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Jon Asier Bárcena Petisco

Supervisor:

Luis Mart́ınez Fernández

Josu Sangroniz Gómez
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Introduction

0.1 Content of the work

In this work we study an especific branch of Graph Theory: connectivity. The idea

is that someone who is not familiar with Graph Theory learns enough of it in order to

understand cutting edge results. Nonetheless, it is assumed that the reader is comfortable

with inductive and Reductio ad Absurdum reasonings.

The notes are organized in three chapters:

In the first chapter, the reader is introduced to the basic tools of Graph Theory. In

addition, we explain the notation that we are going to use throughout the notes. Since in

this chapter there are several definitions not used until almost the end of the notes, the

majority of the defined words have been included in the index. Anything in this chapter

(except probably the line graph) is usually explained in any basic course on Graph Theory.

In fact, the chapter has been written in order to make the notes self-contained.

In the second chapter, classical notions of connectivity are introduced. All the notions

in this chapter are covered in any thematic course.

In the third chapter we treat cutting-edge results. Firstly, we find spanning bipartite

subgraphs in any sufficiently well-connected graph. Then, we find that the same result is

false for directed graphs. Finally, we present an application to a branch of the theory of

connectivity: proper connectivity.

Throughout the notes we use the perspective of pure graph theory. This mainly means

two things. On the one hand, we do not care what the vertices and edges are, that is, we

give them generic names like v, u,w... In fact, we are interested in properties that do not

change under isomorphism. On the other hand, the proofs are not necessarily construc-

tive. We may prove that a graph might have a subgraph with an especific property, but

v



vi 0.2. Motivation for doing this work

we may not show an algorithm to get it. The reason for doing this is that it simplifies

the proofs. Of course, by tracking back the lemmas used in the proofs, the reader might

get a constructive algorithm, probably not as efficient as possible. Algorithm Design and

Algorithm Analysis goes beyond the objective of this work.

0.2 Motivation for doing this work

I came up with the idea of doing my Bachellor’s Thesis about connectivity in the

summer school that was held in the Eötvös Loránd University in Budapest in June, 2014.

There, I met a PhD student who told me she was reading [2]. So, I decided to read it

too and try to make some original apportations. Since the results I got were marginal,

I decided to present them in form of a Bachellor’s Thesis. I proposed myself that the

reader of these notes understands what I have proposed, and some results of [2], in the

sense that the reader understands how to prove it. Later on, I asked Luis Mart́ınez and

Josu Sangróniz to be my supervisors and they agreed.

0.3 Personal work and acknowledgments

As a general rule, I write at the beginning of each chapter or section the used sources of

external information. For the majority of the short proofs, I usually read them, thought

about them, and waited some days to write them. In particular, I have homogenized the

notation, since different sources use different notation. I also split the proofs in several

lemmas whenever possible, which makes the majority of the proofs in the notes short.

In addition, I explain in detail the proof of Lemma 2.21 given in [5], where it appears

summarized in 6 lines because the author intended to give a short proof. This proof has

ended up being the longest proof of the whole notes. Moreover, I came up with the idea

of stating and proving Theorem 3.4 before I was told that it had already been proved

by Thomassen in [8]. I have written both proofs so that the reader has an example of

how constructive proofs are not necessarily better. As far as I am concerned section 3.2,

is an original piece of work, that is, it has not been published anywhere. Finally, the

application in Section 3.3 is also a (minor) contribution.

I want to acknowledge Josu Sangroniz and Luis Mart́ınez for their many corrections

and suggestions. In particular, Josu Sangroniz suggested the idea of doing the notes only
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about simple graphs, which simplifies everything without losing the core of the proofs.

He also suggested me Remark 1.17, which I think is an important remark because it

makes some ideas more natural. I also want to acknowledge the UFI of Mathematics

and Applications of the University of Basque Country for financial support to attend the

Eötvös Loránd University summer school.

0.4 Notation

In general, we use v, u,w, x, y, z, vi, ui, . . . for vertices. Moreover, V is the vertex set,

and U,W,X,Y,Z some subsets. Normally, the order given is maintained, giving priority

to forcing the letter for the set and its elements to be the same one. S, Si and T are used

for edge sets, and e, f for edges. Moreover, P , Q and R are used for paths. In order to

use a fixed number, k is the most frequently used letter, followed by i and j which are

preferably used for indexing. This is because n and m are used to indicate the number of

vertices and edges of a graph. Any additional notation is explained throughout the notes.



viii 0.4. Notation



Chapter 1

Basic concepts

In this chapter we explain some basic concepts of Graph Theory. This chapter is divided

into four sections: basic definitions, connectedness, some families of graphs and the line

graph. The whole chapter is mainly based on Balakrishnan’s and Ranganathan’s book

[1, Chapters 1 and 2] adapting the definitions. In particular, they define the notions for

multigraphs, and here they are adapted for simple graphs for simplification. The beauty

of the proofs remains intact.

1.1 Basic definitions

Let us first define what a graph is:

Definition 1.1. A graph is an ordered duple G = (V (G),E(G)), where V (G) is a

nonempty finite set and E(G) is a family of subsets of two elements of V (G). Ele-

ments of V (G) are called vertices (or nodes or points) of G, and elements of E(G) are

called edges (or lines) of G. Finally, V (G) and E(G) are the vertex set and edge set of

G, respectively.

It should be remarked that simple graph is a more correct name for what we have

defined as a graph. In fact, the term graph is a more general word which includes many

generalizations and variations. But, when the context is clear, graph is often used to refer

to simple graphs.

1



2 1.1. Basic definitions

v1

v2

v3

Figure 1.1: Diagrammatic representation of G.

One such generalization is the family of multigraphs . In a multigraph, E(G) is an

arbitrary set disjoint from V (G) and there is an incidence function IG which matches

each edge to a pair of vertices. The generalization to multigraphs of the concepts in these

notes is straight so, in order to simplify notation, we are going to present it for simple

graphs.

As for notation, we usually omit the curly brackets and the comma when we are denoting

an edge, that is, the edge {v, u} is usually denoted by vu (notice that with this notion

uv = vu).

Example 1.2. If V (G) = {v1, v2, v3}, E(G) = {v1v2, v2v3}, then G = (V,E) is a graph (see

Figure 1.1).

Usually, graphs are represented by diagrams in the plane. In each diagram, each vertex

is represented by a point, with distinct vertices being represented as distinct points. Each

edge is a simple Jordan arc joining two vertices. Two edges may intersect at a point which

is not a vertex. Moreover, given a diagram with the name of the vertices written on it,

we can easily get the vertex set and the edge set.

It is important to know when two graphs are “the same”, that is, when we have only

changed the names of the vertices. The criterion is the existance of a pair of mutually

inverse functions that preserve connections.∗

Definition 1.3. Let G = (V (G),E(G)) and H = (V (H),E(H)) be two graphs. A graph

isomorphism from G to H is a bijective function ϕ ∶ V (G) → V (H) with the property

that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H).

∗ Notice that it is the same criterion as in group isomorphisms or homeomorphisms, asking in those

situations to preserve the operation or the open sets.
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Now we introduce some general terminology of edges and vertices:

Definition 1.4. If e = vu is an edge, then the vertices v and u are called the end vertices

or ends of e. Each edge is said to join its ends; in this case, we say that e is incident

with each one of its ends. A vertex v is neighbour of u in G, if vu is an edge of G. The

set of all neighbours of v is called its (open) neighbourhood, denoted as N(v). The set

N[v] = N(v)∪{v} is its closed neighbourhood. Vertices v and u are adjacent to each other

when there is an edge of G with v and u as its ends. A vertex without adjacent vertices

is called an isolated point . Two distinct edges e and f are said to be adjacent when they

have a common end vertex.

Now we introduce some notation useful to denote the edges between especific vertex

sets.

Definition 1.5. Let G be a graph and U , W proper disjoint subsets of V . Then, [U,W ]

denotes the set of all edges of G that have one end in U and the other in W . Moreover,

if U is a subset of some vertex set V , U denotes V −U . When we write throughout these

notes [U,U], we assume that U is a proper nonempty subset of V .

Now we introduce another family of graphs, which is used to allow going from v to u,

but not necessarily from u to v. Just imagine streets in a modern city: they are usually

one way. This graph can also be used to analyze information of social situations. For

example, the fact that Alice can ask Bob a favour does not necessarily mean that Bob

can ask Alice a favour. It could be the case, for example, that Alice is Bob’s boss.

Definition 1.6. A directed graph, also called a digraph, D has the same structure as a

graph, but E(D) is a set of duples of distinct elements of V (D). Each element of E(D)

is called an (oriented) edge or an arrow. Each arrow (v, u) is usually denoted by vu.

If v, u ∈ V (D) and e = vu, v is called the tail of e, and u is called the head of e. The

arrow e is said to join v with u, and v and u are called the ends of e. Its diagrammatic

representation is made with arrows. With each digraph D, we can associate a graph G

(or G(D)) on the same vertex set as follows: corresponding to each arrow of D, there is

an edge of G with the same ends.� This graph G is called the underlying graph of the

digraph D. It is unique up to isomorphism. In addition, if G is the underlying graph of

a digraph D, D is called an orientation of G.

�Its underlying graph is usually a multigraph.
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There are many notions about graphs that can be extended to digraphs in a unique

logical way (like the notion of isomorphism). Unless otherwise specified throughout these

notes, we assume that extensions exists for digraphs. For example, directed multigraphs

exist, but we are not using them in these notes.

Now we define some parameters of a graph:

Definition 1.7. Let G be a graph and v ∈ V . The number of edges incident with v in

G is called the degree (or valency) of the vertex v in G and is denoted by dG(v) or d(v).

The minimum (respectively, maximum) degree of the vertices of a graph G is denoted

by δ(G) or δ (respectively, by ∆(G) or ∆). The number of vertices, called the order , is

denoted by n(G) or n, and the number of edges, called size, by m(G) or m.

Finally, we define the idea of substructure in a graph:

Definition 1.8. A graph H is called a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G).

If H is a subgraph of G, then G is called an overgraph of H. A subgraph H of G is a

spanning subgraph of G if V (H) = V (G). If U ⊂ V , the subgraph of G induced by U ,

namely G[U], is the graph whose vertex set is U and whose edge set is formed by the

edges of G which join vertices in U . Similarly, if S is a set of edges the subgraph of G

induced by S, denoted by G[S], is the subgraph (U,S), where U is the set of the end

vertices of the edges of S. If U ⊂ V , we denote G[V −U] by G−U . In addition, if S ⊂ E,

we denote the graph (V,E−S) by G−S. Finally, if v is a vertex or e is an edge we denote

G − {v} by G − v and G − {e} by G − e.

Remark 1.9. Even if U ⊆ V (G) and S ⊆ E(G), (U,S) may not be a graph, so in particular

it may not be a subgraph.

1.2 Walks and connectedness

In this section we explain the basic notions of walks in a graph and connectedness

between vertices. In addition, we prove a useful fact concerning parity.

Definition 1.10. A walk in a graph G is a sequence W = v0v1v2 . . . vn of vertices such that

vivi+1 ∈ E for i = 0, . . . , n−1. We say that the walk uses the edge vivi+1. The walk is closed

if v0 = vn and is open otherwise. The inverse walk of W is the walk W −1 = vnvn−1 . . . v0. A
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walk is called a path if all the vertices are distinct. A cycle is a closed walk in which only

the first and last vertices are equal. The length of a walk is the number of vertices minus

1.� It is denoted by l(W ). A walk of length 0 consists just of a single vertex. An odd/even

walk is a walk of odd/even length. If we have two walks W1 = v0 . . . vn and W2 = u0 . . . um,

we can define the union of W1 and W2 if vn = u0, getting the walk v0 . . . vnu1 . . . um. It

is denoted by W1W2. It can also be denoted by v0 . . . vnW2 or W1u0 . . . um, as is usually

done in walks of length 1.§ Moreover, W1 and W2 are internally disjoint if vi = uj implies

i = 0 or i = n and j = 0 or j =m. Finally, W1 and W2 are edge disjoint if each edge is used

by at most one walk.

Remark 1.11. Two internally disjoint walks are edge disjoint, but the converseis not

necessarily true.

Remark 1.12. In a digraph, a cycle can consists just of two vertices For instance, C2 =

({v, u},{vu, uv}) (see Figure 1.2). In a graph, we do not have this possibility.

Lemma 1.13. Let G be a graph. G has an odd cycle if and only if it has an odd closed

walk.

Proof. Necessity follows from their definitions. As for sufficiency, we use induction on the

lenght of the walk. The case k = 3 is trivial. If we have v0v1v2v0, necessarily, v0 ≠ v1,

v1 ≠ v2 and v2 ≠ v0, so the walk is an odd cycle. Let us consider the closed walk v0v1 . . . vk,

being k ≥ 5 odd. If it is not a cycle, it is because there are some vertices vi = vj, with

0 ≤ i < j < n. If i and j have the same parity, then the subsequence v0 . . . vivj+1 . . . vk is an

odd closed walk of smaller order. Otherwise, the subsequence vivi+1 . . . vj−1vj is an odd

closed walk of smaller order. In both cases we can apply the inductive hypothesis, and

hence G has an odd cycle.

Using induction in a similar way, the following proposition can be proved:

Proposition 1.14. Let G be a graph and v, u ∈ V . There is a path in G from v to u if

and only if there is a walk from v to u.

�The reason of this formula is that represents the number of edges, counting repetitions, that must be

used for the walk in the graph.
§It is an interesting remark that the vertices of a graph with walks as arrows form a category, though

it is not going to be used in these notes.
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Figure 1.2: C2

Using the concept of walk, we can define what we understand by being connected:

Definition 1.15. Let G be a graph. Two vertices v and u of G are said to be connected

if there is a walk from v to u in G. It is clearly an equivalence relationship on V (G). We

can denote the equivalence class by C[v] if we want to emphasize that it is the equivalence

class of an especific vertex. Let V1, . . . , Vk be the equivalence classes. Any of the subgraphs

G[Vi] is called a (connected) component of G. If G has a single component it is connected ;

otherwise, it is disconnected.

Remark 1.16. There is no edge between distinct connected components since any edge

has both ends in the same component.

Remark 1.17. Proposition 1.14 is the reason why in the majority of the books the word

path is used instead of walk in order to determine whether two vertices are connected.

The point is that it is much more intuitive the idea of walk, and it makes it easier to prove

transitivity. Moreover, conceptually, it makes more sense to talk about walks, because we

want to reflect the idea that we can reach v from u, having much less importance how we

can reach it. This is more clear in a more general context than simple graphs. If Alice

wants to ask her boss Bob a favour, she probably does not care if she has to talk with her

supervisor Charles more than once as long as she gets Bob’s help.

Remark 1.18. For digraphs, we say that a vertex v is reachable from u if there is a walk

from u to v. In the literature the word “connected” often means to be connected in the

underlying graph. If we mean that each vertex is reachable from any other we should

use the word “diconnected” or “strongly-connected”. Again, it is clearly an equivalence

relation, and we should use the word “dicomponent”. Nonetheless, throughout the notes

we use these word “connected” and “component”, as we are mainly interested in the

strong connectedness.

1.3 Some families of graphs

In this section we present some important families of graphs. We insist on bipartite

graphs as they play an important role in Chapter 3.
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(a) C5 (b) K5

Figure 1.3: Special graphs

Definition 1.19. A graph which consists of a cycle of length n is denoted Cn.

Remark 1.20. In the literature, Pi is used to denote a graph which consists on a path of

length i and also to denote the i-th path in a sequence of paths. In these notes, we are

going to use it only with the second meaning. (In the literature you can usually derive

the meaning from context.)

Definition 1.21. A graph G is said to be complete if every pair of distinct vertices of G

is adjacent in G. The complete graph of order n is denoted Kn.

In Figure 1.3 we have the diagrammatic representation of C5 and K5.

Definition 1.22. A graph K1 = ({v},∅) is said to be the trivial graph or the point graph

or, when we see K1 as a subgraph of some graph G, a point.

Note that these graphs are unique up to isomorphisms.

Definition 1.23. A graph is bipartite if its vertex set can be partitioned into two

nonempty subsets U and W such that each edge of G has one end in U and the other

in W . Any such pair (U,W ) is called a bipartition of G. A graph G with a bipartition

(U,W ) is denoted by G(U,W ). A bipartite graph G(U,W ) is complete if uw ∈ E for all

u ∈ U , w ∈W . If G(U,W ) is complete with ∣U ∣ = p and ∣W ∣ = q, then G(U,W ) is denoted

by Kp,q. Finally, if G is a graph and U,W are disjoint subsets of vertices, G[U,W ] denotes

the bipartite subgraph (U ∪W, [U,W ]).

Bipartite graphs have an important characterization:

Theorem 1.24. A graph G is bipartite if and only if it contains no odd cycle.

Proof. Let us assume it contains some odd cycle v0v1 . . . vn, vn = v0. Let us consider some

partition (U,W ). We can assume v0 ∈ U . So, since it is a bipartition we must have v1 ∈W .
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Similarly, v2 should be U and in general, U contains the vertices vi with even subindex

and W those with odd subindex. But vn = v0 is in U and n is odd. So, (U,W ) is not a

bipartition.

We now assume that G is connected and contains no odd cycle. Let us pick some

u ∈ V . Let U be the set of the vertices such that there is an even path from u to those

vertices, and let W be the set of the vertices such that there is an odd path from u to

those vertices. As G is connected, every vertex must be in one of the sets. If a v ∈ V is in

U and W , then the union of the odd walk and the inverse of the even walk from u to v is

an odd closed walk in G. Hence, by Lemma 1.13, it contains an odd cycle, contradicting

our hypothesis. So, (U,W ) is a partition. If two vertices in U or in W are connected, we

find similarly an odd closed walk, so (U,W ) is a bipartition.

Finally, let us assume that G contains no odd cycle and has G[V1], . . . ,G[Vk] as its

connected components. Since each G[Vi] is a connected graph, applying what we have

proved in the previous paragraph, we get the bipartitions (Ui,Wi) for 1 ≤ i ≤ k. Then,

the duple (∪ki=1Ui,∪
k
i=1Wi) is a bipartition of the whole graph. It is a partition because

each vertex is in only one Vi, so it is either in Ui or in Wi and only in one of them. It is

a bipartition because an edge has an end in Ui if and only if it has the other end in Wi,

which follows from Remark 1.16.

Remark 1.25. We have proved that given any two connected vertices of a bipartite graph,

all walks joining them have the same parity.

Remark 1.26. For directed graphs we can only ensure that if D contains an odd cycle, then

D is not bipartite. We show in the Figure 1.4 that the converse is not true. Nonetheless,

we do have a characterization: a digraph D is bipartite if and only if its underlying graph

G is bipartite.

Figure 1.4: A non-bipartite digraph without a cycle
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(a) K2,3
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uy

uz

vx

vy

vz

(b) L(K2,3)

Figure 1.5: The line graph of K2,3

1.4 The line graph

The line graph is a natural construction which creates short cuts to proving facts for

edges using facts that we already know for vertices. In fact, this construction will be

needed to prove Theorem 3.4.

Definition 1.27. Let G be a graph. The line graph L(G) is the graph which has E(G)

as its vertex set and whose edge set is

{ef ∶ e, f ∈ E(G) and they are adjacent}.

In order to avoid confusion, we will name to a vertex of L(G) an edge, and to an edge of

L(G) a link.

In Figure 1.5 the diagram of L(K2,3) is shown.

Other examples are that L(Cn) = Cn, L(K1,3) = C3, L(Kn) =Kn(n−1)/2. In particular,

the first two example show that two graphs may have isomorphic line graphs without

being isomorphic.

One important property of the line graph is that it preserves connectedness:

Proposition 1.28. Let G be a graph and L(G) its line graph. Let v, u ∈ V (G) vertices

that are not isolated points. Then, the following conditions are equivalent:

(i) v and u are connected in G

(ii) Any pair of edges of the form vx,yu are connected in L(G)

(iii) A pair of edges of the form vx,yu are connected in L(G).
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Proof. Let us suppose that v and u are connected in G by the walk v0, . . . vn. Any pair of

edges of the form vx, yu are connected in L(G). For instance, if x ≠ v1 and y ≠ vn−1 we

have the following walk:

(vx)(v0v1)(v1v2) . . . (vn−1vn)(yu).

Moreover, since v and u are not isolated points, there are some edges vx, yu, so 2 implies

3. Finally, let us suppose that some vx and yu are connected in L(G). Let us suppose that

some edge wz of that walk is in E(G[C[v]]) (the set of edges of the connected component

of v). Then, the following edge is either incident to w or to z, so it is in E(G[C[v]]).

Since vx ∈ E(G[C[v]]), the last edge, yu, is in E(G[C[v]]). So, u ∈ C[v], which means

that v and u are connected.

Finally, here come some facts about line graphs. The proofs are interesting and they

are going to be used later on.

Proposition 1.29. Let G,H be graphs and e, f ∈ E(G)∩E(H). Then, they are neighbours

in L(G) if and only if they are neighbours in L(H).

Proof. By definition, e and f are sets of two elements of V (G) ∩ V (H). Moreover, the

criterion to be neighbours in L(G) or L(H) is the same: if and only if they share an

element.

Proposition 1.30. Let G be a graph and S ⊂ E. Then L(G[S]) = L(G)[S].

Proof. First, we must realize that both graphs have the same vertex set. The one in the

left is the edge set of G[S], which is S by definition, and the one in the right is S by

definition. As for the edge set, the one in the left, by Proposition 1.29, has the links in

L(G) with both ends in S. Moreover, the one in the right, by defintion, has as edge set

the links in L(G) whose both ends are in S. So, L(G[S]) = L(G)[S].

Remark 1.31. Let D be a digraph. It has to be clarified that in its line digraph L(D)

there is an arrow from e = vu to f = wx if and only if u = w.



Chapter 2

Classical notions of connectivity

In Chapter 1 we have seen what a connected graph is. Nonetheless, not all the graphs

are equally “well connected”. There is a clear difference between C10 and K10, since C10

becomes disconnected when (any) two edges are removed, whereas K10 remains connected

even without any 8 edges. In this chapter, we analyse how to measure how well connected

a graph is, showing some equivalent ways of describing it. In order to do so, elementary

proofs have been prioritized.

2.1 Measuring connectivity

This section is an adaptation of [1, Chapter 3].

Definition 2.1. A subset U of the vertex set V of a connected graph G is a vertex cut

of G if G−U is disconnected or K1. A vertex v is a cut vertex of G if {v} is a vertex cut

of G.

The reason for considering K1 as a special case is to have the order relation given

by Theorem 2.16. This definition can be unified if we consider the trivial graph not

connected, so, henceforth we consider K1 disconnected. Normally, it would not be consid-

ered it because the majority of situations in Graph Theory (trees, number of connected

components, path graphs, etc.) ask for this graph to be connected.

Definition 2.2. Let G be a nontrivial connected graph and S ⊂ E. S is an edge cut of G

if G − S is disconnected. An edge e is a cut edge (or a bridge edge) of G if {e} is an edge

11
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cut of G.

Remark 2.3. Here there are some straight properties:

(i) If G is a graph, any subset of E of the form [U,U] is an edge cut. The converse is

not true (in C3 = (V,E), E is an edge cut but does not have that form).

(ii) The removal of a cut edge splits the graph into two connected components. This

fact is not necessarily true for a cut vertex. One such example is the star graph

Kk,1, which has some vertex v connected to other k vertices. When v is removed, k

connected components are obtained.

(iii) If U is a proper nonempty subset of V , then any walk from some vertex u ∈ U to

some other vertex v ∈ U uses at least an edge of [U,U].

Next we see how a minimal edge cut looks like. We say minimal in the sense that it

does not contain a proper edge cut.

Proposition 2.4. Let G be a connected graph and S ⊂ E a minimal edge-cut and H =

G − S. Then, there is a proper non-empty subset U ⊂ V such that H consists of the

components H[U] and H [U] and such that [U,U] = S.

Proof. If H had 3 or more connected components, for any e ∈ S, S −{e} would be an edge

cut since adding an edge can increase the number of connected components at most by

1, so S would not be minimal. As H is disconnected, there is some proper subset U ⊂ V

such that H consists of the components H [U] and H [U]. If one edge e of S had both

ends in U or in U , then S would not be a minimal edge cut as S − {e} would be an edge

cut too. So, S ⊂ [U,U]. The other inclusion is clear because U and U are disconnected

in H. Indeed, if some edge of [U,U] did not belong to S, then H[U] and H[U] would be

connected.

Remark 2.5. The converse of the previous proposition is not true. Not every edge cut

of the form [U,U] is minimal and it can split G in more than two components. For

instance, we can consider K3,1 = ({v1, v2, v3, u},{v1u, v2u, v3u}), and U = {u}. Then

[U,U] = {v1u, v2u, v3u} is not a minimal edge cut because removing one of those edges

suffices to disconnect the graph. Moreover, G − [U,U] has four connected components

(the four points).
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The notions of cut vertex and cut edge have the next characterizations:

Proposition 2.6. A vertex v of a connected graph G with at least three vertices is a cut

vertex of G if and only if there exist vertices u,w ∈ G distinct from v such that any walk

from u to w has v as an internal vertex.

Proof. If v is a cut vertex, its removal produces at least two connected components. Pick

u and w from different connected components. If there is in G some walk from u to w

that does not use v, they are in the same component; so any walk from u to w has v as

an internal vertex.

As for sufficiency, if v is not a cut vertex, the graph G is still connected when it is

deleted. So, for any u,w ∈ G there is a walk from u to w in which v is not an internal

vertex (the path in G − v).

We have a similar proposition for edges, whose proof is analogous.

Proposition 2.7. An edge e = vu is a cut edge of a connected graph G if and only if there

exist vertices x and y such that e belongs to every walk from x to y.

Next, there is a second characterization of a cut edge that is useful to determine when

e is not a cut edge.

Proposition 2.8. An edge e = vu of a connected graph G is a cut edge if and only if e

belongs to no cycle of G.

Proof. If e is not a cut edge of a connected graph G, then v and u are connected in G− e

by some path. The union of that path and e creates a cycle.

If e is in cycle, there is some path from v to u which does not use e. So, for any vertices

x, y ∈ G there is some walk from x to y which does not use e (substitute e by the path if

needed), and hence they are connected even if e is removed. So e is not a cut edge.

Once these equivalences are clear, we define the connectivity of a graph:
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Definition 2.9. For a nontrivial, non-complete connected graph G the minimum k for

which there exists a k-vertex cut is called the vertex connectivity or simply the connectivity

of G, denoted by κ(G) or κ. The connectivity of a trivial or disconnected graph is taken

to be 0. Any vertex cut of cardinal κ(G) is called a minumum vertex cut.

Example 2.10. All the cycles Cn ∶ v0 . . . vn−1v0 have connectivity 2, n ≥ 3. If n = 3, we

have κ(C3) = κ(K3) = 2. If n ≥ 4, by removing v0 and v2 we get a disconnected graph,

because v1 is not connected to any vertex. Moreover, if we remove a vertex, the graph is

still connected. So κ(Cn) = 2.

Definition 2.11. The edge-connectivity of a non-trivial graph G is the smallest k for

which there exists a k-edge cut. The edge-connectivity of a trivial or disconnected graph

is taken to be 0. The edge-connectivity of G is denoted by λ(G) or λ. Any edge cut of

cardinal λ(G) is called a minumum edge cut .

Remark 2.12. If H is a spanning subgraph of G, then κ(H) ≤ κ(G) and λ(H) ≤ λ(G).

Definition 2.13. A graph G is k-connected if κ(G) ≥ k. Also, G is k-edge-connected if

λ(G) ≥ k.

Let us remark an easy but important characterization of 2-edge-connectivity, which

follows from Proposition 2.8:

Theorem 2.14. A connected graph G is 2-edge-connected if and only if all its edges are

in cycles.

Remark 2.15. The characterizations of Proposition 2.8 and Theorem 2.14 cannot be gene-

ralized to digraphs. One counterexample is the directed cycle. The “reason” is that in

simple graphs the reverse path always exists.

Next, we present a theorem which relates edge and vertex connectivity by an inequality.

This theorem can be seen as a direct corollary of Menger’s Theorems, which are presented

in the next section. Nonetheless, it is worth to present a short independent elementary

proof.

Theorem 2.16. For a connected graph G, κ(G) ≤ λ(G) ≤ δ(G).

Proof. The second inequality is quite clear, because if we remove all the edges incident in

a vertex, G is disconnected. This is also true for a vertex of smallest degree.
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As for the first, let {v1u1, . . . , vλuλ} be a λ-edge cut. By Proposition 2.4, it is of the form

[W,W ]. Let us call U = {u1, . . . , uλ}. We can assume by renaming vertices that U ⊂W . If

G−U is not connected, then U is a vertex cut of at most λ vertices, so κ ≤ λ by definition.

Otherwise, W = {u1, . . . , uλ} by Remark 2.3 (3). So, u1 has λ neighbours (by the second

inequality it cannot have less). This is because we can find a surjective function from

{1, . . . , λ} to N(u1). For i = 1, . . . , n, if ui = u1, we define f(i) = vi. Otherwise, f(i) = ui.

Hence, κ(G) ≤ dG(x1) ≤ λ.

A fact about this proof that should be pointed out is that not necessarily all ui or all

vi have to be distinct vertices. This is because ui is one of the vertices that the i-th edge

of the edge cut is adjcent to. So, it could be u2 = u1 or any similar equality. One such

example is Kk,1, in which all the vi are connected to a single vertex u = ui

Finally, it is clear that when a vertex is removed from a graph, its connectivity decreases

at most by 1. Similarly, when an edge is removed, its edge-connectivity decreases at most

by 1. In the following proposition we analyze what happens to vertex connectivity when

an edge is removed:

Proposition 2.17. Let G be a graph with connectivity κ ≥ 1. Then, for any edge e = uv,

the subgraph H = G − e has connectivity κ or κ − 1.

Proof. Let W be a minimum vertex cut of H. Then, if H−W has at least three connected

components, G −W has at least two connected components, so W is a vertex cut of G.

Moreover, if u or v is in W , H −W = G−W , so W is a vertex cut of G too. Otherwise, if

H −W has two connected components and u, v ∉W , either W ∪{u} or W ∪{v} is a vertex

cut of G. In either of the three ways, κ(G) ≤ κ(H) + 1. Moreover, as H is a spanning

subgraph of G, κ(H) ≤ κ(G). As they are natural numbers, the only two possibilities are

κ(H) = κ(G) and κ(H) = κ(G) − 1.

2.2 Menger’s Theorems

In this section we present an important characterization of being κ-connected and

another of being λ-edge-connected. These characterizations have to do with the largest

number of internally disjoint and edge disjoint paths from one vertex to another. Having
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κ internally disjoint path joining each pair of vertices seems at first a stronger condition

than having connectivity κ. Assuming there are κ internally-disjoint paths, even if you

remove κ − 1 vertices, there is still a path connecting each pair of remaining vertices.

Similarly, if we have λ edge-disjoint paths connecting any two vertices, edge-connectivity

must be at least λ. The objective of this section is to prove these are equivalent facts,

which is one of the main statements of Menger’s Theorems.

Menger’s Theorems are known since 1927 [6]. From then on, many proofs have been

given. Some of them, like the one provided in [1], prove more general facts about Network

Theory. Nonetheless, here we adapt the elementary proof written by Goring [5] for the

lemma and we conclude the theorems as suggested by Diestel in [3]. We explain their

respective proofs in detail, although some easy explanations have been omitted.

We now present some definitions that are specifically needed for Lemma 2.21:

Definition 2.18. Let G be a graph and U,W ⊂ V . Then U and W are connected if there

is some path starting in a vertex in U and ending in a vertex in W . We say that removing

a set of vertices X disconnects U and W if U −X and W −X are not connected in G−X.

In that case, X is a UW-separator (in G). Nonetheless, if v, u ∈ V , a set X disconnects

them if v, u ∉X and if X disconnects {v} and {u}.

Remark 2.19. Note that a different definition is given to“disconnect” two sets or two

vertices. In addition, note that if U and W have a vertex in common, they are connected

by a path of length 0. Moreover, it follows from the definition that the empty set is

disconnected with any subset; hence, U and W are trivially UW -separators.

Definition 2.20. A family of paths is disjoint if they have no vertex in common (including

the start vertices and the end vertices).

Lemma 2.21. Let G be a graph, U,W ⊂ V and k the smallest number of vertices that

must be deleted in order to disconnect U and W . Then, there are k paths from U to W

that are disjoint.

Proof. We prove this fact by using induction on the number of edges of G. More especi-

fically, we prove that if G has n edges, the statement of the lemma is true. The base case

is when G is edgeless. Then, for any U,W ⊂ V , the smallest k is the number of common

vertices. We get the k paths by taking those vertices as 0-length paths.
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Now, let us prove the inductive case. Let G be any graph with n edges, U,W ⊂ V and

k the smallest number of vertices that must be deleted in order to disconnect U and W .

Let us select some edge e. We consider the graph H = G − e, in which we can apply the

inductive hypothesis. If it is still necessary to delete k vertices to disconnect U and W ,

we have by the inductive hypothesis k disjoint paths in H from U to W , which are also

paths in G.

If that is not the case (see Figure 2.1), there is a UW -separator X for H, with ∣X ∣ = k−1.

Moreover, in G−X there is a path from U to W that uses e, which is a bridge edge of its

connective component. So, one of the ends of e, namely y, is connected to U in H −X,

and the other, namely z, to W in H −X. Furthermore, Y =X ∪ {y} and Z =X ∪ {z} are

UW -separators of k vertices.

To continue with, we are going to prove that a UY -separator in H, namely A, is a

UW -separator in G. First, let us see it is a UW -separator in H. If in H −A there was

a path from U to W , then it could not use any vertex of X because by the restriction

we would get a path from U to Y . But any path from U to W must use e or a vertex of

X. So, there is no path from U to W in H −A, and A is a UW -separator in H. Let us

suppose for the sake of contradiction that there is some path from U to W in G−A. This

means that there must be some path from U to z that does not use any vertex in Y , then

go to y via e, and then to W by another path. But that also means that in H −X there

is a path from U to z, and, by prolonging it with the path from z to W in G −X, that

we know it does not use X, so U and W would be connected in G−X, which contradicts

our hypothesis. Therefore, A is a UW -separator in G.

So, it is necessary to delete at least k vertices to disconnect U and Y . As ∣Y ∣ = k, k

is the minimum number of vertices needed to be removed to disconnect U and Y . By a

similar reasoning, k is the smallest number of vertices needed to delete to disconnect Z

and W .

So, by applying the inductive hypothesis, there are k vertex disjoint paths from some

vertices of U to the vertices of Y , and others from the vertices of Z to W . It is not possible

that one of the paths P from U to Y and other of the paths Q from W to Z has any

vertex v /∈ X because it would mean that deleting X and the edge e does not disconnect
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U

W

y

z

X e

G

Figure 2.1: Illustration of the proof of Lemma 2.21

U and W (there would be the path that goes from U to v in P and then follow from v to

W in Q). So, joining the paths, we get the k paths we are looking for.

Using this lemma, we can prove the following theorems almost as a corollary:

Theorem 2.22 (Menger’s Theorem for vertex connectivity). Let G be a graph and v, u ∈

V . We assume that v and u are not neighbours in V . Let κ be the smallest number of

vertices needed to be removed to disconnect v and u. Then, there are κ internally-disjoint

paths joining them.

Proof. Let us consider the sets N(v) and N(u). Disconnecting v and u is equivalent to

disconnecting N(v) and N(u). So, the minimum number of vertices needed to disconnect

N(v) and N(u) is κ. Then, there are κ disjoint paths from N(v) to N(u). Joining them

to v and u, we get the desired internally disjoint paths.

There is an analogous theorem for edges:

Theorem 2.23 (Menger’s Theorem for edge-connectivity). Let G be a graph and v, u ∈ V .

Let λ be the smallest number of edges which must be removed to disconnect v and u. Then,

there are λ edge-disjoint paths joining them.



Chapter 2. Classical notions of connectivity 19

Proof. Let us consider the line graph L(G). Due to Proposition 1.28, if E(v) is the set

of edges incident to v and E(u) to u, then it is necessary to remove λ vertices in L(G) to

disconnect E(v) from E(u). So, we have the disjoint paths S1, . . . , Sλ joining E(v) and

E(u) viewed as sets of edges. Let us consider G[Si]. Then, v, u ∈ V (G[Si]) because the

initial and final edges of Si are incident to v and u, respectively. Moreover, these edges

are connected in L(G[Si]) since L(G[Si]) = L(G)[Si] (Proposition 1.30). So, because of

Proposition 1.28, there is a path Pi from v to u in every G[Si]. Since {E(G[Si])} = {Si}

is a family of disjoint edge sets, {Pi}λi=1 is family of λ edge-disjoint paths from v to u.

Now, we are ready to prove the global version of Menger’s Theorems:

Theorem 2.24 (Global version of Menger’s Theorems). Let G be a connected graph:

(i) It is κ-connected if and only if it contains κ internally disjoint paths between any

two vertices.

(ii) It is λ-edge-connected if and only if it contains λ edge disjoint paths between any

two vertices.

Proof. Sufficiency has been explained in both cases before. As for necessity, in the first

case, if a pair v, u ∈ V is not neighbour, by Theorem 2.22 we have the desired κ paths. If

they are neighbours, we remove the edge joining them. According to Proposition 2.17, the

connectivity of this new graph is greater than κ− 1, so we have that number of internally

disjoint paths, and so we have together with the edge between u and v the κ paths.

Necessity in the second case follows from Theorem 2.23.

Finally, we are going to present another consequence of Lemma 2.21 that will be

needed for proving Theorem 3.3.

Corollary 2.25. Let G be a κ-connected graph, H a subgraph with at least κ vertices and

v /∈ V (H). Then, there are κ paths that start in v, that end in distinct vertices of H, and

that are internally disjoint with H.

Proof. Since the graph is κ-connected, one needs to remove κ vertices to disconnect N(v)

and V (H) (both sets have at least κ element, and you need to remove κ vertices in order

to disconnect G). So, there will be κ disjoint paths from N(v) to V (H). Hence, by joining

those paths with v and by deleting from each path anything after their first vertex in H,

we get the desired κ-paths.
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Remark 2.26. For digraphs all these theorems have analogous statements and proofs. In

fact, the proof in Göring’s article [5] was done for digraphs and we have adapted it to

graphs.

2.3 Ear decomposition

For 2-connected and 2-edge-connected graphs there is a constructive characterization

which is frequently used. Moreover, there is also a similar characterization for connected

digraphs. In the next chapter we analyze a property of digraphs so, in order to allow the

reader to get used to them, this time we prove the characterization for digraphs. The

other two proofs are analogous, so they will be omitted. We have used the statements

based on [4], which by the way contain some additional easily derivable characterizations.

Theorem 2.27. Let G be a graph, ∣V (G)∣ ≥ 3. Then G is 2-connected if and only if there

is a sequence of subgraphs G0, . . . ,Gn = G, where G0 is a cycle, and each Gi arises from

Gi−1 by adding a path Pi for which the end vertices belong to Gi−1 while the inner vertices

do not.

Remark 2.28. In the decomposition of Theorem 2.27 we ask the Pi to be open ears, that

is, to have distinct initial and final vertices. This is a consequence of the definition of

path.

Remark 2.29. Each Pi can consist of just one edge, so it is possible that V (Gi) = V (Gi+1)

or V (Di) = V (Di+1). It is also true for the next theorems.

Theorem 2.30. Let G be a graph. Then G is 2-edge-connected if and only if there is a

sequence of subgraphs G0, . . . ,Gn = G, where G0 is a cycle, and each Gi arises from Gi−1
by adding a path or a cycle Pi for which the end vertices belong to Gi−1 while the inner

vertices do not.

Theorem 2.31. Let D be a digraph, ∣D∣ ≥ 2. Then D is connected if and only if there is

a sequence of subgraphs D0, . . . ,Dn =D, where D0 is a directed cycle, and each Di arises

from Di−1 by adding a directed path or a directed cycle Pi for which the end vertices belong

to Di−1 while the inner vertices do not.

Remark 2.32. When Pi is a cycle, the vertex of Gi−1/Di−1 is considered as both the initial

and final vertex, whereas the others are considered as internal vertices.
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In both cases each Pi is called an ear , and the sequence G0, . . . ,Gn /D0, . . . ,Dn is

called an ear decomposition of G/D. When the Pi is a path, we say it is an open ear.

As a toy example of Theorem 2.27 we present an ear decomposition of K2,3 in Figure

2.2. Moreover, in Figure 2.3 and 2.4 we present a toy example of a digraph, which shows

that ear decompositions need not be unique.

(a) K2,3 (b) The initial ear (c) An additional open ear.

Figure 2.2: The ear decomposition of K2,3

(a) The digraph (b) The initial ear (c) An additional open ear.

Figure 2.3: The ear decomposition of a digraph

(a) The digraph (b) The initial ear (c) An additional open ear.

Figure 2.4: The ear decomposition of a digraph

Proof of Theorem 2.31. Let us first prove sufficiency. We prove by induction that any Di

is connected. The base case, D0, is connected because it is a cycle. Let us suppose that

Di−1 is connected, and let us called v and u the initial and final vertex of Pi. Firstly, there

is a walk from any vertex of Di−1 to any other of Di−1 because we have not removed any

arrow. Secondly, there is a walk from any vertex of Di−1 to any vertex of Pi by going first

to v and then using the arrows of Pi until we have reached the target vertex. Thirdly, we

can go from any vertex of Pi to any vertex of Di−1 by going first to u and then using the

walk inside Di−1. Finally, we can go from any vertex of Pi to any vertex of Pi by going

first to u, and then using the walk from u to the target vertex (the second case). So, each

Di is connected, and, in particular, Dn is connected.
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As for necessity, let us pick a vertex v. As it is connected, there is an arrow vu going

out of v. In addition, there is a path P back from u to v. The union of the edge and the

path makes the cycle D0. As for the others, we use induction. If Di−1 does not have all

the vertices, let us pick an arrow xy leaving Di−1. Moreover, there is path Qi from y back

to Di−1, and we take Pi = xyQi. If Di−1 has all the vertices, Pi can be any arrow that is

not in Di−1. As V and E are finite, this process must finish.

Remark 2.33. In the ear decomposition (of the three cases) it can be added the restriction

that the order of the Gi/Di increases strictly until some Gj/Dj, which is a spanning

subgraph.



Chapter 3

Searching spanning bipartite

subgraphs that preserve connectivity

and some applications

In this chapter we analyse some recent results about bipartite subgraphs of graphs

and how they reflect the connectivity of the graph. In particular, we are interested in

finding a spanning subgraph that has at least half the connectivity of the graph. The

case of edge-connectivity was solved by Thomassen in 2008 [8, Proposition 1], whereas

for connectivity, to ht ebest of my knowledge, it is only known for 3-connected graphs [7,

Theorem 3.3]. Later on, we see with a counterexample that in a connected digraph we

cannot expect to find a bipartite spanning connected subgraph, let alone that has half

the connectivity. Finally, we present an application to proper connection made in [2] and

even suggest how the result could be improved.

3.1 Bipartite spanning subgraphs of simple graphs

that preserve connectivity or edge-connectivity

Throughout this section, we are interested in seeing that if G is a (2k − 1)-connected

graph, then there is a k-connected spanning bipartite subgraph. Similarly, ifG is a (2k−1)-

edge-connected graph, then there is a k-edge-connected spanning bipartite subgraph. For

connectivity, we are only able to prove the cases k = 1,2. As for edge-connectivity, a proof

23
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for the general case is given, as well as additional proofs for the cases k = 1 and k = 2.

The case k = 1 is a classical result:

Proposition 3.1. Any connected graph has a spanning bipartite connected subgraph.

Proof. Let G be a connected graph and H a minimal spanning connected subgraph,

minimal in the sense that if we remove any edge, it is disconnected. H cannot have a

cycle, since removing an edge of a cycle does not disconnect it. So, by Theorem1.24, H

is bipartite.

Remark 3.2. The previous proposition serve as a proof in the case of 1-edge-connected

and 1-connected, which is equivalent of being connected.

The next step is to prove it for 3-connected graphs. We use the sketch of the proof in

[7, Theorem 3.3], which was later on explained in more detail by Čada et al. [9, Lemma

3.1.]. The proof here is very similar to theirs.

Theorem 3.3 ([7] and [9]). Let G be a 3-connected graph. Then, G has a 2-connected

spanning bipartite subgraph.

Proof. First, we find an ear decomposition of that bipartite subgraph. First, let us pick

any two v, u ∈ V . By Menger’s Theorem, there are three internally disjoint paths from v

to u. Moreover, two of them have the same parity. So joining one with the inverse of the

other path, we get an even cycle, namely H0.

v

P2

y
x

z

P3

Q1
Q2

Q3P1

Hi

Figure 3.1: Graph illustrating the proof of Theorem 3.3

Now, let us suppose thatHi is a bipartite 2-connected subgraph which is not a spanning

subgraph (from now on see Figure 3.1). Let v /∈ Hi. By Corollary 2.25, there are three

internally disjoint paths P1, P2, P3 that start in v and end in 3 different vertices of Hi,
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namely x, y, z. Let us pick 3 paths inside Hi: Q1, that goes from x to y; Q2, that goes

from y to z, Q3, that goes from z to x. Now, since Hi is bipartite, the closed walk Q1Q2Q3

is even, so

l(P1Q1P
−1
2 )+ l(P2Q2P

−1
3 )+ l(P3Q3P

−1
1 ) = 2l(P1)+2l(P2)+2l(P3)+ l(Q1Q2Q3) ≡ 0 mod 2.

This means that one of the three cycles is even, let us say P1Q1P −1
2 . So, we add to Hi the

open ear Ri = P −1
2 P1 in order to define Hi+1.

Let us remark that Hi+1 is still bipartite. Any odd cycle must use an edge of Ri, so

necessarily all edges Ri. But any path in Hi between x and y has the same parity of Q1

(Remark 1.25), which is the parity of Ri. So any odd cycle, must be an even cycle. So,

Hi+1 does not have an odd cycle, and therefore, is bipartite. So, we can use this process

to expand H0 to a spanning bipartite subgraph Hk via the ear decomposition H0, . . . ,Hk,

adding each time R1, . . . ,Rk (since V is finite, it must terminate). So, Hk is a spanning

bipartite 2-connected subgraph of G.

This proof has an analogous for edge-connectivity. Although dealing with edges makes

it nastier, we can see that the main ideas remain.

Theorem 3.4. If G is a 3-edge-connected graph, then G has a spanning 2-edge-connected

bipartite subgraph.

Proof. First, we prove that G has an even cycle H0. Certainly G has a cycle. If it is odd,

pick some vertex v in the cycle. There is a third path going from v to some vertex u ≠ v

in the cycle which is internally disjoint to the cycle. The reason is that G is connected

after deleting the two edges of the cycle adjacent to v. So, we have 3 internally-disjoint

paths from v to u. Two of these paths have lengths of the same parity and they give an

even cycle.

xi

xn
e u
v

w
x1

Hi

Figure 3.2: Graph illustrating the proof of Theorem 3.4
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Next (from now on see Figure 3.1), we prove that if we have some not-spanning bipartite

subgraph Hi, then Hi can be expanded by an ear to some overgraph Hi+1, also bipartite,

which has more vertices. Let us pick some edge vx1 such that v ∈ Hi and x1 ∉ V (Hi).

Since vx1 is in a cycle, there is some path (it might be closed, that is, it might be u = v)

vx1, . . . , xnu, being u ∈ V (Hi) and internally-disjoint from Hi. Let us denote {x1, . . . , xn}

by X. Since G is 3-edge-connected, there is some i such that there is a path P2 from xi

to some w ∈ V (Hi) internally-disjoint from ({v, x1, . . . , xn, u},{vx1, . . . , xnu}) ∪Hi. This

is because in G − {vx1, xnu} X is connected to V (Hi), so we get the desired path by

considering a path that starts in X and ends in V (Hi). We take the restriction since

it last leaves X until it first enters V (Hi). Comparing Figure 3.2 and Figure 3.1, we

are in a very similar situation to the one in the proof of the previous theorem, so it can

be concluded in the same way the existence of the ear and Hi+1. Moreover, we get the

2-edge-connected spanning bipartite subgraph starting from an even cycle and expanding

it with ears.

Remark 3.5. In the above proof u, v,w might be equal or different vertices, so the ears

might be open or close.

So, we see that the difference is that the given paths are not vertex disjoint; so, in

order to look for the ear, we must look in relatively close vertices. This is due to the

fact that edge-connectivity is weaker. Moreover, both proofs have the disadvantage that

they depend on a characterization exclusive of 2-connectedness and 2-edge-connectedness.

This is because those proofs are constructive, and being constructive is not always an

advantage. In fact, pointing a subgraph with an especific property as in Proposition 3.1

can be a more effective way. That is how Thomassen proves the following fact about

edge-connectivity [8, Proposition 1]:

Theorem 3.6 ([8]). Let G be a 2k − 1-edge-connected graph. Then G has a spanning

k-edge-connected bipartite subgraph.

Proof. Let U be maximal in the sense that H = G[U,U] has as much edges as possible.

Let us suppose, for the sake of contradiction, that λ(H) < k. Then, there is a W ⊂ V such

that [W,W ]H has less than k edges (Proposition 2.4). Let us consider now

I = G[(U ∩W ) ⊍ (U ∩W ), (U ∩W ) ⊍ (U ∩W )].

We prove that

E(I) = (E(H) − [W,W ]H) ⊍ ([W,W ]G − [W,W ]H),
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being the union disjoint and being the differences removal of a subset. This is because

E(I) = [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ]

E(H) = [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ]

[W,W ]H = [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ]

[W,W ]G = [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ] ⊍ [U ∩W,U ∩W ].

Since [W,W ]G has at least 2k−1 edges, that means that [W,W ]G −[W,W ]H has at least

k edges, so we add at least k edges, and remove at most k − 1. That means that I has

more edges than H, which goes against the hypothesis. Therefore H is k-edge-connected,

and consequently, is the subgraph we are looking for.

A critical reader may think that the proof is so easy that there must be a trick. The

trick is that although we have proved the existence, getting the subgraph H is not easy

at all. There are 2n−1−1 possible candidates. This is why this proof cannot be considered

a constructive proof, but rather a proof that points out an especific subgraph which we

know that must exist. In fact, these proofs tend to be much cleaner precisely because they

hide how to get the graph (note that there is a constructive algorithm: get the 2n−1 − 1

subgraphs, count the edges and get the subgraph of a maximum number of edges).

Remark 3.7. As the example C4 shows, Proposition 3.1 and Theorem 3.6 do not produce

the same subgraph. In the first case we get P3, and in the second case C4. More generally,

the three proofs are not deterministic proofs: since there are decisions to be made, you

can get different subgraphs.

3.2 Digraphs and bipartite subgraphs

With digraphs, the situation is completely different. First, it is rather straightforward

that a connected graph may not have a connected bipartite subgraph. One such example

is the directed cycle C3 = ({v, u,w},{vu, uw,wv}). Nonetheless, one may argue that if

we increase the connectivity sufficiently then perhaps the graphs has a spanning bipartite

connected subgraph. The answer is negative and we prove it next.

Definition 3.8. Let D be a digraph and let U,W be disjoint subsets of V (D). We denote

by U ×W the set of ordered pairs with the first element in U and the second one in W ,

that is, to the cartesian product.
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Theorem 3.9. For all k ∈ N there is a digraph Dk with connectivity k and no connected

spanning bipartite subgraph.

Proof. Let us consider the digraph whose vertex set is the union of U = {u}, W = {w},

X = {x1, . . . , xk}, Y = {y1, . . . , yk} and Z = {z1, . . . , zk} and whose edge set is the union of

U ×X, Z ×X, X ×W , W × Y , X ×Z, Z ×U , Y ×Z and Z × Y (see Figure 3.3 for k = 2).

u

w

x1 x2

y1y2

z1z2

Figure 3.3: Graph illustrating Theorem 3.9 for k = 2

Let us first prove that any path from u to w is even, and any path from w to u is odd.

Indeed, in any path from u to w we are in X or Y after an odd number of steps, and in

Z after an even number, as it can be proved by induction. Similarly, in any path from w

to u, we are in X or Y after an odd number of steps, and in Z after an even number. So,

being a subgraph connected implies that is has an odd closed walk. Therefore, it cannot

have a spanning connected bipartite subgraph.

As for connectivity, let us suppose that we remove k − 1 vertices. If u and w are not

removed, we have some cycle uxi1wyi2zi3u. In addition, any yj or xj are connected to zi3

by edges in two directions. Finally, any zj is connected to xi1 by edges in two directions.

So the remaining graph is connected. Otherwise, if u or w are removed, pick a cycle

xi1zi2yi3zi4xi1 , i2 ≠ i4. Proceeding as before, we can see that the graph is still connected,

so κ ≥ k. Since only k arrows have u as its tail, we have the equality κ = k.
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Remark 3.10. The theorem is true if we change the word “connected” by “edge-connected”.

In fact, as Dk is k-connected and as only k arrows have u as its tail Dk is k-edge-connected.

3.3 An application to proper connectivity

In this final section we see that all this theory can be applied in other areas of Graph

Theory, in particular, in the field of proper connectivity. Moreover, we sharpen a conjec-

ture proposed in [2].

Definition 3.11. Let G be a graph and c a function from E to some (finite) set C. Then

(G, c) or (G,E, c) is an edge-colored graph. Any element of C is called a color . Moreover,

we use the verb color to mean that we assign the function of c.

Definition 3.12. Let G be an edge-colored graph. A proper path is a path in which every

two adjacent edges differ in color. Moreover, G is proper connected if any two vertices

are connected by an internally pairwise-disjoint proper paths. If G is a connected graph,

we define the proper connection number , denoted pc(G), as the smallest number of colors

needed to make G k-proper connected. If k = 1 we usually omit it and write pc(G).

Borozan et al. proved the following theorem in [2, Theorem 3], which gives the proper

connection number of 2-edge-connected bipartite graphs:

Theorem 3.13 ([2]). Let G be a graph. If G is 2-edge-connected and bipartite, then

pc(G) = 2. Moreover, there exists a 2-coloring of G that makes it properly connected such

that for any pair of vertices u, v there are two paths from u to v such that they begin with

a different color and they end with a different color.

Proof. Let us suppose that G0, . . . ,Gk = G is an ear decomposition with succesive ears

P1, . . . , Pk. We prove by induction that we can color each Gi as we claim. The base case

is an even cycle (it cannot be odd because G is bipartite), so by coloring alternatively the

edges we get a coloring as desired.

Let us suppose we add the ear Pi to Gi−1. The color of the edges of Gi is the same

as the edges of Gi−1. If Pi is just an edge, we can color that edge red or blue. We can

find the two paths of Gi by using the paths in Gi−1. Otherwise, let us call Pi = v0 . . . vr.

We paint v0v1 by red, v1v2 by blue, v2v3 by red, and so on. We still have those two paths



30 3.3. An application to proper connectivity

from vertex of Gi−1. Moreover from a vertex vi we can find those two paths to a vertex

u ∈ V (Gi). First we go to v0. There is a proper path Q1 from v0 to u whose first edge

is blue. Moreover, there is another proper path Q2 from vr to u whose first color is the

opposite of c(vnvn−1). So, the paths are vi . . . v0Q1 and vi . . . vrQ2. They clearly start with

an edge of a different color. They must end with alternating colors because, otherwise,

we have an odd closed walk from vi to u. Finally, we can get two paths for vertices in Pi

by considering the proper cycle vr . . . v0Q, where Q is an alternating path from v0 to vr

in Gi−1 whose first edge is blue. The last edge of Q must be of different color of c(vrvr−1)

because, otherwise, we have an odd closed walk. So, Gi is colored as stated.

They also prove in [2, Theorem 8] :

Theorem 3.14 ([2]). If G is a connected non-complete graph with n ≥ 68 vertices and

δ(G) ≥ n/4, then pc(G) = 2.

Since they use theory related with Hamiltonian cycles, we do not prove it in these

work. In addition, they pose the following conjecture in [2, Conjecture 3]:

Conjecture 3.15 ([2]). If κ(G) = 2 and δ(G) ≥ 3, then pc(G) = 2.

Because of our previous work, we can make the following contribution:

Corollary 3.16. Let G be a graph. If G is 3-edge-connected and non-complete, then

pc(G) = 2. Moreover, there exists a 2-coloring of G such that for any pair of vertices u, v

there are two paths from u to v such that they begin with a different color and they end

with a different color.

Proof. This is a straightforward consequence of Theorem 3.4 or Theorem 3.6 and Theorem

3.13.

So, the current unknown cases for Conjecture 3.15 are κ = 2, λ = 2 and δ ≥ 3 (and

δ < n/4 if n ≥ 68).



Bibliography

[1] R. Balakrishnan and K. Ranganathan. A Textbook on Graph Theory. Springer-Verlag,

second edition, 2012.

[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. M, L. Montero, and Z. Tuza.

Proper connection of graphs. Discrete Math., 312(17):2550–2560, 2012. doi:

10.1016/j.disc.2011.09.003.

[3] R. Diestel. Graph Theory, chapter 3, pages 50–55. Springer-Verlag, electronic edition,

2000.

[4] A. Frank. Connections in Combinatorial Optimization, chapter 2, pages 45–58. Oxford

University Press, first edition, 2011.

[5] F. Goring. Short proof of menger’s theorem. Discrete Mathematics, Vol 219:295–296,

2000.

[6] K. Menger. Zur allgemeinen kurventhorie. Fund. Math, Vol 10:96–115, 1927.

[7] P. Paulraja. A characterization of hamiltonian prisms. J. Graph Theory, 17(2):161–

171, 1993. doi: 10.1002/jgt.3190170205.

[8] Carsten Thomassen. Edge-decompositions of highly connected graphs into paths.

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 78(1):17–

26, 2008.
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