. (5.2), where the arrows repre-
sent the input and output ports, while the lines inside and outside the chip
represent the waveguides and fiber connections, respectively.

5.2 Description of the Advanced-Retarded Pro-
tocol

To introduce our protocol, we start by considering the following first-order
linear and non-autonomous A-R differential equation [127]

z‘dfi—? = B(t)z(t) + k~ ()t — 1) + KT ()z(t + 1), (5.1)
with k7 (t) = Kk~ (t + 7), and boundary conditions = (0 <t < 7) = kT ((N —
1)t <t < N7) = 0. We associate the functions z(t), x(t £ 7) with the
mode amplitude of classical monochromatic waves traversing the j-th and
j = 1-th waveguides, a;(z) and a;1;(2), of an array of N evanescently cou-
pled waveguides, each supporting a single mode and having a time-dependent
propagation constant (3(z). This physical system is governed by a set of N
differential equations [145]

,d&j

i = B(2)a;(2) + (D)0 (2) + g5 (aa(z), (52)

with j € [1, N]. In quantum optics, the dynamics of single photons traversing
this type of devices is modeled with a set of Heisenberg equations isomorphic
to Eq. (5.2), which are achieved by replacing the classical mode amplitudes
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a; by the corresponding annihilation bosonic operators a; [24, 146]. In order
to make Eq. (5.2) isomorphic to Eq. (5.1), we must impose a continuity
condition a;(0) = a;_;(7) within the interval j € [2, N]. Physically, this
condition implies that the mode field a;_;, at the propagation distance of
(j — 1)7 (7 being the length of the waveguides), has to be fed back into the
input of the j-th waveguide. Furthermore, the finiteness of the waveguide
array imposes the boundary conditions k19 = Ky n41 = 0. Additionally, we
establish the aforementioned mapping of the independent variable ¢ into the
spatial coordinate z. Therefore, our protocol requires the implementation of
waveguide lattices endowed with input-output connections as illustrated in
Fig. 5.1.

Physically, the initial condition a;(0) is implemented by continuously in-
jecting light into the system. This condition is crucial to establish the isomor-
phism between the light dynamics in the waveguide array and the solution
of Eq. (5.1). As a result, this solution is obtained in the stationary regime of
our photonic system. Once the intensity is measured, the modulus square of
the solution is obtained by joining the intensity evolution of each waveguide
in a single variable. See Fig. 5.2 for a demonstration of the potentiality of
our protocol, where we analyze the setup depicted in Fig. 5.1 with N =6
and constant lattice parameters, 3(z) = 1, k = /B+ N and 7 = 1. The
light dynamics occurring in such an array is governed by Eq. (5.2). See Fig.
5.3 for an scheme of the error depending on the distance from the stationary
state.

An interesting point to highlight is the existence of a z reversal sym-
metry in the simulation with respect to the central point of the evolution,
ze = N7/2, for constant lattice parameters. This relation holds for the
modulus square of the solution, aa*(z. + z) = aa*(z. — z). Consequently,
after the system reaches the steady state, it simultaneously fulfills the peri-
odic boundary condition, a(0) = a(/N7), where we have neglected a global
phase factor. Moreover, the preservation of the norm is a common feature
in all our simulations because it is the footprint of how we have defined the
stationary state. Therefore, our intuition suggest that from all the possi-
ble solutions our technique is finding those which preserve the input-output
norm. This property combined with the space-time analogy open a possible
framework for the study and implementation of closed timelike curve (CTC)
gates [147, 148, 149].
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5.3. Numerical Simulations of Paradigmatic Equations
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Figure 5.2: Proof of principle. a) Intensity evolution for an array having
N = 6 waveguides and constant lattice parameters 3 = 1, k = /B + N and
7 = 1. b) Intensity of all the waveguides concatenated in a single curve,
which represents the absolute square of the solution of Eq. (5.2).

5.3 Numerical Simulations of Paradigmatic
Equations

Dynamical Parameters

A more flexible scenario arises when considering space dependent parameters
in Eq. (5.2), which in the context of photonic lattices means that the system
acquires dynamics. The dynamical character is achieved with modulations of
the refractive index of individual waveguides. We consider an implementable
system conformed by a periodic variation [3(z) = [y + €cos(wz), where [
is a constant, € is the modulation amplitude, and w stands for the modula-
tion frequency along z. It is noteworthy to mention that in the context of
advanced-retarded equations the time dependence allows us to encode non-
autonomous equations, which are hard to compute in general. For illustration
purposes, Consider the oscillatory time dependence of the propagation con-
stant, [, for the single variable A-R equation, Eq. (5.1). We numerically
simulate this system for a lattice of N = 6 waveguides, 8 = 1, k = V7,
e =1 and w = 2, see Fig. 5.4. We have selected these parameters to show
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Figure 5.3: Theoretical Error. We depict the decimal logarithm of the
error as a function of time for three runs of the simulation with different
distances with respect to the stationary state. The fact that the effective
interaction between photons is zero makes possible the analogy between the
stationary state solution and the accumulation of solutions for an initial
excitation combined until the initial population has escaped from the output
port. Therefore, the distance is calculated as the norm of the population that
remains in the chip. The dynamical constants of the system are equivalent
to the ones in Fig. 5.2.

the existence of resonant solutions, in which a high amount of light gets
trapped in the chip. Notice that, although a high population is achieved in
the stationary state, the theoretical error is still small.

Systems of Equations

We now turn our attention to demonstrate how our protocol can be extended
to provide solutions of systems of classical and quantum A-R equations. To
this end, we encode every unknown variable in a family of waveguide arrays,
and place all the families involved close to each other in such a way that light
fields traversing the system can tunnel from array to array. In this manner, all
the functions are self-coupled and coupled to others, enriching the dynamics
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Figure 5.4: Dynamical Parameters. Numerical Simulation of Eq. (5.1)
with N =6,3=1,e=1,x = /7, w = 2. (a) Intensity in the stationary state
in the waveguides array. (b) Modulus square of the solution as a function of
time. (c) Decimal Logarithm of the error of the simulation with respect to
the solution of the A-R equation.

of the systems. In order to explain the operation principle of the protocol,
we focus on the simplest case of two variables. Note that in this case, we
can relate each array z and y to a component of a qubit, [¢)) = (as,a,)",
where T denotes the transpose. Thereby, we mold its dynamics to evolve
according to an effective A-R differential equation. As a first possibility, we
can put together two lattices in which the feedback takes place as depicted
in Fig. 5.5 a. In this scenario, the light can hop to its neighboring sites as
well as to the sites of the adjacent array. This arrangement enables the time
evolution simulation of a single qubit Hamiltonian combined with two terms
corresponding to advanced and retarded couplings

il0(t) = HOW (1) + HH O (t + 7)) + H (1) |e(t — 7)), (5.3)

B )\ e [ ) dh0)
H“)—( a6 5, )’H (t)‘<d+ () wi(t) )
) Ro(t) do(t)
=20 0 ) o

A second configuration arises by mixing the fibers as shown in Fig. 5.5
b. In this case, we flip the qubit in the advanced and retarded times. Even
though the equation exhibits the same structure as Eq. (5.3), the forward
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Figure 5.5: Chip connections. Front side view of the chip showing the
input-output connections and the parameters of the simulation. Here (3 is the
propagation constant, ¢ is the vertical coupling constant,  is the horizontal
coupling constant and d the diagonal coupling constant. a) The scheme
in which each plane is associated with a component of the qubit simulates
Eq. (5.3). b) The crossed links allow for a stronger temporal mixing of the
qubit components in the derivative. This situation corresponds to the second
example of Eq. (5.3).

and backward Hamiltonians, H* and H~ are the same matrices given in
Eq. (5.4) multiplied on the left by o,. Here H(t), H*(t), and H(t) de-
pend on the parameter S and on the coupling between waveguides belonging
to different arrays and the coupling between the guides of the same array.
While the vertical, transversal and diagonal couplings are denoted with ¢, s
and d respectively, the (z,y) labels represent the plane in which the arrays
are located. In addition to the conditions for each array in Eq. (5.1), the
following consistency and boundary conditions are fulfilled,

H (n—-O)r<t<nr)=H (0<t<7)=0,

d;x(t) =d,,(t+9), d;ry(t) =d,, (t+9). (5.5)
In Fig. 5.6, we plot a numerical simulation of the array proposed to simulate
systems of A-R equations given by Eq. (5.3). The dynamical parameters are
N=5p8=108 =2 Kk =3,k =1¢g=1,d=1and 7 = 1 for an
initial state [1(0)) = |0). The theoretical error is smaller than 1072 for the
complete time evolution. We have selected these parameters to show that
highly asymmetric solutions are also possible for time independent equations
even with the limitation induced by the physical constrains in the coupling
constants k.
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Figure 5.6: Systems of Equations. Numerical simulation of Eq. (5.3) with
N=5 8,=18,=2k,=3,k,=1,¢g=1,d=1, 7 =1 for the initial
state [¢(0)) = |0). (a) Waveguide intensity in the x plane corresponding to
the first component of the qubit. (b) Waveguide intensity in the y plane
corresponding to the second component of the qubit. (¢) Modulus square of
the quantum state as a function of time.

Multiple Delays

We next consider a variant of Eq. (5.1) with multiple delays. This configu-
ration arises when we allow each waveguide to couple to multiple neighbors
and after reordering the feedback connectors. The first non-trivial example
is a two-time A-R equation

ix(t) = Bt)z(t) + T (O)x(t +7) + kT ()2 (t + 27)
+r ()t —7)+ Kk (t)x(t — 27). (5.6)

Experimentally, the arrangement can be engineered by fabricating the waveg-
uides in a zig-zag configuration. The resulting equation shares the structure
of an A-R differential advanced-retarded with additional feedback and feed-
forward terms. For this particular system, the coupling coefficients are re-
lated as

) =k~ (t+21),  KY(t) =k (t+7), (5.7)

See Fig. 5.7 for a numerical simulation of Eq. (5.6) with N =5, =1, k=5
and 7 = 1.

61



Chapter 5. Advanced-Retarded differential equations in quantum photonics

a) 4 b) 1.2 )5
0.75 1 2 B
: I
= 0.8 © 25
<
8 L z
c0.5 =0.6 © -3
S x IS
&2 S
[a) 0.4 5 -3.5
0.25 e
0.2 a4
0 -4.5
12 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Waveguide Number Simulated Time (t) Simulated Time (t)

Figure 5.7: Multiple delays. Numerical simulation of Eq. (5.6) with N =5,
f=1,k=>5and 7 = 1. (a) Intensity in the stationary state in the waveguide
array. (b) Modulus square of the solution as a function of time. (c¢) Decimal
logarithm of the simulation error with respect to the solution of the A-R
equation.

Complex Parameters and High Order Equations

One last generalization of the A-R simulator consists in introducing complex
dynamical parameters. This can be achieved by combining our feedback
technique with Bloch oscillator lattices [150, 151, 152]. These types of arrays
can be implemented by including a transverse ramping on the potential of
the waveguides or by curving the waveguide arrays. Provided the evolution
equations for the Bloch oscillator array, ia, +nfBza, + K a,1 + k" ap_1 =0,
and making the formal transformation a,, = a,(z) exp(ing(z)), with ¢(z) =
foz B(Z')dz', one can show that it is formally equivalent to a system endowed
with complex coefficients, i, + exp(ind(2))s T anp + exp(—ind(2))s " dp_1.
The inclusion of arbitrary complex parameters could be used to enhance the
versatility of the protocol. Furthermore, a complete control of the coupling
constants would allow to simulate higher-order equations via systems of first-
order equations.

Mathematical Generalization

Even though the toolbox we present here is valid for simulating diverse
physical configurations, it can be generalized by an appropriate mathemat-
ical treatment. Let M () be the matrix containing the information about
the propagation constant and couplings among the waveguides defined by
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ia(t) = M(t)a(t), F' the matrix encoding the input-output connections, and
« the initial state independent of the feedback and feedforward mechanism,
such that a(0) = Fa(r) + o. Consider now that the dynamical equation is
solvable in terms of the evolution operator U(t), a(t) = U(t)a(0). Our goal is
to determine the complete initial condition a(0) in terms of the independent
initial condition «, evolution operator U(¢) and input-output matrix F. The
consistency relations at a(7) impose that a(0) has to fulfill, a(r) = U(7)a(0),

a(0) = Fa(r) + a = a(0) = (1 — FU(7)) " a,
a(t) = U(t)(1 = FU(7)) ‘e (5.8)

Notice that this relation holds for any «, allowing the input of quantum
states superposed in more than one waveguide, and is also valid for different
configurations of couplings U and connections F', limited by the existence of
the inverse of (1 — FU(7)). Moreover, we can think of different experimental
conditions in which the connections happen at distinct evolution times 7;,
a(0) =", Fa(m;) + a, resulting in a(t) = U(t)(1 — >, F;U(1)) e

At this point the protocol enables to implement systems of multiple delay
advanced-retarded differential equation of first or higher orders, therefore al-
lowing to address a variety of mathematical models along different branches
in the tree of science. In the remainder, in order to make the algorithm
realistic, we analyze the main limitations of the protocol regarding its inter-
pretation and experimental realization.

If we interpret the solution of the qubit equation, Eq. (5.3), as a quantum
particle we obtain a particle whose probability is not always normalized, as-
sociated with the forward and backward jumps of the particle. Although this
effect excludes in principle the particle interpretation, absorbing potentials
[153] account for this kind of kinematics. Moreover, the solution can always
be divided by a constant, and the advanced-retarded equation will still be
fulfilled. We can then calculate the non-Markovianity measurement, and see
that quantum memory effects are present in the time evolution.

5.4 Experimental Considerations

An important source of errors is given by the decoherence of the quantum
state in the time elapsed until the equilibrium situation in the system is
achieved. This time is related with the population in the equilibrium situa-
tion, which is unknown before the experiment is realized. Identifying the re-
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lation between the resonances and the dynamical parameters could be helpful
for estimating the population in the stationary state, and therefore the total
experimental time for achieving this state. Another possible approach is to
employ the analogy explained in Fig. 5.3 for obtaining the complete solution
as a combination of snapshots of the chip at different times. This is specially
useful in the quantum case, because it allows to implement the experiment
using a single photon instead of a constant supply of energy. While both
methods provide the solution to the advanced-retarded differential equation,
only the stationary state technique allows to obtain the physical state of the
system at ¢ = n7, which has the same norm as the initial state in t = 0.

We have to take into account the losses introduced by the fiber connec-
tions that will break the continuity condition allowing us to simulate Eq.
(5.1) in terms of Eq. (5.2). The length and propagation constant of this
fibers have to be tuned so that no phase is introduced in the evolution. Ad-
ditionally, the space dependence of propagation and coupling constants is
limited by the experimentally realizable functions. The degrees of freedom
to consider are the writing precision for modifying the propagation constants
and the spatial path of each waveguide for modifying the coupling constants.

5.5 Conclusions

In conclusion, we have developed a flexible and realistic toolbox for imple-
menting advanced-retarded differential equations in integrated quantum pho-
tonics circuits. We have shown that our analogy enables the simulation of
time-dependent systems of advanced-retarded equations in the classical and
quantum realms, which in the context of quantum information can be em-
ployed to realize feedback and feedforward driven dynamics. Therefore, we
consider that our work enhances the versatility of quantum simulators in the
abstract mathematical direction and in terms of applications for retrospective
and prospective quantum memory.
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Chapter 6

Genetic Algorithms for Digital
Quantum Simulations

Live as if you were to die
tomorrow. Learn as if you were
to live forever.

Attributed to Isidore of Seville

In this chapter, we propose genetic algorithms, which are robust opti-
mization techniques inspired by natural selection, to enhance the versatility
of digital quantum simulations. In this sense, we show that genetic algo-
rithms can be employed to increase the fidelity and optimize the resource
requirements of digital quantum simulation protocols, while adapting natu-
rally to the experimental constraints. Furthermore, this method allows us
to reduce not only digital errors, but also experimental errors in quantum
gates. Indeed, by adding ancillary qubits, we design a modular gate made
out of imperfect gates, whose fidelity is larger than the fidelity of any of the
constituent gates. Finally, we prove that the proposed modular gates are
resilient against different gate errors.

6.1 Introduction

Optimization problems, a prominent area in computer science and machine
learning [154], are focused on finding, among all feasible solutions, the best
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one in terms of efficiency and resource requirements. In particular, genetic
algorithms (GAs) [46], an especially flexible and robust set of optimization
methods, are inspired by ideas of evolution and natural selection. In this
sense, GAs optimize among different strategies, which are codified in the
genetic information of an individual. Their evolution is given by genetic re-
combination over a group of individuals, together with random mutations.
Natural selection is represented according to the optimization criteria, cod-
ified in an evaluation or fitting function. This process is repeated until the
individuals satisfy a condition of adaptation. As the solutions to the problem
are encoded in the genetic information of the individuals, the information of
the survival corresponds to the optimal solution.

A variety of applications have been designed utilizing these methods: mir-
rors that funnel sunlight into a solar collector [155], antennas measuring the
magnetosphere of Earth from satellites [156], walking methods for computer
figures [157] and efficient electrical circuit topology [158, 159]. The resilience
against changes in the initial conditions of the problem is based on the over-
heads in the resources.

One of the most important limitations in the field of quantum com-
puting [2] is the fidelity loss of quantum operations. Quantum error cor-
rection protocols [160, 161], which codify logical qubits in several physical
qubits, have been proposed and implemented in different quantum technolo-
gies, such as linear optics [162], trapped ions [163] and superconducting cir-
cuits [84, 164]. It is noteworthy to mention that quantum error correction
have been designed for gate-based quantum computing and, in principle, they
are also meant to be adaptable to digital quantum simulations [3]. However,
experimental implementations of quantum error correction protocols applied
to specific quantum algorithms are still to come in the expected development
of quantum technologies.

Here, we propose a protocol based on genetic algorithms for the suppres-
sion of errors ocurring within digital quantum simulations, along the general
lines of bioinspired algorithms in quantum biomimetics. First, we prove that
GAs are able to decompose any given unitary operation in a discrete se-
quence of gates inherently associated to the experimental setup. Moreover,
we numerically demonstrate that this sequence achieves higher fidelities than
previous digital protocols based on Trotter-Suzuki methods [3, 9]. Second, we
show that GAs can be used to correct experimental errors of quantum gates.
Indeed, architectures combining a sequence of imperfect quantum gates with
ancillary qubits generate a modular gate with higher fidelity than any of
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the components of the sequence. We exemplify this with a possible imple-
mentation of a high-fidelity controlled-NOT (CNOT) modular gate, which
is made out of several imperfect CNOTs. Additionally, these architectures
show resilience against changes in the gate error. Therefore, by combining
the concept of digital quantum simulation with GA, it is possible to design
robust and versatile digital quantum protocols.

6.2 Genetic Algorithms for Digital Quantum
Simulations.

In the following, we explain how GAs can improve the fidelity of digital
quantum simulations. Up to now, the standard technique for realizing digi-
tal simulations is Trotter-Suzuki expansion [9], which has been proven to be
efficient [101, 165, 166]. This method consists in executing a series of dis-
cretized interactions, resulting in an effective dynamics similar to the ideal
dynamics of the simulated system. Associated with the unitary evolution of
Hamiltonian H = 37 Hj, Trotter formula reads

U =e ' = lim (e‘iHlt/l e e_iHst/l)l , (6.1)
l—00

where Uy is the ideal unitary evolution, ¢ is the simulated time, [ is the number
of Trotter steps, and H; are the Hamiltonians in the simulating system. On
one hand, for a fixed total execution time, the larger the number of Trotter
steps is, the lower the digital error of the simulation. On the other hand, the
execution of multiple gates in a quantum system can introduce experimental
errors due to decoherence and imperfect gate implementation. Therefore,
there is a compromise between the number of Trotter steps and quantum

operations that can be performed by the quantum simulator [167, 168].
GAs can be employed for outperforming current techniques of digital
quantum simulations. The first step of a digital quantum simulation is the
decomposition of the simulated Hamiltonian into interactions implementable
in the quantum platform, which is a tough task in general. However, by using
GAs, it is possible to find a series of gates adapted to the constraints imposed
by the quantum simulator, whose resulting interaction is similar to the one
of Hamiltonian H. For this purpose, we need neither to satisfy the condition
H = Zj H;, nor to use the same execution time for every involved gate.
This not only relaxes the conditions for simulating the dynamics, but also
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allows us to control the number of gates involved, permitting the possibility
of minimizing the experimental error.

Let us assume the situation in which is not possible to compute the ideal
dynamics of a short-range interacting Hamiltonian, since, for instance the
number of particles is too large. By using the Trotter-Suzuki formula, it
is possible to decompose the interaction into « local blocks of k-interacting
particles each, out of NV total particles. Let us denote by U; the ideal unitary
evolution of the Hamiltonian acting on the jth local block of k£ qubits. Once
the total dynamics is decomposed into blocks, each U; has to be implemented
employing the resources available in the experimental platform, as depicted in
Fig. 6.1. Here, GAs play an important role, since they provide an architecture
for efficiently approximating each U; by W;:

o (o) - (fee) e

j=1

o - (i) o

where a = (ﬁw We assume that k is sufficiently small to allow the mini-
mization of the error associated with the approximation in a standard com-
puter. Therefore, the evaluation function has access to an approximate ver-
sion of the complete system dynamics, because this is solvable in terms of the
Trotter expansion. In our algorithm, as an evaluation function, we compare
Trotter unitary evolution, Ur, for a given number of Trotter steps [ with the
unitary evolution obtained from GAs, Ug4. The evaluation function is then
given by R; = ||U; — W;||*. The result, for all the examples analyzed, is that
the number of gates involved in the GA protocol is lower than in the Trotter
expansion, which gives positive perspectives for experimental realizations of
digital quantum simulations based on this approach.

The upper bound for the total error £ of the protocol, is obtained by
combining the Trotter error with the error of the GA optimization £ =

'Notice that a global phase in the unitary W; does not affect the evolution but it affects
the value of R;, so we should consider infy, ||U; — e*W}||. As we normally have access to

the initial state of the evolution, the evaluation function R; = |(\P|U}Wj\\ll>\2, in which
the global phase is irrelevant, can be chosen.
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Figure 6.1: Scheme of the GA-based protocol for digital quantum
simulations. Firstly, the simulated Hamiltonian is decomposed in local
interaction blocks, separately implemented in different unitary evolutions U;
which act on a subset of k£ particles of the system. Secondly, the set of gates is
selected according to the constraints of the simulating quantum technology:
total number of gates to avoid experimental gate error, interactions restricted
to adjacent physical qubits, and implementable phases of the Hamiltonian,
among others. Once the set of gates is determined, GAs provide a constraint-
fulfilling sequence of gates, which effectively perform the resulting dynamics
Uga similar to Ur.

Ur — Ugall < ||Ur — Ur|| + ||Ur — Ugal|. The first term is nothing but
the digital error [9], so we analyze the second term. Consider that W, the
unitary provided by the GA, has a matrix error n;, W; = U; + n;. Let
us denote by U; = 18971 @ U; ® 1977, the operations when extending to
the whole Hilbert space, where a is the number of blocks. The same re-
lation holds for Wj and 7);, therefore, Wj = Uj + 1;. We are now able to
compute the error of the GA optimization for a single Trotter step, given
by [|Ur — Ugall = | TTW; — TTUS || = [ TI(U; + 1) — TTUjlJ. We approx-
imate this expression to a first order in 7y, || > Wi..W; ;Wi . Wa| <
2o WAlLIW5 a1 [ IWaa |- [[Wa |- By computing the norm of the uni-
tary matrices W, we obtain ) ||7;||, which coincides with the error in each
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Jt

Figure 6.2: Logarithmic plot of the error. We depict the error, £ =
1—|(¥|UJU|®)[?, in the evolution of (a) Ising and (b) Heisenberg spin models
for N = 5 qubits, J = 2, B = 1, and |¥) = |0)®5. Here, U; is the ideal
unitary evolution, while U refers to the unitary evolution using either a
digital expansion in 1 (blue line) and 2 (red line) Trotter steps, or GA (dashed
green). The GA protocol requires fewer gates than the digital method for a
single Trotter step achieving similar fidelities to two Trotter steps.

of the subspaces, ||[Ur — Ugal| = >_ ||nj||. Therefore, the GA error, at first
order, is given by the sum of the errors in each unitary block, which is lin-
ear in the number of qubits for the simulation of a short-range interacting
Hamiltonian. As a final remark, since both W and U are unitaries, we would
like to point out that the error could also be parametrized by a multiplicative
unitary matrix. However, both approaches are equivalent for small errors in
the sense that V), = exp(ipH) ~ 1+ iuH + O(p*||H||?) for a small p, so
WxU+WUHp=U+n.

We now illustrate the protocol for simulating digitally the isotropic Ising
and Heisenberg spin models with a magnetic field in a superconducting circuit
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architecture [4, 167, 169]. The Hamiltonians of these models are

N N
H, = JZUfUJZ-—l—BZUf,
(i.9) g
N N
Hy = JZ(J?U?+U§’U?+U§U§)+BZU?, (6.4)
(,3) i

where J is the coupling between nearest-neighbor spins (i, j), B is the strength
of the magnetic field, and o are the Pauli operators acting on the ith spin
with v = z,y,2. We decompose the interactions in terms of single-qubit
rotations and controlled-phase (CPHASE) gates between nearest-neighbor
superconducting qubits [5, 6, 33]. Following the approach of Ref. [169], sim-
ulating the Ising Hamiltonian requires N — 1 CPHASE and 3N — 2 single-
qubit gates, while Heisenberg Hamiltonian demands 3(N-1) CPHASE and
11N — 6 single-qubit gates. In this simulation, we consider a chain of N =5
spins. The GA computes a digitalized unitary evolution for a concrete time
t, constituted by the previous gates in a local subspace of k& = 2 qubits.
Then, this unitary evolution W; is repeated following Eq. (6.3) with (=1
over all adjacent qubits due to the translation invariance . The resulting
unitary process Ug 4 is compared with the ideal dynamics of the model. This
protocol employs 4 CPHASE and 8 single-qubit gates for the Ising model,
and 4 CPHASE and 16 single-qubit gates for the Heisenberg model. More-
over, fidelities are enhanced when compared with the corresponding to pure
digital methods for a single Trotter step, even using less gates, as shown in
Fig. 6.2. This approach can be applied in other quantum technologies just by
adding the constrains of their implementable quantum gates to the genetic
algorithm. In this protocol, we have considered gates with perfect fidelity.
Let us now focus on how to employ GA to improve the experimental error
of quantum gates.

6.3 Experimental Error in a CNOT Gate.

Besides outperforming protocols for digital quantum simulations, GAs are
also useful for suppressing experimental errors in gates. We propose a pro-
tocol to perform an effective quantum gate by using ancillary qubits and a
set of imperfect gates, and we illustrate it for the CNOT. A CNOT gate is
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given by a unitary Ucnor = exp(i5 Henor), with

Honor = % (40 @1+ 1 -0%)®0. (6.5)
Let us consider imperfect gates modeled by Wonor = exp(i%HCNOT +0HgR),
with § << 1 and Hg a random matrix, such that ||H||; = 1. These unitaries
define unital quantum channels Ey = U @ U and Eyy = W @ W respectively,
and we define the error of the gate as the distance n = ||[Ey — Ey||2.

Let us now consider ¢—2 ancillary qubits in the state |0) in addition to the
control and target of the integrated CNOT. Let us also consider n imperfect
CNOT gates W = {Wi,...,W,} acting on any possible pair of the ¢ qubits,
with errors 77 = {m,...,n,} respectively, and denoted by 1 = min;n;. The
integrated circuit is defined by a set of n ordered pairs IG; = {(ix, jx)|1 <
ik, Jk < ¢,k = 1,...,n}, where the indices indicate the control and target
qubits, respectively. In order to calculate the fidelity of the protocol, we
compute the Kraus operators of the integrated CNOT, by tracing out the
q — 2 ancillary qubits, and compare the resulting channel Ejc. with the
unital channel Ey, €7¢, = ||E1G77 — Eylle. If €1¢; < 1, then the CNOT gate
is implemented with higher fidelity than any of the original CNOT gates,
showing this GA-based architecture resilience against quantum errors.

The set IG5 codifies the genetic information of the individuals which
conform the population evolving into successive generations. During the
reproduction, the individuals recombine their genetic code, which is also
allowed to mutate. The survival probability depends on the fidelity of the
effective CNOT encoded in /Gy and, therefore, only individuals associated
with a small error succeed.

The number of possible architectures involving n different CNOT gates
and ¢ ancillary qubits is P = (¢*> — ¢)"n!, see Appendix C. The factor (¢* —
q)™ is due to all possible CNOT configurations in a given order between
qubits i and j for n gates, while n! comes from reordering imperfect gates
{W1, ..., W, }. When ¢ and n are small, the optimal architecture can be found
by analyzing all cases. However, when we increase these parameters, this
brute-force optimization method turns out to be inefficient. GAs allow us to
optimize the protocol in this unreachable regime, being moreover robust, as
presented below.

This CNOT case has been analyzed involving three, five and seven gates.
Notice that, when one considers ¢ = 4 and n = 7, the number of possible
architectures is larger than 1.8 x 10 for a fixed set of imperfect gates. We
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have chosen a set of gates and find the optimal architecture by GA. Then,
we analyze the resilience or robustness of this architecture by changing the
set. In Fig. 6.3, we have depicted the results for a sampling of 1000 sets of
random imperfect CNOT gates. The pie charts show the percentage of cases
with a lower error than any CNOT performed in the protocol, which are 6%
for three qubits, 87% for five, and 96% for seven. Furthermore, the bar charts
show the average improvement of the error for the integrated CNOT with
respect to the best implementing CNOT, which is —39%, +18%, and +30%,
respectively. For completeness, in Fig. 6.4, we show the optimal architecture
for ¢ = 4 and n = 5, obtained from a fixed set of imperfect gates W, and
proven to be robust, see Appendix C.

300

225

® Improved ® Falled
B 7 gates M 5gates M 3 gates -90

Figure 6.3: Error resilience for architectures with n = 3,5,7 imper-
fect CNOT gates using 1000 runs. Pie charts show the percentage of
cases in which the fidelity of the effective CNOT overmatches the best CNOT
employed in the architecture. Bar charts show the distribution of cases ac-
cording to the relative improvement in the error, again when compared with

the best CNOT.

Additionally, we have studied the behavior of the protocol with respect to
the number of ancillary qubits. The results show no significant improvement
when the number of performed gates is small, see Appendix C. For instance,
architectures up to n = 7 do not overcome fidelities shown above when adding
a third ancillary qubit, ¢ = 5. However, we expect that architectures with a
larger number of gates would actually take advantage of using more ancillary
qubits in order to suppress the error.

The same protocol can be applied in the realization of more general uni-
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Figure 6.4: Quantum circuit. Scheme of the optimal architecture for con-
structing a CNOT gate with 5 imperfect gates, by using two ancillary qubits
initialized in state |0). Here, C' is the control, T" is the target, and A; and
Ag are the ancillary qubits.

tary operations. Additionally, the gates conforming the building blocks can
be arbitrary, which facilitates the adaptation of the protocol to any experi-
mental platform.

6.4 Conclusions

In summary, in this work we proposed a new paradigm based on GAs to
enhance digital quantum simulations and face different types of quantum
errors. We showed that they can be used to improve the fidelity of quan-
tum information protocols by effectively reducing digital errors produced in
Trotter-Suzuki expansions. Our method allowed us to correct experimental
errors due to imperfect quantum gates, by using ancillary qubits and opti-
mized architectures. We also argued that solutions provided by GAs manifest
resilience against digital and experimental quantum errors. From a wide per-
spective, we expect that GAs will be part of the standard toolbox of quantum
technologies, and a complementary approach to analog [170, 171] and digital
[172] optimal-control techniques.
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Chapter 7

Feedback-Induced Quantum
Learning

It’s the questions we can’t
answer that teach us the most.
They teach us how to think. If
you give a man an answer, all he
gains is a little fact. But give
him a question and he’ll look for
his own answers.

Patrick Rothfuss

In this chapter, we present a quantum learning algorithm for determining
the optimal state in controlled unitary operations. The underlying physical
mechanism of the protocol is the iteration of a quantum time delayed equation
that introduces feedback in the dynamics and eliminates the necessity of
intermediate measurements. The performance of the algorithm is analyzed
by comparing the results obtained in numerical simulations with the outcome
of Machine Learning methods for the same problem.

7.1 Introduction

One of the main consequences of the revolution in computation sciences,
started by A. Turing, K. Zuse and J. Von Neumann among others [173, 174],
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is that computers are capable of substituting us and improving our perfor-
mance in an increasing number of tasks. This is due to the advances in the
development of complex algorithms and the technological refinement allow-
ing for faster processing and larger storage. One of the golden dreams in
this area, in the frame of the biomimetic ideas, is the design of algorithms
that provide computers human-like capacities such as image or speech recog-
nition, and creativity. These achievements would enable us to interact with
computers in our own language.

This research, together with other projects with similar spirit, is carried
out in the field of Artificial Intelligence [47]. In particular, researchers in
the area of Machine Learning inside Artificial Intelligence are devoted to
the design of algorithms responsible of training the machine with data so
that is able to find a given optimal relation according to the desired criteria
[154]. More precisely, the area is divided in three main lines depending on
the nature of the protocol. In supervised learning the goal is to teach the
machine a known function without explicitly introducing it in its code. In
unsupervised learning the goal is that the machine develops the ability to
classify data by grouping it on a different subset depending on its properties.
In reinforcement learning, the goal is that the machine selects a sequence of
actions so that the transition from the initial to the final state is optimal.

These techniques have also been studied in the quantum regime, under the
flag of quantum machine learning [79, 110, 111, 175, 176, 177], with two main
motivations. The primary one is to exploit the promised speedup of quantum
protocols for improving the already existing classical ones. The secondary one
is to develop unique quantum machine learning protocols for combining them
with other quantum computational tasks. Apart from quantum machine
learning, fields like quantum neural networks, or the more general quantum
artificial intelligence, have also addressed similar problems [178, 179, 180,
181, 182].

7.2 Quantum Learning Algorithm

Here, we introduce a quantum algorithm for finding the optimal control state
of a multitask controlled unitary operation. It is based on a sequentially
applied time delayed equation that allows to implement feedback driven dy-
namics. The purely quantum encoding allows to speedup the training process
by evaluating all the possible choices in parallel. Finally, we analyze the per-
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formance of the algorithm with a figure of merit defined as the trace of the
matrix product between the ideal and the real quantum states.

The first step in the description of the algorithm is the clarification of
the concept of multitask controlled unitary operations U. In essence, these
do not differ from ordinary controlled operations, but the multitask label is
selected to emphasize that more than two operations on the target subspace
are in principle possible. Mathematically, we define them as

U= Z ;) (e5] ® si, (7.1)

where |¢;) denotes the control state, and s; is the reduced or effective unitary
operation that U does on the target subspace when the control is on |¢;).

Our algorithm is useful when U is experimentally implementable but its
internal structure, |¢;) and s; are unknown. The goal is to find the optimal
|c;) for fixed input and output states, |in) and |out), in the target subspace.
The protocol consists on sequentially reapplying the same dynamics in such
a way that the initial state in the signal subspace is always |in), while the
initial state in the control subspace is the output of the previous cycle. The
equation modeling the dynamics is

% [0(8)) = =i [0 — 1:)0(ta — t)ra 1 [ (1)) + raHy ([0(2)) — |( —0)))].

(7.2)

In this equation 6 is the Heaviside function, H; is the Hamiltonian giving rise
to U with U = e~ H1ta=t)  [], is the Hamiltonian connecting the input and
output states, with x; and ks as the coupling constants of each Hamiltonian.
The first thing to comment is that this evolution cannot be realized with
ordinary unitary or dissipative techniques. Nevertheless, recent studies in
time delayed equations could be the key for simulating processes of this kind
[138, 139], together with the results shown in Chapter 5. Another important
feature of Eq. (7.2) is that it only acquires physical meaning once the out-
put is normalized. Regarding the behavior of the equation, each term has
an specific role in the learning algorithm. The mechanism is inspired in the
most intuitive classical technique for solving this problem, which is the com-
parison between the input and output states together with the correspondent
modification of the control state. Here, the first Hamiltonian produces the
input-output transition while the second Hamiltonian produces the reward
by populating the control states responsable of the desired modification of
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the target subspace. The structure of Hy guarantees that only the population
in the control |¢;) associated with the optimal s; is increased,

Hy =1® (—ilin) (out| + i|out) (in|). (7.3)

Notice that while this Hamiltonian does not contain explicit information
about |¢;), the solution of the problem, its multiplication with the feedback
term, |(t)) — |[o(t — 0)), is responsible for introducing the reward as an in-
trinsic part of the dynamics. This is a convenient approach because it elim-
inates the measurements required during the training phase. Additionally,
we would like to point out the similarity existing between the effect of this
term in our quantum evolution and gradient ascent techniques in algorithms
for Artificial Intelligence [47].

A possible strategy would be to feed the system with random control
states, measure each result, and combine them to obtain the final solution.
But, we have discovered that it is enough to initialize the control subspace
in a superposition of the elements of the basis. We would like to remark that
this purely quantum feature reduces dramatically the number of resources,
because a single initial state replaces a set of random states large enough to
cover all possible solutions.

The specific problem we solve is given by the excitation transport pro-
duced by the controlled swap gate. In this scenario, the complete system
is an n node network, each of them composed by a control and a target
qubit. The control states are in a superposition of open and close, |0) and
|c), while the target qubits are written in the standard {|0),|1)} basis de-
noting the absence of presence of excitations. We define U, the multitask
controlled unitary operation, to implement the swap gate between connected
nodes only if all the controls of the corresponding nodes are in the open state,
|o). See Fig. 7.1 for a graphical representation of the most simple cases, the
two and three node line networks. The explicit formula for U, is given by

Uy = (Jec) (cc| + |co) (co| + |oc) (oc|) @ 1 + |o0) (00| @ $12. (7.4)

Here s;; represents the swap gate between qubits ¢ and j. Although we have
employed unitary operations for illustration purposes, the equation requires
the translation to Hamiltonians. In order to do so, we first select t;, — t; to
be /2 and calculate the matrix logarithm,

n=2, H; = (|oo)(00]) ® hya, (7.5)
n=3, H; = (|ooc) (ooc|) @ his + (|coo) (coo|) & haz + (|0o0) (000|) @ hi3.
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Figure 7.1: Node line networks. We show the graphical representation of
the two, a), and three, b), node line networks. The circle around the node
represent that the control is in the open state. The effective operation that
the control performs on the target subspace is the s;; swap gate between
nodes ¢ and j.

Here, being o}, the Pauli matrices, h;; for ¢ < j is obtained with

3
1 . . .
_ ®i—1 ®j—1—1 Rn— XN
hij_§<k§:11 ® 0, ® 1¢7 R0, 19" -1 ) (7.6)

7.3 Numerical Simulations of Learning Curves

In this work we have not proved the general character of the algorithm, but
we have numerically tested it in a selection of examples covering diverse situ-
ations. Before looking at the results it is convenient to mention a technicality
involving the the vector or matrix representation of quantum states. In order
to recover the solution of the problem we need to trace out the target degrees
of freedom, obtaining a density matrix. Additionally, the fact that Eq. (7.2)
written for density matrices, Eq. (7.7), has non-local terms makes it harder
to solve,

% [9(0) (Y(#)] = — [0t — :)0(ta — ) Hy + ko Hy, [(1)) ($(2)]]
+irg(Ha [9(t = 0)) V()] = [0(1)) ((t = 0)[ Hy).  (7.7)
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Therefore, we have decomposed each density matrix in a sum of pure states
and solve the vector equation for each of them separately, retrieving the
total solution as a linear superposition of the individual ones. This method
is consistent due to the linearity of Eq. (7.7).

Unique Solution The first family of problems we face are are the n line
networks, which have a unique solution, given by the control state with all
the nodes open, |0)*". The parameters we have selected, common for all
simulations, are 6 = 1, k1 = 100, ko = 10 and T = 2, where T represents
the total duration of each episode. In Fig. 7.2 we represent graphically the
results together with the required resources. These examples show how the
algorithm is working for this family of problems independently of the natural
basis of U.

Line Network b) 1 Mixed Basis
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Figure 7.2: Learning curves for single solutions. a) We plot the fidelity
of the learning process as a function of the number of episodes for the first
examples of n node line networks. We have selected the open state, |o) = |1)
of the {|0),|1)} basis. b) We plot the fidelity for a different selection of |o)
in the n = 3 case. Here the solution, |000), is given by \%HO) + ()] ® 1) ®
[cos (7/3) |0) + sin (7/3) |1)].

Multiple Solutions

We address now a set of more complicated networks which will allow us
to clarify how the algorithm behaves when solving problems with multiple
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solutions. These are the triangle network for three nodes and the bell and
radiation networks for four nodes, depicted in Fig. 7.3. These networks
accept two pure states and their superpositions as solutions, a feature that
is reflected in the result obtained with the algorithm. The asymptotic state
achieved under the feedback induced learning equation is an equally weighted
quantum superposition of both solutions, see Fig. 7.4.a for the numerical
simulations. In this case, the previous definition of the fidelity is not valid,
therefore we provide a new one in terms of the input and output states and
the Hamiltonian. The new fidelity corresponds to the trace of the product
between the ideal output and the output obtained with the control state
achieved by the algorithm.

a) b) c)
s14
su4
s13
|ooco, )
0oco)
000)

Figure 7.3: Networks with two solutions. We show the graphical of the
triangle, bell and radiation networks in a), b) and c) respectively. In each
of them we write the solution control state, that corresponds to the control
performing the si4 gate in the target subspace.

For the cases studied, the complete set of solutions is obtained encoded in
the result of the algorithm. This is convenient because it allows to design a
protocol to select a specific optimal solution according to a given criteria. In
the networks we are analyzing, one might want to obtain the most efficient
solution, defining efficiency as achieving the transmission of the excitation
while minimizing the number of open nodes. In order to accomplish this
task a dissipative term has to be included in the evolution equation. Our
idea is that a control dependent dissipation affects the target subspace. We
explicitly write the Lindblad operators ¢; and dissipation constants ; for a
two-node case. This technique allows us to find the shortest path between
two nodes in a network once the natural basis of the unitary is known.
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Figure 7.4: Learning curves for two solution and qutrit problems.
a) We depict the learning curve for the triangle, bell and radiation networks
as a function of the number of episodes. Notice that the curves for the bell
and radiation networks are identical. b) We depict the learning curve for
the multitask controlled unitary acting on two qutrits as a function of the
number of episodes. Here |in) = |0), |out) = |2) and the solution is given
by |ca) = |1), where the control states coincide with the basis of the qutrit
space.

o1 = |co01) (coll| + |co00) (col0|, o9 = |co00) (co01| + |col0) (coll],
o3 = |oc00) (ocl0| + |oc01) (ocll], o4 = |ocl0) (ocll| + |oc00) (oc01]|,
o5 = [0000) (0010] + |0001) (0011|, ¢ = |0000) (0001| + |0010) {(0011],
M=7Y2=73="71 V5="7=2MN. (7.8)

Qudits

Another interesting aspect to study is the extension of the algorithm to higher
dimensional building blocks. We provide an example in which the optimal
control state for a multitask controlled unitary operation acting on qutrits is
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obtained. This operation Us is defined in terms of the control states |¢;) as

+ ‘03> <03’ X

S = O
O = O

01 0 1
U3 = ’Cl> <Cl‘ ®1+ ‘CQ> <CQ| X 00 0 0 . (79)
1 0 1 0

Although no network is defined in this case, the goal of the algorithm is to
find the control state that realizes the input-output transition in the target
subspace. In this problem, the system consist of a single control qutrit and a
single target qutrit. See Fig. 7.4.b for a numerical simulation of the learning
process.

7.4 Efficiency of the Quantum Learning Al-
gorithm

It is important to mention that the simulations and techniques we provide
here only constitute a proof of principle of our learning algorithm. It would
be convenient to analytically solve Eq. (7.2) to rigorously analyze the scope
of the algorithm and be able to obtain information about its scalability for
general problems. Since we have not solved the dynamics analytically, we
evaluate the performance by comparing our results with the ones obtained
via different methods. In particular, we follow two different strategies to
determine the structure of the controlled unitary operation, measure it and
analyze it by using machine learning techniques. Here, the resources are
represented by the number of times the unitary operation has to be applied
and the output measured in order to be able to determine its structure.

7.4.1 Machine Learning

We show the results achieved for three different networks, the two node line,
and two different instances of the three node line, all of them previously
studied with our algorithm in Fig. 7.2. For each network, three data sets
were used (small, medium, large) with a different number of instances.

It must be emphasized that all results are referred to test sets, i.e., ob-
tained with data not used to train the models. Therefore, they must be
taken as a good estimation of the prediction capability of the models for new
(not previously seen) data. Cross-validation was implemented by means of a
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k-fold approach [154] (k=10 for all data sets, except for the small data set of
the two line network whose value was k=5 due to the very limited number
of instances).

All results were achieved by using Support Vector Regressor (SVRs) [183],
whose characteristics make it especially adequate when dealing with sparse
data sets (few instances and high dimensions). SVRs work by creating a
transformed data space in which the problem is more easily resolvable (ide-
ally the problem is transformed into a linear one). That transformation
between spaces is carried out by the so-called kernels (Gaussian and poly-
nomial kernels have been used in this experimentation). The data used for
training the models has been randomly selected from a set of multiple pairs
of control state and fidelity.

Tables 7.1, 7.2 and 7.3 report the results achieved by the SVR in the
three analyzed networks. For each case, the state with the best fidelity
is shown, together with the Mean Error (ME) and the Root Mean Square
Error. ME is a measure of bias that represents the difference between the
real and the predicted efficiencies, i.e., gives information about whether the
model tends to make overestimations (negative values) or underestimations
(positive values). On the other hand, RMSE is a well-known robust measure
of accuracy.

Number of Instances | Small (10) | Medium (75) | Large (500)
ME 0.0029 -1.3 1071 -8.6 107°
RMSE 0.0493 0.0012 0.0026
Best Fidelity 0.874 0.962 0.987

Table 7.1: Two node line. The optimal control state for this network is
|1) ® |1), while the best result obtained with this analysis is (0.0535 |0) +
0.9986 |1)) ® (0.0786 |0) + 0.9969 |1)).

7.4.2 Measurement of the Unitary Operation

A different method would be to measure the input-output relation of the
controlled unitary operation when strategically, and not randomly, exploring
the control subspace. Let us denote by |¢;) the natural basis of the unitary
operation, and by |b;) our guess for this basis in a Hilbert space of dimension
n. The measurement protocol consists on applying the unitary operation to

86



7.4. Efficiency of the Quantum Learning Algorithm

Number of Instances | Small (50) | Medium (200) | Large (1000)
ME 7.210°* 2.4107° 3.21074
RMSE 0.0054 0.0017 0.0039

Best Fidelity 0.6840 0.8836 0.8872

Table 7.2: Three node line A. The optimal control state for this network
is [1) ® |[1) ® [1), while the best solution that the machine learning protocol
provides is (0.1785 |0) + 0.9839 1)) ® (0.20630) + 0.9785 |1)) ® (0.1754 |0) +

0.9845[1)).

Number of Instances | Small (50) | Medium (200) | Large (1000)
ME -9.3107% | -7.8107° -9.6 107°
RMSE 0.0082 0.0018 0.0014

Best Fidelity 0.9227 0.9188 0.9709

Table 7.3: Three node line B. The optimal control state for this network is
\%HO)H D]®[1)®@[cos (7/3) |0)+sin (7/3) [1)]., while the result of the analysis
is (0.751210) +0.66 1)) ® (0.1599 |0) + 0.9871 |1)) ® (0.4936 |0) + 0.8697 [1)).

|b;) @ |in), project this result on |out) (out| and trace out the target sub-
space achieving p; for each b;. This operation has to be repeated at least
n times to guarantee that the populations, but not the internal phases, of
the solutions are found. Afterwards, one has to find the appropriate basis
|c;) as a linear combination of the proposed one |b;). Another approach is to
determine each component of the unitary operation and change to a basis in
which the unitary is expressed as a direct sum of the s; operations. This par-
ticular strategy highlights the relation between our algorithm and the field
of quantum process tomography.

Summarizing, the purely random approach analyzed with ML techniques
requires in principle more resources than the feedback algorithm. Never-
theless, the fact that ML techniques are independent of the basis guarantees
their success in any possible situation. Regarding the complete measurement
approach, recent studies suggest its scalability in the order of n? being n the
dimension of the Hilbert space [184, 185], or even a linear bound [186]. On
the other hand, the measurement protocol does not provide the solution in
a physical register, is the analysis of the unitary operation that provides the
knowledge of it. Moreover, each implementation of the controlled unitary
operation is associated with a measurement, while in the learning algorithm
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intermediate measurements are not required, because they are included as an
intrinsic part of the dynamics, in contrast to the tomography approach. Ad-
ditionally, when measuring, one needs to perform a search for the convenient
basis along the Hilbert space to retrieve the correct structure of U.

This raises an important question about the scalability of resources in the
feedback learning algorithm. We have observed that the number of episodes
for reaching the solution depends on the distance between both, the initial
control state and the solution. A direct consequence is that the protocol only
works when the initial control state is not ortogonal to the solution. This is
the most important drawback of the protocol because the only way to notice
the failure is to validate the result by measuring the outcome of the unitary
operation. In the simulations considered here we have employed |+)*" as the
initial control state, but this choice is not unique.

In some sense, our protocol can also be understood as a search algorithm,
therefore the comparison with Glover’s result [26] is inescapable. Regarding
the similarities, the conditional phase rotation in Grover’s algorithm requires
the use of an oracle, whose role is played by the combination of a controlled
unitary operation and the time delay terms in our formalism. On the con-
trary, the main difference between both protocols is that on Grover’s algo-
rithm the basis in which the states to optimize are described is known, while
in ours, the search is performed without previous knowledge of the basis.

7.5 Conclusions

In conclusion, we have developed a quantum learning algorithm in which the
implementation of time-delayed dynamics allows to avoid the intermediate
measurements required in traditional machine learning algorithms. We have
shown how the framework of multitask controlled unitary operations is flexi-
ble enough to address different problems such as efficient excitation transport
in networks. We leave for future works the analysis about the limits of the
algorithm in terms of complexity and scalability, and the design of a suit-
able experimental protocol. For the moment, our study represents the first
proof of principle for exploiting feedback induced effects in quantum learning
algorithms.
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Chapter 8

The Forbidden Quantum Adder

There is no quantum world.
There is only an abstract
quantum physical description.
It is wrong to think that the
task of physics is to find out
how nature is. Physics concerns
what we can say about nature...

Niels Bohr

In this chapter, we prove that there is no unitary protocol able to add
unknown quantum states belonging to different Hilbert spaces. This is an
inherent restriction of quantum physics that is related to the impossibility of
copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover,
we demonstrate that a quantum adder, in absence of an ancillary system, is
also forbidden for a known orthonormal basis. We also discuss the distinct
character of the forbidden quantum adder for quantum states and the al-
lowed quantum adder for density matrices. Finally, we propose a family of
approximate quantum adders whose gate sequence is optimized with the use
of genetic algorithms for their experimental implementation.

8.1 Introduction

Addition plays a central role in mathematics and physics, while adders are
ubiquitous devices in the fields of computation [174] and electronics [187].
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In this sense, usual sum operations can be realized by classical Turing ma-
chines [173] and also, with a suitable algorithm, by quantum Turing ma-
chines [2, 188]. Furthermore, the sum of known state vectors in the same
Hilbert space, i.e. quantum superposition, is at the core of quantum physics.
In fact, entanglement and the promised exponential speed-up of quantum
computing are based on such linear combinations. Here, we consider the
existence of a quantum adder, defined as a unitary operation mapping two
unknown quantum states encoded in different quantum systems onto their
sum codified in a single system. The surprising answer is that this quantum
adder is forbidden and it has the quantum cloner as a special case [49]. This
no-go result, as other prohibited operations [49, 189, 190, 191], is of funda-
mental nature and its implications should be further studied. Furthermore,
we consider a high-fidelity approximate quantum adder involving ancillary
systems.

Recently, a quantum superposer was introduced [192], an operation allow-
ing for an arbitrary superposition and different from the quantum adder to
avoid the global phase limitation, but also forbidden by quantum mechanics
on its most general form. Beyond the initial prohibition there is space for
approximate versions of both adders. In particular, proposals of the quan-
tum superposer [192] has been experimentally realized recently [193, 194].
Moreover, a third variant of the protocol was defined for creating a superpo-
sition of two unknown states from a given finite set in the presence of closed
timelike curves [195].

8.2 Definition of the Quantum Adder

Let |¥,),|¥,) € C? be two quantum states of a finite-dimensional Hilbert
space. The conjectured quantum adder, sketched in Fig. 8.1, would be a
mathematical operation defined as the unitary U : C¢ ® C¢ — C? @ C?, for
every pair of unknown |¥;) ® |¥,) and ancillary vector |x) € C4,

U1 [Ws) oc (W) + [Wa))|x), (8.1)

where the ancillary state |x) may depend on the input states. There are
several ways of proving the unphysicality of Eq. (8.1). The simplest one
is to note that the unobservable global phase on its l.h.s. could be dis-
tributed in infinite forms on its r.h.s., Ue|W )| Wy) = Uet|W)e?|Wy) o
(€1 W) + 92| Wy))|x), with ¢ = ¢1 + ¢, yielding an observable relative
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T1)———

U |U1) + [Ws)

W) ———

X)

Figure 8.1: Scheme of the conjectured quantum adder. The inputs
are two unknown quantum states, |¥;) and |Ws), while the outputs are pro-
portional to the sum, |¥;) 4 |¥s) with an ancillary state |x).

phase. When the ancillary state |x) does not depend on the input quantum
states, the (forbidden) quantum cloner becomes a particular case of this re-
stricted quantum adder. This follows from applying U to two equal state
vectors U|W)|W) = |¥)|x), since the inverse generates a quantum cloning
operation. Therefore, although the general case of the quantum adder is not
equivalent to a quantum cloner, it is still forbidden.

We adress now a different question, whether a quantum adder may exist
for a given orthonormal basis. Let us consider the action of the unitary
operator U onto a set of orthonormal vectors: U|0) |0) = |0) |Bo), U|0) |i) =
\%(|O>+|Z>) | B;) and Uli) |0) = \/Li(|0>—|—|z>) |B;), withi =1,...,d—1. Hence,
as U is a unitary matrix, it imposes some orthogonality conditions on the
final vectors, (By|B;) = (Bo|B;) = (Bi|B;) = 0 and (B;|B;) = (Bi| B;) = d:,
with 4,5 = 1,...,d — 1. The second subspace has dimension d, but these
constraints require the existence of at least 2d — 1 orthonormal vectors, which
is impossible. This argumentation proves that even in the case in which the
phase is fixed, the quantum adder cannot be obtained without the use of an
ancillary system.

Beyond the sum of quantum states in Eq. (8.1), we may also consider the
statistical addition of density matrices. Here, the input states are the tensor
product of any pair of density matrices o = p; ® py € B(C* ® C?9), while
the output state is the statistical sum p = %(Pl + p2). The Kraus operators
of the quantum channel realizing this adder are given by E; = \/Li(ld ® (i|)
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and F; = \%((]\ ®1y), with 1 <4, j < d. These operators straightforwardly

perform the sum, ie., E(o) = Y0_ EwoE} + S0 FyoFl = S(p1 + p2).
Moreover, properly modified Kraus operators allow us to extend the previous
result to any convex combination of input states. Therefore, the addition of
density operators is always possible.

Let us compare the adders for state vectors and density operators. By
writing the input states in Eq. (8.1) as density matrices, p = |[U1)(¥V| ®
| W) (Wsl, both adders yield

UpUT o< [Uq) (] 4 [T1)(Wa| + [Wo) (U] + |Wa) (Vs
E(p) = S(T)I] + s} (W) (82

By comparing the adders in Eq. (8.2), we can infer that the one in Eq. (8.1)
would require the knowledge of the sum coherences, which were supposed
unknown.

The self-consistent definition of the adder.

When proposing an approximate quantum adder we first have to make it self-
consistent with respect to the global phase variation, which does not affect
the experimental realization, but modifies the definition of the ideal output,
and therefore the fidelity function. The absence of global phase invariance
lies at the heart of the no-go and has to be avoided to make the quantum
adder realizable. There are two ways to fix this behaviour of the adding
machine. The first option is to relax the definition of the adder by inserting
an intermediate phase factor e*. Thus, instead of matching the output state
of the adder with 1; + %5, we match it with v, + €?® 1)y for a certain ¢,
which is the result shown in Fig 8.2 for the basis adder. The second option
is to restrict the domain of the quantum adder from the whole Hilbert space
to a self-consistent region and to fix the value of the relative phase such
that there is no phase ambiguity. The first approach would disable us to
know exactly the ideal state of reference after summation and, for certain
inputs, we wouldn’t be able to distinguish the outcome states |0) and |1).
We thus prefer the latter approach to evade the global phase problem without
changing the most natural definition of a quantum state adder, by restricting
our two input states to take the form

o= (g ). (5.3)

sin 91
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where 6; goes from 0 to /2. The ideal state of reference after addition, with
N as the normalization factor, is

1 (cos 0, + cos 0y ) (8.4)

|\Illd> = |w1>1n + ’¢2>in = N sin 01 + sin 02
Notice that by choosing this parametrization we are effectively selecting the
value of both the external and internal phases ¢ = 0.

8.3 Approximate Quantum Adders

8.3.1 Basis Adder

We propose now the use of an ancillary system |A), which will assure the
physicality and experimental feasibility of an approximate quantum adder
for arbitrary unknown quantum states, see Fig. 8.2. This particular adder,
Uy, computes the exact sum of the basis elements in qubit systems. More-
over, U, is extended by linearity to the whole Hilbert space, and implements
an approximate sum when the input states are superpositions of the basis
elements. The adder is given by the following expression in which |B;) are
orthonormal and |+) = \%(|0) + |1)),

Us|0)|
Up[1)]

0)[A) = [0}|B1),  Ub[0)[1)|A) = [+)|B), (8.5)
0)[A) = [+)|Bs),  Up|)[1)[A) = [1)|By).

To uniquely define our adder, we need to complete the action of U on the
computational bases when the ancillary qubit is in state |1). From all the
possible selections of the basis adder, we choose U in the following manner

U |000) = |000), U |010) = [014), U ]100) = [10+), U]110) = ]001),
U |001) = |110), U |011) = |01=), U[101) = [10=), U|111) = |111).
(8.6)

so that it can be decomposed as
1,2 2,3 1,2
U= pP&7 U((JN(%T UéHa)d U((JNC))T' (8.7)

with P27 = &2 ulkd vzl uld vl Here, UL . stands for
Controlled-NOT (CNOT) gate with the ith qubit to be the control and the
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Figure 8.2: Basis Adder. Fidelity of the proposed approximate quantum
adder as a function of the parameters of the input states |U;) = cos,|0) +
sin0;ei|1), where j = 1,2. Here, a) ¢1 = ¢ = 0, b) ¢y = ¢ = 7/4,
c) 1 = ¢o =7/2, and d) 0, = 0, = w/4. Note that the diagonal line of each
plot corresponds to the approximate quantum cloner that is related to our
restricted quantum adder. In this case, the fidelities are the lowest.

jth qubit to be the target, U%JOE denotes the Toffoli gate, with qubits ¢ and
j controlling the kth one, Ucpaq is the Controlled-Hadamard gate, and the
overbar symbol on the control qubit means the role of 0 and 1 levels is
exchanged in this qubit. The whole protocol of the basis adder U can be
depicted with the quantum circuit diagram (QCD) of Fig. 8.3.

|Wl)a‘n @ @ g @ X
¥2)y — [s—{x] 4 A
004 &5 o R(-DHR(D R (D] eSS 5 D v I

Figure 8.3: QCD of the basis adder. Here, X, S and R,(#) corre-
spond respectively to the Pauli X gate, the phase gate, and rotations of
0 in the a Pauli matrix. Furthermore, the Toffoli gate can be decomposed
into Hadamard, phase, CNOT, and 7 /8 gates [10].

By further observing QCD, in Fig. 8.3, we could eliminate the last CNOT

94



8.3. Approximate Quantum Adders

and X gates lying at the end without changing the output state, hence
preserving the performance of this adder and reducing the experimental error.
So far, we have achieved decomposing our basis adder U into 11 CNOTs and
23 single qubit rotations (one Hadamard gate counts as two rotations: a /2
rotation along the y-axis followed by a 7 rotation along the z-axis) which in
total add up to 34 gates.

Q Q O

Figure 8.4: Generalization of the basis adder. (a) For even dimension d,
tuples of B;; states are obtained by grouping the vector connecting vertices i
and ¢+1 with all the parallel vectors in the same direction. (b) The remaining
d tuples are obtained by grouping the monogon of each vertex with all the
vectors perpendicular to the line that connects the vertex with its opposite
one, in a given direction. (c) For odd dimension d, tuples of B;; states are
obtained by grouping the vector connecting vertices ¢ and ¢ + 1 with the
monogon of the opposite vertex and all the diagonals parallel to the vector
in the same direction. (d) The remaining d tuples are obtained with the
same procedure for the opposite direction but excluding the monogons of the
vertices, because they have been already grouped.

The basis adder can be generalized to act on qudits of dimension d. The
most simple expression consists in defining the adder U, superposing the
elements of the basis with a residual subspace exclusive of those particular
elements,

Uli) 15} [A) = li+ ) [Bij) - (8.8)
Here, |i + j) represents m (i) + 17)), and the ancillary state |A) has
iJ

the same dimension as the input states, which enables that (B,s|B;;) = daids;
is satisfied V 4,7 = 0, ...,d — 1. In order to reduce the resources and enhance
the fidelity we provide an alternative definition of the constituents of U in
which the number of residual states B;; is only 2d instead of d?, which allows
to replace the d dimensional ancillary state |A) with a qubit. This idea is
supported on the fact that not all the B;; need to be orthonormal for the
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unitarity conditions to be satisfied. The B;; can be combined in tuples of
states that are represented with a single one, therefore reducing the dimension
of the residual subspace. After analyzing this method for the low dimensional
cases d < 6, we provide a discussion about its veracity for any d.

The procedure is to count the number of tuples of B;; that do not need
to be orthonormal, and contain the whole set of the d* B;; states. This d?
would represent the total number of B;; if all of them were orthonormal.
The unitarity condition implies that a set of orthonormal states is mapped
into a set of orthonormal states, therefore |B,s) and |B;;) only need to be
orthonormal when any of the a, 8 coincides with any of the ¢, j. The reason
is that, (o + Bli + j) = 5 ((ali) + {alj) + (Bli) + (B1))-

Our argument is that the problem of finding the minimum number of
tuples can be encoded in the structure of regular convex polygons of d ver-
tices. Each vector in a given direction between vertices ¢ and j, encodes a B;;
element, while the opposite vector encodes the Bj; for ¢ # j. Additionally,
monogons in each vertex encode B;; for ¢« = j. Notice that the sum of the
vertex monogons d with twice the diagonals, d(d—3), and twice the sides, 2d,
equals d?, the total number of B;; if all were orthonormal. In the graphical
analogy, the rule for obtaining tuples of B;; states that do not need to be
orthonormal is to group the sides, diagonals or monogons that do not share
any vertex. More precisely, we provide a method that guarantees that the
number of tuples is 2d. For even d, each of the d tuples is obtained when
grouping the vector 7,7 + 1 with all the parallel diagonals and the vector in
the opposite side and equal direction. The remaining d tuples are obtained
when grouping the monogons in each vertex ¢ with the diagonals that are
perpendicular to the diagonal that connects the vertex ¢ with its opposite
vertex. For odd d, the d tuples are obtained when grouping the vector 7,7+ 1
with all the parallel diagonals and the monogon at the opposite vertex. The
remaining d tuples are obtained when grouping the same vector and diag-
onals in the opposite direction. See Fig. 8.4 for a scheme of the analogy
between B;; states and the regular convex polygons.

Therefore, a set of 2d |B;;) states is enough to satisfy the unitarity con-
ditions, implying that only an ancillary with dimension 2 is required. See,
as an example, all the tuples for d = 4,

{BOIJ B32}7 {B127 BO3}7 {B237 BlO}u {B307 B21}7
{B007 Bl3}7 {Blb 320}7 {3227 B31}a {B337 BOQ}' (89)
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8.3.2 Approximate Adders with Genetic Algorithms

With the goal of improving the basis adder, we have developed a program
using genetic algorithms to find the optimal protocols for the adding opera-
tion. The algorithm, which is a variant of a previous program, see Chapter
6, works due to the formalism derived to translate each quantum circuit di-
agram to a sequence of instructions, and the fidelity, to its analogous fitness
function.
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Figure 8.5: Fidelities of the most promising quantum adders. (a) The
basis adder, with an average value of 94.9%, and a minimum value of 85.4%.
(b) The complexity-reduced adder with an average fidelity of 90.0%, and
minimum fidelity of 79.2%. (c¢) The trivial adder given by the |+) state, with
an average theoretical fidelity of 90.2% and a minimum fidelity of 50%. (d)
The 31-gate approximate adder with an average theoretical fidelity of 95.4%,
and minimum fidelity of 81.2%.
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Each cycle in the algorithm starts with four p x 3 matrices, representing
four sequences of gates from a finite set of gates, where p stands for the
maximum number of gates allowed in the protocol which can be arbitrarily
chosen. Each row in the matrices specifies a quantum gate from the set .S,

S, = {RY(6), RY(9), RY(6). UtKon ) (8.10)

Y

i,j=1,23; 0 =7, w/2,w/4, —7 /4, —7 /2, —.

with 61 possibilities (Ugl’éz)T = 1). The initial population can be either ran-
domly or purposely chosen, depending on the convenience of introducing a
previous solution. After the initialization, the genetic algorithm hierarchi-
cally recombines the rows between different individuals, generating several
new-born sequences with the same number of rows. After a stage of ran-
dom mutations, all newly generated and the original input sequences will be
sorted according to their fidelity. Finally, the highest four will be selected
and kickstart the forthcoming cycle as the initial inputs. One can specify the
total number of generations and maximum number of gates in the fidelity or
circuit optimization. The more rows we allow for our protocol, the better it
can approximate a potential optimal adder U since the versatility for real-
izing an arbitrary unitary matrix gets improved. However, it will be harder
for the protocol to be carried out in a laboratory due to the increasing com-
plexity. Hence, we have to make a compromise and set a limit of p according
to physical conditions allowed in each particular lab.

Fidelity

The fidelity of the adder U is defined as F = Tr(|Wia) (Vial pout), fOr pout =
Trio(U [4h1) (11| @ [th) (1h2] @10) (0] UT), where the partial trace is taken over
the first two qubits. We have plotted the fidelity of the basis adder derived
above in Fig. 8.5.a. Regarding the experimental fidelity of the protocol,
our calculations are based on the recently reported gate errors for a su-
perconducting circuit architecture [84], which are about 1% for a two-qubit
Controlled-Phase gate and 0.1% for an arbitrary single-qubit gate. Recalling
that in this particular platform each Controlled-NOT gate can be realized by
1 Controlled-Phase and 2 Hadamard gates, if the average theoretical fidelity
is F,, then an estimation of the experimental fidelity of the adder is

F.., = F, x (0.999)"-t2Nexor 5 (( gg)Nevor, (8.11)
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Here, N, and Ncnor stand for the number of single-qubit gates and the
number of CNOT gates, respectively. After we take Eq. (8.11) into account,
the remaining experimental fidelity is about 80%, which is still high.

Adders found by the genetic algorithms.

By setting the maximum number of gates to 20, we have found a complexity-
reduced adder consisting of only two CNOTs having an average theoretical
fidelity of 90% and a minimum of 79.2%. See Fig. 8.5.b and Fig. 8.6. Al-
though its theoretical fidelity is lower than the one of the basis adder (94.9%),
its implementation fidelity is actually the highest one, about 87%, if imple-
mented in superconducting circuit platforms [84]. An interesting point to
highlight here is that this adder has nearly the same average fidelity as the
one given by a plus state, |[+), in the output of the adder, see Fig. 8.5.c
The difference is that the |+), which is trivial because it does not depend on
the inputs, has a lower minimal fidelity of 50% and an average theoretical
fidelity of 90.2%. Therefore, this trivial adder establishes the lower limit of
the average fidelity for the adder to be considered interesting in the region
we are confined into.

V1)in — Re(=3) 1 By(B) = Ry(§) | RCF) || Re(—F) A
V2)in Ry(—%) — Ry(m) A
|D>A Rw(;TH\J B You

Figure 8.6: Quantum circuit for the complexity reduced adder.

If we allow for 40 gates, the GA achieves an approximate adder with
an average theoretical fidelity above 95%, see Fig. 8.5.d and Fig. 8.7. This
adder contains overall 31 gates, 13 of which are two-qubit CNOT gates. The
expected experimental fidelity of this 31-gate adder is roughly the same as
the basis adder which is about 80%.

It should be noticed that this adder and the adder we found previously
with 10 gates shown in Fig. 8.3 are not commutative adders, i.e., the adding
machine M defined by them does not satisfy

M1, ¥2) = M(W2, 1) (8.12)
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Figure 8.7: Quantum circuit for the high fidelity adder.

for arbitrary input states 11 and 5. The main reason is that the GA does
not select the gate sequence according to the commutativity of the resulting
unitary, but according to the average fidelity of the adder. Another result to
highlight is the absence of a high-fidelity and universal quantum adder. The
only result obtained so far in this respect is a fixed quantum state, with an
overall fidelity of 50% and independent of the inputs, which is perpendicular
to the region in which the adder is defined.

8.4 Conclusions

We have defined the quantum adder operation and proved a no-go about
its existence in its most general form. This prohibition is of fundamental
character in quantum physics, deeply related but different to the no-cloning
theorem. Furthermore, we have shown that approximate versions of the
quantum adder allow for an imperfect reproduction of the idea behind the
adding mechanism. Lastly, we have studied how to simplify the implemen-
tation of the quantum adder by optimizing the gate sequence with the use
of genetic algorithms. In conclusion, the debate around the quantum adder
sheds light on a basic limitation of quantum protocols, while provides alter-
natives for avoiding the no-go.
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Chapter 9
Outlook

If you have never wept bitter
tears because a wonderful story
has come to an end and you
must take your leave of the
characters with whom you have
shared so many adventures,
whom you have loved and
admired, for whom you have
hoped and feared, and without
whose company life seems
empty and meaningless. If such
things have not been part of
your own experience, you
probably won’t understand
what Bastian did next.

Michael Ende

In this thesis, we have explored the possibility of bringing the complexity
of biological systems down to the world of controllable quantum experiments.
While we can argue that protocols described here are in the appropriate di-
rection according to our definition of Quantum Biomimetics, in this chapter,
we will focus in the goals that have not been accomplished. These moti-
vate the future steps, in the direction of increasing the number of biological
features or improving the way they emerge.

In particular, the issue of emergence may be considered as the main crit-
icism to the work presented in the first part about Quantum Artificial Life.
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Chapter 9. Outlook

The qubit-encoded individuals behave as puppets in the natural selection
scenario we have designed, in the sense that they require an external hand
for implementing each step in their evolution. Even though we assume that
the interaction with the system is mandatory in any quantum simulation ex-
periment, in the specific case of Artificial Life, it is desirable that the action is
minimal for being able to claim that life inspired features really emerge in the
system. Therefore, the continuation of this research line should be oriented
towards providing autonomy to the individuals by developing a quantum al-
gorithm where the life processes are the effect of a subtle combination of
a variety of dynamics, without a previously arranged plot or intermediate
measurements.

This idea produces the connection between Quantum Artificial Life and
the works of the second part about Mnemonic Quantum Systems. Our in-
tuition suggests that the inclusion of memory-like dynamics in the evolution
can have the effect of dressing the system with more autonomous character.

In this sense, equations with memory effects can be achieved when lim-
iting our effective model to a given subsystem. Therefore, these could be
implemented when simulating the complete unitary dynamics over the whole
system by incorporating the missing subspaces. But the exponential growth
of the Hilbert space dimension requires an immense cost in resources. That
is the reason why we have preferred to work with phenomenological equa-
tions, which can also be exploited as a source of memory and offer dynamical
regimes uncovered by the system-environment approach.

An interesting research line to follow in future works is the design of quan-
tum algorithms that are based on mnemonic equations. This would motivate
to study a clear characterization of different memory dynamics together with
the possibilities that each potential type offers in the development of quan-
tum protocols. This achievement could help at isolating the properties of
each type and, therefore, accelerate the improvement in efficiency for imple-
menting each mnemonic family.

Regarding the third part of this thesis, Intelligent Quantum Systems, we
would like to analyze each specific work separately, and mention possible
directions for extending or improving the obtained results.

The main criticism to the protocol of genetic algorithms in Chapter 6 is
that the optimization has to be done for each time in the evolution. The algo-
rithm may be improved with an alternative definition of the fitness function
consisting on the maximization of a normalized time integral of the fidelity.
The goal is to reward the digital protocols that simulate the desired dynamics
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in a given interval and not in a single point.

Regarding the feedback induced learning in Chapter 7, it would be con-
venient to study the analytic solutions of the time delayed equation for ob-
taining clear bounds regarding the scalability and complexity classes of the
problems to solve. Additionally, to find tasks that can be encoded in mul-
titask controlled unitary operations would be desirable for enhancing the
versatility of the algorithm.

Chapter 8 about quantum adders lacks of any detailed example of appli-
cations in which the quantum adder is necessary. Two suggestions for future
routes in this direction are the development of quantum neural networks and
the design of cryptographic protocols which could make the approximate
versions of the quantum adder useful.

Finally, as a general comment, we should always keep in mind that the
only possible adaptation of the theoretical ideas to experimental quantum
platforms is what makes the protocols valuable. Therefore, one of the most
important follow ups of the work in this thesis is its consolidation via the
experimental implementation of our quantum protocols.

In conclusion, we have created a set of tools for simulating bio-inspired
processes that bring new possibilities to the framework of quantum simula-
tion and quantum computation. The results presented here under the label
of Quantum Biomimetics can be the light guiding future designs and imple-
mentations in the recreation of biological processes in quantum technologies.
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Appendix A

Theorems

e Here we give the proof of theorem 1 in the paper.

Proof.

1) = Tr[U(p® p)U (0@ 1)]

n

= Tr[z sips;rﬂ ® :Eipex;].

1,j=1

When looking at the second subspace, mipex}, only the terms with i = j
are left in the diagonal, therefore only those are relevant for the trace. We
consider ¢ = j in the first subspace, sipsIG. The remaining is the product
between the diagonal terms of the density matrix p and the observable 6,
that is precisely.

Tr[pf)] = (6)

This shows that the mean value of 8 is effectively cloned in the first individual
by means of U. The proof for the second individual is obtained in a similar
way. O]

e Now we prove theorem 2 in the paper.
Proof.
(rer) = TiU(p®p)U'(r &) (A.1)

= Tr[z SiijT ® xipexjf].

,j=1
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The second subspace, xipx}T, will only contribute to the trace when it is
diagonal. Since 7 is antidiagonal the only effective combination of 7,j is
(t=1,j=n), (i =2,7 =n—1),... When applying this restriction to the
first subspace, SipS}L-T, the global expresion turns out to be Tr[p7], only if the
matrix elements of 7 are 0 or 1. We have thus shown how 7 is promoted into
the global state of the system.

O

Properties of the cloning operation

e We show here that the 7 operator is also transmitted when cloning in
any basis. When the unitary operation U is rotated with the matrix R it
propagates the information of the rotated matrix 7.

Tr[pr'] = Te[U'(p @ p) U (1 @ 7)] =

Tr[(RT @ RNU(R® 1)(p @ pe) (R @ 1)UT

(R® R)(R'TR® R'TR)| =

Tr[U(R® 1)(p® p.) (Rt ® 1)U (R ® R)(R'r @ Rir)] =
Tr[URpRIUT (1 @ 7)] = Te[UpU (1 @ 7)] = Tr[pr].

Tr[pr'] = Tr[pR'TR] = Tr[RpR'7] = Tr[p7].
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Proposition 1

In this section, an upper bound for the truncation error of the algorithm is
provided. In order to quantify the error, we use the trace norm of a matrix,
defined as the sum of the singular values of the matrix: ||o||; = >, 0;. The
following recursion relation holds,

lp(t) = pn@)]l1 < /0dsh(t,s)llé’—Illllp(t)—/Bn_l(t)lh

SzmécwW@»—mlwmh (B.1)

where p(t) is the ideal solution at time ¢, p,(t) is nth order truncation at time
t, h(t,s) <c, and y = ||€ — Z||, in which the superoperator norm is induced
[Ao]s

by the trace norm, i.e. [|A| = sup,ort. The truncation error can be thus

evaluated by induction, by considering the Oth order truncation error,

HM@—%@MSyAdNW£NMﬂH (B.2)

A bound on ||p(s)]|1 can be found by using a Gronwall’s inequality.

Theorem 3 (Gronwall’s inequality [196]). Let u be a continuous function
defined on J = [a, B] and let the function g(t,s) be continuous and nonnega-
tive on the triangle A : a < s <t < [ and nondecreasing in t for each s € J.
Let n(t) be a positive continuous and nondecreasing function fort € J. If

t

u(t) < n(t) +/ ds g(t, s)u(s), teJ, (B.3)

«
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then )
u(t) < n(t)elad st e (B.4)

One can prove from the Volterra equation that |p(t)]; < |lp(0)]:1 +
y [ dsh(t,s)||p(s)|. Theorem 3 implies that
ot} < evadorces), (B.5)

where we have set ||p(0)||; = 1. Here, we have assumed that H(t,s) > 0, to
satisfy the hypothesis on h(t, s) = f; dr H(r,s), in order to apply Theorem 3.
By plugging Eq. (B.5) into Eq. (B.2), we find that

t
() = po(t) 1 < v / ds h(t, s)er 5 oThen) < et _ 1 (B.6)
0

where in the second inequality, we have used that h(s,7) < h(t,7) for s < t,
allowing us to perform the integration. We can now prove by induction that

(cyt)’

o)) o)l < > 2L (B.7)

1=M+1

for any natural M. The case M = 0 is just the inequality found in Eq. (B.6).
Let us assume that Eq. (B.7) holds for M =n — 1. Then,

lp(@) = (Bl < 1/0/0 ds||p(s) = pn-1(s)]l1

t 00 ; ) ;
Z(CyS)l 3 (cyt)'
i=n 1=n-+1

which concludes the proof of Eq. (B.7).
In the following, we will prove that Y ;°, , z'/i! < e holds, provided
that M > (e + 1)x + log(1/e) — 1. Indeed, we have that

i $_i<@f M+1 - o Mﬂzem 1+ea:—(M+1) M+1
il T M +1) T M+1 M +1

i=M+1

< eterm(MHD < (B.9)

In the first inequality, we have used the Lagrange error formula for the Taylor
expansion of the exponential series. In the second inequality, we have used
the Stirling inequality n! > (%)n In the third inequality, we have used that
(1 + %)b < e Finally, in the last inequality of Eq. (9), we have used the
lower bound on M. By applying the last result to x = cyt, we finish the
proof of Proposition 1.
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Proposition 3

In Proposition 3, we estimate the error made when approximating the equa-
tion

atp(t):/o ds K(t,s)Lp(s) (B.10)

by the equation which corresponds to the semi-Markovian process,

plt) = [ dsH(e.5) 6= T) ). (B.11)

where H(t,s) = K(t,s)/A and &, = e**, with the same initial condition for
both equations. Let us denote by p;(t) and pa(t) the solutions to Egs. (B.10)
and (B.11), respectively. Considering the corresponding Volterra equations,
we can upper bound the distance between p;(t) and pa(t),

ln(®) = 2Ol = O%k@$<QM@—Ef§2m®01

:‘/Odsk;(t,s) (E(pl( ~ pols —% )

< / ds k(t, s)[| L]l p1(s) = p2(s)llx

2 2Ll
# A Tt hit st (B.12)

1

where we have used the definitions h(t,s) = fst dr H(r,s) and k(t,s) =

/. i dr K(7,s). In Eq. (B.12), we have used the triangle inequality and,
o ML

4! —

then, the Lagrange bound for the Taylor series truncation, i.e. > .~
% AIZI As in Proposition 1, we can bound ||p(s)||; by using the Grénwall’s
inequality from Theorem 3: [|pa(s)||; < elo THEDIETI with ||p(0)]|; = 1.

Now, we can bound the second term in Eq. (B.12), obtaining

lp1(t) = p2(B)]] <

t ML
ds k(t,s)||£ _ 4 MIEITET ( frasnies)ien-i _ 1Y
[ skt - ol + e = (e )
(B.13)
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We have used that h(s,7) < h(t,7), for s < ¢, and performed the integration.
The second term in Eq. (B.13) is positive and nondecreasing in time, so we
can apply the Gronwall’s inequality from Theorem 3,

XL :
0 — oo\l < 2EIE ( Js dsh(ts)llEx=T] _ 1) Jy dsk(t.s)|£]
”pl( ) p2( )Hl = 9 HE)\ _IH e €
)\||£H2€A”£|| t|Ex—T
SO (efIBTTIA ) et Ll B.14
_QHEA_IH/)‘( ) (B4

where we have set h(t, s) = k(t,s)/A and we have assumed k(t,s) < c.

Finally, let us consider two parameter regimes. For c||L|t < 1/e, the
1 €

cl£lie ) 12l

expression in Eq. (B.14) is bounded by &, provided that A < log <

AL|2eNEl eetles-TIA _ q .
setlell < €

2 1Ex = Z| /A =9

(&

2

(ANLI) (e llLlie) e

1 1—
log<—> cllLl|t) Fe<e,
STz €Il
(B.15)

where we have used in the first inequality that

z=ct||Ex—Z||/N < et (e’\HEH —1) /A< ct| L] MEN < (et L)) < e 2,

(B.16)
in order to apply the inequality (e* — 1)/z < eX/2¢¢ " =1 < /2 (0 < 2z <
e~/2), and the last inequality holds for ¢ < 1/2. For c||£|[t > 1/e, the

1+ef)e|| L[t

expression in Eq. (B.14) is bounded by ¢, provided that A < 67(4\5\\%

In fact, for this parameter choice, we have that \|L|| < e, which implies
1€y = || /A < (eMAI— 1) /X < e ||L]|. Hence, the relation

c — 2 L
L Gl WY (3 ) Ko

cetIEx =TI /312
2 1Ex = ZI /A B 2

< %5 <e (B.17)

holds. Here, we have used in the first inequality that (e*—1)/z < e?, applying
it to z = ct||Ex — Z|| /A, and the last inequality holds for ¢ < 1/2.
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Observable decomposition in sum of unitary
matrices

Any observable O can be decomposed as a sum of two unitary matrices U,
and Uy, as O = U, + Uy, with v > 0 and [|O]| < 1+~ [91]. The first step
is the diagonalization of O, O = V DV, and obtain the equations for a; and
b;, the eigenvalues of U, and U,, as a function of v and d;, the eigenvalues of

O, as follows,

The eigenvalues are decomposed into real and imaginary parts,

2 241 —d}+2d?*(2+1) — (2 —1)2
Re(ai) = dz#, Im(al) — \/ i + z<72;; ) (7 ) 7
dZ+~*—1 V—dE 22 (2 + 1) — (2 = 1)2
Re(b;) = —5—, Im(b;) = ! : ,
e(bi) 20 m(b;) 20
and the unitary matrices obtained,
(Uaw); = Viban(ba) Vaj. (B.19)

There is a restriction imposed by the fact that the imaginary parts of a
and b have to be real numbers, which translates into the condition
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Description of the Genetic Algorithm

In this section, we describe the Genetic Algorithm [154, 46] used to obtain the
decomposition of the local Trotter blocks [3, 9]. The sequence of quantum
gates is codified in a matrix representing in the protocol the genetic code
of an individual. This matrix contains as many columns (genes) as allowed
resources, and sufficient rows to determine the type of gate and the qubits
on which it acts. The next step is to engineer a fitness or evaluation function
which maps every individual into a real number. This allows to classify
the individuals with respect to an adequate criterion for the optimization
purposes. In our case, the fitness function corresponds to the fidelity with
respect to the ideal block dynamics. Finally, each cycle of the algorithm
consists of three stages: breeding, mutation, and natural selection.

In the breeding stage, a new generation of individuals is obtained by
combining the genetic code of the predecessors, which provides the genetic
code of the offspring. We have used a hierarchical combination method, which
allows the number of broods of each individual to depend on its fidelity. In
particular, for an initial population of 4 individuals sorted by fidelity, our
algorithm creates an offspring of 9, 6 of which acquire genetic material of the
first precursor, 5 of the second, 4 of the third, and 3 of the fourth. Notice
that each newborn individual is produced with the genetic information of
two predecessors, as it can be seen from the fact that adding the numbers of
each progeny equals two times the number of newborn individuals. Notice
that this is not the most general situation, since we could have considered
individuals as a combination of more predecessors. Additionally, the amount
of genes each precursor provides, in this case the number of matrix columns,
also depends on the hierarchy induced by fidelity.
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In the mutation stage, every individual is allowed to mutate by randomly
modifying any sequence of genetic material, with equal probability for all
individuals. This probability settles the threshold to overcome for a random
number for a mutation event to occur, case in which another set of random
numbers provides the new genes to insert in the genetic material.

In the last stage of the cycle, old and new generations of individuals
are combined in the same population group. Afterwards, they are sorted
depending on their fidelity, and those which show the highest fidelity are
selected as the initial population of the forthcoming cycle.

We have observed that it is convenient to combine numerical trials with
high and low mutation rates to enhance the breeding or the mutation stages
depending on the intermediate results.

Number of Architectures

We derive here the formula P = (¢* — q)"n! for the number of architectures
in terms of the number of ancillary qubits ¢ and the number of imperfect
gates n. We impose the condition of applying each two-qubit gate once and
only once, and that the gates are asymmetric, so applying it to qubits (4, j) is
different to apply it to qubits (j,7). Therefore, one of the ¢ qubits is selected
as the control, and one of the remaining ¢ — 1 as the target. This process is
repeated for each of the n gates, so we obtain (q(¢—1))™ possibilities. Finally,
the n gates may be applied in any possible order, so there are n! re-orderings.
Therefore, by combining both results, the number of total architectures turns
into n! (¢*> — q)™

Errors in architectures building the CNOT gate

We compare the mean error of the integrated CNOT gate obtained with GA
over many realizations of imperfect gates with the average of the highest
fidelity imperfect CNOT gate involved in the architecture. For this purpose,
we take a sampling of 1000 different experiments, and we average the error
of the best gate. We estimate the error of the integrated CNOT and obtain
the percentage of improvement in the error. These results are summarized
in Table C.1. As it is shown, the probability to have a high-fidelity gate is
increased when the number of gates is aucmented. Accordingly, there are
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more possible architectures that minimize the error in the integrated CNOT.
For the case of ¢ = 5 and n = 7, we obtain similar errors to the ones for ¢ = 4.
This could well be because the number of ancillary qubits is of the same order
of the involved gates, and then no measurable improvement is expected since
there is no cancellation of gate errors. Nevertheless, the optimal relation
between number qubits and involved gates is still an open question.

Number of qubtis and gates (¢,n) | (4,3) | (4,5) | (4,7) | (5,7)
Error of best gate 0.1271 | 0.1205 | 0.1150 | 0.1150
Error of architecture 0.1771 | 0.0988 | 0.0807 | 0.0810
Approximate improvement -39% | 18% 30% 30%

Table C.1: Overall CNOTSs errors. Average errors of integrated CNOTs
and highest fidelity CNOTSs for the protocols involving ¢ qubits and n gates.
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